
HP-UX Reference

Release 11.0

System Calls and File Formats

Sections 2 and 4

Volume 3 of 5

Edition 1

B2355-90166

E1097

Printed in: United States

© Copyright 1997 Hewlett-Packard Company

ii

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and
(c) (2) of the Commercial Computer Software Restricted Rights clause at
FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for
this pack is restricted to this product only. Additional copies of the
programs may be made for security and back-up purposes only. Resale of
the programs in their present form or with alterations, is expressly
prohibited.

Copyright Notices. ©Copyright 1983-1997 Hewlett-Packard Company,
all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

©Copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

This software is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of
California.

iii

©Copyright 1980, 1984, 1986 Novell, Inc.
©Copyright 1986-1992 Sun Microsystems, Inc.
©Copyright 1985, 1986, 1988 Massachusetts Institute of Technology.
©Copyright 1989-1993 The Open Software Foundation, Inc.
©Copyright 1986 Digital Equipment Corporation.
©Copyright 1990 Motorola, Inc.
©Copyright 1990-1995 Cornell University
©Copyright 1989-1991 The University of Maryland
©Copyright 1988 Carnegie Mellon University
©Copyright 1991-1997 Mentat, Inc.
©Copyright 1996 Morning Star Technologies, Inc.
©Copyright 1996 Progressive Systems, Inc.
©Copyright 1997 Isogon Corporation

Trademark Notices. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through The Open
Group.

X Window System is a trademark of the Massachusetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.

iv

v

Printing History
The manual printing date and part number indicate its current edition.
The printing date will change when a new edition is printed. Minor
changes may be made at reprint without changing the printing date. the
manual part number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive the updated or
new editions, you should subscribe to the appropriate product support
service. See your HP sales representative for details.

First Edition: October 1997 (HP-UX Release 11.0)

vi

__
__STANDARD Printed by: Allan Prentice [allanp] STANDARD

/tmp/12570tempL__________________________________ L

___ L L ___

LL L

L

Volume Three
Table of Contents

Section 2
Section 4

__
__STANDARD Printed by: Allan Prentice [allanp] STANDARD

/tmp/12570tempL__________________________________ L

___ L L ___

LL L

L

Volume Three
Table of Contents

Section 2
Section 4

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__________________________________ L

___ L L___

Table of Contents
Volume Three

Section 2: System Calls
Entry Name(Section): name Description
intro(2) ... introduction to system calls
accept(2): accept() ... accept connection on a socket
access(2): access() ... determine accessibility of a file
acct(2): acct() ... enable or disable process accounting
adjtime(2): adjtime() .. correct the time to synchronize the system clock
aio_cancel(2): aio_cancel() .. cancel asynchronous I/O operation
aio_error(2): aio_error() .. return error status of asynchronous I/O operation
aio_fsync(2): aio_fsync() .. synchronize asynchronous I/O operations
aio_read(2): aio_read() .. start asynchronous read operation
aio_return(2): aio_return() ... return asynchronous I/O operation status
aio_suspend(2): aio_suspend() ... suspend for asynchronous I/O operation
aio_write(2): aio_write() ... start asynchronous write operation
alarm(2): alarm() ... set a process’s alarm clock
audctl(2): audctl() ... start or halt auditing system; set or get audit files
audswitch(2): audswitch() ... suspend or resume auditing on current process
audwrite(2): audwrite() .. write audit record for self-auditing process
bind(2): bind() .. bind an address to a socket
brk(2): brk() , sbrk() ... change data segment space allocation
chdir(2): chdir() ... change working directory
chmod(2): chmod() , fchmod() .. change file mode access permissions
chown(2): chown() , fchown() .. change owner and group of a file
chroot(2): chroot() ... change root directory
clocks(2): clock_settime() , clock_gettime() , clock_getres() clock operations
clock_getres() : clock operation ... see clocks(2)
clock_gettime() : clock operation ... see clocks(2)
clock_settime() : clock operation ... see clocks(2)
close(2): close() .. close a file descriptor
connect(2): connect() .. initiate a connection on a socket
crashconf(2): crashconf() .. configure system crash dumps
creat(2): creat() .. create a new file or rewrite an existing one
creat64(2) : fstat64 , getrlimit64 , lockf64 , lseek64 , lstat64 , mmap64, open64 ,

prealloc64 , setrlimit64 , stat64 , statvfs64 , truncate64 ... file system APIs to support large files
dup(2): dup() ... duplicate an open file descriptor
dup2(2): dup2() .. duplicate an open file descriptor to a specific slot
errno(2): errno() .. error indicator for system calls
exec(2): execl() , execle() , execlp() , execv() , execve() , execvp() execute a file
execl() : execute a file .. see exec(2)
execle() : execute a file .. see exec(2)
execlp() : execute a file .. see exec(2)
execv() : execute a file .. see exec(2)
execve() : execute a file .. see exec(2)
execvp() : execute a file .. see exec(2)
exit(2): exit() , _exit() ... terminate process
fchdir(2) : change working directory ... see chdir(2)
fchmod() : change file mode access permissions .. see chmod(2)
fchown() : change owner and group of a file .. see chown(2)
fcntl(2): fcntl() ... file control
fdatasync() : synchronize a file’s in-core state with its state on disk .. see fsync(2)
fgetacl() : get access control list (ACL) information .. see getacl(2)
fork(2): fork() .. create a new process
fpathconf() : get configurable path name variables ... see pathconf(2)
fsctl(2): fsctl() .. file system control
fsetacl() set access control list (ACL) information ... see setacl(2)
fstat(2): fstat() ... get file status
fstatfs() : get file system statistics ... see statfs(2)

HP-UX Release 11.0: October 1997 Hewlett-Packard Company vii

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents
Volume Three

Entry Name(Section): name Description
fstatvfs() : get file status ... see statvfs(2)
fsync(2): fsync() , fdatasync() synchronize a file’s in-core state with its state on disk
ftime(2): ftime() .. get date and time more precisely
ftruncate() : truncate a file to a specified length ... see truncate(2)
getaccess(2): getaccess() ... get a user’s effective access rights to a file
getacl(2): getacl() , fgetacl() ... get access control list (ACL) information
getaudid(2): getaudid() .. get the audit ID (aid()) for the current process
getaudproc(2): getaudproc() .. get audit process flag for calling process
getcontext(2): getcontext() , setcontext() .. get and set current user context
getdirentries(2): getdirentries() get entries from a directory in a file-system-independent format
getdomainname(2): getdomainname() , setdomainname() get/set name of current NIS domain
getegid() : get effective group ID ... see getuid(2)
geteuid() : get effective user group ID ... see getuid(2)
getevent(2): getevent() ... get events and system calls currently being audited
getfh(2): getfh() .. get file handle for file on remote node.
getgid() : get real group ID .. see getuid(2)
getgroups(2): getgroups() ... get group access list
gethostid(2): gethostid() ... get an identifier for the current host
gethostname(2): gethostname() ... get name of current host
getitimer(2): getitimer() , setitimer() ... get/set value of interval timer
getksym(2): getksym() .. get information for a global kernel symbol
getmsg(2): getmsg() , getpmsg() .. receive next message from a STREAMS file
getpagesize(2): getpagesize() ... get the current page size
getpeername(2): getpeername() ... get address of connected peer
getpgid() : get process group ID ... see getpid(2)
getpgrp() : 4.2 BSD-compatible process control facilities ... see killpg(2)
getpgrp() : get process group ID ... see getpid(2)
getpgrp2() : get process group ID of specified process ... see getpid(2)
getpid(2): getpgid() , getpgrp() , getpgrp2() , getpid() , getppid()

.. get process, process group, and parent process ID
getpmsg() : receive next message from a STREAMS file in a priority order see getmsg(2)
getppid() : get parent process ID .. see getpid(2)
getpriority(2): getpriority() , setpriority() ... get or set process priority
getprivgrp(2): getprivgrp() , setprivgrp() get and set special attributes for group
getrlimit(2): getrlimit() , setrlimit() .. control consumption of system resources
getrusage(2): getrusage() .. get information about resource utilization
getsid(2): getsid() ... get session ID
getsockname(2): getsockname() ... get socket address
getsockopt(2): getsockopt() , setsockopt() ... get or set options on sockets
gettimeofday(2): gettimeofday() .. get date and time
getuid(2): getuid() , geteuid() ,

getgid() , getegid() get real user, effective user, real group, and effective group IDs
gtty() : control terminal device (Bell Version 6 compatibility) .. see stty(2)
ioctl(2): ioctl() .. control device
iscomsec(2): iscomsec() ... check if system has been converted to a trusted system
kill(2): kill() , raise() .. send a signal to a process or a group of processes
killpg(2): getpgrp() , setpgrp() , sigvec() ,signal() 4.2 BSD-compatible process control facilities
link(2): link() .. link to a file
lio_listio(2): lio_listo() .. start list of asynchronous I/O operations
listen(2): listen() ... listen for connections on a socket
loadmod(2): loadmod() ... load kernel modules on demand
lockf(2): lockf() ... provide semaphores and record locking on files
lseek(2): lseek() ... move read/write file pointer; seek
lstat(2): lstat() ... get symbolic link status
madvise(2): madvise() ... advise system of process’s expected paging behavior
makecontext(2): makecontext() , swapcontext() .. manipulate user contexts
mkdir(2): mkdir() ... make a directory file
mknod(2): mknod() ... make directory, special, or ordinary file
mlock(2): mlock() ... lock segment of process address space in memory
mlockall(2): mlockall() .. lock process address space in memory
mmap(2): mmap.. map object into virtual memory

viii Hewlett-Packard Company HP-UX Release 11.0: October 1997

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents

Volume Three

Entry Name(Section): name Description
modpath(2): modpath() change global search path for dynamically loadable kernel modules
modstat(2): modstat() .. get information for a dynamically loaded kernel module
moduload(2): moduload() .. unload a kernel module on demand
mount(2): mount() .. mount a file system
mpctl(2): mpctl() ... multiprocessor control
mprotect(2): mprotect .. modify memory mapping access protections
mq_close(2): mq_close() ... close a message queue descriptor
mq_getattr(2): mq_getattr() get status information and attributes associated with a message queue
mq_notify(2): mq_notify() register/cancel a notification request with a message queue
mq_open(2): mq_open() .. create/open a message queue
mq_receive(2): mq_receive() ... receive a message from a message queue
mq_send(2): mq_send() ... send a message to a message queue
mq_setattr(2): mq_setattr() set the blocking status of a message queue associated with a descriptor
mq_unlink(2): mq_unlink() .. unlink a message queue
msem_init(2): msem_init() initialize semaphore in mapped file or anonymous memory region
msem_lock(2): msem_lock .. lock a semaphore
msem_remove(2): msem_remove remove semaphore in mapped file or anonymous region
msem_unlock(2): msem_unlock ... unlock a semaphore
msgctl(2): msgctl() .. message control operations
msgget(2): msgget() .. get message queue
msgop(2): msgrcv() , msgsnd() .. message operations
msgrcv() : receive message from message queue ... see msgop(2)
msgsnd() : send message to message queue ... see msgop(2)
msync(2): msync .. synchronize a mapped file
munlock(2): munlock() ... unlock segment of process virtual address space
munlockall(2): munlockall() .. unlock process virtual address space
munmap(2): munmap() ... unmap a mapped region
nanosleep(2): nanosleep() .. high resolution sleep
nice(2): nice() .. change priority of a process
open(2): open() .. open file for reading or writing
pathconf(2): pathconf() , fpathconf() ... get configurable path name variables
pause(2): pause() .. suspend process until signal
pipe(2): pipe() ... create an interprocess channel
plock(2): plock() ... lock process, text, data, stack, or shared library in memory
poll(2): poll() .. monitor I/O conditions on multiple file descriptors
prealloc(2): prealloc() .. preallocate fast disk storage
PRI_HPUX_TO_POSIX() : return POSIX.4 process priority ... see rtsched(2)
PRI_POSIX_TO_HPUX() : return HP-UX process priority ... see rtsched(2)
profil(2): profil() .. execution time profile
pstat() ... see pstat(2)
pstat(2): pstat_getstatic() , pstat_getdynamic() , pstat_getproc() , pstat_getprocessor() ,

pstat_getvminfo() , pstat_getdisk() , pstat_getlv() , pstat_getswap() ,pstat_getfile() ,
pstat_getipc() , pstat_getsem() , pstat_getmsg() , pstat_getshm() , pstat_getprocvm() ,
pstat_getstable() , pstat_getlwp() , pstat() .. get system information

pstat_getdisk() ... see pstat(2)
pstat_getdynamic() ... see pstat(2)
pstat_getfile() ... see pstat(2)
pstat_getipc() ... see pstat(2)
pstat_getlv() ... see pstat(2)
pstat_getlwp() ... see pstat(2)
pstat_getmsg() ... see pstat(2)
pstat_getproc() ... see pstat(2)
pstat_getprocessor() ... see pstat(2)
pstat_getprocvm() ... see pstat(2)
pstat_getsem() ... see pstat(2)
pstat_getshm() ... see pstat(2)
pstat_getstable() ... see pstat(2)
pstat_getstatic() ... see pstat(2)
pstat_getswap() ... see pstat(2)
pstat_getvminfo() ... see pstat(2)
ptrace(2): ptrace() .. process trace

HP-UX Release 11.0: October 1997 Hewlett-Packard Company ix

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents
Volume Three

Entry Name(Section): name Description
putmsg(2): putmsg() , putpmsg() ... send a message on a stream
putpmsg() : send a message on a stream in different priority bands ... see putmsg(2)
quotactl(2): quotactl() ... manipulate disk quotas
raise() : send a signal to executing program .. see kill(2)
read(2): read() , readv() ... read input
readlink(2): readlink() .. read value of a symbolic link
readv() : read input ... see read(2)
reboot(2): reboot() .. boot the system
recv(2): recv() , recvfrom() , recvmsg() ... receive message from a socket
recvfrom() : receive message from a socket ... see recv(2)
recvmsg() : receive message from a socket ... see recv(2)
rename(2): rename() .. change the name of a file
rmdir(2): rmdir() .. remove a directory file
rtprio(2): rtprio() .. change or read real-time priority
rtsched(2): sched_get_priority_max() , sched_get_priority_min() ,

sched_getparam() , sched_getscheduler() , sched_rr_get_interval() ,
sched_setparam() , sched_setscheduler() , sched_yield() ,
PRI_HPUX_TO_POSIX() , PRI_POSIX_TO_HPUX() real-time scheduling operations

sbrk() : change data segment space allocation ... see brk(2)
sched_getparam() : return scheduling parameters .. see rtsched(2)
sched_getscheduler() : return scheduling policy ... see rtsched(2)
sched_get_priority_max() : return maximum for scheduling policy see rtsched(2)
sched_get_priority_min() : return minimum for scheduling policy see rtsched(2)
sched_rr_get_interval() : update execution time limit .. see rtsched(2)
sched_setparam() : set scheduling parameters .. see rtsched(2)
sched_setscheduler() : set scheduling policy ... see rtsched(2)
sched_yield() : force process to relinquish processor ... see rtsched(2)
select(2): select() .. synchronous I/O multiplexing
semctl(2): semctl() ... semaphore control operations
semget(2): semget() .. get set of semaphores
semop(2): semop() .. semaphore operations
sem_close(2): sem_close() ... close an named semaphore
sem_destroy(2): sem_destroy() .. destroy an unnamed semaphore
sem_getvalue(2): sem_getvalue() ... read a POSIX semaphore
sem_init(2): sem_init() ... initialize an unnamed semaphore
sem_open(2): sem_open() ... open/create a named semaphore
sem_post(2): sem_post() ... unlock a POSIX semaphore
sem_trywait(2): lock a POSIX semaphore without blocking .. see sem_wait(2)
sem_unlink(2): sem_unlink() ... unlink a named semaphore
sem_wait(2): sem_wait() , sem_trywait() ... lock a POSIX semaphore
send(2): send() , sendmsg() , sendto() ... send message to a socket
sendfile(2): sendfile() .. send the contents of a file through a socket
sendmsg() : send message to a socket ... see send(2)
sendto() : send message to a socket ... see send(2)
serialize(2): serialize() ... force target process to run serially with other processes
setacl(2): setacl() , fsetacl() .. set access control list (ACL) information
setaudid(2): setaudid() ... set audit ID (aid()) for current process
setaudproc(2): setaudproc() ... set or clear auditing on calling process
setcontext() : get and set current user context .. see getcontext(2)
setevent(2): setevent() ... set current events and system calls to be audited
setgid() : set group ID ... see setuid(2)
setgroups(2): setgroups() .. set group access list
sethostname(2): sethostname() .. set name of host cpu
setitimer() : set value of interval timer ... see getitimer(2)
setpgid(2): setpgid() , setpgrp2() ... set process group ID for job control
setpgrp() : 4.2 BSD-compatible process control facilities ... see killpg(2)
setpgrp() : create session and set process group ID ... see setsid(2)
setpgrp(2): setpgrp() .. set process group ID
setpgrp2() : set process group ID ... see setpgid(2)
setpgrp3() : create session and set process group ID ... see setsid(2)
setpriority() : set process priority ... see getpriority(2)

x Hewlett-Packard Company HP-UX Release 11.0: October 1997

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents

Volume Three

Entry Name(Section): name Description
setprivgrp() : set special attributes for group .. see getprivgrp(2)
setresgid() : set real, effective, and saved group IDs ... see setresuid(2)
setresuid(2): setresuid() , setresgid() set real, effective, and saved user and group IDs
setreuid(2): setreuid() ... set real and effective user IDs
setrlimit() : control consumption of system resources .. see getrlimit(2)
setsid(2): setsid() , setpgrp() , setpgrp3() create session and set process group ID
setsockopt() : set options on sockets .. see getsockopt(2)
setuid(2): setuid() , setgid() ... set user and group IDs
setuname(2) : set node name (system name) .. see uname(2)
shmat() : attach shared memory to data segment ... see shmop(2)
shmctl(2): shmctl() ... shared memory control operations
shmdt() : detach shared memory from data segment ... see shmop(2)
shmget(2): shmget() ... get shared memory segment
shmop(2): shmat() , shmdt() ... shared memory operations
shm_open(2): shm_open() .. create/open a shared memory object
shm_unlink(2): shm_unlink() ... unlink a shared memory object
shutdown(2): shutdown() ... shut down a socket
sigaction(2): sigaction() .. examine and change signal action
sigaltstack(2): sigaltstack() ... set and/or get signal alternate stack context
sigblock(2): sigblock() ... block signals
sighold(2V): sighold() , sigrelse() , sigignore() P .. signal management
sigignore() : signal management .. see sighold(2V)
siginterrupt(2): siginterrupt() .. allow signals to interrupt functions
signal() : 4.2 BSD-compatible process control facilities ... see killpg(2)
signal(2): signal() , sigset() , sighold() , sigrelse()1, sigignore() , sigpause . signal management
sigpending(2): sigpending() .. examine pending signals
sigprocmask(2): sigprocmask() .. examine and change blocked signals
sigqueue(2): sigqueue() ... queue a signal to a process
sigrelse() : signal management .. see sighold(2V)
sigsend(2): sigsend() , sigsendset() send a signal to a process or a group of processes
sigsendset() : send a signal to a group of processes .. see sigsend(2)
sigsetmask(2): sigsetmask() .. set current signal mask
sigspace(2): sigspace() ... assure sufficient signal stack space
sigstack(2): sigstack() ... set and/or get signal stack context
sigsuspend(2): sigsuspend() ... wait for a signal
sigtimedwait() : examine and change signal action ... see sigwait(2)
sigvec() : 4.2 BSD-compatible process control facilities ... see killpg(2)
sigvector(2): sigvector() .. software signal facilities
sigwait(2): sigwait() , sigwaitinfo() , sigtimedwait() examine and change signal action
sigwaitinfo() : examine and change signal action ... see sigwait(2)
socket(2): socket() .. create an endpoint for communication
socketpair(2): socketpair() ... create a pair of connected sockets
stat(2): stat() .. get file status
statfs(2): statfs() , fstatfs() ... get file system statistics
statvfs(2): statvfs() , fstatvfs() ... get file status
stime(2): stime() ... set time and date
stream(2): stream() ... STREAMS enhancements to standard system calls
stty(2): stty() , gtty() .. control terminal device (Bell Version 6 compatibility)
swapcontext() : manipulate user contexts .. see makecontext(2)
swapon(2): swapon() .. add swap device for interleaved paging and swapping
symlink(2): symlink() ... make symbolic link to a file
sync(2): sync() .. update super-block
sysconf(2): sysconf() ... get configurable system variables
sysfs(2): sysfs() .. get file system type info
time(2): time() ... get time
timers(2): timer_create() , timer_delete() , timer_settime() ,

timer_gettime() , timer_getoverrun() .. timer operations
timer_create() : create timer ... see timers(2)
timer_delete() : delete timer ... see timers(2)
timer_getoverrun() : return timer expiration count ... see timers(2)
timer_gettime() : store timer expiration and reload value .. see timers(2)

HP-UX Release 11.0: October 1997 Hewlett-Packard Company xi

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents
Volume Three

Entry Name(Section): name Description
timer_settime() : set timer expiration .. see timers(2)
times(2): times() .. get process and child process times
truncate(2): ftruncate() , truncate() ... truncate a file to a specified length
ttrace(2): ttrace() .. tracing facility for multithreaded process
ttrace_wait(2): ttrace_wait() .. wait for ttrace() request
ualarm(2): ualarm() .. set the interval timer
ulimit(2): ulimit() .. get and set user limits
umask(2): umask() .. set and get file creation mask
umount(2): umount() .. unmount a file system
uname(2): uname() get information about computer system; set node name (system name)
unlink(2): unlink ... remove directory entry; delete file
usleep(2): usleep() ... suspend execution for an interval
ustat(2): ustat() ... get mounted file system statistics
utime(2): utime() ... set file access and modification times
utimes(2): utimes() ... set time access and modification times
vfork(2): vfork() ... spawn new process (use fork() instead)
vfsmount(2): vfsmount() ... mount a file system
wait(2): wait() , waitpid() ... wait for child process to stop or terminate
wait3(2): wait3() ... wait for child process to change state
waitid(2): waitid() ... wait for child process to change state
waitpid() : wait for child process to stop or terminate ... see wait(2)
write(2): write() , writev() .. write data to a file
writev() : write data to a file .. see write(2)

Section 4: File Formats
Entry Name(Section): name Description
intro(4) .. introduction to file formats
.rhosts : security files authorizing access by remote hosts and users on local host hosts.equiv(4)
<pwd.h> password file format ... see passwd(4)
a.out(4): a.out .. assembler and link editor output
acct(4): acct .. per-process accounting file format
ar(4): ar ... common archive file format
arraytab(4): arraytab .. disk array configuration table
audeventstab(4): audeventstab ... define and describe audit system events
audit(4): audit .. file format and other information for auditing
authcap(4): authcap ... security databases
bootconf(4): bootconf .. boot device configuration table
btmp() : btmp entry format .. see utmp(4)
cdnode(4): cdnode .. format of a CDFS cdnode
cdrom(4): cdrom .. CD-ROM background information
charmap(4): charmap .. symbolic translation file for localedef scripts
core(4): core .. format of core image file
cpio(4): cpio ... format of cpio archive
default(4) ... system default database file for a trusted system
devassign(4) .. device assignment database file for a trusted system
devices(4): devices .. file of driver information for insf , mksf , lssf
dialups(4): dialups , d_passwd .. dialup security control
dir(4): dir .. format of directories on short-name HFS file systems
disktab(4): disktab .. disk description file
dosif(4): dosif .. DOS Interchange Format description
dp(4): dp dedicated ports file used by DDFA software and Telnet port identification feature
d_passwd : dialup security control .. see dialups(4)
exports(4) ... directories to export to NFS clients
fs(4): fs .. format of file system volume
fspec(4): fspec .. format specification in text files
fstab(4): fstab ... static information about the file systems
fs_vxfs(4) ... format of VxFS file system volume
ftpusers(4): ftpusers ... security file for ftpd(1M)
gated.conf(4) ... GateDaemon Configuration Guide
gettydefs(4): gettydefs ... speed and terminal settings used by getty

xii Hewlett-Packard Company HP-UX Release 11.0: October 1997

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents

Volume Three

Entry Name(Section): name Description
group(4): group , logingroup .. group file, grp.h
hosts(4): hosts ... host name data base
hosts.equiv(4): hosts.equiv , .rhosts

.. security files authorizing access by remote hosts and users on local host
inetd.conf(4) .. configuration file for inetd
inetd.sec(4) ... optional security file for inetd
inetsvcs.conf(4): inetsvcs.conf .. configuration file for secure internet services
info(4) ... diskless client configuration information file
inittab(4) .. script for the init process
inode(4) .. format of an inode
inode_vxfs(4) ... format of VxFS inode
ioconfig(4): ioconfig ... ioconfig entry format
issue(4): issue .. issue identification file
lif(4): lif ... logical interchange format description
loadmods(4): loadmods .. loadable modules for running kernel during boot
localedef(4): localedef ... localedef -command input script format and semantics
logingroup - group file, grp.h .. see group(4)
lvmpvg(4) ... LVM physical volume group information file
magic(4): magic ... magic numbers for HP-UX implementations
master(4): master ... master kernel configuration information
mnttab(4): mnttab ... mounted file system table
model(4): model ... HP-UX machine identification
netconfig(4): netconfig ... network configuration database
netgroup(4): netgroup .. list of network groups
netrc(4) .. login information for rexec() and ftp
nettlgen.conf(4): nettlgen.conf .. network tracing and logging configuration file
networks(4): networks ... network name data base
nisfiles(4): nisfiles .. NIS+ database files and directory structure
nlist(4): nlist .. nlist structure format
nsswitch.conf(4): nsswitch.conf .. configuration file for the name-service switch
pam.conf(4): pam.conf ... configuration file for pluggable authentication module
pam_user.conf(4): pam_user.conf ... user configuration file for PAM
passwd(4): passwd .. password file, <pwd.h>
pcf(4) ... port configuration file, used by DDFA software
pdf(4): pdf ... Product Description File format
pdgwcfg.conf(4): pdgwcfg.conf ... configuration file for HPDPS gateway printers
pfs(4): pfs ... PFS, portable file system
ppp.Auth(4): ppp.Auth ... ppp authentication file format
ppp.Devices(4): ppp.Devices .. ppp physical device description file format
ppp.Dialers(4): ppp.Dialers .. ppp dialer description file format
ppp.Filter(4): ppp.Filter ... ppp packet filter specification file format
ppp.Keys(4): ppp.Keys ... ppp encryption keys file format
ppp.Systems(4): ppp.Systems .. ppp neighboring systems description file format
privgrp(4): privgrp ... format of privileged values
profile(4): profile ... set up user’s environment at login time
proto(4): proto .. prototype job file for at
protocols(4): protocols .. protocol name data base
prpwd(4): prpwd ... protected password database
publickey(4): publickey ... database for public keys
queuedefs(4): queuedefs .. queue description file for at , batch , and crontab
rc.config(4): rc.config , rc.config.d file containing system configuration information
rc.config.d location of files containing system configuration variable assignments see rc.config(4)
rcsfile(4): rcsfile ... format of RCS file
resolver(4): resolver .. resolver configuration file
rmtab(4): rmtab ... local file system mount statistics
rpc(4): rpc ... RPC program number database
sccsfile(4): sccsfile ... format of SCCS file
sd(4) .. SD objects, attributes, and storage formats
securenets(4) .. NIS map security file
services(4): services .. service name data base
shells(4): shells .. list of allowed login shells

HP-UX Release 11.0: October 1997 Hewlett-Packard Company xiii

LL LL

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/tmp/14600tempL__L

___ L L___
Table of Contents
Volume Three

Entry Name(Section): name Description
sm(4): sm, sm.bak , state ... statd directory and file structures
sm.bak : statd directory and file structures ... see sm(4)
snmpd.conf(4): snmpd.conf ... configuration file for the SNMP agent
softkeys(4): softkeys .. keysh softkey file format
state : statd directory and file structures ... see sm(4)
swpackage(4) ... product specification file (PSF) format
symlink(4): symlink ... symbolic link
tar(4): tar ... format of tar tape archive
term : terminal capabilities ... see term_c(4)
term(4): term .. format of compiled term file
term.h : terminal capabilities ... see term_c(4)
terminfo(4) .. printer, terminal, and modem capability database
term_c(4): term , term.h .. terminal capabilities
ttys(4): ttys ... terminal control database file
ttytype(4): ttytype ... data base of terminal types by port
tun(4): tun ... IP network tunnel driver
tztab(4): tztab ... time zone adjustment table for date(1) and ctime(3C)
ups_conf(4): ups_conf Uninterruptible Power System (UPS) monitor configuration file
utmp(4): utmp() , wtmp() , btmp() ... utmp, wtmp, btmp entry format
utmpx(4): utmpx ... user accounting information file
uuencode(4): uuencode ... format of a uuencode(1)-encoded file
vhe_list(4): vhe_list .. information file for the Virtual Home Environment
wtmp() : wtmp entry format ... see utmp(4)
xtab : directories to export to NFS clients .. see exports(4)
ypfiles(4): ypfiles the Network Information Service database and directory structure

xiv Hewlett-Packard Company HP-UX Release 11.0: October 1997

LL LL

__
__STANDARD Printed by: Allan Prentice [allanp] STANDARD

/tmp/12570tempL__________________________________ L

___ L L ___

LL L

L

Section 2

System Calls

__
__STANDARD Printed by: Allan Prentice [allanp] STANDARD

/tmp/12570tempL__________________________________ L

___ L L ___

LL L

L

Section 2

System Calls

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__________________________________ L

___ L L ___

intro(2) intro(2)

NAME
intro - introduction to system calls

DESCRIPTION
This section describes all of the system calls. All of these calls return a function result. This result indi-
cates the status of the call. Typically, a zero or positive result indicates that the call completed successfully,
and −1 indicates an error. The individual descriptions specify the details. An error number is also made
available in the external variable errno (see errno(2)). Note: errno is not cleared on successful calls.
Therefore, it should be tested only after an error has been indicated.

SEE ALSO
intro(3), errno(2), hier(5), Introduction(9).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−1

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

accept(2) accept(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only
#include <x25/x25addrstr.h>

int accept(int s, void *addr, int *addrlen);

_XOPEN_SOURCE_EXTENDED only (UNIX 98)
int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Obsolescent _XOPEN_SOURCE_EXTENDED only (UNIX 95)
int accept(int s, struct sockaddr *addr, size_t *addrlen);

DESCRIPTION
The accept() system call is used with connection-based socket types, such as SOCK_STREAM. The
argument, s, is a socket descriptor created with socket() , bound to a local address by bind() , and
listening for connections after a listen() . accept() extracts the first connection on the queue of
pending connections, creates a new socket with the same properties as s, and returns a new file descriptor,
ns, for the socket.

If no pending connections are present on the queue and nonblocking mode has not been enabled with the
fcntl() O_NONBLOCK or O_NDELAYflags or the ioctl() FIOSNBIO request, accept() blocks
the caller until a connection is present. O_NONBLOCKand O_NDELAYare defined in <sys/fcntl.h>
(see fcntl(2), fcntl(5), and socket(7)). FIOSNBIO and the equivalent request FIONBIO are defined in
<sys/ioctl.h> , although use of FIONBIO is not recommended (see ioctl(2), ioctl(5), and socket(7)).

If the socket has nonblocking mode enabled and no pending connections are present on the queue,
accept() returns an error as described below. The accepted socket, ns, cannot be used to accept more
connections. The original socket s remains open for incoming connection requests. To determine whether a
listening socket has pending connection requests ready for an accept() call, use select() for reading.

The argument addr should point to a socket address structure. The accept() call fills in this structure
with the address of the connecting entity, as known to the underlying protocol. In the case of AF_UNIX
sockets, the peer’s address is filled in only if the peer had done an explicit bind() before doing a con-
nect() . Therefore, for AF_UNIX sockets, in the common case, when the peer had not done an explicit
bind() before doing a connect() , the structure is filled with a string of nulls for the address. The for-
mat of the address depends upon the protocol and the address-family of the socket s.

The argument addrlen is a pointer to a variable. Initially, the variable should contain the size of the struc-
ture pointed to by addr. On return, it contains the actual length (in bytes) of the address returned. If the
memory pointed to by addr is not large enough to contain the entire address, only the first addrlen bytes of
the address are returned. If addr is NULL or addrlen contains 0, the connecting entity’s address will not
be returned.

The fcntl() O_NONBLOCK and O_NDELAYflags and ioctl() FIOSNBIO request are all supported.
These features interact as follows:

• If the O_NONBLOCKor O_NDELAYflag has been set, accept() requests behave accordingly,
regardless of any FIOSNBIO requests.

• If neither the O_NONBLOCKflag nor the O_NDELAYflag has been set, FIOSNBIO requests control
the behavior of accept() .

AF_CCITT only
The addr parameter to accept() returns addressing information for the connecting entity, except for the
x25ifname[] field of addr which contains the name of the local X.25 interface through which the connec-
tion request arrived. Call-acceptance can be controlled with the ioctl()
X25_CALL_ACPT_APPROVALrequest (see socketx25(7)).

RETURN VALUE
Upon successful completion, accept() returns a nonnegative integer which is a descriptor for the
accepted socket.

Section 2−−2 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

accept(2) accept(2)

If an error occurs, accept() returns -1 and sets errno to indicate the cause.

ERRORS
If accept() fails, errno is set to one of the following values:

[EAGAIN] Nonblocking I/O is enabled using O_NONBLOCKand no connections are present to be
accepted.

[EBADF] The argument, s, is not a valid file descriptor.

[EFAULT] The addr parameter is not a valid pointer.

[EINTR] The call was interrupted by a signal before a valid connection arrived.

[EINVAL] The socket referenced by s is not currently a listen socket or has been shut down with
shutdown() . A listen() must be done before an accept() is allowed.

[EMFILE] The maximum number of file descriptors for this process are currently open.

[ENFILE] The system’s table of open files is full and no more accept() calls can be processed
at this time.

[ENOBUFS] No buffer space is available. The accept() cannot complete. The queued socket
connect request is aborted.

[ENOMEM] No memory is available. The accept() cannot complete. The queued socket con-
nect request is aborted.

[ENOTSOCK] The argument, s, is a valid file descriptor, but it is not a socket.

[EOPNOTSUPP] The socket referenced by s does not support accept() .

[EWOULDBLOCK] Nonblocking I/O is enabled using O_NDELAYor FIOSNBIO and no connections are
present to be accepted.

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size. In that
case, passing a size_t pointer will evoke compile-time warnings, which must be corrected in order for the
application to behave correctly. Applications that use socklen_t now, where appropriate, will avoid
such migration problems. On the other hand, applications that need to be portable to the UNIX 95 profile
should follow the X/Open specification (see xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The accept() system call is thread-safe. It has a cancellation point; and it is async-cancel safe, async-
signal safe, and fork-safe.

AUTHOR
accept() was developed by HP and the University of California, Berkeley.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2), socketx25(7), xopen_networking(7).

STANDARDS CONFORMANCE
accept() : XPG4

HP-UX Release 11.0: October 1997 − 2 − Section 2−−3

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

access(2) access(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access(char *path, int amode);

DESCRIPTION
The access() system call checks the file pointed to by path for accessibility according to the bit pattern
contained in amode. access() uses the real user ID, not the effective user ID, and the real group ID,
not the effective group ID.

The value of amode is either the bit-wise inclusive OR of the access permissions to be checked, or the
existence test. You can use the following symbolic constants, defined in <unistd.h> , to test for permis-
sions:

R_OK Read access
W_OK Write access
X_OK Execute (search) access
F_OK Check existence of file

The owner of a file has permission checked with respect to the "user" read, write, and execute mode bits.
Members of the file’s group other than the owner have permissions checked with respect to the "group"
mode bits. All others have permissions checked with respect to the "other" mode bits.

If a file is currently open for execution, access() reports that it is not writable, regardless of the setting
of its mode.

Access Control Lists - HFS File Systems Only
Read, write, and execute/search permissions are checked against the file’s access control list (ACL). Each
mode is checked separately since different ACL entries can grant different permissions. The real user ID is
combined with the process’s real group ID and each group in its supplementary groups list, and the access
control list is searched for a match. Search proceeds in order of specificity and ends when one or more
matching entries are found at a specific level. More than one user. group or %.group entry can match a
user if that user has a nonnull supplementary groups list. If any matching entry has the appropriate per-
mission bit set, access is permitted.

If a shared text file is currently open for execution, access() reports that it is not writable, regardless of
its access control list. However, access() does not report that a shared text file open for writing is not
executable, since the check is not easily done.

It also reports that a file on a read-only file system is not writable.

RETURN VALUE
access() returns the following values:

0 Successful completion. The requested access is permitted.

If the path is valid and the real user ID is superuser, access() always returns 0, except when
amode includes X_OK, the path is not a directory, and none of the execute bits are set in the
file’s mode.

-1 Failure. errno is set to indicate the error.

ERRORS
If access() fails, errno is set to one of the following values.

[EACCES] Search permission is denied on a component of the path prefix.

[EACCES] The access control list does not permit the requested access and the real user ID is not
a user with appropriate privileges.

[EFAULT] path points outside the allocated address space for the process. The reliable detection
of this error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a

Section 2−−4 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

access(2) access(2)

component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

[ENOENT] Read, write, or execute (search) permission is requested for a null path name.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being executed.

SEE ALSO
chmod(2), stat(2), setacl(2), acl(5), unistd(5).

STANDARDS CONFORMANCE
access() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−5

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

acct(2) acct(2)

NAME
acct() - enable or disable process accounting

SYNOPSIS
#include <sys/acct.h>

int acct(const char *path);

DESCRIPTION
The acct() system call enables or disables the system’s process accounting routine. If the routine is
enabled, an accounting record is written on an accounting file for each process that terminates. Termina-
tion can be caused by one of two things: an exit() call or a signal (see exit(2) and signal(5)). The
effective user ID of the calling process must be superuser to use this call.

path points to a path name naming the accounting file. The accounting file format is described in acct(4).

The accounting routine is enabled if path is nonzero and no errors occur during the system call. It is dis-
abled if path is zero and no errors occur during the system call.

When the amount of free space on the file system containing the accounting file falls below a configurable
threshold, the system prints a message on the console and disables process accounting. Another message is
printed and the process accounting is reenabled when the space reaches a second configurable threshold.

If the size of the process accounting file reaches 5000 blocks, records for processes terminating after that
point will be silently lost. However, in that case the turnacct command would still sense that process
accounting is still enabled. This loss of records can be prevented with the ckpacct command. ckpacct
and turnacct are described in acctsh(1M)).

RETURN VALUE
acct() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If acct() fails, errno is set to one of the following values.

[EACCES] The file named by path is not an ordinary file.

[EBUSY] An attempt is being made to enable accounting when it is already enabled.

[EFAULT] path points to an illegal address. The reliable detection of this error simplementation
dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The accounting file path name exceeds PATH_MAXbytes, or the length of a com-
ponent of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis in
effect.

[ENOENT] One or more components of the accounting file path name do not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID of the calling process is not superuser.

[EROFS] The named file resides on a read-only file system.

[ETXTBSY] path points to a text file which is currently open.

SEE ALSO
acct(1M), acctsh(1M), exit(2), acct(4), signal(5).

STANDARDS CONFORMANCE
acct() : SVID2, SVID3, XPG2

Section 2−−6 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

adjtime(2) adjtime(2)

NAME
adjtime() - correct the time to synchronize the system clock

SYNOPSIS
#include <sys/time.h>

int adjtime(
const struct timeval *delta,
struct timeval *olddelta

);

DESCRIPTION
The function adjtime() adjusts the current time of the system. The time is either advanced or
retarded by the amount of time specified in the struct timeval pointed to by delta.

The adjustment is made by applying small correctional adjustments to the value of current time that the
system keeps. The time is always increasing monotonically, but at a rate slightly slower or faster than nor-
mal.

A time correction for an earlier call to adjtime() may not be complete when adjtime() is called.
The second call to adjtime() stops the first call to adjtime() if delta is non-NULL, but does not
undo the effects of the previous call. If delta is NULL, then no time correction will be done.

If olddelta is not a NULL pointer, then the structure it points to will contain, upon return, the number of
seconds and/or microseconds still to be corrected from the earlier call. If olddelta is a NULL pointer, the
corresponding information will not be returned.

The call to adjtime() returns immediately, though its effect will continue until the whole correction is
made or until modified by another call to either adjtime() with a non-NULL delta or to change the sys-
tem time (see "Interaction with Other System Calls").

Only a user with appropriate privileges can call adjtime() successfully with a non-NULL delta. Any
user can call adjtime() with a NULL delta to report the correction left from the previous call.

Limits
struct timeval is defined in <time.h > as having at least 2 members:

struct timeval {
unsigned long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

};

When adjtime() is called, if the delta.tv_sec field is greater than 31536000 (approx. 365 days), or less
than −31536000, then adjtime() fails with an errno of EINVAL. The tv_usec field is not used in the cal-
culations to determine the limits, and so the actual limit on adjustments are [−31536000−LONG_MIN,
31536000+LONG_MAX].

Note that the desired seconds may be negative. Since the type of the tv_sec field is (unsigned long), any
negative values for tv_sec need to be cast.

Any olddelta value returned by the adjtime() function will be returned such that the signs of non-zero
members are the same.

Interaction with Other System Calls
A call to change the system time terminates the adjtime() correction currently in effect. A subsequent
call to adjtime() will return {0, 0} for the olddelta parameter. This includes system calls such as
settimeofday(), stime(), and clock_settime().

RETURN VALUE
Upon successful completion, adjtime() returns a value of 0; otherwise, it returns a value −1 and sets
errno to indicate the error.

ERRORS
adjtime() fails if one or more of the following is true:

[EPERM] if the process does not have the appropriate privilege.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−7

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

adjtime(2) adjtime(2)

[EFAULT] The address specified for delta (or olddelta) is invalid.

[EINVAL] If delta.tv_sec is greater than 31536000 (approx. 365 days) or less than −31536000.
The delta.tv_usec field is not used in calculation of these limits. If the user wants to
adjust time greater than these limits, an appropriate alternative interface should be
used.

EXAMPLES
The following code snippet will take the time forward 20 minutes.

struct timeval forward;

forward.tv_sec = 20 * 60; /* 20 minutes */
forward.tv_usec = 0;

if (adjtime(&forward, (struct timeval *)NULL) == -1)
perror("adjtime() failure");

/*
* If adjtime() succeeds, the system time will move forward
* 20 minutes over a period of time.
*/

The following code fragment will repeatedly call a user-defined function adjustment_still_in_progress() until
the adjustment requested in a previous call to adjtime() (called from either the same process or
another process) is completed.

struct timeval report;

if (adjtime((struct timeval *)NULL, &report) == -1)
perror("adjtime() failure");

while (report.tv_sec || report.tv_usec) {
adjustment_still_in_progress();

if (adjtime((struct timeval *)NULL, &report) == -1)
perror("adjtime() failure");

}

AUTHOR
adjtime() was developed by the University of California, Berkeley and AT&T.

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), stime(2), clock_settime(2), getitimer(2), setitimer(2), alarm(2).

Section 2−−8 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_cancel(2) aio_cancel(2)

NAME
aio_cancel() - cancel an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function attempts to cancel the asynchronous I/O request currently outstanding for
the aiocb referenced by aiocbp or, if aiocbp is NULL, any asynchronous I/O operations currently out-
standing for the file descriptor fildes.

If an asynchronous I/O operation is successfully canceled as a result of aio_cancel , its status is set to
ECANCELED, and any signal delivery specified for that operation is performed. Any outstanding requests
that cannot be canceled as a result of the aio_cancel() remain enqueued and are unaffected by the
cancellation request.

Asynchronous I/O operations that are requested as a single logical operation are either completed or can-
celed atomically. Once any portion of the operation has started, it cannot be canceled. Whether or not and
when an asynchronous I/O operation can be canceled depends on the nature of the request.

If aiocbp is not NULL, fildes is ignored.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
The aio_cancel() function returns one of the following values:

AIO_CANCELED
The asynchronous I/O operation enqueued for the aiocb referenced by aiocbp or all
asynchronous I/O operations enqueued for the file referenced by fildes have been suc-
cessfully canceled.

AIO_NOTCANCELED
The asynchronous I/O operation enqueued for the aiocb referenced by aiocbp or at
least one of the asynchronous I/O operations enqueued for the file referenced by fildes
have not been canceled. (The aio_error() function must be used to determine the
status of individual operations.)

AIO_ALLDONE
The asynchronous I/O operation enqueued for the aiocb referenced by aiocbp or all
of the asynchronous I/O operations enqueued for the file referenced by fildes com-
pleted before cancellation could be attempted.

-1 Failure. The requested cancellation could not be initiated. errno is set to indicate
the error.

ERRORS
If aio_cancel() detects one of the following error conditions, errno is set to the indicated value:

[EBADF] The aiocbp argument is NULL and the fildes argument is not a valid file descriptor.

[EINVAL] There was no asynchronous I/O operation enqueued for the aiocb referenced by
aiocbp.

SEE ALSO
aio_error(2), aio_fsync(2), aio_read(2), aio_return(2), aio_suspend(2), aio_write(2), lio_listio(2), aio(5).

STANDARDS CONFORMANCE
aio_cancel() : POSIX Realtime Extensions, IEEE Std 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−9

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_error(2) aio_error(2)

NAME
aio_error() - return error status of an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

DESCRIPTION
The aio_error() function returns the error status of the asynchronous I/O operation that was initiated
with the aiocb and referenced by aiocbp . The error status for an asynchronous I/O operation is the
errno value set by the corresponding read() , write() , or fsync() function.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
If the aiocb is invalid or if no asynchronous I/O operation is enqueued for the aiocb , aio_error()
returns -1 and errno is set to indicate the error. If the operation has been queued but not completed,
aio_error() returns EINPROGRESS. Otherwise, aio_error() returns the error status of the
referenced aiocb . See aio_read(2), read(2), aio_write(2), write(2), aio_fsync(2), fsync(2), and lio_listio(2)
for relevant error values.

ERRORS
If aio_error() detects one of the following error conditions, errno is set to the indicated value:

[EINVAL] There was no asynchronous I/O operation enqueued for the referenced. aiocb .

EXAMPLE
The following code sequence illustrates using aio_error() to retrieve the error status of an
aio_read() operation.

#include <fcntl.h>
#include <errno.h>
#include <aio.h>
char buf[4096];
ssize_t nbytes; int retval;
struct aiocb myaiocb;
bzero(&myaiocb, sizeof (struct aiocb));
myaiocb.aio_fildes = open("/dev/null", O_RDONLY);
myaiocb.aio_offset = 0;
myaiocb.aio_buf = (void *) buf;
myaiocb.aio_nbytes = sizeof (buf);
myaiocb.aio_sigevent.sigev_notify = SIGEV_NONE;
retval = aio_read(&myaiocb);
if (retval) perror("aio_read:");
/* continue processing */

...
/* wait for completion */
while ((retval = aio_error(&myaiocb)) == EINPROGRESS) ;
/* free the aiocb */
nbytes = aio_return(&myaiocb);

SEE ALSO
aio_cancel(2), aio_fsync(2), aio_read(2), aio_return(2), aio_suspend(2), aio_write(2), fsync(2), lio_listio(2),
read(2), write(2), aio(5).

STANDARDS CONFORMANCE
aio_error() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−10 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_fsync(2) aio_fsync(2)

NAME
aio_fsync() - force outstanding asynchronous operations on a file to the synchronized state

SYNOPSIS
#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function asynchronously forces all I/O operations that are enqueued at the time of the
call for the file or device referenced by aiocbp->aio_fildes to the synchronized I/O state. The func-
tion call returns when the synchronization request has been enqueued to the file or device (even when the
data cannot be synchronized immediately).

Successful completion of the aio_fsync() request indicates that all modified data for aiocbp-
>fildes has been moved to a permanent storage device. The aio_fsync() function affects only those
asynchronous I/O operations enqueued at the time of the call. Subsequently enqueued operations are not
included in the synchronizing operation.

The aio_fsync() function supports synchronized I/O for regular files, block special files, and character
special files.

If the op is O_DSYNC, all currently enqueued asynchronous I/O operations for aiocbp->fildes are
completed as if by a call to fdatasync() . All data is forced to permanent storage but the meta-data
(such as modification times) for the file descriptor is not necessarily updated. If the op is O_SYNC, all
currently enqueued asynchronous I/O operations for aiocbp->fildes are completed as if by a call to
fsync() . All data is forced to permanent storage and the file descriptor metadata is updated.

If an aio_fsync() request is issued for a file when there is already a pending aio_fsync() request,
the first request is treated as though it were part of the second, and the second request will not complete
until the first has completed.

The aio_fsync() function returns when the fsync request has been enqueued for the referenced file or
device. The aio_error() and aio_return() functions must be used to retrieve the status of the
synchronization operation via the aiocb referenced by aiocbp . The status returned will be EINPRO-
GRESSuntil the last operation addressed by the initial request completes. If all operations complete suc-
cessfully, the error status will be 0 (zero). Otherwise, the error status will be the error status that will be
returned for the read or write operation that failed.

If aiocbp->aio_sigevent is a valid signal event structure, then the designated signal will be
delivered when the requested synchronization operation completes, either when all subject requests have
completed successfully or when any one of the requests has failed.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
If the aio_fsync() function fails, -1 is returned and errno is set to indicate the error.

ERRORS
If aio_fsync() detects one of the following error conditions, errno is set to the indicated value:

[EAGAIN] The request could not be queued because a per-process or system-wide limit on asyn-
chronous I/O operations or asynchronous threads would have been exceeded.

[EBADF] The aiocbp->aio_fildes is not a valid file descriptor open for writing.

[EINVAL] Synchronized I/O is not supported for the file specified by aiocbp->aio_fildes .

[EINVAL] The aiocb->aio_sigevent is not a valid address in the process virtual address
space.

[EINVAL] The parameters of the indicated sigevent in aiocb->aio_sigevent are
invalid.

SEE ALSO
aio_cancel(2), aio_error(2), aio_read(2), aio_return(2), aio_suspend(2), aio_write(2), fdatasync(2), fsync(2),
lio_listio(2), read(2), write(2), aio(5).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−11

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_fsync(2) aio_fsync(2)

STANDARDS CONFORMANCE
aio_fsync() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−12 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_read(2) aio_read(2)

NAME
aio_read() - start an asynchronous read operation

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function allows the calling process to perform an asynchronous read from a previously
opened file. The function call returns when the read operation has been enqueued for processing. Once
enqueued, processing of the read operation may proceed concurrently with execution of the calling process
thread.

If an error condition is detected that prevents the read request from being enqueued, aio_read()
returns -1 and sets errno to indicate the cause of the failure. Once the read operation has been success-
fully enqueued, an aio_error() and aio_return() function referencing the aiocb referred to by
aiocbp must be used to determine its status and any error conditions, including those normally reported
by read() . The request remains enqueued and consumes process and system resources until
aio_return() is called.

The aio_read() function allows the calling process to read aiocbp->aio_nbytes from the file asso-
ciated with aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf . The priority of
the read operation is reduced by the value of aiocbp->aio_reqprio , which must be a value between 0
(zero) and a maximum value which can be obtained using the sysconf() call with the argument
_SC_AIO_PRIO_DELTA_MAX. A value of 0 (zero) yields no reduction in priority. The aiocbp-
>aio_lio_opcode field is ignored.

The read operation takes place at the absolute position in the file given by aiocbp->aio_offset , as if
lseek() were called immediately prior to the operation with offset equal to aiocbp-
>aio_offset and whence set to SEEK_SET. However, the value of the file offset is never changed by
asynchronous I/O operations.

Altering the contents of or deallocating memory associated with the aiocb referred to by aiocbp or the
buffer referred to by aiocbp->aio_buf while an asynchronous read operation is outstanding may pro-
duce unpredictable results because aio_return() has not been called for the aiocb .

If aiocbp->aio_sigevent is a valid signal event structure, then the designated signal will be
delivered when the requested asynchronous read operation completes.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
aio_read() returns the following values:

0 Successful completion, the operation has been enqueued.

-1 Failure. The requested operation was not enqueued. errno is set to indicate the
error.

The return value from aio_read() reflects the success or failure of enqueuing the requested read opera-
tion for asynchronous processing. aio_read() fails if an error in the function call is immediately
detected, or if system resource limits prevent the request from being enqueued. Other error conditions are
reported asynchronously and must be retrieved with aio_error() and aio_return() .

ERRORS
If aio_read() detects one of the following error conditions, errno is set to the indicated value:

[EAGAIN] The request could not be queued either because of a resource shortage or because the
per-process or system-wide limit on asynchronous I/O operations or asynchronous
threads would have been exceeded.

[EINVAL] aiocb->aio_sigevent is not a valid address in the process virtual address
space.

[EINVAL] The parameters of the indicated sigevent in aiocb->aio_sigevent are
invalid.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−13

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_read(2) aio_read(2)

[EEXIST] The aiocbp is already in use for another asynchronous I/O operation.

Once the read request has been enqueued by aio_read() , all of the errors normally reported by the
read() function and the following errors may be reported asynchronously and returned in a subsequent
call to aio_error() or aio_return() referencing the aiocb supplied in the successful
aio_read() call.

[EBADF] The aiocbp->aio_fildes was not a valid file descriptor open for reading.

[EINVAL] The value of aiocbp->aio_reqprio is not valid.

[EINVAL] The value of aiocbp->aio_nbytes is invalid.

[EINVAL] The file offset implied by aiocbp->aio_offset or aiocbp-
>aio_offset +aiocbp->aio_nbytes are not valid for the file at the time the
request is processed.

[ECANCELED]
The read operation was canceled due to a subsequent call to aio_cancel() .

EXAMPLE
The following code sequence and call to aio_read() starts an asynchronous read operation.

#include <fcntl.h>
#include <errno.h>
#include <aio.h>
char buf[4096];
ssize_t retval; ssize_t nbytes;
struct aiocb myaiocb;
bzero(&myaiocb, sizeof (struct aiocb));
myaiocb.aio_fildes = open("/dev/null", O_RDONLY);
myaiocb.aio_offset = 0;
myaiocb.aio_buf = (void *) buf;
myaiocb.aio_nbytes = sizeof (buf);
myaiocb.aio_sigevent.sigev_notify = SIGEV_NONE;
retval = aio_read(&myaiocb);
if (retval) perror("aio_read:");
/* continue processing */

...
/* wait for completion */
while ((retval = aio_error(&myaiocb)) == EINPROGRESS) ;
/* free the aiocb */
nbytes = aio_return(&myaiocb);

SEE ALSO
aio_cancel(2), aio_error(2), aio_fsync(2), aio_return(2), aio_suspend(2), aio_write(2), lio_listio(2), read(2),
aio(5).

STANDARDS CONFORMANCE
aio_read() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−14 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_return(2) aio_return(2)

NAME
aio_return() - return status of an asynchronous I/O operation

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

DESCRIPTION
The aio_return() function returns the return status associated with the aiocb structure referenced
by the aiocbp argument. The return value for an asynchronous I/O operation is the value that would be set
by the corresponding read() , write() , or fsync() operation. If the operation has been queued but
not completed, aio_return() returns -1 and errno is set to EINPROGRESS. A successful
aio_return() call frees all kernel resources associated with the calls aiocb referenced by aiocbp.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
If the aiocb is invalid or if no asynchronous I/O operation is enqueued for the aiocb , aio_returns()
returns -1 and errno is set to indicate the error. Otherwise, aio_return() returns the error status
of the referenced aiocb . See aio_read(2), read(2), aio_write(2), write(2), aio_fsync(2), fsync(2) and
lio_listio(2) for relevant error values.

ERRORS
If aio_return() detects one of the following error conditions, errno is set to the indicated value:

[EINVAL] The aiocbp is not a valid address within the process virtual address space.

[EINVAL] There was no asynchronous I/O operation enqueued for the referenced aiocb .

EXAMPLE
The following code sequence illustrates using aio_return() to retrieve the error status of an
aio_read() operation and free the aiocb for future re-use.

#include <fcntl.h>
#include <errno.h>
#include <aio.h>
char buf[4096];
int retval; ssize_t nbytes;
struct aiocb myaiocb;
bzero(&myaiocb, sizeof (struct aiocb));
myaiocb.aio_fildes = open("/dev/null", O_RDONLY);
myaiocb.aio_offset = 0;
myaiocb.aio_buf = (void *) buf;
myaiocb.aio_nbytes = sizeof (buf);
myaiocb.aio_sigevent.sigev_notify = SIGEV_NONE;
retval = aio_read(&myaiocb);
if (retval) perror("aio_read:");
/* continue processing */

...
/* wait for completion */
while ((retval = aio_error(&myaiocb)) == EINPROGRESS) ;
/* free the aiocb */
nbytes = aio_return(&myaiocb);

SEE ALSO
aio_cancel(2), aio_error(2), aio_fsync(2), aio_read(2), aio_suspend(2), aio_write(2), fsync(2), lio_listio(2),
read(2), write(2), aio(5).

STANDARDS CONFORMANCE
aio_return() : POSIX Realtime Extensions, IEEE Std 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−15

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_suspend(2) aio_suspend(2)

NAME
aio_suspend() - wait for an asynchronous I/O operation to complete

SYNOPSIS
#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent, const
struct timespec *timeout);

DESCRIPTION
The aio_suspend() function suspends the calling process thread until at least one of the asynchronous
I/O operations initiated with one of the nent aiocb pointers contained in list has completed, a signal
interrupts the function, a timeout is not NULL, or the time interval specified by timeout has passed.

Multiple threads may issue simultaneous calls to aio_suspend() , referencing one or more aiocbs in
common.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
aio_suspend() returns the following values:

0 Successful completion. Either there were no non-NULL aiocbs in list or at
least one of the asynchronous I/O operations enqueued for an aiocb referenced by
list has completed. The completion status of the referenced asynchronous I/O
operations must be determined using aio_error() and aio_return() for each
relevant aiocb .

-1 Failure. The process thread is not suspended and errno is set to indicate the error.

If any of the indicated asynchronous I/O operations has already completed at the time of the call to
aio_suspend() , then aio_suspend() returns immediately. If nent is 0 (zero), the
aio_suspend() immediately returns success. Any NULL aiocb in list is silently ignored. If all of
the the aiocbs in list are NULL, the aio_suspend() immediately returns success.

ERRORS
If aio_suspend() detects one of the following error conditions, errno is set to the indicated value:

[EAGAIN] System-wide or per-process resources were not available to process the request.

[EAGAIN] The time interval specified in the timespec referenced by timeout passed before any
of the asynchronous I/O operations enqueued for one of the aiocb entries referenced
in list completed.

[EINVAL] The value of the nent argument was negative or exceeded the maximum value
allowed. The maximum value allowed can be obtained using the sysconf() call
with the argument _SC_AIO_MAX.

[EINVAL] One or more of the aiocb pointers in list does not identify an asynchronous opera-
tion enqueued by aio_read() , aio_write() , or lio_listio() , and for
which aio_return() has not yet been called. aiocb pointers associated with
aio_fsync() will yield this error.

[EINTR] A signal was delivered to the process while aio_suspend() was waiting. Comple-
tion of asynchronous operations can cause signal delivery.

SEE ALSO
aio_cancel(2), aio_error(2), aio_fsync(2), aio_read(2), aio_return(2), aio_write(2), lio_listio(2), suspend(2),
aio(5).

STANDARDS CONFORMANCE
aio_suspend() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−16 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_write(2) aio_write(2)

NAME
aio_write() - start asynchronous write operation

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_write() function allows the calling process to perform an asynchronous write to a previously
opened file. The function call returns when the write operation has been enqueued for processing. Once
enqueued, processing of the write operation may proceed concurrently with execution of the calling process
thread.

If an error condition is detected that prevents the write request from being enqueued, aio_write()
returns -1 and sets errno to indicate the cause of the failure. Once the write operation has been success-
fully enqueued, an aio_error() and aio_return() function referencing the aiocb referred to by
aiocbp must be used to determine its status and any error conditions, including those normally reported by
write() . The request remains enqueued and consumes process and system resources until
aio_return() is called.

The aio_write() function allows the calling process to write aiocbp->aio_nbytes to the file asso-
ciated with aiocbp->aio_fildes from the buffer pointed to by aiocbp->aio_buf . The priority of
the write operation is reduced by the value of aiocbp->aio_reqprio , which must be a value between
0 (zero) and a maximum value which can be obtained using the sysconf() call with the argument
_SC_AIO_PRIO_DELTA_MAX. A value of 0 (zero) yields no reduction in priority. The aiocbp-
>aio_lio_opcode field is ignored.

When the O_APPENDflag is not set for the file, the write operation takes place at the absolute position in
the file given by aiocbp->aio_offset , as if lseek() were called immediately prior to the operation
with offset equal to aiocbp->aio_offset and whence set to SEEK_SET. When the O_APPEND
flag is set for the file, aiocbp->aio_offset is ignored, and asynchronous write operations append to
the file in the same order as the requests were enqueued. The value of the file offset is never changed by
asynchronous I/O operations.

Altering the contents of, or deallocating memory associated with the aiocb referred to by aiocbp or the
buffer referred to by aiocbp->aio_buf while an asynchronous write operation is outstanding may pro-
duce unpredicatable results because aio_return() has not been called for by aiocb .

If aiocbp->aio_sigevent is a valid signal event structure, then the designated signal will be
delivered when the requested asynchronous write operation completes.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
aio_write() returns the following values:

0 Successful completion, the operation has been enqueued.

-1 Failure. The requested operation was not enqueued. errno is set to indicate the error.

The return value from aio_write() reflects the success or failure of enqueuing the requested write
operation for asynchronous processing. aio_write() fails if an error in the function call is immediately
detected, or if system resource limits prevent the request from being enqueued. All other error conditions
are reported asynchronously and must be retrieved with aio_error() and aio_return() .

ERRORS
If aio_write() detects one of the following error conditions, errno is set to the indicated value:

[EAGAIN] The request could not be queued either because of a resource shortage or because the
per-process or system-wide limit on asynchronous I/O operations or asynchronous
threads would have been exceeded.

[EEXIST] The aiocbp is already in use for another asynchronous I/O operation.

Once the write operation request has been enqueued by aio_write() , all of the errors normally
reported by the write() function and the following errors may be reported asynchronously and returned
in a subsequent call to aio_error() or aio_return() referencing the aiocb supplied in the

HP-UX Release 11.0: October 1997 − 1 − Section 2−−17

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

aio_write(2) aio_write(2)

successful aio_write() call.

[EBADF] The aiocbp->aio_fildes was not a valid file descriptor open for writing.

[EINVAL] The aiocb->aio_sigevent is not a valid address in the process virtual address
space.

[EINVAL] The parameters of the indicated sigevent in aiocb->aio_sigevent are
invalid.

[EINVAL] The value of aiocbp->aio_reqprio is not valid.

[EINVAL] The value of aiocbp->aio_nbytes is invalid.

[EINVAL] The file offset implied by aiocbp->aio_offset or aiocbp->aio_offset +
aiocbp->aio_nbytes are not valid for the file at the time the request is pro-
cessed.

[ECANCELED]
The write operation was canceled due to a subsequent call to aio_cancel()
referencing the same aiocb that was used to start the operation.

EXAMPLE
The following code sequence and call to aio_write() starts an asynchronous write operation.

#include <fcntl.h>
#include <errno.h>
#include <aio.h>
char buf[4096];
int retval; ssize_t nbytes;
struct aiocb myaiocb;
bzero(&myaiocb, sizeof (struct aiocb));
bzero(&buf, sizeof (buf));
myaiocb.aio_fildes = open("/dev/null", O_RDWR);
myaiocb.aio_offset = 0;
myaiocb.aio_buf = (void *) buf;
myaiocb.aio_nbytes = sizeof (buf);
myaiocb.aio_sigevent.sigev_notify = SIGEV_NONE;
retval = aio_write(&myaiocb);
if (retval) perror("aio_write:");
/* continue processing */

...
/* wait for completion */
while ((retval = aio_error(&myaiocb)) == EINPROGRESS) ;
/* free the aiocb */
nbytes = aio_return(&myaiocb);

SEE ALSO
aio_cancel(2), aio_error(2), aio_fsync(2), aio_read(2), aio_return(2), aio_suspend(2), lio_listio(2), write(2),
aio(5).

STANDARDS CONFORMANCE
aio_write() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−18 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

alarm(2) alarm(2)

NAME
alarm - set a process’s alarm clock

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned int sec);

DESCRIPTION
alarm() instructs the alarm clock of the calling process to send the signal SIGALRM to the calling process
after the number of real-time seconds specified by sec have elapsed; see signal(5). Specific implementations
might place limitations on the maximum supported alarm time. The constant MAX_ALARM defined in
<sys/param.h > specifies the implementation-specific maximum. Whenever sec is greater that this max-
imum, it is silently rounded down to it. On all implementations, MAX_ALARMis guaranteed to be at least
31 days (in seconds).

Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

Alarms are not inherited by a child process across a fork() , but are inherited across an exec() .

On systems that support the getitimer() and setitimer() system calls, the timer mechanism
used by alarm() is the same as that used by ITIMER_REAL. Thus successive calls to alarm() , geti-
timer() , and setitimer() set and return the state of a single timer. In addition, alarm() sets
the timer interval to zero.

RETURN VALUE
alarm() returns the amount of time previously remaining in the alarm clock of the calling process.

WARNINGS
In some implementations, error bounds for alarm are −1, +0 seconds (for the posting of the alarm, not the
restart of the process). Thus a delay of 1 second can return immediately. The setitimer() routine can
be used to create a more precise delay.

SEE ALSO
sleep(1), exec(2), getitimer(2), pause(2), signal(5), sleep(3C).

STANDARDS CONFORMANCE
alarm() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−19

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

audctl(2) audctl(2)

NAME
audctl - start or halt the auditing system and set or get audit files

SYNOPSIS
#include <sys/audit.h>

int audctl(int cmd, char *cpath, char *npath, mode_t mode);

DESCRIPTION
audctl() sets or gets the auditing system "current" and "next" audit files, and starts or halts the audit-
ing system. This call is restricted to superusers. cpath and npath hold the absolute path names of the
"current" and "next" files. mode specifies the audit file’s permission bits. cmd is one of the following
specifications:

AUD_ON The caller issues the AUD_ONcommand with the required "current" and "next"
files to turn on the auditing system. If the auditing system is currently off, it is
turned on; the file specified by the cpath parameter is used as the "current" audit
file, and the file specified by the npath parameter is used as the "next" audit file.
If the audit files do not already exist, they are created with the mode specified.
The auditing system then begins writing to the specified "current" file. An empty
string or NULL npath can be specified if the caller wants to designate that no
"next" file be available to the auditing system. If the auditing system is already
on, no action is performed; -1 is returned and errno is set to EBUSY.

AUD_GET The caller issues the AUD_GETcommand to retrieve the names of the "current"
and "next" audit files. If the auditing system is on, the names of the "current"
and "next" audit files are returned via the cpath and npath parameters (which
must point to character buffers of sufficient size to hold the file names). mode is
ignored. If the auditing system is on and there is no available "next" file, the
"current" audit file name is returned via the cpath parameter, npath is set to an
empty string; -1 is returned, and errno is set to ENOENT. If the auditing sys-
tem is off, no action is performed; -1 is returned and errno is set to EAL-
READY.

AUD_SET The caller issues the AUD_SET command to change both the "current" and
"next" files. If the audit system is on, the file specified by cpath is used as the
"current" audit file, and the file specified by npath is used as the "next" audit file.
If the audit files do not already exist, they are created with the specified mode.
The auditing system begins writing to the specified "current" file. Either an
empty string or NULL npath can be specified if the caller wants to designate that
no "next" file be available to the auditing system. If the auditing system is off,
no action is performed; -1 is returned and errno is set to EALREADY.

AUD_SETCURR The caller issues the AUD_SETCURRcommand to change only the "current"
audit file. If the audit system is on, the file specified by cpath is used as the
"current" audit file. If the specified "current" audit file does not exist, it is
created with the specified mode. npath is ignored. The auditing system begins
writing to the specified "current" file. If the audit system is off, no action is per-
formed; -1 is returned and errno is set to EALREADY.

AUD_SETNEXT The caller issues the AUD_SETNEXTcommand to change only the "next" audit
file. If the auditing system is on, the file specified by npath is used as the "next"
audit file. cpath is ignored. If the "next" audit file specified does not exist, it is
created with the specified mode. Either an empty string or NULL npath can be
specified if the caller wants to designate that no "next" file be available to the
auditing system. If the auditing system is off, no action is performed; -1 is
returned, and errno is set to EALREADY.

AUD_SWITCH The caller issues the AUD_SWITCHcommand to cause auditing system to
switch audit files. If the auditing system is on, it uses the "next" file as the new
"current" audit file and sets the new "next" audit file to NULL. cpath, npath,and
mode are ignored. The auditing system begins writing to the new "current" file.
If the auditing system is off, no action is performed; -1 is returned, and
errno is set to EALREADY. If the auditing system is on and there is no avail-
able "next" file, no action is performed; -1 is returned, and errno is set to
ENOENT.

Section 2−−20 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

audctl(2) audctl(2)

AUD_OFF The caller issues the AUD_OFFcommand to halt the auditing system. If the
auditing system is on, it is turned off and the "current" and "next" audit files are
closed. cpath, npath, and mode are ignored. If the audit system is already off,
-1 is returned and errno is set to EALREADY.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global variable
errno is set to indicate the error.

EXAMPLES
In the following example, audctl() is used to determine whether the auditing system is on, and to
retrieve the names of the audit files that are currently in use by the system.

char c_file[PATH_MAX+1], x_file[PATH_MAX+1];
int mode=0600;

if (audctl(AUD_GET, c_file, x_file, mode))
switch (errno) {

case ENOENT:
strcpy(x_file,"-none-");
break;

case EALREADY:
printf("The auditing system is OFF\n");
return 0;

case default:
fprintf(stderr, "Audctl failed: errno=%d\n", errno);
return 1;

}

printf("The auditing system is ON: c_file=%s x_file=%s\n",
c_file, x_file);

return 0;

ERRORS
audctl() fails if one of the following is true:

[EPERM] The caller does not have superuser privilege, or one or both of the given files are
not regular files and cannot be used.

[EALREADY] The AUD_OFF, AUD_SET, AUD_SETCURR, AUD_SETNEXT, AUD_SWITCH,
or AUD_GETcmd was specified while the auditing system is off.

[EBUSY] User attempt to start the auditing system failed because auditing is already on.

[EFAULT] Bad pointer. One or more of the required function parameters is not accessible.

[EINVAL] The cpath or npath is greater than PATH_MAXin length, the cpath or npath
specified is not an absolute path name.

[ENOENT] No available "next" file when cmd is AUD_GETNEXTor AUD_SWITCH.

AUTHOR
audctl() was developed by HP.

SEE ALSO
audit(5), audsys(1M), audomon(1M).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−21

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

audswitch(2) audswitch(2)

NAME
audswitch - suspend or resume auditing on the current process

SYNOPSIS
#include <sys/audit.h>

int audswitch(int aflag);

DESCRIPTION
audswitch() suspends or resumes auditing within the current process. This call is restricted to
superusers.

One of the following aflags must be used:

AUD_SUSPEND Suspend auditing on the current process.

AUD_RESUME Resume auditing on the current process.

audswitch() can be used in self-auditing privileged processes to temporarily suspend auditing during
intervals where auditing is to be handled by the process itself. Auditing is suspended by a call to
audswitch() with the AUD_SUSPENDparameter and resumed later by a call to audswitch() with
the AUD_RESUMEparameter.

An audswitch() call to resume auditing serves only to reverse the action of a previous
audswitch() call to suspend auditing. A call to audswitch() to resume auditing when auditing is
not suspended has no effect.

audswitch() affects only the current process. For example, audswitch() cannot suspend auditing
for processes exec ’ed from the current process. (Use setaudproc (see setaudproc(2)) to enable or dis-
able auditing for a process and its children).

RETURN VALUE
Upon successful completion, audswitch() returns 0. If an error occurs, -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
audswitch() fails if one of the following is true:

[EPERM] The user is not a superuser.

[EINVAL] The input parameter is neither AUD_RESUMEnor AUD_SUSPEND.

AUTHOR
audswitch() was developed by HP.

SEE ALSO
audit(5), setaudproc(2), audusr(1M), audevent(1M).

Section 2−−22 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

a

audwrite(2) audwrite(2)

NAME
audwrite - write an audit record for a self-auditing process

SYNOPSIS
#include <sys/audit.h>

int audwrite(const struct self_audit_rec *audrec_p);

DESCRIPTION
audwrite() is called by trusted self-auditing processes, which are capable of turning off the regular
auditing (using audswitch(2)) and doing higher-level auditing on their own. audwrite() is restricted to
superusers.

audwrite() checks to see if the auditing system is on and the calling process and the event specified are
being audited. If these conditions are met, audwrite() writes the audit record pointed to by audrec_p
into the audit file. The record consists of an audit record body and a header with the following fields:

u_long ah_time; /∗ Date/time (tv_sec of timeval) ∗/
u_short ah_pid; /∗ Process ID ∗/
u_short ah_error; /∗ Success/failure ∗/
u_short ah_event; /∗ Event being audited ∗/
u_short ah_len; /∗ Length of variant part ∗/

The header has the same format as the regular audit record, while the body contains additional information
about the high-level audit event. The header fields ah_error , ah_event , and ah_len are specified
by the calling process. audwrite() fills in ah_time and ah_pid fields with the correct values. this
is done to reduce the risk of forgery. After the header is completed, the record body is attached and the
entire record is written into the current audit file.

RETURN VALUE
If the write is successful, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the reason for the failure.

ERRORS
audwrite() fails if one of the following is true:

[EPERM] The caller is not a superuser.

[EINVAL] The event number in the audit record is invalid.

WARNINGS
If audwrite causes a file space overflow, the calling process might be suspended until the file space is
cleaned up. However a returned call with the return value of 0 indicates that the audit record has been
successfully written.

AUTHOR
audwrite() was developed by HP.

SEE ALSO
audswitch(2), audit(4).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−23

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

b

bind(2) bind(2)

NAME
bind - bind an address to a socket

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only
#include <x25/x25addrstr.h>

AF_INET and AF_VME_LINK only
#include <netinet/in.h>

AF_UNIX only
#include <sys/un.h>

int bind(int s, const void *addr, int addrlen);

_XOPEN_SOURCE_EXTENDED only (UNIX 98)
int bind(int s, const struct sockaddr *addr, socklen_t addrlen);

Obsolescent _XOPEN_SOURCE_EXTENDED only (UNIX 95)
int bind(int s, const struct sockaddr *addr, size_t addrlen);

DESCRIPTION
The bind() system call assigns an address to an unbound socket. When a socket is created with
socket() , it exists in an address space (address family) but has no address assigned. bind() causes
the socket whose descriptor is s to become bound to the address specified in the socket address structure
pointed to by addr.

addrlen must specify the size of the address structure. Since the size of the socket address structure varies
between socket address families, the correct socket address structure should be used with each address
family (for example, struct sockaddr_in for AF_INET and AF_VME_LINK, and struct
sockaddr_un for AF_UNIX). Typically, the sizeof() function is used to pass this value in the
bind() call (for example, sizeof(struct sockaddr_in)).

The rules used in address binding vary between communication domains. For example, when binding an
AF_UNIX socket to a path name (such as /tmp/mysocket), an open file having that name is created in
the file system. When the bound socket is closed, that file still exists unless it is removed or unlinked.
When binding an AF_INET socket, sin_port can be a port number or it can be zero. If sin_port is zero, the
system assigns an unused port number automatically.

AF_VME_LINK Only
The bind() system call is used only by servers and not clients.

RETURN VALUE
bind() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If bind() fails, errno is set to one of the following values.

[EACCES] The requested address is protected, and the current user has inadequate per-
mission to access it. (This error can be returned by AF_INET only.)

[EADDRINUSE] The specified address is already in use.

[EADDRNOTAVAIL] The specified address is invalid or not available from the local machine, or for
AF_CCITT sockets which use "wild card" addressing, the specified address
space overlays the address space of an existing bind.

[EAFNOSUPPORT] The specified address is not a valid address for the address family of this
socket.

[EBADF] s is not a valid file descriptor.

Section 2−−24 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

b

bind(2) bind(2)

[EDESTADDRREQ] No addr parameter was specified.

[EFAULT] addr is not a valid pointer.

[EINVAL] The socket is already bound to an address, the socket has been shut down,
addrlen is a bad value, or an attempt was made to bind() an AF_UNIX
socket to an NFS-mounted (remote) name.

AF_CCITT: The protocol-ID length is negative or greater than 8, the X.121
address string contains an illegal character, or the X.121 address string is
greater than 15 digits long.

AF_VME_LINK: An explicit bind can be made only to a well-known port.

[ENETDOWN] The x25ifname field name specifies an interface that was shut down, or never
initialized, or whose Level 2 protocol indicates that the link is not working:
Wires might be broken, the interface hoods on the modem are broken, the
modem failed, the phone connection failed (this error can be returned by
AF_CCITT only), noise interfered with the line for a long period of time.

[ENETUNREACH] The X.25 Level 2 protocol is down. The X.25 link is not working: Wires might
be broken, or connections are loose on the interface hoods at the modem, the
modem failed, or noise interfered with the line for an extremely long period of
time.

[ENOBUFS] No buffer space is available. The bind() cannot complete.

[ENOMEM] No memory is available. The bind() cannot complete.

[ENODEV] The x25ifname field name specifies a nonexistent interface. (This error can be
returned by AF_CCITT only.)

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[EOPNOTSUPP] The socket referenced by s does not support address binding.

[EISCONN] The connection is already bound. (AF_VME_LINK.)

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size, but that
should not adversely affect application behavior in this case. Applications may use socklen_t now. But
applications that need to be portable to the UNIX 95 profile should follow the X/Open specification (see
xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The bind() system call is thread-safe. It has a cancellation point; and it is async-cancel safe, async-signal
safe, and fork-safe.

AUTHOR
bind() was developed by HP and the University of California, Berkeley.

SEE ALSO
connect(2), getsockname(2), listen(2), socket(2), af_ccitt(7F), af_vme_link(7F), inet(7F), socketx25(7),
tcp(7P), udp(7P), unix(7P), xopen_networking(7).

STANDARDS CONFORMANCE
bind() : XPG4

HP-UX Release 11.0: October 1997 − 2 − Section 2−−25

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

b

brk(2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
#include <unistd.h>

int brk(const void *endds);

void *sbrk(int incr);

DESCRIPTION
brk() and sbrk() are used to change dynamically the amount of space allocated for the calling
process’s data segment; see exec(2). The change is made by resetting the process’s break value and allocat-
ing the appropriate amount of space. The break value is the address of the first location beyond the end of
the data segment. The amount of allocated space increases as the break value increases. The newly allo-
cated space is set to zero.

brk() sets the break value to endds and changes the allocated space accordingly.

sbrk() adds incr bytes to the break value and changes the allocated space accordingly. incr can be nega-
tive, in which case the amount of allocated space is decreased.

ERRORS
brk() and sbrk() fail without making any change in the allocated space if one or more of the following
are true:

[ENOMEM] Such a change would result in more space being allocated than is allowed by a system-
imposed maximum (see ulimit(2)).

[ENOMEM] Such a change would cause a conflict between addresses in the data segment and any
attached shared memory segment (see shmop(2)).

[ENOMEM] Such a change would be impossible as there is insufficient swap space available.

WARNINGS
The pointer returned by sbrk() is not necessarily word-aligned. Loading or storing words through this
pointer could cause word alignment problems.

Be very careful when using either brk or sbrk in conjunction with calls to the malloc(3C) library rou-
tines. There is only one program data segment from which all three of these routines allocate and deallo-
cate program data memory.

RETURN VALUE
Upon successful completion, brk() returns a value of 0. Otherwise, a value of −1 is returned and errno
is set to indicate the error.

Upon successful completion, sbrk() returns the old break value. Otherwise, SBRK_FAILED is returned
and errno is set to indicate the error. The symbol SBRK_FAILED is defined in the header
<unistd.h >. No successful return from sbrk() will return the value SBRK_FAILED.

AUTHOR
brk() and sbrk() were developed by AT&T and HP.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

STANDARDS CONFORMANCE
brk() : XPG2

sbrk() : XPG2

Section 2−−26 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

chdir(2) chdir(2)

NAME
chdir, fchdir - change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

DESCRIPTION
chdir() and fchdir() cause a directory pointed to by path or fildes to become the current working
directory, the starting point for path searches of path names not beginning with / . path points to the path
name of a directory. fildes is an open file descriptor of a directory.

For a directory to become the current working directory, a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and errno is
set to indicate the error.

ERRORS
chdir() fails and the current working directory remains unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[ENOENT] path is null.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAXbytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

fchdir() fails and the current working directory remains unchanged if one or more of the following are
true:

[EACCES] Search permission is denied for fildes.

[EBADF] fildes is not an open file descriptor.

[ENOTDIR] The open file descriptor fildes does not refer to a directory.

AUTHOR
chdir() and fchdir() were developed by AT&T Bell Laboratories and HP.

SEE ALSO
cd(1), chroot(2).

STANDARDS CONFORMANCE
chdir() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−27

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

chmod(2) chmod(2)

NAME
chmod(), fchmod() - change file mode access permissions

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

DESCRIPTION
The chmod() and fchmod() system calls set the access permission portion of the file’s mode according
to the bit pattern contained in mode. path points to a path name naming a file. fildes is a file descriptor.

The following symbolic constants representing the access permission bits are defined with the indicated
values in <sys/stat.h> and are used to construct the mode argument. The value of mode is the bit-
wise inclusive OR of the values for the desired permissions.

S_ISUID 04000 Set user ID on execution.
S_ISGID 02000 Set group ID on execution.
S_ENFMT 02000 Record locking enforced.
S_ISVTX 01000 Save text image after execution.
S_IRUSR 00400 Read by owner.
S_IWUSR 00200 Write by owner.
S_IXUSR 00100 Execute (search) by owner.
S_IRGRP 00040 Read by group.
S_IWGRP 00020 Write by group.
S_IXGRP 00010 Execute (search) by group.
S_IROTH 00004 Read by others (that is, anybody else).
S_IWOTH 00002 Write by others.
S_IXOTH 00001 Execute (search) by others.

To change the mode of a file, the effective user ID of the process must match that of the owner of the file or
a user with appropriate privileges.

If the effective user ID of the process is not that of a user with appropriate privileges, mode bit S_ISVTX
is cleared.

If the effective user ID of the process is not that of a user with appropriate privileges, and the effective
group ID of the process does not match the group ID of the file and none of the group IDs in the supple-
mentary groups list match the group ID of the file, mode bit S_ISGID is cleared.

The mode bit S_ENFMT(same as S_ISGID) is used to enforce file-locking mode (see lockf(2) and fcntl(2))
on files that are not group executable. This might affect future calls to open() , creat() , read() , and
write() on such files (see open(2), creat(2), read(2), and write(2)).

If an executable file is prepared for sharing, mode bit S_ISVTX prevents the system from abandoning the
swap-space image of the program-text portion of the file when its last user terminates. Then, when the
next user of the file executes it, the text need not be read from the file system but can simply be swapped
in, thus saving time.

If the path given to chmod() contains a symbolic link as the last element, this link is traversed and path
name resolution continues. chmod() changes the access mode of the symbolic link’s target, rather than
the access mode of the link.

Access Control Lists - HFS File Systems Only
All optional entries in a file’s access control list are deleted when chmod() is executed. (This behavior
conforms to the IEEE Standard POSIX 1003.1-1988.) To preserve optional entries in a file’s access control
list, it is necessary to save and restore them using getacl() and setacl() (see getacl(2) and setacl(2)).

To set the permission bits of access control list entries, use setacl() instead of chmod() .

For more information on access control list entries, see acl(5).

RETURN VALUE
chmod() returns the following values:

0 Successful completion.

Section 2−−28 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

chmod(2) chmod(2)

-1 Failure. errno is set to indicate the error.

ERRORS
If chmod() or fchmod() fails, the file mode is unchanged. errno is set to one of the following values.

[EACCES] Search permission is denied on a component of the path prefix.

[EBADF] fildes is not a valid file descriptor.

[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[EINVAL] path or fildes descriptor does not refer to an appropriate file. It may be a special
file, such as a pipe or socket.

[ELOOP] Too many symbolic links were encountered in translating path .

[ENAMETOOLONG]
A component of path exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect or path exceeds PATH_MAXbytes.

[ENOENT] A component of path or the file named by path does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID does not match that of the owner of the file, and the
effective user ID is not that of a user with appropriate privileges.

[EROFS] The named file resides on a read-only file system.

AUTHOR
chmod() was developed by AT&T, the University of California, Berkeley, and HP.

fchmod() was developed by the University of California, Berkeley.

SEE ALSO
chmod(1), chown(2), creat(2), fcntl(2), getacl(2), read(2), lockf(2), mknod(2), open(2), setacl(2), write(2),
acl(5).

STANDARDS CONFORMANCE
chmod() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

fchmod() : AES, SVID3

HP-UX Release 11.0: October 1997 − 2 − Section 2−−29

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

chown(2) chown(2)

NAME
chown(), fchown(), lchown() - change owner and group of a file

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
The chown() system call changes the user and group ownership of a file. path points to the path name of
a file. chown() sets the owner ID and group ID of the file to the numeric values contained in owner and
group respectively. A value of UID_NO_CHANGEor GID_NO_CHANGEcan be specified in owner or group
to leave unchanged the file’s owner ID or group ID, respectively. Note that owner and group should be less
than UID_MAX (see limits(5)).

Only processes with an effective user ID equal to the file owner or a user having appropriate privileges can
change the ownership of a file. If privilege groups are supported, the owner of a file can change the owner-
ship only as a member of a privilege group allowing CHOWN, as set up by the setprivgrp command
(see setprivgrp (1M)). All users get the CHOWN privilege by default.

The group ownership of a file can be changed to any group in the current process’s access list or to the real
or effective group ID of the current process. If privilege groups are supported and the user has the
CHOWN privilege, the file can be given to any group.

If chown() is invoked on a regular file by anyone other than the superuser, the set-user-ID and set-
group-ID bits of the file mode are cleared. Whether chown() preserves or clears these bits on files of
other types is implementation dependent.

If the path given to chown() contains a symbolic link as the last element, this link is traversed and path
name resolution continues. chown() changes the owner and group of the symbolic link’s target, rather
than the owner and group of the link.

The fchown() system call functions exactly like chown() , exept that it operates on a file descriptor
instead of a path name. fildes is a file descriptor.

The lchown() system call sets the owner ID and group ID of the named file just as chown() does,
except in the case where the named file is a symbolic link. In this case, lchown() changes the owner and
group of the symbolic link file itself.

Access Control Lists - HFS File Systems Only
A user can allow or deny specific individuals and groups access to a file by using the file’s access control list
(see acl(5)). When using chown () in conjunction with ACLs, if the new owner and/or group does not have
an optional ACL entry corresponding to user.% and/or %.group in the file’s access control list, the file’s
access permission bits remain unchanged. However, if the new owner and/or group is already designated
by an optional ACL entry of user.% and/or %.group, chown() sets the file’s permission bits (and the
three basic ACL entries) to the permissions contained in that entry.

RETURN VALUE
chown() and fchown() return the following values:

0 Successful completion.
-1 Failure. The owner and group of the file remain unchanged. errno is set to indicate the error.

ERRORS
If chown() or fchown() fails, errno is set to one of the following values:

[EACCES] Search permission is denied on a component of the path prefix.

[EBADF] fildes is not a valid file descriptor.

[EFAULT] path points outside the allocated address space of the process. The reliable detection
of this error is implementation dependent.

[EINVAL] Either owner or group is greater than or equal to UID_MAX, or is an illegal negative
value.

Section 2−−30 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

chown(2) chown(2)

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG]
A component of path exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis in
effect, or path exceeds PATH_MAXbytes.

[ENOENT] The file named by path does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID is not a user having appropriate privileges and one or more of
the following conditions exist:

• The effective user ID does not match the owner of the file.

• When changing the owner of the file, the owner of the file is not a member of a
privilege group allowing the CHOWN privilege.

• When changing the group of the file, the owner of the file is not a member of a
privilege group allowing the CHOWN privilege and the group number is not in the
current process’s access list.

[EROFS] The named file resides on a read-only file system.

AUTHOR
chown() was developed by AT&T.

fchown() was developed by the University of California, Berkeley.

SEE ALSO
chown(1), setprivgrp(1M), chmod(2), setacl(2), acl(5), limits(5).

STANDARDS CONFORMANCE
chown() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

fchown() : AES, SVID3

HP-UX Release 11.0: October 1997 − 2 − Section 2−−31

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

chroot(2) chroot(2)

NAME
chroot - change root directory

SYNOPSIS
#include <unistd.h>

int chroot(const char *path);

DESCRIPTION
chroot() causes the named directory to become the root directory, the starting point for path searches
for path names beginning with / . path points to a path name naming a directory. The user’s working
directory is unaffected by the chroot() system call.

The effective user ID of the process must be a user having appropriate privileges to change the root direc-
tory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot be
used to access files outside the subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and errno is
set to indicate the error.

ERRORS
chroot() fails and the root directory remains unchanged if one or more of the following is true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist or a component of the path does not
exist.

[EPERM] The effective user ID is not a user who has appropriate privileges.

[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAXbytes, or the
length of a component of the path name exceeds NAME_MAXbytes while
_POSIX_NO_TRUNCis in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

SEE ALSO
chroot(1M), chdir(2).

STANDARDS CONFORMANCE
chroot() : AES, SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−32 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

clocks(2) clocks(2)

NAME
clock_settime(), clock_gettime(), clock_getres() - clock operations

SYNOPSIS
#include <time.h>

int clock_settime(
clockid_t clock_id,
const struct timespec *tp

);

int clock_gettime(
clockid_t clock_id,
struct timespec *tp

);

int clock_getres(
clockid_t clock_id,
struct timespec *res

);

DESCRIPTION
clock_settime()

The clock_settime() function sets the specified clock, clock_id , to the value specified by tp .
Time values that are between two consecutive non-negative integer multiples of the resolution of the
specified clock are truncated down to the smaller multiple of the resolution.

clock_gettime()
The clock_gettime() function returns the current value tp for the specified clock, clock_id .

clock_getres()
The resolution of any clock can be obtained by calling clock_getres() . Clock resolutions are imple-
mentation defined and are not settable by a process. If the argument res is not NULL, the resolution of
the specified clock is stored into the location pointed to by res . If res is NULL, the clock resolution is not
returned.

A clock may be system wide, that is, visible to all processes; or per-process, measuring time that is mean-
ingful only within a process.

The following clocks are supported:

CLOCK_REALTIME
This clock represents the realtime clock for the system. For this clock, the values
returned by clock_gettime() and specified by clock_settime() represent the
amount of time (in seconds and nanoseconds) since the Epoch. It is a system wide clock.
Appropriate privileges are required to set this clock.

CLOCK_VIRTUAL
This clock represents the amount of time (in seconds and nanoseconds) that the calling
process has spent executing code in the user’s context. It is a per-process clock. It can-
not be set by the user.

CLOCK_PROFILE
This clock represents the amount of time (in seconds and nanoseconds) that the calling
process has spent executing code in both the user’s context and in the operating system
on behalf of the calling process. It is a per-process clock. It cannot be set by the user.

RTTIMER0 RTTIMER1
These clocks are high resolution hardware clocks present on HP-RT realtime systems. It
is included here so that applications accessing this hardware can be compiled on HP-UX
systems and then ported to an HP-RT target. HP-UX does not support RTTIMER0 or
RTTIMER1.

RETURN VALUE
A return of zero indicates that the call succeeded. A return value of −1 indicates that an error occurred,
and errno is set to indicate the error.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−33

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

clocks(2) clocks(2)

ERRORS
If any of the following conditions occur, the clock_settime() , clock_gettime() , and
clock_getres() functions return −1 and set errno (see errno(2)) to the corresponding value:

[ENOSYS] The functions clock_settime() , clock_gettime() , and clock_getres()
are not supported by this implementation.

[EINVAL] The clock_id argument does not specify a known clock.

[EINVAL] The tp argument to clock_settime() is outside the range for the given
clock_id .

[EINVAL] The tp argument specified a nanosecond value less than zero or greater than or equal to
1000 million.

[EPERM] The requesting process does not have the necessary privileges to set the specified clock.

[EFAULT] The tp or res argument points to an invalid address.

EXAMPLES
Advance the system wide realtime clock approximately one hour:

#include <time.h>
#include <errno.h>

struct timespec cur_time, new_time;

if (clock_gettime(CLOCK_REALTIME, &cur_time)) {
perror("clock_gettime(CLOCK_REALTIME) failed");
exit(1);

}
new_time.tv_sec = cur_time.tv_sec + 3600;
new_time.tv_nsec = cur_time.tv_nsec;
if (clock_settime(CLOCK_REALTIME, &new_time)) {

perror("clock_settime(CLOCK_REALTIME) failed");
exit(2);

}

Get the resolution of the user profiling clock:

#include <time.h>
#include <errno.h>

struct timespec resolution;

if (clock_getres(CLOCK_PROFILE, &resolution)) {
perror("clock_getres(CLOCK_PROFILE) failed");
exit(1);

}
(void)printf("Resolution of user profiling clock is:\n");
(void)printf("%d seconds and %d nanoseconds.\n",

resolution.tv_sec, resolution.tv_nsec);

AUTHOR
clock_settime() , clock_gettime() , and clock_getres() were derived from the proposed
IEEE POSIX P1003.4 Standard, Draft 14.

SEE ALSO
timers(2).

STANDARDS CONFORMANCE
clock_getres() : POSIX.4

clock_gettime() : POSIX.4

clock_settime() : POSIX.4

Section 2−−34 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

close(2) close(2)

NAME
close - close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fildes);

DESCRIPTION
close() closes the file descriptor indicated by fildes. fildes is a file descriptor obtained from a creat() ,
open() , dup() , fcntl() , or pipe() system call. All associated file segments which have been
locked by this process with the lockf() function are released (i.e., unlocked).

RETURN VALUE
Upon successful completion, close() returns a value of 0; otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
close() fails if the any of following conditions are encountered:

[EBADF] fildes is not a valid open file descriptor.

[EINTR] An attempt to close a slow device or connection was interrupted by a signal. The file
descriptor still points to an open device or connection.

[ENOSPC] Not enough space on the file system. This error can occur when closing a file on an
NFS file system. [When a write() system call is executed on a local file system and
if a new buffer needs to be allocated to hold the data, the buffer is mapped onto the
disk at that time. A full disk is detected at this time and write() returns an error.
When the write() system call is executed on an NFS file system, the new buffer is
allocated without communicating with the NFS server to see if there is space for the
buffer (to improve NFS performance). It is only when the buffer is written to the
server (at file close or the buffer is full) that the disk-full condition is detected.]

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), lockf(2), open(2), pipe(2).

STANDARDS CONFORMANCE
close() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−35

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

connect(2) connect(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only
#include <x25/x25addrstr.h>

AF_INET and AF_VME_LINK only
#include <netinet/in.h>

AF_UNIX only
#include <sys/un.h>

int connect(int s, const void *addr, int addrlen);

_XOPEN_SOURCE_EXTENDED only (UNIX 98)
int connect(int s, const struct sockaddr *addr, socklen_t addrlen);

Obsolescent _XOPEN_SOURCE_EXTENDED only (UNIX 95)
int connect(int s, const struct sockaddr *addr, size_t addrlen);

DESCRIPTION
The connect() function initiates a connection on a socket.

s is a socket descriptor.

addr is a pointer to a socket address structure containing the address of a remote socket to which a connec-
tion is to be established.

addrlen is the size of this address structure. Since the size of the socket address structure varies among
socket address families, the correct socket address structure should be used with each address family (for
example, struct sockaddr_in for AF_INET and AF_VME_LINK and struct sockaddr_un for
AF_UNIX). Typically, the sizeof() function is used to pass this value (for example,
sizeof(struct sockaddr_in)).

If the socket is of type SOCK_DGRAM, connect() specifies the peer address to which messages are to be
sent, and the call returns immediately. Furthermore, this socket can only receive messages sent from this
address.

If the socket is of type SOCK_STREAM, connect() attempts to contact the remote host to make a con-
nection between the remote socket (peer) and the local socket specified by s. The call normally blocks until
the connection completes. If nonblocking mode has been enabled with the O_NONBLOCKor O_NDELAY
fcntl() flags or the FIOSNBIO ioctl() request and the connection cannot be completed immedi-
ately, connect() returns an error as described below. In these cases, select() can be used on this
socket to determine when the connection has completed by selecting it for writing.

The connect() system call may complete if remote program has a pending listen() even though
remote program had not yet issued an accept() system call.

O_NONBLOCKand O_NDELAYare defined in <sys/fcntl.h> and explained in fcntl(2), fcntl(5), and
socket(7). FIOSNBIO is defined in <sys/ioctl.h> and explained in ioctl(2), ioctl(5), and socket(7).

If s is a SOCK_STREAMsocket that is bound to the same local address as another SOCK_STREAMsocket,
connect() returns [EADDRINUSE] if addr is the same as the peer address of that other socket. This
situation can only happen if the SO_REUSEADDRoption has been set on s, which is an AF_INET socket
(see getsockopt(2)).

If the AF_INET socket does not already have a local address bound to it (see bind(2)), connect() also
binds the socket to a local address chosen by the system.

An AF_VME_LINK socket always binds the socket to a local address chosen by the system.

Generally, stream sockets may successfully connect only once; datagram sockets may use connect()
multiple times to change the peer address. For datagram sockets, a side effect of attempting to connect to
some invalid address (see ERRORS below) is that the peer address is no longer maintained by the system.
An example of an invalid address for a datagram socket is addrlen set to 0 and addr set to any value.

Section 2−−36 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

connect(2) connect(2)

AF_CCITT Only
Use the x25addrstr struct for the address structure. The caller must know the X.121 address of the
DTE to which the connection is to be established, including any subaddresses or protocol IDs that may be
needed. Refer to af_ccitt(7F) for a detailed description of the x25addrstr address structure. If address-
matching by protocol ID, specify the protocol ID with the X25_WR_USER_DATAioctl() call before
issuing the connect() call. The X25_WR_USER_DATAioctl() call is described in socketx25(7).

DEPENDENCIES
AF_CCITT

The SO_REUSEADDRoption to setsockopt() is not supported for sockets in the AF_CCITT address
family.

RETURN VALUE
connect() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If connect() fails, errno is set to one of the following values.

[EADDRINUSE] The specified address is already in use.

For datagram sockets, the peer address is no longer maintained by the sys-
tem.

[EADDRNOTAVAIL] The specified address is not available on this machine, or the socket is a
TCP/UDP socket and the zero port number is specified.

For datagram sockets, the peer address is no longer maintained by the sys-
tem.

[EAFNOSUPPORT] The specified address is not a valid address for the address family of this
socket.

For datagram sockets, the peer address is no longer maintained by the sys-
tem.

[EALREADY] Nonblocking I/O is enabled with O_NONBLOCK, O_NDELAY, or
FIOSNBIO , and a previous connection attempt has not yet completed.

[EBADF] s is not a valid file descriptor.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[EFAULT] addr is not a valid pointer.

[EINPROGRESS] Nonblocking I/O is enabled using O_NONBLOCK, O_NDELAY, or
FIOSNBIO , and the connection cannot be completed immediately. This is
not a failure. Make the connect() call again a few seconds later. Alter-
natively, wait for completion by calling select() and selecting for write.

[EINTR] The connect was interrupted by a signal before the connect sequence was
complete. The building of the connection still takes place, even though the
user is not blocked on the connect() call.

[EINVAL] The socket has already been shut down or has a listen() active on it;
addrlen is a bad value; an attempt was made to connect() an AF_UNIX
socket to an NFS-mounted (remote) name; the X.121 address length is zero,
negative, or greater than 15 digits.

For datagram sockets, if addrlen is a bad value, the peer address is no
longer maintained by the system.

[EISCONN] The socket is already connected.

[ENETDOWN] The X.25 interface specified in the addr struct was found but was not in the
initialized state. x25ifname field name is an interface which has been shut
down or never initialized or suffered a power failure which erased its state
information.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−37

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

connect(2) connect(2)

[ENETUNREACH] The network is not reachable from this host.

For AF_CCITT only: X.25 Level 2 is down. The X.25 link is not working:
wires might be broken, connections are loose on the interface hoods at the
modem, the modem failed, or noise interfered with the line for an
extremely long period of time.

[ENOBUFS] No buffer space is available. The connect() has failed.

[ENOMEM] No memory is available. The connect() has failed.

[ENODEV] The x25ifname field refers to a nonexistent interface.

[ENOSPC] All available virtual circuits are in use.

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[EOPNOTSUPP] The socket referenced by s does not support connect() . With X.25 an
attempt was made to issue a connect() call on a listen() socket.

[ETIMEDOUT] Connection establishment timed out without establishing a connection.
One reason could be that the connection requests queue at the remote
socket may be full (see listen(2)).

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size, but that
should not adversely affect application behavior in this case. Applications may use socklen_t now. But
applications that need to be portable to the UNIX 95 profile should follow the X/Open specification (see
xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The connect() system call is thread-safe. It has a cancellation point; and it is async-cancel safe, async-
signal safe, and fork-safe.

AUTHOR
connect() was developed by HP and the University of California, Berkeley.

SEE ALSO
accept(2), getsockname(2), select(2), socket(2), af_ccitt(7F), af_vme_link(7F), socket(7), socketx25(7),
xopen_networking(7).

Section 2−−38 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

crashconf(2) crashconf(2)

NAME
crashconf() - configure system crash dumps

SYNOPSIS
#include <sys/crashconf.h>

int crashconf(
int operation,
int includeClasses,
int excludeClasses,
int deviceCount,
char **devices,
int *deviceReturn
);

DESCRIPTION
crashconf() changes the current system crash dump configuration. The crash dump configuration con-
sists of three lists:

• The crash dump device list. This list identifies all devices that can be used to store a crash dump.
The devices are used in reverse order, last specified to first.

• The included class list. This list identifies all system memory classes that must be included in any
crash dump.

• The excluded class list. This list identifies all system memory classes that should not be included in a
crash dump.

Most system memory classes are in neither the included class list nor the excluded class list. Instead, the
system determines whether or not to dump those classes of memory based on the type of crash that occurs.

Note that certain types of system crash, such as TOC’s, require a full crash dump. Also, the system opera-
tor may request a full crash dump at the time the dump is taken. In either of these cases, a full dump will
be performed regardless of the contents of the excluded class list.

Configuration changes made using crashconf() take effect immediately and remain in effect until the
next system reboot, or until changed with a subsequent call to crashconf() .

Parameters
operation is a bitmask specifying what crashconf() should do. It must have at least one of the follow-
ing flags set:

DC_INCLUDE crashconf() will change the contents of the included class list. The includeC-
lasses parameter is valid.

DC_EXCLUDE crashconf() will change the contents of the excluded class list. The excludeC-
lasses parameter is valid.

DC_DEVICES crashconf() will change the contents of the crash dump device list. The devi-
ceCount, devices and deviceReturn parameters are valid.

operation may also have the following flag set:

DC_REPLACE Changes to any of the lists will replace the current contents of those lists. Without
this flag, changes will add to the current contents of those lists.

includeClasses is a bitmask of classes that must be dumped. If it is set to DT_ALL, all dumps will be full
dumps. Other allowed values are described under Classes, below.

excludeClasses is a bitmask of classes that may not be dumped unless a full dump is required (due to the
cause of the dump, or by explicit operator request). If it is set to DT_ALL, dumps will be disabled. Other
allowed values are described under Classes, below.

devices is an array of deviceCount pathnames of block device files for crash dump devices. To be valid, a
device must be accessible and must not contain a file system. Where LVM partitions are in use, the device
number must be for a partition, not the physical disk that contains it, and must represent a partition that
is strictly contiguous on the physical disk. (LVM bad-block reallocation, and striping features may not be in
use on the partition.) Depending on the disk type, the dump space may be restricted to the first 2GB or
4GB of the physical disk.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−39

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

crashconf(2) crashconf(2)

deviceReturn is an array of deviceCount integers for returning the results of attempting to configure the
corresponding device from the devices array. Upon return, each element is set to a numeric value indicat-
ing the result of configuring the corresponding device as follows:

0 Successfully configured the corresponding device as a dump device.

< 0 Failed to configure the corresponding device as a dump device. The absolute value of the
returned number can be used as an index into an array of error messages. The error message
strings are defined in CCERR_STRINGS(see below).

> 0 Warning, The corresponding device has been configured but there is one or more notes or
warnings associated with the device. The returned value is a bitmap of warnings. the warn-
ing message strings are defined in CCWARN_STRINGS(see below).

Any parameters which are not used for the given operation should be set to zero. Note that both devices
and deviceReturn must be specified if DC_DEVICESis specified.

Classes
The following system memory classes have been defined as of this writing. Refer to the output of
crashconf(1M) or to /usr/include/sys/crashconf.h for definitions of any classes added since
publication.

DT_UNUSED Unused physical memory pages
DT_KCODE Kernel code pages
DT_BCACHE Buffer cache data pages
DT_KSDATA Kernel static data pages
DT_KDDATA Kernel dynamic data pages
DT_FSDATA File system metadata pages
DT_USTACK User process stack pages
DT_UAREA U-Area pages
DT_USERPG User process pages

EXAMPLES
The following examples demonstrate the usage of crashconf() .

Example 1: Adding a Crash Dump
char *device_to_add[1];

int device_return[1];

...

crashconf(DC_DEVICES, 0, 0, 1, device_to_add, device_return);

Example 2: Force Dumping of Buffer Cache
crashconf(DC_INCLUDE, DT_BCACHE, 0, 0, NULL, NULL);

Example 3: Disable Dumps
crashconf(DC_EXCLUDE | DC_REPLACE, 0, DT_ALL, 0, NULL, NULL);

Example 4: Using CCERR_STRINGS and CCWARN_STRINGS
Assume only one device, devices[0], is being added to the dump configuration. The following code will check
the device_return[0] value and print corresponding error or warning messages.

char *ccerrs[] = {
CCERR_STRINGS

};
int num_ccerrs = sizeof(ccerrs)/sizeof(*ccerrs);
char *ccwarns[] = {
CCWARN_STRINGS
};
int num_ccwarns = sizeof(ccwarns)/sizeof(*ccwarns);
char *device_to_add[1];
int device_return[1];
...
crashconf(DC_DEVICES, 0, 0, 1, device_to_add, device_return);
if (device_return[0] < 0) {

Section 2−−40 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

crashconf(2) crashconf(2)

if (device_return[0] > -num_ccerrs)
fprintf(stderr, "%s: error: %s", device_to_add[0],

ccerrs[-device_return[0]]);
} else if (device_return[0] > 0) {

int warn_num;
for (warn_num = 0; warn_num < NUM_CCWARNS; warn_num++)

if (device_return[0] & (1 << warn_num))
fprintf(stderr,"%s: warning: %s",

device_to_add[0], ccwarns[warn_num]);
}

RETURN VALUE
Upon successful completion, zero is returned. Otherwise, a value of −1 is returned and errno is set to
indicate the error. If DC_DEVICES is set, a one (1) may be returned to indicate that at least one device
has been configured but one or more devices failed to configure.

ERRORS
crashconf() fails if one or more of the following is true:

[EPERM] The calling process does not have appropriate privileges.

[EINVAL] operation does not have at least one of DC_INCLUDE, DC_EXCLUDE, or
DC_DEVICESset.

[EINVAL] operation has both DC_INCLUDEand DC_EXCLUDEset, and the same class (bit) is
specified in both includeClasses and excludeClasses.

[EINVAL] operation has DC_DEVICESset, and deviceCount is less than zero or greater than
DC_MAXDEVICES.

SEE ALSO
crashconf(1M), pstat_getcrashinfo(2), pstat_getcrashdev(2).

HP-UX Release 11.0: October 1997 − 3 − Section 2−−41

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

creat(2) creat(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION
The creat() system call creates a new regular file or prepares to rewrite an existing file named by the
path name pointed to by path.

If the file exists, its length is truncated to 0, and its mode and owner are unchanged. Otherwise, the file’s
owner ID is set to the effective user ID of the process. If the set-group-ID bit of the parent directory is set,
the file’s group ID is set to the group ID of the parent directory. Otherwise, the file’s group ID is set to the
process’s effective group ID. The low-order 12 bits of the file mode are set to the value of mode modified as
follows:

• All bits set in the process’s file mode creation mask are cleared (see umask(2)).

• The "save text image after execution" bit of the mode is cleared (see chmod(2)).

If the system call is made in 64 bit mode, the O_LARGEFILE status flag is automatically set (see fcntl(5) or
open(2)).

Upon successful completion, the file descriptor is returned and the file is open for writing (only), even if the
mode does not permit writing. The file offset is set to the beginning of the file. The file descriptor is set to
remain open across exec *() system calls (see fcntl(2)). Each process has a limit on how many files it can
open simultaneously. Refer to getrlimit(2) for the open files limit. This is also discussed in open(2). A new
file can be created with a mode that forbids writing.

Access Control Lists - HFS File Systems Only
On systems that support access control lists, three base ACL entries are created corresponding to the file
access permission bits. An existing file’s access control list is unchanged by creat() (see setacl(2),
chmod(2), and acl(5)).

RETURN VALUE
creat() returns the following values:

n Successful completion. n is the value of the file descriptor. It is nonnegative.
-1 Failure. errno is set to indicate the error.

ERRORS
If creat() fails, errno is set to one of the following values.

[EACCES] Search permission is denied on a component of the path prefix.

[EACCES] The file does not exist and the directory in which the file is to be created does not per-
mit writing.

[EACCES] The file exists and write permission is denied.

[EAGAIN] The file exists, enforcement mode file and record locking is set and there are outstand-
ing record locks on the file.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

[EFAULT] path points outside the allocated address space of the process. The reliable detection
of this error is implementation dependent.

[EISDIR] The named file is an existing directory.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[EMFILE] More than the maximum number of file descriptors are currently open.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

Section 2−−42 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

creat(2) creat(2)

[ENFILE] The system file table is full.

[ENOENT] The named file does not exist (for example, path is null, or a component of path does
not exist).

[ENOSPC] Not enough space on the file system.

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] The named file is a character special or block special file, and the device associated
with this special file does not exist.

[EOVERFLOW]
The named file is a regular file and the size of the file cannot be represented correctly
in an object of type off_t .

[EROFS] The named file resides or would reside on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

SEE ALSO
chmod(2), close(2), creat64(2), dup(2), fcntl(2), lockf(2), lseek(2), open(2), open64(2), read(2), setacl(2), trun-
cate(2), umask(2), write(2), acl(5).

STANDARDS CONFORMANCE
creat() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−43

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

creat64(2) creat64(2)

NAME
creat64(), fstat64(), getrlimit64(), lockf64(), lseek64(), lstat64(), mmap64(), open64(), prealloc64(),
setrlimit64(), stat64(), statvfs64(), truncate64() - non-POSIX standard API interfaces to support large files.

SYNOPSIS
#include <fcntl.h>

int creat64(const char *path, mode_t mode);

#include <sys/stat.h>

int fstat64(int fildes, struct stat64 *buf);

include <sys/resource.h>

int getrlimit64(int resource, struct rlimit64 *rlp);

#include <unistd.h>

int lock64(int *fildes, int function, off64_t size);

#include <unistd.h>

off64_t lseek64(int *fildes, off64_t offset, int whence);

#include <sys/stat.h>

int lstat64(const char *, struct stat64 *);

#include <sys/mmanstat.h>

void mmap64(void addr, size_t len, int prot, int flags, int fildes, off64_t off);

#include <fcntl.h>

int open64(const char *path, int oflag,...);

#include <fcntl.h>

int prealloc64(int fildes, off64_t size);

include <sys/resource.h>

int setrlimit64(int resource, const struct rlimit64 *rlp);

#include <sys/stat.h>

int stat64(const char *path, struct stat64 *buf);

#include <sys/statvfs.h>

int statvfs64(const char *path, struct statvfs64 *buf);

#include <unistd.h>

int truncate64(const char *path, off64_t length);

DESCRIPTION
New API’s to support large files. These API interfaces are not a part of the POSIX standard and may be
removed in the future.

creat64() The creat64() function is identical to creat() in 64-bit compile environ-
ment. Both functions set O_LARGEFILE in the file status flag to which the
returned descriptor refers. creat64() function returns a file descriptor which
can be used to grow the file past 2 GB if desired. All other functional behaviors,
returns, and errors are identical to creat() .

fstat64() The fstat64() function is identical to fstat() except that fstat64()
returns file status in a struct stat64 instead of a struct stat . All other
functional behaviors, returns, and errors are identical.

getrlimit64 The getrlimit64() function is identical to getrlimit() except that
getrlimit64() passes a struct rlimit64 as its second parameter
instead of a struct rlimit . All other functional behaviors, returns, and
errors are identical.

Section 2−−44 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

c

creat64(2) creat64(2)

lock64() The lock64() function is identical to lockf() except that lockf64()
accepts an off64_t for the size parameter instead of off_t . All other func-
tional behaviors, returns, and errors are identical.

lseek64() The lseek64() function is identical to lseek() except that lseek64()
accepts an off64_t type as the desired offset and has a return value of
off64_t. All other functional behaviors, returns, and errors are identical.

lstat64() The lstat64() function is identical to lstat() except that lstat64()
returns file status in a struct stat64 instead of struct stat . All other
functional behaviors, returns, and errors are identical.

mmap64() The mmap64() function is identical to mmap() except that mmap64() accepts
the file offset as an off64_t .

open64() The open64() function is identical to open() in 64-bit compile environment.
Both functions set O_LARGEFILE in the file status flag to which the returned
descriptor refers. The open64() function is equivalent to open() function (in
32-bit compile environment) with O_LARGEFILE flag set. open64() function
returns a file descriptor which can be used to grow the file past 2 GB if desired. All
other functional behaviors, returns, and errors are identical to open() .

prealloc64() The prealloc64() function is identical to prealloc() except that
prealloc64() accepts the file offset as an off64_t . All other functional
behaviors, returns, and errors are identical to prealloc() .

setrlimit64 The setrlimit64() function is identical to setrlimit() except that
setrlimit64() passes a struct rlimit64 as its second parameter
instead of a struct rlimit. All other functional behaviors, returns, and
errors are identical.

stat64() The stat64() function is identical to stat() except that stat64() returns
file status in a struct stat64 instead of a struct stat .

statvfs64() Refer to fstatvfs64() .

truncate64() The truncate64() function is identical to truncate() except that trun-
cate64() accepts the length parameter as an off64_t instead of off_t . All
other functional behaviors, returns, and errors are identical to truncate() .

HP-UX Release 11.0: October 1997 − 2 − Section 2−−45

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

d

dup(2) dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int fildes);

DESCRIPTION
fildes is a file descriptor obtained from a creat() , open() , dup() , fcntl() , or pipe() system call.
dup() returns a new file descriptor having the following in common with the original:

• Same open file (or pipe).

• Same file pointer (i.e., both file descriptors share one file pointer).

• Same access mode (read, write or read/write).

• Same file status flags (see fcntl(2), F_DUPFD).

The new file descriptor is set to remain open across exec() system calls. See fcntl(2).

The file descriptor returned is the lowest one available.

RETURN VALUE
Upon successful completion, the file descriptor is returned as a non-negative integer. Otherwise, a value of
−1 is returned and errno is set to indicate the error.

ERRORS
dup() fails if one or more of the following is true:

[EBADF] fildes is not a valid open file descriptor.

[EMFILE] Request violates the maximum number of open file descriptors.

AUTHOR
dup() was developed by AT&T and HP.

SEE ALSO
close(2), creat(2), dup2(2), exec(2), fcntl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−46 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

d

dup2(2) dup2(2)

NAME
dup2 - duplicate an open file descriptor to a specific slot

SYNOPSIS
#include <unistd.h>

int dup2(int fildes, int fildes2);

DESCRIPTION
fildes is a file descriptor obtained from a creat() , open() , dup() , fcntl() , or pipe() system call.

fildes2 is a non-negative integer less than the maximum value allowed for file descriptors.

dup2() causes fildes2 to refer to the same file as fildes. If fildes2 refers to an already open file, the open
file is closed first.

The file descriptor returned by dup2() has the following in common with fildes:

• Same open file (or pipe).

• Same file pointer (that is, both file descriptors share one file pointer.)

• Same access mode (read, write or read/write).

• Same file status flags (see fcntl(2), F_DUPFD).

The new file descriptor is set to remain open across exec() system calls. See fcntl(2).

This routine is found in the C library. Programs using dup2() but not using other routines from the
Berkeley importability library (such as the routines described in bsdproc(3C)) should not give the -lBSD
option to ld(1).

RETURN VALUE
Upon successful completion, dup2() returns the new file descriptor as a non-negative integer, fildes2.
Otherwise, it returns −1 and sets errno to indicate the error.

ERRORS
dup2() fails if the following is true:

[EBADF] fildes is not a valid open file descriptor or fildes2 is not in the range of legal file descriptors.

[EINTR] An attempt to close fildes2 was interrupted by a signal. The file is still open.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

STANDARDS CONFORMANCE
dup2() : AES, SVID2, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−47

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

errno(2) errno(2)

NAME
errno - error indicator for function calls

SYNOPSIS
#include <errno.h>

DESCRIPTION
Many functions in the HP-UX operating system indicate an error condition by returning an otherwise out-
of-range value (usually -1). Most of these functions set the symbol errno, that is defined in
errno.h, to a nonzero code value that more specifically identifies the particular error condition that was
encountered.

All errors detected and the corresponding error code values stored in errno are documented in the
ERRORS section on manual pages for those functions that set it.

The value of errno is zero immediately after a successful call to any of the functions described by exec(2)
and ptrace(2), but it is never set to zero by any other HP-UX function. Functions for which the use of
errno is not described may nevertheless change its value to a nonzero value.

Since errno is not cleared on successful function calls, its value should be checked or used only when an
error has been indicated and when the function’s ERRORS section documents the error codes.

Applications should not attempt to take the address of errno. The practice of defining errno as
extern int errno is obsolescent.

The following is a complete list of the error codes. The numeric values can be found in <errno.h > but
they should not be used in an application program because they can vary from system to system.

[E2BIG] Arg list too long. An argument and or environment list longer than maximum supported
size is presented to a member of the exec() family. Other possibilities include: message
size or number of semaphores exceeds system limit (msgop, semop), or too many
privileged groups have been set up (setprivgrp).

[EACCES] Permission denied. An attempt was made to access a file or IPC object in a way forbidden
by the protection system.

[EADDRINUSE] Address already in use. Only one usage of each address is normally permitted.

[EADDRNOTAVAIL]
Cannot assign requested address. Normally results from an attempt to create a socket with
an address not on this machine.

[EAFNOSUPPORT]
Address family not supported by protocol family. An address incompatible with the
requested protocol was used. For example, you should not necessarily expect to be able to
use PUP Internet addresses with ARPA Internet protocols.

[EAGAIN] Resource temporarily unavailable. This is likely a temporary condition, and later calls to
the same routine may complete normally.

[EALREADY] Operation already in progress. An operation was attempted on a nonblocking object which
already had an operation in progress.

[EBADF] Bad file number. Either a file descriptor refers to no open file, a read (respectively write)
request is made to a file which is open only for writing (respectively reading), or the file
descriptor is not in the legal range of file descriptors.

[EBUSY] Device or resource busy. An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will also occur if an attempt is made to
enable accounting when it is already enabled. The device or resource is currently unavail-
able, such as when a nonsharable device file is in use.

[ECHILD] No child processes. A wait() was executed by a process that had no existing or
unwaited-for child processes.

[ECONNABORTED]
Software caused connection abort. A connection abort was caused internal to your host
machine.

Section 2−−48 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

errno(2) errno(2)

[ECONNREFUSED]
Connection refused. No connection could be made because the target machine actively
refused it. This usually results from trying to connect to a service that is inactive on the
foreign host.

[ECONNRESET] Connection reset by peer. A connection was forcibly closed by a peer. This normally results
from the peer executing a shutdown() call (see shutdown(2)).

[EDEADLK] Resource deadlock would occur. A process which has locked a system resource would have
been put to sleep while attempting to access another process’ locked resource.

[EDESTADDRREQ]
Destination address required. A required address was omitted from an operation on a
socket.

[EDOM] Math argument. The argument of a function in the math package (3M) is out of the domain
of the function.

[EEXIST] File exists. An existing file was mentioned in an inappropriate context; e.g., link() .

[EFAULT] Bad address. The system encountered a hardware fault in attempting to use an argument
of a system call; can also result from passing the wrong number of parameters to a system
call. The reliable detection of this error is implementation dependent.

[EFBIG] File too large. The size of a file exceeded the maximum file size (for the file system) or
ULIMIT was exceeded (see ulimit(2)), or a bad semaphore number in a semop() call (see
semop(2)).

[EHOSTDOWN] Host is down. A socket operation encountered a dead host. Networking activity on the
local host has not been initiated.

[EHOSTUNREACH]
No route to host. A socket operation was attempted to an unreachable host.

[EIDRM] Identifier Removed. This error is returned to processes that resume execution due to the
removal of an identifier from the file system’s name space (see msgctl(2), semctl(2), and
shmctl(2)).

[EILSEQ] Illegal byte sequence. A wide character code has been detected that does not correspond to
a valid character, or a byte sequence does not form a valid wide character code.

[EINPROGRESS]
Operation now in progress. An operation that takes a long time to complete was attempted
on a nonblocking object (see ioctl(2) and fcntl(2)).

[EINTR] Interrupted system call. An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is resumed after process-
ing the signal, it will appear as if the interrupted system call returned this error condition
unless the system call is restarted (see sigvector (2)).

[EINVAL] Invalid argument. Some invalid argument (such as unmounting a device that is not
currently mounted, mentioning an undefined signal in signal() or kill() , or reading
or writing a file for which lseek() has generated a negative pointer). Also set by the
math functions described in the (3M) entries of this manual.

[EIO] I/O error − some physical I/O error. This error may in some cases occur on a call following
the one to which it actually applies.

[EISCONN] Socket is already connected. A connect() request was made on an already connected
socket, or, a sendto() or sendmsg() request on a connected socket specified a desti-
nation other than the connected party.

[EISDIR] Is a directory. An attempt to open a directory for writing.

[ELOOP] Too many levels of symbolic links. A path name search involved more than MAXSYM-
LINKS symbolic links. MAXSYMLINKSis defined in <sys/param.h >.

[EMFILE] Too many open files. No process may have more than a system-defined number of file
descriptors open at a time.

[EMLINK] Too many links. An attempt to make more than the maximum number of links to a file.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−49

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

errno(2) errno(2)

[EMSGSIZE] Message too long. The socket requires that the message be sent atomically, and the size of
the message to be sent made this impossible.

[ENAMETOOLONG]
File name too long. A path specified exceeds the maximum path length for the system.
The maximum path length is specified by PATH_MAXand is defined in <limits.h >.
PATH_MAX is guaranteed to be at least 1023 bytes. This error is also generated if the
length of a path name component exceeds NAME_MAXand the _POSIX_NO_TRUNC
option is in effect for the specified path. Currently, _POSIX_NO_TRUNCis in effect only
for HFS file systems configured to allow path name components up to 255 bytes long (see
convertfs (1M)) and therefore only path names referring to such file systems can generate
the error for this case. The values of NAME_MAX, PATH_MAX, and _POSIX_NO_TRUNC
for a particular path name can be queried by using the pathconf() system call (see
pathconf(2)).

[ENETDOWN] Network is down. A socket operation encountered a dead network.

[ENETRESET] Network dropped connection on reset. The host you were connected to crashed and
rebooted.

[ENETUNREACH]
Network is unreachable. A socket operation was attempted to an unreachable network.

[ENFILE] File table overflow. The system’s table of open files is full, and temporarily no more
open() s can be accepted.

[ENOBUFS] No buffer space available. An operation on a socket was not performed because the system
lacked sufficient buffer space.

[ENODEV] No such device. An attempt was made to apply an inappropriate system call to a device
(such as read a write-only device).

[ENOENT] No such file or directory. This error occurs when a file name is specified and the file should
exist but does not, or when one of the directories in a path name does not exist. It also
occurs with msgget() , semget() , and shmget() when key does not refer to any
object and the IPC_CREAT flag is not set.

[ENOEXEC] Exec format error. A request is made to execute a file which, although it has the appropri-
ate permissions, does not start with a valid magic number (see a.out(4)), or the file is too
small to have a valid executable file header.

[ENOLCK] System lock table is full. Too many files have file locks on them, or there are too many
record locks on files, or there are too many instances of a reading or writing process sleep-
ing until an enforcement mode lock clears. This error may also indicate system problems in
handling a lock request on a remote NFS file. This error is also currently returned for all
attempts to perform locking operations on a remote NFS file that has its locking enforce-
ment mode bit set, since the stateless nature of NFS prevents maintaining the necessary
lock information.

[ENOMEM] Not enough space. During a system call such as exec() , brk() , fork() , or sbrk() ,
a program asks for more space than the system is able to supply. This may not be a tem-
porary condition; the maximum space size is a system parameter. The error can also occur
if there is not enough swap space during a fork() .

[ENOMSG] No message of desired type. An attempt was made to receive a message of a type that does
not exist on the specified message queue; see msgop(2).

[ENOPROTOOPT]
Protocol not available. A bad option was specified in a getsockopt() or set-
sockopt() call (see getsockopt(2)).

[ENOSPC] No space left on device. During a write() to an ordinary file, there is no free space left
on the device; or no space in system table during msgget() , semget() , or semop()
while SEM_UNDOflag is set.

[ENOSYM] Symbol does not exist in executable. The dynamic loader was unable to resolve a symbolic
reference in a shared library during a call to one of the dynamic loader interface routines
(see shl_load(3X). The program may be in an inconsistent state and should be terminated
immediately.

Section 2−−50 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

errno(2) errno(2)

[ENOSYS] Function is not available. The requested function or operation is not implemented or not
configured in the system.

[ENOTBLK] Block device required. A nonblock file was mentioned where a block device was required,
such as in mount() .

[ENOTCONN] Socket is not connected. A request to send or receive data was disallowed because the
socket was not connected.

[ENOTDIR] Not a directory. A nondirectory was specified where a directory is required, such as in a
path prefix or as an argument to chdir() .

[ENOTEMPTY] Directory not empty. An attempt was made to remove a nonempty directory.

[ENOTSOCK] Socket operation on nonsocket. An operation was attempted on something that is not a
socket.

[ENOTTY] Not a typewriter. The (ioctl()) command is inappropriate to the selected device type.

[ENXIO] No such device or address. I/O on a special file refers to a subdevice that does not exist, or
is beyond the limits of the device. It can also occur when, for example, a tape drive is not
on line or no disk pack is loaded on a drive.

[EOPNOTSUPP] Operation not supported. The requested operation on a socket or NFS file is either invalid
or unsupported. For example, this might occur when an attempt to accept() a connec-
tion on a datagram socket fails.

[EPERM] Not owner. Typically, this error indicates an attempt to modify a file in some way forbid-
den except to its owner or the superuser, such as to change its mode. It is also returned for
attempts by ordinary users to do things for which they need, but lack, a special privilege.

[EPFNOSUPPORT]
Protocol family not supported. The protocol family has not been configured into the system
or no implementation for it exists. The socket is not connected.

[EPIPE] Broken pipe. Data has been written to a pipe for which the other (reading) end has been
closed. This most often occurs when the reading process exits before the writing process.
This condition also generates the signal SIGPIPE ; the error is returned if the signal is
ignored.

[EPROTONOSUPPORT]
Protocol not supported. The protocol has not been configured into the system or no imple-
mentation for it exists.

[EPROTOTYPE] Protocol wrong type for socket. A protocol was specified that does not support the seman-
tics of the socket type requested. For example, ARPA Internet UDP protocol cannot be
used with type SOCK_STREAM.

[ERANGE] Result too large. The value of a function in the math package (3M) is not representable
within machine precision, or a semop() call would cause either a semaphore value or a
semaphore adjust value to exceed it system-imposed maximum.

[EROFS] Read-only file system. An attempt to modify a file or directory was made on a device
mounted read-only.

[ESHUTDOWN] Cannot send after socket shutdown. A request to send data was disallowed because the
socket had already been shut down with a previous shutdown() call.

[ESOCKTNOSUPPORT]
Socket type not supported. The support for the socket type has not been configured into
the system or no implementation for it exists.

[ESPIPE] Illegal seek. An lseek() was issued to a pipe.

[ESRCH] No such process. No process can be found corresponding to that specified by pid in
kill() , rtprio() , or ptrace() , or the process is not accessible.

[ETIMEDOUT] Connection timed out. A connect() request failed because the connected party did not
properly respond after a period of time (timeout period varies, depending on the communi-
cation protocol).

[ETXTBSY] Text file busy. An attempt to execute an executable file which is currently open for writing
(or reading). Also, an attempt to open for writing an otherwise writable file which is

HP-UX Release 11.0: October 1997 − 4 − Section 2−−51

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

errno(2) errno(2)

currently open for execution.

[EWOULDBLOCK]
Operation would block. An operation which would cause a process to block was attempted
on an object in nonblocking mode (see ioctl(2) and fcntl(2)).

[EXDEV] Cross-device link. A link to a file on another device was attempted.

DEPENDENCIES
The following NFS errors are also defined:

[EREFUSED] The same error as ECONNREFUSED. The external variable errno is defined as
ECONNREFUSED for NFS compatibility.

[EREMOTE] Too many levels of remote in path. An attempt was made to remotely mount an NFS
file system into a path which already has a remotely mounted NFS file system com-
ponent.

[ESTALE] Stale NFS file handle. A client referenced an open file, but the file was previously
deleted.

STANDARDS CONFORMANCE
errno : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

Section 2−−52 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

exec(2) exec(2)

NAME
execl(), execle(), execlp(), execv(), execve(), execvp() - execute a file

SYNOPSIS
#include <unistd.h>

extern char **environ;

int execl(const char *path,
const char *arg0, ...
/*

* [const char *arg1, ..., const char *argn,]
* (char *)0
*/

);

int execle(const char *path,
const char *arg0, ...
/*

* [const char *arg1, ..., const char *argn,]
* (char *)0,
* char * const envp[]
*/

);

int execlp(const char *file,
const char *arg0, ...
/*

* [const char *arg1, ..., const char *argn,]
* (char *)0
*/

);

int execv(const char *path, char * const argv[]);

int execve(const char *path, char * const argv[], char * const envp[]);

int execvp(const char *file, char * const argv[]);

Remarks
The ANSI C ", ... " construct denotes a variable length argument list whose optional and required
members are given in the associated comment (/* */).

DESCRIPTION
The exec*() system calls, in all their forms, load a program from an ordinary, executable file into the
current process, replacing the current program. The path or file argument refers to either an executable
object file or a file of data for an interpreter. In the latter case, the file of data is also called a script file.

If the calling process is multi-threaded, a call to any of the exec functions will cause all threads and light
weight processes in the calling process to be terminated and the new executable image to be loaded and
executed. No thread specific data destructor functions are called. If the exec function fails and returns to
the caller, threads and light weight processes (LWPs) in the calling process will not be terminated.

An executable object file consists of a header (see a.out(4)), text segment, and data segment. The data seg-
ment contains an initialized portion and an uninitialized portion (bss). For execlp() and execvp() the
POSIX shell (see sh-posix(1)) can be loaded to interpret a script instead. A successful call to exec*()
does not return because the new program overwrites the calling program.

When a C program is executed, it is called as follows:

main (int argc, char **argv, char **envp)

where argc is the argument count and argv is the address of an array of character pointers to the argu-
ments themselves. As indicated, argc usually has a value of at least one, and the first member of the array
points to a string containing the name of the file. Exit conditions from main are discussed in exit(2).

path points to a path name that identifies the executable file containing the new program.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−53

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

exec(2) exec(2)

file (in execlp() or execvp()) points to a file name identifying the executable file containing the new
program. The path prefix for this file is obtained by searching the directories passed in the environment
variable PATH (see environ(5)). The environment is supplied by the shell (see sh(1)). If file does not have
an executable magic number (see magic(4)), it is passed to the POSIX shell as a shell script.

arg0, ..., argn are one or more pointers to null-terminated character strings. These strings constitute the
argument list available to the new program. By convention, at least arg0 must be present and point to a
string identical to path or to path’s last component.

argv is an array of character pointers to null-terminated strings. These strings constitute the argument list
available to the new program. By convention, argv must have at least one member, and must point to a
string that is identical to path or path’s last component. argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings constitute the environment
in which the new program runs. envp is terminated by a null pointer. For execle() and execve() ,
the C run-time start-off routine places a pointer to the environment of the calling program in the global
cell:

extern char **environ;

and it is used to pass the environment of the calling program to the new program.

Multi-threaded applications should not use the environ variable to access or modify any environment vari-
able while another thread is concurrently modifying any environment variable. Calling any function which
is dependent upon any environment variable is considered a use of the environ variable to access that
environment variable.

Open file descriptors remain open, except for those whose close-on-exec flag is set (see fcntl(2)). The file
offset, access mode, and status flags of open file descriptors are unchanged.

Note that normal executable files are open only briefly when they start execution. Other executable file
types can be kept open for a long time, or even indefinitely under some circumstances.

The processing of signals by the process is unchanged by exec*() , except that signals caught by the pro-
cess are set to their default values (see signal(2)).

If the set-user-ID mode bit of the executable file pointed to by path or file is set (see chmod(2)), exec*()
sets the effective user ID of the new process to the user ID of the executable file. Similarly, if the set-
group-ID mode bit of the executable file is set, the effective group ID of the process is set to the group ID of
the executable file. The real user ID and real group ID of the process are unchanged. Note that the set-
user-ID and set-group-ID functions do not apply to scripts; thus, if execlp() or execvp() executes a
script, the set-user-ID and set-group-ID bits are ignored, even if they are set.

The saved user ID and saved group ID of the process are always set to the effective user ID and effective
group ID, respectively, of the process at the end of the exec*() , whether or not set-user-ID or set-group-
ID is in effect.

The shared memory segments attached to the calling program are not attached to the new program (see
shmop(2)).

Text and data segment memory locks are not passed on to the new program (see plock(2)).

Profiling is disabled for the new process (see profil(2)).

The process also retains the following attributes:

• current working directory
• file creation mode mask (see umask(2))
• file locks (see fcntl(2)), except for files closed-on-execution
• file size limit (see ulimit(2))
• interval timers (see getitimer (2))
• nice value (see nice(2))
• nice value (see parent process ID)
• pending signals
• process ID
• process group ID
• real user ID
• real group ID
• process start time

Section 2−−54 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

exec(2) exec(2)

• real-time priority (see rtprio(2))
• root directory (see chroot(2))
• semadj values (see semop(2))
• session membership
• signal mask (see sigvector (2))
• supplementary group IDs
• time left until an alarm clock signal (see alarm(2))
• trace flag (see the PT_SETTRCrequest of ptrace(2))
• tms_utime , tms_stime , tms_cutime , and tms_cstime (see times(2))

For a script file, the initial line of a script file must begin with #! as the first two bytes, followed by zero or
more spaces, followed by interpreter or interpreter argument, as in:

#! interpreter [argument]

One or more spaces or tabs must separate interpreter and argument. The first line should end with either a
newline or a null character.

When the script file is executed, the system executes the specified interpreter as an executable object file.
Even in the case of execlp() or execvp() , no path searching is done of the interpreter name.

The argument is anything that follows interpreter and tabs or spaces. If an argument is given, it is passed
to the interpreter as argv[1] , and the name of the script file is passed as argv[2] . Otherwise, the
name of the script file is passed as argv[1] . argv[0] is passed as specified in the exec*() call. All
other arguments specified in the exec*() call are passed following the name of the script file (that is,
beginning at argv[3] if there is an argument; otherwise, at argv[2]).

Some interpreters process the interpreter and the argument internally, and do not provide the interpreter
and the argument to the users script.

If the initial line of the script file exceeds a system-defined maximum number of characters, exec*()
fails. The minimum value for this limit is 32.

The set-user-ID and set-group-ID bits are honored for the script but not for the interpreter.

For a executable object file, the arguments are passed as argv[1], ..., argv[n] . argv[0] is passed
as specified in the exec*() call, unless either argv or argv[0] is null as specified, in which case a
pointer to a null string is passed as argv[0] .

RETURN VALUE
If exec*() returns to the calling program, an error has occurred; the return value is -1 and errno is
set to indicate the error.

ERRORS
If exec*() fails and returns to the calling program, errno is set to one of the following values:

[E2BIG] The number of bytes in the new program’s argument list plus environment is
greater than the system-imposed limit. This limit is at least 5120 bytes on HP-
UX systems.

[EACCES] Read permission is denied for the executable file or interpreter, and the trace
flag (see ptrace(2) request PT_SETTRC) of the process is set.

[EACCES] Search permission is denied for a directory listed in the executable file’s or the
interpreter’s path prefix.

[EACCES] The executable file or the interpreter is not an ordinary file.

[EACCES] The file described by path or file is not executable. The superuser cannot execute
a file unless at least one access permission bit or entry in its access control list
has an execute bit set.

[EFAULT] path, argv , or envp point to an illegal address. The reliable detection of this
error is implementation dependent.

[EINVAL] The executable file is incompatible with the architecture on which the
exec*() has been performed, and is presumed to be for a different architec-
ture. It is not guaranteed that every architecture’s executable files will be recog-
nized.

HP-UX Release 11.0: October 1997 − 3 − Section 2−−55

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

exec(2) exec(2)

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The executable file’s path name or the interpreter’s path name exceeds
PATH_MAXbytes, or the length of a component of the path name exceeds
NAME_MAXbytes while _POSIX_NO_TRUNCis in effect.

[ENOENT] path is null.

[ENOENT] One or more components of the executable file’s path name or the interpreter’s
path name does not exist.

[ENOEXEC] The executable file is shorter than indicated by the size values in its header, or is
otherwise inconsistent. The reliable detection of this error is implementation
dependent.

[ENOEXEC] The function call is not execlp() or execvp() , and the executable file has
the appropriate access permission, but there is neither a valid magic number nor
the characters #! as the first two bytes of the file’s initial line.

[ENOEXEC] The number of bytes in the initial line of a script file exceeds the system’s max-
imum.

[ENOMEM] The new process requires more memory than is available or allowed by the
system-imposed maximum.

[ENOTDIR] A component of the executable file’s path prefix or the interpreter’s path prefix is
not a directory.

[ETXTBSY] The executable file is currently open for writing.

WARNINGS
Unsharable executable files are not supported. These are files whose EXEC_MAGICmagic number was
produced with the -N option of ld (see ld(1)).

DEPENDENCIES
HP Process Resource Manager

If the optional HP Process Resource Manager (PRM) software is installed and configured, the process’s pro-
cess resource group ID is not changed by exec*() . See prmconfig(1) for a description of how to configure
HP PRM, and prmconf(4) for the definition of process resource group.

SEE ALSO
sh(1), sh-posix(1), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),
umask(2), a.out(4), acl(5), environ(5), signal(5).

HP Process Resource Manager: prmconfig(1), prmconf(4) in HP Process Resource Manager User’s Guide.

STANDARDS CONFORMANCE
environ : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execl() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execle() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execlp() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execv() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execve() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

execvp() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−56 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

exit(2) exit(2)

NAME
exit, _exit - terminate process

SYNOPSIS
#include <stdlib.h>

void exit(int status);

#include <unistd.h>

void _exit(int status);

DESCRIPTION
exit() terminates the calling process and passes status to the system for inspection, see wait(2). Return-
ing from main in a C program has the same effect as exit() ; the status value is the function value
returned by main (this value is undefined if main does not take care to return a value or to call exit()
explicitly).

If the calling process is multithreaded, all threads/lightweight process in the process will be terminated.

exit() cannot return to its caller. The result of an exit() call during exit processing is undefined.

The functions exit() and _exit() , are equivalent, except that exit() calls functions registered by
atexit() and flushes standard I/O buffers, while _exit() does not. Both exit() and _exit() ter-
minate the calling process with the following consequences. The exact order of these consequences is
unspecified.

Functions registered by atexit() (see atexit(2)) are called in reverse order of registration.

All file descriptors open in the calling process are closed.

All files created by tmpfile() are removed (see tmpfile(3S)).

If the parent process of the calling process is executing a wait() , wait3() , or waitpid() , it is
notified of the calling process’s termination, and the low-order eight bits; i.e., bits 0377 of status are
made available to it (see wait(2)).

If the parent process of the calling process is not executing a wait() , wait3() , or waitpid() ,
and does not have SIGCLD set to SIG_IGN , the calling process is transformed into a zombie pro-
cess. A zombie process is a process that only occupies a slot in the process table. It has no other
space allocated either in user or kernel space. Time accounting information is recorded for use by
times() (see times(2)).

The parent process ID is set to 1 for all of the calling process’s existing child processes and zombie
processes. This means the initialization process (proc1) inherits each of these processes.

Threads/LWPs terminated by a call to exit() shall not invoke their cancellation cleanup handlers or
their thread specific data destructor functions.

Each attached shared memory segment is detached and the value of shm_nattach in the data
structure associated with its shared memory identifier is decremented by 1 (see shmop(2)).

For each semaphore for which the calling process has set a semadj value (see semop(2)), that semadj
value is added to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock() is performed, see plock(2).

An accounting record is written on the accounting file if the system’s accounting routine is enabled
(see acct(2)).

A SIGCHLDsignal is sent to the parent process.

If the calling process is a controlling process, the SIGHUP signal is sent to each process in the fore-
ground process group of the controlling terminal belonging to the calling process. The controlling ter-
minal associated with the session is disassociated from the session, allowing it to be acquired by a new
controlling process.

If the exit of the calling process causes a process group to become orphaned, and if any member of the
newly-orphaned process group is stopped, all processes in the newly-orphaned process group are sent
SIGHUPand SIGCONTsignals.

If the current process has any child processes that are being traced, they are sent a SIGKILL signal.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−57

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

e

exit(2) exit(2)

AUTHOR
exit() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
Exit conditions ($?) in sh(1), acct(2), plock(2), pthread_cancel(3), pthread_exit(3), pthread_key_create(3),
semop(2), shmop(2), times(2), vfork(2), wait(2), signal(5).

STANDARDS CONFORMANCE
exit() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

_exit() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−58 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fcntl(2) fcntl(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl(int fildes, int cmd, ... /* arg */);

Remarks
The ANSI C ", ... " construct denotes a variable length argument list whose optional [or required]
members are given in the associated comment (/* */).

DESCRIPTION
fcntl() provides for control over open files. fildes is an open file descriptor.

The following are possible values for the cmd argument:

F_DUPFD Return a new file descriptor having the following characteristics:

• Lowest numbered available file descriptor greater than or equal to the third
argument, arg, taken as an integer of type int .

• Same open file (or pipe) as the original file.

• Same file pointer as the original file (that is, both file descriptors share one
file pointer).

• Same access mode (read, write or read/write).

• Same file status flags (that is, both file descriptors share the same file status
flags).

• The close-on-exec flag associated with the new file descriptor is set to remain
open across exec(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fildes. If the low-order bit
is 0 the file will remain open across exec(2), otherwise the file will be closed upon exe-
cution of exec(2).

F_SETFD Set the close-on-exec flag associated with fildes to the low-order bit of the third argu-
ment, arg, taken as an integer of type int (see F_GETFD).

F_GETFL Get file status flags and access modes; see fcntl(5).

F_SETFL Set file status flags to the third argument, arg, taken as an integer of type int . Only
certain flags can be set; see fcntl(5). It is not possible to set both O_NDELAYand
O_NONBLOCK.

F_GETLK Get the first lock that blocks the lock described by the variable of type struct
flock pointed to by the third argument, arg, taken as a pointer to type struct
flock . The information retrieved overwrites the information passed to fcntl()
in the flock structure. If no lock is found that would prevent this lock from being
created, the structure is passed back unchanged, except that the lock type is set to
F_UNLCK.

F_SETLK Set or clear a file segment lock according to the variable of type struct flock
pointed to by the third argument, arg, taken as a pointer to type struct flock
(see fcntl(5)). The cmd F_SETLK is used to establish read (F_RDLCK) and write
(F_WRLCK) locks, as well as to remove either type of lock (F_UNLCK). If a read or
write lock cannot be set, fcntl() returns immediately with an error value of −1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write lock is blocked by
other locks, the process will sleep until the segment is free to be locked.

F_GETOWN If fildes refers to a socket, fcntl() returns the process or process group ID
specified to receive SIGURG signals when out-of-band data is available. Positive
values indicate a process ID; negative values, other than -1, indicate a process group
ID.

F_SETOWN If fildes refers to a socket, fcntl() sets the process or process group ID specified to
receive SIGURG signals when out-of-band data is available, using the value of the

HP-UX Release 11.0: October 1997 − 1 − Section 2−−59

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fcntl(2) fcntl(2)

third argument, arg, taken as type int. Positive values indicate a process ID; negative
values, other than -1, indicate a process group ID.

F_GETLK64 Same as F_GETLK, except arg is a pointer to struct flock64 instead of
struct flock .

F_SETLK64 Same as F_SETLK, except arg is a pointer to struct flock64 instead of
struct flock .

F_SETLKW64 Same as F_SETLKW, except arg is a pointer to struct flock64 instead of
struct flock .

Turning the O_LARGEFILE flag on and off can be done with F_SETFL.

A read lock prevents any other process from write-locking the protected area. More than one read
lock can exist for a given segment of a file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any other process from read-locking or write-locking the protected area. Only
one write lock may exist for a given segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write access.

The structure flock describes the type (l_type), starting offset (l_whence), relative offset
(l_start), size (l_len), and process ID (l_pid) of the segment of the file to be affected. The pro-
cess ID field is only used with the F_GETLK cmd to return the value of a block in lock. Locks can
start and extend beyond the current end of a file, but cannot be negative relative to the beginning of
the file. A lock can be set to always extend to the end of file by setting l_len to zero (0). If such a
lock also has l_start set to zero (0), the whole file will be locked. Changing or unlocking a seg-
ment from the middle of a larger locked segment leaves two smaller segments for either end. Locking
a segment already locked by the calling process causes the old lock type to be removed and the new
lock type to take effect. All locks associated with a file for a given process are removed when a file
descriptor for that file is closed by that process or the process holding that file descriptor terminates.
Locks are not inherited by a child process in a fork(2) system call.

When enforcement-mode file and record locking is activated on a file (see chmod(2)), future read()
and write() system calls on the file are affected by the record locks in effect.

Application Usage
Because in the future the external variable errno will be set to EAGAIN rather than EACCES when a
section of a file is already locked by another process, portable application programs should expect and test
for either value. For example:

flk->l_type = F_RDLCK;
if (fcntl(fd, F_SETLK, flk) == -1)

if ((errno == EACCES) || (errno == EAGAIN))
/*

* section locked by another process,
* check for either EAGAIN or EACCES
* due to different implementations
*/

else if ...
/*

* check for other errors
*/

NETWORKING FEATURES
NFS

The advisory record-locking capabilities of fcntl() are implemented throughout the network by the ‘‘net-
work lock daemon’’ (see lockd(1M)). If the file server crashes and is rebooted, the lock daemon attempts to
recover all locks associated with the crashed server. If a lock cannot be reclaimed, the process that held
the lock is issued a SIGLOST signal.

Record locking, as implemented for NFS files, is only advisory.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

Section 2−−60 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fcntl(2) fcntl(2)

F_DUPFD A new file descriptor.

F_GETFD Value of close-on-exec flag (only the low-order bit is defined).

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes.

F_SETFL Value other than −1.

F_GETLK Value other than −1.

F_SETLK Value other than −1.

F_SETLKW Value other than −1.

F_GETOWN Value of process or process group ID specified to receive SIGURGsignals when out-
of-band data is available.

F_SETOWN Value other than −1.

F_GETLK64 Value other than −1.

F_SETLK64 Value other than −1.

F_SETLKW64 Value other than −1.

Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS
fcntl() fails if any of the following conditions occur:

[EBADF] fildes is not a valid open file descriptor, or was not opened for reading when setting a
read lock or for writing when setting a write lock.

[EMFILE] cmd is F_DUPFDand the maximum number of file descriptors is currently open.

[EMFILE] cmd is F_SETLK or F_SETLKW, the type of lock is a read or write lock, and no more
file-locking headers are available (too many files have segments locked).

[EINVAL] cmd is F_DUPFDand arg is greater than or equal to the maximum number of file
descriptors.

[EINVAL] cmd is F_DUPFDand arg is negative.

[EINVAL] cmd is F_GETLK, F_SETLK, or F_SETLKW, and arg or the data it points to is not
valid, or fildes refers to a file that does not support locking.

[EINVAL] cmd is not a valid command.

[EINVAL] cmd is F_SETFL and both O_NONBLOCKand O_NDELAYare specified.

[EINTR] cmd is F_SETLKWand the call was interrupted by a signal.

[EACCES] cmd is F_SETLK, the type of lock (l_type) is a read lock (F_RDLCK) or write lock
(F_WRLCK) and the segment of a file to be locked is already write-locked by another
process, or the type is a write lock (F_WRLCK) and the segment of a file to be locked
is already read- or write-locked by another process.

[ENOLCK] cmd is F_SETLK or F_SETLKW, the type of lock is a read or write lock, and no more
file-locking headers are available (too many files have segments locked), or no more
record locks are available (too many file segments locked).

[ENOLCK] cmd is F_SETLK or F_SETLKW, the type of lock (l_type) is a read lock
(F_RDLCK) or write lock (F_WRLCK) and the file is an NFS file with access bits set
for enforcement mode.

[ENOLCK] cmd is F_GETLK, F_SETLK, or F_SETLKW, the file is an NFS file, and a system
error occurred on the remote node.

[EOVERFLOW]
cmd is F_GETLK and the blocking lock’s starting offset or length would not fit in the
caller’s structure.

[EDEADLK] cmd is F_SETLKW, when the lock is blocked by a lock from another process and sleep-
ing (waiting) for that lock to become free. This causes a deadlock situation.

HP-UX Release 11.0: October 1997 − 3 − Section 2−−61

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fcntl(2) fcntl(2)

[EAGAIN] cmd is F_SETLK or F_SETLKW, and the file is mapped in to virtual memory via the
mmap() system call (see mmap(2)).

[EFAULT] cmd is either F_GETLK, F_SETLK, or F_SETLKW, and arg points to an illegal
address.

[ENOTSOCK] cmd is F_GETOWNor F_SETOWN, and fildes does not refer to a socket.

AUTHOR
fcntl() was developed by HP, AT&T and the University of California, Berkeley.

SEE ALSO
lockd(1M), statd(1M), chmod(2), close(2), creat64(2), exec(2), lockf(2), open(2), read(2), write(2), fcntl(5).

STANDARDS CONFORMANCE
fcntl() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−62 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fork(2) fork(2)

NAME
fork - create a new process

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
The fork() system call causes the creation of a new process. The new child process is created wth exactly
one thread or lightweight process. The new child process contains a replica of the calling thread (if the cal-
ling process is multi-threaded) and its entire address space, possibly including the state of mutexes and
other resources.

If the calling process is multi-threaded, the child process may only execute async-signal safe functions until
one of the exec functions is called. Fork handlers may be installed via pthread_atfork() in order to
maintain application invariants across fork() calls (i.e, release resources such as mutexes in the child
process).

The child process inherits the following attributes from the parent process:

• Real, effective, and saved user IDs.
• Real, effective, and saved group IDs.
• List of supplementary group IDs (see getgroups(2)).
• Process group ID.
• Environment.
• File descriptors.
• Close-on-exec flags (see exec(2)).
• Signal handling settings (SIG_DFL , SIG_IGN , address).
• Signal mask (see sigvector (2)).
• Profiling on/off status (see profil(2)).
• Command name in the accounting record (see acct(4)).
• Nice value (see nice(2)).
• All attached shared memory segments (see shmop(2)).
• Current working directory
• Root directory (see chroot(2)).
• File mode creation mask (see umask(2)).
• File size limit (see ulimit(2)).
• Real-time priority (see rtprio(2)).

Each of the child’s file descriptors shares a common open file description with the corresponding file
descriptor of the parent. This implies that changes to the file offset, file access mode, and file status flags of
file descriptors in the parent also affect those in the child, and vice-versa.

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process ID does not match any active process group ID.

The child process has a different parent process ID (which is the process ID of the parent process).

The set of signals pending for the child process is initialized to the empty set.

The trace flag (see the ptrace(2) PT_SETTRCrequest) is cleared in the child process.

The AFORKflag in the ac_flags component of the accounting record is set in the child process.

Process locks, text locks, and data locks are not inherited by the child (see plock(2)).

All semadj values are cleared (see semop(2)).

The child process’s values for tms_utime , tms_stime , tms_cutime , and tms_cstime are set
to zero (see times(2)).

The time left until an alarm clock signal is reset to 0 (clearing any pending alarm), and all interval
timers are set to 0 (disabled).

The vfork(2) system call can be used to fork processes more quickly than fork() , but has some restric-
tions. See vfork(2) for details.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−63

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fork(2) fork(2)

If a parent and child process both have a file opened and the parent or child closes the file, the file is still
open for the other process.

RETURN VALUE
Upon successful completion, fork() returns a value of 0 to the child process and returns the process ID
of the child process to the parent process. Otherwise, a value of −1 is returned to the parent process, no
child process is created, and errno is set to indicate the error.

The parent and child processes resume execution immediately after the fork() call; they are dis-
tinguished by the value returned by fork .

ERRORS
If fork() fails, errno is set to one of the following values.

[EAGAIN] The system-imposed limit on the total number of processes under execution would be
exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execution by a sin-
gle user would be exceeded.

[ENOMEM] There is insufficient swap space and/or physical memory available in which to create
the new process.

WARNINGS
Standard I/O streams (see stdio(3S)) are duplicated in the child. Therefore, if fork is called after a
buffered I/O operation without first closing or flushing the associated standard I/O stream (see fclose(3S)),
the buffered input or output might be duplicated.

DEPENDENCIES
HP Process Resource Manager

If the optional HP Process Resource Manager (PRM) software is installed and configured, the child process
inherits the parent’s process resource group ID. See prmconfig(1) for a description of how to configure HP
PRM, and prmconf(4) for the definition of process resource group.

AUTHOR
fork() was developed by AT&T, the University of California, Berkeley, and HP.

SEE ALSO
acct(2), chroot(2), exec(2), exit(2), fcntl(2), getgroups(2), lockf(2), nice(2), plock(2), profil(2),
pthread_atfork(3T), ptrace(2), rtprio(2), semop(2), setpgrp(2), setuid(2), shmop(2), times(2), ulimit(2),
umask(2), vfork(2), wait(2), fclose(3S), stdio(3S), acct(4), signal(5).

HP Process Resource Manager: prmconfig(1), prmconf(4) in HP Process Resource Manager User’s Guide.

STANDARDS CONFORMANCE
fork() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−64 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fsctl(2) fsctl(2)

NAME
fsctl - file system control

SYNOPSIS
#include <sys/unistd.h>

int fsctl(
int fildes,
int command,
void *outbuf,
size_t outlen

);

DESCRIPTION
fsctl() provides access to file-system-specific information. fildes is an open file descriptor for a file in
the file system of interest. The possible values for command depend on the type of file system. Currently,
defined commands exist only for the CDFS file system (see sys/cdfsdir.h).

outbuf is a pointer to the data area in which data is returned from the file system. outlen gives the length
of the data area pointed to by outbuf.

The CDFS commands are:

CDFS_DIR_REC Returns the directory record for the file or directory indicated by fildes. The
record is returned in a structure of type cddir, defined in <sys/cdfsdir.h >.

CDFS_XAR Returns the extended attribute record, if any, for the file or directory indicated by
fildes. Because the size of an extended attribute record varies, be sure outbuf
points to a data area of sufficient size. To find the necessary size, do the following:

1. Use statfs(2). to get the logical block size of the CDFS volume.

2. Use an fsctl() call with the CDFS_DIR_REC command to get the
extended attribute record size (in blocks) for the file or directory of interest.
The mincdd_xar_len field in the returned structure contains the size of
the extended attribute record in logical blocks. (If this field is zero, the file or
directory has no extended attribute record.)

3. Multiply mincdd_xar_len by the logical block size obtained in step 1 to
get the total space needed.

4. Once you get the extended attribute record, cast outbuf into a pointer to a
structure of type cdxar_iso (defined in <sys/cdfsdir.h >). This
enables you to access those fields that are common to all extended attribute
records. (See EXAMPLES below for an example of this process.)

If the extended attribute record contains additional system use or application
use data, that data will have to be accessed manually.

CDFS_AFID Returns the abstract file identifier for the primary volume whose root directory is
specified by fildes, terminated with a NULL character. Note that the constant
CDMAXNAMLENdefined in <sys/cdfsdir.h > gives the maximum length a file
identifier can have. Thus, CDMAXNAMLEN+ 1 can be used for outlen and the size
of outbuf.

CDFS_BFID Returns the bibliographic file identifier for the primary volume whose root direc-
tory is specified by fildes, terminated with a NULL character. CDMAXNAMLEN+
1 can be used for the value of outlen and the size of outbuf.

CDFS_CFID Returns the copyright file identifier for the primary volume whose root directory is
specified by fildes, terminated with a NULL character. CDMAXNAMLEN+ 1 can
be used for the value of outlen and the size of outbuf.

CDFS_VOL_ID Returns the volume ID for the primary volume specified by fildes, terminated with
a NULL character. The maximum size of the volume ID is 32 bytes, so a length of
33 can be used for outlen and the size of utbuf.

CDFS_VOL_SET_ID
Returns the volume set ID for the primary volume specified by fildes, terminated
with a NULL character. The maximum size of the volume set ID is 128 bytes, so a

HP-UX Release 11.0: October 1997 − 1 − Section 2−−65

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fsctl(2) fsctl(2)

length of 129 can be used for outlen and the size of outbuf.

EXAMPLES
The following code fragment gets the extended attribute record for a file on a CDFS volume. The filename
is passed in as the first argument to the routine. Note that error checking is omitted for brevity.

#include <sys/types.h>
#include <sys/vfs.h>
#include <fcntl.h>
#include <sys/cdfsdir.h>

main(argc, argv)
int argc;
char *argv[];
{

int fildes, size = 0;
char *malloc(), *outbuf;
struct statfs buf;
struct cddir cdrec;
struct cdxar_iso *xar;

.

.

.
statfs(argv[1], &buf); /* get logical block size */

fildes = open(argv[1], O_RDONLY); /* open file arg */

/* get directory record for file arg */
fsctl(fildes, CDFS_DIR_REC, &cdrec, sizeof(cdrec));

size = buf.f_bsize * cdrec.cdd_min.mincdd_xar_len; /* compute size */

if(size) { /* if size != 0 then there is an xar */
outbuf = malloc(size); /* malloc sufficient memory */

fsctl(fildes, CDFS_XAR, outbuf, size); /* get xar */

xar = (struct cdxar_iso *)outbuf; /* cast outbuf to access fields */
.
.
.

}
.
.
.

}

RETURN VALUE
fsctl() returns the number of bytes read if successful. If an error occurs, −1 is returned and errno is
set to indicate the error.

ERRORS
fsctl() fails if any of the following conditions are encountered:

[EBADF] fildes is not a valid open file descriptor.

[EFAULT] outbuf points to an invalid address.

[ENOENT] The requested information does not exist.

[EINVAL] command is not a valid command.

[EINVAL] fildes does not refer to a CDFS file system.

SEE ALSO
statfs(2), cdfs(4), cdfsdir(4), cdnode(4), cdrom(4).

Section 2−−66 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fstat(2) fstat(2)

NAME
fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

DESCRIPTION
The fstat() function obtains information about an open file associated with the file descriptor fildes, and
writes it to the area pointed to by buf. The buf argument is a pointer to a stat structure, as defined in
<sys/stat.h> , into which information is placed concerning the file.

The structure members st_mode , st_ino, st_dev , st_uid, st_gid, st_atime , st_ctime , and st_mtime will have
meaningful values for all file types defined in this document. The value of the member st_nlink will be set
to the number of links to the file.

An implementation that provides additional or alternative file access control mechanisms may, under
implementation-dependent conditions, cause fstat() to fail.

The fstat() function updates any time-related fields as described in File Times Update (see the XBD
specification, Chapter 4, Character Set), before writing into the stat structure.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate the
error.

ERRORS
The fstat() function will fail if:

[EBADF] The fildes argument is not a valid file descriptor.

[EIO] An I/O error occurred while reading from the file system.

The fstat() function may fail if:

[EOVERFLOW] One of the values is too large to store into the structure pointed to by the
buf argument.

SEE ALSO
lstat(2), stat(2), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated in the DESCRIPTION section for alignment with the ISO POSIX-1
standard:

• A paragraph defining the contents of stat structure members is added.

• The words "extended security controls" are replaced by "additional or alternative file access control
mechanisms."

Another change is incorporated as follows:

• The header <sys/types.h> is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• The EIO error is added as a mandatory error indicated the occurrence of an I/O error.

• The EOVERFLOW error is added as an optional error indicating that one of the values is too large
to store in the area pointed to by buf.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−67

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fstat(2) fstat(2)

HP-UX EXTENSIONS

DESCRIPTION
If the chosen path name or file descriptor refers to a Multi-Level Directory (MLD), and the process does not
have the multilevel effective privilege, the i-node number returned in st_ino is the i-node of the MLD itself.

The parameters for the fstat() function is as follows:

buf is a pointer to a stat() structure, which is where the file status information is
stored.

fildes is a file descriptor for an open file, which is created with the successful completion of
an open() , creat() , dup() , fcntl() , or pipe() system call (see open(2),
creat(2), dup(2), fcntl(2), or pipe(2)).

The stat structure contains the following members:

dev_t st_dev; /* ID of device containing a */
/* directory entry for this file */

ino_t st_ino; /* Inode number */
ushort st_fstype; /* Type of filesystem this file */

/* is in; see sysfs(2) */
ushort st_mode; /* File type, attributes, and */

/* access control summary */
ushort st_basemode /* Permission bits (see chmod(1)) */
ushort st_nlink; /* Number of links */
uid_t st_uid; /* User ID of file owner */
gid_t st_gid; /* Group ID of file group */
dev_t st_rdev; /* Device ID; this entry defined */

/* only for char or blk spec files */
off_t st_size; /* File size (bytes) */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Last modification time */
time_t st_ctime; /* Last file status change time */

/* Measured in secs since */
/* 00:00:00 GMT, Jan 1, 1970 */

long st_blksize; /* File system block size */
uint st_acl:1; /* Set if the file has optional */

/* access control list entries */
/* HFS File Systems only */

(Note that the position of items in this list does not necessarily reflect the order of the members in the
structure.)

The fields contain the following information:

st_atime Time when file data was last accessed. Changed by the following system calls:
creat() , mknod() , pipe() , read() , readv() (see read(2)), and utime() .
If a file is mapped into virtual memory, accesses of file data through the mapping may
also modify st_mtime . See mmap(2).

st_mtime Time when data was last modified. Changed by the following system calls:
creat() , truncate() , ftruncate() , (see truncate(2)), mknod() , pipe() ,
prealloc() , utime() , write() , and writev() (see write(2)). Also changed
by close() when the reference count reaches zero on a named pipe (FIFO special)
file that contains data. If a file is mapped into virtual memory, updates of file data
through the mapping may also modify st_mtime . See mmap(2).

st_ctime Time when file status was last changed. Changed by the following system calls:
chmod() , chown() , creat() , fchmod() , fchown() , truncate() , ftrun-
cate() , (see truncate(2)), link() , mknod() , pipe() , prealloc() ,
rename() , setacl() , unlink() , utime() , write() , and writev() (see
write(2)). The touch command (see touch(1) can be used to explicitly control the
times of a file.

Section 2−−68 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fstat(2) fstat(2)

st_mode The value returned in this field is the bit-wise inclusive OR of a value indicating the
file’s type, attribute bits, and a value summarizing its access permission. See
mknod(2). For ordinary users, the least significant nine bits consist of the file’s per-
mission bits modified to reflect the access granted or denied to the caller by optional
entries in the file’s access control list. For users with appropriate privileges the least
significant nine bits are the file’s access permission bits. In addition, the S_IXUSR
(execute by owner) mode bit is set if the following conditions are met:

• The file is a regular file,

• No permission execute bits are set, and

• An execute bit is set in one or more of the file’s optional access control list entries.

The write bit is not cleared for a file on a read-only file system or a shared-text pro-
gram file that is being executed. However, getaccess() clears this bit under these
conditions (see getaccess (2).

ERRORS
[EFAULT] buf or path points to an invalid address. The reliable detection of this error is

implementation-dependent.

[EOVERFLOW]
The file size in bytes or the number of blocks allocated to the file cannot be
represented correctly in the structure pointed to by buf.

NFS
The st_basemode and st_acl fields are zero on files accessed remotely. st_acl field is applicable to HFS File
Systems only.

WARNINGS
Access Control Lists - HFS File Systems only

Access control list descriptions in this entry apply only to HFS file systems on standard HP-UX operating
systems.

DEPENDENCIES
CD-ROM

The st_uid and st_gid fields are set to −1 if they are not specified on the disk for a given file.

AUTHOR
stat() and fstat() were developed by AT&T. lstat() was developed by the University of Califor-
nia, Berkeley.

SEE ALSO
touch(1), chmod(2), chown(2), creat(2), fstat64(2), link(2), mknod(2), pipe(2), read(2), rename(2), setacl(2),
sysfs(2), time(2), truncate(2), unlink(2), utime(2), write(2), acl(5), stat(5).

STANDARDS CONFORMANCE
fstat(): AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−69

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

fsync(2) fsync(2)

NAME
fsync, fdatasync - synchronize a file’s in-core and on-disk states

SYNOPSIS
#include <unistd.h>

int fsync(int fildes);

int fdatasync(int fildes);

DESCRIPTION
fsync() and fdatasync() cause all modified data and attributes of fildes to be moved to a permanent
storage device. This normally results in all in-core modified copies of buffers for the associated file to be
written to a disk. fsync() and fdatasync() apply to ordinary files, and apply to block special dev-
ices on systems which permit I/O to block special devices.

fsync() and fdatasync() should be used by programs that require a file to be in a known state, such
as when building a simple transaction facility.

fdatasync() causes all modified data and file attributes of fildes required to retrieve the data to be writ-
ten to disk.

fsync() causes all modified data and all file attributes of fildes (including access time, modification time
and status change time) to be written to disk.

Together, fsync() and fdatasync() constitute support for File Synchronization.

RETURN VALUE
fsync() and fdatasync() return 0 on success or −1 if an error occurs, and set errno to indicate
the error.

ERRORS
fsync and fdatasync fail if any of the following conditions are encountered:

[EBADF] fildes is not a valid descriptor.

[EINVAL] fildes refers to a file type to which fsync() or fdatasync() does not apply.

WARNINGS
The current implementation of these functions is inefficient for large files.

AUTHOR
fsync() was developed by the the University of California, Berkeley and HP.

SEE ALSO
fcntl(2), fcntl(5), open(2), select(2), sync(2), sync(1M), unistd(5).

STANDARDS CONFORMANCE
fsync() : AES, SVID3, XPG3, XPG4, POSIX.4

fdatasync() : POSIX.4

Section 2−−70 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

f

ftime(2) ftime(2)

NAME
ftime - get date and time more precisely

SYNOPSIS
#include <sys/timeb.h>

int ftime(struct timeb *tp);

Remarks
This facility is provided for backwards compatibility with Version 7 systems. Either time() or get-
timeofday() should be used in new programs.

DESCRIPTION
ftime() fills in a structure pointed to by its argument, as defined by <sys/timeb.h >:

/*
* Structure returned by ftime system call
*/

struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

The structure contains the time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1,
1970, up to 1000 milliseconds of more-precise interval, the local timezone (measured in minutes of time
westward from UTC), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during
the appropriate part of the year. Consult gettimeofday (2) for more details on the meaning of the timezone
field.

ftime() can fail for exactly the same reasons as gettimeofday (2).

WARNINGS
The millisecond value usually has a granularity greater than one due to the resolution of the system clock.
Depending on any granularity (particularly a granularity of one) renders code non-portable.

SEE ALSO
date(1), gettimeofday(2), stime(2), time(2), ctime(3C).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−71

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getaccess(2) getaccess(2)

NAME
getaccess - get a user’s effective access rights to a file

SYNOPSIS
#include <sys/getaccess.h>

int getaccess(
const char *path,
uid_t uid,
int ngroups,
const gid_t *gidset,
void *label,
void *privs

);

DESCRIPTION
getaccess() identifies the access rights (read, write, execute/search) a specific user ID has to an exist-
ing file. path points to a path name of a file. If the call succeeds, it returns a value of zero or greater,
representing the specified user’s effective access rights (modes) to the file. The rights are expressed as the
logical OR of bits (R_OK, W_OK, and X_OK) whose values are defined in the header <unistd.h >. A
return of zero means that access is denied.

The uid parameter is a user ID. Special values, defined in <sys/getaccess.h >, represent the calling
process’s effective, real, or saved user ID:

UID_EUID Effective user ID.
UID_RUID Real user ID.
UID_SUID Saved user ID.

ngroups is the number of group IDs in gidset, not to exceed NGROUPS_MAX+ 1 (NGROUPS_MAXis
defined in <limits.h >). If the ngroups parameter is positive, the gidset parameter is an array of group
ID values to use in the check. If ngroups is a recognized negative value, gidset is ignored. Special negative
values of ngroups, defined in <sys/getaccess.h >, represent various combinations of the process’s
effective, real, or saved user ID and its supplementary groups list:

NGROUPS_EGID Use process’s effective group ID only.
NGROUPS_RGID Use process’s real group ID only.
NGROUPS_SGID Use process’s saved group ID only.
NGROUPS_SUPP Use process’s supplementary groups only.
NGROUPS_EGID_SUPPUse process’s effective group ID plus supplementary groups.
NGROUPS_RGID_SUPPUse process’s real group ID plus supplementary groups.
NGROUPS_SGID_SUPPUse process’s saved group ID plus supplementary groups.

The label and privs parameters are placeholders for future extensions. For now, the values of these param-
eters must be (void *) 0 .

The access check rules for access control lists are described in acl(5). In addition, the W_OKbit is cleared
for files on read-only file systems or shared-text programs being executed. Note that as in access(2), the
X_OKbit is not turned off for shared-text programs open for writing because there is no easy way to know
that a file open for writing is a shared-text program.

If the caller’s user ID is 0, or if it is UID_EUID , UID_RUID , or UID_SUID (see <sys/getaccess.h >)
and the process’s respective user ID is 0, R_OKand W_OKare always set except when W_OKis cleared for
files on read-only file systems or shared-text programs being executed. X_OKis set if and only if the file is
not a regular file or the execute bit is set in any of the file’s ACL entries.

getaccess() checks each directory component of path by first using the caller’s effective user ID,
effective group ID, and supplementary groups list, regardless of the user ID specified. An error occurs, dis-
tinct from ‘‘no access allowed,’’ if the caller cannot search the path to the file. (In this case it is inappropri-
ate for the caller to learn anything about the file.)

Comparison of access(2) and getaccess(2)
The following table compares various attributes of access() and getaccess() .

Section 2−−72 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getaccess(2) getaccess(2)

access() getaccess()__

checks all ACL entries same
(HFS File Systems only)___
uses real uid, real gid, and uses specified uid and groups list;
supplementary groups list macros available for typical values___
checks specific mode value, returns all mode bits, each on or off
returns succeed or fail___
checks path to file using caller’s effective IDs same___
W_OK false if shared-text file same
currently being executed___
W_OKfalse if file on same
read-only file system___
X_OKnot modified for file same
currently open for writing___
R_OKand W_OKalways true for superuser same
(except as above)___
X_OKalways true for superuser X_OKtrue for super-user if file is not a regular

file or execute is set in any ACL entry___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

RETURN VALUE
Upon successful completion, getaccess() returns a non-negative value representing the access rights
of the specified user to the specified file. If an error occurs, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
getaccess() fails if any of the following conditions are encountered:

[EACCES] A component of the path prefix denies search permission to the caller.

[EFAULT] path or gidset points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[EINVAL] ngroups is invalid; ngroups is either zero, an unrecognized negative value, or a value
larger than NGROUPS+ 1.

[EINVAL] gidset contains an invalid group ID value.

[EINVAL] The value of label or privs is not a null pointer.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNC
is in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist).

[ENOTDIR] A component of the path prefix is not a directory.

[EOPNOTSUPP] getaccess () is not supported on some types of remote files.

EXAMPLES
The following call determines the caller’s effective access rights to file ‘‘test ,’’ and succeeds if the user has
read access:

#include <unistd.h>
#include <sys/getaccess.h>

int mode;
mode = getaccess ("test", UID_EUID, NGROUPS_EGID_SUPP,

(int ∗) 0, (void ∗) 0, (void ∗) 0);

if ((mode >= 0) && (mode & R_OK)) ...

Here is one way to test access rights to file /tmp/hold for user ID 23 , group ID 109 :

HP-UX Release 11.0: October 1997 − 2 − Section 2−−73

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getaccess(2) getaccess(2)

int gid = 109;
int mode;

mode = getaccess ("/tmp/hold", 23, 1, & gid,
(void ∗) 0, (void ∗) 0);

Should the need arise, the following code builds a gidset that includes the process’s effective group ID:

#include <limits.h>

int gidset [NGROUPS_MAX + 1];
int ngroups;

gidset [0] = getegid();
ngroup s = 1 + getgroups (NGROUPS_MAX, & gidset [1]);

AUTHOR
getaccess() was developed by HP.

SEE ALSO
access(2), chmod(2), getacl(2), setacl(2), stat(2), acl(5), unistd(5).

Section 2−−74 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getacl(2) getacl(2)

NAME
getacl, fgetacl - get access control list (ACL) information (HFS File Systems only)

SYNOPSIS
#include <sys/acl.h>

int getacl(
const char *path,
int nentries,
struct acl_entry *acl

);

int fgetacl(int fildes, int nentries, struct acl_entry *acl);

DESCRIPTION
getacl() returns a complete listing of all ACL entries (uid.gid, mode) in an existing file’s access control
list. path points to a path name of a file.

Similarly, fgetacl() returns a complete listing of all ACL entries for an open file known by the file
descriptor fildes.

nentries is the number of entries being reported on, and is never more than the constant NACLENTRIES
defined in <sys/acl.h >. If nentries is non-zero, it must be at least as large as the number of entries in
the file’s ACL, including base entries (see setacl(2)). getacl() returns the number of entries in the file’s
ACL, as well as the ACL entries themselves in the array of structures acl declared by the calling program.

If nentries is zero, getacl() returns the number of entries in the file’s ACL, including base ACL entries,
and acl is ignored.

Entries are reported in groups of decreasing order of specificity (see setacl(2)), then sorted in each group by
user ID and group ID. The content of array entries beyond the number of defined entries for the file is
undefined.

RETURN VALUE
Upon successful completion, getacl() and fgetacl() return a non-negative value. If an error
occurs, a value of −1 is returned, and errno is set to indicate the error.

ERRORS
getacl() or fgetacl() fail to modify the acl array if any of the following is true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist).

[EBADF] fildes is not a valid file descriptor.

[EACCES] A component of the path prefix denies search permission.

[EFAULT] path or a portion of acl to be written points outside the allocated address space of the
process.

[EINVAL] nentries is non-zero and less than the number of entries in the file’s ACL, or it is
greater than NACLENTRIES.

[EOPNOTSUPP] getacl() is not supported on remote files by some networking services.

[ENFILE] The system file table is full.

[ENAMETOOLONG]
The length of path exceeds PATH_MAXbytes, or the length of a component of path
exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

EXAMPLES
The following call returns the number of entries in the ACL on file /users/bill/mcfile .

#include <sys/acl.h>

HP-UX Release 11.0: October 1997 − 1 − Section 2−−75

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getacl(2) getacl(2)

entries = getacl ("/users/bill/mcfile", 0, (struct acl_entry ∗) 0);

The following call returns in acl all entries in the ACL on the file opened with file descriptor 5.

#include <sys/acl.h>

int nentries;
struct acl_entry acl [NACLENTRIES];

entries = fgetacl (5, NACLENTRIES, acl);

DEPENDENCIES
getacl() and fgetacl() are only supported on HFS file system on standard HP-UX operating sys-
tem.

AUTHOR
getacl() and fgetacl() were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), setacl(2), stat(2), unistd(5).

Section 2−−76 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getaudid(2) getaudid(2)

NAME
getaudid - get the audit ID (aid) for the current process

SYNOPSIS
#include <sys/audit.h>

int getaudid(void);

DESCRIPTION
getaudid() returns the audit ID (aid) for the current process. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, the audit ID is returned; otherwise, a -1 is returned.

ERRORS
getaudid() fails if the following is true:

[EPERM] The caller is not super-user.

AUTHOR
getaudid() was developed by HP.

SEE ALSO
setaudid(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−77

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getaudproc(2) getaudproc(2)

NAME
getaudproc - get the audit process flag for the calling process

SYNOPSIS
#include <sys/audit.h>

int getaudproc(void);

DESCRIPTION
getaudproc() returns the audit process flag for the calling process. The audit process flag (u_audproc)
determines whether the process run by a given user should be audited. The process is audited if the
returned flag is 1. If the returned flag is 0, the process is not audited. This call is restricted to the super-
user.

RETURN VALUE
Upon successful completion, the audit process flag is returned; otherwise, a -1 is returned and errno is
set to indicate the error.

ERRORS
getaudproc() fails if the following is true:

[EPERM] The caller is not the super-user.

AUTHOR
getaudproc() was developed by HP.

SEE ALSO
setaudproc(2).

Section 2−−78 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getcontext(2) getcontext(2)

NAME
getcontext, setcontext - get and set current user context

SYNOPSIS
#include <ucontext.h>

int getcontext(ucontext_t *ucp);

int setcontext(const ucontext_t *ucp);

DESCRIPTION
The getcontext() function initializes the structure pointed to by ucp to the current user context of the
calling process. The ucontext_t type that ucp points to defines the user context and includes the contents of
the calling process’ machine registers, the signal mask, and the current execution stack.

The setcontext() function restores the user context pointed to by ucp. A successful call to setcon-
text() does not return; program execution resumes at the point specified by the ucp argument passed to
setcontext() . The ucp argument should be created either by a prior call to getcontext() , or by
being passed as an argument to a signal handler. If the ucp argument was created with getcontext() ,
program execution continues as if the corresponding call of getcontext() had just returned. If the ucp
argument was created with makecontext() , program execution continues with the function passed to
makecontext() . When that function returns, the process continues as if after a call to setcon-
text() with the ucp argument that was input to makecontext() . If the ucp argument was passed to
a signal handler, program execution continues with the program instruction following the instruction inter-
rupted by the signal. If the uc_link member of the ucontext_t structure pointed to by the ucp argument
is equal to 0, then this context is the main context, and the process will exit when this context returns. The
effects of passing a ucp argument obtained from any other source are unspecified.

RETURN VALUE
On successful completion, setcontext() does not return and getcontext() returns 0. Otherwise, a
value of −1 is returned.

WARNINGS
Context APIs are not recommended due to possible compatibility problems from release to release, because
context APIs are very architecture-specific. The context APIs "expose" the architecture to the application,
such that the application may not be compatible with all releases.

If you must use context APIs, be aware of the following:

• Do not copy the context yourself. It is not contiguous. The context may have pointers that may point
back to the original context rather than in the copied context; hence, it will be broken.

• The size of the context will vary in length from release to release.

ERRORS
No errors are defined.

APPLICATION USAGE
When a signal handler is executed, the current user context is saved and a new context is created. If the
process leaves the signal handler via longjmp() , then it is unspecified whether the context at the time of
the corresponding setjmp() call is restored and thus whether future calls to getcontext() will pro-
vide an accurate representation of the current context, since the context restored by longjmp() may not
contain all the information that setcontext() requires. Signal handlers should use siglongjmp()
or setcontext() instead.

Portable applications should not modify or access the uc_mcontext member of ucontext_t . A portable appli-
cation cannot assume that context includes any process-wide static data, possibly including errno . Users
manipulating contexts should take care to handle these explicitly when required.

SEE ALSO
bsd_signal(), makecontext(2), setjmp(3C), sigaction(2), sigaltstack(2), sigprocmask(2), sigsetjmp(),
<ucontext.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−79

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getdirentries(2) getdirentries(2)

NAME
getdirentries() - get entries from a directory in a file-system-independent format

SYNOPSIS
#include <ndir.h>

int getdirentries(
int fildes,
struct direct *buf,
size_t nbytes,
off_t *basep

);

DESCRIPTION
The getdirentries() system call and the <ndir.h > header file have been obsoleted starting from
HP-UX 10.30 by the functions described in directory(3C). getdirentries() will not be supported for
64-bit applications.

The getdirentries() system call places directory entries from the directory referenced by the file
descriptor fildes into the buffer pointed to by buf, in a file-system-independent format. Up to nbytes of data
are transferred. nbytes must be greater than or equal to the block size associated with the file; see
st_blksize in stat(2). (Smaller block sizes can cause errors on certain file systems.) nbytes must be
less than or equal to 65536 (64K).

The data in the buffer consists of a series of direct structures, each containing the following entries:

unsigned long d_fileno;
unsigned short d_reclen;
unsigned short d_namlen;
char d_name[MAXNAMLEN + 1];

The d_fileno entry is a number unique for each distinct file in the file system. Files linked by hard links
(see link(2)) have the same d_fileno . The d_reclen entry identifies the length, in bytes, of the direc-
tory record. The d_name entry contains a null-terminated file name. The d_namlen entry specifies the
length of the file name. Thus the actual size of d_name can vary from 2 to MAXNAMLEN+ 1. Note that
the direct structures in the buffer are not necessarily tightly packed. The d_reclen entry must be
used as an offset from the beginning of a direct structure to the next structure, if any.

The return value of the system call is the actual number of bytes transferred. The current position pointer
associated with fildes is set to point to the next block of entries. The pointer is not necessarily incremented
by the number of bytes returned by getdirentries() . If the value returned is zero, the end of the
directory has been reached.

The current position pointer is set and retrieved by lseek() ; see lseek(2). getdirentries() writes
the position of the block read into the location pointed to by basep. The current position pointer can be set
safely only to a value previously returned by lseek() , to a value previously returned in the location
pointed to by basep, or to zero. Any other manipulation of the position pointer causes undefined results.

RETURN VALUE
getdirentries() returns the following values:

n Successful completion. n is the number of bytes actually transferred.
-1 Failure. errno is set to indicate the error.

ERRORS
If getdirentries() fails, errno is set to one of the following values:

[EBADF] fildes is not a valid file descriptor open for reading.

[EFAULT] Either buf or basep points outside the allocated address space.

[EINTR] A read from a slow device was interrupted by the delivery of a signal before any data
arrived.

[EINVAL] nbytes is greater than the size of the direct structure pointed to by buf.

[EINVAL] nbytes is greater than 65536 or is smaller than the size of a single directory entry.

Section 2−−80 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getdirentries(2) getdirentries(2)

[EIO] An I/O error occurred while reading from or writing to the file system.

AUTHOR
getdirentries() was developed by Sun Microsystems, Inc.

SEE ALSO
lseek(2), open(2), directory(3C).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−81

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getdomainname(2) getdomainname(2)

NAME
getdomainname, setdomainname - get/set name of current Network Information Service domain

SYNOPSIS
int getdomainname(char *name, int namelen);

int setdomainname(char *name, int namelen);

DESCRIPTION
getdomainname() returns the name of the Network Information Service (NIS) domain for the current
processor, as previously set by setdomainname() . The parameter namelen specifies the size of the
name array. The returned value is null-terminated unless the area pointed to by name is not large enough
to hold the domain name plus the null byte. In this case, only the namelen number of bytes is returned.

setdomainname() sets the domain of the host machine to name, which has a length of namelen. This
call is restricted to the superuser and is normally used only when the system is booted.

These Network Information Service domains enable two distinct networks with common host names to
merge. Each network is distinguished by having a different domain name. Currently, only the Network
Information Service uses these domains.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If the call fails, a value of −1 is returned and errno is set to
indicate the error.

ERRORS
If getdomainname() or setdomainname() fail, errno is set to one of the following values:

[EFAULT] name points outside the accessible address space.

[EPERM] The caller is not superuser. This error only applies to setdomainname() .

WARNINGS
The length of the name array should be at least 65; NIS domain names can be up to 64 characters long.

NIS servers use the NIS domain name as the name of a subdirectory of /var/yp . Since the NIS domain
name can be as long as 64 characters, the domain name set with setdomainname() can exceed the
maximum file name length allowed on the local file system. If that length is exceeded, the name of the sub-
directory is the truncated NIS domain name.

AUTHOR
getdomainname was developed by Sun Microsystems, Inc.

SEE ALSO
domainname(1), ypserv(1M), ypfiles(4).

Section 2−−82 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getevent(2) getevent(2)

NAME
getevent - get events and system calls that are currently being audited

SYNOPSIS
#include <sys/audit.h>

int getevent(
struct aud_type *a_syscall,
struct aud_event_tbl *a_event

);

DESCRIPTION
getevent() gets the events and system calls being audited. The events are returned in a table pointed
to by a_event . The system calls are returned in a table pointed to by a_syscall . This call is restricted to the
super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned; otherwise, a −1 is returned and errno is set to indi-
cate the error.

ERRORS
getevent() fails if the following is true:

[EPERM] The caller is not super-user.

AUTHOR
getevent() was developed by HP.

SEE ALSO
setevent(2), audevent(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−83

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getfh(2) getfh(2)

NAME
getfh() - return file handle for file on remote node

SYNOPSIS
#include <errno.h>
#include <time.h>
#include <nfs/nfs.h>
#include <rpc/rpc.h>

int getfh(char *path, fhandle_t *fhp);

DESCRIPTION
The getfh() system call returns a file handle in the struct pointed to by fhp for the file pointed to by
path. This information is used to perform an NFS mount for a remote node. getfh() is executed on the
remote node; results are passed back to the program doing the NFS mount. The caller should never exam-
ine the file handle contents. The file handle only identifies a file to the node that produced the file handle.
(The term "file handle" refers to an NFS concept.)

The effective user ID of the calling process must be superuser.

RETURN VALUE
getfh() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If getfh() fails, errno is set to one of the following values.

[EINVAL] Invalid argument, or the file or directory has not been exported by exportfs (see
exportfs(1M)).

[ENOENT] File or directory specified by path does not exist.

[EPERM] The effective user ID is not superuser.

[EREMOTE] The file or directory specified by path is a remote file or directory.

WARNINGS
This call should be used only by HP-supplied commands and is not recommended for use by non-HP-
supplied programs.

AUTHOR
getfh() was developed by Sun Microsystems, Inc.

SEE ALSO
exportfs(1M), mount(1M), vfsmount(2).

Section 2−−84 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getgroups(2) getgroups(2)

NAME
getgroups - get group access list

SYNOPSIS
#include <unistd.h>

int getgroups(int ngroups, gid_t gidset[]);

DESCRIPTION
getgroups() gets the current group access list of the user process and stores it in the array gidset. The
parameter ngroups indicates the number of entries which may be placed in gidset. No more than
NGROUPS_MAX, as defined in <limits.h> , is ever returned.

As a special case, if the ngroups argument is zero, getgroups() returns the number of group entries for
the process. In this case, the array pointed to by the gidset argument is not modified.

EXAMPLES
The following call to getgroups() (see getgroups(2)) retrieves the group access list of the calling process
and stores the group ids in array mygidset:

int ngroups = NGROUPS_MAX;
gid_t mygidset[NGROUPS_MAX];
int ngrps;

ngrps = getgroups (ngroups, mygidset);

RETURN VALUE
If successful, getgroups() returns a non-negative value indicating the number of elements returned in
gidset. If an error occurs, a value of −1 is returned and errno is set to indicate the type of error.

ERRORS
getgroups() fails if any of the following conditions are encountered:

[EFAULT] gidset specifies an invalid address. The reliable detection of this error is implementation
dependent.

[EINVAL] The argument ngroups is not zero and is less than the number of groups in the current
group access list of the process.

AUTHOR
getgroups() was developed by HP and the University of California, Berkeley.

SEE ALSO
setgroups(2), initgroups(3C).

STANDARDS CONFORMANCE
getgroups() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−85

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

gethostid(2) gethostid(2)

NAME
gethostid - get an identifier for the current host

SYNOPSIS
#include <unistd.h>

long gethostid(void);

DESCRIPTION
The gethostid() function retrieves a 32-bit identifier for the current host.

RETURN VALUE
Upon successful completion, gethostid() returns an identifier for the current host.

ERRORS
No errors are defined.

APPLICATION USAGE
X/Open does not define the domain in which the return value is unique.

SEE ALSO
random(3M), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−86 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

gethostname(2) gethostname(2)

NAME
gethostname - get name of current host

SYNOPSIS
#include <unistd.h>

int gethostname(char *hostname, size_t size);

DESCRIPTION
gethostname() returns in the array to which hostname points, the standard host name for the current
processor as set by sethostname() (see sethostname(2)). size specifies the length of the hostname
array. hostname is null-terminated unless insufficient space is provided.

RETURN VALUE
gethostname() returns 0 if successful. Otherwise, it returns −1 and sets errno to indicate the error.

ERRORS
gethostname() can fail if the following is true:

[EFAULT] hostname points to an illegal address. The reliable detection of this error is implementation
dependent.

AUTHOR
gethostname() was developed by the University of California, Berkeley.

SEE ALSO
hostname(1), uname(1), sethostname(2), uname(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−87

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getitimer(2) getitimer(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(
int which,
const struct itimerval *value,
struct itimerval *ovalue

);

DESCRIPTION
The getitimer() function stores the current value of the timer specified by which into the structure
pointed to by value. The setitimer() function sets the timer specified by which to the value specified
in the structure pointed to by value, and if ovalue is not a null pointer, stores the previous value of the
timer in the structure pointed to by ovalue.

A timer value is defined by the itimerval structure. If it_value is non-zero, it indicates the time to the
next timer expiration. If it_interval is non-zero, it specifies a value to be used in reloading it_value when
the timer expires. Setting it_value to 0 disables a timer, regardless of the value of it_interval . Setting
it_interval to 0 disables a timer after its next expiration (assuming it_value is non-zero).

Implementations may place limitations on the granularity of timer values. For each interval timer, if the
requested timer value requires a finer granularity than the implementation supports, the actual timer
value will be rounded up to the next supported value.

Implementations may place limitations on the timer value. To make sure that a process gets at least as
much time as requested, the timer value is rounded up to the next timer tick (a timer tick is the smallest
supported value). The timer value is rounded up to the next timer tick because, the timer will be initialize
somewhere between timer ticks. If a setitimer() is followed by a getitimer() without a timer tick
in between, it is possible that the value returned by getitimer() may be more than the initial value
requested by setitimer() due to this rounding.

An XSI-conforming implementation provides each process with at least three interval timers, which are
indicated by the which argument:

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when this timer
expires.

ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the process is exe-
cuting. A SIGVTALRMsignal is delivered when it expires.

ITIMER_PROF Decrements both in process virtual time and when the system is running on
behalf of the process. It is designed to be used by interpreters in statisti-
cally profiling the execution of interpreted programs.

The interaction between setitimer() and any of alarm() , sleep() or usleep() is unspecified.

RETURN VALUE
Upon successful completion, getitimer() or setitimer() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

ERRORS
The setitimer() function will fail if:

[EINVAL] The value argument is not in canonical form.(In canonical form, the number of
microseconds is a non-negative integer less than 1,000,000 and the number of seconds
is a non-negative integer.)

The getitimer() and setitimer() functions may fail if:

[EINVAL] The which argument is not recognized.

SEE ALSO
alarm(2), sleep(3C), ualarm(2), usleep(2), <signal.h>, <sys/time.h>.

Section 2−−88 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getitimer(2) getitimer(2)

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−89

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getitimer(2) getitimer(2)

HP-UX EXTENSIONS

DESCRIPTION
A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

Time values smaller than the resolution of the system clock are rounded up to this resolution. The
machine-dependent clock resolution is 1 / HZ seconds, where the constant HZ is defined in
<sys/param.h >. Time values larger than an implementation-specific maximum value are rounded down
to this maximum. The maximum values for the three interval timers are specified by the constants
MAX_ALARM, MAX_VTALARM, and MAX_PROFdefined in <sys/param.h >. On all implementations,
these values are guaranteed to be at least 31 days (in seconds).

Each time the ITIMER_PROF timer expires, the SIGPROFsignal is delivered. Since this signal can inter-
rupt in-progress system calls, programs using this timer must be prepared to restart interrupted system
calls.

Interval timers are not inherited by a child process across a fork() , but are inherited across an exec() .

Three macros for manipulating time values are defined in <sys/time.h >:

timerclear Set a time value to zero.

timerisset Test if a time value is non-zero.

timercmp Compare two time values. (Beware that >= and <= do not work with the
timercmp macro.)

The timer used with ITIMER_REAL is also used by alarm() (see alarm(2)). Thus successive calls to
alarm() , getitimer() , and setitimer() set and return the state of a single timer. In addition, a
call to alarm() sets the timer interval to zero.

ERRORS
getitimer() or setitimer() fail if any of the following conditions are encountered:

[EFAULT] The value structure specified a bad address. Reliable detection of this error is imple-
mentation dependent.

[EINVAL] A value structure specified a microsecond value less that zero or greater than or equal
to one million.

[EINVAL] which does not specify one of the three possible timers.

EXAMPLES
The following call to setitimer() sets the real-time interval timer to expire initially after 10 seconds
and every 0.5 seconds thereafter:

struct itimerval rttimer;
struct itimerval old_rttimer;

rttimer.it_value.tv_sec = 10;
rttimer.it_value.tv_usec = 0;
rttimer.it_interval.tv_sec = 0;
rttimer.it_interval.tv_usec = 500000;

setitimer (ITIMER_REAL, &rttimer, &old_rttimer);

AUTHOR
getitimer() was developed by the University of California, Berkeley.

SEE ALSO
alarm(2), exec(2), gettimeofday(2), signal(5).

Section 2−−90 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getksym(2) getksym(2)

NAME
getksym - get information for a global kernel symbol

SYNOPSIS
#include <sys/types.h>
#include <sys/ksym.h>
#include <sys/libelf.h>
int getksym(char * symname, char * modname, uint64_t * value,

uint64_t * info);

Remarks
getksym is currently implemented as a macro.

DESCRIPTION
There are two ways that getksym can be used to retrieve kernel symbol information. As detailed below,
if symname is provided, getksym attempts to retrieve the value of the symbol; if value is provided, the
associated symbol name is retrieved.

getksym , given a symname , looks for a global (STB_GLOBALor STB_WEAK) symbol of that name in the
symbol table of the static kernel and all currently loaded kernel modules. If it finds a match, getksym
returns the value associated with that symbol (typically its address) in the space pointed to by value, and
the type of that symbol in the space pointed to by info.

The types returned are:

STT_NOTYPE unknown type
STT_FUNC text symbol (typically function)
STT_PARISC_MILLI

millicode function
STT_OBJECT data symbol

The symbol name can be no more than MAXSYMNMLEN characters. If modname is set to the name
(basename only) of a dynamically loaded module, then the search for the symbol name will only be in that
module. If modname is NULL, then the search order for the symbol name will be the static kernel followed
by each of the currently loaded modules in the order in which they were loaded. The module name can be
no more that MODMAXNAMELEN characters.

If getksym is given a valid address in the statically configured kernel or one of the currently loaded
modules in the space pointed to by value, it will return, in the space pointed to by symname , the name of
the symbol whose value is the closest one less than or equal to the given value and, in space pointed to by
info, the difference between the address given and the value of the symbol found. The space pointed to by
symname must be at least MAXSYMNMLEN characters long.

RETURN VALUE
getksym returns 0 upon successful completion. If an error occurs, a value of -1 is returned and errno
is set to indicated the error.

ERRORS
getksym fails if one or more of the following are true:

[ENOMATCH] The symbol name given is not found, or the value given is not a currently valid
address.

[EINVAL] modname does not represent a currently loaded module.

[ENAMETOOLONG] modname is greater than MODMAXNAMELEN characters long, or symname is
greater that MAXSYMNMLEN characters long.

SEE ALSO
kmem(7).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−91

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getmsg(2) getmsg(2)

NAME
getmsg, getpmsg - receive next message from a STREAMS file

SYNOPSIS
#include <stropts.h>

int getmsg(
int fildes,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int *flagsp

);

int getpmsg(
int fildes,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int *band,
int *flagsp

);

DESCRIPTION
The getmsg() function retrieves the contents of a message located at the head of the stream head read
queue associated with a STREAMS file and places the contents into one or more buffers. The message con-
tains either a data part, a control part, or both. The data and control parts of the message are placed into
separate buffers, as described below. The semantics of each part is defined by the originator of the mes-
sage.

The getpmsg() function does the same thing as getmsg() , but provides finer control over the priority
of the messages received. Except where noted, all requirements on getmsg() also pertain to
getpmsg() .

The fildes argument specifies a file descriptor referencing a STREAMS-based file.

The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf member points to a
buffer in which the data or control information is to be placed, and the maxlen member indicates the max-
imum number of bytes this buffer can hold. On return, the len member contains the number of bytes of
data or control information actually received. The len member is set to 0 if there is a zero-length control or
data part and len is set to -1 if no data or control information is present in the message.

When getmsg() is called, flagsp should point to an integer that indicates the type of message the process
is able to receive. This is described further below.

The ctlptr argument is used to hold the control part of the message, and dataptr is used to hold the data
part of the message. If ctlptr (or dataptr) is a null pointer or the maxlen members is −1, the control (or
data) part of the message is not processed and is left on the stream head read queue, and if the ctlptr (or
dataptr) is not a null pointer, len is set to −1. If the maxlen member is set to 0 and there is a zero-length
control (or data) part, that zero-length part is removed from the read queue and len is set to 0. If the max-
len member is set to 0 and there are more than 0 bytes of control (or data) information, that information is
left on the read queue and len is set to 0. If the maxlen member in ctlptr (or dataptr) is less than the con-
trol (or data) part of the message, maxlen bytes are retrieved. In this case, the remainder of the message is
left on the stream head read queue and a on-zero return value is provided.

By default, getmsg() processes the first available message on the stream head read queue. However, a
process may choose to retrieve only high-priority messages by setting the integer pointed to by flagsp to
RS_HIPRI . In this case, getmsg() will only process the next message if it is a high-priority message.
When the integer pointed to by flagsp is 0, any message will be retrieved. In this case, on return, the
integer pointed to by flagsp will be set to RS_HIPRI if a high-priority message was retrieved, or 0 other-
wise.

For getpmsg() , the flags are different. The flagsp argument points to a bitmask with the following
mutually-exclusive flags defined. MSG_HIPRI, MSG_BAND, and MSG_ANY. Like getmsg() ,
getpmsg() processes the first available message on the stream head read queue. A process may choose
to retrieve only high-priority message by setting the integer pointed to by flagsp to MSG_HIPRI and the
integer pointed to by bandp to 0. In this case, getpmsg() will only process the next message if is a high-
priority message. In a similar manner, a process may choose to retrieve a message from a particular prior-
ity band by setting the integer pointed to by flagsp to MSG_BANDand the integer pointed to by bandp to

Section 2−−92 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getmsg(2) getmsg(2)

the priority band of interest. In this case, getpmsg() will only process the next message if it is in a
priority band equal to, or greater than, the integer pointed to by bandp, or if it is a high-priority message.
If a process just wants to get the first message off the queue, the integer pointed to by bandp should be set
to 0. On return, if the message retrieved was a high-priority message, the integer pointed to by flagsp will
be set to MSG_HIPRI and the integer pointed to by bandp will be set to 0. Otherwise, the integer pointed
to by flagsp will be set to MSG_BANDand the integer pointed to by bandp will be set to the priority band of
the message.

If O_NONBLOCKis not set, getmsg() and getpmsg() will not block until a message of the type
specified by flagsp is available at the front of the stream head read queue. If O_NONBLOCKis set and a
message of the specified type is not present at the front of the read queue, getmsg() and getpmsg()
fail and set errno to [EAGAIN].

If a hangup occurs on the stream from which messages are to be retrieved, getmsg() and getpmsg()
continue to operate normally, as described above, until the stream head read queue is empty. Thereafter,
they return 0 in the len members of ctlptr and dataptr.

MULTITHREAD USAGE
The getmsg() and getpmsg() functions are safe to be called by multithreaded applications, and they
are thread-safe for both POSIX Threads and DCE User Threads. The getmsg() and getpmsg() func-
tions have cancellation points. They are async-signal safe and fork-safe. They are not async-cancel safe.

RETURN VALUE
Upon successful completion, getmsg() and getpmsg() return a non-negative value. A value of 0 indi-
cates that a full message was read successfully. A return value of MORECTLindicates that more control
information is waiting for retrieval. A return value of MOREDATAindicates that more data is waiting for
retrieval. A return value of the bitwise logical OR of MORECTLand MOREDATAindicates that both types
of information remain. Subsequent getmsg() and getpmsg() calls retrieve the remainder of the mes-
sage. However, if a message of higher priority has come in on the stream head read queue, the next call to
getmsg() or getpmsg() retrieves that higher-priority message before retrieving the remainder of the
previously-received partial message.

Upon failure, getmsg() and getpmsg() return -1 and set errno to indicate the error.

ERRORS
The getmsg() and getpmsg() functions will fail if:

[EAGAIN] The O_NONBLOCKflag is set and no messages are available.

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EBADMSG] The queued message to be read is not valid for getmsg() or getpmsg() or a pend-
ing file descriptor is at the stream head.

[EINTR] A signal was caught during getmsg() or getpmsg() .

[EINVAL] An illegal value was specified by flagsp, or the stream or multiplexor referenced by
fildes is linked (directly or indirectly) downstream from a multiplexor.

[ENOSTR] A stream is not associated with fildes.

SEE ALSO
poll(2), putmsg(2), read(2), write(2), <stropts.h>, streamio(7).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−93

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getpagesize(2) getpagesize(2)

NAME
getpagesize - get the current page size

SYNOPSIS
#include <unistd.h>

int getpagesize(void);

DESCRIPTION
The getpagesize() function returns the current page size.

The getpagesize() function is equivalent to sysconf(_SC_PAGE_SIZE) and
sysconf(_SC_PAGESIZE) .

RETURN VALUE
The getpagesize() function returns the current page size.

ERRORS
No errors are defined.

APPLICATION USAGE
The value returned by getpagesize() need not be the minimum value that malloc() can allocate.
Moreover, the application cannot assume that an object of this size can be allocated with malloc() .

SEE ALSO
brk(2), getrlimit(2), mmap(2), mprotect(2), munmap(2), msync(2), sysconf(2), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−94 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getpeername(2) getpeername(2)

NAME
getpeername - get address of connected peer

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only:
#include <x25/x25addrstr.h>

int getpeername(int s, void *addr, int *addrlen);

_XOPEN_SOURCE_EXTENDED only (UNIX 98)
int getpeername(int s, struct sockaddr *addr, socklen_t *addrlen);

Obsolescent _XOPEN_SOURCE_EXTENDED only (UNIX 95)
int getpeername(int s, struct sockaddr *addr, size_t *addrlen);

DESCRIPTION
getpeername() returns the address of the peer socket connected to the socket indicated by s, where s is
a socket descriptor. addr points to a socket address structure in which this address is returned. addrlen
points to a variable that should be initialized to indicate the size of the address structure. On return, the
variable contains the actual size of the address returned (in bytes). If addr does not point to enough space
to contain the whole address of the peer, only the first addrlen bytes of the address are returned.

AF_CCITT only:
The addr struct contains the X.25 addressing information of the remote peer socket connected to socket s.
However, the x25ifname[] field of the addr struct contains the name of the local X.25 interface through
which the call arrived.

RETURN VALUE
Upon successful completion, getpeername() returns 0; otherwise it returns −1 and sets errno to
indicate the error.

ERRORS
getpeername() fails if any of the following conditions are encountered:

[EBADF] s is not a valid file descriptor.

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] No buffer space is available to perform the operation.

[EFAULT] addr or addrlen are not valid pointers.

[EINVAL] The socket has been shut down.

[EOPNOTSUPP] Operation not supported for AF_UNIX sockets.

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size. In that
case, passing a size_t pointer will evoke compile-time warnings, which must be corrected in order for the
application to behave correctly. Applications that use socklen_t now, where appropriate, will avoid
such migration problems. On the other hand, applications that need to be portable to the UNIX 95 profile
should follow the X/Open specification (see xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−95

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getpeername(2) getpeername(2)

MULTITHREAD USAGE
The getpeername() system call is thread-safe. It has a cancellation point; and it is async-cancel safe,
async-signal safe, and fork-safe.

AUTHOR
getpeername() was developed by HP and the University of California, Berkeley.

SEE ALSO
bind(2), socket(2), getsockname(2), inet(7F), af_ccitt(7F), xopen_networking(7).

Section 2−−96 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getpid(2) getpid(2)

NAME
getpid(), getpgid(), getpgrp(), getpgrp2(), getppid() - get process, process group and parent process ID.

SYNOPSIS
#include <unistd.h>

pid_t getpgid (pid_t pid);

pid_t getpgrp(void);

pid_t getpgrp2(pid_t pid);

pid_t getpid(void);

pid_t getppid(void);

DESCRIPTION
These functions return process, process group and parent process IDs, as follows:

getpgid() Process group ID of the specified process. If pid is zero, the call applies to the
calling process. Same result as getpgrp2() .

getpgrp() Process group ID of the calling process.

getpgrp2() Process group ID of the specified process. If pid is zero, the call applies to the
calling process. Same result as getpgid() .

getpid() Process ID of the calling process.

getppid() Parent process ID of the calling process.

RETURN VALUE
The functions return the following values:

n Successful completion. n is a nonnegative process ID, as described above.
-1 Failure: getpgid() and getgrp2() only. errno is set to indicate the error.

ERRORS
If getpgid() or getpgrp2() fails, errno is set to one of the following values:

[EPERM] The current process and pid are not in the same session (see setsid(2)).

[ESRCH] No process can be found corresponding to that specified by pid.

AUTHOR
getpid() , getppid() , getpgrp() , and getpgrp2() were developed by HP, AT&T, and the
University of California, Berkeley.

SEE ALSO
exec(2), fork(2), setpgid(2), setsid(2), signal(5).

STANDARDS CONFORMANCE
getpid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getpgrp() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getppid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−97

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getpriority(2) getpriority(2)

NAME
getpriority, setpriority - get or set process priority

SYNOPSIS
#include <sys/resource.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int priority);

DESCRIPTION
getpriority() returns the priority of the indicated processes.

setpriority() sets the priority of the indicated processes to priority .

The processes are indicated by which and who, where which can have one of the following values:

PRIO_PROCESS Get or set the priority of the specified process where who is the process ID. A
who of 0 implies the process ID of the calling process.

PRIO_PGRP Get or set the priority of the specified process group where who is the process-
group ID, indicating all processes belonging to that process-group. A who of 0
implies the process-group ID of the calling process.

PRIO_USER Get or set the priority of the specified user where who is the user ID, indicating
all processes owned by that user. A who of 0 implies the user ID of the calling
process.

If more than one process is indicated, the value returned by getpriority() is the lowest valued prior-
ity of all the indicated processes, and setpriority() sets the priority of all indicated processes.

priority is a value from -20 to 20 , where lower values indicate better priorities. The default priority for a
process is 0.

If the calling process contains more than one thread or lightweight process (i.e., the process is multi-
threaded) these functions shall apply to all threads or lightweight processes in the calling process. The
priority specified (or retrieved) is the same for all threads or lightweight processes in a process. Negative
priorities require appropriate privileges.

RETURN VALUE
getpriority() returns the following values:

n Successful completion. n is an integer priority in the range -20 to 20 .
-1 Failure. errno is set to indicate the error. See WARNINGS below.

setpriority() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If getpriority() or setpriority() fails, errno is set to one of the following values:

[EACCES] The calling process does not have access rights to change one or more of the indicated
processes. All processes for which access is allowed are still affected.

[EINVAL] which is not one of the choices listed above, or who is out of range.

[EPERM] The calling process attempted to change the priority of a process to a smaller priority
value without having appropriate privileges.

[ESRCH] Processes indicated by which and who cannot be found.

WARNINGS
getpriority() can return -1 both when it successfully finds a priority of -1 and when it fails. To
determine whether a failure occurred, set errno to 0 before calling getpriority() , then examine
errno after the call returns.

AUTHOR
getpriority() and setpriority() were developed by the University of California, Berkeley.

Section 2−−98 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getpriority(2) getpriority(2)

SEE ALSO
nice(1), renice(1M), nice(2).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−99

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getprivgrp(2) getprivgrp(2)

NAME
getprivgrp(), setprivgrp() - get and set special attributes for group

SYNOPSIS
#include <sys/privgrp.h>

int getprivgrp(struct privgrp_map *grplist);

int setprivgrp(gid_t grpid, const int *mask);

DESCRIPTION
getprivgrp()

The getprivgrp() system call returns a table of the privileged group assignments into a user-supplied
structure. grplist points to an array of structures of type privgrp_map , associating a group ID with a
privilege mask. Privilege masks are formed by ORing together elements from the access types specified in
<sys/privgrp.h> . The array may have gaps in it, distinguished as having a priv_groupno field
value of PRIV_NONE. The group number PRIV_GLOBAL gives the global privilege mask. Only informa-
tion about groups which are in the user’s group access list, or about the user’s real or effective group ID, is
returned to an ordinary user. The complete set is returned to a privileged user.

setprivgrp()
The setprivgrp() system call associates a kernel capability with a group ID. This allows subletting of
superuser-like privileges to members of a particular group or groups. setprivgrp() takes two argu-
ments: grpid, the integer group ID, and mask, a mask of permissions. The mask is created by treating the
access types defined in <sys/privgrp.h> as bit numbers (using 1 for the least significant bit). Thus,
privilege number 5 would be represented by the bits 1<<(5-1) or 16. More generally, privilege p is
represented by:

mask[((p-1) / BITS_PER_INT)] & (1 << ((p-1) % BITS_PER_INT))

where BITS_PER_INT is 8*sizeof(mask[0]) given 8 bits per byte. As it is possible to have more
than word-size distinct privileges, mask is a pointer to an integer array of size PRIV_MASKSIZ .

setprivgrp() privileges include those specified in the file <sys/privgrp.h> . A process can access
the system call protected by a specific privileged group if it belongs to or has an effective group ID of a
group having access to the system call. All processes are considered to belong to the pseudo-group
PRIV_GLOBAL.

Specifying a grpid of PRIV_NONEcauses privileges to be revoked on all privileged groups that have any of
the privileges specified in mask. Specifying a grpid of PRIV_GLOBAL causes privileges to be granted to
all processes.

The constant PRIV_MAXGRPSin <sys/privgrp.h> defines the system limit on the number of groups
that can be assigned privileges. One of these is always the psuedo-group PRIV_GLOBAL, allowing for
PRIV_MAXGRPS - 1actual groups.

Only processes with appropriate privileges can use setprivgrp() .

RETURN VALUE
getprivgrp() and setprivgrp() return the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If getprivgrp() fails, errno is set to one of the following values.

[EFAULT] grplist points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

If setprivgrp() fails, errno is set to one of the following values.

[E2BIG] The request would require assigning privileges to more than PRIV_MAXGRPS
groups.

[EFAULT] mask points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

[EINVAL] mask has bits set for one or more unknown privileges.

Section 2−−100 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getprivgrp(2) getprivgrp(2)

[EINVAL] grpid is out of range.

[EPERM] The caller is not a privileged user.

EXAMPLES
The following example prints out PRIV_GLOBAL and the group IDs of the privilege groups to which the
user belongs:

#include <sys/types.h>

struct privgrp_map pgrplist[PRIV_MAXGRPS];
int i;
gid_t pgid;

getprivgrp (pgrplist);
for (i=0; i<PRIV_MAXGRPS; i++) {

if ((pgid = pgrplist[i].priv_groupno) != PRIV_NONE) {
if (pgid == PRIV_GLOBAL)

printf ("(PRIV_GLOBAL) ");
printf ("privilege group id = %d\n", pgid);

}
}

AUTHOR
getprivgrp() and setprivgrp() were developed by HP.

SEE ALSO
getprivgrp(1), setprivgrp(1M), setgroups(2), privgrp(4).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−101

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getrlimit(2) getrlimit(2)

NAME
getrlimit(), setrlimit() - control maximum resource consumption

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
Limits on the consumption of a variety of resources by the calling process may be obtained with
getrlimit() and set with setrlimit() . Each call to either getrlimit() or setrlimit()
identifies a specific resource to be operated upon as well as a resource limit. A resource limit is represented
by an rlimit structure, pointed to by the rlp argument and includes the following members:

rlim_t rlim_cur; /* Current (soft) limit */
rlim_t rlim_max; /* Hard limit */

The rlim_cur member specifies the current or soft limit and the rlim_max member specifies the max-
imum or hard limit. Soft limits may be changed by a process to any value that is less than or equal to the
hard limit. A process may (irreversibly) lower its hard limit to any value that is greater than or equal to
the soft limit. Only a process with appropriate privileges can raise a hard limit. Both hard and soft limits
can be changed in a single call to setrlimit() subject to the constraints described above.

The value RLIM_INFINITY , defined in <sys/resource.h >, is considered to be larger than any other
limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the implemen-
tation does not enforce limits on that resource. Specifying RLIM_INFINITY as any resource limit value
on a successful call to setrlimit() inhibits enforcement of that resource limit.

The following resources are defined:

RLIMIT_CORE This is the maximum size of a core file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a core file. If this limit is
exceeded, the writing of a core file will terminate at this size.

RLIMIT_CPU This is the maximum amount of CPU time in seconds allowed for a UNIX
95 conforming application. If this limit is exceeded, SIGXCPUis generated
for the application. The default action for a UNIX 95 conforming applica-
tion is to kill the process and leave a core file. If the process is blocking,
catching or ignoring SIGXCPU, the behavior is unspecified. If the applica-
tion is a Classic HP-UX application, the kernel will not send the signal as a
result of exceeding the CPU limit. However, if this signal is sent explicitly
to a Classic HP-UX application by another application or via the kill
-XCPU command, this signal will be delivered and the default action will
be taken. In order for an application to be UNIX 95, it must be linked with
unix95.o either directly or indirectly. For example:

% cc /usr/lib/unix95.o prog.c

Or,

% export UNIX95=1
% cc prog.c

RLIMIT_DATA This is the maximum size of a process’ data segment in bytes. If this limit
is exceeded, the brk() , malloc() , and sbrk() functions will fail with
errno set to ENOMEM.

RLIMIT_FSIZE This option is only applicable to UNIX 95 conforming applications. Please
see RLIMIT_CPU option above for explanation on UNIX 95 conforming
applications. This is the maximum size of a file in bytes that may be
created by a process. A limit of 0 will prevent the creation of a file. If a
write or truncate operation would cause this limit to be exceeded,
SIGXFSZ is generated for the process. If the process is blocking, catching
or ignoring SIGXFSZ, continued attempts to increase the size of a file
from end-of-file to beyond the limit will fail with errno set to EFBIG.

Section 2−−102 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getrlimit(2) getrlimit(2)

RLIMIT_NOFILE This is a number one greater than the maximum value that the system
may assign to a newly-created descriptor. If this limit is exceeded, func-
tions that allocate new file descriptors may fail with errno set to
EMFILE. This limit constrains the number of file descriptors that a pro-
cess may allocate.

RLIMIT_STACK This is the maximum size of a process’ stack in bytes. The implementation
will not automatically grow the stack beyond this limit. If this limit is
exceeded, SIGSEGVis generated for the process. If the process is blocking
or ignoring SIGSEGV, or is catching SIGSEGVand has not made arrange-
ments to use an alternate stack, the disposition of SIGSEGVwill be set to
SIG_DFL before it is generated.

RLIMIT_AS This is the maximum size of a process’ total available memory, in bytes. If
this limit is exceeded, the brk() , malloc() , mmap() , and sbrk()
functions will fail with errno set to ENOMEM. In addition, the automatic
stack growth will fail with the effects outlined above.

RETURN VALUE
Upon successful completion, getrlimit() and setrlimit() return 0. Otherwise, these functions
return −1 and set errno to indicate the error.

ERRORS
The getrlimit() and setrlimit() functions will fail if:

[EINVAL] An invalid resource was specified; or in a setrlimit() call, the new rlim_cur
exceeds the new rlim_max .

[EFAULT] The address specified for rlp is invalid. Reliable detection of this error is implementa-
tion dependent.

[EPERM] The limit specified to setrlimit() would have raised the maximum limit value,
and the calling process does not have appropriate privileges.

The setrlimit() function may fail if:

[EINVAL] The limit specified cannot be lowered because current usage is already higher than the
limit.

[EPERM] The rlp argument specified a hard or soft limit higher than the current hard limit
value, and the caller does not have the appropriate privileges.

[EINVAL] A user with appropriate privileges has attempted to raise rlp−>rlim_cur or
rlp−>rlim_max to a value greater than the system is capable of supporting.

[EINVAL] The value of rlp−>rlim_cur is less than the number of file descriptors the process
already has allocated.

[EINVAL] The value of rlp−>rlim_max is less than the current soft limit.

WARNINGS
The maximum size of a file returned by getrlimit() is in terms of bytes. The maximum size of a file
returned by ulimit (see ulimit(2)) with UL_GETFSIZE is in terms of blocks of size 512 bytes. The value
returned by ulimit with UL_GETFSIZE may thus have to be rounded down to a multiple of 512.

AUTHOR
getrlimit() and setrlimit() were developed by HP, AT&T, and the University of California,
Berkeley.

SEE ALSO
brk(2), exec(2), fork(2), getdtablesize(), getrlimit64(2), malloc(3C), open(2), setrlimit64(2), sigaltstack(2),
sysconf(2), ulimit(2), <stropts.h>, <sys/resource.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−103

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getrusage(2) getrusage(2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

DESCRIPTION
The getrusage() function provides measures of the resources used by the current process or its ter-
minated and waited-for child processes. If the value of the who argument is RUSAGE_SELF, information
is returned about resources used by the current process. If the value of the who argument is
RUSAGE_CHILDREN, information is returned about resources used by the terminated and waited-for chil-
dren of the current process. If the child is never waited for (for instance, if the parent has
SA_NOCLDWAITset or sets SIGCHLD to SIG_IGN), the resource information for the child process is dis-
carded and not included in the resource information provided by getrusage() . The r_usage argument
is a pointer to an object of type struct rusage in which the returned information is stored.

If the current process is multi-threaded, getrusage() returns the information about the resources used
by all the active and the reaped threads/light-weight processes in the current process if the value of the
who argument is RUSAGE_SELF. If the value of the who argument is RUSAGE_CHILDRENin a multi-
threaded process, information returned is the same as it would be for a single-threaded process.

RETURN VALUE
Upon successful completion, getrusage() returns 0. Otherwise, -1 is returned, and errno is set to
indicate the error.

ERRORS
The getrusage() function will fail if:

[EINVAL] The value of the who argument is not valid.

SEE ALSO
exit(2), sigaction(2), time(1), times(2), wait(1), <sys/resource.h>.

Section 2−−104 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsid(2) getsid(2)

NAME
getsid() - get session ID

SYNOPSIS
#include <sys/types.h>

pid_t getsid (pid_t pid);

DESCRIPTION
The getsid() function returns the session ID of the specified process. If pid is 0, the call applies to the
current process. For this to be allowed, the current process and the referenced process must be in the same
session.

RETURN VALUE
Upon successful completion, getsid() returns the session ID of the specified process. Otherwise, it
returns a value of −l and sets errno to indicate the error.

ERRORS
If the getsid() function fails, it sets errno (see errno(2)) to one of the following values:

[EPERM] The current process and the specified process are not in the same session.

[ESRCH] No process can be found corresponding to that specified by pid.

SEE ALSO
exec(2), fork(2), getpgid(2), getpid(2), setpgid(2), setsid(2), tcgetsid(3C).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−105

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockname(2) getsockname(2)

NAME
getsockname - get socket address

SYNOPSIS
#include <sys/socket.h>

AF_CCITT only:
#include <x25/x25addrstr.h>

int getsockname(int s, void *addr, int *addrlen);

_XOPEN_SOURCE_EXTENDED only (UNIX 98)
int getsockname(int s, struct sockaddr *addr, socklen_t *addrlen);

Obsolescent _XOPEN_SOURCE_EXTENDED only (UNIX 95)
int getsockname(int s, struct sockaddr *addr, size_t *addrlen);

DESCRIPTION
getsockname() returns the local address of the socket indicated by s, where s is a socket descriptor.
addr points to a socket address structure in which this address is returned. addrlen points to a variable
that should be initialized to indicate the size of the address structure. On return it contains the actual size
of the address returned (in bytes). If addr does not point to enough space to contain the whole address of
the socket, only the first addrlen bytes of the address are returned.

AF_CCITT only:
The x25_host[] field of the addr struct returns the X.25 addressing information of the local socket s.
The x25ifname[] field of the addr struct contains the name of the local X.25 interface through which
the call arrived.

RETURN VALUE
Upon successful completion, getsockname() returns 0; otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
getsockname() fails if any of the following conditions are encountered:

[EBADF] s is not a valid file descriptor.

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[ENOBUFS] No buffer space is available to perform the operation.

[EFAULT] addr or addrlen are not valid pointers.

[EINVAL] The socket has been shut down.

[EOPNOTSUPP] Operation not supported for AF_UNIX sockets.

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size. In that
case, passing a size_t pointer will evoke compile-time warnings, which must be corrected in order for the
application to behave correctly. Applications that use socklen_t now, where appropriate, will avoid
such migration problems. On the other hand, applications that need to be portable to the UNIX 95 profile
should follow the X/Open specification (see xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The getsockname() system call is thread-safe. It has a cancellation point; and it is async-cancel safe,
async-signal safe, and fork-safe.

Section 2−−106 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockname(2) getsockname(2)

AUTHOR
getsockname() was developed by HP and the University of California, Berkeley.

SEE ALSO
bind(2), socket(2), getpeername(2), inet(7F), af_ccitt(7F), xopen_networking(7).

STANDARDS CONFORMANCE
getsockname() : XPG4

HP-UX Release 11.0: October 1997 − 2 − Section 2−−107

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockopt(2) getsockopt(2)

NAME
getsockopt(), setsockopt() - get and set options on sockets

SYNOPSIS
#include <sys/socket.h>

int getsockopt(
int s,
int level,
int optname,
void *optval,
int *optlen

);

int setsockopt(
int s,
int level,
int optname,
const void *optval,
int optlen

);

_XOPEN_SOURCE_EXTENDED Only (UNIX 98)
int getsockopt(

int s,
int level,
int optname,
void *optval,
socklen_t *optlen

);

int setsockopt(
int s,
int level,
int optname,
const void *optval,
socklen_t optlen

);

Obsolescent _XOPEN_SOURCE_EXTENDED Only (UNIX 95)
int getsockopt(

int s,
int level,
int optname,
void *optval,
size_t *optlen

);

int setsockopt(
int s,
int level,
int optname,
const void *optval,
size_t optlen

);

DESCRIPTION
The getsockopt() and setsockopt() system calls manipulate options associated with a socket.
The socket is identified by the socket descriptor s. Options can exist at multiple protocol levels, and they
are always present at the uppermost "socket" level (see socket(2)).

When manipulating socket options, the level at which the option resides (level) and the name of the option
(optname) must be specified. To manipulate options at the "socket" level, level is specified as
SOL_SOCKET. To specify options at another level, level should be the protocol number specified in
<netinet/in.h > (for example, IPPROTO_TCP).

Section 2−−108 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockopt(2) getsockopt(2)

The parameters optval and optlen specify the value of the option. optval is the address of the data struc-
ture that contains the option value, and optlen is the length of the data structure. The type and value of
the data structure that optval points to depends on the option. For "boolean" options, the value may be
zero (not set) or non-zero (set). The value of other options depends on the purpose of the option. Usually,
neither optval nor optlen may be the NULL address or zero; see individual protocol manual entries for any
exceptions, such as tcp(7P) and ip(7P).

For setsockopt() , optval and optlen are used to pass information from the application to the system.
optval is the address of a location in memory that contains the option information to be passed to the sys-
tem. The parameter optlen is an integer value that specifies the size, in bytes, of the data structure pointed
to by optval .

For getsockopt() , optval and optlen are used to pass information from the system to the application.
The parameter optlen is the address of a variable. Before calling getsockopt() , the application should
set the value of the variable to the maximum size, in bytes, of the data structure pointed to by optval . Nor-
mally, upon return, the variable pointed to by optlen is set to the actual size the data returned in the struc-
ture pointed to by optval, if getsockopt() returns without error.

The following ‘‘socket’’ level option names (optname) are defined in <sys/socket.h >. The type of the
variable pointed to by optval is indicated in parentheses. Options for other protocol levels are described in
the individual protocol manual pages, such as tcp(7P) and ip(7P).

SO_ACCEPTCONN (int ; boolean) Returns a non-zero value if socket listening is enabled, oth-
erwise returns a zero value.

SO_BROADCAST (int ; boolean; AF_INET SOCK_DGRAM sockets only) Allows the applica-
tion to send messages to a broadcast address. Default : disallowed.

SO_DEBUG (int ; boolean; AF_INET SOCK_STREAM sockets only) Enables or disables
the recording of internal debug information. Default : disabled.

SO_DONTROUTE (int ; boolean; AF_INET sockets only) Causes outbound messages to
bypass normal routing facilities. Instead, messages are sent through the
appropriate network interface based on the network portion of the destina-
tion address. Default : disabled.

SO_ERROR (int) Returns any pending error on the socket, and clears the error status.
The value returned by SO_ERRORwould be the value of errno after the
next socket data transfer system call.

SO_KEEPALIVE (int ; boolean; AF_INET SOCK_STREAM sockets only) If enabled, keeps
an otherwise idle TCP connection active. Default : disabled.

SO_LINGER (struct linger ; AF_INET SOCK_STREAM sockets only) Controls
whether or not an application "lingers" (waits) if there are untransmitted
data in the send socket buffer when the socket is closed. The data type
struct linger is defined in <sys/socket.h >. Default : dis-
abled, as if l_onoff had been set to zero. (See details below.)

SO_OOBINLINE (int ; boolean; AF_INET SOCK_STREAM sockets only) If enabled,
specifies that out-of-band data (TCP "urgent data") should be left "in-line"
among the normal data stream. Otherwise, one byte of out-of-band data is
pulled out of the data stream, and it is accessible only by setting MSG_OOB
in the flags parameter when the application reads the data (see recv(2)).
Default : disabled.

SO_RCVBUF (int) Specifies the maximum size, in bytes, of the receive socket buffer.
For SOCK_DGRAM sockets, the receive buffer size may limit the maximum
size of messages that the socket can receive. Default : protocol-
dependent; see individual protocol manual entries, such as tcp(7P) and
udp(7P).

SO_REUSEADDR (int ; boolean; AF_INET sockets only) If enabled, allows a local address to
be reused in subsequent calls to bind() . Default : disallowed.

SO_REUSEPORT (int ; boolean; AF_INET sockets only) If enabled, allows a local address
and port to be reused in subsequent calls to bind() . Default : disal-
lowed.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−109

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockopt(2) getsockopt(2)

SO_SNDBUF (int) Specifies the maximum size, in bytes, of the send socket buffer. For
SOCK_STREAM sockets, the send buffer size limits how much data can be
queued for transmission before the application is blocked. For
SOCK_DGRAM sockets, the send buffer size may limit the maximum size of
messages that the application can send through the socket. Default :
protocol-dependent; see individual protocol manual entries, such as tcp(7P)
and udp(7P).

SO_TYPE (int) Returns the socket type.

SO_USELOOPBACK (int ; boolean) Not used internally; provided only for compatibility.

Setting the SO_BROADCASToption allows the application to send messages through the SOCK_DGRAM
socket to a broadcast destination address.

If SO_DONTROUTEis set, the system does not use the network routing tables when determining which
interface to use to send an outbound message. Instead, the system sends the message through the inter-
face whose network address matches the network portion of the destination address. If SO_DONTROUTE
is not set (default), the system uses the network routing tables.

If SO_KEEPALIVE is disabled (default), a TCP connection may remain idle until the connection is
released at the protocol layer. If SO_KEEPALIVE is enabled and the connection has been idle for two
hours, TCP sends a packet to the remote socket, expecting the remote TCP to acknowledge that the connec-
tion is still active. If the remote TCP does not respond in a timely manner, TCP continues to send
keepalive packets according to the normal retransmission algorithm. If the remote TCP does not respond
within a particular time limit, TCP drops the connection. The next socket system call (for example,
recv()) returns an error, and errno is set to ETIMEDOUT.

SO_LINGERcontrols the actions to be taken when there are untransmitted data in a SOCK_STREAM send
socket buffer when the socket is closed, either due to an explicit call to close() or because the applica-
tion terminates normally or abnormally. The action is determined by the values of members of the
struct linger data structure pointed to by optval in a call to setsockopt() . The data type
struct linger is defined in <sys/socket.h >. If l_onoff is zero (the default action), close()
returns immediately, but the system tries to transmit any unsent data and release the protocol connection
gracefully. If l_onoff is non-zero and l_linger is zero, close() returns immediately, any unsent
data is discarded, and the protocol connection is aborted. If both l_onoff and l_linger are non-zero,
close() does not return until the system has tried to transmit all unsent data and release the connection
gracefully. In that case, close() can return an error, and errno may be set to ETIMEDOUT, if the sys-
tem is unable to transmit the data after a protocol-defined time limit. Note that the value of l_linger
is treated simply as a boolean; a non-zero value is not interpreted as a time limit(see
_XOPEN_SOURCE_EXTENDEDOnly below). SO_LINGERdoes not affect the actions taken when the
function shutdown() is called.

If SO_OOBINLINE is set, out-of-band data (TCP "urgent data") is left "in-line" among the normal data
stream. In that case, the SIOCATMARK ioctl() request must be used to determine if the inbound data
stream has been read up to the point where the out-of-band data begins. If multiple transmissions of out-
of-band data are received before the application reads them, all of the data is left in-line; however, SIOCAT-
MARK indicates the location of only the last transmission of out-of-band data. If SO_OOBINLINE is not
set (default), only one byte of out-of-band is saved. This byte is pulled out of the normal data stream, and it
is accessible only by setting MSG_OOB in the flags parameter when the application reads the data (see
recv(2)). In that case, if multiple transmissions of out-of-band data are received before the application
reads them, previous bytes of out-of-band data are lost.

Setting the SO_REUSEADDRoption allows the local socket address to be reused in subsequent calls to
bind() . This permits multiple SOCK_STREAM sockets to be bound to the same local address, as long as all
existing sockets with the desired local address are in a connected state before bind() is called for a new
socket. For SOCK_DGRAM sockets, SO_REUSEADDRallows multiple sockets to receive UDP multicast
datagrams addressed to the bound port number. For all SOCK_DGRAM sockets bound to the same local
address, SO_REUSEADDRmust be set before calling bind() .

Setting the SO_REUSEPORToption allows multiple SOCK_DGRAM sockets to share the same address and
port. Each one of those sockets, including the first one to use that port, must specify this option before cal-
ling bind() .

SO_RCVBUFand SO_SNDBUFspecify the maximum number of bytes that the system may allocate, as
needed, for the receive and send buffers, respectively. These limits are merely approximate because of the
way in which memory is allocated. For example, a large number of small transmissions may require more

Section 2−−110 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockopt(2) getsockopt(2)

memory than the sum of the number of data bytes sent. The default receive and send buffer sizes are
protocol-specific. For more information, see the appropriate manual entries, such as tcp(7P) and udp(7P).

For SOCK_STREAM sockets, larger buffer sizes can improve performance. An application can increase the
size of the receive buffer at any time; however, it can decrease the receive buffer size only prior to calling
connect() or listen() . An application can increase or decrease the send buffer at any time.

For SOCK_DGRAM sockets, the size of the receive and send buffers limits the size of the maximum datagram
that can be received and sent, respectively. These limits include socket buffer space that is also used to
save the sender’s socket address (struct sockaddr) which is associated with each datagram transmis-
sion. The sender’s socket address can be returned in the from parameter when recvfrom() is called
(see recv(2)).

AF_CCITT
SO_SNDBUFand SO_RCVBUFare the only options supported for sockets of the AF_CCITT address fam-
ily.

_XOPEN_SOURCE_EXTENDED Only
The value of l_linger in the linger structure is interpreted as a time limit in seconds.

RETURN VALUE
getsockopt() and setsockopt() return the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If getsockopt() or setsockopt() fails, errno is set to one of the following values:

[EBADF] The argument s is not a valid descriptor.

[EFAULT] The optval or optlen address is not valid.

[EINVAL] The level or optlen value is not valid; or optval is the NULL address; or the protocol
connection has been released.

[ENOBUFS] Insufficient memory is available for internal system data structures.

[ENOPROTOOPT] The option is not recognized at the specified option level.

[ENOTSOCK] The argument s is not a socket descriptor.

[EOPNOTSUPP] The option is not supported by the socket family or socket type.

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size. In that
case, passing a size_t pointer will evoke compile-time warnings, which must be corrected in order for the
application to behave correctly. Applications that use socklen_t now, where appropriate, will avoid
such migration problems. On the other hand, applications that need to be portable to the UNIX 95 profile
should follow the X/Open specification (see xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The getsockopt() and setsockopt() system calls are thread-safe. They each have a cancellation
point; and they are async-cancel safe, async-signal safe, and fork-safe.

AUTHOR
getsockopt() and setsockopt() were developed by HP and the University of California, Berkeley.

HP-UX Release 11.0: October 1997 − 4 − Section 2−−111

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getsockopt(2) getsockopt(2)

SEE ALSO
socket(2), getprotoent(3N), af_ccitt(7F), tcp(7P), udp(7P), unix(7P), xopen_networking(7).

STANDARDS CONFORMANCE
getsockopt() : XPG4

Section 2−−112 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

gettimeofday(2) gettimeofday(2)

NAME
gettimeofday - get the date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(struct timeval *tp, void *tzp);

DESCRIPTION
The gettimeofday() function obtains the current time, expressed as seconds and microseconds since
00:00 Coordinated Universal Time (UTC), January 1, 1970, and stores it in the timeval structure
pointed to by tp. The resolution of the system clock is unspecified.

If tzp is not a null pointer, the behaviour is unspecified.

RETURN VALUE
The gettimeofday() function returns 0 and no value is reserved to indicate an error.

ERRORS
No errors are defined.

SEE ALSO
ctime(3C), ftime(2), <sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−113

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

gettimeofday(2) gettimeofday(2)

HP-UX EXTENSIONS

SYNOPSIS
#include <time.h>

int gettimeofday(struct timeval *tp,
struct timezone *tzp);

DESCRIPTION
The structures pointed to by tp and tzp are defined in <time.h> as:

struct timeval {
unsigned long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

};

struct timezone {
int tz_minuteswest; /* of UTC */
int tz_dsttime; /* type of DST correction to apply */

};

The timezone structure indicates the local time zone (measured in minutes of time westward from
UTC), and a flag that, if nonzero, indicates that Daylight Savings Time applies locally during the appropri-
ate part of the year. Programs should use this time zone information only in the absence of the TZ environ-
ment variable.

Security Restrictions
Only a user with appropriate privileges can set the time of day.

RETURN VALUE
gettimeofday() return the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
gettimeofday() fails, errno is set to the following value.

[EFAULT] An argument address referenced invalid memory. The reliable detection of this error
is implementation dependent.

EXAMPLES
The following example calls gettimeofday() twice. It then computes the lapsed time between the calls
in seconds and microseconds and stores the result in a timeval structure:

struct timeval first,
second,
lapsed;

struct timezone tzp;

gettimeofday (&first, &tzp);

/* lapsed time */

gettimeofday (&second, &tzp);

if (first.tv_usec > second.tv_usec) {
second.tv_usec += 1000000;
second.tv_sec--;

}

lapsed.tv_usec = second.tv_usec - first.tv_usec;
lapsed.tv_sec = second.tv_sec - first.tv_sec;

Section 2−−114 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

gettimeofday(2) gettimeofday(2)

WARNINGS
The microsecond value usually has a granularity much greater than one due to the resolution of the system
clock. Relying on any granularity (particularly of one) will render code nonportable.

AUTHOR
gettimeofday() was developed by the University of California, Berkeley, and SecureWare Inc.

SEE ALSO
date(1), stime(2), time(2), ctime(3C).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−115

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

g

getuid(2) getuid(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);

uid_t geteuid(void);

gid_t getgid(void);

gid_t getegid(void);

DESCRIPTION
The following functions return the information indicated:

getuid() Real-user-ID of the calling process.

geteuid() Effective-user-ID of the calling process.

getgid() Real-group-ID of the calling process.

getegid() Effective-group-ID of the calling process.

No means is available for ascertaining the saved-user-ID or saved-group-ID of a process.

SEE ALSO
setuid(2).

STANDARDS CONFORMANCE
getuid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getegid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

geteuid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

getgid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−116 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

i

ioctl(2) ioctl(2)

NAME
ioctl - control device

SYNOPSIS
#include <stropts.h>

int ioctl(int fildes, int request, ... /* arg */);

Remarks
The ANSI C ", ... " construct denotes a variable length argument list whose optional [or required]
members are given in the associated comment (/* */).

DESCRIPTION
ioctl() performs a variety of functions on character special files (devices), or regular files and directories
on VxFS file systems. The write-ups of various devices in Section (7) discuss how ioctl() applies to
them. The type of arg is dependent on the specific ioctl() call, as described in Section (7).

request is made up of several fields which encode the size and direction of the argument (referenced by
arg), as well as the desired command. An enumeration of the request fields are:

IOC_IN Argument is read by the driver (meaning that the argument is copied from the
application to the driver).

IOC_OUT Argument is written by the driver (meaning that the argument is copied from
the driver to the application). Ignored if an error occurs.

IOCSIZE_MASK Number of bytes in the passed argument. A nonzero size indicates that arg is a
pointer to the passed argument. A zero size indicates that arg is the passed
argument (if the driver wants to use it), and is not treated as a pointer.

IOCCMD_MASK The request command itself.

When both IOC_IN and IOC_OUT are zero, it can be assumed that request is not encoded for size and
direction, for compatibility purposes. Requests that do not require any data to be passed and requests that
use arg as a value (as opposed to a pointer), have the IOC_IN bit set to one and the IOCSIZE_MASK field
set to zero.

The following macros are used to create the request argument. x and y are concatenated ((x<<8) | y)
to form IOCCMDand shifted into the proper location according to IOCCMD_MASK. t is the type (e.g.
struct hpib_cmd) of the actual argument that the request references, and its size is taken and shifted
into the appropriate place according to IOCSIZE_MASK.

_IOR(x,y,t) Sets IOC_OUT and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

_IOW(x,y,t) Sets IOC_IN and initializes the values at IOCCMD_MASK and
IOCSIZE_MASK accordingly.

_IOWR(x,y,t) Sets both IOC_IN and IOC_OUT and initializes the values at IOCCMD_MASK
and IOCSIZE_MASK.

Note: any data structure referenced by arg must not contain any pointers.

RETURN VALUE
If an error has occurred, a value of −1 is returned and errno is set to indicate the error.

ioctl() fails if one or more of the following are true: IOC_OUT is ignored if an error occurs.

[EBADF] fildes is not a valid open file descriptor.

[ENOTTY] The request is not appropriate to the selected device.

[EINVAL] request or arg is not valid.

[EINTR] A signal was caught during the ioctl() system call.

[EPERM] Typically this error indicates that an ioctl request was attempted that is forbidden in
some way to the calling process.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−117

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

i

ioctl(2) ioctl(2)

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector (2). sigvector (2) can
affect the behavior described on this page.

AUTHOR
ioctl() was developed by AT&T and HP.

SEE ALSO
ioctl(5), arp(7P), socket(7), termio(7).

STANDARDS CONFORMANCE
ioctl() : SVID2, SVID3, XPG2

Section 2−−118 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

i

iscomsec(2) iscomsec(2)

NAME
iscomsec - check if the system has been converted to a trusted system

SYNOPSIS
#include <prot.h>

int iscomsec();

DESCRIPTION
iscomsec returns a zero (0) if the system is not a trusted system. If the system has been converted to a
trusted system, iscomsec returns a one (1).

NOTES
iscomsec determines if the system is a trusted system or not by checking the file,
/tcb/files/auth/system/default . If the file exists, then the system is a trusted system. If the
file does not exist, then the system is not a trusted system.

On a trusted system, /tcb/files/auth/system/default should never be deleted.

AUTHOR
iscomsec was developed by HP.

FILES
/tcb/files/auth/system/default Trusted system default file

HP-UX Release 11.0: October 1997 − 1 − Section 2−−119

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

k

kill(2) kill(2)

NAME
kill(), raise() - send a signal to a process or a group of processes

SYNOPSIS
#include <signal.h>

int kill(pid_t pid, int sig);

int raise(int sig);

DESCRIPTION
The kill() system call sends a signal to a process or a group of processes, as specified by pid. The signal
to be sent is specified by sig and is either one from the list given in signal(2), or 0.

The raise() system call sends a signal to the executing program. The signal to be sent is specified by sig
and is either one from the list given in signal(2), or 0.

If sig is 0 (the null signal), error checking is performed but no signal is actually sent. This can be used to
check the validity of pid.

The real or effective user ID of the sending process must match the real or saved user ID of the receiving
process unless the effective user ID of the sending process is a user who has appropriate privileges.

As a single special case, the continue signal SIGCONTcan be sent to any process that is a member of the
same session as the sending process.

The value KILL_ALL_OTHERS is defined in the file <sys/signal.h> and is guaranteed not to be the
ID of any process in the system or the negation of the ID of any process in the system.

If pid is greater than zero and not equal to KILL_ALL_OTHERS, sig is sent to the process whose process
ID is equal to pid. pid can equal 1 unless sig is SIGKILL or SIGSTOP.

If pid is 0, sig is sent to all processes excluding special system processes whose process group ID is equal to
the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not a user who has appropriate privileges. sig is sent
to all processes excluding special system processes whose real or saved user ID is equal to the real or
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is a user who has appropriate privileges, sig is sent to all
processes excluding special system processes.

If pid is KILL_ALL_OTHERS, kill() behaves much as when pid is equal to -1 , except that sig is not
sent to the calling process.

If pid is negative but not -1 or KILL_ALL_OTHERS, sig is sent to all processes (excluding special system
processes) whose process group ID is equal to the absolute value of pid, and whose real and/or effective user
ID meets the constraints described above for matching user IDs.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
If kill() fails, no signal is sent. errno is set to one of the following values.

[EINVAL] sig is neither a valid signal number nor zero.

[EINVAL] sig is SIGKILL or SIGSTOPand pid is 1 (process 1).

[EPERM] The user ID of the sending process is not a user who has appropriate privileges and its
real or effective user ID does not match the real or saved user ID of the receiving pro-
cess.

[EPERM] The sending and receiving processes are not in the same session and the real or
effective user ID does not match the real or saved user ID of the receiving process.

[ESRCH] No process or process group can be found corresponding to that specified by pid.

If raise() fails, no signal is sent. errno is set to one of the following values.

Section 2−−120 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

k

kill(2) kill(2)

[EINVAL] sig is neither a valid signal number nor zero.

APPLICATION USAGE
Threads Considerations

kill() can be used to post signals to another process but cannot be used to post signals to a specific
thread in another process. For information on posting signals to specific threads within the same process,
see pthread_kill(3T).

LWP (Lightweight Processes) Considerations
Signals cannot be posted to specific LWPs in another process.

AUTHOR
kill() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), getpid(2), setsid(2), signal(2), sigqueue(2), pthread_kill(3T).

STANDARDS CONFORMANCE
kill() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

raise() : AES, SVID3, XPG4, ANSI C

HP-UX Release 11.0: October 1997 − 2 − Section 2−−121

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

k

killpg(2) killpg(2)

NAME
killpg, getpgrp, setpgrp, sigvec, signal - 4.2 BSD-compatible process control facilities

SYNOPSIS
#include <signal.h>

int killpg(int pgrp, int sig);

int getpgrp(int pid);

int setpgrp(int pid, int pgrp);

int sigvec(
int sig,
struct sigvec *vec,
struct sigvec *ovec

);

void (*signal(int sig, void (*func)(int)))(int);

DESCRIPTION
These calls simulate (and are provided for backward compatibility with) functions of the same name in the
4.2 Berkeley Software Distribution.

This version of setpgrp() is equivalent to the system call setpgid(pid, pgrp) (see setpgid(2)).

This version of getpgrp() is equivalent to the system call getpgrp2(pid) (see getpid(2)).

killpg() is equivalent to the system call kill(- pgrp, sig) (see kill(2)).

sigvec() is equivalent to the system call sigvector(sig, vec, ovec) (see sigvector (2)), except for the
following:

When SIGCHLD or SIGCLD is used and vec specifies a catching function, the routine acts as if the
SV_BSDSIGflag were included in the sv_flags field of vec .

The name sv_onstack can be used as a synonym for the name of the sv_flags field of vec and
ovec .

If vec is not a null pointer and the value of (vec−>sv_flags & 1) is "true", the routine acts as if the
SV_ONSTACKflag were set.

If ovec is not a null pointer, the flag word returned in ovec−>sv_flags (and therefore the value of
ovec−>sv_onstack) will be equal to 1 if the system was reserving space for processing of that signal
because of a call to sigspace(2), and 0 if not. The SV_BSDSIG bit in the value placed in
ovec−>sv_flags is always clear.

If the reception of a caught signal occurs during certain system calls, the call will always be restarted,
regardless of the return value from a catching function installed with sigvec() . The affected calls
are wait(2), semop(2), msgsnd(2), msgrcv (2), and read(2) or write(2) on a slow device (such as a termi-
nal or pipe, but not a file). Other interrupted system calls are not restarted.

This version of signal() has the same effect as sigvec(sig, vec, ovec) , where vec−>sv_handler is
equal to func, vec−>sv_mask is equal to 0, and vec−>sv_flags is equal to 0. signal() returns the value
that would be stored in ovec−>sv_handler if the equivalent sigvec() call would have succeeded. Other-
wise, signal() returns −1 and errno is set to indicate the reason as it would have been set by the
equivalent call to sigvec() .

WARNINGS
While the 4.3 BSD release defined extensions to some of the interfaces described here, only the 4.2 BSD
interfaces are emulated by this package.

bsdproc() should not be used in conjunction with the facilities described under sigset(3C).

APPLICATION USAGE
Threads Considerations

The signal disposition (such as catch/ignore/default) established by sigvec() and signal() is
shared by all threads in the process.

For more information regarding signals and threads, refer to signal(5).

Section 2−−122 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

k

killpg(2) killpg(2)

AUTHOR
bsdproc() was developed by HP and the University of California, Berkeley.

SEE ALSO
ld(1), kill(2), getpid(2), msgsnd(2), msgrcv(2), read(2), semop(2), setpgid(2), setsid(2), sigvector(2), wait(2),
write(2), sigset(3C), sigstack(2), signal(5).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−123

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

link(2) link(2)

NAME
link() - link to a file

SYNOPSIS
#include <unistd.h>

int link(const char *path1, const char *path2);

DESCRIPTION
The link() system call creates a new link (directory entry) for the existing file. path1 points to a path
name naming an existing file. path2 points to a path name naming the new directory entry to be created.

RETURN VALUE
Upon successful completion, link() returns zero. Otherwise, it returns −1 and sets errno (see errno(2))
to indicate the error.

ERRORS
The link() system call fails and no link is created if one or more of the following is true:

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory that does not permit
writing.

[EDQUOT] The user’s disk quota block limit has been reached for this file system.

[EEXIST] The link named by path2 exists.

[ENOENT] The file named by path1 does not exist.

[ENOENT] A component of either path prefix does not exist.

[ENOENT] path2 points to a null path name.

[ENOSPC] The directory to contain the file cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory.

[EPERM] The file named by path1 is a directory and the effective user ID is not a
user who has appropriate privileges. Some file systems return this error
whenever path1 names a directory, regardless of the user ID.

[EXDEV] The link named by path2 and the file named by path1 are on different logi-
cal devices (file systems).

[EROFS] The requested link requires writing in a directory on a read-only file sys-
tem.

[EFAULT] path points outside the allocated address space of the process. The reliable
detection of this error is implementation dependent.

[ENOENT] path1 or path2 is null.

[EMLINK] The maximum number of links to a file would be exceeded.

[ENAMETOOLONG] Either the specified path exceeds PATH_MAXbytes, or a component of
either specified path exceeds NAME_MAXwhile POSIX_NO_TRUNCis in
effect.

[ELOOP] Too many symbolic links were encountered in translating either path name.

DEPENDENCIES
Series 700

If path2 names a symbolic link, link() fails without creating the link, it returns −1, and sets errno to
the following value:

[EEXIST] path2 names a symbolic link.

SEE ALSO
cp(1), link(1M), symlink(2), unlink(2), symlink(4).

Section 2−−124 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

link(2) link(2)

STANDARDS CONFORMANCE
link() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−125

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lio_listio(2) lio_listio(2)

NAME
lio_listio() - start a list of asynchronous I/O operations

SYNOPSIS
#include <aio.h>

int lio_listio(int mode, struct aiocb * const list[], int nent, struct
sigevent *sig);

DESCRIPTION
The lio_listio() function allows the calling process to request a list of asynchronous I/O operations
with a single function call. The function call returns when all operation requests have been enqueued for
processing. Once enqueued, processing of the operations may proceed concurrently with execution of the
calling process thread.

The list argument is an array of nent pointers to aiocb structures. Each aiocb in list is treated
as if it were being handled in a separate call to aio_read() or aio_write() depending on the value
of its aio_lio_opcode . When aio_lio_opcode is LIO_READ, the aiocb is treated as though it
had been referenced in a call to aio_read() , and the aio_fildes , aio_buf , and aio_nbytes
fields are interpreted accordingly. When aio_lio_opcode is LIO_WRITE , the aiocb is treated as
though it had been referenced in a call to aio_write() , and the aio_fildes, aio_buf, and
aio_nbytes fields are interpreted accordingly. If aio_lio_opcode is LIO_NOP, nothing is
enqueued.

If an error condition is detected that prevents the list from being processed, lio_listio() returns -1
and sets errno to indicate the cause of the failure. If any requests are enqueued by the call to
lio_listio() , and mode is LIO_WAIT , then the function returns only after all enqueued operation
requests have completed. The sig argument of the call is ignored. If mode is LIO_NOWAIT, the function
returns as soon as all requests are enqueued. The sigevent action specified by sig is performed after all
enqueued requests have completed.

Once the requested operations have been successfully enqueued, an aio_error() and aio_return()
function referencing the corresponding aiocb from list must be used to determine their status and any
error conditions, including those normally reported by read() or write() , as appropriate. Requests
remain enqueued and consume process and system resources until aio_return() is called for each one.

Re-using, altering the contents of, or deallocating memory associated with the list or any aiocb refer-
enced in list or the buffer referred to by list[n]->aio_buf while an asynchronous I/O operation is
outstanding may produce unpredictable results because aio_return() has not been called for the
aiocb .

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

RETURN VALUE
When LIO_NOWAIT is set, lio_listio() returns the following values:

0 Success. All of the non-empty operations, if any, were successfully enqueued.

-1 Failure or partial success. At least one requested operation was either not enqueued
or completed with an error before the lio_listio() function call returned.
errno is set to indicate the error.

When LIO_WAIT is set, lio_listio() returns the following values:

0 Success. All of the non-empty operations, if any, were successfully enqueued and com-
pleted.

-1 Failure or partial success. At least one requested operation was either not enqueued
or completed with an error. errno is set to indicate the error.

The three errno values EAGAIN, EINTR, and EIO are the only ones associated with partial success.
aio_error() and aio_return() must be used to determine the outcomes of individual requests.

ERRORS
If lio_listio() detects one of the following error conditions, errno is set to the indicated value:

[EAGAIN] At least one request could not be queued either because of a resource shortage or
because the per-process or system-wide limit on asynchronous I/O operations or

Section 2−−126 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lio_listio(2) lio_listio(2)

asynchronous threads would have been exceeded.

[EINVAL] The sigevent specified by sig is not valid.

[EINVAL] The mode argument is neither LIO_WAIT nor LIO_NOWAIT.

[EINVAL] The value of the nent argument is negative or greater than the maximum value
allowed. The maximum value allowed can be obtained using the sysconf() call
with the argument _SC_AIO_LISTIO_MAX .

[EINTR] The mode argument was LIO_WAIT and a signal was delivered while waiting for the
requested operations to complete. This signal may result from completion of one or
more of the requested operations and other requests may still be pending or com-
pleted.

Once an operation has been enqueued by lio_listio() , all of the errors normally reported by the
appropriate read() or write() function and the following errors may be reported asynchronously and
returned in a subsequent call to aio_error() referencing the aiocb pointer supplied in the successful
lio_listio() call.

[EBADF] The aiocbp->aio_fildes was not a valid file descriptor open for reading or writ-
ing as appropriate to the aio_lio_opcode .

[EINVAL] The value of aiocbp->aio_reqprio is not valid, or the value of aiocbp-
>aio_nbytes is invalid, or the file offset implied by aiocbp->aio_offset or
aiocbp->aio_offset +aiocbp->aio_nbytes is not valid.

[EIO] One or more of the enqueued operations did not complete successfully.

EXAMPLE
The following code sequence and call to lio_listio() starts two asynchronous write operations and
one asynchronous read operation and waits for all operations to complete.

#include <fcntl.h>
#include <errno.h>
#include <aio.h>
char buf1[4096], buf2[4096], buf3[4096];
int nent;
struct aiocb myaiocb1, myaiocb2, myaiocb3;
struct aiocb *list[] = { &myaiocb1, &myaiocb2, &myaiocb3 };
bzero(&myaiocb1, sizeof (struct aiocb));
bzero(&myaiocb2, sizeof (struct aiocb));
bzero(&myaiocb3, sizeof (struct aiocb));
myaiocb1.aio_fildes = open("/dev/null", O_RDWR);
myaiocb3.aio_fildes = myaiocb2.aio_fildes = myaiocb1.aio_fildes;
myaiocb1.aio_offset = 0;
myaiocb3.aio_offset = myaiocb2.aio_offset = myaiocb1.aio_offset;
myaiocb1.aio_buf = (void *) buf1;
myaiocb2.aio_buf = (void *) buf2;
myaiocb3.aio_buf = (void *) buf3;
myaiocb3.aio_nbytes = sizeof (buf3);
myaiocb2.aio_nbytes = sizeof (buf2);
myaiocb1.aio_nbytes = sizeof (buf1);
myaiocb1.aio_lio_opcode = myaiocb3.aio_lio_opcode = LIO_WRITE;
myaiocb2.aio_lio_opcode = LIO_READ;
myaiocb1.aio_sigevent.sigev_notify = SIGEV_NONE;
myaiocb2.aio_sigevent.sigev_notify = SIGEV_NONE;
myaiocb3.aio_sigevent.sigev_notify = SIGEV_NONE;
retval = lio_listio(LIO_WAIT, list, 3, NULL);
if (retval) perror("lio_listio:");
while (nent--) { (void) aio_return(list[nent]); }

SEE ALSO
aio_cancel(2), aio_error(2), aio_fsync(2), aio_read(2), aio_return(2), aio_suspend(2), aio_write(2), read(2),
write(2), aio(5).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−127

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lio_listio(2) lio_listio(2)

STANDARDS CONFORMANCE
lio_listio() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−128 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

listen(2) listen(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
#include <sys/socket.h>

int listen(int s, int backlog);

DESCRIPTION
To accept connections, a socket is first created using socket() , a queue for incoming connections is
activated using listen() , and then connections are accepted using accept() . listen() applies
only to unconnected sockets of type SOCK_STREAM. Except for AF_VME_LINK, if the socket has not been
bound to a local port before listen() is invoked, the system automatically binds a local port for the
socket to listen on (see inet(7F)). For sockets in the address family AF_CCITT and AF_VME_LINK, the socket
must be bound to an address by using bind() before connection establishment can continue, otherwise an
EADDREQUIRED error is returned.

A listen queue is established for the socket specified by the s parameter, which is a socket descriptor.

backlog defines the desirable queue length for pending connections. The actual queue length may be
greater than the specified backlog. If a connection request arrives when the queue is full, the client will
receive an ETIMEDOUT error.

backlog is limited to the range of 0 to SOMAXCONN,which is defined in <sys/socket.h>. SOMAX-
CONNis currently set to 20. If any other value is specified, the system automatically assigns the closest
value within the range. A backlog of 0 specifies only 1 pending connection is allowed at any given time.

DEPENDENCIES
AF_CCITT:

Call-acceptance can be controlled by the X25_CALL_ACPT_APPROVALioctl() call described in
RETURN VALUE . Upon successful completion, listen() returns 0; otherwise, it returns −1 and sets
errno to indicate the error.

ERRORS
listen() fails if any of the following conditions are encountered:

[EBADF] s is not a valid file descriptor.

[EDESTADDRREQ] The socket s has not been bound to an address by using bind() .

[ENOTSOCK] s is a valid file descriptor but it is not a socket.

[EOPNOTSUPP] The socket referenced by s does not support listen() .

[EINVAL] The socket has been shut down or is already connected (see socketx25(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The listen() system call is thread-safe. It has a cancellation point; and it is async-cancel safe, async-
signal safe, and fork-safe.

AUTHOR
listen() was developed by HP and the University of California, Berkeley.

SEE ALSO
accept(2), connect(2), socket(2), socketx25(7), xopen_networking(7), af_ccitt(7F), af_vme_link(7F), inet(7F).

STANDARDS CONFORMANCE
listen() : XPG4

HP-UX Release 11.0: October 1997 − 1 − Section 2−−129

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lockf(2) lockf(2)

NAME
lockf - provide semaphores and record locking on files

SYNOPSIS
#include <unistd.h>

int lockf(int fildes, int function, off_t size);

DESCRIPTION
The lockf() function allows regions of a file to be used as semaphores (advisory locks) or restricts access
to only the locking process (enforcement-mode record locks). Other processes that attempt to access the
locked resource either return an error or sleep until the resource becomes unlocked. All locks for a process
are released upon the first close of the file, even if the process still has the file opened, and all locks held by
a process are released when the process terminates.

fildes is an open file descriptor. The file descriptor must have been opened with write-only permission
(O_WRONLY) or read-write permission (O_RDWR) in order to establish a lock with this function call (see
open(2)).

If the calling process is a member of a group that has the PRIV_LOCKRDONLYprivilege (see get-
privgrp(2)), it can also use lockf() to lock files opened with read-only permission (O_RDONLY).

function is a control value that specifies the action to be taken. Permissible values for function are defined
in <unistd.h> as follows:

#define F_ULOCK 0 /* unlock a region */
#define F_LOCK 1 /* lock a region */
#define F_TLOCK 2 /* test and lock a region */
#define F_TEST 3 /* test region for lock */

All other values of function are reserved for future extensions and result in an error return if not imple-
mented.

F_TEST is used to detect whether a lock by another process is present on the specified region. lockf()
returns zero if the region is accessible and −1 if it is not; in which case errno is set to EACCES. F_LOCK
and F_TLOCKboth lock a region of a file if the region is available. F_ULOCKremoves locks from a region
of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts at the
current offset in the file, and extends forward for a positive size, and backward for a negative size (the
preceding bytes up to but not including the current offset). If size is zero, the region from the current offset
through the end of the largest possible file is locked (that is, from the current offset through the present or
any future end-of-file). An area need not be allocated to the file in order to be locked, because such locks
can exist past the end of the file.

Regions locked with F_LOCKor F_TLOCKcan, in whole or in part, contain or be contained by a previously
locked region for the same process. When this occurs or if adjacent regions occur, the regions are combined
into a single region. If the request requires that a new element be added to the table of active locks but the
table is already full, an error is returned, and the new region is not locked.

F_LOCKand F_TLOCKrequests differ only by the action taken if the resource is not available: F_LOCK
causes the calling process to sleep until the resource is available, whereas F_TLOCKreturns an EACCES
error if the region is already locked by another process.

F_ULOCKrequests can, in whole or part, release one or more locked regions controlled by the process.
When regions are not fully released, the remaining regions are still locked by the process. Releasing the
center section of a locked region requires an additional element in the table of active locks. If this table is
full, an EDEADLK error is returned, and the requested region is not released.

Regular files with the file mode of S_ENFMT, not having the group execute bit set, will have an enforce-
ment policy enabled. With enforcement enabled, reads and writes that would access a locked region sleep
until the entire region is available if O_NDELAYis clear, but return −1 with errno set if O_NDELAYis
set. File access by other system functions, such as exec() , are not subject to the enforcement policy.
Locks on directories, pipes, and special files are advisory only; no enforcement policy is used.

Section 2−−130 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lockf(2) lockf(2)

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by accessing the
locked resource of another process. Thus, calls to fcntl() , lockf() , read() , or write() (see
fcntl(2), lockf(2), read(2), and write(2)) scan for a deadlock prior to sleeping on a locked resource. Deadlock
is not checked for the wait() and pause() system calls (see wait(2) and pause(2)), so potential for
deadlock is not eliminated. A creat() call or an open() call with the O_CREATEand O_TRUNCflags
set on a regular file returns error EAGAIN if another process has locked part of the file and the file is
currently in enforcement mode.

NETWORKING FEATURES
NFS

The advisory record-locking capabilities of lockf() are implemented throughout the network by the ‘‘net-
work lock daemon’’ (see lockd(1M)). If the file server crashes and is rebooted, the lock daemon attempts to
recover all locks associated with the crashed server. If a lock cannot be reclaimed, the process that held
the lock is issued a SIGLOST signal.

Only advisory record locking is implemented for NFS files.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and errno is
set to indicate the error.

ERRORS
lockf() fails if any of the following occur:

[EACCES] function is F_TLOCKor F_TEST and the region is already locked by another process.

[EBADF] fildes is not a valid, open file descriptor.

[EDEADLK] A deadlock would occur or the number of entries in the system lock table would
exceed a system-dependent maximum. HP-UX guarantees this value to be at least 50.

[EINTR] A signal was caught during the lockf() system call.

[EINVAL] Either function is not one of the functions specified above, or size plus current offset
produces a negative offset into the file.

[EINVAL] size plus current offset cannot be represented correctly by an object of size off_t.

[ENOLCK] Either function is F_TLOCK or F_LOCK and the file is an NFS file with access bits
set for enforcement mode, or the file is an NFS file and a system error occurred on the
remote node.

WARNINGS
Deadlock conditions may arise when either the wait() or pause() system calls are used in conjunction
with enforced locking (see wait(2) and pause(2) for details).

When a file descriptor is closed, all locks on the file from the calling process are deleted, even if other file
descriptors for that file (obtained through dup() or open() , for example) still exist.

Unexpected results may occur in processes that use buffers in the user address space. The process may
later read or write data which is or was locked. The standard I/O package, stdio(3S), is the most common
source of unexpected buffering.

In a hostile environment, locking can be misused by holding key public resources locked. This is particu-
larly true with public read files that have enforcement enabled.

It is not recommended that the PRIV_LOCKRDONLYcapability be used because it is provided for back-
ward compatibility only. This feature may be modified or dropped from future HP-UX releases.

Locks default to advisory mode unless the setgid bit of the file permissions is set.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−131

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lockf(2) lockf(2)

Application Usage
Because in the future the variable errno will be set to EAGAIN rather than EACCES when a section of a
file is already locked by another process, portable application programs should expect and test for either
value. For example:

if (lockf(fd, F_TLOCK, siz) == -1)
if ((errno == EAGAIN) || (errno == EACCES))
/*
* section locked by another process
* check for either EAGAIN or EACCES
* due to different implementations
*/
else if ...
/*
* check for other errors
*/

SEE ALSO
lockd(1M), statd(1M), chmod(2), close(2), creat(2), fcntl(2), creat64(2), open(2), pause(2), read(2), stat(2),
wait(2), write(2), unistd(5).

STANDARDS CONFORMANCE
lockf() : SVID2, SVID3, XPG2

Section 2−−132 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lseek(2) lseek(2)

NAME
lseek - move read/write file pointer; seek

SYNOPSIS
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION
lseek() sets the file pointer associated with the file descriptor as follows:

• If whence is SEEK_SET, the pointer is set to offset bytes.

• If whence is SEEK_CUR, the pointer is set to its current location plus offset.

• If whence is SEEK_END, the pointer is set to the size of the file plus offset.

These symbolic constants are defined in <unistd.h> .

RETURN VALUE
When lseek() completes successfully, it returns an integer, which is the resulting file offset as meas-
ured in bytes from the beginning of the file. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

For all files that are not character or block special files, the integer returned on successful completion is
non-negative. For character or block special files that correspond to disk sections larger than 2 gigabytes, a
non-negative integer is returned for successful seeks beyond 2 gigabytes. This value is the resulting file
offset as measured in bytes from the beginning of the file, when taken as an unsigned value. -1 always
indicates an error return, even when encountered on greater than 2 gigabyte disk sections. The lseek()
call succeeds for NFS directories even if the resulting file offset becomes negative.

ERRORS
lseek() fails and the file offset remains unchanged if one or more of the following is true:

[EBADF] fildes is not an open file descriptor.

[ESPIPE] fildes is associated with a pipe, socket, or FIFO.

[EINVAL] whence is not one of the supported values.

[EINVAL] The resulting file offset would be negative.

[EINVAL] The resulting file offset would be a value which cannot be represented correctly in an object
of type off_t .

WARNINGS
Some devices are incapable of seeking. The value of the file offset associated with such a device is
undefined.

Using lseek() with a whence of SEEK_ENDon device special files is not supported and the results are
not defined.

SEE ALSO
creat(2), dup(2), fcntl(2), lseek64(2), open(2), unistd(5).

STANDARDS CONFORMANCE
lseek() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−133

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lstat(2) lstat(2)

NAME
lstat - get symbolic link status

SYNOPSIS
#include <sys/stat.h>

int lstat(const char *path, struct stat *buf);

DESCRIPTION
The lstat() function has the same effect as stat() , except when path refers to a symbolic link. In that
case lstat() returns information about the link, while stat() returns information about the file the
link references.

For symbolic links, the st_mode member will contain meaningful information when used with the file type
macros, and the st_size member will contain the length of the pathname contained in the symbolic link. File
mode bits and the contents of the remaining members of the stat structure are unspecified. The value
returned in the st_size member is the length of the contents of the symbolic link, and does not count any
trailing null.

RETURN VALUE
Upon successful completion, lstat() returns 0. Otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS
The lstat() function will fail if:

[EACCES] A component of the path prefix denies search permission.

[EIO] An error occurred while reading from the file system.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG] The length of a pathname exceeds {PATH_MAX} , or pathname component
is longer than {NAME_MAX}.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty
string.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file cannot be
represented correctly in the structure pointed to by buf.

The lstat() function may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX} .

SEE ALSO
fstat(2), readlink(2), stat(2), symlink(2), <sys/stat.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−134 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lstat() lstat()

HP-UX EXTENSIONS

SYNOPSIS
#include <sys/stat.h>

DESCRIPTION
If the chosen path name or file descriptor refers to a Multi-Level Directory (MLD), and the process does not
have the multilevel effective privilege, the i-node number returned in st_ino is the i-node of the MLD itself.

The parameters for the lstat() function is as follows:

path is a pointer to a path name of any file within the mounted file system.(All directories
listed in the path name must be searchable.)

buf is a pointer to a stat structure, which is where the file status information is stored.

The stat structure contains the following members:

dev_t st_dev; /* ID of device containing a */
/* directory entry for this file */

ino_t st_ino; /* Inode number */
ushort st_fstype; /* Type of filesystem this file */

/* is in; see sysfs(2) */
ushort st_mode; /* File type, attributes, and */

/* access control summary */
ushort st_basemode /* Permission bits (see chmod(1)) */
ushort st_nlink; /* Number of links */
uid_t st_uid; /* User ID of file owner */
gid_t st_gid; /* Group ID of file group */
dev_t st_rdev; /* Device ID; this entry defined */

/* only for char or blk spec files */
off_t st_size; /* File size (bytes) */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Last modification time */
time_t st_ctime; /* Last file status change time */

/* Measured in secs since */
/* 00:00:00 GMT, Jan 1, 1970 */

long st_blksize; /* File system block size */
uint st_acl:1; /* Set if the file has optional */

/* access control list entries */
/* HFS File Systems only */

(Note that the position of items in this list does not necessarily reflect the order of the members in the
structure.)

ERRORS
[EFAULT] buf points to an invalid address. The reliable detection of this error is implementation

dependent.

No ERROR for the following:

[EIO] An error occurred while reading from the file system.

NFS
The st_basemode and st_acl fields are zero on files accessed remotely. st_acl field is applicable to HFS File
Systems only.

WARNINGS
Access Control Lists - HFS File Systems only

Access control list descriptions in this entry apply only to HFS file systems on standard HP-UX operating
systems.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−135

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

l

lstat() lstat()

DEPENDENCIES (CD-ROM)
The st_uid and st_gid fields are set to −1 if they are not specified on the disk for a given file.

AUTHOR
stat() and fstat() were developed by AT&T. lstat() was developed by the University of Califor-
nia, Berkeley.

SEE ALSO
touch(1), chmod(2), chown(2), creat(2), link(2), lstat64(2), mknod(2), pipe(2), read(2), rename(2), setacl(2),
sysfs(2), time(2), truncate(2), unlink(2), utime(2), write(2), stat(5), privileges(5), acl(5), stat(5).

STANDARDS CONFORMANCE
lstat(): AES, SVID3

Section 2−−136 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

madvise(2) madvise(2)

NAME
madvise() - advise the system of a process’s expected paging behavior

SYNOPSIS
#include <sys/mman.h>

int madvise(
caddr_t addr,
size_t len,
int behav);

DESCRIPTION
The madvise system call permits a process to advise the system about its expected future behavior in
referencing a mapped file or an anonymous memory region. Certain implementations can use this informa-
tion to optimize the use of resources.

addr and len specify the address and length in bytes of the region to which the advice refers. For
MADV_DONTNEED, the address and length must be contained within a successful call to mmap() (see
mmap(2)); otherwise, madvise() fails with an [EINVAL] error.

The behav argument is one the following flags defined in the header <sys/mman.h> :

MADV_NORMAL
Removes any previous advice and sets the default behavior. By default, the kernel tracks access
patterns on data objects and performs I/Os based on process trends (that is, sequential versus
random). Sequential trends cause larger "read-ahead" I/Os, while random accesses reduce the
amount of I/O to avoid unnecessary I/O.

MADV_RANDOM
Informs the kernel that any objects mapped in this range will be accessed in a random matter.
The kernel will read only the minimal amount of data to satisfy the user fault.

MADV_SEQUENTIAL
Informs the kernel that any objects mapped in this range will be accessed in a sequential matter.
The kernel will perform the maximum read-ahead for every fault. The kernel does not pay
attention to access patterns and trends, but instead assumes sequentiality for every access on
the object.

MADV_DONTNEED
Informs the kernel that the specified range is no longer needed by the process. This allows the
kernel to release the physical pages associated with an address range back to the system for use
by other processes.

MADV_DONTNEEDis restricted to object ranges created with calls to mmap() . Attempting to
use MADV_DONTNEEDon an object that was not created using a call to mmap() will result in
[EINVAL] being returned to the caller.

MADV_WILLNEED
Will need these pages.

MADV_SPACEAVAIL
Ensure that resources are reserved.

WARNINGS
The current implementation of madvise() defines MADV_SPACEAVAILand MADV_WILLNEEDas null
operations.

RETURN VALUE
madvise() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If madvise() fails, errno is set to one of the following values.

[EFAULT] The range specified by (addr, addr+len) is invalid for a process’s address space, or per-
mission was incorrect on the object for the behav specified.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−137

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

madvise(2) madvise(2)

[EINVAL] behav contains an invalid value, or addr is not a multiple of the page size as returned
by the system call sysconf(_SC_PAGE_SIZE) .

[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap() .

AUTHOR
madvise() was developed by HP and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
madvise() : AES, SVID3

Section 2−−138 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

makecontext(2) makecontext(2)

NAME
makecontext, swapcontext - manipulate user contexts

SYNOPSIS
#include <ucontext.h>

void makecontext(ucontext_t *ucp, (void *func)(), int argc, ...);

int swapcontext(ucontext_t *oucp, const ucontext_t *ucp);

DESCRIPTION
The makecontext() function modifies the context specified by ucp, which has been initialized using
getcontext() . When this context is resumed using swapcontext() or setcontext() , program
execution continues by calling func() , passing it the arguments that follow argc in the makecontext()
call.

Before a call is made to makecontext() , the context being modified should have a stack allocated for it.
The value of argc must match the number of integer arguments passed to func() , otherwise the behavior
is undefined.

The uc_link member is used to determine the context that will be resumed when the context being modified
by makecontext() returns. The uc_link member should be initialized prior to the call to makecon-
text() .

The swapcontext() function saves the current context in the context structure pointed to by oucp and
sets the context to the context structure pointed to by ucp.

RETURN VALUE
On successful completion, swapcontext() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

WARNINGS
Context APIs are not recommended due to possible compatibility problems from release to release, because
context APIs are very architecture-specific. The context APIs "expose" the architecture to the application,
such that the application may not be compatible with all releases.

If you must use context APIs, be aware of the following:

• Do not copy the context yourself. It is not contiguous. The context may have pointers that may point
back to the original context rather than in the copied context; hence, it will be broken.

• The size of the context will vary in length from release to release.

ERRORS
The makecontext() and swapcontext() functions will fail if:

[ENOMEM] The ucp argument does not have enough stack left to complete the opera-
tion.

SEE ALSO
exit(2), getcontext(2), sigaction(2), sigprocmask(2), <ucontext.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−139

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mkdir(2) mkdir(2)

NAME
mkdir - make a directory file

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

DESCRIPTION
The mkdir() system call creates a new directory file named by path. The file permission bits of the new
directory are initialized from mode, and are modified by the process’s file mode creation mask. For each bit
set in the process’s file mode creation mask, the corresponding bit in the new directory’s mode is cleared
(see umask(2)).

The directory’s owner ID is set to the process’s effective-user-ID. If the set-group-ID bit of the parent direc-
tory is set, the directory’s group ID is set to the group ID of the parent directory. Otherwise, the directory’s
group ID is set to the process’s effective-group-ID. The set-group-ID bit of the new directory is set to the
same value as the set-group-ID bit of the parent directory.

Symbolic constants defining the access permission bits are found in the <sys/stat.h> header and are
used to construct the argument mode. The value of the argument mode is the bitwise inclusive OR of the
values of the desired permissions.

S_IRUSR Read by owner.
S_IWUSR Write by owner.
S_IXUSR Execute (search) by owner.
S_IRGRP Read by group.
S_IWGRP Write by group.
S_IXGRP Execute (search) by group.
S_IROTH Read by others (that is, anybody else).
S_IWOTH Write by others.
S_IXOTH Execute (search) by others.

Access Control Lists (ACLs)
On systems implementing access control lists, the directory is created with three base ACL entries,
corresponding to the file access permission bits (see acl(5)).

RETURN VALUE
mkdir() returns one of the following values:

0 Successful completion.
-1 Failure. An error code is stored in errno .

ERRORS
If mkdir() fails, no directory is created and errno is set to one of the following values:

[EACCES] A component of the path prefix denies search permission.

[EACCES] The parent directory of the new directory denies write permission.

[EEXIST] The named file already exists.

[EFAULT] path points outside the process’s allocated address space. The reliable detection of this
error is implementation dependent.

[EIO] An I/O error occurred while writing to the file system.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[EMLINK] The maximum number of links to the parent directory, {LINK_MAX} , would be exceeded.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a com-
ponent of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis in effect.

[ENOENT] A component of the path prefix does not exist.

[ENOSPC] Not enough space on the file system.

Section 2−−140 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mkdir(2) mkdir(2)

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

AUTHOR
mkdir() was developed by the University of California, Berkeley.

SEE ALSO
chmod(2), setacl(2), stat(2), umask(2), acl(5), limits(5).

STANDARDS CONFORMANCE
mkdir() : AES, SVID2, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−141

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mknod(2) mknod(2)

NAME
mknod() - make directory, special, or ordinary file

SYNOPSIS
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

DESCRIPTION
The mknod() system call creates a new file named by the path name pointed to by path. The mode of the
new file is specified by the mode argument.

Symbolic constants that define the file type and file access permission bits are found in the
<sys/stat.h> header file and are used to construct the mode argument. The value of the mode argu-
ment should be the bit-wise inclusive OR of the values of the desired file type, miscellaneous mode bits, and
access permissions. See stat(5) for a description of the components of the file mode.

The owner ID of the file is set to the effective-user-ID of the process. If the set-group-ID bit of the parent
directory is set, the new file’s group ID is set to the group ID of the parent directory. Otherwise, the new
file’s group ID is set to the effective-group-ID of the process.

The file access permission bits of mode are modified by the process’s file mode creation mask: for each bit
set in the process’s file mode creation mask, the corresponding bit in the file’s mode is cleared (see
umask(2)).

The new file is created with three base access-control-list (ACL) entries, corresponding to the file access
permission bits (see acl(5)).

The dev argument is meaningful only if mode indicates a block or character special file, and is ignored oth-
erwise. It is an implementation- and configuration-dependent specification of a character or block I/O dev-
ice. The value of dev is created by using the makedev() macro defined in <sys/mknod.h> . The mak-
edev() macro takes as arguments the major and minor device numbers, and returns a device
identification number which is of type dev_t . The value and interpretation of the major and minor device
numbers are implementation-dependent. For more information, see mknod(5) and the System Administra-
tion manuals for your system.

Only users having appropriate privileges can invoke mknod() for file types other than FIFO files.

RETURN VALUE
mknod() returns the following values:

0 Successful completion.
-1 Failure. The new file is not created. errno is set to indicate the error.

ERRORS
If mknod() fails, errno is set to one of the following values.

[EACCES] The directory in which path would be created denies write permission, mode is for a
FIFO file and the caller does not have appropriate privileges.

[EACCES] A component of the path prefix denies search permission.

[EDQUOT] The user’s disk quota block or inode limit has been reached for this file system.

[EEXIST] The named path already exists.

[EFAULT] The path argument points outside the process’s allocated address space. The reliable
detection of this error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

[ENOENT] The path argument is null.

[ENOENT] A component of the path prefix does not exist.

Section 2−−142 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mknod(2) mknod(2)

[ENOSPC] Not enough space on the file system.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective-user-ID of the process does not match that of a user who has appropriate
privileges, and the file type is not FIFO special.

[EROFS] The directory in which the file is to be created is located on a read-only file system.

AUTHOR
mknod() was developed by AT&T and HP.

SEE ALSO
mknod(1M), chmod(2), exec(2), mkdir(2), setacl(2), umask(2), fs(4), acl(5), mknod(5), stat(5), types(5).

STANDARDS CONFORMANCE
mknod() : SVID2, SVID3, XPG2

HP-UX Release 11.0: October 1997 − 2 − Section 2−−143

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mlock(2) mlock(2)

NAME
mlock() - lock a segment of the process virtual address space in memory

SYNOPSIS
#include <sys/mman.h>

int mlock(const void * addr, size_t len) ;

DESCRIPTION
The mlock() system call allows the calling process to lock a segment of the process virtual address space
into memory. Any addressable segment of the process’ address space may be locked. Locked segments are
immune to all routine swapping.

addr must be a valid address in the process virtual address space. addr + len must also be a valid address
in the process virtual address space.

Locks are applied at page boundaries that encompass the range from addr to addr + len. If any address
within the range is not valid, an error is returned and no locks are applied.

munlock() or munlockall() can be used to unlock memory segments (or all memory segments)
locked with mlock() .

Regardless of how many times a process locks a page, a single munlock() or munlockall() will
unlock it. An munlock() of a page within a range specified in an mlock() call results in only the range
specified in the munlock() being unlocked.

When memory is shared by multiple processes and mlocks are applied to the same physical page by multi-
ple processes, a page remains locked until the last lock is removed from that page.

Locks applied with mlock() are not inherited by a child process.

The effective user ID of the calling process must be a superuser or the user must be a member of a group
that has the MLOCK privilege (see getprivgrp (2) and setprivgrp (1M))

Although plock() and the mlock() family of functions may be used together in an application, each
may affect the other in unexpected ways. This practice is not recommended.

RETURN VALUE
mlock() returns the following values:

0 Successful completion.
-1 Failure. The requested operation is not performed. errno is set to indicate the error.

ERRORS
If mlock() fails, errno is set to one of the following values:

[ENOMEM] One or more addresses in the specified range is not valid within the process address
space.

[EAGAIN] There is not enough lockable memory in the system to satisfy the locking request.

[EINVAL] The len parameter was zero.

[EPERM] The effective user ID of the calling process is not a superuser and the user does not
belong to a group that has the MLOCKprivilege.

EXAMPLES
The following call to mlock() locks the first 10 pages of the calling process in memory:

mlock(sbrk(0), 40960);

SEE ALSO
setprivgrp(1M), getprivgrp(2), mlockall(2), munlock(2), munlockall(2), plock(2)

STANDARDS CONFORMANCE
mlock() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−144 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mlockall(2) mlockall(2)

NAME
mlockall() - lock a process virtual address space in memory

SYNOPSIS
#include <sys/mman.h>

int mlockall(constant int flags);

DESCRIPTION
The mlockall() system call allows the calling process to lock its entire virtual address space into
memory, making it immune to all routine swapping.

flags may be one or both of the following:

MCL_CURRENT Lock the current process virtual address space. All addressable pages of the
address space are locked.

MCL_FUTURE Lock any future additions to the process virtual address space.

Note that MCL_FUTUREdoes not imply MCL_CURRENT.

munlockall() or munlock() can be used to unlock all or a portion of the address space locked with
mlockall() . A single call to munlockall() removes all locks from the process virtual address space.
An munlock() call results in only the specified pages being unlocked.

Regardless of how many times a process locks a page, a single munlock() or munlockall() will
unlock it.

When memory is shared by multiple processes and mlocks are applied to the same physical page by multi-
ple processes, a page remains locked until the last lock is removed from that page.

Locks and MCL_FUTUREapplied with mlockall() are not inherited by a child process.

The effective user ID of the calling process must be a superuser or the user must be a member of a group
that has the MLOCK privilege (see getprivgrp (2) and setprivgrp (1M)).

Although plock() and the mlock() family of functions may be used together in an application, each
may affect the other in unexpected ways. This practice is not recommended.

RETURN VALUE
mlockall() returns the following values:

0 Successful completion.
-1 Failure. The requested operation is not performed. errno is set to indicate the error.

ERRORS
If mlockall() fails, errno is set to one of the following values:

[EINVAL] The flags field did not contain either MCL_CURRENTand/or MCL_FUTURE.

[EAGAIN] There is not enough lockable memory in the system to satisfy the locking request.

[EPERM] The effective user ID of the calling process is not a superuser and the user does not
belong to a group that has the MLOCKprivilege.

EXAMPLES
The following call to mlockall() locks the entire process virtual address space in memory and ensures
that any future additions to the address space will also be locked in memory:

mlockall((MCL_CURRENT | MCL_FUTURE));

SEE ALSO
setprivgrp(1M), getprivgrp(2), mlock(2), munlock(2), munlockall(2), plock(2).

STANDARDS CONFORMANCE
mlockall() : POSIX Realtime Extensions, IEEE Std 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−145

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

NAME
mmap - map pages of memory

SYNOPSIS
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags,
int fildes, off_t off);

DESCRIPTION
Note: This manpage contains HP-UX extensions.

The mmap() function establishes a mapping between a process’ address space and a file. The format of the
call is as follows:

pa=mmap(addr, len, prot, flags, fildes, off);

The mmap() function establishes a mapping between the process’ address space at an address pa for len
bytes and the file associated with the file descriptor fildes at offset off for len bytes. The value of pa is an
unspecified function of the argument addr and values of flags, further described below. A successful
mmap() call returns pa as its result. The address ranges covered by [pa, pa+len] and [off, off+len] must be
legitimate for the possible (not necessarily current) address space of a process and the file, respectively.

If the size of the mapped file changes after the call to mmap() , the effect of references to portions of the
mapped region that correspond to added or removed portions of the file is unspecified.

The mmap() function is supported for regular files. Support for any other type of file is unspecified.

The prot argument determines whether read, write, execute, or some combination of accesses are permit-
ted to the pages being mapped. The protection options are defined in <sys/mman.h> :

PROT_READ Page can be read.

PROT_WRITE Page can be written.

PROT_EXEC Page can be executed.

PROT_NONE Page cannot be accessed.

Implementations need not enforce all combinations of access permissions. However, writes shall only be
permitted when PROT_WRITEhas been set.

The flags argument provides other information about the handling of the mapped pages. The options are
defined in <sys/mman.h> :

MAP_SHARED Share changes.

MAP_ADDR32 Share changes between 32-bit and 64-bit processes.

MAP_PRIVATE Changes are private.

MAP_FIXED Interpret addr exactly.

The MAP_PRIVATE and MAP_SHAREDflags control the visibility of write references to the memory
region. Exactly one of these flags must be specified. The mapping type is retained across a fork() .

If MAP_SHAREDis set in flags, write references to the memory region by the calling process may change
the file and are visible in all MAP_SHAREDmappings of the same portion of the file by any process of the
same executable type. That is, an application compiled as a 32-bit process will be able to share the same
mappings with other 32-bit processes, and an application compiled as a 64-bit process will be able to share
the same mappings with other 64-bit processes.

If a 64-bit and a 32-bit application want to share the same mapping, both MAP_ADDR32 and
MAP_SHAREDmust be set in flags by the 64-bit application. The 32-bit application does not need to set
MAP_ADDR32in flags. When MAP_SHAREDis set in flags, write references to the memory region by the
calling process may change the file. Changes are visible in all 32-bit processes which specify MAP_SHARED
and by all 64-bit processes which specify both MAP_SHAREDand MAP_ADDR32for the same portion of the
file.

If MAP_PRIVATE is set in flags, write references to the memory region by the calling process do not
change the file and are not visible to any process in other mappings of the same portion of the file.

Section 2−−146 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

It is unspecified whether write references by processes that have mapped the memory region using
MAP_SHAREDare visible to processes that have mapped the same portion of the file using
MAP_PRIVATE.

It is also unspecified whether write references to a memory region mapped with MAP_SHAREDare visible
to processes reading the file and whether writes to a file are visible to processes that have mapped the
modified portion of that file, except for the effect of msync() .

When MAP_FIXED is set in the flags argument, the implementation is informed that the value of pa must
be addr, exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to EINVAL .
If a MAP_FIXED request is successful, the mapping established by mmap() replaces any previous map-
pings for the process’ pages in the range [pa, pa+len].

When MAP_FIXED is not set, the implementation uses addr in an unspecified manner to arrive at pa. The
pa so chosen will be an area of the address space which the implementation deems suitable for a mapping
of len bytes to the file. All implementations interpret an addr value of 0 as granting the implementation
complete freedom in selecting pa, subject to constraints described below. A non-zero value of addr is taken
to be a suggestion of a process address near which the mapping should be placed. When the implementa-
tion selects a value for pa, it never places a mapping at address 0, nor does it replace any extant mapping,
nor map into dynamic memory allocation areas.

The off argument is constrained to be aligned and sized according to the value returned by sysconf()
when passed _SC_PAGESIZE or _SC_PAGE_SIZE. When MAP_FIXED is specified, the argument
addr must also meet these constraints. The implementation performs mapping operations over whole
pages. Thus, while the argument len need not meet a size or alignment constraint, the implementation will
include, in any unmapping operation, any partial page specified by the range [pa, pa+len].

The implementation always zero-fills any partial page at the end of a memory region. Further, the imple-
mentation never writes out any modified portions of the last page of a file that are beyond the end of the
mapped portion of the file. If the mapping established by mmap() extends into pages beyond the page con-
taining the last byte of the file, an application reference to any of the pages in the mapping that are beyond
the last page results in the delivery of a SIGBUS or SIGSEGV signal. The mmap() function adds an
extra reference to the file associated with the file descriptor fildes which is not removed by a subsequent
close() on that file descriptor. This reference is removed when there are no more mappings to the file.
The st_atime field of the mapped file may be marked for update at any time between the mmap() call and
the corresponding munmap() call. The initial read or write reference to a mapped region will cause the
file’s st_atime field to be marked for update if it has not already been marked for update.

The st_ctime and st_mtime fields of a file that is mapped with MAP_SHAREDand PROT_WRITE, will be
marked for update at some point in the interval between a write reference to the mapped region and the
next call to msync() with MS_ASYNCor MS_SYNCfor that portion of the file by any process. If there is
no such call, these fields may be marked for update at any time after a write reference if the underlying file
is modified as a result.

There may be implementation-dependent limits on the number of memory regions that can be mapped (per
process or per system). If such a limit is imposed, whether the number of memory regions that can be
mapped by a process is decreased by the use of shmat() is implementation-dependent.

RETURN VALUE
Upon successful completion, mmap() returns the address, (pa), at which the mapping was placed. Other-
wise, it returns MAP_FAILED (defined in <sys/mman.h>) and sets errno to indicate the error.

ERRORS
The mmap() function will fail if:

[EBADF] The fildes argument is not a valid open file descriptor.

[EACCES] The fildes argument is not open for read, regardless of the protection specified, or
fildes is not open for write and PROT_WRITEwas specified for a MAP_SHAREDtype
mapping.

[ENXIO] Addresses in the range [off, off+len] are invalid for fildes.

[EINVAL] The addr argument (if MAP_FIXED was specified) or off is not a multiple of the page
size as returned by sysconf() , or are considered invalid by the implementation.

[EINVAL] The value of flags is invalid (neither MAP_PRIVATEnor MAP_SHAREDis set).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−147

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

[EINVAL] The mapping already exists in 64-bit address space, but the application performing the
current mmap() request has been compiled as a 32-bit executable.

[EINVAL] The mapping already exists in 32-bit address space, but the application performing the
current mmap() request has been compiled as a 64-bit executable and did not specify
MAP_ADDR32in the flags argument.

[EMFILE] The number of mapped regions would exceed an implementation-dependent limit (per
process or per system).

[ENODEV] The fildes argument refers to a file whose type is not supported by mmap() .

[ENOMEM] MAP_FIXED was specified, and the range [addr, addr+len] exceeds that allowed for
the address space of a process; or if MAP_FIXED was not specified and there is
insufficient room in the address space to effect the mapping.

APPLICATION USAGE
Use of mmap() may reduce the amount of memory available to other memory allocation functions.

Use of MAP_FIXED may result in unspecified behavior in further use of brk() , sbrk() , malloc() ,
and shmat() . The use of MAP_FIXED is discouraged, as it may prevent an implementation from making
the most effective use of resources.

The application must ensure correct synchronization when using mmap() in conjunction with any other file
access method, such as read() and write() , standard input/output, and shmat() .

The mmap() function allows access to resources via address space manipulations, instead of
read() /write() . Once a file is mapped, all a process has to do to access it is use the data at the
address to which the file was mapped. So, using pseudo-code to illustrate the way in which an existing pro-
gram might be changed to use mmap() , the following:

fildes = open(...)
lseek(fildes, some_offset)
read(fildes, buf, len)
/* use data in buf */

becomes:

fildes = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
/* use data at address */

SEE ALSO
exec(2), fcntl(2), fork(2), lockf(2), msync(2), munmap(2), mprotect(2), shmop(2), sysconf(2).

Section 2−−148 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

HP-UX EXTENSIONS

NAME
mmap - map pages of memory

SYNOPSIS
#include <sys/mman.h>

caddr_t mmap(
caddr_t addr,
size_t len,
int prot,
int flags,
int fildes,
off_t off);

DESCRIPTION
MAP_FILE Create a mapped file region.

MAP_ANONYMOUSCreate an unnamed memory region.

MAP_VARIABLE Place region at implementation-computed address.

MAP_NORESERVELazily evaluate swap space reservation.

The MAP_FILE and MAP_ANONYMOUSflags control whether the region to be mapped is a mapped file
region or an anonymous shared memory region. Exactly one of these flags must be selected.

If MAP_FILE is set in flags:

• A new mapped file region is created, mapping the file associated with fildes.

• off specifies the file byte offset at which the mapping starts. This offset must be a multiple of the
page size returned by sysconf(_SC_PAGE_SIZE) .

• If the end of the mapped file region is beyond the end of the file, any reference to an address in
the mapped file region corresponding to an offset beyond the end of the file results in the delivery
of a SIGBUS signal to the process, unless the address lies in the last partial page corresponding
to the range beyond the end of the file. The last partial page mapping the range beyond the end
of the file is always initialized to zeros, and any modified portions of the last page of a file which
are beyond its end are not written back to the file.

If MAP_ANONYMOUSis set in flags:

• A new memory region is created and initialized to all zeros. This memory region can be shared
only with descendants of the current process.

• If the fildes argument is not −1, an EINVAL error is generated.

• The value of off is meaningless because there is no underlying file object for the memory region.

The MAP_VARIABLE and MAP_FIXED flags control the placement of the region as described below.
Exactly one of these flags must be selected.

If MAP_VARIABLEis set in flags:

• If the requested address is NULL, or if it is not possible for the system to place the region at the
requested address, the region is placed at an address selected by the system. If the requested
address is not a multiple of the page size returned by sysconf(_SC_PAGE_SIZE) , the sys-
tem treats the address as if it were rounded up to the next larger page size multiple.

If MAP_FIXED is set in flags:

• addr must be a multiple of the page size returned by sysconf(_SC_PAGE_SIZE) .

If MAP_NORESERVEis set in flags:

• no swap space is initially be reserved for the private mapping. Without this flag, the creation of
a MAP_PRIVATE region reserves swap space equal to the size of the mapping. When a page in
the mapping is first modified (written into), a private page is created and the swap space which

HP-UX Release 11.0: October 1997 − 1 − Section 2−−149

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

had been reserved is used to hold the private copy of the data in the event of a page-out. An ini-
tial write into a page of a MAP_NORESERVE mapping produces results which depend on the
current availability of system swap space since the swap space reservation occurs at the time of
the first write and only for the affected page. If the swap space reservation can be made for the
page, the write succeeds and is processed as described above; if not, the write fails and a
SIGBUS signal is posted to the writing process for the effective virtual address.
madvise(...,MADV_DONTNEED) on a MAP_NORESERVE object will release swap space
reservations for relevant pages.

The prot argument can be PROT_NONE, or any combination of PROT_READ, PROT_WRITE, and
PROT_EXECOR’ed together. If PROT_NONEis not specified, the system may grant other access permis-
sions to the region in addition to those explicitly requested, except that write access will not be granted
unless PROT_WRITEis specified.

mmap() cannot create a mapped file region unless the file descriptor used to map the file is open for read-
ing. For a mapped file region that is mapped with MAP_SHARED, mmap() grants write access permission
only if the file descriptor is open for writing. If a region was mapped with either MAP_PRIVATE or
MAP_ANONYMOUS, mmap() grants all requested access permissions.

After the successful completion of mmap() , fildes can be closed without effect on the mapped region or on
the contents of the mapped file. Each mapped region creates a file reference, similar to an open file
descriptor, that prevents the file data from being deallocated.

Whether modifications made to the file using write() are visible to mapped regions, and whether
modifications to a mapped region are visible with read() , is undefined except for the effect of msync() .

If an enforcement-mode file lock is in effect for any range of a file, a call to mmap() to map any range of
the file with access rights that would violate the lock fails. The msem_lock() and msem_unlock()
semaphore interfaces can be used to coordinate shared access to a region created with the MAP_SHARED
flag. The advisory locks of the lockf() or fcntl() interfaces have no effect on memory mapped
access, but they can be used to coordinate shared access to a MAP_SHAREDmapped file region.

For a memory mapped file, the st_atime and st_mtime values returned by stat() are updated when a
page in the memory mapped region is read from or written to the file system.

After a call to fork() , the child process inherits all mapped regions with the same data and the same
sharing and protection attributes as in the parent process. Each mapped file and anonymous memory
region created with mmap() is unmapped upon process exit, and by a successful call to any of the exec
functions.

MAP_NORESERVEattribute is inherited across a fork() call; at the time of the fork() , swap space for
a mapping is reserved in the child only for dirtied private pages that currently exist in the parent;
thereafter the child’s mapping reservation policy is as described above.

A SIGBUS signal is delivered to a process when a write reference to a mapped file region would cause a
file system error condition such as exceeding quota or file system space limits.

A SIGBUS signal is delivered to a process upon a write reference to a region without PROT_WRITEpro-
tection, or any reference to a region with PROT_NONEprotection.

A call to mmap() with PROT_EXECUTEspecified, but without PROT_WRITE specified for a
MAP_SHARED|MAP_FILEmapping is treated by the system as the execution of the underlying file. This
implies that such a call fails if the file is currently open for writing or mapped with
MAP_SHARED|PROT_WRITEoptions by any process, and that if the call succeeds, the file cannot be
opened for writing or subsequently mapped with MAP_SHARED|PROT_WRITEoptions as long as such
mappings are present. A file’s status as an active executable file is determined only at the time of an
exec() , exit() , or mmap() operation. mprotect() operations on a MAP_FILE|MAP_SHARED
mapping have no effect on the underlying file’s status as an active executable file.

ERRORS
[EACCES] The file referred to by fildes is not open for read access, or the file is not open for write

access and PROT_WRITE was set for a MAP_SHAREDmapping operation, or
PROT_EXECUTEwas set for a MAP_SHAREDmapping operation and the underlying
file does not have execute permission.

[EOVERFLOW]
The file is a regular file and the value of off+len exceeds the offset maximum esta-
blished in the open file description associated with fildes.

Section 2−−150 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

[ETXTBSY] MAP_SHAREDand MAP_FILE are set, and PROT_EXECUTE is set and
PROT_WRITEis not set, and the file being mapped is currently open for writing.

[EINVAL] The value of off+len exceeds the maximum supported offset for mapped files.

DEPENDENCIES
Series 700/800

Because the PA-RISC memory architecture utilizes a globally shared virtual address space between
processes and discourages multiple virtual address translations to the same physical address, all con-
currently existing MAP_SHAREDmappings of a file range must share the same virtual address offsets and
hardware translations. PA-RISC-based HP-UX systems allocate virtual address ranges for shared memory
and shared mapped files in the range 0x80000000 through 0xefffffff for those applications compiled as 32-bit
executables or for those 64-bit applications which specify MAP_SHAREDand MAP_ADDR32in the flags
argument of the mmap() function. For applications compiled as 64-bit executables which specify
MAP_SHAREDand do not specify MAP_ADDR32, the shared mapped files are in the range 0x00000011
00000000 through 0x000003ff ffffffff and 0xc0000000 00000000 through 0xc00003ff ffffffff. These address
ranges are used globally for all memory objects shared between processes.

This implies the following:

• Any single range of a file cannot be mapped multiply into different virtual address ranges.

• After the initial MAP_SHARED mmap()of a file range, all subsequent MAP_SHAREDcalls to
mmap() to map the same range of a file must either specify MAP_VARIABLE in flags and
inherit the virtual address range the system has chosen for this range, or specify MAP_FIXED
with an addr that corresponds exactly to the address chosen by the system for the initial map-
ping. Only after all mappings for a file range have been destroyed can that range be mapped to a
different virtual address.

• In most cases, two separate calls to mmap() cannot map overlapping ranges in a file. The vir-
tual address range reserved for a file range is determined at the time of the initial mapping of
the file range into a process address space. The system allocates only the virtual address range
necessary to represent the initial mapping. As long as the initial mapping exists, subsequent
attempts to map a different file range that includes any portion of the initial range may fail with
an ENOMEM error if an extended contiguous address range that preserves the mappings of the
initial range cannot be allocated.

• Separate calls to mmap() to map contiguous ranges of a file do not necessarily return contigu-
ous virtual address ranges. The system may allocate virtual addresses for each call to mmap()
on a first available basis.

• The use of MAP_FIXED is strongly discouraged because it is not portable. Using MAP_FIXED
is generally unsuccessful on this implementation, and when it is successful, it may prevent the
system from optimally allocating virtual address space.

MAP_FIXED is discouraged, but there are some applications which by design must fix pointer offsets into
file data. The application must map the file at a specific address in order for the file offsets embedded in
the file to make sense.

Processes cannot control the usage of global virtual address space, but they can control what happens
within their private data area. The Series 700/800 allows a single process to exclusively map a file
MAP_SHAREDinto its private data space. When a process specifies MAP_SHAREDand MAP_FIXED
with a private data address (i.e. second quadrant for 32-bit executable, third quadrant for 64-bit execut-
able), the kernel interprets this as an exclusive mapping of the file. The request will only succeed if no
other processes in the system currently have that file mapped through MAP_SHARED. If the file is already
mapped the caller receives an EBUSY error. If the call is successful, the calling process is the only process
allowed to map that file using MAP_SHAREDuntil it unmaps the file using munmap() . Because it is
exclusive, the mmap() is not inherited across fork() . When a file is exclusively mapped only
MAP_PRIVATEmappings are allowed by other processes.

The following combinations of protection modes are supported:

PROT_NONE
PROT_READ
PROT_READ|PROT_EXECUTE
PROT_READ|PROT_WRITE
PROT_READ|PROT_WRITE|PROT_EXECUTE

HP-UX Release 11.0: October 1997 − 3 − Section 2−−151

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mmap(2) mmap(2)

If a MAP_PRIVATEmapping is created of a file for which a MAP_SHAREDmapping exists, a separate
copy of a page for the MAP_PRIVATE mapping is created at the time of the first access to the page
through the private mapping.

AUTHOR
mmap() was developed by HP, AT&T, and OSF.

SEE ALSO
fcntl(2), fork(2), truncate(2), lockf(2), madvise(2), creat64(2), mprotect(2), msem_init(2), msem_lock(2),
msem_unlock(2), msync(2), munmap(2), sysconf(2), mman(5), stat(5).

STANDARDS CONFORMANCE
mmap() : AES, SVID3

Section 2−−152 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

modload(2) modload(2)

NAME
modload - load kernel modules on demand

SYNOPSIS
#include <sys/mod.h>
int modload(char * pathname);

DESCRIPTION
modload allows processes with appropriate privilege to demand-load a kernel module into the running
kernel. The module must be of a supported type and must have been registered via config(1M) or
kmmodreg(1M) before it can be loaded.

The module to be loaded is specified by pathname. pathname may be either a module name or an absolute
pathname. If pathname is a module name, a list of directories specified by modpath is searched for a match.
If pathname is absolute, only pathname is used to access the object file. The file must be an ELF64 relocat-
able object file.

NOTES
modload is currently implemented as a macro.

RETURN VALUE
On successful completion, modload returns a module identifier that can be passed to moduload or
modstat . On failure it returns -1 and sets errno to identify the error.

ERRORS
modload fails if one or more of the following are true:

[EACCES] A component of pathname denies search permission.

[ENOENT] The file named by pathname does not exist.

[ENOREG] Module being loaded is not currently registered.

[EINVAL] The file named by pathname is not appropriately pre-configured or has invalid
dependency on other modules.

[EPERM] The calling process does not have appropriate privilege.

[ERELOC] A relocation error occurred during the attempt to load the module, or the module
references symbols not defined in the running kernel, or the module references
symbols in another loadable module but it did not declare its dependence on this
module in its master(4) file.

[ENAMETOOLONG] pathname is more than MAXPATHLENcharacters long.

[EBADVER] The module wrapper has an incorrect version number.

[ENOSYS] The Dynamically Loadable Kernel Module feature is not initialized.

SEE ALSO
config(1M), kmadmin(1M), kmmodreg(1M), modstat(2), moduload(2), master(4).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−153

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

modpath(2) modpath(2)

NAME
modpath - change global search path for dynamically loadable kernel modules

SYNOPSIS
#include <sys/mod.h>
int modpath(const char * pathname);

DESCRIPTION
modpath allows users with appropriate privilege to modify the global search path used to locate object
files for dynamically loadable kernel modules. The search path modifications take effect immediately and
affect all subsequent loads for all users on the system.

pathname may be either a colon-separated list of absolute pathnames or NULL. If the former, these path
names represent directories which should be searched for all autoloads of loadable kernel modules and for
demand loads (see modload(2)) where the module is given by a simple file name. This list of directories will
be prepended to the existing list of directories and so will be searched before any directories given in previ-
ous calls to modpath and before the default location which is always searched last. The directories do not
have to exist on the system at the time modpath is called, or when a load actually takes place. If path-
name is equal to NULL, the global search path is set back to its initial default value,
/stand/dlkm/mod.d .

NOTES
modpath is currently implemented as a macro.

RETURN VALUE
On success, modpath returns 0, otherwise it returns -1 and sets errno to indicate the error.

ERRORS
modpath fails if one or more of the following are true:

[EINVAL] The list of directories specified by pathname is malformed.

[ENOSYS] The Dynamically Loadable Kernel Module feature is not initialized.

[ENAMETOOLONG] pathname is more than MAXPATHLENcharacters long.

[EPERM] The calling process does not have appropriate privilege.

SEE ALSO
kmadmin(1M), modload(2).

Section 2−−154 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

modstat(2) modstat(2)

NAME
modstat - get information for a dynamically loaded kernel module

SYNOPSIS
#include <sys/mod.h>
int modstat(int module_id, struct modstatus * stbuf,

int get_next_module);

DESCRIPTION
The modstat function allows processes with appropriate privilege to get information for dynamically
loaded kernel modules. It fills in the elements of the modstatus structure, specified by stbuf, with the
information available for the given module identifier module_id. If the value of get_next_module is TRUE,
modstat returns the information for the next module whose identifier is greater than or equal to
module_id. Any module_id associated with a registered module (see kmadmin(1M)) may be queried by
modstat .

The struct modstatus and struct modspecific_stat definitions are:

struct modstatus {
int32_t ms_id; /* numeric id of module */
uint64_t ms_base; /* base address of module */
uint32_t ms_size; /* amount of memory of module

when loaded */
uint64_t ms_bss; /* base address of BSS */
uint32_t ms_bss_size; /* memory size of BSS */
int32_t ms_rev; /* version number */
char ms_path[MAXPATHLEN]; /* loaded module path */
time_t ms_unload_delay; /* unload delay */
int32_t ms_holdcnt; /* hold count */
int32_t ms_depcnt; /* dependent count */
struct modspecific_stat /* module type specific info */

ms_msinfo[MODMAXLINK];
};
struct modspecific_stat {

char mss_linkinfo[MODMAXLINKINFOLEN]; /* informational */
int32_t mss_type; /* type of module */
int32_t mss_p0[2]; /* type specific info */
int32_t mss_p1[2]; /* type specific info */

}

NOTES
modstat is currently implemented as a macro.

RETURN VALUE
On success, modstat returns 0, otherwise it returns -1 and sets errno to indicate the error.

ERRORS
modstat fails if one or more of the following are true:

[EINVAL] module_id does not match any loaded or registered module when get_next_module
is FALSE or module_id is greater than the identifier for any loaded module when
get_next_module is TRUE.

[ENOSYS] The Dynamically Loadable Kernel Module feature is not initialized.

[EPERM] The calling process does not have appropriate privilege.

SEE ALSO
kmadmin(1M), modload(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−155

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

moduload(2) moduload(2)

NAME
moduload - unload a kernel module on demand

SYNOPSIS
#include <sys/mod.h>
int moduload(long module_id);

DESCRIPTION
moduload allows users with appropriate privilege to demand unload one or all unloadable modules from
the running kernel. A module is considered unloadable if it is not currently in use, if no module depending
on it is currently loaded, and if the module is not being loaded or unloaded from the kernel. If module_id is
set to 0 (zero), moduload attempts to unload all unloadable modules, otherwise moduload attempts to
unload the module specified by module_id.

NOTES
moduload is currently implemented as a macro.

RETURN VALUE
On success, moduload returns 0, otherwise it returns -1 and sets errno to indicate the error.

ERRORS
moduload fails if one or more of the following are true:

[EINVAL] module_id does not correspond to any valid currently loaded kernel module.

[EPERM] The calling process does not have appropriate privilege.

[EBUSY] There are outstanding references to the module, or modules that depend on this
module are currently loaded, or profiling is enabled, or the module is in the process
of being loaded or unloaded from the kernel.

[ENOSYS] The Dynamically Loadable Kernel Module feature is not initialized.

SEE ALSO
kmadmin(1M), modload(2).

Section 2−−156 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mount(2) mount(2)

NAME
mount() - mount a file system

SYNOPSIS
#include <sys/mount.h>

int mount(const char *fs, const char *path, int mflag);

int mount(const char *fs,
const char *path,

int mflag,
const char *fstype,
const char *dataptr,

int datalen);

DESCRIPTION
The mount() system call requests that a file system identified by fs be mounted on the file identified by
path.

mflag contains a bit-mask of flags (described below). Note that the MS_DATAflag must be set for the six-
argument version of the call.

fstype is the file system type name. It is the same name that sysfs(2) uses.

The last two arguments together describe a block of file-system-specific data at address dataptr of length
datalen. This is interpreted by file-system-specific code within the operating system and its format depends
upon the file system type. A particular file system type may not require this data, in which case dataptr
and datalen should both be zero. The mounting of some file system types may be restricted to a user with
appropriate privileges.

mount() can be invoked only by a user who has appropriate privileges.

Upon successful completion, references to the file path will refer to the root directory of the mounted file
system.

mflag contains a bit-mask of flag values, which includes the following defined in <sys/mount.h> :

MS_DATA This is ordinarily required. It indicates the presence of the fstype, dataptr, and
datalen arguments.

(For backward compatibility, if this flag is not set, the fstype is assumed to be that of
the root file system, and dataptr and datalen are assumed to be zero.)

MS_RDONLY This is used to control write permission on the mounted file system. If not set, writ-
ing is permitted according to individual file accessibility.

MS_NOSUID This flag disables set-user-ID and set-group-ID behavior on this file system.

MS_QUOTA This causes quotas to be enabled if the file system supports quotas.

If fstype is specified as:

MNTTYPE_HFS
Mount a local HFS file system. dataptr points to a structure of the following format, if
the options described below need to be specified for the mount:

struct ufs_args {
char *fspec;
int flags;

};

fspec points to the name of the block special file that is to be mounted. This is identi-
cal in use and function to the first argument, fs, of the system call.

flags points to a bit map that sets options. The following values of the bits are defined
in <sys/mount.h> :

MS_DELAY Writes to disks are to be delayed until the buffer needs to be
reused. This is the default on Series 800 systems, as it was prior
to release 10.0.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−157

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mount(2) mount(2)

MS_BEHIND Writes to disks are to be done asynchronously, where possible,
without waiting for completion. This is the default on Series 700
systems, as it was prior to release 10.0.

MS_BEHINDand MS_DELAYare mutually exclusive.

MS_NO_FSASYNCRigorous posting of file system metadata is to be used. This is
the default.

MS_FSASYNC Relaxed posting of file system metadata is to be used. This may
lead to better performance for certain applications; but there is
increased potential for data loss in case of a crash.

MS_FSASYNCand MS_NO_FSASYNCare mutually exclusive.

RETURN VALUE
mount() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If mount() fails, errno is set to one of the following values.

[EACCES] A component of the path prefix denies search permission.

[EBUSY] path is currently mounted on, is someone’s current working directory, or is otherwise
busy.

[EBUSY] The file system associated with fs is currently mounted.

[EBUSY] The system cannot allocate the necessary resources for this mount.

[EFAULT] fs, path or dataptr points outside the allocated address space of the process. The reli-
able detection of this error is implementation dependent.

[EINVAL] An argument to the system call is invalid, or a sanity check failed.

[ELOOP] Too many symbolic links were encountered in translating a path name argument.

[ENAMETOOLONG]
The length of a path name exceeds PATH_MAX, or a path name component is longer
than NAME_MAXwhile _POSIX_NO_TRUNCis in effect.

[ENODEV] fstype is a file system that is not been configured into the kernel.

[ENOENT] A named file does not exist.

[ENOENT] fs or path is null.

[ENOTBLK] fs is not a block special device and the file system type requires it to be.

[ENOTDIR] A component of a path prefix is not a directory.

[ENOTDIR] path is not a directory.

[ENXIO] The device associated with fs does not exist and the file system type requires it to be.

[EPERM] The process does not have the appropriate privilege and the file system type requires
it.

[EROFS] The requested file system is write protected and mflag requests write permission.

WARNINGS
If mount() is called from the program level (i.e., not called with the mount command (see mount(1M)),
the table of mounted devices contained in /etc/mnttab is not updated. The updating of
/etc/mnttab is performed by the mount and syncer commands (see mount(1M) and syncer(1M)).

SEE ALSO
mount(1M), syncer(1M), sysfs(2), umount(2).

Section 2−−158 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mpctl(2) mpctl(2)

NAME
mpctl - multiprocessor control

SYNOPSIS
#include <sys/mpctl.h>

int mpctl(
mpc_request_t request,
spu_t spu,
pid_t pid

);

int mpctl(
mpc_request_t request,
spu_t spu,
lwpid_t lwpid

);

REMARKS
Much of the functionality of this capability is highly dependent on the underlying hardware. An
application that uses this system call should not be expected to be portable across architectures or
implementations.

DESCRIPTION
mpctl provides a means of determining how many processors are installed in the system and assigning
proceses/lightweight processes to run on specific processors.

This call is expected to be used to increase performance in certain applications, but should not be used to
ensure correctness of an application. Specifically, cooperating processes/lightweight processes should not
rely on processor assignment in lieu of a synchronization mechanism (such as semaphores).

The request argument determines the precise action to be taken by mpctl and is one of the following:

MPC_GETNUMSPUS
This request returns the number of spus (processors) in the system. It will always
be greater than or equal to 1. The spu and pid (or lwpid) arguments are ignored.

MPC_GETFIRSTSPU
This request returns the number of the first processor in the system. The spu and
pid (or lwpid) arguments are ignored.

MPC_GETNEXTSPU
This request returns the number of the next processor in the system after spu.
Typically, MPC_GETFIRSTSPU is called to determine the first spu.
MPC_GETNEXTSPU is then called in a loop (until the call returns -1) to determine
the numbers of the remaining spus. The pid (or lwpid) argument is ignored.

MPC_GETCURRENTSPU
This request returns the number of the processor the process is currently running
on (NOT the processor assignment of the caller). The number of the processor the
process is currently running on is undefined if the process is multithreaded. The
spu and pid (or lwpid) arguments are ignored. This information may be
out-of-date arbitrarily soon after the call completes.

MPC_SETPROCESS
This call is advisory. This request asynchronously assigns process pid to proces-
sor spu. Since the new spu assignment is returned, the spu
MPC_SPUNOCHANGE may be passed to read the current assignment. The pid
MPC_SELFPID may be used to refer to the calling process. The spu
MPC_SPUFLOAT may be used to break any specific-processor assignment. This
allows the process to float to any processor.

Note: This call is advisory . If the scheduling policy for a process conflicts with this
processor assignment, the scheduling policy takes precedence. For example, when
a processor is ready choose another process/lightweight process to execute, and the
highest priority SCHED_FIFOprocess is bound to a different processor, that pro-
cess will execute on the selecting processor rather than waiting for the specified

HP-UX Release 11.0: October 1997 − 1 − Section 2−−159

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mpctl(2) mpctl(2)

processor to which it was bound.

If the process specified by pid is a multithreaded process, all threads (lightweight
processes) in the target process will have their processor assignment changed to
what is specified.

MPC_SETPROCESS_FORCE
This call is identical to MPC_SETPROCESS except that the process to processor
binding will override the scheduling policy. This call is synchronous. For example,
when a processor is ready choose another process/lightweight process) to execute,
and the highest priority SCHED_FIFO process is bound to a different processor,
that process will not be selected to execute on the selecting processor, but instead
wait for the specified processor to which it was bound. The selecting processor will
then choose a lower priority process to execute on the processor.

Note: This option will not guarantee compliance with POSIX real-time scheduling
algorithms.

If the process specified by pid is a multithreaded process, all threads (lightweight
processes) in the target process will have their processor assignment changed to
what is specified.

MPC_SETLWP This call is advisory . This request asynchronously assigns thread (lightweight pro-
cess - LWP) lwpid to processor spu. This option is only available to change the
assignment for threads (LWPs) in the current process. Since the new spu assign-
ment is returned, the spu MPC_SPUNOCHANGE may be passed to read the
current assignment. The lwpid MPC_SELFLWPID may be used to refer to the cal-
ling thread (LWP). The spu MPC_SPUFLOAT may be used to break any
specific-processor assignment. This allows the thread (LWP) to float to any proces-
sor.

Note: This call is advisory . If the scheduling policy for a thread (LWP) conflicts
with this processor assignment, the scheduling policy takes precedence. For exam-
ple, when a processor is ready choose another thread (LWP) to execute, and the
highest priority SCHED_FIFO thread (LWP) is bound to a different processor,
that thread (LWP) will execute on the selecting processor rather than waiting for
the specified processor to which it was bound.

MPC_SETLWP_FORCE
This call is identical to MPC_SETLWP except that the thread (LWP) to processor
binding will override the scheduling policy. This call is synchronous. For example,
when a processor is ready choose another thread (LWP) to execute, and the highest
priority SCHED_FIFOthread (LWP) is bound to a different processor, that thread
(LWP) will not be selected to execute on the selecting processor, but instead wait
for the specified processor to which it was bound. The selecting processor will then
choose a lower priority thread (LWP) to execute on the processor.

Note: This option will not guarantee compliance with POSIX real-time scheduling
algorithms.

MPC_GETPROCESS_BINDINGTYPE
This request returns MPC_ADVISORY or MPC_MANDATORY to indicate the
current binding type of the process specified by pid. The spu argument is ignored.

MPC_GETLWP_BINDINGTYPE
This request returns MPC_ADVISORY or MPC_MANDATORY to indicate the
current binding type of the thread (LWP) specified by lwpid. The spu argument is
ignored.

To change the processor assignment of another process, the caller must be a member of a group having
PRIV_MPCTL access (or be the super-user).

If the request argument specifies MPC_SETPROCESS or MPC_SETPROCESS_FORCE and the process
specified by pid is a multi-threaded process, the processor binding specified shall be applied for all light-
weight processes contained within pid.

Each process shall contain a specified processor binding. Each lightweight process shall contain a processor
binding. The processor binding for a lightweight process does not have to match the processor binding for
the process.

Section 2−−160 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mpctl(2) mpctl(2)

When a process creates another process (via fork() or vfork()) the child process will inherit the
parent processes processor binding. The initial lightweight process in the child process shall inherit its pro-
cessor binding from the child process. Lightweight processes other than the initial lightweight process shall
inherit their processor binding from the creating lightweight process.

ERRORS
In general, mpctl fails if one or more of the following is true:

[EINVAL] request is an illegal number.

[EINVAL] request is MPC_GETNEXTSPU and spu identifies the last processor.

[ESRCH] pid or lwpid identifies a process or LWP that does not exist.

[EPERM] request is MPC_SETPROCESS or MPC_SETPROCESS_FORCE, spu is not
MPC_SPUNOCHANGE, pid identifies another process, and the caller is not the super-
user or a member of a group having PRIV_MPCTL access.

SEE ALSO
getprivgrp(1), setprivgrp(1M), getprivgrp(2), fork(2), privgrp(4).

HP-UX Release 11.0: October 1997 − 3 − Section 2−−161

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mprotect(2) mprotect(2)

NAME
mprotect - set protection of memory mapping

SYNOPSIS
#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

DESCRIPTION
The mprotect() function changes the access protections on the mappings specified by the range [addr,
addr+len], rounding len up to the next multiple of the page size as returned by sysconf() , to be that
specified by prot. Legitimate values for prot are the same as those permitted for mmap() and are defined
in <sys/mman.h> :

PROT_READ Page can be read.

PROT_WRITEPage can be written.

PROT_EXEC Page can be executed.

PROT_NONE Page cannot be accessed.

When mprotect() fails for reasons other than EINVAL, the protections on some of the pages in the
range [addr, addr+len] may have been changed.

RETURN VALUE
Upon successful completion, mprotect() returns 0. Otherwise, it returns -1 and sets errno to indicate
the error.

ERRORS
The mprotect() function will fail if:

[EACCES] The prot argument specifies a protection that violates the access permission the pro-
cess has to the underlying memory object.

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf() .

[ENOMEM] Addresses in the range [addr, addr+len] are invalid for the address space of a process,
or specify one or more pages which are not mapped.

The mprotect() function may fail if:

[EAGAIN] The prot argument specifies PROT_WRITEover a MAP_PRIVATE mapping and
there are insufficient memory resources to reserve for locking the private page.

SEE ALSO
mmap(2), sysconf(2), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−162 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mprotect(2) mprotect(2)

HP-UX EXTENSIONS

SYNOPSIS
int mprotect(

caddr_t addr,
size_t len,
int prot);

DESCRIPTION
If the address range does not correspond to one created by a successful call to mmap() , mprotect()
returns an error. prot determines whether read, write, execute, or some combination of accesses are per-
mitted to the data being mapped.

If the address range being modified corresponds to a mapped file that was mapped with MAP_SHARED,
mprotect() grants write access permission only if the file descriptor used to map the file was opened for
writing. If the address range corresponds to a mapped file that was mapped with the MAP_PRIVATEor
the MAP_ANONYMOUSflag, mprotect() grants all requested access permissions.

For example, suppose an error occurs on some page at an addr2; mprotect() may have modified the
protections of all whole pages in the range [addr,addr2].

ERRORS
[EINVAL] prot is invalid, or addr is not a multiple of the page size as returned by

sysconf(_SC_PAGE_SIZE) .

[EFAULT] The range specified by [addr, addr+len] (from, and including, addr to, but not includ-
ing, addr+len) is invalid for a process’ address space, or the range specifies one or
more unmapped pages.

AUTHOR
mprotect() was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
mprotect(): AES, SVID3

HP-UX Release 11.0: October 1997 − 1 − Section 2−−163

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_close(2) mq_close(2)

NAME
mq_close - close a message queue descriptor

SYNOPSIS
#include <sys/mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
The mq_close() system call removes the association between the message queue descriptor, mqdes, and
a message queue. Use of this message queue descriptor by the process, after a successful return from this
mq_close() , and until this descriptor is returned by a subsequent mq_open() , will result in the failure
of message queue system calls, with errno set to EBADF.

If the process has a registered notification request with the message queue associated with this mqdes, the
registration is canceled and the queue becomes available for another process to register a notification
request.

If the message queue has been unlinked and mqdes is the only existing open descriptor for the queue, the
queue is destroyed.

RETURN VALUE
mq_close() returns the following values:

0 Successful completion.

-1 Failure. errno is set to indicate the error.

ERRORS
If mq_close() fails, errno is set to one of the following values:

[EBADF] mqdes is not a valid message queue descriptor.

[ENOSYS] mq_close() is not supported by the implementation.

SEE ALSO
mq_open(2), mq_unlink(2), mq_notify(2).

STANDARDS CONFORMANCE
mq_close() : POSIX 1003.1b

Section 2−−164 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_getattr(2) mq_getattr(2)

NAME
mq_getattr - get status information and attributes associated with a message queue

SYNOPSIS
#include <sys/mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

DESCRIPTION
The mq_getattr() system call collects status information and attributes associated with the message
queue specified by mqdes which is copied into the mq_attr structure referenced by mqstat.

Upon a successful return, the mq_msgsize and mq_maxmsg fields within the mq_attr structure contain the
maximum size of a message for this queue and the maximum number of messages that can be queued at
any time. The mq_curmsgs field contains the number of messages currently on the queue. In addition, the
mq_flags field contains the message queue blocking status associated with this mqdes.

RETURN VALUE
mq_getattr() returns the following values:

0 Successful completion.

-1 Failure. errno is set to indicate the error.

ERRORS
If mq_getattr() fails, errno is set to one of the following values:

[EBADF] mqdes is not a valid message queue descriptor.

[EINVAL] mqstat does not point to a valid mq_attr structure.

[ENOSYS] mq_getattr() is not supported by the implementation.

SEE ALSO
mq_getattr(2), mq_open(2).

STANDARDS CONFORMANCE
mq_getattr() : POSIX 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−165

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_notify(2) mq_notify(2)

NAME
mq_notify - register/cancel a notification request with a message queue

SYNOPSIS
#include <sys/mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

DESCRIPTION
If the argument notification is not NULL, the mq_notify() system call registers the calling process to be
notified of message arrival at an empty message queue associated with the message queue descriptor
mqdes. The notification specified by the notification argument will be sent to the process when the message
queue transitions from the empty state to the non-empty state. At any time, only one process can be
registered for notification with a message queue. If the calling process, or any other process has already
registered for notification with the specified message queue, subsequent attempts to register with that
queue will fail.

If notification is NULL and the process is currently registered for notification with the specified message
queue, the existing registration is canceled.

When the notification is sent to the registered process, its registration is removed. The message queue is
then available for registration.

If there is some process blocked in mq_receive() waiting to receive a message from a message queue,
the arrival of a message on the queue will satisfy the mq_receive() , even if the queue has a registered
notification request. The resulting behavior is as if the message queue remains empty, and no notification is
sent.

RETURN VALUE
mq_notify() returns the following values:

0 Successful completion.

-1 Failure. errno is set to indicate the error.

ERRORS
If mq_notify() fails, errno is set to one of the following values:

[EAGAIN] The system lacks sufficient signal queuing resources to honor the request.

[EBADF] The mqdes argument is not a valid message queue descriptor.

[EBUSY] A process is already registered for notification with the message queue.

[EINVAL] An attempt was made to cancel a non-existent notification request, or notification
points to an invalid address.

[ENOSYS] mq_notify() is not supported by the implementation.

SEE ALSO
mq_open(2), mq_send(2).

STANDARDS CONFORMANCE
mq_notify() : POSIX 1003.1b

Section 2−−166 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_open(2) mq_open(2)

NAME
mq_open - create/open a message queue

SYNOPSIS
#include <sys/mqueue.h>

mqd_t mq_open(const char *name,
int oflag, ...
/*

* [mode_t mode, struct mq_attr]
*/

);

Remarks
The ANSI C ", ... " construct specifies a variable length argument list whose optional members are given
in the associated comment (/* */).

DESCRIPTION
The mq_open() system call establishes a connection between a process and a message queue. It returns
a new message queue descriptor which is used by other message queue system calls to refer to that queue.

The name argument points to the message queue name, and must conform to the rules listed in Message
Queue Naming Convention.

The oflag argument is the bitwise inclusive OR of the flags listed in Read-Write Flags, and General Flags
below.

The new message queue descriptor returned, remains open across the fork() system call and is inherited
by the child process.

Read-Write Flags
The value of oflag must be composed by taking the inclusive OR of exactly one of the following flags:

O_RDONLY Open for receiving only.

O_WRONLY Open for sending only.

O_RDWR Open for sending and receiving.

General Flags
Any combination of the following flags may also be used in setting the value of oflag.

O_CREAT This flag must be used to create a message queue, and it uses two additional argu-
ments: mode which is of type mode_t , and attr which is a pointer to a mq_attr
structure. If a message queue with name, name, exists, this flag has no effect, except
as noted under O_EXCL. Otherwise a new message queue is created. The user ID of
the queue will be set to the effective user ID of the process, and the group ID of the
queue will be set to the effective group ID of the process. The "file permission bits" will
be set to the value of mode. If attr is NULL, the message queue is created with
default attributes - MQ_MAXMSGand MQ_MSGSIZE(defined in sys/mqueue.h) If
attr is non-NULL and the message queue mq_maxmsg and mq_msgsize attributes are
set to the values of the corresponding members in the mq_attr structure referred to
by attr.

O_EXCL If O_EXCL and O_CREATare set in oflag and the named message queue exists,
mq_open() will fail. The O_CREATflag is ignored if O_CREATis not set in oflag.

O_NONBLOCKThis flag is used to specify the blocking status of the message queue descriptor and
determines whether a mq_send() or a mq_receive() will wait for resources or
messages respectively, that are not currently available, or fail with errno set to
[EAGAIN].

Message Queue Naming Convention
A valid message queue name string, must conform to pathname construction rules. In addition it must also
meet the following specifications:

a. Begin with a slash character.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−167

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_open(2) mq_open(2)

b. Contain no pathname component consisting of a dot or dot-dot; e.g., /./tmp and /../tmp .

c. Contain no illegal characters.

d. Contain no pathname components longer that _POSIX_NAME_MAX.

e. Entire name should not be longer that _POSIX_PATH_MAX.

RETURN VALUE
mq_open() returns the following values:

n Successful completion. n is a message queue descriptor for the opened message queue and is
greater than or equal to 0.

-1 Failure. errno is set to indicate the error.

ERRORS
If mq_open() fails, errno is set to one of the following values:

[EACCES] The message queue exists and the permissions specified by oflag are denied, or the
message queue does not exist and permission to create the queue is denied.

[EEXIST] The O_CREATand O_EXCL flags are set in oflag and the named message queue
exists.

[EINTR] mq_open() was interrupted by a signal.

[EINVAL] The argument name, does not conform to the Message Queue Naming Convention.

O_CREAThas been specified in oflag, the value of attr is not NULL, and either
mq_maxmsg or mq_msgsize is less than or equal to zero.

[EMFILE] Too many message queue descriptors are currently in use by this process.

[ENAMETOOLONG]
The length of the name string exceeds PATH_MAXbytes, or the length or a (path-
name) component of the name string exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect.

[ENFILE] Too many message queues are currently open in the system.

[ENOENT] The O_CREATflag is not set in oflag and the named message queue does not exist.

[ENOSPC] There are insufficient resources for the creation of the new message queue.

[ENOSYS] mq_open() is not supported by the implementation.

SEE ALSO
mq_close(2), mq_unlink(2), mq_send(2), mq_receive(2), mq_setattr(2), mq_getattr(2).

STANDARDS CONFORMANCE
mq_open() : POSIX 1003.1b

Section 2−−168 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_receive(2) mq_receive(2)

NAME
mq_receive - receive a message from a message queue

SYNOPSIS
#include <sys/mqueue.h>

ssize_t mq_receive(mqd_t mqdes,
char *msg_ptr,
size_t msg_len,
unsigned int *msg_prio

);

DESCRIPTION
The mq_receive() system call receives the oldest of the highest priority message from the message
queue specified by mqdes. The selected message is removed from the queue and copied to the buffer
pointed to by the msg_ptr argument. The argument, msg_len, specifies the size of the buffer in bytes. The
value of msg_len should be greater than or equal to the mq_msgsize attribute of the message queue, or
mq_receive() will fail.

If the argument msg_prio is not NULL, the priority of the message removed from the queue is stored in the
location pointed to by msg_prio .

If the specified message queue is empty and the O_NONBLOCKflag is not set in the message queue block-
ing status associated with mqdes, mq_receive() will block in priority order, until it can receive a mes-
sage from the queue, or until mq_receive() is interrupted by a signal. If the specified message queue is
empty and the O_NONBLOCKflag is set in the message queue blocking status associated with mqdes,
mq_receive() will not wait for a message to arrive on the queue and will return with an error.

RETURN VALUE
mq_receive() returns the following values:

n Successful completion. n is the size of the selected message in bytes and the message is removed
from the queue.

-1 Failure. errno is set to indicate the error and no message is removed from the queue.

ERRORS
If mq_receive() fails, errno is set to one of the following values:

[EAGAIN] The O_NONBLOCKflag is set in the message queue blocking status associated with
mqdes, and the message queue is empty.

[EBADF] mqdes is not a valid message queue descriptor open for reading.

[EINTR] A signal interrupted the call to mq_receive() .

[EINVAL] msg_ptr points to an invalid address.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size attribute of
the message queue.

[ENOSYS] mq_receive() is not supported by the implementation.

SEE ALSO
mq_send(2).

STANDARDS CONFORMANCE
mq_receive() : POSIX 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−169

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_send(2) mq_send(2)

NAME
mq_send - send a message to a message queue

SYNOPSIS
#include <sys/mqueue.h>

int mq_send(mqd_t mqdes,
const char *msg_ptr,
size_t msg_len,
unsigned int msg_prio

);

DESCRIPTION
The mq_send() system call adds a message pointed to by the argument msg_ptr to the message queue
specified by mqdes. The msg_len argument specifies the length of the message in bytes. The value of
msg_len should be less than or equal to the mq_msgsize attribute of the message queue, or mq_send()
will fail.

If the specified message queue is not full, mq_send() will insert the message into the queue at the posi-
tion indicated by the msg_prio argument. A message with priority, msg_prio , will be inserted behind any
other messages with larger or equal priority. The value of msg_prio should be less than MQ_PRIO_MAX.

If the specified message queue is full and the O_NONBLOCKflag is not set in the message queue blocking
status associated with mqdes, mq_send() will block in priority order, until it can send a message on the
queue, or until mq_send() is interrupted by a signal. If the specified message queue is full and the
O_NONBLOCKflag is set in the message queue blocking status associated with mqdes, the message will not
be enqueued, and mq_send() will return with an error.

RETURN VALUE
mq_send() returns the following values:

0 Successful completion. The message is enqueued.

-1 Failure. errno is set to indicate the error and the message is not enqueued.

ERRORS
If mq_send() fails, errno is set to one of the following values:

[EAGAIN] The O_NONBLOCKflag is set in the message queue blocking status associated with
mqdes, and the message queue is full.

[EBADF] mqdes is not a valid message queue descriptor open for writing.

[EINTR] A signal interrupted the call to mq_send() .

[EINVAL] msg_ptr points to an invalid address, or the value of msg_prio is outside the valid
range.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of the mes-
sage queue.

[ENOSYS] mq_send() is not supported by the implementation.

SEE ALSO
mq_receive(2), mq_setattr(2), mq_getattr(2).

STANDARDS CONFORMANCE
mq_send() : POSIX 1003.1b

Section 2−−170 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_setattr(2) mq_setattr(2)

NAME
mq_setattr - set the blocking status of a message queue associated with a descriptor

SYNOPSIS
#include <sys/mqueue.h>

int mq_setattr(mqd_t mqdes,
const struct mq_attr *mqstat,
struct mq_attr *omqstat,

);

DESCRIPTION
The mq_setattr() system call changes the blocking status of a message queue associated with the
descriptor, mqdes. The blocking status that is modified is per message queue descriptor and another open
descriptor for the same message queue can have a different blocking status.

The argument mqstat, points to an mq_attr structure that specifies the blocking status desired. More
specifically, if the O_NONBLOCKbit in the mq_flags field of the mq_attr structure is set, the descriptor is
marked as non-blocking. Otherwise it is marked as blocking.

If omstat is non-NULL, mq_setattr() will store in the mq_attr structure referenced by omqstat, the
previous message queue attributes and the queue blocking status associated with this mqdes. The values
returned are the same as would be returned by a call to mq_getattr() .

RETURN VALUE
mq_setattr() returns the following values:

0 Successful completion.

-1 Failure. errno is set to indicate the error.

ERRORS
If mq_setattr() fails, errno is set to one of the following values:

[EBADF] mqdes is not a valid message queue descriptor.

[EINVAL] mqstat does not point to a valid mq_attr structure, or omqstat is non-NULL and
does not point to a valid mq_attr structure.

[ENOSYS] mq_setattr() is not supported by the implementation.

SEE ALSO
mq_setattr(2), mq_open(2).

STANDARDS CONFORMANCE
mq_setattr() : POSIX 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−171

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

mq_unlink(2) mq_unlink(2)

NAME
mq_unlink - unlink a message queue

SYNOPSIS
#include <sys/mqueue.h>

int mq_unlink(const char *name);

DESCRIPTION
The mq_unlink() system call disassociates the queue name, from a message queue specified by the
argument, name. After a successful call to mq_unlink() , attempts to open a message queue with the
same name will fail, if the flag O_CREATis not set in oflags.

If there are no processes with existing open descriptors for the message queue, the queue is destroyed. If
one or more processes have the message queue open, the removal of the queue is postponed until all
descriptors for the queue have been closed.

RETURN VALUE
mq_unlink() returns the following values:

0 Successful completion.

-1 Failure, errno is set to indicate the error.

ERRORS
If mq_unlink() fails, errno is set to one of the following values:

[EACCES] Permission to unlink the named message queue is denied.

[EINVAL] The argument name is not a valid message queue name.

[ENAMETOOLONG]
The length of the name string exceeds PATH_MAXbytes, or the length of a (path-
name) component of the name string exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect.

[ENOENT] The named message queue does not exist.

[ENOSYS] mq_unlink() is not supported by the implementation.

SEE ALSO
mq_open(2), mq_close(2).

STANDARDS CONFORMANCE
mq_unlink() : POSIX 1003.1b

Section 2−−172 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msem_init(2) msem_init(2)

NAME
msem_init - initialize a semaphore in a mapped file or anonymous memory region

SYNOPSIS
#include <sys/mman.h>

msemaphore *msem_init(msemaphore *sem, int initial_value);

DESCRIPTION
msem_init() allocates a new binary semaphore and initializes the state of the new semaphore.

sem points to an msemaphore structure in which the state of the semaphore is to be stored.

If initial_value is MSEM_LOCKED, the new semaphore is initialized in the locked state. If initial_value is
MSEM_UNLOCKED, the new semaphore is initialized in the unlocked state.

The msemaphore structure must be located within a mapped file or anonymous memory region created
by a successful call to mmap() and have both read and write access.

If a semaphore is created in a mapped file region, any reference by a process that has mapped the same file,
using a (struct msemaphore *) pointer that resolves to the same file offset is interpreted as a
reference to the same semaphore. If a semaphore is created in an anonymous memory region, any refer-
ence by a process sharing the same region by use of a (struct msemaphore *) pointer that resolves
to the same offset from the start of the region is interpreted as a reference to the same semaphore.

Any previous semaphore state stored in the msemaphore structure will be ignored and overwritten.

Implementation Notes
In order to ensure that an msemaphore structure is entirely contained in a single memory page, sem
must be at an address that is an exact multiple of sizeof(struct msemaphore) . The size of the
msemaphore structure is guaranteed to prevent semaphores that cross page boundaries given the above
restriction.

For a memory mapped file region, the system deallocates memory that corresponds to a range of the file
that has been truncated with ftruncate() or truncate() . If a semaphore is located in memory so
deallocated, the effect is equivalent to an msem_remove() on the semaphore.

RETURN VALUE
msem_init() returns the address of the initialized msemaphore structure; otherwise, it returns
NULL and sets errno to indicate the error. NOTE: This error return value may change to −1 in a future
HP-UX release. For portability, applications should check for a zero or negative value for error returns.

ERRORS
msem_init() fails if any of the following conditions are encountered:

[EINVAL] sem points to an msemaphore structure that is not located in a mapped region
created by mmap() and with read and write access, or initial_value is not valid.

[ENOMEM] A new semaphore could not be created.

[EFAULT] sem is an invalid pointer.

AUTHOR
msem_init() was developed by HP and OSF.

SEE ALSO
mmap(2), msem_lock(2), msem_remove(2), msem_unlock(2), mman(5).

STANDARDS CONFORMANCE
msem_init() : AES

HP-UX Release 11.0: October 1997 − 1 − Section 2−−173

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msem_lock(2) msem_lock(2)

NAME
msem_lock - lock a semaphore

SYNOPSIS
#include <sys/mman.h>

int msem_lock(msemaphore *sem, int condition);

DESCRIPTION
msem_lock() attempts to lock a binary semaphore.

sem points to an msemaphore structure which specifies the semaphore to be locked.

If the semaphore is not currently locked, it becomes locked and the function returns successfully.

If the semaphore is currently locked, and condition is MSEM_IF_NOWAIT, then the function returns with
an error. If the semaphore is currently locked and condition is zero, the function does not return until
either the calling process is able to successfully lock the semaphore, or an error condition occurs.

All calls to msem_lock() and msem_unlock() by multiple processes sharing a common msema-
phore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to msem_init() followed by
a (possibly empty) sequence of calls to msem_lock() and msem_unlock() , the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con-
tains any value copied from an msemaphore structure at a different address, the result is undefined.

IMPLEMENTATION NOTES
If blocked on a locked semaphore, msem_lock() suspends the calling process at a priority such that the
process can be interrupted by a signal.

The system attempts to ignore or recover from invalid values written to the msemaphore structure, but
this is not guaranteed for all cases.

msem_lock() successfully acquires a semaphore that is locked by a process that has exited.

RETURN VALUE
Upon success, msem_lock() returns zero; otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS
msem_lock() fails if any of the following conditions are encountered:

[EAGAIN] MSEM_IF_NOWAITwas specified and the semaphore was already locked.

[EINVAL] sem points to an msemaphore structure that has been removed, or condition is
invalid.

[EINTR] msem_lock() was interrupted by a signal that was caught.

[EDEADLK] The semaphore is currently locked, condition is zero, and waiting to lock the sema-
phore would create a deadlock.

[EFAULT] sem is not a properly aligned address or is otherwise an invalid pointer.

AUTHOR
msem_lock() was developed by HP and OSF.

SEE ALSO
msem_init(2), msem_remove(2), msem_unlock(2), mman(5).

STANDARDS CONFORMANCE
msem_lock() : AES

Section 2−−174 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msem_remove(2) msem_remove(2)

NAME
msem_remove - remove a semaphore in mapped file or anonymous region

SYNOPSIS
#include <sys/mman.h>

int *msem_remove(msemaphore *sem);

DESCRIPTION
msem_remove() removes a binary semaphore.

sem points to an msemaphore structure that specifies the semaphore to be removed. Any subsequent
use of the msemaphore structure before it is again initialized by calling msem_init() produces
undefined results.

msem_remove() also causes any process waiting in the msem_lock() function on the removed sema-
phore to return with an error.

If the msemaphore structure contains any value not resulting from a call to msem_init() followed by
a (possibly empty) sequence of calls to msem_lock() and msem_unlock(), the results are
undefined. The address of an msemaphore uniquely identifies the semaphore. If the msemaphore
structure contains any value copied from a msemaphore structure at a different address, the result is
undefined.

RETURN VALUE
Upon success, msem_remove() returns zero; otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS
msem_remove() fails if any of the following conditions are encountered:

[EINVAL] sem points to an msemaphore structure that has been removed.

[EFAULT] sem is an invalid pointer.

AUTHOR
msem_remove() was developed by HP and OSF.

SEE ALSO
msem_init(2), msem_lock(2), msem_remove(2), mman(5).

STANDARDS CONFORMANCE
msem_remove() : AES

HP-UX Release 11.0: October 1997 − 1 − Section 2−−175

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msem_unlock(2) msem_unlock(2)

NAME
msem_unlock - unlock a semaphore

SYNOPSIS
#include <sys/mman.h>

int msem_unlock(msemaphore *sem, int condition);

DESCRIPTION
msem_unlock() unlocks a binary semaphore.

sem points to an msemaphore structure that specifies the semaphore to be unlocked.

If the condition argument is zero, the semaphore will be unlocked, whether or not any other processes are
currently attempting to lock it. If the condition argument is MSEM_IF_WAITERS, and some other pro-
cess is waiting to lock the semaphore or the implementation cannot reliably determine whether some pro-
cess is waiting to lock the semaphore, the semaphore is unlocked by the calling process. If the condition
argument is MSEM_IF_WAITERS, and no process is waiting to lock the semaphore, the semaphore is not
unlocked and an error is returned.

All calls to msem_lock() and msem_unlock() by multiple processes sharing a common msema-
phore structure behave as if the calls were serialized.

If the msemaphore structure contains any value not resulting from a call to msem_init() followed by
a (possibly empty) sequence of calls to msem_lock() and msem_unlock() , the results are undefined.
The address of an msemaphore uniquely identifies the semaphore. If the msemaphore structure con-
tains any value copied from a msemaphore structure at a different address, the result is undefined.

IMPLEMENTATION NOTES
The system attempts to ignore or recover from invalid values placed in the msemaphore structure, but
this is not guaranteed for all cases.

RETURN VALUE
Upon success, msem_unlock() returns zero; otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS
msem_unlock() fails if any of the following conditions are encountered:

[EAGAIN] MSEM_IF_NOWAITwas specified and there were no waiters.

[EINVAL] sem points to an msemaphore structure that has been removed, or condition is
invalid.

[EFAULT] sem is an invalid pointer.

AUTHOR
msem_unlock() was developed by HP and OSF.

SEE ALSO
msem_init(2), msem_lock(2), msem_remove(2), mman(5).

STANDARDS CONFORMANCE
msem_unlock() : AES

Section 2−−176 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msgctl(2) msgctl(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

DESCRIPTION
msgctl() provides a variety of message control operations as specified by cmd. The following cmds are
available:

IPC_STAT Place the current value of each member of the data structure associated with msqid
into the structure pointed to by buf. The contents of this structure are defined in glos-
sary(9).

IPC_SET Set the value of the following members of the data structure associated with msqid to
the corresponding value found in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective user ID equal to
either that of super-user or to the value of either msg_perm.uid or
msg_perm.cuid in the data structure associated with msqid. Only super-user can
raise the value of msg_qbytes .

IPC_RMID Remove the message queue identifier specified by msqid from the system and destroy
the message queue and data structure associated with it. This cmd can only be exe-
cuted by a process that has an effective user ID equal to either that of super-user or to
the value of either msg_perm.uid or msg_perm.cuid in the data structure
associated with msqid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and errno is
set to indicate the error.

ERRORS
msgctl() fails if one or more of the following is true:

[EINVAL] msqid is not a valid message queue identifier.

[EINVAL] cmd is not a valid command, or the command contains invalid parameters.

[EACCES] cmd is equal to IPC_STAT and Read operation permission is denied to the calling process
(see message operation permissions in glossary(9)).

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is
not equal to that of a user who has appropriate privileges and it is not equal to the value of
either msg_perm.uid or msg_perm.cuid in the data structure associated with
msqid.

[EPERM] cmd is equal to IPC_SET , an attempt is being made to increase to the value of
msg_qbytes , and the effective user ID of the calling process is not equal to that of super-
user.

[EFAULT] buf points to an illegal address. Reliable detection of this error is implementation depen-
dent.

SEE ALSO
ftok(3C), ipcrm(1), ipcs(1), msgget(2), msgop(2).

STANDARDS CONFORMANCE
msgctl() : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11.0: October 1997 − 1 − Section 2−−177

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msgget(2) msgget(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
msgget() returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure are created for key if one of
the following is true:

key is equal to IPC_PRIVATE . This call creates a new identifier, subject to available resources. The
identifier will never be returned by another call to msgget() until it has been released by a call to
msgctl() . The identifier should be used among the calling process and its descendents; however, it
is not a requirement. The resource can be accessed by any process having the proper permissions.

key does not already have a message queue identifier associated with it, and (msgflg & IPC_CREAT)
is ‘‘true’’.

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

msg_perm.cuid , msg_perm.uid , msg_perm.cgid , and msg_perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.

msg_qnum, msg_lspid , msg_lrpid , msg_stime , and msg_rtime are set equal to 0.

msg_ctime is set equal to the current time.

msg_qbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned. Oth-
erwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS
msgget() fails if one or more of the following is true:

[EACCES] A message queue identifier exists for key, but operation permission as specified by the low-
order 9 bits of msgflg would not be granted.

[ENOENT] A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is ‘‘false’’.

[ENOSPC] A message queue identifier is to be created but the system-imposed limit on the maximum
number of allowed message queue identifiers system wide would be exceeded.

[EEXIST] A message queue identifier exists for key but ((msgflg & IPC_CREAT) && (msgflg &
IPC_EXCL)) is ‘‘true’’.

SEE ALSO
ipcrm(1), ipcs(1), msgctl(2), msgop(2), stdipc(3C).

STANDARDS CONFORMANCE
msgget() : SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−178 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msgop(2) msgop(2)

NAME
msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/msg.h>

int msgsnd(
int msqid,
const void *msgp,
size_t msgsz,
int msgflg

);

int msgrcv(
int msqid,
void *msgp,
size_t msgsz,
long msgtyp,
int msgflg

);

DESCRIPTION
The msgsnd() system call sends a message to the queue associated with the message queue identifier
specified by msqid.

msgp points to a user-defined buffer that must contain first a field of type long that specifies the type of
the message, followed by a data portion that will hold the data bytes of the message. The structure below
is an example of what this user-defined buffer might look like:

long mtype; /* message type */
char mtext[]; /* message text */

mtype is a positive integer that can be used by the receiving process for message selection (see msgrcv()
below). mtext is any text of length msgsz bytes. msgsz can range from 0 to a system-imposed maximum.

msgflg specifies the action to be taken if one or more of the following is true:

• The number of bytes already on the queue is equal to msg_qbytes (see message queue identifier
in glossary(9)).

• The total number of messages on all queues system-wide is equal to the system-imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is true, the message is not sent and the calling process returns immedi-
ately.

If (msgflg & IPC_NOWAIT) is false, the calling process suspends execution until one of the follow-
ing occurs:

• The condition responsible for the suspension no longer exists, in which case the message is sent.

• msqid is removed from the system (see msgctl(2)). When this occurs, errno is set to [EIDRM]
and a value of -1 is returned.

• The calling process receives a signal to be caught. In this case, the message is not sent and the
calling process resumes execution in the manner prescribed in signal(5).

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid:

msg_qnum is incremented by 1.

msg_lspid is set to the process ID of the calling process.

msg_stime is set to the current time.

The msgrcv() system call reads a message from the queue associated with the message queue identifier
specified by msqid and places it in the structure pointed to by msgp. This structure is composed of the fol-
lowing members:

HP-UX Release 11.0: October 1997 − 1 − Section 2−−179

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msgop(2) msgop(2)

long mtype; /* message type */
char mtext[]; /* message text */

mtype is the received message’s type as specified by the sending process. mtext is the text of the message.
msgsz specifies the size in bytes of mtext . The received message is truncated to msgsz bytes if it is larger
than msgsz and (msgflg & MSG_NOERROR) is true. The truncated part of the message is lost and no
indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

msgtyp = 0 First message on the queue is received.

msgtyp > 0 First message of type msgtyp is received.

msgtyp < 0 First message of the lowest type that is less than or equal to the absolute value of msgtyp
is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as
follows:

If (msgflg & IPC_NOWAIT) is true, the calling process returns immediately with a value of -1 and
errno set to [ENOMSG].

If (msgflg & IPC_NOWAIT) is false, the calling process suspends execution until one of the follow-
ing occurs:

• A message of the desired type is placed on the queue.

• msqid is removed from the system. When this occurs, errno is set to [EIDRM] and a value of
−1 is returned.

• The calling process receives a signal that is to be caught. In this case, a message is not received
and the calling process resumes execution in the manner prescribed in signal(5)).

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid.

msg_qnum is decremented by 1.

msg_lrpid is set to the process ID of the calling process.

msg_rtime is set to the current time.

RETURN VALUES
Upon successful completion, the return value is as follows:

msgsnd() returns a value of 0.

msgrcv() returns a value equal to the number of bytes actually placed into mtext .

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
If msgrcv() fails, errno is set to one of the following values.

[E2BIG] mtext is greater than msgsz and (msgflg & MSG_NOERROR) is false.

[EACCES] Operation permission is denied to the calling process.

[EFAULT] msgp points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

[EIDRM] The message queue identifier msqid has been removed from the system.

[EINTR] The function msgrcv() was interrupted by a signal.

[EINVAL] msqid is not a valid message queue identifier.

[EINVAL] msgsz is less than 0.

[ENOMSG] The queue does not contain a message of the desired type and (msgflg &
IPC_NOWAIT) is true.

If msgsnd() fails, errno is set to one of the following values.

Section 2−−180 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msgop(2) msgop(2)

[EACCES] Operation permission is denied to the calling process.

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is true.

[EFAULT] msgp points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

[EIDRM] The message queue identifier msqid has been removed from the system.

[EINTR] msgsnd() was interrupted by a signal.

[EINVAL] msqid is not a valid message queue identifier.

[EINVAL] mtype is less than 1.

[EINVAL] msgsz is less than zero or greater than the system-imposed limit.

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector (2). sigvector (2) can
affect the behavior described on this page.

SEE ALSO
ipcs(1), msgctl(2), msgget(2), stdipc(3C), signal(5).

STANDARDS CONFORMANCE
msgrcv() : SVID2, SVID3, XPG2, XPG3, XPG4

msgsnd() : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11.0: October 1997 − 3 − Section 2−−181

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msync(2) msync(2)

NAME
msync - synchronize memory with physical storage

SYNOPSIS
#include <sys/mman.h>

int msync(void *addr,size_t len, int flags);

DESCRIPTION
The msync() function writes all modified copies of pages over the range [addr, addr+len] to the underly-
ing hardware, or invalidates any copies so that further references to the pages will be obtained by the sys-
tem from their permanent storage locations.

The flags argument is one of the following:

MS_ASYNC perform asynchronous writes

MS_SYNC perform synchronous writes

MS_INVALIDATE invalidate mappings

If flags is MS_ASYNCor MS_SYNC, the function synchronizes the file contents to match the current con-
tents of the memory region.

• All write references to the memory region made prior to the call are visible by subsequent read
operations on the file.

• It is unspecified whether writes to the same portion of the file prior to the call are visible by read
references to the memory region.

• It is unspecified whether unmodified pages in the specified range are also written to the underlying
hardware.

If flags is MS_ASYNC, the function may return immediately once all write operations are scheduled; if flags
is MS_SYNC, the function does not return until all write operations are completed.

If flags is MS_INVALIDATE, the function synchronizes the contents of the memory region to match the
current file contents.

• All writes to the mapped portion of the file made prior to the call are visible by subsequent read
references to the mapped memory region.

• It is unspecified whether write references prior to the call, by any process, to memory regions
mapped to the same portion of the file using MAP_SHARED, are visible by read references to the
region.

If msync() causes any write to the file, then the file’s st_ctime and st_mtime fields are marked for update.

RETURN VALUE
Upon successful completion, msync() returns 0. Otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS
The msync() function will fail if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sys-
conf() .

[EIO] An I/O error occurred while reading from or writing to the file system.

[ENOMEM] Some or all the addresses in the range [addr, addr+len] are invalid for the
address space of the process or pages not mapped are specified.

APPLICATION USAGE
The msync() function should be used by programs that require a memory object to be in a known state,
for example in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees that
msync() is the only control over when pages are or are not written to disk.

Section 2−−182 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msync(2) msync(2)

SEE ALSO
mmap(2), sysconf(2), <sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−183

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

msync(2) msync(2)

HP-UX EXTENSIONS

NAME
msync - synchronize a mapped file

SYNOPSIS
int msync(caddr_t addr,size_t len, int flags);

DESCRIPTION
msync controls the caching operations of a mapped file region.

addr and len specify the region to be synchronized. If these are not the address and length of a region
created by a previous successful call to mmap() , msync() returns an error. The behavior of msync()
upon a region created with the MAP_ANONYMOUSor MAP_PRIVATEflags is undefined.

After a successful call to msync() with MS_SYNCspecified, all previous modifications to the mapped
region are visible to processes using read() . Previous modifications to the file using write() may be
lost.

After a successful call to msync() with only MS_INVALIDATE specified, all previous modifications to
the file using write() are visible to the mapped region. Previous direct modifications to the mapped
region may be lost.

Performance Considerations
The following performance considerations only apply when using the MS_INVALIDATE option with
msync() . These performance constraints do not apply when either MS_ASYNCor MS_SYNCare
exclusively used with msync() .

Direct read/write references to portions of a mapped memory region currently undergoing an msync()
operation (with MS_INVALIDATE specified), may be blocked until all scheduled write operations are com-
pleted. This is especially true when performing an msync() operation across a relatively large address
range that requires many individual write operations to be scheduled out to the underlying hardware. HP-
UX will schedule a separate write operation for each contiguous group of modified pages on disk. As more
write operations are queued out to the device, the overall suspension time of direct read/write references to
the same portions of the memory region will generally increase.

The suspension times of direct read/write references can be reduced by issuing msync() requests over
smaller portions of the memory region, but issuing them more frequently than a corresponding larger syn-
chronization request. This will serve to more evenly distribute I/O activity across the mapped file, while
reducing the number of write operations per msync() .

ERRORS
[EINVAL] addr is not a multiple of the page size as returned by

sysconf(_SC_PAGE_SIZE) .

[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap() .

AUTHOR
msync() was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
msync() : AES, SVID3

Section 2−−184 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

munlock(2) munlock(2)

NAME
munlock() - unlock a segment of the process virtual address space

SYNOPSIS
#include <sys/mman.h>

int munlock(const void * addr, size_t len) ;

DESCRIPTION
The munlock() system call allows the calling process to unlock a segment of the process virtual address
space that may have been previously locked with mlock() or mlockall() . Upon successful completion
of the munlock() , pages within the specified segment are subject to routine paging and/or swapping.

addr must be a valid address in the process virtual address space. addr + len must also be a valid address
in the process virtual address space.

Pages are unlocked at page boundaries that encompass the range from addr to addr + len. If any address
within the range is not a valid part of the process virtual address space, an error is returned and no unlocks
are performed. However, no error is reported for valid pages within the range that are not already locked,
since their state at the completion of the munlock() call is as desired.

Regardless of how many times a process locks a page, a single munlock() or munlockall() will
unlock it. An munlock() of a page within a range specified in an mlock() call results in only the range
specified in the munlock() being unlocked.

When memory is shared by multiple processes and mlocks are applied to the same physical page by multi-
ple processes, a page remains locked until the last lock is removed from that page.

The effective user ID of the calling process must be a superuser or the user must be a member of a group
that has the MLOCK privilege (see getprivgrp (2) and setprivgrp (1M)).

Although plock() and the mlock() family of functions may be used together in an application, each
may affect the other in unexpected ways. This practice is not recommended.

RETURN VALUE
munlock() returns the following values:

0 Successful completion.
-1 Failure. The requested operation is not performed. errno is set to indicate the error.

ERRORS
If munlock() fails, errno is set to one of the following values:

[ENOMEM] One or more addresses in the specified range is not valid within the process address
space.

[EINVAL] The len parameter was zero.

[EPERM] The effective user ID of the calling process is not a superuser and the user does not
belong to a group that has the MLOCKprivilege.

EXAMPLES
The following call to munlock() unlocks the first 10 pages of the calling process address space:

munlock(sbrk(0), 40960);

SEE ALSO
setprivgrp(1M), getprivgrp(2), mlock(2), mlockall(2), munlockall(2), plock(2).

STANDARDS CONFORMANCE
munlock() : POSIX Realtime Extensions, IEEE Std 1003.1b

HP-UX Release 11.0: October 1997 − 1 − Section 2−−185

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

munlockall(2) munlockall(2)

NAME
munlockall() - unlock the entire virtual address space of a process

SYNOPSIS
#include <sys/mman.h>

int munlockall() ;

DESCRIPTION
The munlockall() system call allows the calling process to unlock any portions of its virtual address
space that have previously been locked into memory with mlock() or mlockall() , including any por-
tions locked due to the MCL_FUTUREoption of mlockall() . Upon successful completion of the mun-
lockall() , all pages within the process virtual address space are subject to routine paging and/or swap-
ping and the MCL_FUTUREoption will no longer be in effect for the process.

Regardless of how many times a process locks a page, a single munlockall() will unlock it. When
memory is shared by multiple processes and mlocks are applied to the same physical page by multiple
processes, a page remains locked until the last lock is removed from that page.

The effective user ID of the calling process must be a superuser or the user must be a member of a group
that has the MLOCK privilege (see getprivgrp (2) and setprivgrp (1M)).

Although plock() and the mlock() family of functions may be used together in an application, each
may affect the other in unexpected ways. This practice is not recommended.

RETURN VALUE
munlockall() returns the following values:

0 Successful completion.
-1 Failure. The requested operation is not performed. errno is set to indicate the error.

ERRORS
If munlockall() fails, errno is set to the following value:

[EPERM] The effective user ID of the calling process is not a superuser and the user does not
belong to a group that has the MLOCKprivilege.

EXAMPLES
The following call to munlockall() unlocks the process virtual address space:

munlockall();

SEE ALSO
setprivgrp(1M), getprivgrp(2), mlock(2), mlockall(2), munlock(2), plock(2).

STANDARDS CONFORMANCE
munlockall() : POSIX Realtime Extensions, IEEE Std 1003.1b

Section 2−−186 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

munmap(2) munmap(2)

NAME
munmap - unmap pages of memory

SYNOPSIS
#include <sys/mman.h>

int munmap(void *addr, size_t len);

DESCRIPTION
The munmap() function removes the mappings for pages in the range [addr, addr+len], rounding the len
argument up to the next multiple of the page size as returned by sysconf() . If addr is not the address
of a mapping established by a prior call to mmap() , the behaviour is undefined. After a successful call to
munmap() and before any subsequent mapping of the unmapped pages, further references to these pages
will result in the delivery of a SIGBUS or SIGSEGVsignal to the process.

RETURN VALUE
Upon successful completion, munmap() returns 0. Otherwise, it returns −1 and sets errno to indicate
the error.

ERRORS
The munmap() function will fails if:

[EINVAL] The addr argument is not a multiple of the page size as returned by sysconf() .

[EINVAL] Addresses in the range [addr, addr+len], are outside the valid range for the address
space of a process.

[EINVAL] The len argument is 0.

SEE ALSO
mmap(2), sysconf(2), <signal.h>, <sys/mman.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−187

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

m

munmap(2) munmap(2)

HP-UX EXTENSIONS

SYNOPSIS
int munmap(caddr_t addr, size_t len);

DESCRIPTION
munmap() unmaps a mapped file or anonymous memory region.

If the address range specified by addr and len was not created by a successful call to mmap() , munmap()
returns an error.

If the specified address range was created by multiple calls to mmap() , munmap() succeeds in unmap-
ping all of the specified regions, provided they form a contiguous address range.

If the region was created with the MAP_PRIVATEoption, any modifications made to the region are dis-
carded.

ERRORS
[EINVAL] addr is not a multiple of the page size as returned by

sysconf(_SC_PAGE_SIZE) .

[EINVAL] The address range specified by addr and len was not created by a successful call to
mmap() .

AUTHOR
munmap() was developed by HP, AT&T, and OSF.

SEE ALSO
mmap(2), sysconf(2).

STANDARDS CONFORMANCE
munmap() : AES, SVID3

Section 2−−188 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

n

nanosleep(2) nanosleep(2)

NAME
nanosleep() - high resolution sleep

SYNOPSIS
#include <time.h>

int nanosleep(
const struct timespec *rqtp,
struct timespec *rmtp

);

DESCRIPTION
The nanosleep() function causes the current process to be suspended from execution until either the
time interval specified by the rqtp argument has elapsed, or a signal is delivered to the calling process
and its action is to invoke a signal-catching function or to terminate the process. The suspension time may
be longer than that requested because the argument value is rounded up to an integer multiple of the sleep
resolution or because of the scheduling of other activity by the system. But, except for the case of being
interrupted by a signal, the suspension time will not be less than the time specified by rqtp , as measured
by the system clock, CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

RETURN VALUE
If the nanosleep() function returns because the requested time has elapsed, its return value is zero.

If the nanosleep() function returns because it has been interrupted by a signal, the function returns a
value of −1 and sets errno to indicate the interruption. If the rmtp argument is non-NULL, the timespec
structure referenced by it is updated to contain the amount of time remaining in the interval (the requested
time minus the time actually slept). If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it returns a value of −1 and sets errno to indicate the error.

ERRORS
If any of the following conditions occur, the nanosleep() function returns −1 and sets errno (see
errno(2)) to the corresponding value:

[EINTR] nanosleep() was interrupted by a signal.

[EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than or equal
to 1000 million.

[ENOSYS] The function nanosleep() is not supported by this implementation.

[EFAULT] The rqtp or rmtp arguments specify an invalid address.

EXAMPLES
Suspend execution of the current process for half a second:

#include <time.h>
#include <errno.h>

struct timespec interval, remainder;

interval.tv_sec = 0;
interval.tv_nsec = 500000000;
if (nanosleep(&interval, &remainder) == -1) {

if (errno == EINTR) {
(void)printf("nanosleep interrupted\n");
(void)printf("Remaining secs: %d\n", remainder.tv_sec);
(void)printf("Remaining nsecs: %d\n", remainder.tv_nsec);

}
else perror("nanosleep");

}

AUTHOR
nanosleep was derived from the proposed IEEE POSIX P1003.4 Standard, Draft 14.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−189

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

n

nanosleep(2) nanosleep(2)

SEE ALSO
clocks(2), timers(2), sleep(3C).

STANDARDS CONFORMANCE
nanosleep() : POSIX.4

Section 2−−190 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

n

nice(2) nice(2)

NAME
nice - change priority of a process

SYNOPSIS
#include <unistd.h>

int nice(int priority_change);

DESCRIPTION
nice() adds the value of priority_change to the nice value of the calling process. A process’s nice value
is a positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system. Requests for
values above or below these limits result in the nice value being set to the corresponding limit.

If the calling process contains more than one thread or lightweight process (i.e., the process is multi-
threaded) this function shall apply to all threads or lightweight processes in the calling process.

RETURN VALUE
Upon successful completion, nice() returns the new nice value minus 20. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

Note that nice() assumes a user process priority value of 20. If a user having appropriate privileges has
changed the user process priority value to something less than 20, certain values for priority_change can
cause nice() to return −1, which is indistinguishable from an error return.

ERRORS
[EPERM] nice() fails and does not change the nice value if priority_change is negative or greater

than 40, and the effective user ID of the calling process is not a user having appropriate
privileges.

SEE ALSO
nice(1), renice(1M), exec(2).

STANDARDS CONFORMANCE
nice() : AES, SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11.0: October 1997 − 1 − Section 2−−191

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

o

open(2) open(2)

NAME
open() - open file for reading or writing

SYNOPSIS
#include <fcntl.h>

int open(const char *path, int oflag, ... /* [mode_t mode] */);

Remarks
The ANSI C ", ... " construct specifies a variable length argument list whose optional member is given in
the associated comment (/* */).

DESCRIPTION
The open() system call opens a file descriptor for the named file and sets the file status flags according to
the value of oflag.

If the system call is made in 64 bit mode, the O_LARGEFILE status flag is automatically set in addition to
the value of oflag (see fcntl(5)).

The path argument points to a path name naming a file, and must not exceed PATH_MAXbytes in length.

The oflag argument is a value that is the bitwise inclusive OR of flags listed in "Read-Write Flags," "General
Flags," and "Synchronized I/O Flags" below.

The optional mode argument is only effective when the O_CREATflag is specified.

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new file descriptor is set to remain open across exec *() system calls. See fcntl(2).

Read-Write Flags
Exactly one of the O_RDONLY, O_WRONLY, or O_RDWRflags must be used in composing the value of
oflag. If none or more than one is used, the behavior is undefined.

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

General Flags
Several of the flags listed below can be changed with the fcntl() system call while the file is open. See
fcntl(2) and fcntl(5) for details.

O_APPEND If set, the file offset is set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect, except as noted under O_EXCLbelow. Other-
wise, the owner ID of the file is set to the effective user ID of the process, the group
ID of the file is set to the effective group ID of the process if the set-group-ID bit of
the parent directory is not set, or to the group ID of the parent directory if the set-
group-ID bit of the parent directory is set.

The file access permission bits of the new file mode are set to the value of mode,
modified as follows (see creat(2)):

• For each bit set in the file mode creation mask of the process, the corresponding bit
in the new file mode is cleared (see umask(2)).

• The "save text image after execution" bit of the new file mode is cleared. See
chmod(2).

• On systems with access control lists, three base ACL entries are created
corresponding to the file access permissions (see acl(5)).

O_EXCL If O_EXCLand O_CREATare set and the file exists, open() fails.

O_LARGEFILE
When the filesystem is mounted as large files enabled and the file is opened with the
O_LARGEFILE option, the file can grow over 2 GB.

O_NDELAY This flag might affect subsequent reads and writes. See read(2) and write(2).

Section 2−−192 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

o

open(2) open(2)

When opening a FIFO with O_RDONLYor O_WRONLYset:

If O_NDELAYis set:

A read-only open() returns without delay.

A write-only open() returns an error if no process currently has the file
open for reading.

If O_NDELAYis clear:

A read-only open() does not return until a process opens the file for writ-
ing.

A write-only open() does not return until a process opens the file for
reading.

When opening a file associated with a communication line:

If O_NDELAYis set:

The open() returns without waiting for carrier.

If O_NDELAYis clear:

The open() does not return until carrier is present.

O_NOCTTY If set, and path identifies a terminal device, open() does not cause the terminal to
become the controlling terminal for the process.

O_NONBLOCKSame effect as O_NDELAYfor open(2), but slightly different effect in read(2) and
write(2). If both O_NONBLOCKand O_NDELAYare specified, O_NONBLOCKtakes
precedence.

O_TRUNC If the file exists, its length is truncated to 0 and the mode and owner are unchanged.

Synchronized I/O Flags
Together, the O_DSYNC, O_RSYNC, and O_SYNCflags constitute support for Synchronized I/O. These
flags are ignored for files other than ordinary files and block special files on those systems that permit I/O
to block special devices (see pathconf(2)). If both the O_DSYNCand O_SYNCflags are set, the effect is as
if only the O_SYNCflag was set. The O_RSYNCflag is ignored if it is not set along with the O_DSYNCor
O_SYNCflag.

O_DSYNC
If a file is opened with O_DSYNCor that flag is set with the F_SETFL option of fcntl() ,
writes to that file by the process block until the data specified in the write request and all file
attributes required to retrieve the data are written to the disk. File attributes that are not
necessary for data retrieval (access time, modification time, status change time) are not neces-
sarily written to the disk prior to returning to the calling process.

O_SYNC
Identical to O_DSYNC, with the addition that all file attributes changed by the write operation
(including access time, modification time, and status change time) are also written to the disk
prior to returning to the calling process.

O_RSYNC|O_DSYNC(specified together)
Identical to O_DSYNCfor file system writes.

For file system reads, the calling process blocks until the data being read and all file attributes
required to retrieve the data are the same as their image on disk. Writes pending on the data to
be read are executed prior to returning to the calling process.

O_RSYNC|O_SYNC(specified together)
Identical to O_SYNCfor file system writes.

Identical to O_RSYNC|O_DSYNCfor file system reads, with the addition that all file attributes
changed by the read operation (including access time, modification time, and status change time)
too are the same as their image on disk.

RETURN VALUE
open() returns the following values:

HP-UX Release 11.0: October 1997 − 2 − Section 2−−193

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

o

open(2) open(2)

n Successful completion. n is a file descriptor for the opened file.
-1 Failure. errno is set to indicate the error.

ERRORS
If open() fails, errno is set to one of the following values.

[EACCES] oflag permission is denied for the named file.

[EACCES] A component of the path prefix denies search permission.

[EACCES] The file does not exist and the directory in which the file is to be created does not per-
mit writing.

[EACCES] O_TRUNCis specified and write permission is denied.

[EAGAIN] The file exists, enforcement mode file/record locking is set (see chmod(2)), there are
outstanding record locks on the file with the lockf() or fcntl() system calls, and
O_TRUNCis set.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

[EEXIST] O_CREATand O_EXCLare set and the named file exists.

[EFAULT] path points outside the allocated address space of the process.

[EINTR] A signal was caught during the open() system call, and the system call was not res-
tarted (see signal(5) and sigvector (2)).

[EINVAL] oflag specifies both O_WRONLYand O_RDWR.

[EINVAL] oflag specifies both O_NONBLOCKand O_NDELAY.

[EISDIR] The named file is a directory and oflag is write or read/write.

[ELOOP] Too many symbolic links are encountered in translating the path name.

[EMFILE] The maximum number of file descriptors allowed are currently open.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

[ENFILE] The system file table is full.

[ENOENT] The named file does not exist (for example, path is null or a component of path does
not exist, or the file itself does not exist and O_CREATis not set).

[ENOTDIR] A component of the path prefix is not a directory.

[ENXIO] O_NDELAYis set, the named file is a FIFO, O_WRONLYis set, and no process has the
file open for reading.

[ENXIO] The named file is a character special or block special file, and the device associated
with this special file either does not exist, or the driver for this device has not been
configured into the kernel.

[ENOSPC] O_CREATis specified, the file does not already exist, and the directory that would
contain the file cannot be extended.

[EOVERFLOW]
The named file is a regular file and the size of the file cannot be represented correctly
in an object of size off_t .

[EROFS] The named file resides on a read-only file system and oflag is write or read/write.

[ETXTBSY] The file is open for execution and oflag is write or read/write. Normal executable files
are only open for a short time when they start execution. Other executable file types
can be kept open for a long time, or indefinitely under some circumstances.

EXAMPLES
The following call to open() opens file inputfile for reading only and returns a file descriptor for
inputfile . For an example of reading from file inputfile , see the read(2) manual entry.

Section 2−−194 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

o

open(2) open(2)

int infd;

infd = open ("inputfile", O_RDONLY);

The following call to open() opens file outputfile for writing and returns a file descriptor for out-
putfile . For an example of preallocating disk space for outputfile , see the prealloc(2) manual
entry. For an example of writing to outputfile , see the write(2) manual entry.

int outfd;

outfd = open ("outputfile", O_WRONLY);

The following call opens file iofile for synchronized I/O file integrity for reads and writes.

int iofd;

iofd = open ("iofile", O_RDWR|O_SYNC|O_RSYNC);

AUTHOR
open() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcntl(2), lockf(2), lseek(2), creat64(2), pathconf(2), read(2), select(2),
umask(2), write(2), setacl(2), acl(5), fcntl(5), signal(5), unistd(5).

STANDARDS CONFORMANCE
open() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.4

HP-UX Release 11.0: October 1997 − 4 − Section 2−−195

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pathconf(2) pathconf(2)

NAME
pathconf(), fpathconf() - get configurable path name variables

SYNOPSIS
#include <unistd.h>

long pathconf(const char *path, int name);

long fpathconf(int fildes, int name);

DESCRIPTION
The pathconf() and fpathconf() functions provide a method for applications to determine the value
of a configurable limit or option associated with a file or directory (see limits(5) and <unistd.h>).

For pathconf() , the path argument points to the path name of a file or directory.

For fpathconf() , the fildes argument is an open file descriptor.

For both functions, the name argument represents the variable to be queried regarding the file or directory
to which the other argument refers.

The following table lists the configuration variables available from pathconf() and fpathconf() , and
lists for each variable the associated value of the name argument:

Variable Value of name Notes___
LINK_MAX _PC_LINK_MAX 1
MAX_CANON _PC_MAX_CANON 2
MAX_INPUT _PC_MAX_INPUT 2

_PC_FILESIZEBITS 3, 4, 10
NAME_MAX _PC_NAME_MAX 3, 4
PATH_MAX _PC_PATH_MAX 4, 5
PIPE_BUF _PC_PIPE_BUF 6
_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED7, 8
_POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
_POSIX_SYNC_IO _PC_SYNC_IO 9
_POSIX_VDISABLE _PC_V_DISABLE 2LL

L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

The variables in the table are defined as constants in <limits.h> or <unistd.h> if they do not vary
from one path name to another. The associated values of the name argument are defined in
<unistd.h> .

RETURN VALUE
The following notes further qualify the table above.

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If the variable is constant, the value returned is identical to the variable’s definition in
<limits.h> or <unistd.h> regardless of the type of fildes or path. The behavior is
undefined if path or fildes does not refer to a terminal file.

3. If path or fildes refers to a directory, the value returned applies to the file names within the
directory.

4. If path or fildes does not refer to a directory, pathconf() or fpathconf() returns −1 and
sets errno to EINVAL.

5. If path or fildes refers to a directory, the value returned is the maximum length of a relative
path name when the specified directory is the working directory.

6. If path refers to a FIFO, or if fildes refers to a pipe or FIFO, the value returned applies to the
pipe or FIFO itself. If path or fildes refers to a directory, the value returned applies to any
FIFOs that exist or can be created within the directory. If PIPE_BUF is a constant, the value
returned is identical to the definition of PIPE_BUF in <limits.h> regardless of the type of
fildes or path. The behavior is undefined for a file other than a directory, FIFO, or pipe.

7. If path or fildes refers to a directory, the value returned applies to files of any type, other than
directories, that exist or can be created within the directory.

8. _POSIX_CHOWN_RESTRICTEDis defined if the privilege group PRIV_GLOBAL has been
granted the CHOWNprivilege (see getprivgrp (2) and chown(2)). In all other cases,

Section 2−−196 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pathconf(2) pathconf(2)

_POSIX_CHOWN_RESTRICTEDis undefined and pathconf() or fpathconf() returns
−1 without changing errno . To determine if chown() can be performed on a file, it is simplest
to attempt the chown() operation and check the return value for failure or success.

9. _POSIX_SYNC_IO, when defined, determines whether synchronized IO operations may be
performed for the associated file (see open(2)). If path or fildes refers to a directory, it is
unspecified whether or not the implementation supports an association of the variable name with
the specified file.

10. For file systems that are not large file enabled, the _PC_FILESIZEBITS return value will be
less than or equal to 32. For file systems that are large file enabled, the _PC_FILESIZEBITS
return value will be between 33 and 63.

If the variable corresponding to name is not defined for path or fildes, the pathconf() and fpath-
conf() functions succeed and return a value of −1, without changing the value of errno .

Upon any other successful completion, these functions return the value of the named variable with respect
to the specified file or directory, as described above.

Otherwise, a value of −1 is returned and errno is set to indicate the error.

ERRORS
The pathconf() and fpathconf() fail if any of the following conditions are encountered:

[EACCES] A component of the path prefix denies search permission.

[EBADF] The fildes argument is not a valid open file descriptor.

[EFAULT] path points outside the allocated address space of the process.

[EINVAL] The value of name is not valid or the implementation does not support an
association of the variable name with the specified file.

[ELOOP] Too many symbolic links were encountered in translating path.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAXbytes, or the
length of a component of the path name exceeds NAME_MAXbytes while
_POSIX_NO_TRUNCis in effect.

[ENOENT] The file named by path does not exist (for example, path is null, or a com-
ponent of path does not exist).

[ENOTDIR] A component of the path prefix is not a directory.

EXAMPLES
The following example sets val to the value of MAX_CANONfor the device file being used as the standard
input. If the standard input is a terminal, this value is the maximum number of input characters that can
be entered on a single input line before typing the newline character:

if (isatty(0))
val = fpathconf(0, _PC_MAX_CANON);

The following code segment shows two calls to pathconf. The first determines whether a file name longer
than NAME_MAXbytes will be truncated to NAME_MAXbytes in the /tmp directory. If so, the second call
is made to determine the actual value of NAME_MAXso that an error can be printed if a user-supplied file
name stored in filebuf will be truncated in this directory:

extern int errno;
char *filebuf;

errno = 0; /* reset errno */
if (pathconf("/tmp" _PC_NO_TRUNC) == -1) {

/* _POSIX_NO_TRUNC is not in effect for this directory */
if (strlen(filebuf) > pathconf("/tmp", PC_NAME_MAX)) {

fprintf(stderr, "Filename %s too long.\n", filebuf);
/* take error action */

}
else

if (errno) {
perror("pathconf");
/* take error action */

HP-UX Release 11.0: October 1997 − 2 − Section 2−−197

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pathconf(2) pathconf(2)

}
}
/* otherwise, _POSIX_NO_TRUNC is in effect for this directory */
if ((fd = open(filebuf, O_CREAT, mode)) < 0)

perror(filebuf);

DEPENDENCIES
NFS

The following error can occur:

[EOPNOTSUPP] path or fildes refers to a file for which a value for name cannot be determined.
In particular, _PC_LINK_MAX, _PC_NAME_MAX, _PC_PIPE_BUF,
_PC_PATH_MAX, _PC_NO_TRUNC, and _PC_CHOWN_RESTRICTED, cannot
be determined for an NFS file.

AUTHOR
pathconf() and fpathconf() were developed by HP.

SEE ALSO
chown(2), errno(2), limits(5), unistd(5), termio(7).

STANDARDS CONFORMANCE
pathconf() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2, POSIX.4

fpathconf() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2, POSIX.4

Section 2−−198 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pause(2) pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
pause() suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored or blocked (masked) by the calling process.

If the signal causes termination of the calling process, pause() does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function (see
signal(5)), the calling process resumes execution from the point of suspension; with a return value of −1
from pause() and errno set to EINTR.

WARNING
Check all references to signal(5) for appropriateness on systems that support sigvector (2). sigvec-
tor() can affect the behavior described on this page.

APPLICATION USAGE
Threads Considerations

Signal dispositions (such as catch/default/ignore) are shared by all threads in the process and blocked signal
masks are maintained by each thread. Therefore, the signals being waited for should not be ignored by the
process or blocked by the calling thread.

pause() will suspend only the calling thread until it receives a signal.

If other threads in the process do not block the signal, the signal may be delivered to another thread in the
process and the thread in pause() may continue waiting. For this reason, the use of sigwait() is
recommended instead of pause() for multi-threaded applications.

For more information regarding signals and threads, refer to signal(5).

SEE ALSO
alarm(2), kill(2), sigvector(2), sigwait(2), wait(2), signal(5).

STANDARDS CONFORMANCE
pause() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−199

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pipe(2) pipe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe(int fildes[2]);

DESCRIPTION
pipe() creates an I/O mechanism called a pipe and returns two file descriptors, fildes[0] and fildes[1].
fildes[0] is opened for reading and fildes[1] is opened for writing.

A read-only file descriptor fildes[0] accesses the data written to fildes[1] on a first-in-first-out (FIFO) basis.
For details of the I/O behavior of pipes see read(2) and write(2).

By default, HP-UX pipes are not STREAMS-based. It is possible to generate the kernel so that all pipes
created on a system are STREAMS-based. This can only be done for HP-UX releases 10.0 and later.
STREAMS-based FIFOs (created by mknod or mkfifo) are not supported on HP-UX.

To generate a kernel that supports STREAMS-based pipes:

• STREAMS/UX must be installed.

• The module pipemod and the driver pipedev must be included in the /stand/system file.
(When STREAMS/UX is installed, pipemod and pipedev are automatically added to the system
file.)

• The tunable parameter "streampipes" must be set to 1 in the /stand/system file. (This is not
automatically done when STREAMS/UX is installed.)

• The kernel must be generated and the system rebooted. Once this is done, all pipes created by
pipe() will be STREAMS-based.

For more information, see STREAMS/UX for the HP 9000 Reference Manual.

EXAMPLES
The following example uses pipe() to implement the command string ls | sort :

#include <sys/types.h>
pid_t pid;
int pipefd[2];

/* Assumes file descriptor 0 and 1 are open */
pipe (pipefd);

if ((pid = fork()) == (pid_t)0) /* check process id of child process */ {
close(1); /* close stdout */
dup (pipefd[1]); /* points pipefd at file descriptor */
close (pipefd[0]);
execlp (ls", ls , (char *)0);

}
else if (pid > (pid_t)0) {

close(0); /* close stdin */
dup (pipefd[0]);
/* point the child’s standard output to parent’s standard input */
close (pipefd[1]);
execlp ("sort", "sort", (char *)0); /* parent process does sort */

}

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and errno is
set to indicate the error.

ERRORS
pipe() fails if one or more of the following is true:

[EMFILE] NFILE −1 or more file descriptors are currently open.

[ENFILE] The system file table is full.

Section 2−−200 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pipe(2) pipe(2)

[ENOSPC] The file system lacks sufficient space to create the pipe.

[ENOSR] Could not allocate resources for both Stream heads (STREAMS-based pipes only).

SEE ALSO
sh(1), read(2), write(2), popen(3S), streamio(7).

STANDARDS CONFORMANCE
pipe() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−201

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

plock(2) plock(2)

NAME
plock() - lock process, text, data, stack, or shared library in memory

SYNOPSIS
#include <sys/lock.h>

int plock(int op);

DESCRIPTION
The plock() system call allows the calling process to lock the text segment of the process (text lock), its
data segment (data lock), or both its text and data segment (process lock) into memory. Stack segments
are also locked when data segments are locked. Shared library text and shared library data segments
(shlib lock) can also be locked. Locked segments are immune to all routine swapping. plock() also
allows these segments to be unlocked.

The effective user ID of the calling process must be a superuser or the user must be a member of a group
that has the MLOCK privilege (see getprivgrp (2) and setprivgrp (1M)).

op must be one of the following:

PROCLOCK Lock text and data segments into memory (process lock)

TXTLOCK Lock text segment into memory (text lock)

DATLOCK Lock data segment into memory (data lock)

UNLOCK Remove locks

SHLIBLOCK Lock shared library text and shared library data segments (shared library lock)

PROCSHLIBLOCK Lock text, data and shared library text and shared library data segments into
memory (process and shared library lock)

TXTSHLIBLOCK Lock text, shared library text and shared library data segments into memory
(text and shared library lock)

DATSHLIBLOCK Lock data, shared library text and shared library data segments into memory
(data and shared library lock)

RETURN VALUE
plock() returns the following values:

0 Successful completion.
-1 Failure. The requested operation is not performed. errno is set to indicate the error.

ERRORS
If plock() fails, errno is set to one of the following values.

[EINVAL] op is equal to PROCLOCKand a process lock, a text lock, or a data lock already exists
on the calling process.

[EINVAL] op is equal to TXTLOCKand a text lock or process lock already exists on the calling
process.

[EINVAL] op is equal to DATLOCKand a data lock, or process lock already exists on the calling
process.

[EINVAL] op is equal to UNLOCKand no type of lock exists on the calling process.

[EINVAL] op is equal to SHLIBLOCK and there are no unlocked shared library segments in the
calling process.

[EINVAL] op is equal to PROCSHLIBLOCKand a process lock, a text lock, or a data lock
already exists on the calling process.

[EINVAL] op is equal to TXTSHLIBLOCK and a text lock or process lock already exists on the
calling process.

[EINVAL] op is equal to DATSHLIBLOCKand a data lock, or process lock already exists on the
calling process.

[EINVAL] op is not equal to one of the values specified in DESCRIPTION.

Section 2−−202 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

plock(2) plock(2)

[EINVAL] plock() is not allowed in a [vfork ,exec] window. See vfork(2).

[ENOMEM] There is not enough lockable memory in the system to satisfy the locking request.

[EPERM] The effective user ID of the calling process is not a superuser and the user does not
belong to a group that has the MLOCKprivilege.

EXAMPLES
The following call to plock() locks the calling process in memory:

plock(PROCLOCK);

SEE ALSO
setprivgrp(1M), exec(2), exit(2), fork(2), getprivgrp(2), vfork(2).

STANDARDS CONFORMANCE
plock() : SVID2, SVID3, XPG2

HP-UX Release 11.0: October 1997 − 2 − Section 2−−203

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

poll(2) poll(2)

NAME
poll - monitor I/O conditions on multiple file descriptors

SYNOPSIS
#include <poll.h>

int poll(
struct pollfd fds[],
nfds_t nfds,
int timeout

);

DESCRIPTION
poll() provides a general mechanism for reporting I/O conditions associated with a set of file descriptors
and for waiting until one or more specified conditions becomes true. Specified conditions include the ability
to read or write data without blocking, and error conditions.

Arguments
fds Points to an array of pollfd structures, one for each file descriptor of interest.

nfds Specifies the number of pollfd structures in the fds array.

timeout Specifies the maximum length of time (in milliseconds) to wait for at least one of the
specified conditions to occur.

Each pollfd structure includes the following members:

int fd File descriptor
short events Requested conditions
short revents Reported conditions

The fd member of each pollfd structure specifies an open file descriptor. The poll() function uses
the events member to determine what conditions to report for this file descriptor. If one or more of
these conditions is true, poll() sets the associated revents member.

poll() ignores any pollfd structure whose fd member is negative. If the fd member of all
pollfd structures is negative, poll() returns 0 and has no other results.

The events and revents members of the pollfd structure are bit masks. The calling process sets
the events bit mask, and poll() sets the revents bit masks. These bit masks contain ORed combi-
nations of condition flags. The following condition flags are defined:

POLLIN Data can be read without blocking. For streams, this flag means that a message
that is not high priority is at the front of the stream head read queue. This mes-
sage can be of zero length.

POLLNORM Synonym for POLLIN
POLLPRI A high priority message is available. For streams, this message can be of zero

length.
POLLOUT Data can be written without blocking. For streams, this flag specifies that nor-

mal data (not high priority or priority band > 0) can be written without being
blocked by flow control. This flag is not used for high priority data, because it
can be written even if the stream is flow controlled.

POLLERR An error has occurred on the file descriptor.
POLLHUP The device has been disconnected. For streams, this flag in revents is mutu-

ally exclusive with POLLOUT, since a stream cannot be written to after a
hangup occurs. This flag and POLLIN , POLLPRI, POLLRDNORM, POLLRD-
BAND, and POLLMSGare not mutually exclusive.

POLLNVAL fd is not a valid file descriptor.
POLLRDNORM A non-priority message is available. For streams, this flag means that a normal

message (not high priority or priority band > 0) is at the front of the stream head
read queue. This message can be of zero length.

POLLRDBAND A priority message (priority band > 0) is at the front of the stream head read
queue. This message can be read without blocking. The message can be of zero
length.

POLLWRNORM Same as POLLOUT
POLLWRBAND Priority data (priority band > 0) can be written without being blocked by flow

control. Only previously written bands are checked.

Section 2−−204 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

poll(2) poll(2)

POLLMSG A M_SIG or M_PCSIGmessage specifying SIGPOLL has reached the front of
the stream head read queue.

The conditions indicated by POLLNORMand POLLOUTare true if and only if at least one byte of data can
be read or written without blocking. The exception is regular files, which always poll true for POLLNORM
and POLLOUT. Also, streams return POLLNORMin revents even if the available message is of zero
length.

The condition flags POLLERR, POLLHUP, and POLLNVALare always set in revents if the conditions
they indicate are true for the specified file descriptor, whether or not these flags are set in events .

For each call to poll() , the set of reportable conditions for each file descriptor consists of those conditions
that are always reported, together with any further conditions for which flags are set in events . If any
reportable condition is true for any file descriptor, poll() returns with flags set in revents for each
true condition for that file descriptor.

If no reportable condition is true for any of the file descriptors, poll() waits up to timeout milliseconds
for a reportable condition to become true. If, in that time interval, a reportable condition becomes true for
any of the file descriptors, poll() reports the condition in the file descriptor’s associated revents
member and returns. If no reportable condition becomes true, poll() returns without setting any
revents bit masks.

If the timeout parameter is a value of −1, poll() does not return until at least one specified event has
occurred. If the value of the timeout parameter is 0, poll() does not wait for an event to occur but
returns immediately, even if no specified event has occurred. The behavior of poll() is not affected by
whether the O_NONBLOCKflag is set on any of the specified file descriptors.

RETURN VALUES
Upon successful completion, poll() returns a nonnegative value. If the call returns 0, poll() has
timed out and has not set any of the revents bit masks. A positive value indicates the number of file
descriptors for which poll() has set the revents bit mask. If poll() fails, it returns −1 and sets
errno to indicate the error.

ERRORS
poll() fails if any of the following conditions are encountered:

[EAGAIN] Allocation of internal data structures failed. A later call to poll() may complete
successfully.

[EINTR] A signal was delivered before any of the selected for conditions occurred or before the
time limit expired.

[EINVAL] timeout is a negative number other than −1.

[EFAULT] The fds parameter in conjunction with the nfds parameter addresses a location out-
side of the allocated address space of the process. Reliable detection of this error is
implementation-dependent.

EXAMPLES
Wait for input on file descriptor 0:

#include <poll.h>
struct pollfd fds;

fds.fd = 0;
fds.events = POLLNORM;
poll(&fds, 1, -1);

Wait for input on ifd1 and ifd2 , output on ofd , giving up after 10 seconds:

#include <poll.h>
struct pollfd fds[3];
int ifd1, ifd2, ofd, count;

fds[0].fd = ifd1;
fds[0].events = POLLNORM;
fds[1].fd = ifd2;
fds[1].events = POLLNORM;
fds[2].fd = ofd;

HP-UX Release 11.0: October 1997 − 2 − Section 2−−205

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

poll(2) poll(2)

fds[2].events = POLLOUT;
count = poll(fds, 3, 10000);
if (count == -1) {

perror("poll failed");
exit(1);

}
if (count==0)

printf("No data for reading or writing\n");
if (fds[0].revents & POLLNORM)

printf("There is data for reading fd %d\n", fds[0].fd);
if (fds[1].revents & POLLNORM)

printf("There is data for reading fd %d\n", fds[1].fd);
if (fds[2].revents & POLLOUT)

printf("There is room to write on fd %d\n", fds[2].fd);

Check for input or output on file descriptor 5 without waiting:

#include <poll.h>
struct pollfd fds;

fds.fd = 5;
fds.events = POLLNORM|POLLOUT;
poll(&fds, 1, 0);
if (fds.revents & POLLNORM)

printf("There is data available on fd %d\n", fds.fd);
if (fds.revents & POLLOUT)

printf("There is room to write on fd %d\n", fds.fd);

Wait 3.5 seconds:

#include <stdio.h>
#include <poll.h>

poll((struct pollfd *) NULL, 0, 3500);

Wait for a high priority, priority, or normal message on streams file descriptor 0:

#include <poll.h>
struct pollfd fds;

fds.fd = 0;
fds.events = POLLIN|POLLPRI;
poll(&fds, 1, -1);

SEE ALSO
read(2), write(2), select(2), getmsg(2), putmsg(2), streamio(7).

STANDARDS CONFORMANCE
poll() : AES, SVID2, SVID3

Section 2−−206 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

prealloc(2) prealloc(2)

NAME
prealloc - preallocate fast disk storage

SYNOPSIS
#include <unistd.h>

int prealloc(int fildes, off_t size);

DESCRIPTION
prealloc() is used to preallocate space on a disk for faster storage operations.

fildes is a file descriptor obtained from a creat() , open() , dup() , or fcntl() system call for an
ordinary file of zero length. It must be opened writable, because it will be written to by prealloc() .
size is the size in bytes to be preallocated for the file specified by fildes. At least size bytes will be allocated.
Space is allocated in an implementation-dependent fashion for fast sequential reads and writes. The EOF
in an extended file is left at the end of the preallocated area. The current file pointer is left at zero. The
file is zero-filled.

Using prealloc() on a file does not give the file an attribute that is inherited when copying or restoring
the file using a program such as cp or tar (see cp(1) and tar(1)). It simply ensures that disk space has
been preallocated for size bytes in a manner suited for sequential access. The file can be extended beyond
these limits by write() operations past the original end of file. However, this space will not necessarily
be allocated using any special strategy.

RETURN VALUE
Upon successful completion, prealloc() returns 0; otherwise, it returns −1 and sets errno to indicate
the error.

ERRORS
prealloc() fails and no disk space is allocated if any of the following conditions are encountered:

[EBADF] fildes is not a valid open file descriptor opened for writing.

[EDQUOT] User’s disk quota block limit has been reached for this file system.

[EFBIG] size exceeds the maximum file size or the process’s file size limit. See ulimit(2).

[ENOSPC] Not enough space is left on the device to allocate the requested amount; no space was
allocated.

[ENOTEMPTY] fildes not associated with an ordinary file of zero length.

EXAMPLES
Assuming a process has opened a file for writing, the following call to prealloc() preallocates at least
50000 bytes on disk for the file represented by file descriptor outfd:

prealloc (outfd, 50000);

WARNINGS
Allocation of the file space is highly dependent on current disk usage. A successful return does not tell you
how fragmented the file actually might be if the disk is nearing its capacity.

AUTHOR
prealloc() was developed by HP.

SEE ALSO
prealloc(1), creat(2), dup(2), fcntl(2), open(2), prealloc64(2), read(2), ulimit(2), write(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−207

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

profil(2) profil(2)

NAME
profil - execution time profile

SYNOPSIS
#include <time.h>

void profil(
unsigned short int *buff,
size_t bufsiz,
size_t offset,
unsigned int scale

);

DESCRIPTION
profil() controls profiling, by which the system maintains estimates of the amount of time the calling
program spends executing at various places in its address space.

The buff argument must point to an area of memory whose length (in bytes) is given by bufsiz. When
profiling is on, the process’s program counter (pc) is examined each clock tick (CLK_TCKtimes per second),
offset is subtracted from the pc value, and the result is multiplied by scale. If the resulting number
corresponds to an element inside the array of unsigned short int s to which buff points, that ele-
ment is incremented.

The number of samples per second for a given implementation is given by CLK_TCK, which is defined in
<time.h >.

The scale is interpreted as an unsigned, sixteen bit, fixed-point fraction with binary point at the left:
0177777 (octal) gives a one-to-one mapping of pc’s to words in buff; 077777 (octal) maps each pair of instruc-
tion words together. 02(octal) maps all instructions onto the beginning of buff (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 0. Profiling
is turned off when one of the exec() functions is executed, but remains on in child and parent both after
a fork() . Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
No value is returned.

SEE ALSO
prof(1), monitor(3C).

STANDARDS CONFORMANCE
profil() : SVID2, SVID3, XPG2

Section 2−−208 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

NAME
pstat_getstatic(), pstat_getdynamic(), pstat_getproc(), pstat_getlwp(), pstat_getprocvm(),
pstat_getprocessor(), pstat_getvminfo(), pstat_getdisk(), pstat_getlv(), pstat_getswap(), pstat_getfile(),
pstat_getipc(), pstat_getsem(), pstat_getmsg(), pstat_getshm(), pstat_getstable(), pstat_getcrashinfo(),
pstat_getcrashdev(), pstat() - get system information

SYNOPSIS
#include <sys/param.h>
#include <sys/pstat.h>

int pstat_getstatic(
struct pst_static *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getdynamic(
struct pst_dynamic *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getvminfo(
struct pst_vminfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getipc(
struct pst_ipcinfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getprocessor(
struct pst_processor *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getproc(
struct pst_status *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getlwp(
struct lwp_status *buf, size_t elemsize, size_t elemcount,
int index, pid_t pid

);

int pstat_getprocvm(
struct pst_vm_status *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getdisk(
struct pst_diskinfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getlv(
struct pst_lv *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getswap(
struct pst_swapinfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getsem(
struct pst_seminfo *buf, size_t elemsize, size_t elemcount,
int index

HP-UX Release 11.0: October 1997 − 1 − Section 2−−209

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

);

int pstat_getmsg(
struct pst_msginfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getshm(
struct pst_shminfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getfile(
struct pst_fileinfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getstable(
struct pst_stable *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getcrashinfo(
struct pst_crashinfo *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat_getcrashdev(
struct pst_crashdev *buf, size_t elemsize, size_t elemcount,
int index

);

int pstat(
int, union pstun, size_t, size_t, int

);

Remarks
The underlying function pstat() is provided for backward compatibility. Use of the pstat_get*()
wrapper functions (for example, pstat_getproc()) is recommended to avoid the polymorphic typing of
the union pstun parameter.

DESCRIPTION
The pstat functions return information about various system contexts. The contents of the various con-
texts’ associated data structures, structs pst_static , pst_dynamic , pst_vminfo , pst_ipcinfo ,
pst_processor , pst_diskinfo , pst_swapinfo , pst_status , pst_vm_status ,
pst_lvinfo , pst_seminfo , pst_msginfo , pst_shminfo , pst_fileinfo , pst_stable ,
pst_crashinfo , and pst_crashdev , are declared in the header file <sys/pstat.h> . The header
contains descriptions of the fields of each of the context data structures.

Summary of Available Contexts
The pstat routines support the following contexts of information. Detailed descriptions of each routine
follow.

Section 2−−210 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

Short

Context Struct Routine Instances Cut___
Static pst_static pstat_getstatic() 1
Dynamic pst_dynamic pstat_getdynamic() 1
VM pst_vminfo pstat_getvminfo() 1
IPC pst_ipcinfo pstat_getipc() 1
Stable Store pst_stable pstat_getstable() 1
Crash Dumps pst_crashinfo pstat_getcrashinfo() 1___
Processor pst_processor pstat_getprocessor() 1 per processor
Disk pst_diskinfo pstat_getdisk() 1 per disk
Swap pst_swapinfo pstat_getswap() 1 per swap area
Dump Areas pst_crashdev pstat_getcrashdev() 1 per dump area___
Process pst_status pstat_getproc() 1 per process yes
LW Process lwp_status pstat_getlwp() 1 per lwp/thread yes
Process VM pst_vm_status pstat_getprocvm() 1 per process region yes
LVM Vol pst_lvinfo pstat_getlv() 1 per lvol yes
Sema Set pst_seminfo pstat_getsem() 1 per sem set yes
Msg Queue pst_msginfo pstat_getmsg() 1 per msg queue yes
Shared Mem pst_shminfo pstat_getshm() 1 per shm seg yes___
Open File pst_fileinfo pstat_getfile() 1 per file yes___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Wrapper Function Descriptions
pstat_getstatic()

Returns static information about the system. This data does not vary while the system is
running. There is one global instance of this context. Data, up to a maximum of elem-
size bytes, are returned in the struct pst_static pointed to by buf . The elem-
count parameter must be 1. The index parameter must be 0.

pstat_getdynamic()
Returns dynamic information about the system. There is one global instance of this con-
text. Data, up to a maximum of elemsize bytes, are returned in the struct
pst_dynamic pointed to by buf . The elemcount parameter must be 1. The index
parameter must be 0.

pstat_getvminfo()
Returns information about the virtual memory subsystem. There is one global instance of
this context. Data, up to a maximum of elemsize bytes, are returned in the struct
pst_vminfo pointed to by buf . The elemcount parameter must be 1. The index
parameter must be 0.

pstat_getipc()
Returns information about System V IPC subsystem. There is one global instance of this
context. This data does not vary while the system is running. Data, up to a maximum of
elemsize bytes, are returned in the struct pst_ipcinfo pointed to by buf . The
elemcount parameter must be 1. The index parameter must be 0.

pstat_getcrashinfo()
Returns information about the system’s crash dump configuration. Data, up to a maximum
of elemsize bytes, are returned in the struct pst_crashinfo pointed to by buf .
The elemcount parameter must be 1. The index parameter must be 0.

pstat_getprocessor()
Returns information specific to a particular processor (the only processor on a uniprocessor
system). There is one instance of this context for each processor on the system. For each
instance requested, data, up to a maximum of elemsize bytes, are returned in the
struct s pst_processor pointed to by buf . The elemcount parameter specifies
the number of struct s pst_processor that are available at buf to be filled in. The
index parameter specifies the starting index within the context of processors.

pstat_getdisk()
Returns information specific to a particular disk. There is one instance of this context for
each disk configured into the system. For each instance requested, data, up to a maximum
of elemsize bytes, are returned in the struct s pst_diskinfo pointed to by buf .
The elemcount parameter specifies the number of struct s pst_diskinfo that are

HP-UX Release 11.0: October 1997 − 3 − Section 2−−211

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

available at buf to be filled in. The index parameter specifies the starting index within
the context of disks.

pstat_getswap()
Returns information specific to a particular swap area. There is one instance of this context
for each swap area (block or filesystem) configured into the system. For each instance
requested, data, up to a maximum of elemsize bytes, are returned in the struct s
pst_swapinfo pointed to by buf . The elemcount parameter specifies the number of
struct s pst_swapinfo that are available at buf to be filled in. The index parame-
ter specifies the starting index within the context of swap areas.

pstat_getcrashdev()
Returns information specific to a particular crash dump device. There is one instance of
this context for each crash dump device configured on the system. For each instance
requested, data, up to a maximum of elemsize bytes, are returned in the struct s
pst_crashdev pointed to by buf . The elemcount parameter specifies the number of
struct s pst_crashdev that are available at buf to be filled in. The index parame-
ter specifies the starting index within the context of crash dump devices.

pstat_getproc()
Returns information specific to a particular process. There is one instance of this context
for each active process on the system. For each instance requested, data, up to a maximum
of elemsize bytes, are returned in the struct s pst_status pointed to by buf . The
elemcount parameter specifies the number of struct s pst_status that are avail-
able at buf to be filled in. The index parameter specifies the starting index within the
context of processes. As a shortcut, information for a single process may be obtained by
setting elemcount to zero and setting index to the PID of that process.

pstat_getlwp()
Returns information specific to a particular thread or LWP (Lightweight Process) in a pro-
cess. There is one instance of this context for each LWP in a process on the system. For
each instance requested, data, up to a maximum of elemsize bytes, are returned in the
struct lwp_status pointed to by buf . The elemcount parameter specifies the
number of struct lwp_status that are available at buf to be filled in. The index
parameter specifies the starting index within the context of LWPs in a process.

If pid is set to -1 and elemcount is greater than 0, elemcount entries of system
LWP information are returned to the caller program.

If pid is greater than or equal to 0 and elemcount is greater than 0, elemcount
entries of LWP info within the process specified by pid are returned.

As a shortcut, information about a single LWP can be obtained by setting elemcount to
zero and setting index to the TID (Thread ID) of that LWP within its process.

pstat_getprocvm()
Returns information specific to a particular process’ address space. There is one instance of
this context for each process region contained in the process’ address space. For each
instance requested, data, up to a maximum of elemsize bytes, are returned in the
struct pst_vm_status pointed to by buf . Only at most one instance (process
region) is returned for each call to pstat_getprocvm() . The elemcount parameter
identifies the process for which address space information is to be returned. An elem-
count parameter of zero indicates that address space information for the currently exe-
cuting process should be returned. The index parameter specifies the starting index
(beginning with 0) within the context of process regions for the indicated process. For
example, an index of 3 indicates the 4th process region within the indicated process’
address space. As a shortcut, information for a specific process (other than the currently
executing one) may be obtained by setting elemcount to the PID of that process.

pstat_getlv()
Returns information specific to a particular logical volume. There is one instance of this
context for each logical volume configured into the system. For each instance requested,
data, up to a maximum of elemsize bytes, are returned in the struct s pst_lvinfo
pointed to by buf . The elemcount parameter specifies the number of struct s
pst_lvinfo that are available at buf to be filled in. The index parameter specifies
the starting index within the context of logical volumes. As a shortcut, information for a
single logical volume may be obtained by setting elemcount to zero and setting index

Section 2−−212 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

to the dev_t of that logical volume.

pstat_getsem()
Returns information specific to a particular System V semaphore set. There is one instance
of this context for each System V semaphore set on the system. For each instance requested,
data, up to a maximum of elemsize bytes, are returned in the struct s
pst_seminfo pointed to by buf . The elemcount parameter specifies the number of
struct s pst_seminfo that are available at buf to be filled in. The index parameter
specifies the starting index within the context of System V semaphore sets. As a shortcut,
information for a single semaphore set may be obtained by setting elemcount to zero and
setting index to the semid of that semaphore set.

pstat_getmsg()
Returns information specific to a particular System V message queue. There is one instance
of this context for each System V message queue on the system. For each instance
requested, data, up to a maximum of elemsize bytes, are returned in the struct s
pst_msginfo pointed to by buf . The elemcount parameter specifies the number of
struct s pst_msginfo that are available at buf to be filled in. The index parameter
specifies the starting index within the context of System V message queues. As a shortcut,
information for a single message queue may be obtained by setting elemcount to zero
and setting index to the msqid of that message queue.

pstat_getshm()
Returns information specific to a particular System V shared memory segment. There is one
instance of this context for each System V shared memory segment on the system. For each
instance requested, data, up to a maximum of elemsize bytes, are returned in the
struct s pst_shminfo pointed to by buf . The elemcount parameter specifies the
number of struct s pst_shminfo that are available at buf to be filled in. The index
parameter specifies the starting index within the context of System V shared memory seg-
ments. As a shortcut, information for a single shared memory segment may be obtained by
setting elemcount to zero and setting index to the shmid of that shared memory seg-
ment.

pstat_getfile()
Returns information specific to a particular open file for a specified process. For the
specified process, there is one instance of this context for each open file descriptor. For
each instance requested, data, up to a maximum of elemsize bytes, are returned in the
struct s pst_fileinfo pointed to by buf . The elemcount parameter specifies the
number of struct s pst_fileinfo that are available at buf to be filled in. The
index parameter specifies the starting index within the context of open files for the
specified process: it is a 32-bit quantity constructed of the pst_idx field of the ’owning’
process, obtained via pstat_getproc() , described above, as the most significant 16
bits, and the index of open files within the process as the least significant 16 bits. Example:

index = ((pst_idx << 16) | (file_index & 0xffff)); As a shortcut,
information for a single file within the specified process may be obtained by setting elem-
count to zero and setting the least significant 16 bits to the file descriptor number (the
most significant 16 bits are still set to the pst_idx field from the pst_status struc-
ture for the process).

The pst_fileinfo structure contains both a psf_offset and psf_offset64 ele-
ment. The psf_offset element can correctly store a 32-bit value, whereas the
psf_offset64 element can store a 64-bit value. pstat_getfile() will fill in both
psf_offset and psf_offset64 if the value can be correctly stored in both elements.
If the offset is too large to be correctly stored in psf_offset , then psf_offset will
contain a -1. No error will be set in this case.

pstat_getstable()
Returns information contained in the system’s stable storage area. There is one global
instance of this context. Data, up to a maximum of elemsize bytes, are returned in the
struct pst_stable pointed to by buf . The elemcount parameter must be 1. The
index parameter must be 0.

Notes
A wide (64 bit) version of the pstat interfaces are available for narrow (32 bit) applications to use. A nar-
row application could use the flag -D_PSTAT64 at compile time to switch to the wide interfaces. Using

HP-UX Release 11.0: October 1997 − 5 − Section 2−−213

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

this compiler flag in a narrow application is equivalent to using the default interfaces on a wide system.

Refer to the pstat header file to see how the various structures would look like when the -D_PSTAT64
flag is used.

The pstat_getlwp , pstat_getcrashinfo , and pstat_getcrashdev interfaces are available
only in the wide mode and for applications written in standard C and extended ANSI.

RETURN VALUE
Upon successful completion, pstat() and the various wrapper routines (for example,
pstat_getprocessor()) return the number of instances filled in at the address buf . Otherwise, a
value of −1 is returned and errno is set to indicate the error.

ERRORS
The pstat functions fail if any of the following conditions are encountered:

[EFAULT] buf points to an invalid address.

[ESRCH] For the pstat_getproc() , pstat_getprocvm() , pstat_getlv() ,
pstat_getsem() , pstat_getmsg() , pstat_getshm() or
pstat_getfile() calls, elemcount was 0, specifying the single-item short-cut,
and no item matched the selection criteria in index (for example, PID for
pstat_getproc()).

[EINVAL] For the pstat_getproc() , pstat_getprocvm() , pstat_getlv() ,
pstat_getsem() , pstat_getmsg() , pstat_getshm() or
pstat_getfile() calls, elemcount was not zero, and index was less than
zero.

[EINVAL] elemsize is less than or equal to zero or elemsize is larger than the size of the
associated data structure (for example, elemsize >sizeof (struct
pst_processor) for the pstat_getprocessor() call).

[EINVAL] elemcount is not 1 or index is not zero for the pstat_getstatic() ,
pstat_getdynamic() , pstat_getvminfo() , pstat_getipc() ,
pstat_getstable() , or pstat_getcrashinfo() calls.

[EINVAL] elemcount is not greater than or equal to 1 or index is not greater than or equal
to zero for the pstat_getprocessor() , pstat_getdisk() ,
pstat_getswap() , or pstat_getcrashdev() calls.

[EOVERFLOW]
Offset element is too large to store into the structure pointed to by the buf argument.

BACKWARD COMPATIBILITY
The specific calling convention of passing the expected data structure size is used in order to allow for
future expansion of the interface, while preserving backwards source and object compatibility for programs
written using the pstat interfaces. Three rules are followed to allow existing applications to continue to
execute from release to release of the operating system.

• New data for a context are added to the end of that context’s data structure.

• Old, obsolete data members are NOTdeleted from the data structure.

• The operating system honors the elemsize parameter of the call and only returns the first
elemsize bytes of the context data, even if the actual data structure has since been enlarged.

In this way, an application which passes its compile-time size of the context’s data structure (for example,
sizeof(struct pst_processor) for the per-process context) as the elemsize parameter will
continue to execute on future operating system releases without recompilation, even those that have larger
context data structures. If the program is recompiled, it will also continue to execute on that and future
releases. Note that the reverse is not true: a program using the pstat interfaces compiled on, say, HP-UX
release 10.0 will not work on HP-UX release 9.0.

The code examples, below, demonstrate the calling conventions described above.

EXAMPLES
#include <sys/param.h>
#include <sys/pstat.h>

Section 2−−214 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

#include <sys/unistd.h>

/*
* Example 1: get static global information
*/

{
struct pst_static pst;

if (pstat_getstatic(&pst, sizeof(pst), (size_t)1, 0) != -1)
(void)printf("page size is %d bytes\n", pst.page_size);

else
perror("pstat_getstatic");

}

/*
* Example 2: get information about all processors, first obtaining
* number of processor context instances
*/

{
struct pst_dynamic psd;
struct pst_processor *psp;

if (pstat_getdynamic(&psd, sizeof(psd), (size_t)1, 0) != -1) {
size_t nspu = psd.psd_proc_cnt;
psp = (struct pst_processor *)malloc(nspu * sizeof(*psp));
if (pstat_getprocessor(psp, sizeof(*psp), nspu, 0) != -1) {

int i;
int total_execs = 0;
for (i = 0; i < nspu; i++) {

int execs = psp[i].psp_sysexec;
total_execs += execs;
(void)printf("%d exec()s on processor #%d\n",

execs, i);
}

(void)printf("total execs for the system were %d\n",
total_execs);

}
else

perror("pstat_getdynamic");
}
else

perror("pstat_getdynamic");
}

/*
* Example 3: get information about all per-process -- 10 at a time
* done this way since current count of active processes unknown
*/

{
#define BURST ((size_t)10)

struct pst_status pst[BURST];
int i, count;
int idx = 0; /* index within the context */

/* loop until count == 0, will occur all have been returned */
while ((count=pstat_getproc(pst, sizeof(pst[0]),BURST,idx))>0) {

/* got count (max of BURST) this time. process them */
for (i = 0; i < count; i++) {

(void)printf("pid is %d, command is %s\n",
pst[i].pst_pid, pst[i].pst_ucomm);

}

HP-UX Release 11.0: October 1997 − 7 − Section 2−−215

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

/*
* now go back and do it again, using the next index after
* the current ’burst’
*/

idx = pst[count-1].pst_idx + 1;
}

if (count == -1)
perror("pstat_getproc()");

#undef BURST
}

/*
* Example 4: Get a particular process’ information
*/

{
struct pst_status pst;
int target = (int)getppid();

if (pstat_getproc(&pst, sizeof(pst), (size_t)0, target) != -1)
(void)printf("Parent started at %s", ctime(&pst.pst_start));

else
perror("pstat_getproc");

}

/*
* Example 5: get information about all shared memory segments
*/

{
struct pst_ipcinfo psi;
struct pst_shminfo *pss;

if (pstat_getipc(&psi, sizeof(psi), (size_t)1, 0) != -1) {
size_t num_shm = psi.psi_shmmni;
pss = (struct pst_shminfo *)malloc(num_shm * sizeof(*pss));
if (pstat_getshm(pss, sizeof(*pss), num_shm, 0) != -1) {

int i;
(void)printf("owner\tkey\tsize\n");
for (i = 0; i < num_shm; i++) {

/* skip inactive segments */
if (!(pss[i].psh_flags & PS_SHM_ALLOC))

continue;
(void)printf("%d\t%#x\t%d\n",

pss[i].psh_uid, pss[i].psh_key,
pss[i].psh_segsz);

}
}
else

perror("pstat_getshm");
}
else

perror("pstat_getipc");
}

/*
* Example 6: List all the open files for a process
*/

{
struct pst_status pst;
int target = (int)getppid();

/*
* First get the desired process to get its ’index’.
* This will be used when retrieving the file data.
*/

Section 2−−216 − 8 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

if (pstat_getproc(&pst, sizeof(pst), (size_t)0, target) != -1) {
int pidx = pst.pst_idx;

#define BURST ((size_t)10)
struct pst_fileinfo psf[BURST];
int i, count;
int idx = 0; /* index within the context */

(void)printf("Open files for process PID %d\n", pst.pst_pid);

/*
* Construct the index into the per-process file context:
* Most significant 16 bits are the process’ index (above).
* Least significant 16 bits are the file’s index.
* For a given process, the file index starts at 0.
*/

idx = (pidx << 16) | (0 & 0xffff);

/* loop until all fetched */
while (count = pstat_getfile(psf, sizeof(psf[0]),

BURST, idx) > 0) {
/* process them (max of BURST) at a time */
for (i = 0; i < count; i++) {

(void)printf("fd #%x\tFSid %x:%x\tfileid %d\n",
psf[i].psf_fd,
psf[i].psf_id.psf_fsid.psfs_id,
psf[i].psf_id.psf_fsid.psfs_type,
psf[i].psf_id.psf_fileid);

}

/*
* Now go back and do it again, using the
* next index after the current ’burst’
*/
idx = psf[count-1].psf_idx + 1;

}
if (count == -1)

perror("pstat_getfile()");

#undef BURST
}
else

perror("pstat_getproc");
}

/*
* Example 7: Acquire information about a specific LWP
*/

{
struct lwp_status lwpbuf;

/*
* get information for LWP whose lwpid is 121 within
* a process whose pid is 1234.
*/

count = pstat_getlwp(buf, sizeof(struct lwp_status),
0, 4321, 1234)

if (count == -1)
perror("pstat_getlwp()");

else
...

}

WARNINGS
Some parts of the program status may not get updated when a process becomes a zombie. An example is
that the cpu percentage is not updated because the process is not expected to be scheduled to run after

HP-UX Release 11.0: October 1997 − 9 − Section 2−−217

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

pstat(2) pstat(2)

entering the zombie state.

AUTHOR
The pstat routines were developed by HP.

FILES
/usr/include/sys/pstat.h

Contains detailed descriptions of context data structures and fields.

SEE ALSO
ps(1), top(1), vmstat(1), iostat(1), fuser(1), vgdisplay(1), lvdisplay(1), crashconf(1M), stat(2), sysconf(2),
semctl(2), msgctl(2), shmctl(2), crashconf(2), fileno(3S).

Section 2−−218 − 10 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

NAME
ptrace() - process trace

SYNOPSIS
#include <sys/ptrace.h>

int ptrace(
int request,
pid_t pid,
int addr,
int data,
int addr2

);

Remarks
Much of the functionality of ptrace() is highly dependent on the underlying hardware. An application
that uses this system call should not be expected to be portable across architectures or implementations.

DESCRIPTION
The ptrace() system call provides a means by which a process can control the execution of another pro-
cess. Its primary use is for the implementation of breakpoint debugging (see adb(1)). The traced process
behaves normally until it encounters a signal (see signal(2) for the list), at which time it enters a stopped
state and the tracing process is notified via wait() (see wait(2)).

A traced process may also enter the stopped state without encountering a signal. This can happen if the
traced process stops in response to specific events that it encounters during the course of its execution. To
make this happen, the tracing process has to set specific event flags in the context of the traced process.
This mechanism will be described later in greater detail.

When the traced process is in the stopped state, the tracing process can use ptrace() to examine and
modify the "core image". Also, the tracing process can cause the traced process to either terminate or con-
tinue, with the possibility of ignoring the signal that caused it to stop.

To forestall possible fraud, ptrace() inhibits the set-user-ID facility on subsequent exec*() calls. If a
traced process calls exec*() , it stops before executing the first instruction of the new image, showing sig-
nal SIGTRAP.

The request argument determines the precise action to be taken by ptrace() . It is one of the values
described in the rest of this section.

The following request is used by the child process that will be traced.

PT_SETTRC This request must be issued by a child process if it is to be traced by its parent. It
turns on the child’s trace flag, which stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by func (see sig-
nal(2)). The pid, addr, data, and addr2 arguments are ignored, and a return value is
not defined for this request. Peculiar results occur if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the tracing process. For each, pid is the process ID of
the process being traced, which must be in a stopped state before these requests are made. The responsibil-
ity of ensuring that the traced process is in a stopped state before a request is issued, lies with the tracing
process.

PT_RDUSER
PT_RIUSER With these requests, the word at location addr in the address space of the traced pro-

cess is returned to the tracing process. If instruction (I) and data (D) space are
separated, request PT_RIUSER returns a word from I space, and request
PT_RDUSERreturns a word from D space. If I and D space are not separated, either
request produces equivalent results. The data and addr2 arguments are ignored.

These two requests fail if addr is not the start address of a word, in which case a value
of −1 is returned to the tracing process and its errno is set to [EIO].

PT_RUAREA With this request, the word at location addr in the user area of the traced process in
the system’s address space (see <sys/user.h>) is returned to the tracing process.
Addresses in this area are system dependent, but start at zero. The limit can be
derived from <sys/user.h> . The data and addr2 arguments are ignored.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−219

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

This request fails if addr is not the start address of a word or is outside the user area,
in which case a value of −1 is returned to the tracing process and its errno is set to
[EIO].

PT_WDUSER
PT_WIUSER With these requests, the value given by the data argument is written into the address

space of the traced process at location addr. PT_WIUSERwrites a word into I space,
and PT_WDUSERwrites a word in D space. Upon successful completion, the value
written into the address space of the traced process is returned to the tracing process.
The addr2 argument is ignored.

These two requests fail if addr is not the start address of a word, or if addr is a loca-
tion in a pure procedure space and either another process is executing in that space or
the tracing process does not have write access for the executable file corresponding to
that space. Upon failure, a value of −1 is returned to the tracing process and its
errno is set to [EIO].

PT_WUAREA This request is not supported. Therefore, it returns −1, sets errno to [EIO] and does
not affect the user area of the traced process.

PT_RUREGS With this request, the word at location addr in the save_state structure at the
base of the per-process kernel stack is returned to the tracing process. addr must be
word-aligned and less than STACKSIZE*NBPG (see <sys/param.h> and
<machine/param.h>). The save_state structure contains the registers and
other information about the process. The data and addr2 arguments are ignored.

PT_WUREGS The save_state structure at the base of the per-process kernel stack is written as
it is read with request PT_RUREGS. Only a few locations can be written in this way:
the general registers, most floating-point registers, a few control registers, and certain
bits of the interruption processor status word. The addr2 argument is ignored.

PT_RDDATA
PT_RDTEXT These requests are identical to PT_RDUSERand PT_RIUSER, except that the data

argument specifies the number of bytes to read and the addr2 argument specifies
where to store that data in the tracing process.

PT_WRDATA
PT_WRTEXT These requests are identical to PT_WDUSERand PT_WIUSER, except that the data

argument specifies the number of bytes to write and the addr2 argument specifies
where to read that data in the tracing process.

PT_CONTIN This request causes the traced process to resume execution. If the data argument is
0, all pending signals, including the one that caused the traced process to stop, are
canceled before it resumes execution. If the data argument is a valid signal number,
the traced process resumes execution as if it had incurred that signal, and any other
pending signals are canceled. The addr2 argument is ignored.

If the addr argument is not 1, the Instruction Address Offset Queue (program
counter) is loaded with the values addr and addr+4 before execution resumes. Other-
wise, execution resumes from the point where it was interrupted.

Upon successful completion, the value of data is returned to the tracing process.

This request fails if data is not 0 or a valid signal number, in which case a value of −1
is returned to the tracing process and its errno is set to [EIO].

PT_EXIT This request causes the traced process to terminate with the same consequences as
exit() . The addr, data, and addr2 arguments are ignored.

PT_SINGLE This request causes a flag to be set so that an interrupt occurs upon the completion of
one machine instruction. It then executes the same steps as listed above for request
PT_CONTIN. If the processor does not provide a trace bit, this request returns an
error. This effectively allows single-stepping of the traced process.

Whether or not the trace bit remains set after this interrupt is a function of the
hardware.

PT_ATTACH This request stops the process identified by pid and allows the calling process to trace
it. Process pid does not have to be a child of the calling process, but the effective user
ID of the calling process must match the real and saved user ID of process pid unless

Section 2−−220 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

the effective user ID of the tracing process is superuser. The calling process can use
the wait() system call to wait for process pid to stop. The addr, data, and addr2
arguments are ignored.

PT_DETACH This request detaches the traced process pid and allows it to continue its execution in
the manner of PT_CONTIN.

If the addr argument is not 1, the Instruction Address Offset Queue (program
counter) is loaded with the values addr and addr2.

PT_CONTIN1 This request causes the traced process to resume execution with all its pending signals
intact. If the data argument is 0, the signal that caused the traced process to stop is
canceled before the traced process resumes execution. If the data argument is a valid
signal number, the traced process resumes execution as if it had received that signal.
The addr argument must be equal to 1 for this request. The addr2 argument is
ignored. Upon successful completion, the value of data is returned to the tracing pro-
cess.

This request fails if data is not 0 or a valid signal number, in which case a value of −1
is returned to the tracing process and its errno is set to [EIO].

PT_SINGLE1 This request causes a flag to be set so that an interrupt occurs upon the completion of
one machine instruction. It then executes the same steps as listed above for request
PT_CONTIN1. If the processor does not provide a trace bit, this request returns an
error. This effectively allows single stepping of the traced process.

Whether or not the trace bit remains set after this interrupt is a function of the
hardware.

As noted earlier, a tracing process can set event flags in the context of the traced process to make it
respond to specific events, during its execution. These events are:

PTRACE_SIGNAL
This event flag indicates that, when processing signals, the traced process needs to
examine signal mask bits set in its context by the tracing process. See the
ptrace_event structure description under PT_SET_EVENT_MASKfor further details.

If the signal being processed has its signal mask bit set, signal processing continues as
though the process were not traced. The traced process is not stopped and the tracing
process is not notified of the signal. If the signal mask bit is not set for the signal
being processed, the traced process is stopped and the tracing process is notified via
wait() (see wait(2)).

Note that the SIGKILL signal is an exception to this rule in that it can never be
unmasked; that is, it behaves as though its mask bit were always set, regardless of
whether or not its mask bit is in fact set. Consequently, a SIGKILL signal cannot be
used to stop a traced process.

In this respect, a SIGTRAP signal is also special in that it is specifically used to stop
traced processes. A SIGTRAP signal should therefore never be masked. Setting a
mask bit for SIGTRAP will result in unexpected system behavior.

PTRACE_FORK
This event flag indicates that the traced process needs to take special action when it
invokes fork(). When set, both the parent and child processes stop (the child after
marking itself as a traced process and adopting its parent’s debugger). Both processes
log the fact that they stopped in response to a PTRACE_FORKevent. Further, the
child’s pid is logged in the parent’s context, and the parent’s pid is logged in the child’s
context. The child does not inherit its parent’s event flags. See the ptrace_state struc-
ture description under PT_GET_PROCESS_STATEfor further details.

PTRACE_VFORK
This event flag indicates that the traced process needs to take special action when it
invokes vfork() . When set, the child process stops after marking itself as a traced
process and adopting its parent’s debugger. The fact that a PTRACE_VFORKevent
was responded to is logged in the context of both the parent and child processes.
Further, the child’s pid is logged in the parent’s context, and the parent’s pid is logged
in the child’s context. The child does not inherit its parent’s event flags. See the
ptrace_state structure description under PT_GET_PROCESS_STATEfor further

HP-UX Release 11.0: October 1997 − 3 − Section 2−−221

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

details. It is important to note that the warnings with respect to vfork() (see
vfork(2)), continue to apply here. In particular, it needs to be remembered that, when
the child process stops, its parent process is suspended, and that the child borrows the
parent’s memory and thread of control until a call to exec*() or an exit (either by a
call to exit() or abnormally (see exec(2) and exit(2))).

PTRACE_EXEC
This event flag indicates that the traced process needs to take special action when it
invokes exec*() . When set, the traced process stops after logging the fact that it
stopped in response to a PTRACE_EXECevent. It also logs information pertaining to
the path or file argument of exec*() . This includes a pointer to the path name
string and the length of the path name string. See the ptrace_state structure descrip-
tion under PT_GET_PROCESS_STATEfor further details.

PTRACE_EXIT
This event flag indicates that the traced process needs to take special action when it
invokes exit() . When set, the traced process stops after logging the fact that it
stopped in response to a PTRACE_EXIT event.

PT_SET_EVENT_MASK
This request is used by the calling process to specify event flags and signal mask
values that it wants the traced process to respond to. It does so by writing the con-
tents of the ptrace_event data structure in the user space pointed to by addr into the
context of the traced process. The data argument specifies the number of bytes to be
transferred. The addr2 argument is ignored.

The request fails if the number of bytes specified is less than zero or greater than the
size of the ptrace_event structure, and its errno is set to [EIO].

typedef struct ptrace_event{
sigset_t pe_signals;
events_t pe_set_event;

} ptrace_event_t;

Event flags are set in the pe_set_event member of the ptrace_event data structure. An
event flag is set when the tracing process wants the traced process to respond to a
particular event. As detailed earlier, the event flags defined are PTRACE_EXEC,
PTRACE_EXIT, PTRACE_FORK, PTRACE_SIGNAL, and PTRACE_VFORK. See
the definition of events_t in <sys/ptrace.h> for more details.

Signal mask values are set in the pe_signals member of the ptrace_event structure.
This field is qualified by a PTRACE_SIGNALevent flag being set in the pe_set_event
member. Mask values set in the pe_signals member correspond to signals that need
to be masked from the tracing process when received by the traced process; that is,
these are signals received by the traced process that the tracing process does not want
to be informed about. The pe_signals member is described by the type definition
sigset_t , which is defined in <signal.h> .

PT_GET_EVENT_MASK
This request is used by the calling process to determine the event flags and signal
mask values that have been set in the traced process’s context by the last
PT_SET_EVENT_MASKrequest. The data argument specifies the number bytes to
be read from the context of the traced process into the ptrace_event data structure in
user space pointed to by addr . The addr2 argument is ignored.

The request fails if the number of bytes requested is less than zero or greater than the
size of the ptrace_event structure, and its errno is set to [EIO].

PT_GET_PROCESS_STATE
This request is used by the calling process to access state information logged by the
traced process after it (the traced process) has responded to an event. The request
reads data bytes of data from the traced process’s context into the ptrace_state data
structure in user space pointed to by addr . The addr2 argument is ignored.

The ptrace_state data structure is described in <sys/ptrace.h> and has the fol-
lowing members:

Section 2−−222 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

typedef struct ptrace_state{
events_t pe_report_event;
int pe_path_len;
pid_t pe_other_pid;

} ptrace_state_t;

The event that the traced process responded to and stopped is logged in the
pe_report_event member. One of PTRACE_EXEC, PTRACE_EXIT, PTRACE_FORK,
PTRACE_SIGNAL, or PTRACE_VFORKis logged here. See the definition of events_t
in <sys/ptrace.h> for more details.

If the event that the traced process responded to was PTRACE_EXEC, then the
pe_path_len member provides the length of the path name string (which is the path
name of the executable file) not including the null terminating character.

If the event that the traced process responded to was PTRACE_FORK or
PTRACE_VFORK, then the pe_other_pid member provides the parent’s pid when
accessed from the child’s context, and the child’s pid when accessed from the parent’s
context.

The request fails if the number of bytes requested is less than zero or greater than the
size of the ptrace_event structure and its errno is set to [EIO].

PT_GET_PROCESS_PATHNAME
If the event that the traced process responded to and stopped was PTRACE_EXEC,
then this request is used by the calling process to access the path name of the execut-
able file provided as a path or file argument to exec*() . The request reads data
bytes of data of the path name string from the traced process’s context into the data
buffer in user space pointed to by addr . The addr2 argument is ignored. In the typi-
cal case, data is equal to the value of the pe_path_len member of the ptrace_state
structure returned via the PT_GET_PROCESS_STATErequest.

If the number of bytes requested is greater than zero but less than the length of the
path name string, then the number of bytes requested is returned. If the number of
bytes requested is greater than the length of the path name string, then the full path
name string (including the null terminating character) is returned.

The request fails if the number of bytes requested is less than zero, and its errno is
set to [EIO].

EXAMPLES
The following example illustrates the use of some of the ptrace() requests by a tracing process.

#include <stdio.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/ptrace.h>
#define BUFSIZ 1024
#define MAXPATH 1024

pid_t npid, cpid, pid;
int status, errors=0, pathlength;
ptrace_event_t *event_addr;
ptrace_state_t *state_addr;
char *buf_addr;
size_t event_len, state_len;
int filed[2];

child()
{

int n, bar;

close(filed[1]);
/* Wait for parent to write to pipe */
while ((n = read(filed[0], &bar, BUFSIZ)) == 0);

/* Now the child can exec. */
if (execlp("ls", "ls", (char *)0) < 0) /* error during exec */

HP-UX Release 11.0: October 1997 − 5 − Section 2−−223

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

printf("Child: exec failed\n");
exit(0);

}

parent()
{

close(filed[0]);

/* Before child does an exec, attach it and set its event flag. */
if (ptrace(PT_ATTACH,pid)) /* failed to attach process */

printf("Parent: Failed to attach child\n");
if (pid != wait(&status)) /* wait failed */

printf("Parent: attach failed with wrong wait status\n");
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGTRAP))

printf("Parent: SIGTRAP didn’t stop child\n");

/*
* The child process has now stopped. Set its event flag indicating
* that it needs to trigger on a PTRACE_EXEC event.
*/

event_addr->pe_set_event = PTRACE_EXEC;
if (ptrace(PT_SET_EVENT_MASK, pid, event_addr, event_len))

printf("Parent: PT_SET_EVENT_MASK ptrace request failed\n");
if (pid != wait(&status)) /* wait failed */

printf("Parent: wait() failed with wrong wait status\n");

/*
* Send the child a message so it can break out of the while loop.
* Get it running so it can exec.
*/

write(filed[1], "now run", 7);
if (ptrace(PT_CONTIN, pid, 1, 0) != 0)

printf("Parent: failed to get child process running\n");
/*

* Wait for the traced child to stop after the exec system call in
* response to an exec event set in its ptrace_event structure.
*/

if (pid != (npid = wait(&status))) /* wait failed */
printf("Parent: wait() failed with wrong status\n");

if (!WIFSTOPPED(status))
printf("Parent: invalid wait() completion\n");

/*
* Child has stopped; fetch its process state and examine state
* information.
*/

if (ptrace(PT_GET_PROCESS_STATE, pid, state_addr, state_len) < 0)
printf("Parent: PT_GET_PROCESS_STATE ptrace request failed\n");

if (pid != wait(&status)) /* wait failed */
printf("Parent: wait() failed with wrong wait status\n");

/* Check if the pathlength value returned is non-zero */
if ((pathlength = state_addr->pe_path_len) == 0)

printf("Parent: zero length pathname returned\n");

/* Fetch exec’d file pathname and store it in the buffer. */
if (ptrace(PT_GET_PROCESS_PATHNAME, pid, buf_addr, (pathlength+1))

< 0){
printf("Parent: Failed to get exec pathname\n");

} else {
printf("Parent: the exec pathname is %s\n", buf_addr);
if (pid != wait(&status)) /* wait failed */

printf("Parent: wait() failed with wrong status\n");
}

}

Section 2−−224 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

ptrace(2) ptrace(2)

main()
{

event_len = sizeof(ptrace_event_t);
state_len = sizeof(ptrace_state_t);
event_addr = calloc(event_len, 1);
state_addr = calloc(state_len, 1);
buf_addr = calloc(MAXPATH, 1);
pipe(filed);
switch (pid = fork()) {

case -1:
exit(1);

case 0:
child();
break;

default:
parent();
break;

}
}

ERRORS
If ptrace() fails, errno is set to one of the following values.

[EACCES] The executable image of the process being attached resides across an interruptible
NFS mount.

[EIO] request is an illegal number.

[EIO] The PT_SETTRCrequest is used with a data argument that is less than zero or not a
multiple of four, or data is not word-aligned.

[EIO] Attempting to write to a memory segment of the traced process that is not writeable,
or attempting to write to page 0, or the request argument is out of range.

[EIO] The PT_CONTIN request is being used with an invalid data argument (signal
number).

[EIO] Attempting to write to the user area via the PT_WUAREArequest.

[EPERM] The specified process cannot be attached for tracing.

[EPERM] The process pid is already being traced or pid refers to the calling process itself.

[ESRCH] pid identifies a process to be traced that does not exist or has not executed a
ptrace() with request PT_SETTRC.

SEE ALSO
adb(1), exec(2), exit(2), signal(2), wait(2).

STANDARDS CONFORMANCE
ptrace() : SVID2, SVID3, XPG2

HP-UX Release 11.0: October 1997 − 7 − Section 2−−225

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

putmsg(2) putmsg(2)

NAME
putmsg, putpmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putmsg(
int fildes,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int flags

);

int putpmsg(
int fildes,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int band,
int flags

);

DESCRIPTION
The putmsg() function creates a message from a process buffer(s) and sends the message to a STREAMS
file. The message may contain either a data part, a control part, or both. The data and control parts are
distinguished by placement in separate buffers, as described below. The semantics of each part is defined
by the STREAMS module that receives the message.

The putpmsg() function does the same things as putmsg() , but the process can send messages in
different priority bands. Except where noted, all requirements on putmsg() also pertain to
putpmsg() .

The fildes argument specifies a file descriptor referencing an open stream. The ctlptr and dataptr argu-
ments each point to a strbuf structure.

The ctlptr argument points to the structure describing the control part, if any, to be included in the mes-
sage. The buf member in the strbuf structure points to the buffer where the control information resides,
and the len member indicates the number of bytes sent. The maxlen member is not used by putmsg() .
In a similar manner, the argument dataptr specifies the data, if any, to be included in the message. The
flags argument indicates what type of message should be sent and is described further below.

To send the data part of a message, dataptr must not be a null pointer and the len member of dataptr must
be 0 or greater. To send the control part of a message, the corresponding values must be set for ctlptr. No
data (control) part will be sent if either dataptr (ctlptr) is a null pointer or the len member of dataptr
(ctlptr) is set to −1.

For putmsg() , if a control part is specified and flags is set to RS_HIPRI , a high priority message is sent.
If no control part is specified, and flags is set to RS_HIPRI , putmsg() fails and sets errno to [EIN-
VAL]. If flags is set to 0, a normal message (priority band equal to 0) is sent. If a control part and data
part are not specified and flags is set to 0, no message is sent and 0 is returned.

The stream head guarantees that the control part of a message generated by putmsg() is at least 64
bytes in length.

For putpmsg() , the flags are different. The flags argument is a bitmask with the following mutually-
exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg() fails and sets
errno to [EINVAL]. If a control part is specified and flags is set to MSG_HIPRI and band is set to 0, a
high-priority message is sent. If flags is set to MSG_HIPRI and either no control part is specified or band
is set to a non-zero value, putpmsg() fails and set errno to [EINVAL]. If flags is set to MSG_BAND,
then a message is sent in the priority band specified by band. If a control part and data part are not
specified and flags is set to MSG_BAND, no message is sent and 0 is returned.

The putmsg() function blocks if the stream write queue is full due to internal flow control conditions.
For high-priority messages, putmsg() does not block on this condition. For other messages, putmsg()
does not block when the write queue is full and O_NONBLOCKis set.

The putmsg() function also blocks, unless prevented by lack of internal resources, while for the availabil-
ity of message blocks in the stream, regardless of priority of whether O_NONBLOCKhas been specified. No
partial message is sent.

Section 2−−226 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

p

putmsg(2) putmsg(2)

MULTITHREAD USAGE
The putmsg() and putpmsg() functions are safe to be called by multithreaded applications, and they
are thread-safe for both POSIX Threads and DCE User Threads. The putmsg() and putpmsg() func-
tions have cancellation points. They are async-signal safe and fork-safe. They are not async-cancel safe.

RETURN VALUE
Upon successful completion, putmsg() and putpmsg() return 0. Otherwise, they return -1 and set
errno to indicate the error.

ERRORS
[EAGAIN] A non-priority message was specified, the O_NONBLOCKflag is set, and the stream write

queue is full due to internal flow control conditions, or buffers could not be allocated for the
message that was to be created.

[EBADF] fildes is not a valid file descriptor open for writing.

[EINTR] A signal was caught during putmsg() or putpmsg() .

[EINVAL] An undefined value is specified in flags, or flags is set to RS_HIPRI or MSG_HIPRI and
no control part is supplied, or the stream or multiplexor referenced by fildes is linked
(directly or indirectly) downstream from a multiplexor, or flags is set to MSG_HIPRI and
band is non-zero (for putpmsg() only).

[ENOSTR] A stream is not associated with fildes.

[ENXIO] A hangup condition was generated downstream for the specified stream.

[EPIPE] or [EIO]
The fildes argument refers to a STREAMS-based pipe and the other end of the pipe is
closed. A SIGPIPE signal is generated for the calling process.

[ERANGE] The size of the data part of the message does not fall within the range specified by the max-
imum and minimum packet sizes of the topmost STREAMS module. This value is also
returned if the control part of the message is larger than the maximum configured size of
the control part of a message, or if the data part of the message is larger than the max-
imum configured size of the data part of a message.

In addition, putmsg() and putpmsg() will fail if the stream head had processed an asynchronous error
before the call. In this case, the value of errno does not reflect the result of putmsg() or putpmsg()
but reflects the prior error.

SEE ALSO
getmsg(2), poll(2), read(2), write(2), <stropts.h>, streamio(7).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−227

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

q

quotactl(2) quotactl(2)

NAME
quotactl - manipulate disk quotas

SYNOPSIS
#include <sys/quota.h>

int quotactl(int cmd, const char *special, uid_t uid, void *addr);

DESCRIPTION
quotactl() manipulates disk quotas. cmd indicates a command to be applied to the user ID uid.
Parameter special is a pointer to a null-terminated string containing the path name of the block special
device for the file system being manipulated. The block special device must be mounted. The parameter
addr is the address of an optional, command-specific, data structure which is copied in or out of the system.
The interpretation of addr is explained with each command below:

Q_QUOTAON Turn on quotas for a file system. The parameter addr points to the path name of file
containing the quotas for the file system. The quota file must exist; it is normally
created using the quotacheck command (see quotacheck(1M)). The uid parameter
is ignored. This call is restricted to users having appropriate privileges.

Q_QUOTAOFFTurn off quotas for a file system. The addr and uid parameters are ignored. This call
is restricted to the user with appropriate privileges.

Q_GETQUOTAGet disk quota limits and current usage for user uid. addr is a pointer to a dqblk
structure (defined in <sys/quota.h>). Only users having appropriate privileges
can get the quotas of a user other than himself.

Q_SETQUOTASet disk quota limits and current usage of files and blocks for user uid. Note vxfs
does not allow the current usage fields to be changed addr is a pointer to a dqblk
structure (defined in <sys/quota.h>). This call is restricted to users with
appropriate privileges.

Q_SETQLIM Set disk quota limits for user uid. The parameter addr is a pointer to a dqblk
structure (defined in <sys/quota.h>). This call is restricted to users with
appropriate privileges.

Q_SYNC Update the on-disk copy of quota usages for a file system. If special is null, all file sys-
tems with active quotas are synced. The parameters addr and uid are ignored.

RETURN VALUE
Upon successful completion, quotactl() returns 0; otherwise, it returns −1 and sets errno to indicate
the error.

ERRORS
quotactl() fails when any of the following occurs:

[ENOSYS] The kernel has not been configured with the disk quota subsystem.

[EINVAL] The parameters cmd and/or uid are invalid.

[ESRCH] No disc quota is found for the indicated user or quotas have not been turned on for
this file system.

[EPERM] The call is privileged and the calling process does not have appropriate privileges.

[ENODEV] The parameter special contains a type of file system that does not support quotas.
Currently, quotas are supported on HFS and VxFS file systems.

[ENOTBLK] The parameter special is not a block device.

[EACCES] (Q_QUOTAON) The quota file pointed to by addr exists but is either not a regular file
or is not on the file system pointed to by special.

[EBUSY] Q_QUOTAONattempted while another Q_QUOTAONor Q_QUOTAOFFis in pro-
gress.

[ENOENT] The file specified by special or addr does not exist.

[EFAULT] The addr or special parameter points to an invalid address. Reliable detection of this
error is implementation-dependent.

Section 2−−228 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

q

quotactl(2) quotactl(2)

[EDQUOT] User’s disk quota block limit has been reached for this file system.

WARNINGS
The quotactl() system call is incompatible with the 4.2/4.3BSD implementation of Melbourne quotas
which uses a different system call interface and on-disk data structure.

AUTHOR
quotactl() was developed by HP and Sun Microsystems, Inc.

SEE ALSO
quota(1), edquota(1M), rquotad(1M), quotacheck(1M), quotaon(1M), mount(2), quota(5), quota(5).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−229

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

read(2) read(2)

NAME
read, readv - read from file

SYNOPSIS
#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

#include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The read() function attempts to read nbyte bytes from the file associated with the open file descriptor,
fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a position in the file given
by the file offset associated with fildes. The file offset is incremented by the number of bytes actually read.

Files that do not support seeking, for example, terminals, always read from the current position. The value
of a file offset associated with such a file is undefined.

No data transfer will occur past the current end- of-file. If the starting position is at or after the end-of-file,
0 will be returned. If the file refers to a device special file, the result of subsequent read() requests is
implementation-dependent.

If the value of nbyte is greater than {SSIZE_MAX} the result is implementation-dependent.

When attempting to read from an empty pipe or FIFO:

• If no process has the pipe open for writing, read() will return 0 to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCKis set, read() will return −1
and set errno to EAGAIN.

• If some process has the pipe open for writing and O_NONBLOCKis clear, read() will block until
some data is written or the pipe is closed by all processes that had the pipe open for writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and has no
data currently available:

• If O_NONBLOCKis set, read() will return a −1 and set errno to EAGAIN.

• If O_NONBLOCKis clear, read() will block until some data becomes available.

• The use of the O_NONBLOCKflag has no effect if there is some data available.

The read() function reads data previously written to a file. If any portion of a regular file prior to the
end-of-file has not been written, read() returns bytes with value 0. For example, lseek() allows the
file offset to be set beyond the end of existing data in the file. If data is later written at this point, subse-
quent reads in the gap between the previous end of data and the newly written data will return bytes with
value 0 until data is written into the gap.

Upon successful completion, where nbyte is greater than 0, read() will mark for update the st_atime field
of the file, and return the number of bytes read. This number will never be greater than nbyte. The value
returned may be less than nbyte if the number of bytes left in the file is less than nbyte, if the read()
request was interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than nbyte
bytes immediately available for reading. For example, a read() from a file associated with a terminal
may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with errno set to
[EINTR] .

If a read() is interrupted by a signal after it has successfully read some data, it will return the number of
bytes read.

A read() from a STREAMS file can read data in three different modes: byte-stream mode,
message-ondiscard mode, and message-discard mode. The default is byte-stream mode. This can be changed
using the I_SRDOPT ioctl() request, and can be tested with the I_GRDOPT ioctl() . In
byte-stream mode, read() retrieves data from the STREAMuntil as many bytes as were requested are
transferred, or until there is no more data to be retrieved. Byte-stream mode ignores message boundaries.

Section 2−−230 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

read(2) read(2)

In STREAMSmessage-nondiscard mode, read() retrieves data until as many bytes as were requested are
transferred, or until a message boundary is reached. If read() does not retrieve all the data in a mes-
sage, the remaining data is left on the STREAM , and can be retrieved by the next read() call.
Message-discard mode also retrieves data until as many bytes as were requested are transferred, or a mes-
sage boundary is reached. However, unread data remaining in a message after the read() returns is dis-
carded, and is not available for a subsequent read() , readv() , or getmsg() call.

How read() handles zero-byte STREAMSmessages is determined by the current read mode setting. In
byte-stream mode, read() accepts data until it has read nbyte bytes, or until there is no more data to
read, or until a zero-byte message block is encountered. The read() function then returns the number of
bytes read, and places the zero-byte message back on the STREAMto be retrieved by the next read() ,
readv() , or getmsg() . In message-nondiscard mode or message-discard mode, a zero-byte message
returns 0 and the message is removed from the STREAM. When a zero-byte message is read as the first
message on a STREAM, the message is removed from the STREAMand 0 is returned, regardless of the read
mode.

A read() from a STREAMSfile returns the data in the message at the front of the STREAMhead read
queue, regardless of the priority band of the message.

By default, STREAMs are in control-normal mode, in which a read() from a STREAMSfile can only pro-
cess messages that contain a data part but do not contain a control part. The read() fails if a message
containing a control part is encountered at the STREAMhead. This default action can be changed by plac-
ing the STREAMin either control-data mode or control-discard mode with the I_SRDOPT ioctl() com-
mand. In control-data mode, read() converts any control part to data and passes it to the application
before passing any data part originally present in the same message. In control-discard mode, read() dis-
cards message control parts but returns to the process any data part in the message.

In addition, read() and readv() will fail if the STREAMhead had processed an asynchronous error
before the call. In this case, the value of errno does not reflect the result of read() or readv() but
reflects the prior error. If a hangup occurs on the STREAMbeing read, read() continues to operate nor-
mally until the STREAMhead read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read() , but places the input data into the iovcnt buffers specified
by the members of the iov array: iov[0], iov[1], ... , iov[iovcnt−1]. The iovcnt argument is valid if greater
than 0 and less than or equal to {IOV_MAX} .

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
The readv() function always fills an area completely before proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the file.

RETURN VALUE
Upon successful completion, read() and readv() return a non-negative integer indicating the number
of bytes actually read. Otherwise, the functions return −1 and set errno to indicate the error.

ERRORS
The read() and readv() functions will fail if:

[EAGAIN] The O_NONBLOCKflag is set for the file descriptor and the process would be delayed
in read() or readv() .

[EBADF] The fildes argument is not a valid file descriptor open for reading.

[EBADMSG] The file is a STREAMfile that is set to control-normal mode and the message waiting
to be read includes a control part.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data was
transferred.

[EINVAL] The STREAMor multiplexer referenced by fildes is linked (directly or indirectly)
downstream from a multiplexer.

[EIO] A physical I/O error has occurred.

[EIO] The process is a member of a background process attempting to read from its control-
ling terminal, the process is ignoring or blocking the SIGTTIN signal or the process
group is orphaned. This error may also be generated for implementation-dependent
reasons.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−231

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

read(2) read(2)

[EISDIR] The fildes argument refers to a directory and the implementation does not allow the
directory to be read using read() or readv() . The readdir() function should
be used instead.

The readv() function will fail if:

[EINVAL] The sum of the iov_len values in the iov array overflowed an ssize_t.

The read() and readv() functions may fail if:

[ENXIO] A request was made of a non-existent device, or the request was outside the capabili-
ties of the device.

The readv() function may fail if:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX} .

SEE ALSO
fcntl(2), ioctl(2), lseek(2), open(2), pipe(2), <stropts.h>, <sys/uio.h>, <unistd.h>, XBD Specification, Chapter
9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument buf is changed from char * .IR void* , and the type of the argument
nbyte is changed from unsigned to size_t.

• The DESCRIPTION section now states that the result is implementation-dependent if nbyte is
greater than {SSIZE_MAX} . This limit was defined by the constant {INT_MAX} in Issue 3.

The following change is incorporated for alignment with the FIPS requirements:

• The last paragraph of the DESCRIPTION section now states that if read() is interrupted by a
signal after it has successfully read some data, it will return the number of bytes read. In Issue 3
it was optional whether read() returned the number of bytes read, or whether it returned −1
with errno set to EINTR.

Other changes are incorporated as follows:

• The header <unistd.h> is added to the SYNOPSIS section.

• The DESCRIPTION section is rearranged for clarity and to align more closely with the ISO
POSIX-1 standard. No functional changes are made other than as noted elsewhere in this
CHANGE HISTORY section.

• In the ERRORS section in previous issues, generation of the EIO error depended on whether or
not an implementation supported Job Control. This functionality is now defined as mandatory.

• The ENXIO error is marked as an extension.

• The APPLICATION USAGE section is removed.

• The description of EINTR is amended.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The readv() function is added to the SYNOPSIS.

• The DESCRIPTION is updated to describe the reading of data from STREAMSfiles. An operational
description of the readv() function is also added.

• References to the readv() function are added to the RETURN VALUE and ERRORS sections in
appropriate places.

• The ERRORS section has been restructured to describe errors that apply generally (that is, to both
read() and readv()), and to describe those that apply to readv() specifically. The
EBADMSG, EINVAL , and EISDIR errors are also added.

Section 2−−232 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

read(2) read(2)

HP-UX EXTENSIONS

DESCRIPTION
For readv() , the iovec structure is defined in /usr/include/sys/uio.h .

For ordinary files, if the O_RSYNC|O_DSYNCfile status flag is set, the calling process blocks until the data
being read and all file attributes required to retrieve the data are the same as their image on disk. Writes
pending on the data to be read are executed before returning to the calling process. If the
O_RSYNC|O_SYNCfile status flag is set, the behavior is identical to that for O_RSYNC|O_DSYNCwith
this addition: all file attributes changed by the read operation (including access time, modification time and
status change time) must also be the same as their image on disk. For block special files, if either the
O_RSYNC|O_DSYNCor O_RSYNC|O_SYNCstatus flag is set, the calling process blocks until the data
being read is an image of the data on the disk. Writes pending on the data to be read are executed before
returning to the calling process.

When attempting to read from a regular file with enforcement-mode file and record locking set (see
chmod(2)), and the segment of the file to be read is blocked by a write lock owned by another process, the
behavior is determined by the O_NDELAYand O_NONBLOCKfile status flags:

• If O_NDELAYor O_NONBLOCKis set, read() returns −1 and errno is set to [EAGAIN].

• If O_NDELAYand O_NONBLOCKare clear, read() does not return until the blocking write
lock is removed.

When attempting to read from an empty pipe (or FIFO):

• If no process has the pipe open for writing, the read returns a 0.

• If some process has the pipe open for writing and O_NONBLOCKis set, the read returns −1 and
errno is set to [EAGAIN].

• If O_NDELAYis set, the read returns a 0.

• If some process has the pipe open for writing and O_NDELAYand O_NONBLOCKare clear, the
read blocks until data is written to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently available:

• If O_NDELAYis set, the read returns 0.

• If O_NDELAYand O_NONBLOCKare clear, the read blocks until data becomes available.

RETURN VALUE
Upon successful completion, read() returns the number of bytes actually read and placed in the buffer;
this number may be less than nbyte if:

• The file is associated with a communication line (see ioctl(2) and termio(7)), or

• The number of bytes left in the file is less than nbyte bytes.

• read() was interrupted by a signal after it had successfully read some, but not all of the data
requested.

When an end-of-file is reached, a value of 0 is returned. Otherwise, a −1 is returned and errno is set to
indicate the error.

ERRORS
read() fails if any of the following conditions are encountered:

[EBADF] fildes is not a valid file descriptor open for reading.

[EINTR] A signal was caught before any data was transferred (see sigvector (2)).

[EAGAIN] Enforcement-mode file and record locking is set, O_NDELAYor O_NONBLOCKis
set, and there is a blocking write lock.

[EDEADLK] A resource deadlock would occur as a result of this operation (see lockf(2) and
fcntl(2)).

[EFAULT] buf points outside the allocated address space. Reliable detection of this error is
implementation dependent.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−233

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

read(2) read(2)

[ENOLCK] The system record lock table is full, preventing the read from sleeping until the block-
ing write lock is removed.

In addition, readv() can return one of the following errors:

[EFAULT] iov_base or iov points outside of the allocated address space. The reliable detection of
this error is implementation-dependent.

EXAMPLES
Assuming a process opened a file for reading, the following call to read(2) reads BUFSIZ bytes from the
file into the buffer pointed to by mybuf:

#include <stdio.h> /* include this for BUFSIZ definition */

char mybuf[BUFSIZ];
int nbytes, fildes;

nbytes = read (fildes, mybuf, BUFSIZ);

WARNINGS
Record locking might not be enforced by the system, depending on the setting of the file’s mode bits (see
lockf(2)).

Character-special devices, and raw disks in particular, apply constraints on how read() can be used. See
the specific Section (7) entries for details on particular devices.

Check all references to signal(5) for appropriateness on systems that support sigvector (2). sigvector()
can affect the behavior described on this page.

In general, avoid using read() to get the contents of a directory; use the readdir() library routine
(see directory(3C)).

DEPENDENCIES
NFS

When obtaining the contents of a directory on an NFS file system, the readdir() library routine must
be used (see directory(3C)). read() returns with an error if used to read a directory using NFS.

AUTHOR
read() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), lockf(2), open(2), pipe(2), select(2), ustat(2), directory(3C), tty(7).

STANDARDS CONFORMANCE
read() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.4

Section 2−−234 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

readlink(2) readlink(2)

NAME
readlink() - read the contents of a symbolic link

SYNOPSIS
#include <unistd.h>

int readlink(
const char *path,
char *buf,
size_t bufsiz

);

DESCRIPTION
The readlink() function places the contents of the symbolic link referred to by path in the buffer buf
which has size bufsiz. If the number of bytes in the symbolic link is less than bufsiz, the contents of the
remainder of buf are unspecified.

RETURN VALUE
Upon successful completion, readlink() returns the count of bytes placed in the buffer. Otherwise, it
returns a value of −1, leaves the buffer unchanged, and sets errno to indicate the error.

ERRORS
The readlink() function will fail if:

[EACCES] Search permission is denied for a component of the path prefix of path.

[EINVAL] The path argument names a file that is not a symbolic link.

[EIO] An I/O error occurred while reading from the file system.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG]
The length of path exceeds PATH_MAX, or a pathname component is longer than
NAME_MAX.

[ENOTDIR] A component of the path prefix is not a directory.

The readlink() function may fail if:

[EACCES] Read permission is denied for the directory.

[ENAMETOOLONG]
Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds PATH_MAX.

APPLICATION USAGE
Portable applications should not assume that the returned contents of the symbolic link are null- ter-
minated.

SEE ALSO
stat(2), symlink(2), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−235

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

readlink(2) readlink(2)

HP-UX EXTENSIONS

SYNOPSIS
#include <symlink.h>

DESCRIPTION
If the length of the path name string is less than bufsiz, the string will be null-terminated when returned.
If the length of the path name string is exactly bufsiz, the string will not be null-terminated when returned.

ERRORS
[EACCES] Search permission is denied for a component of the path prefix.

[EFAULT] buf or path points outside the process’s allocated address space. Reliable detection of
this error is implementation-dependent.

[ENAMETOOLONG]
A component of path exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis in
effect, or path exceeds PATH_MAXbytes.

AUTHOR
readlink() was developed by the University of California, Berkeley.

SEE ALSO
stat(2), symlink(2), symlink(4).

STANDARDS CONFORMANCE
readlink() : AES, SVID3

Section 2−−236 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

reboot(2) reboot(2)

NAME
reboot - boot the system

SYNOPSIS
#include <sys/reboot.h>

int reboot (int howto);

DESCRIPTION
reboot() causes the system to reboot. howto is a mask of reboot options (see <sys/reboot.h >),
specified as follows:

RB_AUTOBOOT A file system sync is performed (unless RB_NOSYNCis set) and the processor is
rebooted from the default device and file.

RB_HALT The processor is simply halted. A sync of the file system is performed unless the
RB_NOSYNCflag is set. RB_HALTshould be used with caution.

RB_NOSYNC A sync of the file system is not performed.

Unless the RB_NOSYNCflag has been specified, reboot(2) unmounts all mounted file systems and marks
them clean so that it will not be necessary to run fsck(1M) on these file systems when the system reboots.

Only users with appropriate privileges can reboot a machine.

RETURN VALUE
If successful, this call never returns. Otherwise, a −1 is returned and errno is set to indicate the error.

ERRORS
reboot() fails if this condition is encountered:

[EPERM] The effective user ID of the caller is not a user with appropriate privileges.

DEPENDENCIES
The default file and device for RB_AUTOBOOTis /stand/vmunix on the current root device.

AUTHOR
reboot() was developed by HP and the University of California, Berkeley.

SEE ALSO
reboot(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−237

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

recv(2) recv(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/socket.h>

int recv(int s, void *buf, int len, int flags);

int recvfrom(
int s,
void *buf,
int len,
int flags,
void *from,
int *fromlen

);

int recvmsg(int s, struct msghdr msg[], int flags);

_XOPEN_SOURCE_EXTENDED Only (UNIX 98)
ssize_t recv(int s, void *buf, size_t len, int flags);

ssize_t recvfrom(
int s,
void *buf,
size_t len,
int flags,
struct sockaddr *from,
socklen_t *fromlen

);

ssize_t recvmsg(int s, struct msghdr *msg, int flags);

Obsolescent _XOPEN_SOURCE_EXTENDED Only (UNIX 95)
ssize_t recvfrom(

int s,
void *buf,
size_t len,
int flags,
struct sockaddr *from,
size_t *fromlen

);

DESCRIPTION
The recv() , recvfrom() , and recvmsg() system calls are used to receive messages from a socket.

s is a socket descriptor from which messages are received.

buf is a pointer to the buffer into which the messages are placed.

len is the maximum number of bytes that can fit in the buffer referenced by buf.

If the socket uses connection-based communications, such as a SOCK_STREAM socket, these calls can only
be used after the connection has been established (see connect(2)). For connectionless sockets such as
SOCK_DGRAM, these calls can be used whether a connection has been specified or not.

recvfrom() operates in the same manner as recv() except that it is able to return the address of the
socket from which the message was sent. For connected datagram sockets, recvfrom() simply returns
the same address as getpeername() (see getpeername(2)). For stream sockets, recvfrom() retrieves
data in the same manner as recv() , but does not return the socket address of the sender. If from is
nonzero, the source address of the message is placed in the socket address structure pointed to by from .
fromlen is a value-result parameter, initialized to the size of the structure associated with from , and
modified on return to indicate the actual size of the address stored there. If the memory pointed to by from
is not large enough to contain the entire address, only the first fromlen bytes of the address are returned.

For message-based sockets such as SOCK_DGRAM, the entire message must be read in a single operation.
If a message is too long to fit in the supplied buffer, the excess bytes are discarded. For stream-based sock-
ets such as SOCK_STREAM, there is no concept of message boundaries. In this case, data is returned to

Section 2−−238 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

recv(2) recv(2)

the user as soon as it becomes available, and no data is discarded. See the AF_CCITT Only subsection
below for a list of the exceptions to this behavior for connections in the address family AF_CCITT.

recvmsg() performs the same action as recv() , but scatters the read data into the buffers specified in
the msghdr structure (see _XOPEN_SOURCE_EXTENDEDOnly below). This structure is defined in
<sys/socket.h> and has the following form (HP-UX BSD Sockets Only):

struct msghdr {
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg_iov */
caddr_t msg_accrights; /* access rights */
int msg_accrightslen; /* size of msg_accrights */

}

msg_name points to a sockaddr structure in which the address of the sending socket is to be stored, if
the socket is connectionless; msg_name may be a null pointer if no name is specified. msg_iov specifies the
locations of the character arrays for storing the incoming data. msg_accrights specifies a buffer to receive
any access rights sent along with the message. Access rights are limited to file descriptors of size int. If
access rights are not being transferred, set the msg_accrights field to NULL. Access rights are supported
only for AF_UNIX.

If no data is available to be received, recv() waits for a message to arrive unless nonblocking mode is
enabled. There are three ways to enable nonblocking mode:

• With the FIOSNBIO ioctl() request
• With the O_NONBLOCK fcntl() flag
• With the O_NDELAY fcntl() flag

Although the use of FIONBIO is not recommended, if nonblocking I/O is enabled using FIOSNBIO or the
equivalent FIONBIO request (defined in <sys/ioctl.h> and explained in ioctl(2), ioctl(5) and
socket(7)), the recv() request completes in one of three ways:

• If there is enough data available to satisfy the entire request, recv() completes successfully, having
read all of the data, and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, recv() complete successfully, hav-
ing read as much data as possible, and returns the number of bytes it was able to read.

• If there is no data available, recv() fails and errno is set to [EWOULDBLOCK].

If nonblocking I/O is disabled using FIOSNBIO , recv() always executes completely (blocking as neces-
sary) and returns the number of bytes read.

If the O_NONBLOCKflag is set using fcntl() (defined in <sys/fcntl.h> and explained in fcntl(2)
and fcntl(5)), POSIX-style nonblocking I/O is enabled. In this case, the recv() request completes in one
of three ways:

• If there is enough data available to satisfy the entire request, recv() completes successfully, having
read all the data, and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, recv() completes successfully,
having read as much data as possible, and returns the number of bytes it was able to read.

• If there is no data available, recv() completes, having read no data, and returns −1 with errno set
to [EAGAIN].

If the O_NDELAYflag is set using fcntl() (defined in <sys/fcntl.h> and explained in fcntl(2) and
fcntl(5)), nonblocking I/O is enabled. In this case, the recv() request completes in one of three ways:

• If there is enough data available to satisfy the entire request, recv() completes successfully, having
read all the data, and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, recv() completes successfully,
having read as much data as possible, and returns the number of bytes it was able to read.

• If there is no data available, recv() completes successfully, having read no data, and returns 0.

If the O_NONBLOCKor O_NDELAYflag is cleared using fcntl() , the corresponding style of nonblocking
I/O, if previously enabled, is disabled. In this case, recv() always executes completely (blocking as neces-
sary) and returns the number of bytes read.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−239

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

recv(2) recv(2)

Since both the fcntl() O_NONBLOCK and O_NDELAYflags and ioctl() FIOSNBIO request are sup-
ported, some clarification on how these features interact is necessary. If the O_NONBLOCKor
O_NDELAYflag has been set, recv() requests behave accordingly, regardless of any FIOSNBIO
requests. If neither the O_NONBLOCKflag nor the O_NDELAYflag has been set, FIOSNBIO requests
control the the behavior of recv() .

By default nonblocking I/O is disabled.

select() can be used to determine when more data arrives by selecting the socket for reading.

The flags parameter can be set to MSG_PEEK, MSG_OOB, both, or zero. If it is set to MSG_PEEK, any
data returned to the user still is treated as if it had not been read. The next recv() rereads the same
data. The MSG_OOBflag is used to receive out-of-band data. For TCP SOCK_STREAM sockets, both the
MSG_PEEKand MSG_OOBflags can be set at the same time. The MSG_OOBflag value is supported for
TCP SOCK_STREAM sockets only. MSG_OOBis not supported for AF_UNIX or AF_VME_LINK sockets.

A read() call made to a socket behaves in exactly the same way as a recv() with flags set to zero.

AF_CCITT Only
Connections in the address family AF_CCITT support message-based sockets only. Although the user
specifies connection-based communications (SOCK_STREAM), the X.25 subsystem communicates via mes-
sages. This address family does not support SOCK_DGRAM socket types.

Normally, each recv() returns one complete X.25 message. If the socket is in nonblocking mode,
recv() behaves as described above. Note that if the user specifies len less than the actual X.25 message
size, the excess data is discarded and no error indication is returned. The size of the next available mes-
sage as well as the state of MDTF, D, and Q bits can be obtained with ioctl(X25_NEXT_MSG_STAT) .

Connections of the address family AF_CCITT receive data in the same way as message-based connections
described above, with the following additions and exceptions:

• recvfrom() is supported; however, the from and fromlen parameters are ignored (that is, it works
in the same manner as recv()).

• To receive a message in fragments of the complete X.25 message, use
ioctl(X25_SET_FRAGMENT_SIZE) . The state of the MDTF bit is 1 for all except the last frag-
ment of the message.

• The MSG_OOBflag is supported.

• The MSG_PEEKflag is supported; the two flags can be combined.

• If a message is received that is larger than the user-controlled maximum message size (see
af_ccitt(7F)), the X.25 subsystem RESETs the circuit, discards the data, and sends the out-of-band
event OOB_VC_MESSAGE_TOO_BIGto the socket.

_XOPEN_SOURCE_EXTENDED Only
For X/Open Sockets , the msghdr structure has the following form:

(UNIX 98)

struct msghdr {
void *msg_name; /* optional address */
socklen_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg_iov */
void *msg_control; /* ancillary data, see below */
socklen_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

}

Obsolescent (UNIX 95)

struct msghdr {
void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg_iov */
void *msg_control; /* ancillary data, see below */

Section 2−−240 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

recv(2) recv(2)

size_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

}

msg_control specifies a buffer to receive any ancillary data sent along with the message. Ancillary data
consists of a sequence of pairs, each consisting of a cmsghdr structure followed by a data array. The data
array contains the ancillary data message, and the cmsghdr structure contains descriptive information
that allows an application to correctly parse the data. cmsghdr has the following structure:

(UNIX 98)

struct cmsghdr {
socklen_t cmsg_len; /* data byte count, including hdr*/
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

}

Obsolescent (UNIX 95)

struct cmsghdr {
size_t cmsg_len; /* data byte count, including hdr*/
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

}

The supported value for cmsg_level is SOL_SOCKET, and the supported value for cmsg_type is
SCM_RIGHTS. Together they indicate that the data array contains the access rights to be received. Access
rights are supported only for AF_UNIX. Access rights are limited to file descriptors of size int. If ancillary
data are not being transferred, set the msg_control field to NULL, and set the msg_controllen field to 0.

The flags parameter accepts a new value, MSG_WAITALL, which requests that the function block until the
full amount of data requested can be returned. The function may return a smaller amount of data if a sig-
nal is caught, the connection is terminated, or an error is pending for the socket.

On successful completion of recvmsg() , the msg_flags member of the message header is the bitwise-
inclusive OR of all of the following flags that indicate conditions detected for the received message.

MSG_EOR End of record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

DEPENDENCIES
AF_CCITT

recvfrom() is supported; however, the from and fromlen parameters are ignored (i.e., it works in the
same manner as recv()).

The O_NDELAY fcntl() call is not supported over X.25 links. Use the FIOSNBIO ioctl() call
instead to enable nonblocking I/0.

RETURN VALUE
recv() , recvfrom() , and recvmsg() return the following values:

n Successful completion. n is the number of bytes received.
0 The socket is blocking and the transport connection to the remote node failed.

-1 Failure. errno is set to indicate the error.

ERRORS
If recv() , recvfrom() , or recvmsg() fails, errno is set to one of the following values.

[EAGAIN] Non-blocking I/O is enabled using O_NONBLOCKflag with fcntl() and the
receive operation would block, or the socket has an error that was set asynchro-
nously. An asynchronous error can be caused by a gateway failing to forward a
datagram because the datagram exceeds the MTU of the next-hop network and
the "Don’t Fragment" (DF) bit in the datagram is set. (See SO_PMTUin

HP-UX Release 11.0: October 1997 − 4 − Section 2−−241

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

recv(2) recv(2)

getsockopt(2).)

[EBADF] The argument s is an invalid descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EFAULT] An invalid pointer was specified in the buf , from , or fromlen parameter, or in
the msghdr structure.

[EINTR] The receive was interrupted by delivery of a signal before any data was available
for the receive.

[EINVAL] The len parameter or a length in the msghdr structure is invalid; or no data is
available on receive of out of band data.

[EMSGSIZE] A length in the msghdr structure is invalid.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[ENOTCONN] Receive on a SOCK_STREAM socket that is not yet connected.

[ENOTSOCK] The argument s is a valid file descriptor, but it is not a socket.

[EOPNOTSUPP] The MSG_OOBflag was set for a UDP SOCK_DGRAM message-based socket, or
MSG_OOBor MSG_PEEKwas set for any AF_UNIX socket. The MSG_OOBflag
is supported only for stream-based TCP SOCK_STREAM sockets. Neither
MSG_PEEKnor MSG_OOBis supported for AF_UNIX sockets.

AF_CCITT only: recv() was issued on a listen() socket.

[ETIMEDOUT] The connection timed out during connection establishment, or due to a transmis-
sion timeout on active connection.

[EWOULDBLOCK] Non-blocking I/O is enabled using ioctl() FIOSNBIO request, and the
requested operation would block.

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size. In that
case, passing a size_t pointer will evoke compile-time warnings, which must be corrected in order for the
application to behave correctly. Also, the size of the msghdr and cmsghdr structures and the relative
position of their members will be different, which might affect application behavior. Applications that use
socklen_t now, where appropriate, will avoid such migration problems. On the other hand, applications
that need to be portable to the UNIX 95 profile should follow the X/Open specification (see
xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The recv() , recvmsg() , and recvfrom() system calls are thread-safe. They each have a cancella-
tion point; and they are async-cancel safe, async-signal safe, and fork-safe.

AUTHOR
recv() , recvmsg() , and recvfrom() were developed by HP and the University of California, Berke-
ley.

SEE ALSO
getsockopt(2), read(2), select(2), send(2), socket(2), af_ccitt(7F), af_vme_link(7F), inet(7F), socket(7), sock-
etx25(7), tcp(7P), udp(7P), unix(7P), xopen_networking(7).

STANDARDS CONFORMANCE
recv() : XPG4

Section 2−−242 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rename(2) rename(2)

NAME
rename - change the name of a file

SYNOPSIS
#include <stdio.h>

int rename(const char *source, const char *target);

DESCRIPTION
The rename() system call causes the source file to be renamed to target . If target exists, it is first
removed. Both source and target must be of the same type (that is, either directories or nondirectories),
and must reside on the same file system.

If target can be created or if it existed before the call, rename() guarantees that an instance of target will
exist, even if the system crashes in the midst of the operation.

If the final component of source is a symbolic link, the symbolic link is renamed, not the file or directory to
which the symbolic link points.

RETURN VALUE
rename() returns the following values:

0 Successful completion.
-1 Failure. Neither file is affected. errno is set to indicate the error.

ERRORS
If rename() fails, errno is set to one of the following values.

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing to a directory without write permission.

[EBUSY] target or source is an existing directory that is the mount point for a mounted file sys-
tem.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

[EEXIST] target is a directory and is not empty.

[EFAULT] source or target points outside the allocated address space of the process. Reliable
detection of this error is implementation dependent.

[EINVAL] source is a parent directory of target , or an attempt is made to rename the . or ..
directory.

[EISDIR] target is a directory, but source is not.

[ELOOP] Too many symbolic links were encountered in translating either path name.

[ENAMETOOLONG]
A component of either path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect, or the entire length of either path name exceeds
PATH_MAXbytes.

[ENOENT] A component of the source path does not exist, or a path prefix of target does not exist.

[ENOSPC] The destination directory cannot be extended because of a lack of space on the file sys-
tem containing the directory.

[ENOTDIR] A component of either path prefix is not a directory.

[ENOTDIR] source is a directory, but target is not.

[EPERM] The directory containing source has the sticky bit set, and neither the containing
directory nor the source are owned by the effective user ID.

[EPERM] The target file exists, the directory containing target has the sticky bit set, and neither
the containing directory nor the target are owned by the effective user ID.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EXDEV] The paths named by source and target are on different logical devices (file systems).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−243

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rename(2) rename(2)

AUTHOR
rename() was developed by the University of California, Berkeley.

SEE ALSO
open(2).

STANDARDS CONFORMANCE
rename() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

Section 2−−244 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rmdir(2) rmdir(2)

NAME
rmdir() - remove a directory file

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION
The rmdir() system call removes a directory file whose name is given by path. The directory must be
empty (except for the files . and ..) before it can be removed.

RETURN VALUE
rmdir() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If rmdir() fails, errno is set to one of the following values.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EACCES] The process does not have read/write access permission to the parent directory.

[EBUSY] The directory to be removed is the mount point for a mounted file system.

[EBUSY] The path is the current working directory.

[EEXIST] The named directory is not empty. It contains files other than . and .. .

[EFAULT] path points outside the process’s allocated address space. The reliable detection of
this error is implementation-dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path is not a directory.

[EPERM] The directory containing the directory to be removed has the sticky bit set and neither
the containing directory nor the directory to be removed are owned by the effective
user ID.

[EROFS] The directory entry to be removed resides on a read-only file system.

AUTHOR
rmdir() was developed by the University of California, Berkeley and HP.

SEE ALSO
mkdir(2), unlink(2), remove(3C).

STANDARDS CONFORMANCE
rmdir() : AES, SVID2, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−245

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtprio(2) rtprio(2)

NAME
rtprio - change or read real-time priority

SYNOPSIS
#include <sys/rtprio.h>

int rtprio(pid_t pid, int prio);

DESCRIPTION
The rtprio() system call sets or reads the real-time priority of a process.

If pid is zero, it specifies the calling process; otherwise, it specifies the process ID of a process.

If the process pid contains more than one thread or a lightweight process (that is, the process is multi-
threaded), this function shall only change the process scheduling policy and priority. Individual threads or
lightweight processes in the target process shall not have their scheduling policies and priorities modified.
Note that if the target process is multi-threaded, this process scheduling policy and priority change will
only affect a child process that is created later and inherits its parent’s scheduling policy and priority. The
priority returned is the value of the target’s old priority, though individual threads or lightweight processes
may have a different value if some other interface is used to change an individual thread or lightweight
processes priority.

When setting the real-time priority of another process, the real or effective user ID of the calling process
must match the real or saved user ID of the process to be modified, or the effective user ID of the calling
process must be that of a user having appropriate privileges. The calling process must also be a member of
a privilege group allowing rtprio() (see getprivgrp (2)) or the effective user ID of the calling process must
be a user having appropriate privileges.

Simply reading real-time priorities requires no special privilege.

Real-time scheduling policies differ from normal timesharing policies in that the real-time priority is used
to absolutely order all real-time processes. This priority is not degraded over time. All real-time processes
are of higher priority than normal user and system processes, although some system processes may run at
real-time priorities. If there are several eligible processes at the same priority level, they are run in a
round robin fashion as long as no process with a higher priority intervenes. A real-time process receives
CPU service until it either voluntarily gives up the CPU or is preempted by a process of equal or higher
priority. Interrupts can also preempt a real-time process.

Valid real-time priorities run from zero to 127. Zero is the highest (most important) priority. This real-
time priority is inherited across forks (see fork(2)) and execs (see exec(2)).

prio can have the following values:

0 to 127 Set the process to this real-time priority.

RTPRIO_NOCHG Do not change the real-time priority. This is used to read the process real-time
priority.

RTPRIO_RTOFF Set the process to no longer have a real-time priority. It resumes a normal
timesharing priority.

Any process, regardless of privilege, is allowed to turn off its own real-time prior-
ity using a pid of zero.

RETURN VALUE
rtprio() returns the following values:

0 to 127 The process was a real-time process. The value is the process’s former (before
the call) real-time priority.

RTPRIO_RTOFF The process was not a real-time process.

-1 An error occurred. errno is set to indicate the error.

ERRORS
If rtprio() fails, errno is set to one of the following values:

[EINVAL] prio is not RTPRIO_NOCHG, RTPRIO_RTOFF, or in the range 0 to 127.

[EPERM] The calling process is not a user having appropriate privileges, and neither its
real nor effective user ID match the real or saved user ID of the process indicated

Section 2−−246 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtprio(2) rtprio(2)

by pid.

[EPERM] The group access list of the calling process does not contain a group having
PRIV_RTPRIO capability and prio is not RTPRIO_NOCHG, or
RTPRIO_RTOFFwith a pid of zero.

[ESRCH] No process can be found corresponding to that specified by pid.

EXAMPLES
The following call to rtprio() sets the calling process to a real-time priority of 90:

rtprio(0, 90);

WARNINGS
Normally, compute-bound programs should not be run at real-time priorities, because all timesharing work
on the CPU would come to a complete halt.

DEPENDENCIES
Series 800

Because processes executing at real-time priorities get scheduling preference over a system process execut-
ing at a lower priority, unexpected system behavior can occur after a power failure on systems that support
power-fail recovery. For example, when init (see init(1M)) receives the powerfail signal SIGPWR, it nor-
mally reloads programmable hardware such as terminal multiplexers. If a higher-priority real-time process
is eligible to run after the power failure, the running of init is delayed. This condition temporarily
prevents terminal input to any process, including real-time shells of higher priority than the eligible real-
time process. To avoid this situation, a real-time process should catch SIGPWRand suspend itself until
init has finished its powerfail processing.

AUTHOR
rtprio() was developed by HP.

SEE ALSO
rtprio(1), getprivgrp(2), nice(2), plock(2).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−247

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

NAME
rtsched: sched_get_priority_max(), sched_get_priority_min(), sched_getparam(), sched_getscheduler(),
sched_rr_get_interval(), sched_setparam(), sched_setscheduler(), sched_yield(), PRI_HPUX_TO_POSIX(),
PRI_POSIX_TO_HPUX() - real-time scheduling operations

SYNOPSIS
#include <sched.h>

int sched_setparam(
pid_t pid,
const struct sched_param *param

);

int sched_getparam(
pid_t pid,
struct sched_param *param

);

int sched_setscheduler(
pid_t pid,
int policy,
const struct sched_param *param

);

int sched_getscheduler(
pid_t pid

);

int sched_yield();

int sched_get_priority_max(
int policy

);

int sched_get_priority_min(
int policy

);

int sched_rr_get_interval(
pid_t pid,
struct timespec *interval

);

int PRI_POSIX_TO_HPUX(
const struct sched_param *param

);

int PRI_HPUX_TO_POSIX(
int pri,
struct sched_param *param

);

DESCRIPTION
Summary

sched_get_priority_max() Get maximum scheduling policy
sched_get_priority_min() Get minimum scheduling policy
sched_getparam() Get scheduling parameters of process
sched_getscheduler() Get scheduling policy of process
sched_rr_get_interval() Update execution time limit for a process
sched_setparam() Set scheduling parameters of process
sched_setscheduler() Set scheduling policy and parameters of process
sched_yield() Requeue current process in process list
PRI_HPUX_TO_POSIX() Convert HP-UX priority to POSIX
PRI_POSIX_TO_HPUX() Convert POSIX priority to HP-UX

Section 2−−248 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

sched_setparam()
The sched_setparam() function sets the scheduling parameters of the process specified by pid to the
values specified by the sched_param structure pointed to by param. The value of the sched_priority
member in the param structure is any integer within the inclusive priority range for the current scheduling
policy of the process specified by pid.

Higher numerical values for the priority represent higher (stronger) priorities. Note that this is different
from the SCHED_HPUX, SCHED_TIMESHARE, and SCHED_RTPRIOscheduling policies, where higher
numerical values represent lower (weaker) priorities. See the PRI_HPUX_TO_POSIX() and
PRI_POSIX_TO_HPUX() functions, and SCHED_RTPRIOand SCHED_OTHERin "Scheduling Policies"
below.

If a process described by pid exists and if the calling process has permission, the scheduling parameters are
set for the process whose process ID is equal to pid.

If pid is zero, the scheduling parameters are set for the calling process.

If the process pid contains more than one thread or lightweight process (that is, the process is multi-
threaded), this function shall only change the process scheduling policy and priority. Individual threads or
lightweight processes in the target process shall not have their scheduling policies and priorities modified.
Note that if the target process is multi-threaded, this process scheduling policy and priority change will
only affect a child process that is created later and inherits its parent’s scheduling policy and priority. The
priority returned is the old priority of the target process, though individual threads or lightweight processes
may have a different value if some other interface is used to change an individual thread or lightweight
processes priority.

Only a superuser may change the scheduling parameters of another process.

The calling process must have the appropriate privileges or be a member of a group having
PRIV_RTSCHEDaccess to successfully call sched_setparam() .

The target process, whether it is running or not running, will resume execution after all other runnable
processes of equal or greater priority have been scheduled to run.

If the priority of the process specified by the pid argument is set higher than that of the lowest priority run-
ning process, and if the specified process is ready to run, the process specified by the pid argument will
preempt a lowest-priority running process. Similarly, if the process calling sched_setparam() sets its
own priority lower than that of one or more other nonempty process lists, then the process that is the head
of the highest priority list will also preempt the calling process. Thus, in either case, the originating pro-
cess may not receive notification of the completion of the requested priority change until the higher priority
process has executed.

sched_getparam()
The sched_getparam() function returns the scheduling parameters of a process specified by pid in the
sched_param structure pointed to by param.

If a process described by pid exists, the scheduling parameters are returned for the process whose process
ID is equal to pid.

If the process pid contains more than one thread or lightweight process (that is, the process is multi-
threaded), this function shall only return the process scheduling policy and priority. Individual threads or
lightweight processes in the target process will have their own scheduling policies and priorities which may
be different from the scheduling policy and priority of their process.

If pid is zero, the scheduling parameters are returned for the calling process.

sched_setscheduler()
The sched_setscheduler() function sets the scheduling policy and scheduling parameters of the pro-
cess specified by pid to policy and the parameters specified in the sched_param structure pointed to by
param, respectively. The value of the sched_priority member in the param structure can be any integer
within the inclusive priority range for the scheduling policy specified by policy.

The possible values for the policy parameter are defined in the header file <sched.h> , and mentioned
below.

If a process described by pid exists, the scheduling policy and scheduling parameters are set for the process
whose process ID is equal to pid.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−249

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

If pid is zero, the scheduling policy and scheduling parameters are set for the calling process.

If the process pid contains more than one thread or lightweight process (that is, the process is multi-
threaded), this function shall only change the process scheduling policy and priority. Individual threads or
lightweight processes in the target process shall not have their scheduling policies and priorities modified.
Note: If the target process is multi-threaded, this change will only affect a child process that is created later
and inherits its parent’s scheduling policy and priority. The priority returned is the old priority of the tar-
get process, though individual threads or lightweight processes may have a different value if some other
interface is used to change an individual thread or lightweight process’ priority.

Appropriate privileges are required to change the scheduling parameters of another process.

The calling process must have appropriate privileges or be a member of a group having PRIV_RTSCHED
access to successfully call sched_setscheduler() .

The sched_setscheduler() function is considered successful if it succeeds in setting the scheduling
policy and scheduling parameters of the process specified by pid to the values specified by policy and the
structure param, respectively.

sched_getscheduler()
The sched_getscheduler() function returns the scheduling policy of the process specified by pid.

The values that can be returned by sched_getscheduler() are defined in the header file
<sched.h> (see sched_setscheduler()).

If a process described by pid exists, the scheduling policy is returned for the process whose process ID is
equal to pid.

If pid is zero, the scheduling policy is returned for the calling process.

If the process pid contains more than one thread or lightweight process (that is, the process is multi-
threaded), this function shall only return the process scheduling policy and priority. Individual threads or
lightweight processes in the target process will have their own scheduling policies and priorities which may
be different from the scheduling policy and priority of their process.

sched_yield()
The sched_yield() function forces the running process to relinquish the processor until it again
becomes the head of its process list. It takes no arguments.

sched_get_priority_max()
sched_get_priority_min()

The sched_get_priority_max() and sched_get_priority_min() functions return the
appropriate maximum or minimum, respectively, for the scheduling policy specified by policy.

The value of policy must be one of the scheduling policy values defined in <sched.h> .

sched_rr_get_interval()
The sched_rr_get_interval() function updates the timespec structure referenced by the interval
argument to contain the current execution time limit (that is, time quantum) for the process indicated by
pid under the SCHED_RRpolicy, at which a scheduling decision will be made when another process at the
same priority is ready to execute. If pid is zero, the current execution time limit for the calling process is
returned.

PRI_HPUX_TO_POSIX()
PRI_POSIX_TO_HPUX()

These two functions serve to map (translate) the range of HP-UX priorities into the POSIX.4 model. These
translations are necessary because the POSIX.4 standard chose larger numbers to represent stronger prior-
ities and the existing HP-UX behavior, which must be maintained for backward compatibility, uses smaller
numbers for stronger priorities.

The PRI_HPUX_TO_POSIX() function returns, in the sched_param structure pointed to by param, the
POSIX.4 scheduling priority corresponding to the HP-UX priority passed in the argument pri. The argu-
ment pri must contain a valid HP-UX priority.

The PRI_POSIX_TO_HPUX() function returns an HP-UX process priority corresponding to the
sched_priority member in the sched_param structure specified. The value of the sched_priority member
can be any integer within the inclusive priority range for the SCHED_HPUXscheduling policy. The HP-UX
priority returned is comparable to the values returned by getpriority() (see getpriority (2)).

Section 2−−250 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

Scheduling Policies
The scheduling policies described are defined in terms of a conceptual model, which contains a set of pro-
cess lists. There is, conceptually, one process list for each priority. Any runnable process may be in any
process list. Multiple scheduling policies are provided. Each nonempty list is ordered, and contains a head
as one end of its order, and a tail as the other. The purpose of a scheduling policy is to define the allowable
operations on this set of lists (for example, moving processes between and within lists).

Each process will be controlled by an associated scheduling policy and priority. These parameters may be
specified by explicit application execution of the sched_setscheduler() or sched_setparam()
functions.

Associated with each policy is a priority range. The priority ranges for each policy can (but need not) over-
lap the priority ranges of other policies.

When a process is to be selected to run, the process that is at the head of the highest priority nonempty
process list is chosen. It is then removed from its process list.

The following scheduling policies are defined:

SCHED_FIFO First in-first out (FIFO) scheduling policy.

Processes scheduled under this policy are chosen from a process list that is ordered by
the time its processes have been in the list without being executed. Generally, the
head of the list is the process that has been in the list the longest time, and the tail is
the process that has been in the list the shortest time.

Under the SCHED_FIFOpolicy, the modification of the definitional process lists is as
follows:

• When a running process becomes a preempted process, it becomes the head of
the process list for its priority.

• When a blocked process becomes a runnable process, it becomes the tail of the
process list for its priority.

• When a running process calls the sched_setscheduler() function, the
process specified in the function call is modified to the policy and priority
specified by the param argument. If the process whose policy and priority
has been modified is a running process or is runnable, it then becomes the tail
of the process list for its new priority.

• When a running process calls the sched_setparam() function, the prior-
ity of the process specified in the function call is modified to the priority
specified by the param argument. If the process whose priority has been
modified is a running process or is runnable, it then becomes the tail of the
process list for its new priority.

• When a running process issues the sched_yield() function, the process
becomes the tail of the process list for its priority.

• At no other time is the position of a process with this scheduling policy within
the process lists affected.

For this policy, valid priorities are within the range returned by the functions
sched_get_priority_max() and sched_get_priority_min() when
SCHED_FIFO is provided as the parameter. The priority range for this policy con-
tains at least 32 priorities.

SCHED_RR Round-robin scheduling policy, with a per-system time slice (time quantum).

This policy is identical to the SCHED_FIFOpolicy with the additional condition that
when the implementation detects that a running process has been executing as a run-
ning process for a time period of length returned by the function
sched_rr_get_interval() , or longer, the process becomes the tail of its pro-
cess list, and the head of that process list is removed and made a running process.

The effect of this policy is to ensure that if there are multiple SCHED_RRprocesses at
the same priority, one of them will not monopolize the processor. An application
should not rely only on the use of SCHED_RRto ensure application progress among
multiple processes if the application includes processes using the SCHED_FIFOpolicy
at the same or higher priority levels, or SCHED_RRprocesses at a higher priority

HP-UX Release 11.0: October 1997 − 4 − Section 2−−251

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

level.

A process under this policy that is preempted and subsequently resumes execution as
a running process completes the unexpired portion of its round-robin interval time
period.

For this policy, valid priorities are within the range returned by the functions
sched_get_priority_max() and sched_get_priority_min() when
SCHED_RRis provided as the parameter. The priority range for this policy contains
at least 32 priorities.

SCHED_RR2 Round-robin scheduling policy, with a per-priority time slice (time quantum).

This policy is identical to the SCHED_RRpolicy, except that the round-robin time slice
interval returned by sched_rr_get_interval() depends upon the priority of
the specified process.

For this policy, valid priorities are within the range returned by the functions
sched_get_priority_max() and sched_get_priority_min() when
SCHED_RRis provided as the parameter. The priority range for this policy contains
at least 32 priorities.

SCHED_RTPRIO
Real-time scheduling policy with nondecaying priorities (like SCHED_FIFO and
SCHED_RR) with a priority range between the POSIX real-time policies and the HP-
UX policies, described below (see rtprio(2)).

For processes executing under this policy, the implementation must use only priorities
within the range returned by the functions sched_get_priority_max() and
sched_get_priority_min() when SCHED_RTPRIOis provided as the param-
eter. Note that, for the SCHED_RTPRIO scheduling policy, smaller numbers
represent higher (stronger) priorities, which is the opposite of the POSIX scheduling
policies. This is done to provide continuing support for existing applications that
depend on this priority ordering. However, it is guaranteed that the priority range for
the SCHED_OTHERscheduling policy is properly disjoint from the priority ranges of
all of the other scheduling policies described and the strongest priority in the priority
range for SCHED_RTPRIOis weaker than the weakest priority in the priority ranges
for any of the POSIX policies, SCHED_FIFO, SCHED_RR, and SCHED_RR2.

SCHED_OTHER(SCHED_HPUX, SCHED_TIMESHARE)
Another scheduling policy.

The SCHED_OTHERpolicy, also known as SCHED_HPUXand SCHED_TIMESHARE,
provides a way for applications to indicate, in a portable way, that they no longer need
a real-time scheduling policy.

For processes executing under this policy, the implementation can use only priorities
within the range returned by the functions sched_get_priority_max() and
sched_get_priority_min() when SCHED_OTHERis provided as the parame-
ter. Note that for the SCHED_OTHERscheduling policy, like SCHED_RTPRIO,
smaller numbers represent higher (stronger) priorities, which is the opposite of the
POSIX scheduling policies. This is done to provide continuing support for existing
applications that depend on this priority ordering. However, it is guaranteed that the
priority range for the SCHED_OTHERscheduling policy is properly disjoint from the
priority ranges of all of the other scheduling policies described and the strongest prior-
ity in the priority range for SCHED_OTHERis weaker than the weakest priority in
the priority ranges for any of the other policies, SCHED_FIFO, SCHED_RR, and
SCHED_RR2.

RETURN VALUE
The functions return the following values:

sched_getparam()
sched_rr_get_interval()
sched_setparam()

Section 2−−252 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

sched_yield()
PRI_HPUX_TO_POSIX()

0 Successful completion.
-1 Failure. errno is set to indicate the error.

sched_setscheduler()
n Successful completion. n is the former scheduling policy of the specified process.

-1 Failure. The policy and scheduling parameters remain unchanged. errno is set to indicate the
error.

sched_getscheduler()
n Successful completion. n is the scheduling policy of the specified process.

-1 Failure. errno is set to indicate the error.

sched_get_priority_max()
sched_get_priority_min()

n Successful completion. n is the maximum or minimum value, respectively.
-1 Failure. errno is set to indicate the error.

PRI_POSIX_TO_HPUX()
n Successful completion. n is the the HP-UX priority corresponding to the sched_priority member

in the param structure.
-1 Failure. errno is set to indicate the error.

ERRORS
If the functions fail, errno is set to one of the following values.

sched_setparam()
[EFAULT] The param argument points to an invalid address.

[EINVAL] One or more of the requested scheduling parameters is outside the range defined for
the scheduling policy of the specified pid.

[ENOSYS] The function is not supported by this implementation.

[EPERM] The requesting process does not have permission to set the scheduling parameters for
the specified process, or does not have the appropriate privilege to invoke
sched_setparam() .

[ESRCH] No process can be found corresponding to that specified by pid.

sched_getparam()
[EFAULT] The param argument points to an invalid address.

[ENOSYS] The function is not supported by this implementation.

[ESRCH] No process can be found corresponding to that specified by pid.

sched_setscheduler()
[EFAULT] The param argument points to an invalid address.

[EINVAL] The value of the policy parameter is invalid, or one or more of the parameters con-
tained in param is outside the valid range for the specified scheduling policy.

[ENOSYS] The function is not supported by this implementation.

[EPERM] The requesting process does not have permission to set the scheduling policy of the
specified process.

[ESRCH] No process can be found corresponding to that specified by pid.

sched_getscheduler()
[ENOSYS] The function is not supported by this implementation.

[ESRCH] No process can be found corresponding to that specified by pid.

HP-UX Release 11.0: October 1997 − 6 − Section 2−−253

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

r

rtsched(2) rtsched(2)

sched_yield()
[ENOSYS] The function is not supported by this implementation.

sched_get_priority_max()
sched_get_priority_min()

[EINVAL] The value of the policy parameter does not represent a defined scheduling policy.

[ENOSYS] The function is not supported by this implementation.

sched_rr_get_interval()
[ENOSYS] The function is not supported by this implementation.

[ESRCH] No process can be found corresponding to that specified by pid.

PRI_POSIX_TO_HPUX()
[EINVAL] The priority specified in the sched_priority member of the param argument is outside

the range defined for the SCHED_HPUXscheduling policy.

[ENOSYS] The function is not supported by this implementation.

PRI_HPUX_TO_POSIX()
[EINVAL] The priority specified in the pri argument is not a valid HP-UX priority.

[ENOSYS] The function is not supported by this implementation.

EXAMPLES
Change the calling process to use the strongest FIFO priority:

#include <sched.h>

struct sched_param param;
int maxpri;

maxpri = sched_get_priority_max(SCHED_FIFO);
if (maxpri == -1) {

perror("sched_get_priority_max() failed");
exit(1);

}
param.sched_priority = maxpri;
if (sched_setscheduler(getpid(), SCHED_FIFO, ¶m) == -1) {

perror("sched_setscheduler() failed");
exit(1);

}

AUTHOR
The sched_ *() functions were derived from the proposed IEEE POSIX P1003.4 standard, draft 14.

PRI_HPUX_TO_POSIX() and PRI_POSIX_TO_HPUX() were developed by HP.

SEE ALSO
rtsched(1), rtprio(2).

STANDARDS CONFORMANCE
sched_get_priority_max() : POSIX.4

sched_get_priority_min() : POSIX.4

sched_getparam() : POSIX.4

sched_getscheduler() : POSIX.4

sched_rr_getinterval() : POSIX.4

sched_setparam() : POSIX.4

sched_setscheduler() : POSIX.4

sched_yield() : POSIX.4

Section 2−−254 − 7 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

select(2) select(2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sys/time.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set
*errorfds, struct timeval *timeout);

void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

void FD_SET(int fd, fd_set *fdset);

void FD_ZERO(fd_set *fdset);

DESCRIPTION
The select() function indicates which of the specified file descriptors is ready for reading, ready for
writing, or has an error condition pending. If the specified condition is false for all of the specified file
descriptors, select() blocks, up to the specified timeout interval, until the specified condition is true for
at least one of the specified file descriptors.

The select() function supports regular files, terminal and pseudo-terminal devices, STREAMS-based
files, FIFOs and pipes. The behaviour of select() on file descriptors that refer to other types of file is
unspecified.

The nfds argument specifies the range of file descriptors to be tested. The select() function tests file
descriptors in the range of 0 to nfds −1.

If the readfds argument is not a null pointer, it points to an object of type fd_set that on input specifies the
file descriptors to be checked for being ready to read, and on output indicates which file descriptors are
ready to read.

If the writefds argument is not a null pointer, it points to an object of type fd_set that on input specifies
the file descriptors to be checked for being ready to write, and on output indicates which file descriptors
are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_setthatoninput specifies
the file descriptors to be checked for error conditions pending, and on output indicates which file descrip-
tors have error conditions pending.

On successful completion, the objects pointed to by the readfds, writefds, and errorfds arguments are
modified to indicate which file descriptors are ready for reading, ready for writing, or have an error condi-
tion pending, respectively. For each file descriptor less than nfds, the corresponding bit will be set on suc-
cessful completion if it was set on input and the associated condition is true for that file descriptor.

If the timeout argument is not a null pointer, it points to an object of type structtimeval that specifies a
maximum interval to wait for the selection to complete. If the timeout argument points to an object of type
structtimeval whose members are 0, select() does not block. If the timeout argument is a null pointer,
select() blocks until an event causes one of the masks to be returned with a valid (non-zero) value. If
the time limit expires before any event occurs that would cause one of the masks to be set to a non-zero
value, select() completes successfully and returns 0.

Implementations may place limitations on the maximum timeout interval supported. On all implementa-
tions, the maximum timeout interval supported will be at least 31 days. If the timeout argument specifies a
timeout interval greater than the implementation- dependent maximum value, the maximum value will be
used as the actual timeout value. Implementations may also place limitations on the granularity of timeout
intervals. If the requested timeout interval requires a finer granularity than the implementation supports,
the actual timeout interval will be rounded up to the next supported value.

If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is not a
null pointer, select() blocks for the time specified, or until interrupted by a signal. If the readfds, wri-
tefds, and errorfds arguments are all null pointers and the timeout argument is a null pointer, select()
blocks until interrupted by a signal.

File descriptors associated with regular files always select true for ready to read, ready to write, and error
conditions.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−255

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

select(2) select(2)

On failure, the objects pointed to by the readfds, writefds, and errorfds arguments are not modified. If the
timeout interval expires without the specified condition being true for any of the specified file descriptors,
the objects pointed to by the readfds, writefds, and errorfds arguments have all bits set to 0.

File descriptor masks of type fd_set can be initialised and tested with FD_CLR() , FD_ISSET() ,
FD_SET() , and FD_ZERO() . It is unspecified whether each of these is a macro or a function. If a macro
definition is suppressed in order to access an actual function, or a program defines an external identifier
with any of these names, the behaviour is undefined.

FD_CLR(fd, &fdset) Clears the bit for the file descriptor fd in the file descriptor set fdset.

FD_ISSET(fd, &fdset) Returns a non-zero value if the bit for the file descriptor fd is set in
the file descriptor set pointed to by fdset, and 0 otherwise.

FD_SET(fd, &fdset) Sets the bit for the file descriptor fd in the file descriptor set fdset.

FD_ZERO(&fdset) Initialises the file descriptor set fdset to have zero bits for all file
descriptors. The behaviour of these macros is undefined if the fd argu-
ment is less than 0 or greater than or equal to FD_SETSIZE .

RETURN VALUE
FD_CLR() , FD_SET() , and FD_ZERO() return no value. FD_ISSET() returns a non-zero value if
the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset, and 0 otherwise.

On successful completion, select() returns the total number of bits set in the bit masks. Otherwise, −1
is returned, and errno is set to indicate the error.

ERRORS
Under the following conditions, select() fails and sets errno to:

[EBADF] One or more of the file descriptor sets specified a file descriptor that is not a valid
open file descriptor. This could happen either if the file descriptor sets are not initial-
ised or nfds argument is greater than FD_SETSIZE .

[EINTR] The select() function was interrupted before any of the selected events occurred
and before the timeout interval expired. If SA_RESTARThas been set for the inter-
rupting signal, it is implementation-dependent whether select() restarts or
returns with EINTR.

[EINVAL] An invalid timeout interval was specified.

[EINVAL] The nfds argument is less than 0, or is greater than or equal to the value of the kernel
parameter MAXFUPLIM, which specifies the absolute maximum number of files a pro-
cess can have open at one time.

[EINVAL] One of the specified file descriptors refers o a STREAM or multiplexer that is linked
(directly or indirectly) downstream from a multiplexer.

APPLICATION USAGE
The use of a timeout does not affect any pending timers set up by alarm() , ualarm() , or setiti-
mer() .

On successful completion, the object pointed to by the timeout argument may be modified.

The FD_SETSIZE is used in the definition of fd_set structure. It is set to a value of 2048 to accommo-
date 2048 file descriptors. Any user code that uses FD_SETSIZE or the structure fd_set should
redefine FD_SETSIZE to a smaller value (greater than or equal to the number of open files the process
will have) in order to save space. Similarly, any user code that wants to test more than 2048 file descriptors
should redefine FD_SETSIZE to the required higher value.

The user can also allocate the space for fd_set structure dynamically, depending upon the number of file
descriptors to be tested. The following code segment illustrates the basic concepts.

int num_of_fds,s;
struct fd_set *f;

/*
* Set num_of_fds to the required value.
* User can set it to the maximum possible value the kernel is
* configured for, by using sysconf(_SC_OPEN_MAX).

Section 2−−256 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

select(2) select(2)

* Note that, if you are not using these many files, you are
* wasting too much space.
*/

num_of_fds = sysconf(_SC_OPEN_MAX);
s = sizeof(long);
/*

* howmany is a macro defined in sys/types.h
*/

f = (struct fd_set *)malloc(s*howmany(num_of_fds, s*8);
/*

* Use f wherever struct fd_set * is used.
* It can be used to test num_of_fds file descriptors.
*/

SEE ALSO
fcntl(2), poll(2), read(2), write(2), <sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 3 − Section 2−−257

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

select(2) select(2)

HP-UX EXTENSIONS

SYNOPSIS
#include <time.h>

int select(
size_t nfds,
int *readfds,
int *writefds,
int *exceptfds,
const struct timeval *timeout

);

DESCRIPTION
This select() function prototype is provided for backward compatibility only. For this prototype to be
used, <time.h>, instead of <sys/time.h>, must be included and the symbol _XOPEN_SOURCE_EXTENDED
must not be defined in the compilation time. Otherwise, the X/Open compliant version will be used.

select() examines the files or devices associated with the file descriptors specified by the bit masks
readfds, writefds, and exceptfds . The bits from 0 through nfds−1 are examined. File descriptor f is
represented by the bit 1<<f in the masks. More formally, a file descriptor is represented by:

fds[(f / BITS_PER_INT)] & (1 << (f % BITS_PER_INT))

Ttys and sockets are ready for reading or writing, respectively, if a read() or write() would not block
for one or more of the following reasons:

• input data is available.

• output data can be accepted.

• an error condition exists, such as a broken pipe, no carrier, or a lost connection.

Sockets select true on reads and/or exceptions if out-of-band data is available.

Pipes are ready for reading if there is any data in the pipe, or if there are no writers left for the pipe. Pipes
are ready for writing if there is room for more data in the pipe AND there are one or more readers for the
pipe, OR there are no readers left for the pipe. select() returns the same results for a pipe whether a
file descriptor associated with the read-only end or the write-only end of the pipe is used, since both file
descriptors refer to the same underlying pipe. So a select() of a read-only file descriptor that is associ-
ated with a pipe can return ready to write, even though that particular file descriptor cannot be written to.

ERRORS
[EFAULT] One or more of the pointers was invalid. The reliable detection of this error is imple-

mentation dependent.

EXAMPLES
The following call to select() checks if any of 4 terminals are ready for reading. select() times
out after 5 seconds if no terminals are ready for reading. Note that the code for opening the terminals or
reading from the terminals is not shown in this example. Also, note that this example must be modified if
the calling process has more than 32 file descriptors open. Following this first example is an example of
select with more than 32 file descriptors.

#define MASK(f) (1 << (f))
#define NTTYS 4

int tty[NTTYS];
int ttymask[NTTYS];
int readmask = 0;
int readfds;
int nfound, i;
struct timeval timeout;

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code
* for opening the terminals is not shown here.

Section 2−−258 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

select(2) select(2)

*/

for (i=0; i < NTTYS; i++) {
ttymask[i] = MASK(tty[i]);
readmask |= ttymask[i];

}

timeout.tv_sec = 5;
timeout.tv_usec = 0;
readfds = readmask;

/* select on NTTYS+3 file descriptors if stdin, stdout
* and stderr are also open
*/

if ((nfound = select (NTTYS+3, &readfds, 0, 0, &timeout)) == -1)
perror ("select failed");

else if (nfound == 0)
printf ("select timed out \n");

else for (i=0; i < NTTYS; i++)
if (ttymask[i] & readfds)

/* Read from tty[i]. The code for reading
* is not shown here.
*/

else printf ("tty[%d] is not ready for reading \n",i);

The following example is the same as the previous example, except that it works for more than 32 open
files. Definitions for howmany, fd_set , and NFDBITS are in <sys/types.h> .

#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>

#define MASK(f) (1 << (f))
#define NTTYS NOFILE - 3
#define NWORDS howmany(FD_SETSIZE, NFDBITS)

int tty[NTTYS];
int ttymask[NTTYS];
struct fd_set readmask, readfds;
int nfound, i, j, k;
struct timeval timeout;

/* First open each terminal for reading and put the
* file descriptors into array tty[NTTYS]. The code
* for opening the terminals is not shown here.
*/

for (k=0; k < NWORDS; k++)
readmask.fds_bits[k] = 0;

for (i=0, k=0; i < NTTYS && k < NWORDS; k++)
for (j=0; j < NFDBITS && i < NTTYS; j++, i++) {

ttymask[i] = MASK(tty[i]);
readmask.fds_bits[k] |= ttymask[i];

}

timeout.tv_sec = 5;
timeout.tv_usec = 0;
for (k=0; k < NWORDS; k++)

readfds.fds_bits[k] = readmask.fds_bits[k];

/* select on NTTYS+3 file descriptors if stdin, stdout
* and stderr are also open
*/

if ((nfound = select (NTTYS+3, &readfds, 0, 0, &timeout)) == -1)
perror ("select failed");

else if (nfound == 0)
printf ("select timed out \n");

HP-UX Release 11.0: October 1997 − 2 − Section 2−−259

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

select(2) select(2)

else for (i=0, k=0; i < NTTYS && k < NWORDS; k++)
for (j=0; j < NFDBITS && i < NTTYS; j++, i++)

if (ttymask[i] & readfds.fds_bits[k])
/* Read from tty[i]. The code for reading

* is not shown here.
*/

else printf ("tty[%d] is not ready for reading \n",i);

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector() . sigvec-
tor() can affect the behavior described on this manpage.

The file descriptor masks are always modified on return, even if the call returns as the result of a timeout.

DEPENDENCIES
select() supports the following devices and file types:

• pipes
• fifo special files (named pipes)
• all serial devices
• All ITEs (internal terminal emulators) and HP-HIL input devices
• hpib(7) special files
• lan(7) special files
• pty(7) special files
• sockets

AUTHOR
select() was developed by HP and the University of California, Berkeley.

SEE ALSO
fcntl(2), read(2), write(2).

Section 2−−260 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_close(2) sem_close(2)

NAME
sem_close - close a named POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION
sem_close() is used to close a named semaphore. A successful call to sem_close() will do the fol-
lowing: Remove the process’s descriptor for the semaphore referenced by the specified sem_t structure
sem. Remove the semaphore referenced by the specified sem_t structure sem, if the semaphore is marked
for removal by a call to sem_unlink() and there are no other descriptors referencing this semaphore.

When the process’s descriptor for the semaphore referenced by sem is removed, subsequent use of this
semaphore by this process will fail. Descriptors for named semaphores are also removed by processes on
exit. Calling sem_close() does not affect other processes referencing the same semaphore.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_close() will close a named semaphore referred to by sem by removing the
process’s descriptor to the semaphore and removing the semaphore if it is marked for removal by a previ-
ous sem_unlink() and there are no descriptors referencing it.

sem_close(sem);

RETURN VALUE
If the semaphore was closed and the descriptors referencing it were removed, sem_close() returns 0 to
the caller.

If the semaphore could not be closed, the call returns -1 and sets errno to indicate the error.

ERRORS
sem_close() fails and does not perform the requested operation if the following condition is encoun-
tered:

[EINVAL] The argument sem is not a valid named semaphore.

SEE ALSO
sem_init(2), sem_open(2), sem_unlink(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_close() : POSIX

HP-UX Release 11.0: October 1997 − 1 − Section 2−−261

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_destroy(2) sem_destroy(2)

NAME
sem_destroy - destroy an unnamed POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION
sem_destroy() is used to destroy an unnamed semaphore. A successful call to sem_destroy() will
invalidate the unnamed semaphore referred to by sem and removes all descriptors referencing it. The
semaphore should have been created by a previous call to sem_init() and there should not be any
processes blocked on it.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_destroy() will destroy an unnamed semaphore referred to by sem and
remove all descriptors referencing it.

sem_destroy(sem);

RETURN VALUE
If the semaphore was destroyed and the descriptors referencing it were removed, sem_destroy()
returns 0 to the caller.

If the semaphore could not be destroyed, the call returns -1 and sets errno to indicate the error.

ERRORS
sem_destroy() fails and does not perform the requested operation if any of the following conditions are
encountered:

[EBUSY] There are threads currently blocked on the semaphore or there are outstanding locks
held on the semaphore.

[EINVAL] The argument sem is not a valid unnamed semaphore.

SEE ALSO
sem_init(2), sem_open(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_destroy() : POSIX

Section 2−−262 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_getvalue(2) sem_getvalue(2)

NAME
sem_getvalue - get the value of a POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

DESCRIPTION
sem_getvalue() is used to read the value of the semaphore. The value of the semaphore specified by
sem is read, at some unspecified time during the call, and then stored into sval. If the semaphore value is
<= 0, at that time, the semaphore is considered unavailable. If the semaphore value is > 0, at that time,
the semaphore is considered available.

If sval is positive, it is equal to the number of locks available on the semaphore, at the time the semaphore
value was read. If sval is negative, its absolute value is equal to the number of blocked threads waiting for
the semaphore to become available, at the time the semaphore value was read.

If the specified semaphore referred to by sem is a named semaphore, then this semaphore must have been
opened by the calling process with sem_open() and the process must have read permission on this sema-
phore.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_getvalue() will read the value of the semaphore sem and store it in sval.

sem_getvalue(sem,sval);

RETURN VALUE
A successful call to sem_getvalue() will return 0. Otherwise, the call to sem_getvalue() will
return -1 with errno set to the appropriate value of the error condition.

ERRORS
sem_getvalue() fails and does not perform the requested operation if any of the following conditions
are encountered:

[EPERM] The calling process does not have the privileges necessary to read the semaphore.

[EINVAL] The argument sem does not refer to a valid semaphore.

SEE ALSO
sem_open(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_getvalue() : POSIX

HP-UX Release 11.0: October 1997 − 1 − Section 2−−263

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_init(2) sem_init(2)

NAME
sem_init - initialize an unnamed POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

DESCRIPTION
sem_init() is used to initialize an unnamed semaphore. A successful call to sem_init() will create
a new unnamed semaphore referred to by sem, if one does not exist, initialize the unnamed semaphore
descriptor, referred to by sem, to the non-negative value specified by value. If the unnamed semaphore
already exists, i.e. created by a previous call to sem_init() , it is re-initialized only if its current value is
equal to its initial value (set by the last successful call to sem_init()). If so, the initial value of the
unnamed semaphore is re-initialized to the value argument. Otherwise, the call fails.

The argument pshared specifies if the unnamed semaphore is sharable with other processes. If pshared is
equal to 0, the unnamed semaphore is not shared with other processes. If pshared is non-zero, the
unnamed semaphore is sharable with any processes that can access sem. The access mode specified for the
unnamed semaphore allows read and write permissions to all processes. If the calling process may attach
to the shared sem_t structure, it is assumed it may operate on the semaphore.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_init() will create a new unnamed semaphore referred to by sem, if one does
not exist, initialize the unnamed semaphore descriptor, referred to by sem, to the non-negative value
specified by value.

sem_init(sem, pshared, value);

RETURN VALUE
If the semaphore was created and initialized, sem_init() returns 0 to the caller.

If the semaphore could not be created/initialized, the call returns -1 and sets errno to indicate the error.

ERRORS
sem_init() fails and does not perform the requested operation if any of the following conditions are
encountered:

[EPERM] The calling process does not have the privileges necessary to initialize the semaphore.

[EBUSY] There are threads currently blocked on the semaphore or there are outstanding locks
held on the semaphore.

[EINVAL] The argument value is greater than {_POSIX_SEM_VALUE_MAX}.

[ENOSPC] There are insufficient resources to perform the operation or the upper limit on the
number of semaphores is reached.

SEE ALSO
sem_destroy(2), sem_post(2), sem_trywait(2), sem_wait(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_init() : POSIX

Section 2−−264 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_open(2) sem_open(2)

NAME
sem_open - create/open a named POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

sem_t * sem_open(const char *name, int oflag, mode_t mode,
unsigned int value);

DESCRIPTION
sem_open() is used to open or create a named semaphore. A successful call to sem_open() will create
a descriptor for the semaphore specified by name. The pointer to the semaphore returned by
sem_open() can be used to access the semaphore associated with name in subsequent operations. The
name argument points to a string referring to a semaphore. It should begin with a "/" and shall conform to
pathname rules except that no path component should be "." or "..".

The oflag argument specifies whether a semaphore is to be created or not. The following bits in it may be
set:

O_CREAT If this flag is set, a new semaphore is created if it does not already exist. If this flag is
not set, the semaphore should already exist.

O_EXCL If this flag is set, the call fails if the semaphore already exists. This flag is valid only
when O_CREATis also set; otherwise, it is ignored.

The mode and value arguments are provided to supply the permissions and the initial value information
necessary for creating a new semaphore.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_open() will create a new named semaphore if one does not exist, which
depends on the flags specified in oflag, has the permissions specified in mode and has an initial value of
value.

sem_open(name, oflag, mode, value);

RETURN VALUE
If the semaphore was created and initialized, sem_open() returns a pointer to a sem_t structure con-
taining the index of the new descriptor.

If the semaphore could not be created/initialized, the call returns -1 and sets errno to indicate the error.
If the named semaphore is already opened by the calling process, a descriptor and a sem_t structure for
the named semaphore already exists for the calling process. A new descriptor is not created and a pointer
to the existing sem_t structure is returned for this call.

ERRORS
sem_open() fails and does not perform the requested operation if any of the following conditions are
encountered:

[EACCES] The named semaphore exists and the process does not have the permissions to open
the semaphore as described by oflag, or the named semaphore does not exist and the
process does not have the permission to open it.

[EEXIST] The flags O_CREATand O_EXCLare set in oflag and the named semaphore exists.

[EINTR] A signal interrupted the sem_open() operation.

[EINVAL] The argument value is greater than {_POSIX_SEM_VALUE_MAX} and the
O_CREATflag was specified in oflag.

[EINVAL] The name argument does not begin with "/" or contains "." or ".." as a pathname com-
ponent.

[EMFILE] Too many semaphore descriptors are currently in use by this process.

[ENAMETOOLONG]
The name string is longer than {PATH_MAX} .

HP-UX Release 11.0: October 1997 − 1 − Section 2−−265

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_open(2) sem_open(2)

[ENFILE] There are too many semaphores in the system.

[ENOENT] The flag O_CREATis not set in oflag and the named semaphore does not exist.

[ENOSPC] There are insufficient resources for the creation of a new named semaphore.

SEE ALSO
sem_close(2), sem_post(2), sem_wait(2), sem_unlink(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_open() : POSIX

Section 2−−266 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_post(2) sem_post(2)

NAME
sem_post - unlock a POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION
sem_post() is used to post the semaphore referenced by sem. The calling thread will not return from
its call to sem_post() unless it can either: increment the semaphore value, if there are no blocked
threads on this semaphore; give the semaphore to a blocked thread, if there are any blocked threads on this
semaphore; or have an error condition.

If the semaphore value is < 0, the semaphore has blocked threads, waiting for it to become available (the
absolute value of the semaphore’s value indicates the number of waiters at that moment). If the semaphore
value is >= 0, the semaphore has no waiters.

If the semaphore has no waiters at the time its value is checked, the semaphore’s value will be atomically
incremented, with respect to the checking of its value, up to its maximum value as specified by
{_POSIX_SEM_VALUE_MAX}. If the semaphore has waiters at the time its value is checked, the sema-
phore value is not changed. Instead, the calling thread will attempt to wake up a waiter. If the semaphore
has waiters having realtime priorities, the thread must wake up the highest priority waiter. Otherwise the
thread at the head of the channel queue is woken up.

When a waiter is successfully woken, the semaphore being posted will be given to the woken waiter. In
other words, the state of the semaphore remains unchanged. Instead, the semaphore being posted will be
inherited by the waiter being woken from this call to sem_post() .

If the specified semaphore referred to by sem is a named semaphore, then this semaphore must have been
opened by the calling process with sem_open() . The calling process must have both read and write per-
missions on the semaphore to perform this operation. The sem_post() routine may be called asynchro-
nously, i.e. from a signal handler.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_post() will post the semaphore sem.

sem_post(sem);

RETURN VALUE
A successful call to sem_post() will return 0 and the calling thread would have posted the semaphore.
Otherwise, the call to sem_post() will return -1 with errno set to the appropriate value of the error con-
dition.

ERRORS
sem_post() fails and does not perform the requested operation if any of the following conditions are
encountered:

[EPERM] The calling process does not have the privileges necessary to post the semaphore.

[EINVAL] The argument sem does not refer to a valid semaphore.

SEE ALSO
<semaphore.h>.

STANDARDS CONFORMANCE
sem_post() : POSIX

HP-UX Release 11.0: October 1997 − 1 − Section 2−−267

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_unlink(2) sem_unlink(2)

NAME
sem_unlink - unlink a named POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION
sem_unlink() is used to unlink named semaphores. A successful call to sem_unlink() marks the
semaphore, specified by name, for removal. Calling sem_unlink() does not affect processes, including
the calling process, which currently have a descriptor, obtained from a call to sem_open() . Named
semaphores are uniquely identified by character strings. All character string names will be pre-processed
to ensure variations of a pathname resolve to the same semaphore name. If the semaphore is successfully
marked for removal by a call to sem_unlink() , the semaphore will be removed when all processes
remove their descriptors to the specified semaphore by calling sem_close() . Subsequent calls to
sem_open() using the string name will refer to a new semaphore.

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_unlink() will remove the named semaphore named by the string name. If
the semaphore is currently referenced by one or more processes, the semaphore will be marked for removal
and removed when there are no more processes referencing it.

sem_unlink(name);

RETURN VALUE
If the semaphore was unlinked successfully, sem_unlink() returns 0.

If the semaphore could not be unlinked, the call returns -1 and sets errno to indicate the error.

ERRORS
sem_unlink() fails and does not perform the requested operation if any of the following conditions are
encountered:

[EACCES] The named semaphore exists and the process does not have the permissions to unlink
the semaphore.

[ENAMETOOLONG]
The name string is longer than {PATH_MAX} .

[ENOENT] The flag O_CREATis not set in oflag (see sem_open(2)) and the named semaphore
does not exist.

SEE ALSO
sem_close(2), sem_open(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_unlink() : POSIX

Section 2−−268 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sem_wait(2) sem_wait(2)

NAME
sem_wait, sem_trywait - lock a POSIX semaphore

SYNOPSIS
#include <sys/semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

DESCRIPTION
sem_wait() is used to lock a semaphore. The calling thread will not return from its call to
sem_wait() until one of the following events occur: it successfully obtains a lock on the semaphore; it is
interrupted by a signal or an error condition occurs.

sem_trywait() is used to lock a semaphore, if it is available. The value of the semaphore sem is
checked at some unspecified time during the call. If the semaphore is available at the time its value is
checked, the calling thread will atomically, with respect to the checking of the value, lock the semaphore.
The thread will now own a lock on the semaphore; the call will return successfully. If the semaphore is
unavailable at the time its value is checked, then the call returns -1 with errno set to EAGAIN.

If the specified semaphore referred to by sem is a named semaphore, then this semaphore must have been
opened by the calling process with sem_open() . The calling process must have both read and write per-
missions on the semaphore to perform these operations. The semaphore will be locked upon successful
return and will stay locked until it is explicitly released by a call to sem_post() .

To use this function, link in the realtime library by specifying -lrt on the compiler or linker command
line.

EXAMPLES
The following call to sem_wait() will lock the semaphore sem.

sem_wait(sem);

The following call to sem_trywait() will lock the semaphore sem, if it is available.

sem_trywait(sem);

RETURN VALUE
A successful call to sem_wait() will return 0 and the calling thread will then own a lock on the sema-
phore. Otherwise, the call to sem_wait() will return -1 with errno set to the appropriate value of the
error condition.

A successful call to sem_trywait() will return 0, if the semaphore was available and the calling thread
was able to lock the semaphore. Otherwise, the call to sem_trywait() will return -1 with errno set to
the appropriate value of the error condition.

ERRORS
sem_wait() and sem_trywait() fail and do not perform the requested operation if any of the follow-
ing conditions are encountered:

[EPERM] The calling process does not have the privileges necessary to lock the semaphore.

[EAGAIN] The semaphore was not available and hence could not be locked by
sem_trywait() . This error condition only occurs in sem_trywait() .

[EINVAL] The argument sem does not refer to a valid semaphore.

[EINTR] The function was interrupted by a signal

SEE ALSO
sem_post(2), <semaphore.h>.

STANDARDS CONFORMANCE
sem_wait() ,sem_trywait() : POSIX

HP-UX Release 11.0: October 1997 − 1 − Section 2−−269

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semctl(2) semctl(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/sem.h>

int semctl(int semid,
int semnum,
int cmd,
union arg

);

union semun {
int val;
struct semid_ds ∗buf;
ushort ∗array;

} arg;

DESCRIPTION
The semctl() system call provides a variety of semaphore control operations as specified by cmd. For
the meaning of unspecified variables, see semaphore identifier in glossary(9).

The following values for cmd are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval . Requires semaphore Read permission.

SETVAL Set the value of semval to arg.val , where arg is the fourth argument of semctl()
taken as an int . When this cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is cleared. Requires sema-
phore Alter permission.

GETPID Return the value of sempid. Requires semaphore Read permission.

GETNCNT Return the value of semncnt. Requires semaphore Read permission.

GETZCNT Return the value of semzcnt. Requires semaphore Read permission.

The following values for cmd return and set, respectively, every semval in the set of semaphores.

GETALL Place semvals into array pointed to by arg.array , where arg is the fourth argument of
semctl() taken as a pointer to unsigned short int . Requires semaphore
Read permission.

SETALL Set semvals according to the array pointed to by arg.array , where arg is the fourth
argument of semctl() taken as a pointer to unsigned short int . When this
cmd is successfully executed, the semadj values corresponding to each specified sema-
phore in all processes are cleared. Requires semaphore Alter permission.

The following values for cmd are also available:

IPC_STAT Place the current value of each member of the data structure associated with semid
into the structure pointed to by arg.buf, where arg is the fourth argument of
semctl() taken as a pointer to struct semid_ds . The contents of this struc-
ture are defined in glossary(9). Requires semaphore Read permission.

IPC_SET Set the value of the following members of the data structure associated with semid to
the corresponding value found in the structure pointed to by arg.buf, where arg is the
fourth argument of semctl() taken as a pointer to struct semid_ds :

sem_perm.uid
sem_perm.gid
sem_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to
either that of superuser or to the value of either sem_perm.uid or
sem_perm.cuid in the data structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by semid from the system and destroy the
set of semaphores and data structure associated with it. This cmd can only be exe-
cuted by a process that has an effective user ID equal to either that of superuser or to
the value of either sem_perm.uid or sem_perm.cuid in the data structure

Section 2−−270 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semctl(2) semctl(2)

associated with semid.

RETURN VALUE
Upon successful completion, semctl() returns a value based on cmd as follows:

GETVAL The value of semval .
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
GETPID The value of sempid.

All others return 0.

If it fails, it returns -1 and sets errno to indicate the error.

ERRORS
If semctl() fails, it sets errno to one of the following values:

[EACCES] Operation permission is denied to the calling process (see semaphore operation per-
missions in glossary(9).

[EFAULT] cmd is SETVAL, GETALL, SETALL, IPC_SET , or IPC_STAT , and arg is an invalid
pointer.

[EINVAL] semid is not a valid semaphore identifier.

[EINVAL] semnum is less than zero or greater than or equal sem_nsems .

[EINVAL] cmd is not a valid command, or the command contains invalid parameters.

[EPERM] cmd is equal to IPC_RMID or IPC_SET and the process does not have an effective
user ID equal to either that of superuser or to the value of either sem_perm.uid or
sem_perm.cuid in the data structure associated with semid.

[ERANGE] cmd is SETVALor SETALL and the value to which semval is to be set is greater than
the system imposed maximum.

EXAMPLES
The following call to semctl() initializes the set of 4 semaphores to the values 0, 1, 0, and 1 respectively.
This example assumes the process has a valid semid representing a set of 4 semaphores as shown in the
semget (2) manual entry. For an example of performing "P" and "V" operations on the semaphores below,
refer to semop(2).

union semun {
int val;
struct semid_ds ∗buf;
ushort ∗array;

} arg;

ushort semarray[4];

semarray[0] = 0;
semarray[1] = 1;
semarray[2] = 0;
semarray[3] = 1;

arg.array = &semarray[0];
semctl (mysemid, 0, SETALL, arg);

SEE ALSO
ipcrm(1), ipcs(1), semget(2), semop(2), stdipc(3C), glossary(9).

STANDARDS CONFORMANCE
semctl() : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11.0: October 1997 − 2 − Section 2−−271

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semget(2) semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
semget() returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores are created for
key if one of the following is true:

key is equal to IPC_PRIVATE . This call creates a new identifier, subject to available resources. The
identifier is never returned by another call to semget() until it has been released by a call to
semctl() . The identifier should be used among the calling process and its descendents; however, it
is not a requirement. The resource can be accessed by any process having the proper permissions.

key does not already have a semaphore identifier associated with it, and (semflg & IPC_CREAT) is
‘‘true’’.

Specific behavior can be requested by ORing the following masks into semflg.

IPC_CREAT: Create a semaphore identifier if one does not already exist for key.

IPC_EXCL: If IPC_CREAT is specified and key already has a semaphore identifier associated with
it, return an error.

The low-order 9 bits of semflg are the semaphore operation permissions which are defined in glossary(9).

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

In the operation-permission structure, sem_perm.cuid and sem_perm.uid are set equal to the
effective-user-ID of the calling process, while sem_perm.cgid and sem_perm.gid are set to
the effective-group-ID of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg.

sem_nsems is set equal to the value of nsems.

sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

EXAMPLES
The following call to semget() returns a semid associated with the key returned by ftok("myfile",
’A’) . If a semid associated with the key does not exist, a new semid, set of 4 semaphores, and associated
data structure will be created. If a semid for the key already exists, the semid is simply returned.

int semid;

mysemid = semget (ftok("myfile",’A’), 4, IPC_CREAT | 0600);

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Other-
wise, a value of −1 is returned and errno is set to indicate the error.

ERRORS
semget() fails if one or more of the following is true:

[EINVAL] nsems is either less than or equal to zero or greater than the system-imposed limit.

[EACCES] A semaphore identifier exists for key, but operation permission as specified by the
low-order 9 bits of semflg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of semaphores in the set associ-
ated with it is less than nsems, and nsems is not equal to zero.

[ENOENT] A semaphore identifier does not exist for key and (semflg & IPC_CREAT) is ‘‘false’’.

[ENOSPC] A semaphore identifier is to be created, but the system-imposed limit on the max-
imum number of allowed semaphore identifiers system wide would be exceeded.

Section 2−−272 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semget(2) semget(2)

[EEXIST] A semaphore identifier exists for key but ((semflg& IPC_CREAT) && (semflg &
IPC_EXCL)) is ‘‘true’’.

SEE ALSO
ipcrm(1), ipcs(1), semctl(2), semop(2), stdipc(3C).

STANDARDS CONFORMANCE
semget() : SVID2, SVID3, XPG2, XPG3, XPG4

HP-UX Release 11.0: October 1997 − 2 − Section 2−−273

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semop(2) semop(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/sem.h>

int semop(
int semid,
struct sembuf *sops,
size_t nsops

);

DESCRIPTION
semop() is used to atomically perform an array of semaphore operations on the set of semaphores associ-
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore-
operation structures. nsops is the number of such structures in the array. The contents of each structure
includes the following members:

ushort sem_num; /* semaphore number */
short sem_op /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified by
semid and sem_num. Semaphore array operations are atomic in that none of the semaphore operations are
performed until blocking conditions on all of the semaphores in the array have been removed.

sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following occurs:

If semval (see semaphore identifier in glossary(9)) is greater than or equal to the absolute
value of sem_op , the absolute value of sem_op is subtracted from semval . Also, if (sem_flg
& SEM_UNDO) is ‘‘true’’, the absolute value of sem_op is added to the calling process’s
semadj value (see glossary(9) and exit(2)) for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is ‘‘true’’,
semop() returns immediately.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is ‘‘false’’,
semop() increments the semncnt associated with the specified semaphore and suspend
execution of the calling process until one of the following conditions occur:

semval becomes greater than or equal to the absolute value of sem_op . When this
occurs, the value of semncnt associated with the specified semaphore is decremented,
the absolute value of sem_op is subtracted from semval and, if (sem_flg & SEM_UNDO)
is ‘‘true’’, the absolute value of sem_op is added to the calling process’s semadj value
for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the system
(see semctl(2)). When this occurs, errno is set equal to EIDRM, and a value of −1 is
returned.

The calling process receives a signal that is to be caught. When this occurs, the value
of semncnt associated with the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in signal(5).

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg &
SEM_UNDO) is ‘‘true’’, the value of sem_op is subtracted from the calling process’s semadj value
for the specified semaphore.

If sem_op is zero, one of the following occurs:

If semval is zero, semop() proceeds to the next semaphore operation specified by sops, or
returns immediately if this is the last operation.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is ‘‘true’’, semop() returns
immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is ‘‘false’’, semop() incre-
ments the semzcnt associated with the specified semaphore and suspends execution of the

Section 2−−274 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semop(2) semop(2)

calling process until one of the following occurs:

semval becomes zero, at which time the value of semzcnt associated with the specified
semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the system.
When this occurs, errno is set equal to EIDRM, and a value of −1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value
of semzcnt associated with the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in signal(5).

EXAMPLES
The following call to semop() atomically performs a "P" or "get" operation on the second semaphore in
the semaphore set and a "V" or "release" operation on the third semaphore in the set. This example
assumes the process has a valid semid which represents a set of 4 semaphores as shown on the semget (2)
manual page. It also assumes that the semvals of the semaphores in the set have been initialized as shown
in the semctl(2) manual entry.

struct sembuf sops[4];

sops[0].sem_num = 1;
sops[0].sem_op = -1; /* P (get) */
sops[0].sem_flg = 0;
sops[1].sem_num = 2;
sops[1].sem_op = 1; /* V (release) */
sops[1].sem_flg = 0;

semop (mysemid, sops, 2);

RETURN VALUE
If semop() returns due to the receipt of a signal, a value of −1 is returned to the calling process and
errno is set to EINTR. If it returns due to the removal of a semid from the system, a value of −1 is
returned and errno is set to EIDRM.

Upon successful completion, a non-negative value is returned. Otherwise, a value of −1 is returned and
errno is set to indicate the error.

ERRORS
semop() fails if one or more of the following is true for any of the semaphore operations specified by sops:

[EINVAL] semid is not a valid semaphore identifier.

[EFBIG] sem_num is less than zero or greater than or equal to the number of semaphores in
the set associated with semid.

[E2BIG] nsops is greater than the system-imposed maximum.

[EACCES] Operation permission is denied to the calling process (see glossary(9)).

[EAGAIN] The operation would result in suspension of the calling process but (sem_flg &
IPC_NOWAIT) is ‘‘true’’.

[ENOSPC] The limit on the number of individual processes requesting an SEM_UNDOwould be
exceeded.

[EINVAL] The number of individual semaphores for which the calling process requests a
SEM_UNDOwould exceed the limit.

[ERANGE] An operation would cause a semval to overflow the system-imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the system-imposed limit.

[EFAULT] sops points to an illegal address. The reliable detection of this error will be implemen-
tation dependent.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by
sops is set equal to the process ID of the calling process. The value of sem_otime in the data structure
associated with the semaphore identifier will be set to the current time.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−275

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

semop(2) semop(2)

WARNINGS
Check all references to signal(5) for appropriateness on systems that support sigvector (2). sigvector (2) can
affect the behavior described on this page.

SEE ALSO
ipcs(1), exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C), signal(5).

STANDARDS CONFORMANCE
semop() : SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−276 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

send(2) send(2)

NAME
send(), sendmsg(), sendto() - send a message from a socket

SYNOPSIS
#include <sys/socket.h>

int send(int s, const void *msg, int len, int flags);

int sendto(
int s,
const void *msg,
int len,
int flags,
const void *to,
int tolen

);

int sendmsg(int s, const struct msghdr msg[], int flags);

_XOPEN_SOURCE_EXTENDED Only (UNIX 98)
ssize_t send(int s, const void *msg, size_t len, int flags);

ssize_t sendto(
int s,
const void *msg,
size_t len,
int flags,
const struct sockaddr *to,
socklen_t tolen

);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

Obsolescent _XOPEN_SOURCE_EXTENDED Only (UNIX 95)
ssize_t sendto(

int s,
const void *msg,
size_t len,
int flags,
const struct sockaddr *to,
size_t tolen

);

DESCRIPTION
The send() , sendmsg() , and sendto() system calls transmit a message to another socket. send()
can be used only when the socket is in a connected state, whereas sendmsg() and sendto() can be
used at any time. sendmsg() allows the send data to be gathered from several buffers specified in the
msghdr structure.

s is a socket descriptor that specifies the socket on which the message will be sent.

msg points to the buffer containing the message.

If the socket uses connection-based communications, such as a SOCK_STREAM socket, these calls can only
be used after the connection has been established (see connect(2)). In this case, any destination specified by
to is ignored. For connectionless sockets, such as SOCK_DGRAM, sendto() must be used unless the
destination address has already been specified by connect() . If the destination address has been
specified and sendto() is used, an error results if any address is specified by to.

The address of the target socket is contained in a socket address structure pointed to by to, with tolen
specifying the size of the structure.

If a sendto() is attempted on a SOCK_DGRAM socket before any local address has been bound to it, the
system automatically selects a local address to be used for the message. In this case, there is no guarantee
that the same local address will be used for successive sendto() requests on the same socket.

The length of the message is given by len in bytes. The length of data actually sent is returned. If the mes-
sage is too long to pass atomically through the underlying protocol, the message is not transmitted, −1 is

HP-UX Release 11.0: October 1997 − 1 − Section 2−−277

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

send(2) send(2)

returned, and errno is set to [EMSGSIZE]. For SOCK_DGRAM sockets, this size is fixed by the imple-
mentation (see the DEPENDENCIES section). Otherwise there is no size limit.

When send() or sendto() returns a positive value, it only indicates this number of bytes have been
sent to the local transport provider. It does not mean this number of bytes have been delivered to the peer
socket application. A SOCK_DGRAM socket does not guarantee end-to-end delivery. A SOCK_STREAM
socket guarantees eventual end-to-end delivery, however its underlying transport provider may later detect
an irrecoverable error and returns a value of −1 at another socket function call.

When send() or sendto() returns a value of −1 , it indicates a locally detected error. errno is set to
indicate the error.

sendmsg() performs the same action as send() , but it gathers the output data from the buffers
specified in the msghdr structure (see _XOPEN_SOURCE_EXTENDEDOnly below). This structure is
defined in <sys/socket.h> and has the following form (HP-UX BSD Sockets Only):

struct msghdr {
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg_iov */
caddr_t msg_accrights; /* access rights */
int msg_accrightslen; /* size of msg_accrights */

}

msg_name points to a sockaddr structure in which the address of the destination socket should be
stored, if the socket is connectionless; msg_name may be a null pointer if no name is specified. msg_iov
specifies the locations of the character arrays for storing the outbound data. msg_accrights specifies a
buffer that contains any access rights to be sent along with the message. Access rights are limited to file
descriptors of size int. If access rights are not being transferred, set the msg_accrights field to NULL.
Access rights are supported only for AF_UNIX.

If no buffer space is available to hold the data to be transmitted, send() blocks unless nonblocking mode
is enabled. The three ways to enable nonblocking mode are:

• with the FIOSNBIO ioctl() request,

• with the O_NONBLOCKflag, and

• with the O_NDELAY fcntl() flag.

If nonblocking I/O is enabled using FIOSNBIO or the equivalent FIONBIO request (defined in
<sys/ioctl.h> and explained in ioctl(2), ioctl(5), and socket(7)), although the use of FIONBIO is not
recommended, the send() request completes in one of three ways:

• If there is enough space available in the system to buffer all of the data, send() completes suc-
cessfully, having written out all of the data, and returns the number of bytes written.

• If there is not enough space in the buffer to write out the entire request, send() completes suc-
cessfully, having written as much data as possible, and returns the number of bytes it was able to
write.

• If there is no space in the system to buffer any of the data, send() fails, having written no data,
and errno is set to [EWOULDBLOCK].

If nonblocking I/O is disabled using FIOSNBIO , send() always executes completely (blocking as neces-
sary) and returns the number of bytes written.

If the O_NONBLOCKflag is set using fcntl() (defined in <sys/fcntl.h> and explained in fcntl(2)
and fcntl(5)), POSIX-style nonblocking I/O is enabled. In this case, the send() request completes in one
of three ways:

• If there is enough space available in the system to buffer all of the data, send() completes suc-
cessfully, having written out all of the data, and returns the number of bytes written.

• If there is not enough space in the buffer to write out the entire request, send() completes suc-
cessfully, having written as much data as possible, and returns the number of bytes it was able to
write.

• If there is no space in the system to buffer any of the data, send() completes, having written no
data, and returns −1, with errno set to [EAGAIN].

Section 2−−278 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

send(2) send(2)

If the O_NDELAYflag is set using fcntl() (defined in <sys/fcntl.h> and explained in fcntl(2) and
fcntl(5)), nonblocking I/O is enabled. In this case, the send() request completes in one of three ways:

• If there is enough space available in the system to buffer all of the data, send() completes suc-
cessfully, having written out all of the data, and returns the number of bytes written.

• If there is not enough space in the buffer to write out the entire request, send() completes suc-
cessfully, having written as much data as possible, and returns the number of bytes it was able to
write.

• If there is no space in the system to buffer any of the data, send() completes successfully, having
written no data, and returns 0.

If the O_NDELAYflag is cleared using fcntl() , nonblocking I/O is disabled. In this case, the send()
always executes completely (blocking as necessary) and returns the number of bytes written.

Since the fcntl() O_NONBLOCK and O_NDELAYflags and ioctl() FIOSNBIO requests are sup-
ported, the following clarifies on how these features interact. If the O_NONBLOCKor O_NDELAYflag has
been set, send() requests behave accordingly, regardless of any FIOSNBIO requests. If neither the
O_NONBLOCKflag nor the O_NDELAYflag has been set, FIOSNBIO requests control the behavior of
send() .

By default nonblocking I/O is disabled.

The supported values for flags are zero or MSG_OOB(to send out-of-band data). A write() call made to
a socket behaves in exactly the same way as send() with flags set to zero. MSG_OOBis not supported for
AF_UNIX or AF_VME_LINK sockets.

select(2) can be used to determine when it is possible to send more data.

AF_CCITT Only
Sockets of the address family AF_CCITT operate in message mode. Although they are specified as
connection-based (SOCK_STREAM) sockets, the X.25 subsystem communicates via messages. They require
that a connection be established with the connect() or accept() calls.

The O_NDELAYflag is not supported. Use FIOSNBIO requests to control nonblocking I/O. If the avail-
able buffer space is not large enough for the entire message and the socket is in nonblocking mode, errno
is set to [EWOULDBLOCK]. If the amount of data in the send() exceeds the maximum outbound mes-
sage size, errno is set to [EMSGSIZE].

The sendto() call is not supported.

Each call sends either a complete or a partial X.25 message. This is controlled by the setting of the More-
Data-To-Follow (MDTF) bit. If the user wants to send a partial message, MDTF should be set to 1 before
the send() call. The MDTF bit should be cleared to 0 before sending the final message fragment.

Message fragment length may range from 0 bytes up to the size of the socket’s send buffer (see
af_ccitt(7F)). The MDTF bit and multiple send() calls can be combined to transmit complete X.25 packet
sequences (i.e., zero or more DATA packets in which the More Data bit is set, followed by one DATA packet
in which the More Data bit is clear) of arbitrary length. Note that a 0-byte message is not actually sent,
but may be necessary to flush a complete X.25 message if the user is controlling the MDTF bit.

Sockets of the AF_CCITT address family can send 1 byte of out-of-band data (known as an INTERRUPT
data packet in X.25 terminology), or up to 32 bytes if the X.25 interface is configured for 1984 CCITT X.25
recommendations. INTERRUPT data packets sent in blocking mode cause the process to block until
confirmation is received. INTERRUPT data packets sent with the socket in nonblocking mode do not cause
the process to block; instead, an out-of-band message is queued to the socket when the INTERRUPT
confirmation packet is received (see recv(2)).

_XOPEN_SOURCE_EXTENDED Only
For X/Open Sockets , the msghdr structure has the following form:

(UNIX 98)

struct msghdr {
void *msg_name; /* optional address */
socklen_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg_iov */

HP-UX Release 11.0: October 1997 − 3 − Section 2−−279

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

send(2) send(2)

void *msg_control; /* ancillary data, see below */
socklen_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

}

Obsolescent (UNIX 95)

struct msghdr {
void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter array for data */
int msg_iovlen; /* # of elements in msg_iov */
void *msg_control; /* ancillary data, see below */
size_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

}

msg_control specifies a buffer of ancillary data to send along with the message. Ancillary data consists of a
sequence of pairs, each consisting of a cmsghdr structure followed by a data array. The data array contains
the ancillary data message, and the cmsghdr structure contains descriptive information that allows an
application to correctly parse the data. cmsghdr has the following structure:

(UNIX 98)

struct cmsghdr {
socklen_t cmsg_len; /* data byte count, including hdr*/
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

}

Obsolescent (UNIX 95)

struct cmsghdr {
size_t cmsg_len; /* data byte count, including hdr*/
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

}

The supported value for cmsg_level is SOL_SOCKET, and the supported value for cmsg_type is
SCM_RIGHTS. Together they indicate the data array contains the access rights to be sent. Access rights
are supported only for AF_UNIX. Access rights are limited to file descriptors of size int. If ancillary data
are not being transferred, set the msg_control field to NULL, and set the msg_controllen field to 0.

The msg_flags member is ignored.

RETURN VALUE
send() , sendmsg() , and sendto() return the following values:

n Successful completion. n is the number of bytes sent.
−1 Failure. errno is set to indicate the error.

ERRORS
If send() , sendmsg() , or sendto() fails, errno is set to one of the following values.

[EACCES] Process doing a send() of a broadcast packet does not have broadcast capabil-
ity enabled for the socket. Use setsockopt() to enable broadcast capability.

[EAFNOSUPPORT] The specified address is not a valid address for the address family of this socket.

[EAGAIN] Nonblocking I/O is enabled using the O_NONBLOCKflag with fcntl() , and
the requested operation would block, or the socket has an error that was set
asynchronously. An asynchronous error can be caused by a gateway failing to
forward a datagram from this socket because the datagram exceeds the MTU of
the next-hop network and the "Don’t Fragment" (DF) bit in the datagram is set.
(See SO_PMTUin getsockopt(2)).

Section 2−−280 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

send(2) send(2)

[EBADF] s is not a valid file descriptor.

[ECONNRESET] A connection was forcibly closed by a peer.

[EDESTADDRREQ] The to parameter needs to specify a destination address for the message. This is
also given if the specified address contains unspecified fields (see inet(7F)).

[EFAULT] An invalid pointer was specified in the msg or to parameter, or in the msghdr
structure.

[EINTR] The operation was interrupted by a signal before any data was sent. (If some
data was sent, send() returns the number of bytes sent before the signal, and
[EINTR] is not set).

[EINVAL] The len or tolen parameter, or a length in the msghdr structure is invalid. A
sendto() system call was issued on an X.25 socket, or the connection is in its
reset sequence and cannot accept data.

[EIO] A timeout occurred.

[EISCONN] An address was specified by to for a SOCK_DGRAM socket which is already con-
nected.

[EMSGSIZE] A length in the msghdr structure is invalid. The socket requires that messages
be sent atomically, and the size of the message to be sent made this impossible.

SOCK_DGRAM/AF_INET or SOCK_STREAM/AF_CCITT: The message size
exceeded the outbound buffer size.

[ENETDOWN] The interface used for the specified address is "down" (see ifconfig(1M)), no inter-
face for the specified address can be found (SO_DONTROUTE socket option in
use), or the X.25 Level 2 is down.

[EHOSTUNREACH]
The destination host is not reachable.

[ENETUNREACH] The destination network is not reachable. Some of the possible causes for this
error are:

(LAN) All encapsulations (e.g., ether, ieee) have been turned off (see also
ifconfig(1M)).

(X.25) The X.25 Level 2 is down. The X.25 link layer is not working (wires might
be broken, connections are loose on the interface hoods at the modem, the
modem failed, the packet switch at the remote end lost power or failed for some
reason, or electrical noise interfered with the line for an extremely long period of
time).

[ENOBUFS] No buffer space is available in the system to perform the operation.

[ENOMEM] No memory is available in the system to perform the operation.

[ENOTCONN] A send() on a socket that is not connected, or a send() on a socket that has
not completed the connect sequence with its peer, or is no longer connected to its
peer.

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[EOPNOTSUPP] The MSG_OOBflag was specified; it is not supported for AF_UNIX or
AF_VME_LINK sockets.

[EPIPE] and SIGPIPE signal
An attempt was made to send on a socket that was connected, but the connection
has been shut down either by the remote peer or by this side of the connection.
Note that the default action for SIGPIPE , unless the process has established a
signal handler for this signal, is to terminate the process.

[EWOULDBLOCK] Nonblocking I/O is enabled using ioctl() FIOSNBIO request and the
requested operation would block.

DEPENDENCIES
UDP messages are fragmented at the IP level into Maximum Transmission Unit (MTU) sized pieces; MTU
varies for different link types. These pieces, called IP fragments, can be transmitted, but IP does not

HP-UX Release 11.0: October 1997 − 5 − Section 2−−281

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

send(2) send(2)

guarantee delivery. Sending large messages may cause too many fragments and overrun a receiver’s abil-
ity to receive them. If this happens the complete message cannot be reassembled. This affects the
apparent reliability and throughput of the network as viewed by the end user.

The default and maximum buffer sizes are protocol-specific. Refer to the appropriate entries in Sections 7F
and 7P for details. The buffer size can be set by calling setsockopt() with SO_SNDBUF.

AF_CCITT
If the receiving process is on a Series 700/800 HP-UX system, and the connection has been set up to use the
D-bit, data sent with the D-bit set is acknowledged when the receiving process has read the data. Other-
wise, the acknowledgement is sent when the firmware receives it.

OBSOLESCENCE
Currently, the socklen_t and size_t types are the same size. This is compatible with both the UNIX
95 and UNIX 98 profiles. However, in a future release, socklen_t might be a different size. In that
case, the size of the msghdr and cmsghdr structures and the relative position of their members will be
different, which might affect application behavior. Applications that use socklen_t now, where
appropriate, will avoid such migration problems. On the other hand, applications that need to be portable
to the UNIX 95 profile should follow the X/Open specification (see xopen_networking(7)).

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The send() , sendmsg() , and sendto() system calls are thread-safe. They each have a cancellation
point; and they are async-cancel safe, async-signal safe, and fork-safe.

AUTHOR
send() , sendmsg() , and sendto() were developed by HP and the University of California, Berkeley.

SEE ALSO
ifconfig(1M), getsockopt(2), recv(2), select(2), setsockopt(2), socket(2), socket(7), socketx25(7), af_ccitt(7F),
af_vme_link(7F), inet(7F), tcp(7P), udp(7P), unix(7P), xopen_networking(7).

STANDARDS CONFORMANCE
send() : XPG4

Section 2−−282 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sendfile(2) sendfile(2)

NAME
sendfile() - send the contents of a file through a socket

SYNOPSIS
#include <sys/socket.h>

ssize_t sendfile(int s, int fd, off_t offset, size_t nbytes,
const struct iovec *hdtrl, int flags);

DESCRIPTION
The sendfile() system call transmits the contents of a file associated with the file descriptor fd , plus
an optional header and trailer buffers across a socket connection specified by s . sendfile() can be used
only when the socket is in a connected state.

offset specifies the offset within the file at which to start the file data transfer.

nbytes is the number of bytes to be sent from the file. If this parameter is set to zero, data from the offset
to the end of the file will be sent.

hdtrl points to a two entry iovec structure. See write(2) for a description of the iovec structure. The
first entry is for header information. If this pointer is non-NULL, the contents of the buffer are sent before
sending any data from the file. The second entry is for trailer information. If this pointer is non-NULL, the
contents of the buffer will be sent after the data from the file. If both pointers are NULL, or hdtrl is a
NULL pointer, only the specified range of the file will be transferred.

At the end of the call, the socket connection will be left completely open for both reading and writing,
unless the flags parameter is set to:

SF_DISCONNECT Disallow further sends and receives.

RETURN VALUE
Upon successful completion, sendfile() returns the number of bytes sent. This includes the header,
trailer, and the file contents. Otherwise, −1 is returned and errno is set to indicate the error.

If no buffer space is available to hold the data to be transmitted, sendfile() blocks unless nonblocking
mode is enabled. See send(2) for a description of the nonblocking mode behavior.

ERRORS
If sendfile() fails, errno is set to one of the following values.

[EBADF] An invalid socket descriptor s , or file descriptor fd is specified.

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[EFAULT] An invalid pointer was specified in the hdtrl parameter or the iovec structure.

[ENOBUFS] No buffer space is available in the system to perform the operation.

[EINTR] The operation was interrupted by a signal before any data was sent. (If some data
was sent, sendfile() returns the number of bytes sent before the signal, and
[EINTR] is not set).

[EINVAL] The offset or flags parameter is invalid.

The hdtrl parameter, or a length in the iovec structure is invalid.

[ENOTCONN] A sendfile() on a socket that is not connected, or a sendfile() on a socket
that has not completed the connect sequence with its peer, or is no longer connected
to its peer.

[EPIPE] With SIGPIPE signal. An attempt was made to send on a socket that was connected,
but the connection has been shut down either by the remote peer or by this side of the
connection. Note that the default action for SIGPIPE , unless the process has esta-
blished a signal handler for this signal, is to terminate the process.

[EAGAIN] Nonblocking I/O is enabled using the O_NONBLOCKflag with fcntl() , and the
requested operation would block.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would block.

[ENOMEM] No memory is available in the system to perform the operation.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−283

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sendfile(2) sendfile(2)

[EOPNOTSUPP] The socket is not a TCP socket.

SEE ALSO
send(2), read(2), write(2), socket(2), connect(2), shutdown(2), tcp(7P).

Section 2−−284 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

serialize(2) serialize(2)

NAME
serialize() - force target process to run serially with other processes

SYNOPSIS
#include <unistd.h>

int serialize(int timeshare, pid_t pid);

DESCRIPTION
The serialize() system call is used to force the target process referenced by the pid value passed in to
run serially with other processes also marked for serialization. If the value of pid is zero, then the
currently running process is marked for serialization. Once a process has been marked by serialize() ,
the process stays marked until process completion, unless serialize() is reissued on the serialized pro-
cess with timeshare set to 1. If timeshare is set to 1, the process specified in pid will be returned to nor-
mal timeshare scheduling algorithms.

This call is used to improve process throughput since process throughput usually increases for large
processes when they are executed serially instead of allowing each program to run for only a short period of
time. By running large processes one at a time, the system makes more efficient use of the CPU as well as
system memory, since each process does not end up constantly faulting in its working set, to only have the
pages stolen when another process starts running. As long as there is enough memory in the system,
processes marked by serialize() behave no differently from other processes in the system. However,
once memory becomes tight, processes marked by serialize() are run one at a time with the highest
priority processes being run first. Each process runs for a finite interval of time before another serialized
process is allowed to run.

RETURN VALUE
serialize() returns zero upon successful completion, or nonzero if the system call failed.

ERRORS
If serialize() fails, it sets errno (see errno(2)) to the following value:

[ESRCH] The pid passed in does not exist.

WARNINGS
The user has no way of forcing an execution order on serialized processes.

AUTHOR
serialize() was developed by HP.

SEE ALSO
serialize(1).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−285

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setacl(2) setacl(2)

NAME
setacl, fsetacl - set access control list (ACL) information

SYNOPSIS
#include <sys/acl.h>

int setacl(
const char *path,
int nentries,
const struct acl_entry *acl

);

int fsetacl(
int fildes,
int nentries,
const struct acl_entry *acl

);

DESCRIPTION
setacl() sets an existing file’s access control list (ACL) or deletes optional entries from it. path points to
a path name of a file.

Similarly, fsetacl() sets an existing file’s access control list for an open file known by the file descriptor
fildes.

The effective user ID of the process must match the owner of the file or be the super-user to set a file’s
ACL.

A successful call to setacl() deletes all of a file’s previous optional ACL entries (see explanation below),
if any. nentries indicates how many valid entries are defined in the acl parameter. If nentries is zero or
greater, the new ACL is applied to the file. If any of the file’s base entries (see below) is not mentioned in
the new ACL, it is retained but its access mode is set to zero (no access). Hence, routine calls of
setacl() completely define the file’s ACL.

As a special case, if nentries is negative (that is, a value of ACL_DELOPT(defined in <sys/acl.h>), the
acl parameter is ignored, all of the file’s optional entries, if any, are deleted, and its base entries are left
unaltered.

Some of the miscellaneous mode bits in the file’s mode might be turned off as a consequence of calling
setacl() . See chmod(2).

Access Control Lists
An ACL consists of a series of entries. Entries can be categorized in four levels of specificity:

(u. g, mode) applies to user u in group g
(u.%, mode) applies to user u in any group
(%.g, mode) applies to any user in group g
(%.%, mode) applies to any user in any group

Entries in the ACL must be unique; no two entries can have the same user ID (uid) and group ID (gid) (see
below). Entries can appear in any order. The system orders them as needed for access checking.

The <sys/acl.h> header file defines ACL_NSUSERas the non-specific uid value and ACL_NSGROUP
as the non-specific gid value represented by %above. If uid in an entry is ACL_NSUSER, it is a %.g
entry. If gid in an entry is ACL_NSGROUP, it is a u.% entry. If both uid and gid are non-specific, the
file’s entry is %.%.

The <unistd.h> header file defines meanings of mode bits in ACL entries (R_OK, W_OK, and X_OK).
Irrelevant bits in mode values must be zero.

Every file’s ACL has three base entries which cannot be added or deleted, but only modified. The base ACL
entries are mapped directly from the file’s permission bits.

(<file’s owner> . ACL_NSGROUP, <file’s owner mode bits>)
(ACL_NSUSER . <file’s group>, <file’s group mode bits>)
(ACL_NSUSER . ACL_NSGROUP, <file’s other mode bits>)

In addition, up to 13 optional ACL entries can be set to restrict or grant access to a file.

Section 2−−286 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setacl(2) setacl(2)

Altering a base ACL entry’s modes with setacl() changes the file’s corresponding permission bits. The
permission bits can be altered also by using chmod() (see chmod(2)) and read using stat() (see
stat(2)).

The number of entries allowed per file (see NACLENTRIESin <sys/acl.h>) is small for space and per-
formance reasons. User groups should be created as needed for access control purposes. Since ordinary
users cannot create groups, their ability to control file access with ACLs might be somewhat limited.

RETURN VALUE
Upon successful completion, setacl() and fsetacl() return a value of zero. If an error occurs, they
return −1, the file’s ACL is not modified, and errno is set to indicate the error.

ERRORS
setacl() and fsetacl() fail if any of the following conditions are encountered:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[EBADF] fildes is not a valid file descriptor.

[EACCES] A component of the path prefix denies search permission.

[EPERM] The effective user ID does not match the owner of the file and the effective user
ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path or acl points outside the allocated address space of the process, or acl is not
as large as indicated by nentries.

[EINVAL] There is a redundant entry in the ACL, or acl contains an invalid uid, gid, or
mode value.

[E2BIG] An attempt was made to set an ACL with more than NACLENTRIESentries.

[EOPNOTSUPP] ACLs are only supported on HFS file systems. Additionally, setacl() is not
supported on remote files by some networking services.

[ENOSPC] Not enough space on the file system.

[ENFILE] System file table is full.

[ENAMETOOLONG]
The length of path exceeds PATH_MAXbytes, or the length of a component of
path exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis in effect.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[EDQUOT] User’s disk quota block or inode limit has been reached for this file system.

EXAMPLES
The following code fragment defines and sets an ACL on file ../shared which allows the file’s owner to
read, write, and execute or search the file, and allows user 103, group 204 to read the file.

#include <unistd.h>
#include <sys/stat.h>
#include <sys/acl.h>

char *filename = "../shared";
struct acl_entry acl [2];
struct stat statbuf;

if (stat (filename, & statbuf) < 0)
error (...);

acl [0] . uid = statbuf . st_uid; /* file owner */
acl [0] . gid = ACL_NSGROUP;
acl [0] . mode = R_OK | W_OK | X_OK;

acl [1] . uid = 103;
acl [1] . gid = 204;

HP-UX Release 11.0: October 1997 − 2 − Section 2−−287

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setacl(2) setacl(2)

acl [1] . mode = R_OK;

if (setacl (filename, 2, acl))
error (...);

The following call deletes all optional ACL entries from file1 :
setacl ("file1", ACL_DELOPT, (struct acl_entry *) 0);

DEPENDENCIES
NFS

setacl() and fsetacl() are not supported on remote files.

HFS
ACLs are only supported on HFS file systems.

AUTHOR
setacl() and fsetacl() were developed by HP.

SEE ALSO
access(2), chmod(2), getaccess(2), getacl(2), stat(2), acl(5), unistd(5).

Section 2−−288 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setaudid(2) setaudid(2)

NAME
setaudid - set the audit ID (aid) for the current process

SYNOPSIS
#include <sys/audit.h>

int setaudid(aid_t audid);

DESCRIPTION
setaudid() sets the audit ID (aid) for the current process. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, setaudid() returns a value of 0; otherwise, it returns −1 and sets errno
to indicate the error.

ERRORS
setaudid() fails if any of the following conditions are encountered:

[EPERM] The caller is not a superuser.

[EINVAL] The audit ID (audid) is invalid.

AUTHOR
setaudid() was developed by HP.

SEE ALSO
getaudid(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−289

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setaudproc(2) setaudproc(2)

NAME
setaudproc - controls process level auditing for the current process and its decendents

SYNOPSIS
#include <sys/audit.h>

int setaudproc(int aflag);

DESCRIPTION
setaudproc() controls process level auditing for the current process and its decendents. It accom-
plishes this by setting or clearing the u_audproc flag in the u area of the calling process. When this
flag is set, the system audits the process; when it is cleared, the process is not audited. This call is res-
tricted to super-users.

One of the following aflags must be used:

AUD_PROC Audit the calling process and its decendents.
AUD_CLEAR Do not audit the calling process and its decendents.

The u_audproc flag is inherited by the descendents of a process. consequently, the effect of a call to
setaudproc() is not limited to the current process, but propagates to all its decendents as well. For
example, if setaudproc() is called with the AUD_PROCflag, all subsequent audited system calls in
the current process and its descendents are audited until setaudproc() is called with the
AUD_CLEARflag.

Further, setaudproc() performs its action regardless of whether the user executing the process has
been selected to be audited or not. For example, if setaudproc() is called with the AUD_PROC(or the
AUD_CLEAR) flag, all subsequent audited system calls will be audited (or not audited), regardless of
whether the user executing the process has been selected for auditing or not.

Due to these features, setaudproc() should not be used in most self-auditing applications.
audswitch() should be used (see audswitch(2)) when the objective is to suspend auditing within a pro-
cess without affecting its decendents or overriding the user selection aspect of the auditing system.

RETURN VALUE
Upon successful completion, setaudproc() returns 0; otherwise, it returns −1 and sets errno to indi-
cate the error.

AUTHOR
setaudproc() was developed by HP.

SEE ALSO
getaudproc(2), audswitch(2), audusr(1M), audevent(1M), audit(5).

Section 2−−290 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setevent(2) setevent(2)

NAME
setevent - set current events and system calls which are to be audited

SYNOPSIS
#include <sys/audit.h>

int setevent(
const struct aud_type a_syscall[],
const struct aud_event_tbl a_event[]

);

DESCRIPTION
setevent() sets the events and system calls to be audited. The event and system call settings in the
tables pointed to by a_syscall and a_event become the current settings. This call is restricted to the super-
user.

RETURN VALUE
Upon successful completion, setevent() returns 0; otherwise, it returns −1 and sets errno to indicate
the error.

ERRORS
setevent() fails if the following condition is encountered:

[EPERM] The caller is not super-user.

AUTHOR
setevent() was developed by HP.

SEE ALSO
getevent(2), audevent(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−291

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setgroups(2) setgroups(2)

NAME
setgroups - set group access list

SYNOPSIS
#include <unistd.h>

int setgroups(int ngroups, const gid_t *gidset);

DESCRIPTION
setgroups() sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than
NGROUPS_MAX, as defined in <limits.h> .

Only super-user can set new groups by adding to the group access list of the current user process; any user
can delete groups from it.

RETURN VALUE
Upon successful completion, setgroups() returns 0; otherwise it returns −1 and sets errno to indicate
the error.

ERRORS
setgroups() fails if any of the following conditions are encountered:

[EPERM] The caller is not super-user and has attempted to set new groups.

[EFAULT] The address specified for gidset is outside the process address space. The reliable
detection of this error is implementation dependent.

[EINVAL] ngroups is greater than NGROUPS_MAX or not positive.

[EINVAL] An entry in gidset is not a valid group ID.

AUTHOR
setgroups() was developed by the University of California, Berkeley.

SEE ALSO
getgroups(2), initgroups(3C).

STANDARDS CONFORMANCE
setgroups() : AES, SVID3

Section 2−−292 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sethostname(2) sethostname(2)

NAME
sethostname - set name of host cpu

SYNOPSIS
#include <unistd.h>

int sethostname(const char *name, size_t namelen);

DESCRIPTION
The sethostname() system call sets the name of the host processor to name, which has a length of
namelen characters. At system boot time sethostname() is normally executed by the hostname com-
mand (see hostname(1)) in the /sbin/init.d/hostname script. Host names are limited to MAX-
HOSTNAMELENcharacters, as defined in <sys/param.h> .

RETURN VALUE
sethostname() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If sethostname() fails, errno is set to one of the following values.

[EFAULT] name points to an illegal address. The reliable detection of this error is implementa-
tion dependent.

[EPERM] The user does not have appropriate privileges.

AUTHOR
sethostname() was developed by the University of California, Berkeley.

SEE ALSO
hostname(1), uname(1), gethostname(2), uname(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−293

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setpgid(2) setpgid(2)

NAME
setpgid(), setpgrp2() - set process group ID for job control

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

int setpgrp2(pid_t pid, pid_t pgid);

DESCRIPTION
The setpgid() and setpgrp2() system calls cause the process specified by pid to join an existing pro-
cess group or create a new process group within the session of the calling process. The process group ID of
the process whose process ID is pid is set to pgid. If pid is zero, the process ID of the calling process is
used. If pgid is zero, the process ID of the indicated process is used. The process group ID of a session
leader does not change.

setpgrp2() is provided for backward compatibility only.

RETURN VALUE
setpgid() and setpgrp2() return the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If setpgid() or setpgrp2() fails, errno is set to one of the following values.

[EACCES] The value of pid matches the process ID of a child process of the calling process and
the child process has successfully executed one of the exec(2) functions.

[EINVAL] The value of pgid is less than zero or is outside the range of valid process group ID
values.

[EPERM] The process indicated by pid is a session leader.

[EPERM] The value of pid is valid but matches the process ID of a child process of the calling
process, and the child process is not in the same session as the calling process.

[EPERM] The value of pgid does not match the process ID of the process indicated by pid and
there is no process with a process group ID that matches the value of pgid in the same
session as the calling process.

[ESRCH] The value of pid does not match the process ID of the calling process or of a child pro-
cess of the calling process.

AUTHOR
setpgid() and setpgrp2() were developed by HP and the University of California, Berkeley.

SEE ALSO
bsdproc(3C), exec(2), exit(2), fork(2), getpid(2), kill(2), setsid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setpgid() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−294 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setpgrp(2) setpgrp(2)

NAME
setpgrp - set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setpgrp(void);

DESCRIPTION
If the calling process is not already a session leader, setpgrp() sets the process group ID of the calling
process to the process ID of the calling process. If setpgrp() creates a new session, then the new session
has no controlling terminal.

The setpgrp() function has no effect when the calling process is a session leader.

RETURN VALUE
Upon successful completion, setpgrp() returns the new process group ID.

ERRORS
No errors are defined.

SEE ALSO
exec(2), fork(2), getpid(2), getsid(2), kill(2), setsid(2), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−295

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setresuid(2) setresuid(2)

NAME
setresuid, setresgid - set real, effective, and saved user and group IDs

SYNOPSIS
#include <unistd.h>

int setresuid(uid_t ruid, uid_t euid, uid_t suid);

int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

DESCRIPTION
setresuid() sets the real, effective and/or saved user ID of the calling process.

If the current real, effective or saved user ID is equal to that of a user having appropriate privileges,
setresuid() sets the real, effective and saved user IDs to ruid, euid, and suid, respectively. Other-
wise, setresuid() only sets the real, effective, and saved user IDs if ruid, euid, and suid each match at
least one of the current real, effective, or saved user IDs.

If ruid, euid, or suid is -1 , setresuid() leaves the current real, effective or saved user ID unchanged.

setresgid() sets the real, effective and/or saved group ID of the calling process.

If the current real, effective or saved user ID is equal to that of a user having appropriate privileges,
setresgid() sets the real, effective, and saved group ID to rgid, egid, and sgid, respectively. Other-
wise, setresgid() only sets the real, effective and saved group ID if rgid, egid, and sgid each match at
least one of the current real, effective or saved group ID.

If rgid, egid, or sgid is -1 , setresgid() leaves the current real, effective or saved group ID
unchanged.

RETURN VALUE
Upon successful completion, setresuid() and setresgid() return 0; otherwise, they return −1 and
set errno to indicate the error.

ERRORS
setresuid() and setresgid() fail if any of the following conditions are encountered:

[EINVAL] ruid, euid, or suid (rgid, egid, or sgid) is not a valid user (group) ID.

[EPERM] None of the conditions above are met.

AUTHOR
setresuid() and setresgid() were developed by HP.

SEE ALSO
exec(2), getuid(2), setuid(2).

Section 2−−296 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setreuid(2) setreuid(2)

NAME
setreuid - set real and effective user IDs

SYNOPSIS
#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

DESCRIPTION
The setreuid() function sets the real and effective user IDs of the current process to the values
specified by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective or real user ID of
the current process is left unchanged.

A process with appropriate privileges can set either ID to any value. An unprivileged process can only set
the effective user ID if the euid argument is equal to either the real, effective, or saved user ID of the pro-
cess.

It is unspecified whether a process without appropriate privileges is permitted to change the real user ID to
match the current real, effective or saved user ID of the process.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate the
error.

ERRORS
The setreuid() function will fail if:

[EINVAL] The value of the ruid or euid argument is invalid or out-of-range.

[EPERM] The current process does not have appropriate privileges, and either an
attempt was made to change the effective user ID to a value other than the
real user ID or the saved set-user-ID or an attempt was made to change
the real user ID to a value not permitted by the implementation.

SEE ALSO
getuid(2), setuid(2), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−297

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setsid(2) setsid(2)

NAME
setsid, setpgrp, setpgrp3 - create session and set process group ID

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

pid_t setpgrp(void);

pid_t setpgrp3(void);

DESCRIPTION
If the calling process is not a process group leader, setsid() or setpgrp() creates a new session. The
calling process becomes the session leader of this new session, it becomes the process group leader of a new
process group, and it has no controlling terminal. The process group ID of the calling process is set equal to
the process ID of the calling process. The calling process is the only process in the new process group, and
the only process in the new session.

The setpgrp() function is provided for backward compatibility only.

setpgrp3() function is provided for HPUX compatibity in future releases. setpgrp3() is functionally
equivalent to setpgrp().

RETURN VALUE
Upon successful completion, setsid() returns the value of the new process group ID of the calling pro-
cess. Otherwise, it returns a value of −1, and sets errno to indicate the error.

The setpgrp() function returns the value of the process group ID of the calling process.

ERRORS
If setsid() fails, no changes occur, and errno (see errno(2)) is set to one of the following values:

[EPERM] The calling process is already a process group leader.

[EPERM] The process group ID of a process other than the calling process matches the process
ID of the calling process.

WARNINGS
The semantics for setpgrp() may change in a future release (see setpgrp3()).

AUTHOR
setpgrp() and setsid() were developed by HP and AT&T.

SEE ALSO
exec(2), exit(2), fork(2), getpid(2), kill(2), setpgid(2), signal(2), termio(7).

STANDARDS CONFORMANCE
setsid() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

setpgrp() : SVID2, SVID3, XPG2

Section 2−−298 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

setuid(2) setuid(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

DESCRIPTION
setuid() sets the real-user-ID (ruid), effective-user-ID (euid), and/or saved-user-ID (suid) of the calling
process. The super-user’s euid is zero. The following conditions govern setuid’s behavior:

• If the euid is zero, setuid() sets the ruid, euid, and suid to uid.

• If the euid is not zero, but the argument uid is equal to the ruid or the suid, setuid() sets the
euid to uid; the ruid and suid remain unchanged. (If a set-user-ID program is not running as
super-user, it can change its euid to match its ruid and reset itself to the previous euid value.)

• If euid is not zero, but the argument uid is equal to the euid, and the calling process is a member
of a group that has the PRIV_SETRUGIDprivilege (see privgrp(4)), setuid() sets the ruid to
uid; the euid and suid remain unchanged.

setgid() sets the real-group-ID (rgid), effective-group-ID (egid), and/or saved-group-ID (sgid) of the cal-
ling process. The following conditions govern setgid() ’s behavior:

• If euid is zero, setgid() sets the rgid and egid to gid.

• If euid is not zero, but the argument gid is equal to the rgid or the sgid, setgid() sets the egid
to gid; the rgid and sgid remain unchanged.

• If euid is not zero, but the argument gid is equal to the egid, and the calling process is a member of
a group that has the PRIV_SETRUGID privilege (see privgrp(4)), setgid() sets the rgid to
gid; the egid and sgid remain unchanged.

RETURN VALUE
Upon successful completion, setuid() and setgid() returned 0; otherwise, they return −1 and set
errno to indicate the error.

ERRORS
setuid() and setgid() fail and return −1 if any of the following conditions are encountered:

[EPERM] None of the conditions above are met.

[EINVAL] uid (gid) is not a valid user (group) ID.

WARNINGS
It is recommended that the PRIV_SETRUGIDcapability be avoided, as it is provided for backward com-
patibility. This feature may be modified or dropped from future HP-UX releases. When changing the real
user ID and real group ID, use of setresuid() and setresgid() (see setresuid(2)) are recommended
instead.

AUTHOR
setuid() was developed by AT&T, the University of California, Berkeley, and HP.

setgid() was developed by AT&T.

SEE ALSO
exec(2), getprivgrp(2), getuid(2), setresuid(2) privgrp(4).

STANDARDS CONFORMANCE
setuid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

setgid() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−299

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shm_open(2) shm_open(2)

NAME
shm_open - create/open a shared memory object

SYNOPSIS
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

DESCRIPTION
The shm_open() system call establishes a connection between a shared memory object and a file descrip-
tor. It creates an open file description that corresponds to the shared memory object and returns a file
descriptor that refers to that open file description. This file descriptor (which is the lowest numbered file
descriptor not currently open for that process) is used by other functions to refer to that shared memory
object.

The name argument points to the shared memory object name, and must conform to the general construc-
tion rules for a pathname.

The oflag argument is the bitwise inclusive OR of the flags listed under Read-Write Flags and General
Flags (these flags are defined in the header file RC < fcntl.h >).

The new file descriptor has the FD_CLOEXEC flag set, and consequently does not remain open across
exec*() system calls.

Read-Write Flags
The value of oflag must be composed by taking the inclusive OR of exactly one of the following flags:

O_RDONLY Open for read access only.

O_RDWR Open for read and write access.

General Flags
Any combination of the following flags may also be used in setting the value of oflag.

O_CREAT If the shared memory object exists, this flag will have no effect, except as noted under
O_EXCL below. Otherwise the shared memory object is created; the shared memory
object’s user ID is set to the effective user ID of the process; the shared memory
object’s group ID is set to the effective group ID of the process. The shared memory
object’s permission bits is set to the value of the mode argument except those set in
the file mode creation mask of the process. The new shared memory object will have
a size of zero.

O_EXCL If O_EXCL and O_CREAT are set in oflag and the named shared memory object
exists, shm_open() will fail. The O_EXCL flag is ignored if O_CREAT is not set in
oflag.

O_TRUNC If the shared memory object exists, and it is successfully opened for reading and writ-
ing (O_RDWR set in oflag), the object will be truncated to zero length. The mode and
owner shall remain unchanged by this function call.

RETURN VALUE
shm_open() returns the following values:

n Successful completion. n is the lowest numbered unused file descriptor for the process.

-1 Failure. errno is set to indicate the error.

ERRORS
If shm_open() fails, errno is set to one of the following values:

[EACCES] The shared memory object exists and the permissions specified by oflag are denied, or
the shared memory object does not exist and permission to create the it is denied, or
O_TRUNC is specified and write permission is denied.

[EEXIST] The O_CREAT and O_EXCL are set in oflag and the named shared memory object
already exists.

[EINTR] The shm_open() operation was interrupted by a signal.

Section 2−−300 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shm_open(2) shm_open(2)

[EMFILE] Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]
The length of the name string exceeds PATH_MAX, or the length of a (pathname) com-
ponent of the name string exceeds NAME_MAXwhile _POSIX_NO_TRUNCis in
effect.

[ENFILE] Too many shared memory objects are currently open in the system.

[ENOENT] The O_CREAT flag is not set in oflag and the named shared memory object does not
exist.

[ENOSPC] There are insufficient resources for the creation of the new shared memory object.

[ENOSYS] shm_open() is not supported by the implementation.

SEE ALSO
shm_unlink(2), close(2), mmap(2), munmap(2).

STANDARDS CONFORMANCE
shm_open() in librt: POSIX 1003.1b

HP-UX Release 11.0: October 1997 − 2 − Section 2−−301

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shm_unlink(2) shm_unlink(2)

NAME
shm_unlink - unlink a shared memory object

SYNOPSIS
#include <sys/mman.h>

int shm_unlink(const char *name);

DESCRIPTION
The shm_unlink() system call removes the name of the shared memory object named by the string
pointed to by name. If one or more references to the shared memory object exists when the object is
unlinked, the name will be removed before shm_unlink() returns, but the removal of the memory
object contents will be postponed until all open and map references to the shared memory object have been
removed.

RETURN VALUE
shm_unlink() returns the following values:

0 Successful completion.

-1 Failure, errno is set to indicate the error.

ERRORS
If shm_unlink() fails, errno is set to one of the following values:

[EACCES] Permission to unlink the named shared memory object is denied.

[ENAMETOOLONG]
The length of the name string exceeds PATH_MAX, or the length of a (pathname) com-
ponent of the name string exceeds NAME_MAXwhile _POSIX_NO_TRUNCis in
effect.

[ENOENT] The named shared memory object does not exist.

[ENOSYS] shm_unlink() is not supported by the implementation.

SEE ALSO
shm_open(2), close(2), mmap(2), munmap(2).

STANDARDS CONFORMANCE
shm_unlink() in librt: POSIX 1003.1b

Section 2−−302 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shmctl(2) shmctl(2)

NAME
shmctl() - shared memory control operations

SYNOPSIS
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION
The shmctl() system call provides a variety of shared memory control operations as specified by the cmd
argument. cmd can have the following values:

IPC_STAT Place the current value of each member of the data structure associated with shmid
into the structure pointed to by buf. The contents of this structure are defined in glos-
sary(9).

IPC_SET Set the value of the following members of the data structure associated with shmid to
the corresponding value found in the structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to
either that of a user having appropriate privileges or to the value of either
shm_perm.uid or shm_perm.cuid in the data structure associated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system and destroy
the shared memory segment and data structure associated with it. If the segment is
attached to one or more processes, then the segment key is changed to
IPC_PRIVATE and the segment is marked removed. The segment disappears when
the last attached process detaches it. This cmd can only be executed by a process that
has an effective user ID equal to either that of a user with appropriate privileges or to
the value of either shm_perm.uid or shm_perm.cuid in the data structure asso-
ciated with shmid.

SHM_LOCK Lock the shared memory segment specified by shmid in memory. This cmd can only
be executed by a process that either has an effective user ID equal to that of a user
having appropriate privileges or has an effective user ID equal to the value of either
shm_perm.uid or shm_perm.cuid in the data structure associated with shmid
and has the PRIV_MLOCKprivilege (see getprivgrp (2)).

SHM_UNLOCKUnlock the shared memory segment specified by shmid. This cmd can only be exe-
cuted by a process that either has an effective user ID equal to a user having appropri-
ate privileges or has an effective user ID equal to the value of either shm_perm.uid
or shm_perm.cuid in the data structure associated with shmid and has the
PRIV_MLOCKprivilege (see getprivgrp (2)).

RETURN VALUE
shmctl() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If shmctl() fails, errno is set to one of the following values.

[EACCES] cmd is equal to IPC_STAT and Read operation permission is denied to the calling
process (see shared memory operation permissions in glossary(9)).

[EFAULT] buf points to an illegal address. The reliable detection of this error is implementation
dependent.

[EINVAL] cmd is equal to SHM_UNLOCKand the shared-memory segment specified by shmid is
not locked in memory.

[EINVAL] shmid is not a valid shared memory identifier.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−303

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shmctl(2) shmctl(2)

[EINVAL] cmd is not a valid command, or the command contains invalid parameters.

[ENOMEM] cmd is equal to SHM_LOCKand there is not sufficient lockable memory to fill the
request.

[EPERM] cmd is equal to IPC_RMID , IPC_SET , SHM_LOCK, or SHM_UNLOCKand the
effective user ID of the calling process is not equal to that of a user having appropriate
privileges and it is not equal to the value of either shm_perm.uid or
shm_perm.cuid in the data structure associated with shmid.

[EPERM] cmd is equal to SHM_LOCKor SHM_UNLOCKand the effective user ID of the calling
process is not equal to that of a user having appropriate privileges and the calling pro-
cess does not have the PRIV_MLOCKprivilege (see getprivgrp (2)).

EXAMPLES
The following call to shmctl() locks in memory the shared memory segment represented by myshmid .
This example assumes the process has a valid shmid, which can be obtained by calling shmget(2).

shmctl (myshmid, SHM_LOCK, 0);

The following call to shmctl() removes the shared memory segment represented by myshmid . This
example assumes the process has a valid shmid, which can be obtained by calling shmget() (see
shmget(2).

shmctl (myshmid, IPC_RMID, 0);

AUTHOR
shmctl() was developed by AT&T and HP.

SEE ALSO
ipcrm(1), ipcs(1), shmget(2), shmop(2), stdipc(3C).

STANDARDS CONFORMANCE
shmctl() : SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−304 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shmget(2) shmget(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
shmget() returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size bytes
(see glossary(9)) are created for key if one of the following is true:

• key is equal to IPC_PRIVATE . This call creates a new identifier, subject to available resources.
The identifier will never be returned by another call to shmget() until it has been released by a
call to shmctl() . The identifier should be used among the calling process and its descendents;
however, it is not a requirement. The resource can be accessed by any process having the proper
permissions.

• key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is ‘‘true’’. If IPC_CREAT is set in shmflg the shared memory segment created can
only be shared by processes of the same executable type. That is, an application compiled as a 32-
bit process will be able to share the same memory segment with other 32-bit processes, and an
application compiled as a 64-bit process will be able to share the same memory segment with other
64-bit processes. If a 64-bit bit process wants to create a shared memory segment which can also be
shared with 32-bit processes, the 64-bit process must specify IPC_SHARE32 in addition to
IPC_CREAT in shmflg. The 32-bit process does not need to specify IPC_SHARE32.

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:

• shm_perm.cuid , shm_perm.uid , shm_perm.cgid , and shm_perm.gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

• shm_perm.cuid , The low-order 9 bits of shm_perm.mode are set equal to the low-order 9
bits of shmflg. shm_segsz is set equal to the value of size.

• shm_lpid , shm_nattch , shm_atime , and shm_dtime are set equal to 0.

• shm_ctime is set equal to the current time.

EXAMPLES
The following call to shmget() returns a unique shmid for the newly created shared memory segment of
4096 bytes:

int myshmid;

myshmid = shmget (IPC_PRIVATE, 4096, 0600);

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other-
wise, a value of −1 is returned and errno is set to indicate the error.

ERRORS
shmget() fails if any of the following conditions are encountered:

[EINVAL] size is less than the system-imposed minimum or greater than the system-imposed
maximum.

[EINVAL] A shared memory identifier exists for key but is in 64-bit address space and the pro-
cess performing the request has been compiled as a 32-bit executable. In order to
avoid receiving this error, both IPC_SHARE32 and IPC_CREAT must be set in
shmflg by the 64-bit procses upon segment creation.

[EACCES] A shared memory identifier exists for key but operation permission (see glossary(9)) as
specified by the low-order 9 bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for key but the size of the segment associated with
it is less than size and size is not equal to zero.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−305

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shmget(2) shmget(2)

[ENOENT] A shared memory identifier does not exist for key and (shmflg & IPC_CREAT) is
‘‘false’’.

[ENOSPC] A shared memory identifier is to be created but the system-imposed limit on the max-
imum number of allowed shared memory identifiers system wide would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory segment are to be created,
but the amount of available physical memory is not sufficient to fill the request.

[EEXIST] A shared memory identifier exists for key but ((shmflg & IPC_CREAT) && (shmflg &
IPC_EXCL)) is ‘‘true’’.

SEE ALSO
ipcrm(1), ipcs(1), shmctl(2), shmop(2), stdipc(3C).

STANDARDS CONFORMANCE
shmget() : SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−306 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shmop(2) shmop(2)

NAME
shmat(), shmdt() - shared memory operations

SYNOPSIS
#include <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt(void *shmaddr);

DESCRIPTION
shmat() attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true"; otherwise, it is attached for read-
ing and writing. It is not possible to attach a segment for write only.

If the shared memory segment has never been attached to by any process prior to the current shmat()
call, shmaddr must be specified as zero and the segment is attached at a location selected by the operating
system. That location is identical in all processes accessing that shared memory object. Once the operating
system selects a location for a shared memory segment, the same location will be used across any subse-
quent shmat() and shmdt() calls on the segment until it is removed by the IPC_RMID operation of
shmctl() .

If this is not the first shmat() call on the shared memory segment throughout the system, shmaddr must
either be zero or contain a nonzero address that is identical to the one returned from previous shmat()
calls for that segment. Even if no processes are currently attached to the segment, as long as the segment
has been attached before, the same rule applies.

If the calling process is already attached to the shared memory segment, shmat() fails and returns
SHM_FAILED regardless of what value is passed in shmaddr.

shmdt() detaches from the calling process’s data segment the shared memory segment located at the
address specified by shmaddr.

RETURN VALUE
shmat() returns the following values:

n Successful completion. n is the data segment start address of the attached shared memory seg-
ment.

SHM_FAILED
Failure. The shared memory segment is not attached. errno is set to indicate the error. The
symbol SHM_FAILED is defined in the header <sys/shm.h>. No successful return from
shmat() will return the value SHM_FAILED.

shmdt() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If shmat() fails, errno is set to one of the following values.

[EACCES] Operation permission is denied to the calling process.

[EINVAL] shmid is not a valid shared memory identifier, (possibly because the shared memory
segment was already removed using shmctl(2) with IPC_RMID), or the calling pro-
cess is already attached to shmid.

[EINVAL] shmaddr is not zero and the machine does not permit nonzero values, or shmaddr is
not equal to the current attach location for the shared memory segment.

[ENOMEM] The available data space is not large enough to accommodate the shared memory seg-
ment.

[EMFILE] The number of shared memory segments attached to the calling process exceed the
system-imposed limit.

If shmdt() fails, errno is set to one of the following values.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−307

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shmop(2) shmop(2)

[EINVAL] shmaddr is not the data segment start address of a shared memory segment.

EXAMPLES
The following call to shmat() attaches the shared memory segment to the process. This example
assumes the process has a valid shmid, which can be obtained by calling shmget(2).

char *shmptr;
shmptr = (char *) shmat(myshmid, 0, 0);

The following call to shmdt() then detaches the shared memory segment.

shmdt (shmptr);

SEE ALSO
ipcs(1), exec(2), exit(2), fork(2), ftok(3C), shmctl(2), shmget(2).

STANDARDS CONFORMANCE
shmat() : SVID2, SVID3, XPG2, XPG3, XPG4

shmdt() : SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−308 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shutdown(2) shutdown(2)

NAME
shutdown - shut down a socket

SYNOPSIS
#include <sys/socket.h>

int shutdown(int s, int how);

DESCRIPTION
The shutdown() system call is used to shut down a socket. In the case of a full-duplex connection,
shutdown() can be used to either partially or fully shut down the socket, depending upon the value of
how.

how Interpretation
SHUT_RD or 0 Further receives are disallowed
SHUT_WR or 1 Further sends are disallowed
SHUT_RDWR or 2

Further sends and receives are disallowed

The s parameter is a socket descriptor for the socket to be shut down.

Once the socket has been shut down for receives, all further recv() calls return an end-of-file condition.
A socket that has been shut down for sending causes further send() calls to return an EPIPE error and
send the SIGPIPE signal. After a socket has been fully shut down, operations other than recv() and
send() return appropriate errors, and the only other thing that can be done to the socket is a close() .

Multiple shutdowns on a connected socket and shutdowns on a socket that is not connected may not return
errors.

A shutdown() on a connectionless socket, such as SOCK_DGRAM ,only marks the socket as unable to
do further send() or recv() calls, depending upon the value of how. Once this type of socket has been
disabled for both sending and receiving data, it becomes fully shut down. For SOCK_STREAMsockets, if
how is 1 or 2 , the connection begins to be closed gracefully in addition to the normal actions. However,
the shutdown() call does not wait for the completion of the graceful disconnection. The disconnection is
complete when both sides of the connection have done a shutdown() with how equal to 1 or 2 . Once
the connection has been completely terminated, the socket becomes fully shut down. The SO_LINGER
option (see socket(2)) does not have any meaning for the shutdown() call, but does for the close()
call. For more information on how the close() call interacts with sockets, see socket(2).

If a shutdown() is performed on a SOCK_STREAMsocket that has a listen() pending on it, that
socket becomes fully shut down when how = 1.

AF_CCITT only:
The how parameter behaves differently if the socket is of the the AF_CCITT address family. If how is set
to 0 the specified socket can no longer receive data. The SVC is not cleared and remains intact. However,
if data is subsequently received on the SVC, it is cleared. The connection is not completely down until either
side executes a close() or shutdown() with how set to 1 or 2 .

If how is set to 1 or 2, the SVC can no longer send or receive data and the SVC is cleared. The socket’s
resources are maintained so that data arriving prior to the shutdown() call can still be read.

RETURN VALUE
Upon successful completion, shutdown() returns 0; otherwise it returns −1 and errno is set to indi-
cate the error.

ERRORS
shutdown() fails if any of the following conditions are encountered:

[EBADF] s is not a valid file descriptor.

[ENOTSOCK] s is a valid file descriptor, but it is not a socket.

[EINVAL] HP-UX BSD Sockets only. The specified socket is not connected.

[ENOTCONN] _XOPEN_SOURCE_EXTENDEDonly. The specified socket is not connected.

[EINVAL] _XOPEN_SOURCE_EXTENDEDonly. The how argument is invalid.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−309

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

shutdown(2) shutdown(2)

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

AUTHOR
shutdown() was developed by HP and the University of California, Berkeley.

SEE ALSO
close(2), connect(2), socket(2), xopen_networking(7).

STANDARDS CONFORMANCE
shutdown() : XPG4

Section 2−−310 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

NAME
sigaction - examine and change signal action

SYNOPSIS
#include <signal.h>

int sigaction (
int sig,
const struct sigaction *act,
struct sigaction *oact

);

DESCRIPTION
The sigaction() function allows the calling process to examine and/or specify the action to be associ-
ated with a specific signal. The argument sig specifies the signal; acceptable values are defined in
<signal.h> .

The structure sigaction, used to describe an action to be taken, is defined in the header <signal.h> to
include at least the following members:

Member Type Member Name Description

void(*)(int) sa_handler SIG_DFL, SIG_IGN or pointer to a
function.

sigset_t sa_mask Additional set of signals to be blocked
during execution of signal-catching
function.

int sa_flags Special flags to affect behavior of sig-
nal.

void(*)(int, siginfo_t*,void *) sa_sigaction signal-catching function.

If the argument act is not a null pointer, it points to a structure specifying the action to be associated with
the specified signal. If the argument oact is not a null pointer, the action previously associated with the
signal is stored in the location pointed to by the argument oact. If the argument act is a null pointer, signal
handling is unchanged; thus, the call can be used to enquire about the current handling of a given signal.
The sa_handler field of the sigaction structure identifies the action to be associated with the specified
signal. If the sa_handler field specifies a signal-catching function, the sa_mask field identifies a set of sig-
nals that will be added to the process’ signal mask before the signal-catching function is invoked. The SIG-
KILL and SIGSTOP signals will not be added to the signal mask using this mechanism; this restriction
will be enforced by the system without causing an error to be indicated.

The sa_flags field can be used to modify the behavior of the specified signal. The following flags, defined in
the header <signal.h> , can be set in sa_flags:

SA_NOCLDSTOP Do not generate SIGCHLDwhen children stop.

SA_ONSTACK If set and an alternate signal stack has been declared with
sigaltstack() or sigstack() , the signal will be delivered to the cal-
ling process on that stack. Otherwise, the signal will be delivered on the
current stack.

SA_RESETHAND If set, the disposition of the signal will be reset to SIG_DFL and the
SA_SIGINFO flag will be cleared on entry to the signal handler (Note:
SIGILL , SIGTRAP, and SIGPWR cannot be automatically reset when
delivered; the system silently enforces this restriction). Otherwise, the dispo-
sition of the signal will not be modified on entry to the signal handler. In
addition, if this flag is set, sigaction() behaves as if the SA_NODEFER
flag were also set.

SA_RESTART This flag affects the behaviour of interruptible functions; that is, those
specified to fail with errno set to EINTR. If set, and a function specified as
interruptible is interrupted by this signal, the function will restart and will
not fail with EINTR unless otherwise specified. If the flag is not set, interrup-
tible functions interrupted by this signal will fail with errno set to EINTR.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−311

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

SA_SIGINFO If cleared and the signal is caught, the signal-catching function will be
entered as:

void func(int signo); where signo is the only argument to the
signal catching function. In this case the sa_handler member must be used to
describe the signal catching function and the application must not modify the
sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching function
will be entered as:

void func(int signo, siginfo_t *info, void *con-
text); where two additional arguments are passed to the signal catching
function. If the second argument is not a null pointer, it will point to an object
of type siginfo_t explaining the reason why the signal was generated; the
third argument can be cast to a pointer to an object of type ucontext_t to refer
to the context of the receiving process or thread that was interrupted when
the signal was delivered. In this case the sa_sigaction member must be used
to describe the signal catching function and the application must not modify
the sa_handler member.

The si_signo member of info contains the system-generated signal number.

The si_errno member may contain implementation-dependent additional
error information; if non-zero, it contains an error number identifying the
condition that caused the signal to be generated.

The si_code member contains a code identifying the cause of the signal. If the
value of si_code is less than or equal to 0, then the signal was generated by a
process and si_pid and si_uid respectively indicate the process ID and the
real user ID of the sender. The values of si_pid and si_uid are otherwise
meaningless.

If SA_SIGINFO is set in sa_flags, subsequent occurrences of sig generated
by sigqueue() or as a result of any signal-generating function that sup-
ports the specification of an application-defined value - when sig is already
pending - will be queued in FIFO order until delivered, and the application
specified value will be passed to the signal-catching function as the si_value
member of info (See Realtime Signals Extension). If SA_SIGINFO is not set
in sa_flags, then the disposition of subsequent occurrences of sig when it is
already pending is implementation-defined.

SA_NOCLDWAIT If set, and sig equals SIGCHLD, child processes of the calling process will not
be transformed into zombie processes when they terminate. If the calling pro-
cess subsequently waits for its children, and the process has no unwaited for
children that were transformed into zombie processes, it will block until all of
its children terminate, and wait() , wait3() , waitid() , and wait-
pid() will fail and set errno to ECHILD. Otherwise, terminating child
processes will be transformed into zombie processes, unless SIGCHLD is set
to SIG_IGN .

SA_NODEFER If set and sig is caught, sig will not be added to the process’ signal mask on
entry to the signal handler unless it is included in sa_mask. Otherwise, sig
will always be added to the process’ signal mask on entry to the signal
handler.

If sig is SIGCHLD and the SA_NOCLDSTOPflag is not set in sa_flags, and the implementation supports
the SIGCHLD signal, then a SIGCHLD signal will be generated for the calling process whenever any of its
child processes stop. If sig is SIGCHLD and the SA_NOCLDSTOPflag is set in sa_flags, then the imple-
mentation will not generate a SIGCHLDsignal in this way.

When a signal is caught by a signal-catching function installed by sigaction() , a new signal mask is
calculated and installed for the duration of the signal-catching function (or until a call to either sigproc-
mask() or sigsuspend() is made). This mask is formed by taking the union of the current signal
mask and the value of the sa_mask for the signal being delivered unless SA_NODEFERor
SA_RESETHANDis set, and then including the signal being delivered. If and when the user’s signal
handler returns normally, the original signal mask is restored.

Section 2−−312 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested (by another call to sigaction()), until the SA_RESETHANDflag causes resetting of the
handler, or until one of the exec functions is called.

If the previous action for sig had been established by signal() , the values of the fields returned in the
structure pointed to by oact are unspecified, and in particular oact->sa_handler is not necessarily the same
value passed to signal() . However, if a pointer to the same structure or a copy thereof is passed to a
subsequent call to sigaction() via the act argument, handling of the signal will be as if the original call
to signal() were repeated.

If sigaction() fails, no new signal handler is installed.

It is unspecified whether an attempt to set the action for a signal that cannot be caught or ignored to
SIG_DFL is ignored or causes an error to be returned with errno set to EINVAL .

A signal is said to be generated for (or sent to) a process when the event that causes the signal first occurs.
Examples of such events include detection of hardware faults, timer expiration and terminal activity, as
well as the invocation of kill() and sigqueue() . In some circumstances, the same event generates
signals for multiple processes.

Each process has an action to be taken in response to each signal defined by the system (see Signal
Actions). A signal is said to be delivered to a process when the appropriate action for the process and signal
is taken.

During the time between the generation of a signal and its delivery, the signal is said to be pending. Ordi-
narily, this interval cannot be detected by an application. However, a signal can be blocked from delivery
to a process. If the action associated with a blocked signal is anything other than to ignore the signal, and if
that signal is generated for the process, the signal will remain pending until either it is unblocked or the
action associated with it is set to ignore the signal. If the action associated with a blocked signal is to
ignore the signal and if that signal is generated for the process, it is unspecified whether the signal is dis-
carded immediately upon generation or remains pending.

Each process has a signal mask that defines the set of signals currently blocked from delivery to it. The
signal mask for a process is initialized from that of its parent. The sigaction() , sigprocmask() ,
and sigsuspend() functions control the manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at the time the signal is
delivered, allowing for any changes since the time of generation. This determination is independent of the
means by which the signal was originally generated. If a subsequent occurrence of a pending signal is gen-
erated, it is implementation-dependent as to whether the signal is delivered more than once. The order in
which multiple, simultaneously pending signals are delivered to a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN , SIGTTOU) is generated for a process, any pend-
ing SIGCONTsignals for that process will be discarded. Conversely, when SIGCONT is generated for a
process, all pending stop signals for that process will be discarded. When SIGCONTis generated for a pro-
cess that is stopped, the process will be continued, even if the SIGCONTsignal is blocked or ignored. If
SIGCONTis blocked and not ignored, it will remain pending until it is either unblocked or a stop signal is
generated for the process.

Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O completion,
interprocess message arrival, and the sigqueue() function, support the specification of an application-
defined value, either explicitly as a parameter to the function or in a sigevent structure parameter (see
signal(5)).

Realtime Signals Extension
When a signal is generated by sigqueue() or any signal-generating function that supports the
specification of an application-defined value, and if the SA_SIGINFO flag is set for that signal, the signal
will be queued to the process along with the application-specified signal value. Multiple occurrences of sig-
nals so generated are queued in FIFO order. When multiple unblocked signals, all in the range SIGRT-
MIN to SIGRTMAX, are pending, the implementation delivers the pending unblocked signal with the
lowest signal number within that range. The selection order between realtime and nonrealtime signals, or
between multiple pending nonrealtime signals, is unspecified. Signals generated by kill() or other
events that cause signals to occur, such as detection of hardware faults, alarm() timer expiration, or ter-
minal activity, and for which the implementation does not support queueing, will have no effect on signals
already queued for the same signal number.

If, when a pending signal is delivered, there are additional signals to be queued to that signal number, the
signal will remain pending. Otherwise, the pending indication will be reset.

HP-UX Release 11.0: October 1997 − 3 − Section 2−−313

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

An implementation will document any condition not specified by this document under which the implemen-
tation generates signals.

Signal Actions
There are three types of action that can be associated with a signal: SIG_DFL , SIG_IGN or a pointer to a
function. Initially, all signals will be set to SIG_DFL or SIG_IGN prior to entry of the main() routine
(see the exec functions). The actions prescribed by these values are as follows:

SIG_DFL - signal-specific default action

• The default actions for the signals defined in this document are specified under <signal.h> .

• If the default action is to stop the process, the execution of that process is temporarily suspended.
When a process stops, a SIGCHLD signal will be generated for its parent process, unless the
parent process has set the SA_NOCLDSTOPflag. While a process is stopped, any additional sig-
nals that are sent to the process will not be delivered until the process is continued, except SIG-
KILL which always terminates the receiving process. A process that is a member of an orphaned
process group will not be allowed to stop in response to the SIGTSTP, SIGTTIN , or SIGTTOU
signals. In cases where delivery of one of these signals would stop such a process, the signal will be
discarded.

• Setting a signal action to SIG_DFL for a signal that is pending, and whose default action is to
ignore the signal (for example, SIGCHLD), will cause the pending signal to be discarded, whether
or not it is blocked. Any queued values pending will be discarded, and the system resources used
to queue them will be released and made available to queue other signals.

SIG_IGN - ignore signal

• Delivery of the signal will have no effect on the process. The behaviour of a process is undefined
after it ignores a SIGFPE, SIGILL , or SIGSEGV signal that was not generated by kill() ,
sigqueue() or raise() .

• The system will not allow the action for the signals SIGKILL or SIGSTOP to be set to SIG_IGN .

• Setting a signal action to SIG_IGN for a signal that is pending will cause the pending signal to be
discarded, whether or not it is blocked. Any queued values pending will be discarded, and the sys-
tem resources used to queue them will be released and made available to queue other signals.

• If a process sets the action for the SIGCHLD signal to SIG_IGN , the behaviour is unspecified,
except as specified below.

If the action for the SIGCHLD signal is set to SIG_IGN , child processes of the calling processes
will not be transformed into zombie processes when they terminate. If the calling process subse-
quently waits for its children, and the process has no unwaited for children that were transformed
into zombie processes, it will block until all of its children terminate, and wait() , wait3() ,
waitid() , and waitpid() will fail and set errno to ECHILD.

Pointer to a function - catch signal

• On delivery of the signal, the receiving process is to execute the signal-catching function at the
specified address. After returning from the signal-catching function, the receiving process will
resume execution at the point at which it was interrupted.

• If SA_SIGINFO is cleared, the signal-catching function will be entered as:

void func(int signo);

where func is the specified signal-catching function and signo is the signal number of the signal
being delivered.

• If SA_SIGINFO is set, the signal-catching function will be entered as:

void func(int signo, siginfo_t *siginfo, void *ucontextptr);

where func is the specified signal-catching function, signo is the signal number of the signal
being delivered, siginfo points to an object of type siginfo_t associated with the signal being
delivered, and ucontextptr points to a ucontext_t .

• The behaviour of a process is undefined after it returns normally from a signal- catching function
for a SIGBUS, SIGFPE, SIGILL , or SIGSEGV signal that was not generated by kill() or
raise() .

Section 2−−314 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

• The system will not allow a process to catch the signals SIGKILL and SIGSTOP.

• If a process establishes a signal-catching function for the SIGCHLD signal while it has a ter-
minated child process for which it has not waited, it is unspecified whether a SIGCHILD signal is
generated to indicate that child process.

• When signal-catching functions are invoked asynchronously with process execution, the behaviour
of some of the functions defined by this document is unspecified if they are called from a
signal-catching function.

The following table defines a set of functions that are either reentrant or not interruptible by sig-
nals. Therefore applications may invoke them, without restriction, from signal-catching functions:

access() fstat() read() sysconf()
alarm() getegid() rename() tcdrain()
cfgetispeed() geteuid() rmdir() tcflow()
cfgetospeed() getgid() setgid() tcflush()
cfsetispeed() getgroups() setpgid() tcgetattr()
cfsetospeed() getpgrp() setsid() tcgetpgrp()
chdir() getpid() setuid() tcsendbreak()
chmod() getppid() sigaction() tcsetattr()
chown() getuid() sigaddset() tcsetpgrp()
close() kill() sigdelset() time()
creat() link() sigemptyset() times()
dup2() lseek() sigfillset() umask()
dup() mkdir() sigismember() uname()
execle() mkfifo() signal() unlink()
execve() open() sigpending() utime()
_exit() pathconf() sigprocmask() wait()

sigqueue()
fcntl() pause() sigsuspend() waitpid()
fork() pipe() sleep() write()
fpathconf() raise() stat()

All functions not in the above table are considered to be unsafe with respect to signals. In the pres-
ence of signals, all functions defined by this document will behave as defined when called from or
interrupted by a signal-catching function, with a single exception: when a signal interrupts an
unsafe function and the signal-catching function calls an unsafe function, the behaviour is
undefined.

Signal Effects on Other Functions
Signals affect the behaviour of certain functions defined by this document if delivered to a process while it
is executing such a function. If the action of the signal is to terminate the process, the process will be ter-
minated and the function will not return. If the action of the signal is to stop the process, the process will
stop until continued or terminated. Generation of a SIGCONTsignal for the process causes the process to
be continued, and the original function will continue at the point the process was stopped. If the action of
the signal is to invoke a signal-catching function, the signal-catching function will be invoked; in this case
the original function is said to be interrupted by the signal. If the signal-catching function executes a
return statement, the behaviour of the interrupted function will be as described individually for that func-
tion. Signals that are ignored will not affect the behaviour of any function; signals that are blocked will not
affect the behaviour of any function until they are unblocked and then delivered.

RETURN VALUE
Upon successful completion, sigaction() returns 0. Otherwise −1 is returned, errno is set to indicate
the error and no new signal-catching function will be installed.

ERRORS
The sigaction() function will fail if:

[EINVAL] The sig argument is not a valid signal number or an attempt is made to
catch a signal that cannot be caught or ignore a signal that cannot be
ignored.

The sigaction() function may fail if:

HP-UX Release 11.0: October 1997 − 5 − Section 2−−315

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that can-
not be caught or ignored (or both).

APPLICATION USAGE
The sigaction() function supersedes the signal() interface, and should be used in preference. In
particular, sigaction() and signal() should not be used in the same process to control the same
signal. The behaviour of reentrant functions, as defined in the description, is as specified by this document,
regardless of invocation from a signal-catching function. This is the only intended meaning of the statement
that reentrant functions may be used in signal-catching functions without restrictions. Applications must
still consider all effects of such functions on such things as data structures, files and process state. In partic-
ular, application writers need to consider the restrictions on interactions when interrupting sleep() and
interactions among multiple handles for a file descriptor. The fact that any specific function is listed as
reentrant does not necessarily mean that invocation of that function from a signal-catching function is
recommended.

In order to prevent errors arising from interrupting non-reentrant function calls, applications should pro-
tect calls to these functions either by blocking the appropriate signals or through the use of some program-
matic semaphore. This document does not address the more general problem of synchronizing access to
shared data structures. Note in particular that even the "safe" functions may modify the global variable
errno ; the signal-catching function may want to save and restore its value. Naturally, the same principles
apply to the reentrancy of application routines and asynchronous data access. Note that longjmp() and
siglongjmp() are not in the list of reentrant functions. This is because the code executing after
longjmp() and siglongjmp() can call any unsafe functions with the same danger as calling those
unsafe functions directly from the signal handler. Applications that use longjmp() and
siglongjmp() from within signal handlers require rigorous protection in order to be portable. Many of
the other functions that are excluded from the list are traditionally implemented using either malloc()
or free() functions or the standard I/O library, both of which traditionally use data structures in a non-
reentrant manner. Because any combination of different functions using a common data structure can
cause reentrancy problems, this document does not define the behaviour when any unsafe function is called
in a signal handler that interrupts an unsafe function.

If the signal occurs other than as the result of calling abort() , kill() , sigqueue() , or raise() ,
the behaviour is undefined if the signal handler calls any function in the standard library other than one of
the functions listed in the table above or refers to any object with static storage duration other than by
assigning a value to a static storage duration variable of type volatile sig_atomic_t . Furthermore, if such a
call fails, the value of errno is indeterminate.

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An alternate
stack may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving process will resume execution at the point it was inter-
rupted unless the signal handler makes other arrangements. If longjmp() or _longjmp() is used to
leave the signal handler, then the signal mask must be explicitly restored by the process.

POSIX.4-1993 defines the third argument of a signal handling function when SA_SIGINFO is set as a void
* instead of a ucontext_t *, but without requiring type checking. New applications should explicitly cast the
third argument of the signal handling function to uncontext_t *.

The BSD optional four argument signal handling function is not supported by this specification. The BSD
declaration would be

void handler(int sig, int code, struct sigcontext *scp, char *addr);

where sig is the signal number, code is additional information on certain signals, scp is a pointer to the
sigcontext structure, and addr is additional address information. Much the same information is avail-
able in the objects pointed to by the second argument of the signal handler specified when SA_SIGINFO is
set.

Threads Considerations
The signal disposition, catch/ignore/default, established by sigaction() is shared by all threads in the
process.

If the signal disposition for sig is set to SIG_IGN or is set to SIG_DFL and the default action for sig is to
ignore the signal, any instances of sig pending on the process or any of the threads will be discarded. The
signals are discarded regardless of whether the signal is blocked by any of the threads.

Section 2−−316 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

For more information regarding signals and threads, see signal(5).

FUTURE DIRECTIONS
The fpathconf() function is marked as an extension in the list of safe functions because it is not
included in the corresponding list in the ISO POSIX-1 standard, but it is expected to be added in a future
revision of that standard.

SEE ALSO
kill(2), setjmp(3C), sigaltstack(2), signal(2), sigprocmask(2), sigqueue(2), sigsetops(3C), sigsuspend(2),
wait(2), waitid(2), <signal.h>, <ucontext.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument act is changed from struct sigaction * to const struct sigac-
tion * .

• A statement is added to the DESCRIPTION section indicating that the consequence of attempting
to set SIG_DFL for a signal that cannot be caught or ignored is unspecified. The EINVAL error,
describing one possible reaction to this condition, is added to the ERRORS section.

Other changes are incorporated as follows:

• The raise() and signal() functions are added to the list of functions that are either reen-
trant or not interruptible by signals; fpathconf() is also added to this list and marked as an
extension; ustat() is removed from the list, as this function is withdrawn from the interface
definition. It is no longer specified whether abort() , chroot() , exit() , and longjmp()
also fall into this category of functions.

• The APPLICATION USAGE section is added. Most of this text is moved from the DESCRIPTION
SECTION in Issue 3.

• The FUTURE DIRECTIONS section is added.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The DESCRIPTION describes sa_sigaction , the member of the sigaction structure that is the
signal-catching function.

• The DESCRIPTION describes the SA_ONSTACK, SA_RESETHAND, SA_RESTART,
SA_SIGINFO , SA_NOCLDWAIT, and SA_NODEFERsettings of sa_flags. The text describes the
implications of the use of SA_SIGINFO for the number of arguments passed to the signal-catching
function. The text also describes the effects of the SA_NODEFERand SA_RESETHANDflags on
the delivery of a signal and on the permanence of an installed action.

• The DESCRIPTION specifies the effect if the action for the SIGCHLDsignal is set to SIG_IGN .

• In the DESCRIPTION, additional text describes the effect if the action is a pointer to a function. A
new bullet covers the case where SA_SIGINFO is set. SIGBUS is given as an additional signal
for which the behaviour of a process is undefined following a normal return from the signal-
catching function.

• The APPLICATION USAGE section is updated to describe use of an alternate signal stack;
resumption of the process receiving the signal; coding for compatibility with POSIX.4-1993; and
implementation of signal-handling functions in BSD.

HP-UX Release 11.0: October 1997 − 7 − Section 2−−317

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaction(2) sigaction(2)

HP-UX EXTENSIONS

DESCRIPTION
More details on the semantics of specific signals can be found in the signal(5) manual entry.

SIG_DFL Upon receipt of the signal sig, the default action (specified on signal(5)) is performed.

ERRORS
[EFAULT] act or oact points to an invalid address. The reliable detection of this error is imple-

mentation dependent.

AUTHOR
sigaction() was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
ptrace(2), sigpending(2), sigspace(2), sigsetops(3C).

STANDARDS CONFORMANCE
sigaction() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−318 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaltstack(2) sigaltstack(2)

NAME
sigaltstack - set and/or get signal alternate stack context.

SYNOPSIS
#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

DESCRIPTION
The sigaltstack() function allows a process to define and examine the state of an alternate stack for
signal handlers. Signals that have been explicitly declared to execute on the alternate stack will be
delivered on the alternate stack.

If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack that
will take effect upon return from sigaltstack() . The ss_flags member specifies the new stack state. If
it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored. Otherwise the stack will
be enabled, and the ss_sp and ss_size members specify the new address and size of the stack.

The range of addresses starting at ss_sp , up to but not including ss_sp+ss_size, is available to the imple-
mentation for use as the stack. This interface makes no assumptions regarding which end is the stack base
and in which direction the stack grows as items are pushed.

If oss is not a null pointer, on successful completion it will point to a stack_t structure that specifies the
alternate signal stack that was in effect prior to the call to sigaltstack() . The ss_sp and ss_size
members specify the address and size of that stack. The ss_flags member specifies the stack’s state, and
may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts
to modify the alternate signal stack while the process is executing on it
fails. This flag must not be modified by processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value SIGSTKSZ is a system default specifying the number of bytes that would be used to cover the
usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ is defined to be
the minimum stack size for a signal handler. In computing an alternate stack size, a program should add
that amount to its stack requirements to allow for the system implementation overhead. The constants
SS_ONSTACK,SS_DISABLE,SIGSTKSZ, and MINSIGSTKSZ are defined in <signal.h> .

After a successful call to one of the exec functions, there are no alternate signal stacks in the new process
image.

RETURN VALUE
Upon successful completion, sigaltstack() returns 0. Otherwise, it returns −1 and sets errno to
indicate the error.

ERRORS
The sigaltstack() function will fail if:

[EINVAL] The ss argument is not a null pointer, and the ss_flags member pointed to
by ss contains flags other than SS_DISABLE.

[ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ.

[EPERM] An attempt was made to modify an active stack.

APPLICATION USAGE
The following code fragment illustrates a method for allocating memory for an alternate stack:

if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)
/* error return */

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk,(stack_t *)0) < 0)

perror("sigaltstack");

In some implementations, a signal (whether or not indicated to execute on the alternate stack) will always
execute on the alternate stack if it is delivered while another signal is being caught using the alternate
stack.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−319

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigaltstack(2) sigaltstack(2)

On some implementations, stack space is automatically extended as needed. On those implementations,
automatic extension is typically not available for an alternate stack. If the stack overflows, the behaviour is
undefined.

Threads Considerations
Each thread may define an alternate signal handling stack.

LWP (Light Weight Processes) Considerations
Each LWP may define an alternate signal handling stack.

SEE ALSO
sigaction(2), sigsetjmp(2), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−320 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigblock(2) sigblock(2)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

long sigblock(long mask);

DESCRIPTION
sigblock() causes the signals specified in mask to be added to the set of signals currently being blocked
from delivery. Signal i is blocked if the i-th bit in mask is 1, as specified with the macro sigmask(i) .

It is not possible to block signals that cannot be ignored, as documented in signal(5); this restriction is
silently imposed by the system.

Use sigsetmask() to set the mask absolutely (see sigsetmask(2)).

RETURN VALUE
sigblock() returns the previous set of masked signals.

EXAMPLES
The following call to sigblock() adds the SIGUSR1 and SIGUSR2 signals to the mask of signals
currently blocked for the process:

long oldmask;

oldmask = sigblock (sigmask (SIGUSR1) | sigmask (SIGUSR2));

WARNINGS
Do not use sigblock() in conjunction with the facilities described under sigset(3C).

APPLICATION USAGE
Threads Considerations

Since each thread maintains its own blocked signal mask, sigblock() modifies only the calling thread’s
blocked signal mask.

For more information regarding signals and threads, refer to signal(5).

LP64 Programs
sigblock() accepts and returns long (64 bit) values. However, as for ILP32 programs, sigblock()
supports signals numbered 1 through 32. The upper 32 bits of the mask argument are ignored. Also, the
upper 32 bits of the returned mask have no meaning.

AUTHOR
sigblock() was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigprocmask(2), sigsetmask(2), sigvector(2), signal(5).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−321

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sighold(2V) sighold(2V)

NAME
sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#include <signal.h>

void (*sigset(int sig, void (*func)(int)))(int);

int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig-
nal(5), along with the meaning and side effects of each signal. An alternate mechanism for handling these
signals is defined here. The facilities described here should not be used in conjunction with the other facili-
ties described under signal(2), sigvector (2), sigblock(2), sigsetmask(2), sigpause(3C) and sigspace(2).

sigset() allows the calling process to choose one of four ways to handle the receipt of a specific signal.
sig specifies the signal and func specifies the choice.

sig can be any one of the signals described under signal(5) except SIGKILL or SIGSTOP.

func is assigned one of four values: SIG_DFL , SIG_IGN , SIG_HOLD, or a function address. The actions
prescribed by SIG_DFL and SIG_IGN are described under signal(5). The action prescribed by
SIG_HOLDand function address are described below:

SIG_HOLD Hold signal.

The signal sig is held upon receipt. Any pending signal of this signal type remains held.
Only one signal of each type is held.

Note: the signals SIGKILL , SIGCONT, and SIGSTOPcannot be held.

function address
Catch signal.

func must be a pointer to a function, the signal-catching handler, that is called when signal
sig occurs. sigset() specifies that the process calls this function upon receipt of signal
sig. Any pending signal of this type is released. This handler address is retained across
calls to the other signal management functions listed here. Upon receipt of signal sig, the
receiving process executes the signal-catching function pointed to by func as described
under signal(5) with the following differences:

Before calling the signal-catching handler, the system signal action of sig is set to
SIG_HOLD. During a normal return from the signal-catching handler, the system signal
action is restored to func and any held signal of this type is released. If a non-local goto
(longjmp(3C)) is taken, sigrelse() must be called to restore the system signal action to
func and release any held signal of this type.

sighold() holds the signal sig. sigrelse() restores the system signal action of sig to that specified
previously by sigset() . sighold() and sigrelse() are used to establish critical regions of code.
sighold() is analogous to raising the priority level and deferring or holding a signal until the priority is
lowered by sigrelse() .

sigignore() sets the action for signal sig to SIG_IGN (see signal(5)).

sigpause() suspends the calling process until it receives an unblocked signal. If the signal sig is held, it
is released before the process pauses. sigpause() is useful for testing variables that are changed when
a signal occurs. For example, sighold() should be used to block the signal first, then test the variables.
If they have not changed, call sigpause() to wait for the signal.

RETURN VALUE
Upon successful completion, sigset() returns the previous value of the system signal action for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is set to indicate the error.
SIG_ERR is defined in <signal.h >.

Section 2−−322 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sighold(2V) sighold(2V)

For the other functions, a 0 value indicates that the call succeeded. A -1 return value indicates an error
occurred and errno is set to indicate the reason.

ERRORS
sigset() fails and the system signal action for sig is not changed if any of the following occur:

[EFAULT] The func argument points to memory that is not a valid part of the process
address space. Reliable detection of this error is implementation dependent.

sigset() , sighold() , sigrelse() , sigignore() , and sigpause() fail and the system signal
action for sig is not changed if any of the following occur:

[EINVAL] sig is not a valid signal number.

[EINVAL] An attempt is made to ignore, hold, or supply a handler for a signal that cannot
be ignored, held, or caught; see signal(5).

sigpause returns when the following occurs:

[EINTR] A signal was caught.

WARNINGS
These signal facilities should not be used in conjunction with bsdproc(3C), signal(2), sigvector (2), sig-
block(2), sigsetmask(2), sigpause(3C) and sigspace(2).

SEE ALSO
kill(1), kill(2), signal(2), pause(2), wait(2), abort(3C), setjmp(3C), signal(5).

STANDARDS CONFORMANCE
sigset() : SVID2, SVID3

sighold() : SVID2, SVID3

sigignore() : SVID2, SVID3

sigpause() : SVID2, SVID3

sigrelse() : SVID2, SVID3

HP-UX Release 11.0: October 1997 − 2 − Section 2−−323

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

siginterrupt(2) siginterrupt(2)

NAME
siginterrupt - allow signals to interrupt functions

SYNOPSIS
#include <signal.h>

int siginterrupt(int sig, int flag);

DESCRIPTION
The siginterrupt() function is used to change the restart behaviour when a function is interrupted by
the specified signal. The function siginterrupt (sig, flag) has an effect as if implemented as:

siginterrupt(int sig, int flag) {
int ret;
struct sigaction act;

(void) sigaction(sig, NULL, &act);
if (flag)

act.sa_flags &= ˜SA_RESTART;
else

act.sa_flags |= SA_RESTART;
ret = sigaction(sig, &act, NULL);
return ret;

}

RETURN VALUE
Upon successful completion, siginterrupt() returns 0. Otherwise −1 is returned and errno is set to
indicate the error.

ERRORS
The siginterrupt() function will fail if:

[EINVAL] The sig argument is not a valid signal number.

APPLICATION USAGE
The siginterrupt() function supports programs written to historical system interfaces. A portable
application, when being written or rewritten, should use sigaction() with the SA_RESTARTflag
instead of siginterrupt() .

Threads Considerations
System call restart is a process attribute. Therefore, changing the restart behavior affects all threads in
the process.

SEE ALSO
sigaction(2), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−324 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

signal(2) signal(2)

NAME
signal, sigset, sighold, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

int sighold(int sig);

int sigignore(int sig);

int sigpause(int sig);

int sigrelse(int sig);

void (*sigset(int sig, void (*disp)(int)))(int);

DESCRIPTION
The signal() function chooses one of three ways in which receipt of the signal number sig is to be subse-
quently handled. If the value of func is SIG_DFL , default handling for that signal will occur. If the value
of func is SIG_IGN , the signal will be ignored. Otherwise, func must point to a function to be called when
that signal occurs. Such a function is called a signal handler.

When a signal occurs, if func points to a function, first the equivalent of a:

signal(sig, SIG_DFL);

is executed or an implementation-dependent blocking of the signal is performed. (If the value of sig is
SIGILL , whether the reset to SIG_DFL occurs is implementation-dependent.) Next the equivalent of:

(*func)(sig);

is executed. The func function may terminate by executing a return statement or by calling abort() ,
exit() , or longjmp() . If func() executes a return statement and the value of sig was SIGFPE or
any other implementation-dependent value corresponding to a computational exception, the behaviour is
undefined. Otherwise, the program will resume execution at the point it was interrupted.

If the signal occurs other than as the result of calling abort() , kill() or raise() , the behaviour is
undefined if the signal handler calls any function in the standard library other than one of the functions
listed on the sigaction(2) page or refers to any object with static storage duration other than by assigning a
value to a static storage duration variable of type volatile sig_atomic_t . Furthermore, if such a call fails,
the value of errno is indeterminate.

At program startup, the equivalent of:

signal(sig, SIG_IGN);

is executed for some signals, and the equivalent of:

signal(sig, SIG_DFL);

is executed for all other signals (see exec).

The sigset() , sighold() , sigignore() , sigpause() and segrelse() functions provide
simplified signal management.

The sigset() function is used to modify signal dispositions. The sig argument specifies the signal, which
may be any signal except SIGKILL and SIGSTOP. The disp argument specifies the signal’s disposition,
which may be SIG_DFL , SIG_IGN or the address of a signal handler. If sigset() is used, and disp is
the address of a signal handler, the system will add sig to the calling process’ signal mask before executing
the signal handler; when the signal handler returns, the system will restore the calling process’ signal mask
to its state prior the delivery of the signal. In addition, if sigset() is used, and disp is equal to
SIG_HOLD, sig will be added to the calling process’ signal mask and sig ’s disposition will remain
unchanged. If sigset() is used, and disp is not equal to SIG_HOLD, sig will be removed from the cal-
ling process’ signal mask.

The sighold() function adds sig to the calling process’ signal mask.

The sigrelse() function removes sig from the calling process’ signal mask.

The sigignore() function sets the disposition of sig to SIG_IGN .

HP-UX Release 11.0: October 1997 − 1 − Section 2−−325

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

signal(2) signal(2)

The sigpause() function removes sig from the calling process’ signal mask and suspends the calling process
until a signal is received.

If the action for the SIGCHLDsignal is set to SIG_IGN , child processes of the calling processes will not be
transformed into zombie processes when they terminate. If the calling process subsequently waits for its
children, and the process has no unwaited for children that were transformed into zombie processes, it will
block until all of its children terminate, and wait() , wait3() , waitid() and waitpid() will fail
and set errno to ECHILD.

RETURN VALUE
If the request can be honoured, signal() returns the value of func() for the most recent call to sig-
nal() for the specified signal sig. Otherwise, SIG_ERR is returned and a positive value is stored in
errno .

Upon successful completion, sigset() returns SIG_HOLD if the signal had been blocked and the signal’s
previous disposition if it had not been blocked. Otherwise, SIG_ERR is returned and errno is set to indi-
cate the error.

For all other functions, upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is
set to indicate the error.

ERRORS
The signal() function will fail if:

[EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a signal
that cannot be caught or ignore a signal that cannot be ignored.

The signal() function may fail if:

[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be caught
or ignored (or both).

The sigset() , sighold() , sigrelse() , sigignore() , and sigpause() functions will fail if:

[EINVAL] The sig argument is an illegal signal number.

The sigset() , and sigignore() functions will fail if:

[EINVAL] An attempt is made to catch a signal that cannot be caught, or to ignore a signal that
cannot be ignored.

APPLICATION USAGE
The sigaction() function provides a more comprehensive and reliable mechanism for controlling sig-
nals; new applications should use sigaction() rather than signal() .

The sighold() function, in conjunction with sigrelse() or sigpause() , may be used to establish
critical regions of code that require the delivery of a signal to be temporarily deferred.

The sigsuspend() function should be used in preference to sigpause() for broader portability.

Threads Considerations
The signal disposition (such as catch/ignore/default) established by signal() is shared by all threads in
the process. Blocked signal masks are maintained by each thread.

If signal() is used to set the signal disposition for sig to SIG_IGN or to SIG_DFL for a signal whose
default action is to ignore the signal, any instances of sig pending on the process or any of the threads will
be discarded. The signals are discarded regardless of whether the signal is blocked by any of the threads.

For more information regarding signals and threads, refer to signal(5).

SEE ALSO
exec(2), pause(2), sigaction(2), waitid(2), <signal.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Section 2−−326 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

signal(2) signal(2)

Issue 4
The following changes are incorporated for alignment with the ISO C standard:

- The function is no longer marked as an extension.

- The argument int is added to the definition of func() in the SYNOPSIS section.

- In Issue 3, this interface cross-referred to sigaction() . This issue provides a complete
description of the function as defined in ISO C standard.

Another change is incorporated as follows:

- The APPLICATION USAGE section is added.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

- The sighold() , sigignore() , sigpause() , sigrelse() , and sigset() func-
tions are added to the SYNOPSIS.

- The DESCRIPTION is updated to describe semantics of the above interfaces.

- Additional text is added to the RETURN VALUE section to describe possible returns from
the sigset() function specifically, and all of the above functions in general.

- The ERRORS section is restructured to describe possible error returns from each of the
above functions individually.

- The APPLICATION USAGE section is updated to describe certain programming considera-
tions associated with the X/OPEN UNIX functions.

HP-UX Release 11.0: October 1997 − 3 − Section 2−−327

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

signal(2) signal(2)

HP-UX EXTENSIONS

SYNOPSIS
void (*signal(int sig, void (*action)(int)))(int);

void (*sigset(int sig, void (*func)(int)))(int);

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig-
nal(5), along with the meaning and side effects of each signal. An alternate mechanism for handling these
signals is defined here. The facilities described here should not be used in conjunction with the other facili-
ties described under signal(2), sigvector (2), sigblock(2), sigsetmask(2), sigpause(3C), and sigspace(2).

Acceptable values for sig are defined in <signal.h> .

SIG_DFL Execute the default action, which varies depending on the signal. The default action for
most signals is to terminate the process (see signal(5)).

A pending signal is discarded (whether or not it is blocked) if action is set to SIG_DFL
but the default action of the pending signal is to ignore the signal (as in the case of
SIGCLD).

SIG_IGN Ignore the signal.

When signal() is called with action set to SIG_IGN and an instance of the signal
sig is pending, the pending signal is discarded, whether or not it is blocked.

SIGKILL and SIGSTOPsignals cannot be ignored.

address Catch the signal.

Upon receipt of signal sig, reset the value of action for the caught signal to SIG_DFL
(except signals marked with "not reset when caught"; see signal(5)), call the signal-
catching function to which address points, and resume executing the receiving process at
the point where it was interrupted.

The signal-catching function is called with the following three parameters:

sig The signal number.

code A word of information usually provided by the hardware.

scp A pointer to the machine-dependent structure sigcontext defined in
<signal.h >.

The pointer scp is valid only during the context of the signal-catching function. The
structure pointer scp is always defined.

The code word is always zero for all signals except SIGILL and SIGFPE. For
SIGILL , code has the following values:

8 illegal instruction trap;
9 break instruction trap;
10 privileged operation trap;
11 privileged register trap.

For SIGFPE, code has the following values:

12 overflow trap;
13 conditional trap;
14 assist exception trap;
22 assist emulation trap.

As defined by the IEEE POSIX Standard, HP-UX does not raise an exception on floating-
point divide by zero. The result of floating-point divide by zero is infinity which can be
checked by isinf(3M).

The signals SIGKILL and SIGSTOPcannot be caught.

sigset() allows the calling process to choose one of four ways to handle the receipt of a specific signal.
sig specifies the signal and func specifies the choice.

Section 2−−328 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

signal(2) signal(2)

sig can be any one of the signals described under signal(5) except SIGKILL or SIGSTOP.

func is assigned one of four values: SIG_DFL , SIG_IGN , SIG_HOLD, or a function address. The
actions prescribed by SIG_DFL and SIG_IGN are described under signal(5). The action
prescribed by SIG_HOLDand function address are described below:

SIG_HOLD Hold signal. The signal sig is held upon receipt. Any pending sig-
nal of this signal type remains held. Only one signal of each type
is held. Note: the signals SIGKILL , SIGCONT, and SIGSTOP
cannot be held.

function address Catch signal. func must be a pointer to a function, the signal-
catching handler, that is called when signal sig occurs. sig-
set() specifies that the process calls this function upon receipt
of signal sig. Any pending signal of this type is released. This
handler address is retained across calls to the other signal
management functions listed here. Upon receipt of signal sig,
the receiving process executes the signal-catching function
pointed to by func as described under signal(5) with the follow-
ing differences:

Before calling the signal-catching handler, the system signal
action of sig is set to SIG_HOLD. During a normal return from
the signal-catching handler, the system signal action is restored
to func and any held signal of this type is released. If a non-local
goto (longjmp(3C)) is taken, sigrelse() must be called to
restore the system signal action to func and release any held sig-
nal of this type.

sighold() holds the signal sig. sigrelse() restores the system signal action of sig to that specified
previously by sigset() . sighold() and sigrelse() are used to establish critical regions of code.
sighold() is analogous to raising the priority level and deferring or holding a signal until the priority is
lowered by sigrelse() .

sigignore() sets the action for signal sig to SIG_IGN (see signal(5)).

sigpause() suspends the calling process until it receives an unblocked signal. If the signal sig is held, it
is released before the process pauses. sigpause() is useful for testing variables that are changed when
a signal occurs. For example, sighold() should be used to block the signal first, then test the variables.
If they have not changed, call sigpause() to wait for the signal.

These functions can be linked into a program by giving the -lV3 option to the ld command (see ld(1)).

ERRORS
sigset() fails and the system signal action for sig is not changed if any of the following occur:

[EFAULT] The func argument points to memory that is not a valid part of the process
address space. Reliable detection of this error is implementation-dependent.

sigset() , sighold() , sigrelse() , sigignore() , and sigpause() fail and the system signal
action for sig is not changed if any of the following occur:

[EINVAL] An attempt is made to ignore, hold, or supply a handler for a signal that
cannot be ignored, held, or caught; see signal(5).

sigpause returns when the following occurs:

[EINTR] A signal was caught.

EXAMPLES
The following call to signal() sets up a signal-catching function for the SIGINT signal:

void myhandler();

(void) signal(SIGINT, myhandler);

WARNINGS
signal() should not be used in conjunction with the facilities described under bsdproc(3C), sigaction(2),
sigset(3C), or sigvector (2).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−329

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

signal(2) signal(2)

signal() does not detect an invalid value for action, and if it does not equal SIG_DFL or SIG_IGN,
or point to a valid function address, subsequent receipt of the signal sig causes undefined results.

AUTHOR
signal() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
kill(1), init(1M), exit(2), kill(2), lseek(2), pause(2), sigaction(2), sigvector(2), wait(2), abort(3C), setjmp(3C),
signal(5).

STANDARDS CONFORMANCE
signal() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, ANSI C

Section 2−−330 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigpending(2) sigpending(2)

NAME
sigpending - examine pending signals

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
sigpending() stores sets of signals that are blocked from delivery and are pending to the calling pro-
cess, at the location pointed to by set.

RETURN VALUE
Upon successful completion, sigpending() returns 0. Otherwise −1 is returned and errno is set to
indicate the error.

ERRORS
No errors are defined.

APPLICATION USAGE
Threads Considerations

The set of signals returned by sigpending() is the union of the signals pending on the process and cal-
ling thread. A signal may be pending on the process if all threads block the signal.

The set of signals returned by sigpending() is only advisory. Since other threads may be executing at
the time of the call, a signal pending on the process may be delivered to a thread after this system call
returns.

For more information regarding signals and threads, refer to signal(5).

LWP (Lightweight Processes) Considerations
The set of signals returned by sigpending() is the union of the signals pending on the process and cal-
ling LWP.

SEE ALSO
sigprocmask(2), sigsetops(3C), <signal.h>.

CHANGE HISTORY
First release in Issue 3.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−331

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigpending(2) sigpending(2)

HP-UX EXTENSIONS

ERRORS
sigpending() fails if the following condition is encountered:

[EFAULT] set points to an invalid address. The reliable detection of this error is implementation-
dependent.

AUTHOR
sigpending() was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
sigaction(2), sigsuspend(2), sigprocmask(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigpending() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−332 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigprocmask(2) sigprocmask(2)

NAME
sigprocmask - examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask(
int how,
const sigset_t *set,
sigset_t *oset

);

DESCRIPTION
The sigprocmask() function allows the calling process to examine and/or change its signal mask.

If the argument set is not a null pointer, it points to a set of signals to be used to change the currently
blocked set.

The argument how indicates the way in which the set is changed and consists of one of the following values:

SIG_BLOCK The resulting set will be the union of the current set and the signal set
pointed to by set.

SIG_SETMASK The resulting set will be the signal set pointed to by set.

SIG_UNBLOCK The resulting set will be the intersection of the current set andthe comple-
ment of the signal set pointed to by set.

If the argument oset is not a null pointer, the previous mask is stored in the location pointed to by oset . If
set is a null pointer, the value of the argument how is not significant and the process’ signal mask is
unchanged; thus the call can be used to inquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask() , at least one of those signals
will be delivered before the call to sigprocmask() returns.

It is not possible to block those signals which cannot be ignored. This is enforced by the system
without causing an error to be indicated.

If any of the SIGFPE, SIGILL , or SIGSEGV signals are generated while they are blocked, the result is
undefined, unless the signal was generated by a call to kill() or raise() .

If sigprocmask() fails, the process’ signal mask is not changed.

RETURN VALUE
Upon successful completion, sigprocmask() returns 0. Otherwise −1 is returned, errno is set to indi-
cate the error, and the process’ signal mask will be unchanged.

ERRORS
The sigprocmask() function will fail if:

[EINVAL] The value of the how argument is not equal to one of the defined values.

APPLICATION USAGE
Threads Considerations

Since each thread maintains its own blocked signal mask, sigprocmask() modifies only the calling
thread’s blocked signal mask.

For more information regarding signals and threads, refer to signal(5).

LWP (Lightweight Processes) Considerations
sigprocmask() modifies only the calling LWP’s blocked signal mask.

SEE ALSO
sigaction(2), sigpending(2), sigsetops(3C), sigsuspend(2), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−333

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigprocmask(2) sigprocmask(2)

Entry included foralignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

- The type of the arguments set and oset are changed from sigset_t* to const sigset_t* .

Another change is incorporated as follows:

- The DESCRIPTION section is changed to indicate that signals can also be generated by
raise() .

Section 2−−334 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigprocmask(2) sigprocmask(2)

HP-UX EXTENSIONS

ERRORS
sigprocmask() fails if any of the following conditions are encountered:

[EFAULT] set or oset points to an invalid address. The reliable detection of this error is imple-
mentation dependent.

AUTHOR
sigprocmask() was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
sigaction(2), sigsuspend(2), sigpending(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigprocmask() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−335

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigqueue(2) sigqueue(2)

NAME
sigqueue() - queue a signal to a process

SYNOPSIS
#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

DESCRIPTION
The sigqueue() system call causes the signal specified by signo to be sent with the value specified by
value to the process specified by pid. If signo is zero (the null signal), error checking is performed but no
signal is actually sent. The null signal can be used to check the validity of pid.

The conditions required for a process to have permission to queue a signal to another process are the same
as for the kill() system call.

The sigqueue() system call returns immediately. If SA_SIGINFO is set for signo at the receiving pro-
cess (see sigqueue(2)) and if resources are available to queue the signal, the signal will be queued and sent
to the receiving process. When the signal is delivered or accepted, the field si_value of the siginfo parame-
ter (see signal(5)) will be set to value. If SA_SIGINFO is not set for signo, then signo, but not neces-
sarily value, will be sent at least once to the receiving process.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked, either
signo or at least one pending unblocked signal will be delivered to the sending process before the
sigqueue() system call returns. Should any of multiple pending signals in the range SIGRTMIN to
SIGRTMAXbe selected for delivery or acceptance, it will be the lowest numbered one. The selection order
between realtime and non-realtime signals, or between multiple pending non-realtime signals, is
unspecified.

Application Usage
Threads Considerations

sigqueue() can be used to post signals to another process but can not be used to post signals to a
specific thread in another process.

If the value of pid causes signo to be generated for the sending process, and if signo is not blocked for the
calling thread and if no other thread has signo unblocked or is waiting in a sigwait() function for signo,
either signo or at least one pending unblocked signal will be delivered to the calling thread before the
sigqueue() function returns.

LWP Considerations

Signals can not be posted to specific Lightweight Processes (LWPs) in another process.

RETURN VALUE
Upon successful completion, the specified signal will be queued, and the sigqueue() function returns a
value of 0 (zero). Otherwise, a value of -1 is returned, and errno is set to indicate the error.

ERRORS
sigqueue() fails and no signal is sent if any of the following conditions occur:

[EAGAIN] No resources are available to queue the signal. The process has already queued
{SIGQUEUE_MAX}signals that are still pending at the receiver(s), or a systemwide
resource limit has been exceeded.

[EINVAL] The value of the signo argument is an invalid or unsupported signal number.

[EPERM] The process does not have the appropriate privilege to send the signal to the receiving
process.

[ESRCH] The process pid does not exist.

SEE ALSO
kill(2), sysconf(2), signal(5).

Section 2−−336 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigsend(2) sigsend(2)

NAME
sigsend(), sigsendset() - send a signal to a process or a group of processes

SYNOPSIS
#include <sys/signal.h>

#include <sys/procset.h>

int sigsend (idtype_t idtype, id_t id, int sig);

int sigsendset (const procset_t *psp, int sig);

DESCRIPTION
The sigsend() system call sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by id and idtype. The signal to be sent is specified by
sig and is either one from the list given in signal() (see signal(2)) or 0.

If sig is equal to zero (the null signal), error checking is performed but no signal is actually sent. This can
be used to check the validity of id and idtype.

The real or effective user ID of the sending process must match the real or effective user ID of the receiving
process, unless the process has appropriate privileges, or sig is SIGCONTand the sending process has the
same session ID as the receiving process.

idtype and id work together as follows:

• If idtype is P_PID , sig will be sent to the process with a process ID equal to (pid_t)id .

• If idtype is P_PGID, sig will be sent to any process with a process group ID equal to (pid_t)id .

• If idtype is P_SID , sig will be sent to any process with a session ID equal to (pid_t)id .

• If idtype is P_UID , sig will be sent to any process with an effective user ID equal to (uid_t)id .

• If idtype is P_GID, sig will be sent to any process with an effective group ID equal to
(gid_t)id .

• If idtype is P_ALL, sig will be sent to all processes and id will be ignored.

• If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID of 1 is included only
if idtype is equal to P_PID .

sigsendset() provides an alternate interface for sending signals to a set of processes.

psp is a pointer to a structure that includes the following members:

idop p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

The structure defines a set of processes as the result of a set operation (difference, union, intersection, or
exclusion) on two operands (idtype/id pairs). The left (right) operand is specified by p_lid (p_rid) and
p_lidtype (p_ridtype) . p_lid (p_rid) takes the values specified by id and p_lidtype
(p_ridtype) takes the values specified by idtype in the sigsend() system call defined above. p_op
specifies the operand, and takes one of the following values:

POP_DIFF Set difference. The resultant set consists of the processes that are in the left operand
and not in the right operand.

POP_AND Set intersection. The resultant set consists of the processes that are in both the left
and right operands.

POP_OR Set union. The resultant set consists of the processes that are in either the left or
right operand or both.

POP_XOR Set exclusive OR. The resultant set consists of the processes that are in either the left
or right operand but not in both.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−337

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigsend(2) sigsend(2)

RETURN VALUE
Upon successful completion, sigsend() returns a value of 0. Otherwise, it returns a value of −1 and sets
errno to indicate the error.

ERRORS
If sigsend() fails, it sets errno (see errno(2)) to one of the following values:

[EINVAL] sig is neither a valid signal number nor zero.

[EINVAL] idtype is not a valid value.

[EINVAL] sig is SIGKILL , idtype is P_PID , and id is 1.

[ESRCH] No process can be found corresponding to that specified by id and idtype.

[EPERM] The user ID of the sending process is not 0, and its real or effective user ID does not
match the real or effective user ID of the receiving process, and the calling process is
not sending SIGCONTto a process that shares the same session ID.

SEE ALSO
kill(2), signal(2).

Section 2−−338 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigsetmask(2) sigsetmask(2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

long sigsetmask(long mask);

DESCRIPTION
sigsetmask() sets the current signal mask (those signals that are blocked from delivery). Signal i is
blocked if the i-th bit in mask, as specified with the macro sigmask(i) , is a 1.

It is not possible to mask signals that cannot be ignored, as documented in signal(5); this restriction is
silently imposed by the system.

sigblock() can be used to add elements to the set of blocked signals.

RETURN VALUE
The previous set of masked signals is returned.

EXAMPLES
The following call to sigsetmask() causes only the SIGUSR1 and SIGUSR2 signals to be blocked:

long oldmask;

oldmask = sigsetmask (sigmask (SIGUSR1) | sigmask (SIGUSR2));

WARNINGS
Do not use sigsetmask() in conjunction with the facilities described under sigset(3C).

APPLICATION USAGE
Threads Considerations

Since each thread maintains its own blocked signal mask, sigsetmask() modifies only the calling
thread’s blocked signal mask.

For more information regarding signals and threads, refer to signal(5).

LWP (Lightweight Processes) Considerations
sigsetmask() modifies only the calling LWP’s blocked signal mask.

LP64 Programs
sigsetmask() accepts and returns long (64 bit) values. However, as for ILP32 programs, sigset-
mask() supports signals numbered 1 through 32. The upper 32 bits of the mask argument are ignored.
Also, the upper 32 bits of the returned mask have no meaning.

AUTHOR
sigsetmask() was developed by the University of California, Berkeley.

SEE ALSO
kill(2), sigblock(2), sigpause(3C), sigprocmask(2), sigvector(2).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−339

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigspace(2) sigspace(2)

NAME
sigspace - assure sufficient signal stack space

SYNOPSIS
#include <signal.h>

size_t sigspace(size_t stacksize);

DESCRIPTION
sigspace() requests additional stack space that is guaranteed to be available for processing signals
received by the calling process.

If the value of stacksize is positive, it specifies the size of a space, in bytes, which the system guarantees to
be available when processing a signal. If the value of stacksize is zero, any guarantee of space is removed.
If the value is negative, the guarantee is left unchanged; this can be used to interrogate the current
guaranteed value.

When a signal’s action indicates that its handler should use the guaranteed space (specified with a sigac-
tion() , sigvector() , or sigvec() call (see bsdproc(3C)), the system checks to see if the process is
currently using that space. If the process is not currently using that space, the system arranges for that
space to be available for the duration of the signal handler’s execution. If that space has already been made
available (due to a previous signal), no change is made. Normal stack discipline is resumed when the signal
handler first using the guaranteed space is exited.

The guaranteed space is inherited by child processes resulting from a successful fork() system call, but
the guarantee of space is removed after any exec() system call (see fork(2) and exec(2)).

The guaranteed space cannot be increased in size automatically, as is done for the normal stack. If the
stack overflows the guaranteed space, the resulting behavior of the process is undefined.

Guaranteeing space for a stack can interfere with other memory allocation routines in an implementation-
dependent manner.

During normal execution of the program, the system checks for possible overflow of the stack. Guarantee-
ing space might cause the space available for normal execution to be reduced.

Leaving the context of a service routine abnormally, such as by longjmp() (see setjmp(3C)), removes
the guarantee that the ordinary execution of the program will not extend into the guaranteed space. It
might also cause the program to lose forever its ability to automatically increase the stack size, causing the
program to be limited to the guaranteed space.

RETURN VALUE
Upon successful completion, sigspace() returns the size of the former guaranteed space. Otherwise, it
returns −1 and sets errno to indicate the error.

ERRORS
sigspace() fails and the guaranteed amount of space remains unchanged if the following occurs:

[ENOMEM] The requested space cannot be guaranteed, either because of hardware limita-
tions or because some software-imposed limit would be exceeded.

WARNINGS
The guaranteed space is allocated using malloc(3C). This use might interfere with other heap management
mechanisms.

Methods for calculating the required size are not well developed.

Do not use sigspace() in conjunction with the facilities described under sigset(3C).

Do not use sigspace() in conjunction with sigstack(2).

APPLICATION USAGE
Threads Considerations

Each thread may define an alternate signal handling stack.

LWP (Lightweight Processes) Considerations
Each LWP may define an alternate signal handling stack.

Section 2−−340 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigspace(2) sigspace(2)

AUTHOR
sigspace() was developed by HP.

SEE ALSO
sigaction(2), sigstack(2), sigvector(2), malloc(3C), setjmp(3C).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−341

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigstack(2) sigstack(2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>

int sigstack(
struct sigstack *ss,
struct sigstack *oss

);

DESCRIPTION
The sigstack() function allows the calling process to indicate to the system an area of its address space
to be used for processing signals received by the process.

If the ss argument is not a null pointer, it must point to a sigstack structure. The length of the
application-supplied stack must be at least SIGSTKSZ bytes. If the alternate signal stack overflows, the
resulting behaviour is undefined. (See APPLICATION USAGE below.)

• The value of the ss_onstack member indicates whether the process wants the system to use an
alternate signal stack when delivering signals.

• The value of the ss_sp member indicates the desired location of the alternate signal stack area in
the process’ address space.

• If the ss argument is a null pointer, the current alternate signal stack context is not changed.

If the oss argument is not a null pointer, it points to a sigstack structure in in which the current alternate
signal stack context is placed. The value stored in the ss_onstack member of oss will be non- zero if the
process is currently executing on the alternate signal stack. If the oss argument is a null pointer, the
current alternate signal stack context is not returned.

When a signal’s action indicates its handler should execute on the alternate signal stack (specified by cal-
ling sigaction()), the implementation checks to see if the process is currently executing on that stack.
If the process is not currently executing on the alternate signal stack, the system arranges a switch to the
alternate signal stack for the duration of the signal handler’s execution.

After a successful call to one of the exec functions, there are no alternate signal stacks in the new process
image.

RETURN VALUE
Upon successful completion, sigstack() returns 0. Otherwise, it returns −1 and sets errno to indi-
cate the error.

ERRORS
The sigstack() function will fail if:

[EPERM] An attempt was made to modify an active stack.

APPLICATION USAGE
A portable application, when being written or rewritten, should use sigaltstack() instead of sig-
stack() .

On some implementations, stack space is automatically extended as needed. On those implementations,
automatic extension is typically not available for an alternate stack. If a signal stack overflows, the result-
ing behaviour of the process is undefined.

The direction of stack growth is not indicated in the historical definition of struct sigstack. The only way to
portably establish a stack pointer is for the application to determine stack growth direction, or to allocate a
block of storage and set the stack pointer to the middle. The implementation may assume that the size of
the signal stack is SIGSTKSZ as found in <signal.h> . An implementation that would like to specify a
signal stack size other than SIGSTKSZ should use sigaltstack() .

Programs should not use longjmp() to leave a signal handler that is running on a stack established with
sigstack() . Doing so may disable future use of the signal stack. For abnormal exit from a signal
handler, siglongjmp() , setcontext() , or swapcontext() may be used. These functions fully
support switching from one stack to another.

Section 2−−342 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigstack(2) sigstack(2)

The sigstack() function requires the application to have knowledge of the underlying system’s stack
architecture. For this reason, sigaltstack() is recommended over this function.

Threads Considerations
Each thread may define an alternate signal handling stack.

LWP (Lightweight Processes) Considerations
Each LWP may define an alternate signal handling stack.

SEE ALSO
exec(2), fork(2), setjmp(3C), sigaltstack(2), <signal.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−343

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigstack(2) sigstack(2)

HP-UX EXTENSIONS

SYNOPSIS
int sigstack(

const struct sigstack *ss,
struct sigstack *oss

);

DESCRIPTION
The correct use of sigstack() is hardware dependent, and therefore is not portable between different
HP-UX implementations. sigspace() is portable between different HP-UX implementations and should
be used when the application does not need to know where the signal stack is located (see sigspace(2)).
sigstack() is provided for compatibility with other systems that provide this functionality. Users
should note that there is no guarantee that functionality similar to this is even possible on some architec-
tures.

The value stored in the ss_onstack member tells whether the process is currently using a signal stack, and
if so, the value stored in the ss_sp member is the current stack pointer for the stack in use.

ERRORS
[EFAULT] Either of ss or oss is not a null pointer and points outside the allocated address

space of the process. The reliable detection of this error is implementation
dependent.

WARNINGS
Do not use sigstack(2) in conjunction with sigspace(2).

Methods for calculating the required stack size are not well developed.

Leaving the context of a service routine abnormally, such as by longjmp() (see setjmp(3C)), might
remove the guarantee that the ordinary execution of the program does not extend into the guaranteed
space. It might also cause the program to lose forever its ability to automatically increase the stack size,
causing the program to be limited to the guaranteed space.

Stack addresses grow from low addresses to high addresses; therefore the signal stack address provided to
sigstack(2) should point to the beginning of the space to be used for the signal stack. This address should
be aligned to an eight-byte boundary.

AUTHOR
sigstack() was developed by HP and the University of California, Berkeley.

SEE ALSO
sigspace(2), setjmp(3C).

Section 2−−344 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigsuspend(2) sigsuspend(2)

NAME
sigsuspend - wait for a signal

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

DESCRIPTION
The sigsuspend() function replaces the process’ current signal mask with the set of signals pointed to
by sigmask and then suspends the process until delivery of a signal whose action is either to execute a
signal-catching function or to terminate the process.

If the action is to terminate the process then sigsuspend() will never return. If the action is to execute
a signal-catching function, then sigsuspend() will return after the signal-catching function returns,
with the signal mask restored to the set that existed prior to the sigsuspend() call.

It is not possible to block signals that cannot be ignored. This is enforced by the system without causing an
error to be indicated.

RETURN VALUE
Since sigsuspend() suspends process execution indefinitely, there is no successful completion return
value. If a return occurs, −1 is returned and errno is set to indicate the error.

ERRORS
The sigsuspend() function will fail if:

[EINTR] A signal is caught by the calling process and control is returned from the
signal-catching function.

APPLICATION USAGE
Threads Considerations

Since blocked signal masks are maintained at the thread level, sigsuspend() modifies only the calling
thread’s blocked signal mask. sigsuspend() suspends only the calling thread until it receives a signal.

If other threads in the process do not block the signal, the signal may be delivered to another thread in the
process and the thread in sigsuspend() may continue waiting. For this reason, the use of sigwait(2) is
recommended instead of sigsuspend() for multi-threaded applications.

For more information regarding signals and threads, refer to signal(5).

LWP (Lightweight Processes) Considerations
sigsuspend() modifies only the calling LWP’s signal mask and suspends only the calling LWP until
receipt of a signal.

SEE ALSO
pause(2), sigaction(2), sigsetops(3C), sigwait(2), <signal.h>.

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument sigmask is changed from sigset_t* to type const sigset_t* .

Another change is incorporated as follows:

• The term "signal handler" is changed to "signal-catching function."

HP-UX Release 11.0: October 1997 − 1 − Section 2−−345

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigsuspend(2) sigsuspend(2)

HP-UX EXTENSIONS

ERRORS
[EFAULT] sigmask points to an invalid address. The reliable detection of this error is

implementation-dependent.

AUTHOR
sigsuspend() was derived from the IEEE POSIX 1003.1-1988 Standard.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsetops(3C), signal(5).

STANDARDS CONFORMANCE
sigsuspend() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−346 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigvector(2) sigvector(2)

NAME
sigvector - software signal facilities

SYNOPSIS
#include <signal.h>

int sigvector(
int sig,
const struct sigvec *vec,
struct sigvec *ovec

);

DESCRIPTION
The system defines a set of signals that can be delivered to a process. The set of signals is defined in sig-
nal(5), along with the meaning and side effects of each signal. This manual entry, along with those for sig-
block(2), sigsetmask(2), sigpause(3C), and sigspace(2), defines an alternate mechanism for handling these
signals that ensures the delivery of signals and the integrity of signal handling procedures. The facilities
described here should not be used in the same program as signal(2).

With the sigvector() interface, signal delivery resembles the occurrence of a hardware interrupt: the
signal is blocked from further occurrence, the current process context is saved, and a new one is built. A
process can specify a handler function to be invoked when a signal is delivered, or specify that a signal
should be blocked or ignored. A process can also specify that a default action should be taken by the system
when a signal occurs. It is possible to ensure a minimum amount of stack space for processing signals
using sigspace() (see sigspace(2)).

All signals have the same priority. Signal routines execute with the signal that causes their invocation to
be blocked, although other signals can yet occur. A global signal mask defines the set of signals currently
blocked from delivery to a process. The signal mask for a process is initialized from that of its parent (nor-
mally 0). It can be changed with a sigblock() , sigsetmask() , or sigpause() call, or when a sig-
nal is delivered to the process.

A signal mask is represented as a long , with one bit representing each signal being blocked. The follow-
ing macro defined in <signal.h > is used to convert a signal number to its corresponding bit in the mask:

#define sigmask(signo) (1L << (signo-1))

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.
If the signal is not currently blocked by the process, it is delivered to the process. When a signal is
delivered, the current state of the process is saved, a new signal mask is calculated (as described below),
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine
returns normally, the process resumes execution in the same context as before the signal’s delivery. If the
process wishes to resume in a different context, it must arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the duration of the process’ signal
handler (or until a sigblock() or sigsetmask() call is made). This mask is formed by taking the
current signal mask, computing the bit-wise inclusive OR with the value of vec. sv_mask (see below) from
the most recent call to sigvector() for the signal to be delivered, and, unless the SV_RESETHAND
flag is set (see below), setting the bit corresponding to the signal being delivered. When the user’s signal
handler returns normally, the original mask is restored.

sigvector() assigns a handler for the signal specified by sig. vec and ovec are pointers to sigvec struc-
tures that include the following elements:

void (* sv_handler)();
long sv_mask ;
long sv_flags;

If vec is non-zero, it specifies a handler routine (sv_handler), a mask (sv_mask) that the system should use
when delivering the specified signal, and a set of flags (sv_flags) that modify the delivery of the signal. If
ovec is non-zero, the previous handling information for the signal is returned to the user. If vec is zero, sig-
nal handling is unchanged. Thus, the call can be used to enquire about the current handling of a given sig-
nal. If vec and ovec point to the same structure, the value of vec is read prior to being overwritten.

The sv_flags field can be used to modify the receipt of signals. The following flag bits are defined:

SV_ONSTACK Use the sigspace() allocated space.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−347

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigvector(2) sigvector(2)

SV_BSDSIG Use the Berkeley signal semantics.
SV_RESETHAND Use the semantics of signal(2).

If SV_ONSTACKis set, the system uses or permits the use of the space reserved for signal processing in
the sigspace() system call.

If SV_BSDSIG is set, the signal is given the Berkeley semantics. The following signal is affected by this
flag:

SIGCLD In addition to being sent when a child process dies, the signal is also sent when any
child’s status changes from running to stopped. This would normally be used by a pro-
gram such as csh (see csh(1)) when maintaining process groups under Berkeley job
control.

If SV_RESETHANDis set, the signal handler is installed with the same semantics as a handler installed
with signal(2). This affects signal mask set-up during the signal handler (see above) and whether the
handler is reset after a signal is caught (see below).

If SV_RESETHANDis not set, once a signal handler is installed, it remains installed until another
sigvector() call is made or an exec() system call is performed (see exec(2)). If SV_RESETHANDis
set and the signal is not one of those marked "not reset when caught" under signal(5), the default action is
reinstated when the signal is caught, prior to entering the signal-catching function. The "not reset when
caught" distinction is not significant when sigvector() is called and SV_RESETHANDis not set.

The default action for a signal can be reinstated by setting sv_handler to SIG_DFL ; this default usually
results in termination of the process. If sv_handler is SIG_IGN the signal is usually subsequently
ignored, and pending instances of the signal are discarded. The exact meaning of SIG_DFL and
SIG_IGN for each signal is discussed in signal(5).

Certain system calls can be interrupted by a signal; all other system calls complete before the signal is ser-
viced. The scp pointer described in signal(5) is never null if sigvector() is supported. scp points to a
machine-dependent sigcontext structure. All implementations of this structure include the fields:

int sc_syscall ;
char sc_syscall_action;

The value SYS_NOTSYSCALLfor the sc_syscall field indicates that the signal is not interrupting a system
call; any other value indicates which system call it is interrupting.

If a signal that is being caught occurs during a system call that can be interrupted, the signal handler is
immediately invoked. If the signal handler exits normally, the value of the sc_syscall_action field is
inspected; if the value is SIG_RETURN, the system call is aborted and the interrupted program continues
past the call. The result of the interrupted call is −1 and errno is set to EINTR. If the value of the
sc_syscall_action field is SIG_RESTART, the call is restarted. A call is restarted if, in the case of a
read() or write() system call (see read(2) or write(2)), it had transferred no data. If some data had
been transferred, the operation is considered to have completed with a partial transfer, and the sc_syscall
value is SYS_NOTSYSCALL. Other values are undefined and reserved for future use.

Exiting the handler abnormally (such as with longjmp() — see setjmp(3C)) aborts the call, leaving the
user responsible for the context of further execution. The value of scp−>sc_syscall_action is ignored when
the value of scp−>sc_syscall is SYS_NOTSYSCALL. scp−>sc_syscall_action is always initialized to
SIG_RETURNbefore invocation of a signal handler. When an system call that can be interrupted is inter-
rupted by multiple signals, if any signal handler returns a value of SIG_RETURN in
scp−>sc_syscall_action, all subsequent signal handlers are passed a value of SYS_NOTSYSCALLin
scp−>sc_syscall .

Note that calls to read() , write() , or ioctl() on fast devices (such as disks) cannot be interrupted,
but I/O to a slow device (such as a printer) can be interrupted. Other system calls, such as those used for
networking, also can be interrupted on some implementations. In these cases additional values can be
specified for scp−>sc_syscall . Programs that look at the values of scp−>sc_syscall always should compare
them to these symbolic constants; the numerical values represented by these constants might vary among
implementations. System calls that can be interrupted and their corresponding values for scp−>sc_syscall
are listed below:

Section 2−−348 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigvector(2) sigvector(2)

Call sc_syscall value______________________________________
read (slow devices) SYS_READ
readv (slow devices) SYS_READV
write (slow devices) SYS_WRITE
writev (slow devices) SYS_WRITEV
open (slow devices) SYS_OPEN
ioctl (slow requests) SYS_IOCTL
close (slow requests) SYS_CLOSE
wait SYS_WAIT
select SYS_SELECT
pause SYS_PAUSE
sigpause SYS_SIGPAUSE
semop SYS_SEMOP
msgsnd SYS_MSGSND
msgrcv SYS_MSGRCVL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

These system calls are not defined if the preprocessor macro _XPG2 is defined when <signal.h > is
included. This is because the X/Open Portability Guide, Issue 2 specifies a different meaning for the sym-
bol SYS_OPEN(see limits(5)).

After a fork() or vfork() system call, the child inherits all signals, the signal mask, and the reserved
signal stack space.

exec(2) resets all caught signals to the default action; ignored signals remain ignored, the signal mask
remains unchanged, and the reserved signal stack space is released.

The mask specified in vec is not allowed to block signals that cannot be ignored, as defined in signal(5).
This is enforced silently by the system.

If sigvector() is called to catch SIGCLD in a process that currently has terminated (zombie) chil-
dren, a SIGCLD signal is delivered to the calling process immediately, or as soon as SIGCLD is unblocked
if it is currently blocked. Thus, in a process that spawns multiple children and catches SIGCLD, it is some-
times advisable to reinstall the handler for SIGCLD after each invocation in case there are multiple zom-
bies present. This is true even though the handling of the signal is not reset by the system, as with sig-
nal(2), because deaths of multiple processes while SIGCLD is blocked in the handler result in delivery of
only a single signal. Note that the function must reinstall itself after it has called wait() or wait3() .
Otherwise the presence of the child that caused the original signal always causes another signal to be
delivered.

RETURN VALUE
Upon successful completion, sigvector() returns 0; otherwise, it returns −1 and sets errno to indi-
cate the reason.

ERRORS
sigvector() fails and no new signal handler is installed if any of the following conditions are encoun-
tered:

[EFAULT] Either vec or ovec points to memory that is not a valid part of the process
address space. Reliable detection of this error is implementation dependent.

[EINVAL] sig is not a valid signal number.

[EINVAL] An attempt was made to ignore or supply a handler for a signal that cannot be
caught or ignored; see signal(5).

WARNINGS
Restarting a select(2) call can sometimes cause unexpected results. If the select() call has a timeout
specified, the timeout is restarted with the call, ignoring any portion that had elapsed prior to interruption
by the signal. Normally this simply extends the timeout and is not a problem. However, if a handler
repeatedly catches signals, and the timeout specified to select() is longer than the time between those
signals, restarting the select() call effectively renders the timeout infinite.

sigvector() should not be used in conjunction with the facilities described under sigset(3C).

HP-UX Release 11.0: October 1997 − 3 − Section 2−−349

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigvector(2) sigvector(2)

APPLICATION USAGE
Threads Considerations

The signal disposition (such as catch/ignore/default) established by sigvector() is shared by all
threads in the process. Each thread maintains its own blocked signal mask. For more information regard-
ing signals and threads, refer to signal(5).

AUTHOR
sigvector() was developed by HP and the University of California, Berkeley.

SEE ALSO
kill(1), kill(2), ptrace(2), sigblock(2), signal(2), sigpause(3C), sigsetmask(2), sigspace(2), setjmp(3C), sig-
nal(5), termio(7).

Section 2−−350 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigwait(2) sigwait(2)

NAME
sigwait(), sigwaitinfo(), sigtimedwait() - synchronously accept a signal

SYNOPSIS
#include <signal.h>

int sigwait(const sigset_t *set, int *sig);

int sigwaitinfo(const sigset_t *set, siginfo_t *info);

int sigtimedwait(const sigset_t *set, siginfo_t *info,
const struct timespec *timeout);

DESCRIPTION
The sigwait() function atomically selects and clears a pending signal from set and returns the signal
number in the location pointed to by sig. If none of the signals in set is pending at the time of the call, the
calling thread will be suspended until one or more signals become pending or the thread is interrupted by
an unblocked, caught signal. The signals in set should be blocked at the time of the call to sigwait() .
Otherwise, the behavior is undefined.

If there are multiple signals queued for the selected signal number, sigwait() will return with the first
queued signal and the remainder will remain queued. If any of multiple pending signals in the range
SIGRTMIN to SIGRTMAXis selected, the lowest numbered signal will be returned. The selection order
between realtime and nonrealtime signals, or between multiple pending nonrealtime signals, is unspecified.

If more than one thread in a process is in sigwait() for the same signal, only one thread will return
from sigwait() with the signal number; which thread returns is undefined.

sigwaitinfo() has the same behavior as sigwait() if the info parameter is NULL. If the info
parameter is not NULL, sigwaitinfo() has the same behavior as sigwait() , except that the
selected signal number is returned in the si_signo field of the info parameter and the cause of the signal is
returned in the si_code field. If any value is queued to the selected signal, the first such queued value will
be dequeued and stored in the si_value member of info and the system resource used to queue the signal
will be released and made available to queue other signals. If no value is queued, the contents of the
si_value member is undefined. If no further signals are queued for the selected signal, the pending indica-
tion for that signal will be reset.

sigtimedwait() has the same behavior as sigwaitinfo() except that sigtimedwait() will
only wait for the time interval specified by the timeout parameter if none of the signals specified by set are
pending at the time of the call. If the timeout parameter specifies a zero-valued time interval, then
sigtimedwait() will return immediately with an error if no signals in set are pending at the time of
the call. If the timeout parameter is NULL, the behavior is undefined.

APPLICATION USAGE
For a given signal number, the sigwait family of routines should not be used in conjunction with sigac-
tion() or any other functions which change signal action. If they are used together, the results are
undefined.

Threads Considerations
The sigwait family of routines enable a thread to synchronously wait for signals. This makes the sigwait
routines ideal for handling signals in a multithreaded process. The suggested method for signal handling in
a multithreaded process is to have all threads block the signals of interest and dedicate one thread to call a
sigwait function to wait for the signals. When a signal causes a sigwait function to return, the code to han-
dle the signal can be placed immediately after the return from the sigwait routine. After the signal is han-
dled, a sigwait function can again be called to wait for another signal.

In order to ensure that the dedicated thread handles the signal, it is essential that all threads, including
the thread issuing the sigwait call, block the signals of interest. Otherwise, the signal could be delivered to
a thread other than the dedicated signal handling thread. This could result in the default action being car-
ried out for the signal. It is important that the thread issuing the sigwait call also block the signal. This
will prevent signals from carrying out the default signal action while the dedicated signal handling thread
is between calls to a sigwait function.

RETURN VALUE
Upon successful completion, sigwait() stores the signal number selected in the location pointed to by
sig and returns with a value of 0 (zero). Otherwise, it returns an error number to indicate the error. The
errno variable is NOT set if an error occurs.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−351

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sigwait(2) sigwait(2)

Upon successful completion, sigwaitinfo() and sigtimedwait() will return the selected signal
number. Otherwise a value of -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, the sigwait family of routines will return the following error
number:

[EAGAIN] sigtimedwait() was called and no signal in the set parameter was delivered
within the time interval specified by the timeout parameter.

If any of the following conditions occur and the condition is detected, the sigwait family of routines will fail
and return the following error number:

[EINVAL] set contains an invalid or unsupported signal number.

[EINVAL] sigtimedwait() was called and the timeout parameter specified a tv_nsec value
less than zero or greater than or equal to 1000 million, or a tv_sec value less than zero
or greater than or equal to 2147483648 (that is, a value too large to be represented as
a signed 32-bit integer).

[EINTR] The wait was interrupted by an unblocked, caught signal.

[EFAULT] At least one of the set, sig, info, or timeout parameters references an illegal address.

AUTHOR
sigwaitinfo() and sigtimedwait() were derived from the IEEE POSIX P1003.1b standard.

sigwait() was derived from the IEEE POSIX P1003.1c standard.

SEE ALSO
pause(2), sigaction(2), sigpending(2), sigsuspend(2), pthread_sigmask(3T), signal(5).

STANDARDS CONFORMANCE
sigwait() : POSIX.1c

sigwaitinfo() : POSIX.1b

sigtimedwait() : POSIX.1b

Section 2−−352 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

socket(2) socket(2)

NAME
socket() - create an endpoint for communication

SYNOPSIS
#include <sys/socket.h>

AF_CCITT Only
#include <x25/x25ccittproto.h>

int socket(int af, int type, int protocol);

DESCRIPTION
The socket() system call creates an endpoint for communication and returns a descriptor. The socket
descriptor returned is used in all subsequent socket-related system calls.

The af parameter specifies an address family to be used to interpret addresses in later operations that
specify the socket. These address families are defined in the include files <sys/socket.h> and
<x25/ccittproto.h> . The only currently supported address families are:

AF_INET (DARPA Internet addresses)
AF_UNIX (path names on a local node)
AF_CCITT (CCITT X.25 addresses)
AF_VME_LINK (backplane communications on VMEbus)

The type specifies the semantics of communication for the socket. Currently defined types are:

SOCK_STREAM Sequenced, reliable, two-way-connection-based byte streams.

SOCK_DGRAM Datagrams (connectionless, unreliable messages of a fixed, typically small, max-
imum length; for AF_INET only).

protocol specifies a particular protocol to be used with the socket. Normally, only a single protocol exists to
support a particular socket type using a given address family. However, many protocols may exist, in
which case a particular protocol must be specified. The protocol number to use depends on the communi-
cation domain in which communication is to take place (see services (4) and protocols (4)). protocol can be
specified as zero, which causes the system to choose a protocol type to use.

Sockets of type SOCK_STREAM are byte streams similar to pipes, except that they are full-duplex instead
of half-duplex. A stream socket must be in a connected state before any data can be sent or received on it.
A connection to another socket is created with a connect() or accept() call. Once connected, data
can be transferred using some variant of the send() and recv() or the read() and write() calls.
When a session is complete, use close() or shutdown() calls to terminate the connection.

TCP, the communications protocol used to implement SOCK_STREAM for AF_INET sockets, ensures that
data is not lost or duplicated. If a peer has buffer space for data and the data cannot be successfully
transmitted within a reasonable length of time, the connection is considered broken and the next recv()
call indicates an error with errno set to [ETIMEDOUT]. If SO_KEEPALIVE is set and the connection
has been idle for two hours, the TCP protocol sends "keepalive" packets every 75 seconds to determine
whether the connection is active. These transmissions are not visible to users and cannot be read by a
recv() call. If the remote system does not respond within 10 minutes (i.e., after 8 "keepalive" packets
have been sent), the next socket call (e.g., recv()) returns an error with errno set to [ETIMEDOUT]. A
SIGPIPE signal is raised if a process sends on a broken stream. This causes naive processes that do not
handle the signal to exit. An end-of-file condition (zero bytes read) is returned if a process tries to read on a
broken stream.

SOCK_DGRAM sockets allow sending of messages to correspondents named in send() calls. It is also
possible to receive messages at such a socket with recv() .

The operation of sockets is controlled by socket level options set by the setsockopt() system call
described by the getsockopt(2) manual entry. These options are defined in the file <sys/socket.h> and
explained in the getsockopt(2) manual entry.

X.25 Only
Socket endpoints for communication over an X.25/9000 link can be in either address family, AF_INET or
AF_CCITT. If the socket is in the AF_INET family, the connection behaves as described above. TCP is
used if the socket type is SOCK_STREAM. UDP is used if the socket type is SOCK_DGRAM. In both
cases, Internet protocol (IP) and the X.25-to-IP interface module are used.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−353

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

socket(2) socket(2)

If the socket is in the AF_CCITT address family, only the SOCK_STREAM socket type is supported. Refer
to the topic "Comparing X.25 Level 3 Access to IP" in the X.25 Programmer’s Guide for more details on the
difference between programmatic access to X.25 via IP and X.25 Level 3.

If the socket is in the AF_CCITT family, the connection and all other operations pass data directly from the
application to the X.25 Packet Level (level 3) without passing through a TCP or UDP protocol. Connections
of the AF_CCITT family cannot use most of the socket level options described in getsockopt(2). However,
AF_CCITT connections can use many X.25-specific ioctl() calls, described in socketx25(7).

DEPENDENCIES
AF_CCITT and AF_VME_LINK

Only the SOCK_STREAM type is supported.

RETURN VALUE
socket() returns the following values:

n Successful completion. n is a valid file descriptor referring to the socket.
-1 Failure. errno is set to indicate the error.

ERRORS
If socket() fails, errno is set to one of the following values.

[EAFNOSUPPORT] The specified address family is not supported in this version of the system.

[EHOSTDOWN] The networking subsystem is not up.

[EINVAL] SOCK_DGRAM sockets are currently not supported for the AF_UNIX or
AF_VME_LINK address families.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system’s table of open files is temporarily full and no more socket()
calls can be accepted.

[ENOBUFS] No buffer space is available. The socket cannot be created.

[ENOMEM] No memory is available. The socket cannot be created.

[EPROTONOSUPPORT] The specified protocol is not supported.

[EPROTOTYPE] The type of socket and protocol do not match.

[ESOCKTNOSUPPORT] The specified socket type is not supported in this address family.

[ETIMEDOUT] Connection timed out.

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The socket() system call is thread-safe. It has a cancellation point; and it is async-cancel safe, async-
signal safe, and fork-safe.

AUTHOR
socket() was developed by HP and the University of California, Berkeley.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2), select(2), send(2),
shutdown(2), af_ccitt(7F), af_vme_link(7F), socket(7), socketx25(7), tcp(7P), udp(7P), unix(7P),
xopen_networking(7).

STANDARDS CONFORMANCE
socket() : XPG4

Section 2−−354 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

socketpair(2) socketpair(2)

NAME
socketpair() - create a pair of connected sockets

SYNOPSIS
#include <sys/socket.h>

int socketpair(int af, int type, int protocol, int sv[2]);

DESCRIPTION
The socketpair() system call creates an unnamed pair of connected sockets and returns two file
descriptors in sv[0] and sv[1]. The two sockets are indistinguishable. af specifies the address family. See
socket(2). type specifies the semantics of communication for the socket. protocol specifies a particular pro-
tocol to be used. protocol can be specified as zero, which causes the system to choose a protocol type to use.

RETURN VALUE
socketpair() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If socketpair() fails, errno is set to one of the following values.

[EAFNOSUPPORT] The specified address family is not supported in this version of the system.

[EFAULT] The sv parameter is not valid.

[EMFILE] The per-process file descriptor table is full.

[ENFILE] The system file table is temporarily full.

[ENOBUFS] No buffer space is available for the operation to complete.

[EOPNOTSUPP] The specified protocol does not support creation of socket pairs.

[EPROTONOSUPPORT]
The specified protocol is not supported in this version of the system.

DEPENDENCIES
socketpair() is supported only for AF_UNIX.

FUTURE DIRECTION
Currently, the default behavior is the HP-UX BSD Sockets; however, it might be changed to X/Open
Sockets in a future release. At that time, any HP-UX BSD Sockets behavior that is incompatible with
X/Open Sockets might be obsoleted. Applications that conform to the X/Open specification now will avoid
migration problems (see xopen_networking(7)).

MULTITHREAD USAGE
The socketpair() system call is thread-safe. It has a cancellation point; and it is async-cancel safe,
async-signal safe, and fork-safe.

AUTHOR
socketpair() was developed by HP and the University of California, Berkeley.

SEE ALSO
read(2), socket(2), write(2), xopen_networking(7).

STANDARDS CONFORMANCE
socketpair() : XPG4

HP-UX Release 11.0: October 1997 − 1 − Section 2−−355

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stat(2) stat(2)

NAME
stat - get file status

SYNOPSIS
#include <sys/types.h> #include <sys/stat.h>

int stat(const char *path, struct stat *buf);

DESCRIPTION
The stat() function obtains information about the named file and writes it to the area pointed to by the
buf argument. The path argument points to a pathname naming a file. Read, write or execute permission of
the named file is not required, but all directories listed in the pathname leading to the file must be search-
able. An implementation that provides additional or alternate file access control mechanisms may, under
implementation-dependent conditions, cause stat() to fail. In particular, the system may deny the
existence of the file specified by path.

The buf argument is a pointer to a stat structure, as defined in the header <sys/stat.h> , into which
information is placed concerning the file.

The stat() function updates any time-related fields (as described in the definition of File Times Update
in the XBD specification), before writing into the stat structure.

The structure members st_mode , st_ino, st_dev , st_uid, st_gid, st_atime , st_ctime , and st_mtime will have
meaningful values for all file types defined in this document. The value of the member st_nlink will be set
to the number of links to the file.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate the
error.

ERRORS
The stat() function will fail if:

[EACCES] Search permission is denied for a component of the path prefix.

[EIO] An error occurred while reading from the file system.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG] The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty
string.

[ENOTDIR] A component of the path prefix is not a directory.

The stat() function may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX} .

[EOVERFLOW] A value to be stored would overflow one of the members of the stat struc-
ture.

SEE ALSO
fstat(2), lstat(2), <sys/stat.h>, <sys/types.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of argument path is changed from char * to const char * .

• In the DESCRIPTION section, (a) statements indicating the purpose of this interface and a para-
graph defining the contents of stat structure members are added, and (b) the words "extended
security controls" are replaced by "additional or alternate file access control mechanisms."

Section 2−−356 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stat(2) stat(2)

The following change is incorporated for alignment with the FIPS requirements:

• In the ERRORS section, the condition whereby [ENAMETOOLONG]will be returned if a path-
name component is larger that {NAME_MAX} is now defined as mandatory and marked as an
extension.

Another change is incorporated as follows:

• The header <sys/types.h> is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

• In the mandatory section, EIO is added to indicate that a physical I/O error has occurred, and
ELOOPto indicate that too many symbolic links were encountered during pathname resolution.

• In the optional section, a second ENAMETOOLONGcondition is defined that may report excessive
length of an intermediate result of pathname resolution of a symbolic link.

• In the optional section, EOVERFLOWis added to indicate that a value to be stored in a member of
the stat structure would cause overflow.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−357

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stat(2) stat(2)

HP-UX EXTENSIONS

DESCRIPTION
If the chosen path name or file descriptor refers to a Multi-Level Directory (MLD), and the process does not
have the multilevel effective privilege, the i-node number returned in st_ino is the i-node of the MLD itself.

The parameters for the stat() function are as follows:

path is a pointer to a path name of any file within the mounted file system.(All directories
listed in the path name must be searchable.)

buf is a pointer to a stat structure, which is where the file status information is stored.

The stat structure contains the following members:

dev_t st_dev; /* ID of device containing a */
/* directory entry for this file */

ino_t st_ino; /* Inode number */
ushort st_fstype; /* Type of filesystem this file */

/* is in; see sysfs(2) */
ushort st_mode; /* File type, attributes, and */

/* access control summary */
ushort st_basemode /* Permission bits (see chmod(1)) */
ushort st_nlink; /* Number of links */
uid_t st_uid; /* User ID of file owner */
gid_t st_gid; /* Group ID of file group */
dev_t st_rdev; /* Device ID; this entry defined */

/* only for char or blk spec files */
off_t st_size; /* File size (bytes) */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Last modification time */
time_t st_ctime; /* Last file status change time */

/* Measured in secs since */
/* 00:00:00 GMT, Jan 1, 1970 */

long st_blksize; /* File system block size */
uint st_acl:1; /* Set if the file has optional */

/* access control list entries */
/* HFS File Systems only */

(Note that the position of items in this list does not necessarily reflect the order of the members in the
structure.)

ERRORS
[EFAULT] buf or path points to an invalid address. The reliable detection of this error is imple-

mentation dependent.

[EOVERFLOW] The file size in bytes or the number of blocks allocated to the file cannot be
represented correctly in the structure pointed to by buf.

NFS
The st_basemode and st_acl fields are zero on files accessed remotely. st_acl field is applicable to HFS File
Systems only.

WARNINGS
Access Control Lists - HFS File Systems only

Access control list descriptions in this entry apply only to HFS file systems on standard HP-UX operating
systems.

DEPENDENCIES
CD-ROM

The st_uid and st_gid fields are set to −1 if they are not specified on the disk for a given file.

AUTHOR
stat() and fstat() were developed by AT&T. lstat() was developed by the University of Califor-
nia, Berkeley.

Section 2−−358 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stat(2) stat(2)

SEE ALSO
touch(1), chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), rename(2), setacl(2), stat64(2),
sysfs(2), time(2), truncate(2), unlink(2), utime(2), write(2), acl(5), stat(5).

STANDARDS CONFORMANCE
stat() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 2 − Section 2−−359

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

statfs(2) statfs(2)

NAME
statfs, fstatfs - get file system statistics

SYNOPSIS
#include <sys/vfs.h>

int statfs(const char *path, struct statfs *buf);

int fstatfs(int fildes, struct statfs *buf);

DESCRIPTION
statfs() returns status information for a mounted file system.

fstatfs() returns similar information for an open file.

The parameters for the statfs() and fstatfs() functions are as follows:

path is a pointer to a path name of any file within the mounted file system.

buf is a pointer to a statfs() structure, which is where the file system status
information is stored.

fildes is a file descriptor for an open file, which is created with the successful comple-
tion of an open() , creat() , dup() , fcntl() , or pipe() system call (see
open(2), creat(2), dup(2), fcntl(2), or pipe(2)).

The statfs() structure contains the following members:

long f_bavail; /* free blocks available to non-superuser */
long f_bfree; /* free blocks */
long f_blocks; /* total blocks in file system */
long f_bsize; /* fundamental file system block size in bytes */
long f_ffree; /* free file nodes in file system */
long f_files; /* total file nodes in file system */
long f_type; /* type of info, zero for now */
fsid_t f_fsid /* file system ID. f_fsid[1] is the file system

type; see sysfs(2) */

The fields f_blocks , f_bavail and f_bfree are expressed in terms of blocks of size f_bsize.

A file node is a structure in the file system hierarchy that describes a file.

Fields that are undefined for a particular file system are set to −1.

RETURN VALUE
statfs() and fstatfs() return 0 upon successful completion; otherwise, they return −1 and set
errno to indicate the error.

ERRORS
If statfs() fails, errno is set to one of the following values:

[EACCES] Search permission is denied for a component of the path prefix.

[EFAULT] buf or path point to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

[ELOOP] Too many symbolic links are encountered during path-name translation.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAXbytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[ENOTDIR] A component of the path prefix is not a directory.

If fstatfs() fails, errno is set to one of the following values:

[EBADF] fildes is not a valid open file descriptor.

Section 2−−360 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

statfs(2) statfs(2)

[EFAULT] buf points to an invalid address.

[EIO] An I/O error occurs while reading from or writing to the file system.

AUTHOR
statfs() and fstatfs() were developed by Sun Microsystems, Inc.

SEE ALSO
df(1M), stat(2), ustat(2).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−361

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

statvfs(2) statvfs(2)

NAME
statvfs, fstatvfs - get file system information

SYNOPSIS
#include <sys/types.h>

#include <sys/statvfs.h>

int statvfs (const char *path, struct statvfs *buf);

int fstatvfs (int fildes, struct statvfs *buf);

DESCRIPTION
statvfs() returns information about a mounted file system.

fstatvfs() returns similar information about an open file.

The parameters for the statvfs() and fstatvfs() functions are as follows:

path is a pointer to a path name of any file within the mounted file system.

buf is a pointer to a statvfs() structure, which is where the file system status
information is stored.

fildes is a file descriptor for an open file, which is created with the successful comple-
tion of an open() , creat() , dup() , fcntl() , or pipe() system call (see
open(2), creat(2), dup(2), fcntl(2), or pipe(2)).

The statvfs() structure contains the following members:

ulong f_bsize; /* preferred file system block size */
ulong f_frsize; /* fundamental file system block size */
ulong f_blocks; /* total blocks of f_frsize on file system */
ulong f_size; /* size of file system in f_frsize unit */
ulong f_bfree; /* free blocks */
ulong f_bavail; /* blocks available to non-superuser */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in file system */
long f_favail; /* file nodes available to non-superuser */
long f_fsid; /* file system ID for file system */

/* type; see sysfs(2) */
char f_basetype[FSTYPSZ]; /* file system type name is null-terminated */
long f_flag; /* bit mask of flags */
long f_namemax /* maximum file name length */
char f_fstr[32]; /* file system specific string */
time_t f_time; /* Last time file system was written */

The field f_basetype contains a null-terminated file-system-type name.

The constant [FSTYPSZ] is defined in the header file <statvfs.h> .

The following flags can be returned in the f_flag field:

ST_LARGEFILES File system is enabled for large files.

ST_RDONLY File system is read-only.

ST_NOSUID File system does not support setuid and setgid semantics.

ST_EXPORTED File system is exported (NFS).

ST_QUOTA Quotas are enabled on this file system.

RETURN VALUE
statvfs() and fstatvfs() return 0 upon successful completion; otherwise, they return −1 and set
errno to indicate the error.

ERRORS
If statvfs() fails, errno is set to one of the following values:

[EACCES] Search permission is denied for a component of the path prefix.

Section 2−−362 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

statvfs(2) statvfs(2)

[ELOOP] Too many symbolic links are encountered during path-name translation.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAXbytes, or the length
of a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[ENOTDIR] A component of the path prefix is not a directory.

If fstatvfs() fails, errno is set to the following value:

[EBADF] fildes is not a valid open file descriptor.

When both statvfs() and fstatvfs() fail, errno is set to one of the following values:

[EFAULT] buf points to an invalid address.

[EIO] An I/O error occurred while reading from or writing to the file system.

SEE ALSO
df(1M), fstatfs(2), fstatvfs64(2), quotactl(2), stat(2), statfs(2), statvfs64(2), sysfs(2), ustat(2).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−363

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stime(2) stime(2)

NAME
stime() - set time and date

SYNOPSIS
#include <time.h>

int stime(const time_t *tp);

DESCRIPTION
The stime() system call sets the system time and date. tp points to the value of time as measured in
seconds from 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC).

RETURN VALUE
stime() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If stime() fails, errno is set to one of the following values.

[EPERM] The effective user ID of the calling process is not superuser.

SEE ALSO
date(1), gettimeofday(2), time(2).

STANDARDS CONFORMANCE
stime() : SVID2, SVID3, XPG2

Section 2−−364 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stream(2) stream(2)

NAME
stream - STREAMS enhancements to standard system calls

DESCRIPTION
The open() , close() , read() , readv() , write() , writev() , ioctl() , select() , and
signal() system calls are enhanced to support STREAMS. The new functionality is described below for
each system call.

Open Enhancements
When calling open for a STREAMS device, the oflag parameter can only be constructed from the
O_NONBLOCKflag values that are OR-ed with the O_RDONLY, O_WRONLY, or O_RDWRflag values. The
values of the other flags are not applicable to STREAMS devices and have no effect on them.

The values of the O_NONBLOCKflags affect the operations of STREAMS-based device drivers, when the
read() , write() , getmsg() , getpmsg() , putmsg() , or putpmsg() functions are used. After
the stream is open, these flags can be modified by calling fcntl() (see the fcntl(2) man page). The effects
of the flags are device specific.

The open of a STREAMS device may fail for one or more of the following STREAMS-specific conditions:

EIO A hangup occurred while the open() function was attempting to open the stream.

EAGAIN The system was unable to allocate a stream.

ENODEV The device has not been generated into the system as a STREAMS device.

ENXIO The open routine of one of the modules or drivers in the stream failed.

Close Enhancements
When all file descriptors associated with a STREAMS device have been closed, the stream is dismantled. If
the file descriptor is associated with a stream that is subject to persistent links, the close() function will
succeed immediately, but the stream will remain open. See I_PLINK documentation in streamio (7). Dis-
mantling includes popping any modules on the stream and closing the driver. If O_NONBLOCKflag is set,
and there are no signals posted for the stream, the close() function waits for output to drain on each
module’s or driver’s non-empty write queue. close() waits for each module or driver for the amount of
time set by the I_SETCLTIME ioctl() (see the streamio (7) man page). The default is 15 seconds per
module or driver. If the O_NONBLOCKflag is set, or there are any pending signals, the function does not
wait for output to drain and dismantles the stream immediately. If a STREAMS device is closed, and the
calling process had previously registered to recieve a SIGPOLL signal for events associated with that dev-
ice (see "Signal Enhancements" below), close() unregisters the calling process for the events associated
with the stream.

Read and Readv Enhancements
In this section, read() refers to both read() and readv() . For STREAMS devices, the read() func-
tion operates in accordance with the read mode of the file. STREAMS has three read modes: byte-stream
mode, message-nondiscard mode, and message-discard mode. The default is byte-stream mode; however,
the user can change this by issuing the I_SRDOPT ioctl() call. The user can also test for the current
read mode by issuing the I_GRDOPT ioctl() call. See the streamio(7) man page for more information
about these ioctl() calls. The read() function’s behavior in each of the read modes of a STREAMS
device is as follows:

• In byte-stream mode, the function retrieves data from the stream associated with the file descrip-
tor until it has retrieved nbyte bytes, or until there is no more data to be retrieved.

• In message-nondiscard mode, the function retrieves data until it reaches a message boundary. If it
does not retrieve all of the data in the message, it places the remaining data back on the stream.
This data can be retrieved by a subsequent read() , getmsg() , or getpmsg() call.

• In message-discard mode, the function retrieves data until it has retrieved nbytes, or until it has
reached a message boundary. However, unread data remaining in the message is discarded and is
not available for reading by a subsequent read() , getmsg() , or getpmsg() call.

When attempting to read a STREAMS device and encountering a zero-byte message:

• If the read mode is byte-stream, the read() function returns the number of bytes of data read
before encountering the zero-byte message. If data was read before receiving the zero-byte mes-
sage, read() returns the zero-byte message to the stream so it can be processed by a subsequent
read() , getmsg() , or getpmsg() call. If no data was read, read() consumes the message.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−365

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stream(2) stream(2)

• If the read mode is message-discard or message-nondiscard, the read() function returns zero,
and then consumes the message.

The read() function reads the data at the front of the stream head read queue. It reads both priority
band and normal data.

The read() function processes control messages according to the STREAMS read flags: RPROTNORM,
RPROTDAT, and RPROTDIS. The default is for RPROTNORMto be set; however, the user can change this
by issuing the I_SRDOPT ioctl() call. The read() function’s behavior for each read flag is described
below:

• If RPROTNORMis set, a read from a stream can only process data messages. It cannot process any
type of control message and fails if such a message is encountered at the stream head.

• If RPROTDATis set, read() processes both data and control messages. The read() function
delivers data in both data and control messages.

• If RPROTDISis set, read() consumes any control messages and retrieves data from data mes-
sages only.

The following is also true for reads to STREAMS devices. If the O_NONBLOCKflag is clear, and no mes-
sage is waiting to be read on the stream, the read() function blocks until a message arrives at the stream
head. If the O_NONBLOCKflag is set, and no message is waiting to be read on the stream, the read()
function fails and returns ERANGE.

A read from a STREAMS device may fail for one or more of the following STREAMS-specific conditions:

EAGAIN No message is waiting to be read on the stream, and the O_NONBLOCKflag is set.

EBADMSG A message is waiting to be read, but it is not a data message and the RPROTNORMflag is
set.

EINVAL The stream is linked to a multiplexor.

A read from a STREAMS device also fails if an error message is received at the stream head. In this case,
errno is set to the value returned in the error message.

If a hangup occurs on the stream being read, the read() function continues its operations until the
stream read queues are empty. Thereafter, it returns a value of 0 (zero).

Write and Writev Enhancements
In this section, write() refers to both write() and writev() . When writing to a STREAMS device,
the write() function sends ordinary, priority band zero, data. Other aspects of the write() function’s
behavior are determined by the packet size that the stream will accept.

If nbytes is not within the top module’s minimum and maximum packet size range, write() will return
ERANGE. Two exceptions exist, however, in which write() does not return an error. The first exception
is if nbytes is too large and either the maximum packet size is infinite or the minimum packet size is less
than or equal to zero. The second exception occurs if nbytes is too small and the minimum packet size is
less than or equal to zero. With either exception, write() does not return ERANGE, and transfers the
data.

The write() function may send the user’s data buffer in multiple messages. The maximum amount of
data that write() sends in one message is the lower value of the top module’s maximum packet size and
STRMSGSZ. If the maximum packet size is infinite, write() compares half of the top module’s high
water mark to STRMSGSZinstead. If the high water mark is less than or equal to zero, the page size is
used.

If a zero-length buffer (nbytes is 0) is passed to write() , zero bytes are sent to the stream and zero bytes
are returned.

The following is also true for writes to STREAMS devices. If the O_NONBLOCKflag is clear, and the
stream cannot accept data (the stream head write queue is full due to flow control conditions), the
write() function blocks until data can be accepted. If the O_NONBLOCKflag is set, and the stream can-
not accept data, the write() function fails, and returns EAGAIN. If the O_NONBLOCKflag is set, and
the stream cannot accept data, but part of the buffer has already been written, the write() function ter-
minates and returns the number of bytes written.

A write to a STREAMS device may fail for one or more of the following STREAMS-specific conditions:

Section 2−−366 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stream(2) stream(2)

EAGAIN The O_NONBLOCKflag is set, and the stream cannot accept write() data because it is
flow controlled.

EINVAL The write() function attempts to write to a stream that is linked below a multiplexor.

ENXIO A hangup occurs on a stream while the write() function is writing to the stream.

ERANGE The nbytes parameter is not within the allowable range.

The write() system call will also fail if an error message has been received at the stream head of the
stream to which the write() function is attempting to write. In this case, the function returns with
errno set to the value included in the error message.

Ioctl Enhancements
Refer to the streamio (7) man page for a description of STREAMS ioctl() functionality.

Select Enhancements
The select() system call checks the status of STREAMS devices. select() does not provide as much
information for STREAMS devices as poll() . A program calls select() so that it can wait for events
on both STREAMS and non-STREAMS devices. If select() returns an event for a STREAMS device,
the program can call poll() to get more information. Refer to the poll(2) man page for more information
about poll() .

select() returns a read event if a poll() POLLIN , POLLERR, POLLNVALor POLLHUPevent exists
on the stream. In other words, select() returns a read event if a normal or priority band message is
waiting to be read, if a read error exists at the stream head, if a write error exists at the stream head, if
the stream is linked under a multiplexor, or if a hang-up has occurred.

select() returns a write event if a poll() POLLOUT , POLLWRNORM, POLLERR, or POLLNVAL
event exists on the stream. This means that select() returns a write event if normal data can be writ-
ten without blocking because of flow control, a read error exists at the stream head, a write error exists at
the stream head, or the stream is linked under a multiplexor.

select() returns an exception event if a poll() POLLPRI event exists on the stream. More
specifically, select() returns an exception event if a high-priority message is waiting to be read.

Signal Enhancements
A new signal, SIGPOLL, has been added for STREAMS. Processes register to receive a SIGPOLL signal
for events that occur on a STREAMS device (see the signal(2) man page and I_SETSIG in the streamio (7)
man page). The default action is to ignore the signal, not to terminate the process.

SEE ALSO
close(2), fcntl(2), getmsg(2), open(2), poll(2), putmsg(2), read(2), signal(2), select(2), write(2), streamio(7),
and STREAMS/UX for HP9000 Reference Manual.

HP-UX Release 11.0: October 1997 − 3 − Section 2−−367

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

stty(2) stty(2)

NAME
stty(), gtty() - control terminal device (Bell Version 6 compatibility)

SYNOPSIS
#include <sgtty.h>

int stty(int fildes, const struct sgttyb *argp);

int gtty(int fildes, struct sgttyb *argp);

Remarks
These system calls are preserved for backward compatibility with Bell Version 6. They provide as close an
approximation as possible to the old Version 6 functions. All new code should use the TCSETA and
TCGETA ioctl() calls described in termio(7).

DESCRIPTION
For certain status settings and status inquiries about terminal devices, the functions stty() and gtty()
are equivalent to

ioctl(fildes, TIOCSETP, argp)

and

ioctl(fildes, TIOCGETP, argp)

respectively (see ioctl(2) and termio(7).

RETURN VALUE
gtty() and stty() return the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If gtty() or stty() fails, errno is set to one of the following values:

[EBADF] fildes is not a valid file descriptor.

[EFAULT] argp points to an invalid address.

SEE ALSO
stty(1), exec(2), ioctl(2), sttyV6(7), termio(7), tty(7).

Section 2−−368 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

swapon(2) swapon(2)

NAME
swapon - add swap space for interleaved paging/swapping

SYNOPSIS
#include <unistd.h>

int swapon(const char *path, ...
/* [int min,

int limit,
int reserve,]

int priority */);

Remarks
The ANSI C ", ... " construct denotes a variable length argument list whose optional and required
members are given in the associated comment (/* */).

DESCRIPTION
The swapon() system call makes a block device or a directory named path available to the system for
paging and swapping.

priority indicates the order in which the swap space from the device or file system is used. Space is taken
from the lower-priority systems first.

swapon() can be used only by users who have appropriate privileges.

If path names a block device file
swapon() makes it available to the system at the specified priority for allocation for paging and swap-
ping.

In this form, swapon() takes only two arguments: the path to the block device file, and the priority.

The device associated with path can be a device already known to the system, defined at system
configuration time, or it can be a previously unspecified device.

If the device was already defined at system configuration time and also has a start and/or size defined for
that swap device, these values are used.

Otherwise, if a filesystem exists on the device, swap is added following the filesystem, or if no filesystem
exists, the complete device is used for swap.

See the appropriate system administrator’s manual for information on how the size of the swap area is cal-
culated.

If path names a directory
swapon() makes the blocks on the file system rooted at path available for paging and swapping.

The min, limit, and reserve arguments are passed and used only if the path argument names a directory.

min indicates the number of file system blocks to take from the file system when swapon() is called.

limit indicates the maximum number of file system blocks the swap system is allowed to take from the file
system.

reserve indicates the number of file system blocks that are saved for file system use only.

ERRORS
If swapon() fails, errno is set to one of the following values.

[EACCES] A component of the path prefix denies search permission.

[EALREADY] The device or directory associated with path already has swap turned on.

[EBUSY] The device associated with path is already in use.

[EEXIST] The device associated with path was specified at system configuration time to add
swap at a specified location, but that location is within an existing file system on the
device.

[EFAULT] The LIF header on the device associated with path contains inconsistent directory
data.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−369

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

swapon(2) swapon(2)

[EIO] Unable to read the device associated with path.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

[ENODEV] The device associated with path does not exist.

[ENOENT] The system-imposed limit on the number of swap file entries has been reached.

[ENOSPC] There is is not enough available space on the specified file system or device.

[ENOSYS] The device associated with path was specified at system configuration time to add
swap following the file system, but no file system was found.

[ENOTBLK] The path argument is not a block special file or the root directory of a file system.

[ENOTDIR] A component of the path is not a directory.

[ENXIO] The device associated with path could not be opened.

[EPERM] The effective user ID is not a user with appropriate privileges.

[EROFS] The device associated with path is read-only.

WARNINGS
No means is available to stop swapping to a device.

The system allocates no less than the amount specified in min. However, to make the most efficient use of
space, more than the amount requested might be taken from the file system. The actual amount taken will
not exceed the number of file system blocks indicated in reserve .

Swapping to a file system is usually slower than swapping to a device.

Once file system blocks have been allocated for swap space, the file system can not be unmounted unless
the system is rebooted.

AUTHOR
swapon() was developed by the University of California, Berkeley.

SEE ALSO
swapon(1M).

Section 2−−370 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

symlink(2) symlink(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
#include <unistd.h>

int symlink(const char *path1, const char *path2);

DESCRIPTION
The symlink() function creates a symbolic link. Its name is the pathname pointed to by path2, which
must be a pathname that does not name an existing file or symbolic link. The contents of the symbolic link
are the string pointed to by path1.

RETURN VALUE
Upon successful completion, symlink() returns 0. Otherwise, it returns −1 and sets errno to indicate
the error.

ERRORS
The symlink() function will fail if:

[EACCES] Write permission is denied in the directory where the symbolic link is being
created, or search permission is denied for a component of the path prefix
of path2.

[EEXIST] The path2 argument names an existing file or symbolic link.

[EIO] An I/O error occurs while reading from or writing to the file system.

[ELOOP] Too many symbolic links were encountered in resolving path2.

[ENAMETOOLONG] The length of the path2 argument exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path2 does not name an existing file or path2 is an empty
string.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed
cannot be extended because no space is left on the file system containing
the directory, or the new symbolic link cannot be created because no space
is left on the file system which will contain the link, or the file system is out
of file-allocation resources.

[ENOTDIR] A component of the path prefix of path2 is not a directory.

[EROFS] The new symbolic link would reside on a read-only file system.

The symlink() function may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

APPLICATION USAGE
Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a hard link
guarantees the existence of a file, even after the original name has been removed. A symbolic link provides
no such assurance; in fact, the file named by the path1 argument need not exist when the link is created. A
symbolic link can cross file system boundaries.

Normal permission checks are made on each component of the symbolic link pathname during its resolu-
tion.

SEE ALSO
chown(2), link(2), lstat(2), open(2), readlink(2), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−371

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

symlink(2) symlink(2)

HP-UX EXTENSIONS

ERRORS
If symlink() fails, errno is set to one of the following values.

[EFAULT] path1 or path2 points outside the process’s allocated address space. The
reliable detection of this error is implementation-dependent.

[EIO] An I/O error occurred while making the directory entry for path2, allocat-
ing the inode for path2, or writing out the link contents of path2.

[EIO] An I/O error occurred while making the directory entry or allocating the
inode.

AUTHOR
symlink() was developed by the University of California, Berkeley.

SEE ALSO
cp(1), link(2), readlink(2), unlink(2), symlink(4).

STANDARDS CONFORMANCE
symlink() : AES, SVID3

Section 2−−372 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sync(2) sync(2)

NAME
sync - update disk

SYNOPSIS
#include <unistd.h>

void sync(void);

DESCRIPTION
sync() causes all information in memory that should be on disk to be written out. This includes modified
file system meta-data and delayed block I/O.

It should be used by commands and programs that examine a file system, such as fsck , df , etc. It is
mandatory before a shutdown.

The writing, although scheduled, is not necessarily complete upon return from sync.

In some HP-UX systems, sync() may be reduced to a no-op. This is permissible on a system which does
not cache buffers, or in a system that in some way ensures that the disks are always in a consistent state.

AUTHOR
sync() was developed by HP and AT&T Bell Laboratories.

SEE ALSO
sync(1M), fdatasync(2), fsync(2).

STANDARDS CONFORMANCE
sync() : SVID2, SVID3, XPG2

HP-UX Release 11.0: October 1997 − 1 − Section 2−−373

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysconf(2) sysconf(2)

NAME
sysconf() - get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

int CPU_IS_PA_RISC(long cpuvers);

DESCRIPTION
The sysconf() system call provides a way for applications to determine the current value of a
configurable limit or variable.

The name argument represents the system variable being queried.

The following table lists the configuration variables whose values can be determined by calling sys-
conf() , and for each variable, the associated value of the name argument and the value returned:

Variable Value for name Value Returned__
AES_OS_VERSION _SC_AES_OS_VERSION Version number of OSF/AES OSC supported

ARG_MAX _SC_ARG_MAX Maximum total length of the arguments for
exec() in bytes, including environment
data (see exec(2))

ATEXIT_MAX _SC_ATEXIT_MAX Maximum number of functions that can be
registered with atexit() (see atexit(2))

BC_BASE_MAX _SC_BC_BASE_MAX Maximum ibase (input number radix) and
obase (output number radix) allowed by bc
(see bc(1))

BC_DIM_MAX _SC_BC_DIM_MAX Maximum number of elements in an array
permitted by bc (see bc(1))

BC_SCALE_MAX _SC_BC_SCALE_MAX Maximum scale factor (number of digits to
the right of the decimal point) allowed by
bc (see bc(1))

BC_STRING_MAX _SC_BC_STRING_MAX Maximum length of strings allowed by bc
(see bc(1))

CHILD_MAX _SC_CHILD_MAX Maximum number of simultaneous
processes per user ID (see fork(2))

CLK_TCK _SC_CLK_TCK Number of clock intervals per second for
times() (see times(2))

CLOCKS_PER_SEC _SC_CLOCKS_PER_SEC Number of clock ticks per second for
clock() (see clock(3C))

COLL_WEIGHTS_MAX _SC_COLL_WEIGHTS_MAX Maximum number of weights that can be
assigned to an entry of the LC_COLLATE
order keyword in a localedef input
file (see localedef(1M))

CPU_CHIP_TYPE _SC_CPU_CHIP_TYPE Encoding which indicates type of CPU chip
employed in system. Bits 21-26 identify the
model, bits 27-31 the revision. See "Preci-
sion I/O Architecture Specification" for
encodings.

CPU_KEYBITS1 _SC_CPU_KEYBITS1 Processor Extensions (see below)

CPU_VERSION _SC_CPU_VERSION Version of CPU architecture (see below)

EXPR_NEST_MAX _SC_EXPR_NEST_MAX Maximum parenthesis nesting level for
expr expressions (see expr(1))

Section 2−−374 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysconf(2) sysconf(2)

HW_32_64_CAPABLE _SC_HW_32_64_CAPABLE Returns which kernel is supported on the
hardware. The value returned is an encod-
ing which may be interpreted using the
_SYSTEM_SUPPORTS_ILP32OS() and
_SYSTEM_SUPPORTS_LP64OS() macros
defined in unistd.h. Example:

long ret = sysconf(_SC_HW_32_64_CAPABLE);

if (_SYSTEM_SUPPORTS_ILP32OS(ret) != 0) {
/* system supports 32-bit OS */

}

if (_SYSTEM_SUPPORTS_LP64OS(ret) != 0) {
/* system supports 64-bit OS */

}

IO_TYPE _SC_IO_TYPE Type of I/O drivers the kernel supports,
currently, only the value IO_TYPE_CDIO

KERNEL_BITS _SC_KERNEL_BITS Returns the number of bits used by the ker-
nel for pointer and long data types. Current
values include 32 and 64.

LIBC_VERSION _SC_LIBC_VERSION The version of libc that is in use by the
application that is requesting this informa-
tion. See below for details.

LINE_MAX _SC_LINE_MAX Maximum number of bytes in an input line
(including the newline) for POSIX.2 utilities

NGROUPS_MAX _SC_NGROUPS_MAX Maximum number of simultaneous supple-
mentary group IDs per process

OPEN_MAX _SC_OPEN_MAX Maximum number of files that one process
can have open at one time

PAGE_SIZE _SC_PAGE_SIZE Kernel memory page size

PASS_MAX _SC_PASS_MAX Maximum number of significant bytes in a
password

POSIX_FSYNC _SC_FSYNC Positive if the File Synchronization option is
supported (see fsync(2))

POSIX_JOB_CONTROL _SC_JOB_CONTROL Positive if the system supports POSIX job
control; −1 otherwise

POSIX_PRIORITY_
SCHEDULING

_SC_PRIORITY_
SCHEDULING

Positive if the system supports POSIX.4
priority scheduling; −1 otherwise

POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS Positive if the system supports POSIX.4
realtime signal extensions; −1 otherwise

POSIX_SAVED_IDS _SC_SAVED_IDS Positive if each process has a saved set-
user-ID and a saved set-group-ID; −1 other-
wise

POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO Positive if the Synchronized IO option is
supported (see open(2))

POSIX_TIMERS _SC_TIMERS Positive if the system supports POSIX.4
clocks and timers; −1 otherwise

HP-UX Release 11.0: October 1997 − 2 − Section 2−−375

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysconf(2) sysconf(2)

POSIX_VERSION _SC_VERSION Approval date of the POSIX.1 Standard
(such as 199009 for POSIX.1-1990) to which
the system conforms. This value indicates
the year (first four digits) and month (next
two digits) that the standard was approved
by the IEEE Standards Board.

POSIX2_C_BIND _SC_2_C_BIND Equal to 1 if the POSIX.2 C Language Bind-
ings Option is available through the c89
utility; −1 otherwise

POSIX2_C_DEV _SC_2_C_DEV Equal to 1 if the POSIX.2 C Language
Development Utilities Option is supported;
−1 otherwise

POSIX2_C_VERSION _SC_2_C_VERSION Current version of the POSIX.2 C Language
Binding Option supported (same format as
_POSIX_VERSION); −1 otherwise.

POSIX2_FORT_DEV _SC_2_FORT_DEV Equal to 1 if the POSIX.2 FORTRAN
Development Utilities Option is supported;
−1 otherwise

POSIX2_FORT_RUN _SC_2_FORT_RUN Equal to 1 if the POSIX.2 Fortran Runtime
Utilities Option is supported; −1 otherwise

POSIX2_LOCALEDEF _SC_2_LOCALEDEF Equal to 1 if locales can be created with the
POSIX.2 localedef utility; −1 otherwise

POSIX2_SW_DEV _SC_2_SW_DEV Equal to 1 if the POSIX.2 Software Develop-
ment Utilities Option is supported; −1 other-
wise

POSIX2_UPE _SC_2_UPE Equal to 1 if the POSIX.2 User Portability
Utilities Option is supported; −1 otherwise

POSIX2_VERSION _SC_2_VERSION Current version of POSIX.2 (same format as
_POSIX_VERSION)

POSIX_THREADS _SC_THREADS Positive if the implementation supports
POSIX threads; -1 otherwise.

POSIX_THREAD_
ATTR_STACKADDR

_SC_THREAD_
ATTR_STACKADDR

Positive if the implementation supports the
POSIX Thread Stack Address Attribute
option; -1 otherwise.

POSIX_THREAD_
ATTR_STACKSIZE

_SC_THREAD_
ATTR_STACKSIZE

Positive if the implementation supports the
POSIX Thread Stack Size Attribute option;
-1 otherwise.

POSIX_THREAD_
PRIORITY_SCHEDULING

_SC_THREAD_
PRIORITY_SCHEDULING

Positive if the implementation supports the
POSIX Thread Priority Scheduling option; -l
otherwise.

POSIX_THREAD_
PRIO_INHERIT

_SC_THREAD_
PRIO_INHERIT

Positive if the implementation supports the
POSIX Thread Priority Inheritance option;
-l otherwise.

POSIX_THREAD_
PRIO_PROTECT

_SC_THREAD_
PRIO_PROTECT

Positive if the implementation supports the
POSIX Thread Priority Protection option; -l
otherwise.

POSIX_THREAD_
PROCESS_SHARED

_SC_THREAD_PROCESS_
SHARED

Positive if the implementation supports the
POSIX Thread Process-Shared Synchroniza-
tion option; -l otherwise.

POSIX_THREAD_
SAFE_FUNCTIONS

_SC_THREAD_SAFE_
FUNCTIONS

Positive if the implementation supports the
POSIX Thread Thread-Safe Functions
option; -l otherwise.

Section 2−−376 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysconf(2) sysconf(2)

PTHREAD_
DESTRUCTOR_
ITERATIONS

_SC_THREAD_
DESTRUCTOR_
ITERATIONS

The number of attempts made to destroy a
pthread’s thread-specific data values on
thread exit.

PTHREAD_KEYS_MAX _SC_THREAD_
KEYS_MAX

The number of pthread data keys per pro-
cess.

PTHREAD_STACK_MIN _SC_THREAD_
STACK_MIN

Minimum size in bytes of pthread stack
storage.

PTHREAD_THREADS_MAX _SC_THREAD_
THREADS_MAX

Maximum number of pthreads that can be
created per process.

PROC_RSRC_MGR _SC_PROC_RSRC_MGR Equal to 1 if the optional HP Process
Resource Management (PRM) software is
installed and configured; 0 otherwise (see
prmconfig(1))

RE_DUP_MAX _SC_RE_DUP_MAX Maximum number of repeated occurrences
of a regular expression permitted when
using the interval notation \{ m, n\} (see
regcomp(3C))

RTSIG_MAX _SC_RTSIG_MAX Maximum number of realtime signals
reserved for application use.

SECURITY_CLASS _SC_SECURITY_CLASS SEC_CLASS-NONE(No DoD security level
supported)

SIGQUEUE_MAX _SC_SIGQUEUE_MAX Maximum number of queued signals that a
process may send and have pending at the
receiver(s) at any time.

STREAM_MAX _SC_STREAM_MAX Maximum number of stdio streams that one
process can have open at one time

TIMER_MAX _SC_TIMER_MAX Maximum number of POSIX.4 timers per
process, if POSIX.4 timers are supported; −1
otherwise

TZNAME_MAX _SC_TZNAME_MAX Maximum number of bytes in a time zone
name for the TZ environment variable

XOPEN_CRYPT _SC_XOPEN_CRYPT Equal to 1 if the X/Open Encryption Feature
Group is supported; −1 otherwise

XOPEN_ENH_I18N _SC_XOPEN_ENH_I18N Equal to 1 if the X/Open Enhanced Interna-
tionalization Feature Group is supported; −1
otherwise

XOPEN_SHM _SC_XOPEN_SHM Equal to 1 if the X/Open Shared Memory
Feature Group is supported; −1 otherwise

XOPEN_VERSION _SC_XOPEN_VERSION Issue number of X/Open Portability Guide
supported

XBS5_ILP32_
OFF32

_SC_XBS5_ILP32_
OFF32

A flag which denotes whether
_CS_XBS5_ILP32_OFF32_CFLAGS,
_CS_XBS5_ILP32_OFF32_LDFLAGS,
_CS_XBS5_ILP32_OFF32_LIBS and
_CS_XBS5_ILP32_OFF32_LINTFLAGS
are supported by confstr(3C). A return
value of -1 indicates they are not supported.

HP-UX Release 11.0: October 1997 − 4 − Section 2−−377

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysconf(2) sysconf(2)

XBS5_ILP32_
OFFBIG

_SC_XBS5_ILP32_
OFFBIG

A flag which denotes whether
_CS_XBS5_ILP32_OFFBIG_CFLAGS,
_CS_XBS5_ILP32_OFFBIG_LDFLAGS,
_CS_XBS5_ILP32_OFFBIG_LIBS and
_CS_XBS5_ILP32_OFFBIG_LINTFLAGS
are supported by confstr(3C). A return
value of -1 indicates they are not supported.

XBS5_LP64_
OFF64

_SC_XBS5_LP64_
OFF64

A flag which denotes whether
_CS_XBS5_LP64_OFF64_CFLAGS,
_CS_XBS5_LP64_OFF64_LDFLAGS,
_CS_XBS5_LP64_OFF64_LIBS and
_CS_XBS5_LP64_OFF64_LINTFLAGS
are supported by confstr(3C). A return
value of -1 indicates they are not supported.

XBS5_LPBIG_
OFFBIG

_SC_XBS5_LPBIG_
OFFBIG

A flag which denotes whether
_CS_XBS5_LPBIG_OFFBIG_CFLAGS,
_CS_XBS5_LPBIG_OFFBIG_LDFLAGS,
_CS_XBS5_LPBIG_OFFBIG_LIBS and
_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS
are supported by confstr(3C). A return
value of -1 indicates they are not supported.___

Some of the variables in the table are defined as constants in <limits.h> (see limits(5)). The associated
values of the name argument are defined in <unistd.h> .

The possible values of the CPU_VERSIONvariable returned by sysconf(_SC_CPU_VERSION) and
their meanings are:

Value Meaning___
CPU_PA_RISC1_0 HP Precision Architecture RISC Version 1.0
CPU_PA_RISC1_1 HP Precision Architecture RISC Version 1.1

The CPU_IS_PA_RISC() function classifies cpuvers , a value of the CPU_VERSIONvariable, as to its
processor family.

The availability of architecture specific instructions is indicated by the key bit data returned by
sysconf(_SC_CPU_KEYBITS1) . Upon successful completion, the data returned will be the logical OR
of the defined values for the features supported.

The possible values returned by sysconf(_SC_CPU_KEYBITS1) and their meanings are shown in the
following table.

Return Value Instruction Supported___
HARITH Halfword parallel add, subtract, and average
HSHIFT Halfword parallel shift-and-add

The format of the value returned by sysconf(_SC_LIBC_VERSION) is as follows:

XXyyZZZZqN

where

XX HP-UX major release number

yy HP-UX minor release number

ZZZZ Library specific number

q 0=32PA 1=64PA 2=32EM 3=64EM 4-9=Reserved

N 0 = archive library

1-9 = System V version of shared library

RETURN VALUE
Upon successful completion, sysconf() returns the value of the named variable. If the value of name is
not valid, sysconf() returns −1 and sets errno to indicate the error. If the variable corresponding to
name is not defined, sysconf() returns −1, but does not change errno .

Section 2−−378 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysconf(2) sysconf(2)

CPU_IS_PA_RISC() returns positive nonzero if cpuvers is an HP PA-RISC processor; zero if not.

ERRORS
If sysconf() fails, the value of errno (see errno(2)) is set to:

[EINVAL] The value of name is not valid.

EXAMPLES
The following example determines the number of times the system clock ticks each second:

#include <unistd.h>

long ticks;
...

ticks = sysconf(_SC_CLK_TCK);

The following example determines if the current processor is an HP PA-RISC machine:

#include <unistd.h>

if (CPU_IS_PA_RISC(sysconf(_SC_CPU_VERSION)))
...

WARNINGS
CPU_IS_PA_RISC() is implemented as a macro.

Normally, the values returned from sysconf() do not change during the lifetime of the calling process.
However, the value of the symbolic constant _POSIX_VERSION and thus the value of
sysconf(_SC_VERSION) can vary under certain circumstances. If either of the feature test macros
_POSIX1_1988 or _XPG3 is defined by the programmer prior to including <unistd.h> , the value of
_POSIX_VERSION is defined as 198808 , in conformance with POSIX.1-1988, FIPS 151-1, and XPG3.
Otherwise, the value of _POSIX_VERSIONis defined as 199009 , in conformance with POSIX.1-1990.

Similarly, the value of the symbolic constant _XOPEN_VERSION and thus the value of
sysconf(_SC_XOPEN_VERSION) can vary under certain circumstances. If the feature test macro
_XPG3 is defined by the programmer prior to including <unistd.h> , the value of _XOPEN_VERSION
is defined as 3, in conformance with XPG3. Otherwise, the value of _XOPEN_VERSIONis defined as 4, in
conformance with XPG4.

See stdsyms(5) for more information about these feature test macros.

Any application that has a dependency on libdld.sl is a potential user of both archived and shared libc.
Applications that comprise both archived and shared components where
sysconf(_SC_LIBC_VERSION) may be invoked from both the archived and shared components may
get inconsistent return values from sysconf() .

AUTHOR
sysconf() was developed by HP and POSIX.

CPU_IS_PA_RISC() was developed by HP.

SEE ALSO
getconf(1), atexit(2), exec(2), fork(2), getrlimit(2), pathconf(2), times(2), clock(3C), regcomp(3C), limits(5),
stdsyms(5), unistd(5), x_open(5).

HP Process Resource Manager: prmconfig(1) in HP Process Resource Manager User’s Guide.

STANDARDS CONFORMANCE
sysconf() : AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.2, POSIX.4

HP-UX Release 11.0: October 1997 − 6 − Section 2−−379

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

s

sysfs(2) sysfs(2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>

int sysfs(int opcode, const char *fsname);

int sysfs(int opcode, int fs_index, char *buf);

int sysfs(int opcode);

DESCRIPTION
sysfs is used to return information about the file system types configured in the system. The number
arguments accepted by sysfs varies and depends on the opcode.

The current recognized opcodes and their functions are:

GETFSIND Translate fsname, a null-terminated file-system type identifier, into a file-system type
index.

GETFSTYP Translate fs_index, a file-system type index, into a null-terminated file-system type
identifier and write it into the buffer pointed to by buf; this buffer must be at least of
size FSTYPSZ as defined in <sys/fstyp.h>. If there is no file-system type
configured at fs_index, a null string is returned for the file-system type identifier.

GETNFSTYP Return one more than the largest file system type configured. This is not the number
of file system types configured, because the type numbers may not be contiguous. See
the example below.

RETURN VALUE
Upon successful completion, sysfs() returns the file-system type index if the opcode is GETFSIND, a
value of 0 if the opcode is GETFSTYP, or the number of file system types configured if the opcode is
GETNFSTYP.Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
sysfs fails if one or more of the following are true and sets errno to the value indicated:

EINVAL fsname points to an invalid file-system identifier; fs_index is negative or greater than the
largest file-system type index; opcode is invalid.

EFAULT buf or fsname points to an invalid user address.

EXAMPLE
List the filesystem types configured in the system.

#include <sys/fstyp.h>

int max_type, error, i;
char name[FSTYPSZ];
max_type = sysfs(GETNFSTYP);
for (i = 0; i < max_type; i++) {

error = sysfs(GETFSTYP, i, name);
if (error == 0)

my_print(name);
}

Section 2−−380 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

time(2) time(2)

NAME
time - get time

SYNOPSIS
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
time() returns the value of time in seconds since the Epoch.

If tloc is not a null pointer, the return value is also assigned to the object to which it points.

RETURN VALUE
Upon successful completion, time() returns the value of time. Otherwise, a value of (time_t)−1 is
returned and errno is set to indicate the error.

ERRORS
[EFAULT] time() fails if tloc points to an illegal address. The reliable detection of this error is

implementation dependent.

SEE ALSO
date(1), gettimeofday(2), stime(2), ctime(3C), strftime(3C).

STANDARDS CONFORMANCE
time() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C

HP-UX Release 11.0: October 1997 − 1 − Section 2−−381

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

timers(2) timers(2)

NAME
timer_create(), timer_delete(), timer_settime(), timer_gettime(), timer_getoverrun() - timer operations

SYNOPSIS
#include <time.h>

int timer_create(
clockid_t clock_id,
struct sigevent *evp,
timer_t *timerid

);

int timer_delete(
timer_t timerid

);

int timer_settime(
timer_t timerid,
int flags,
const struct itimerspec *value,
struct itimerspec *ovalue

);

int timer_gettime(
timer_t timerid,
struct itimerspec *value

);

int timer_getoverrun(
timer_t timerid

);

DESCRIPTION
timer_create()

The timer_create() function creates a per-process timer using the specified clock, clock_id , as the
timing base. The timer_create() function returns, in the location referenced by timerid , a timer ID
of type timer_t used to identify the timer in timer requests. This timer ID will be unique within the cal-
ling process until the timer is deleted. The particular clock, clock_id , is defined in <time.h> . The
timer whose ID is returned will be in a disarmed state upon return from timer_create() .

The evp argument, if non-NULL, points to a sigevent structure. If the sigev_notify member of evp is
SIGEV_SIGNAL, then the structure should also specify the signal number to be sent to the process on
timer expiration. The signal to be sent is specified in the sigev_signo field of evp . If the sigev_notify
member of evp is SIGEV_NONE, no notification is sent. If evp is NULL, then a default signal is sent to the
process. The defaults for the clocks CLOCK_REALTIME, CLOCK_VIRTUAL, and CLOCK_PROFILEare
SIGALRM, SIGVTALRM, and SIGPROF.

Per-process timers are not inherited by a child process across a fork() and are disarmed and deleted by
an exec() .

timer_delete()
The timer_delete() function deletes the specified timer, timerid , previously created by the
timer_create() function. If the timer is armed when timer_delete() is called, the behavior is as
if the timer is automatically disarmed before removal. Any pending notifications from the timer remain.

timer_settime()
The timer_settime() function sets the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arms the timer if the it_value
member of value is non-zero. If the specified timer was already armed when timer_settime() is
called, this call resets the time until next expiration to the value specified. If the it_value member of
value is zero, the timer is disarmed. Any pending notifications from the timer remain.

If the flag TIMER_ABSTIMEis not set in the argument flags , timer_settime() behaves as if the
time until next expiration is set equal to the interval specified by the it_value member of value . That
is, the timer will expire in it_value nanoseconds from when the call is made.

Section 2−−382 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

timers(2) timers(2)

If the flag TIMER_ABSTIMEis set in the argument flags , timer_settime() behaves as if the time
until next expiration is set equal to the difference between the absolute time specified by the it_value
member of value and the current value of the clock associated with timerid . That is, the timer will
expire when the clock reaches the value specified by the it_value member of value . If the specified
time has already passed, the function will succeed and the expiration notification is made.

The reload value of the timer is set to the value specified by the it_interval member of value . When
a timer is armed with a non-zero it_interval , a periodic (or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the resolution of the
specified timer are rounded up to the larger multiple of the resolution. A quantization error will not cause
the timer to expire earlier than the rounded-up time value.

If the argument ovalue is not NULL, the function timer_settime() stores, in the location referenced
by ovalue , a value representing the previous amount of time before the timer would have expired or zero
if the timer was disarmed, together with the previous timer reload value. The members of ovalue are
subject to the resolution of the timer, and are the same values that would be returned by a
timer_gettime() call at that point in time.

timer_gettime()
The timer_gettime() function stores the amount of time until the specified timer, timerid , expires
and the timer’s reload value into the space pointed to by the value argument. The it_value member
of this structure will contain the amount of time before the timer expires, or zero if the timer is disarmed.
This value is returned as the interval until timer expiration, even if the timer was armed with absolute
time. The it_interval member of value will contain the reload value last set by
timer_settime() .

timer_getoverrun()
Only a single signal is delivered to the process for a given timer at any point in time. When a timer for
which a signal is still pending expires, no signal is delivered, and a timer overrun has occurred. When a
timer expiration signal is delivered to a process, the timer_getoverrun() function returns the timer
expiration count for the specified timer. The overrun count returned contains the number of extra timer
expirations which occurred between the time the signal was generated and when it was delivered, up to but
not including an implementation defined maximum of DELAYTIMER_MAX. If the number of such extra
expirations is greater than or equal to DELAYTIMER_MAX, then the overrun count is set to
DELAYTIMER_MAX. The value returned by timer_getoverrun() applies to the most recent expira-
tion signal delivery for the timer. If no expiration signal has been delivered for the timer, the meaning of
the overrun count returned is undefined.

RETURN VALUE
Upon successful completion, timer_create() returns zero and updates the location referenced by
timerid to a timer_t which can be passed to the per-process timer calls. Otherwise,
timer_create() returns −1 and sets errno to indicate the error. The value of timerid is undefined
if an error occurs.

Upon successful completion, timer_delete() returns zero. Otherwise, timer_delete() returns
−1 and sets errno to indicate the error.

Upon successful completion, timer_settime() returns zero and updates the location referenced by
ovalue , if ovalue is non-NULL.

Upon successful completion, timer_gettime() returns zero and updates the location referenced by
value , if ovalue is non-NULL. Otherwise, timer_gettime() returns −1 and sets errno to indicate
the error.

Upon successful completion, timer_getoverrun() returns the timer expiration overrun count as
explained above. Otherwise, timer_getoverrun() returns −1 and sets errno to indicate the error.

ERRORS
If any of the following conditions occur, the timer_create() function returns −1 and sets errno (see
errno(2)) to the corresponding value:

[EAGAIN] The system lacks sufficient signal queuing resources to honor the request.

[EAGAIN] The calling process has already created all of the timers it is allowed by this implementa-
tion.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−383

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

timers(2) timers(2)

[EINVAL] The specified clock ID is not defined.

[EFAULT] The timerid or evp argument points to an invalid address.

[ENOSYS] The function timer_create() is not supported by this implementation.

If any of the following conditions occur, the timer_delete() function returns −1 and sets errno to the
corresponding value:

[EINVAL] The timer ID specified by timerid is not a valid timer ID.

[ENOSYS] The function timer_delete() is not supported by this implementation.

If any of the following conditions occur, the timer_settime() , timer_gettime() , and
timer_getoverrun() functions return −1 and set errno to the corresponding value:

[EINVAL] The timerid argument does not correspond to an ID returned by timer_create() ,
but not yet deleted by timer_delete() .

[EINVAL] The value structure passed to timer_settime() specified a nanosecond value less
than zero or greater than or equal to 1000 million.

[EFAULT] The value or ovalue argument points to an invalid address.

[ENOSYS] The timer_settime() , timer_gettime() , and timer_getoverrun() func-
tions are not supported by this implementation.

EXAMPLES
Create a timer, set it to go off in one minute, and deliver a SIGUSR1 signal:

#include <signal.h>
#include <time.h>

timer_t timerid;
struct itimerspec one_minute = { {60, 0}, {0, 0} } ;

void handler()
{

int overrun = timer_getoverrun(timerid);

if (overrun == -1) {
perror("handler: timer_getoverrun()");
exit(1);

}
(void)printf("Timer expired, overrun count was %d,

overrun);
}

int main()
{

struct sigaction sigact;
struct sigevent sigev;

sigact.sa_handler = handler;
sigemptyset(sigact.sa_mask);
sigact.sa_flags = 0;

if (sigaction(SIGUSR1, &sigact, (struct sigaction *)NULL)
== -1) {
perror("sigaction");
exit(1);

}

sigev.sigev_notify = SIGEV_SIGNAL;
sigev.sigev_signo = SIGUSR1;

if (timer_create(CLOCK_REALTIME, &sigev, &timerid)
== -1) {
perror("timer_create");
exit(1);

}

Section 2−−384 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

timers(2) timers(2)

if (timer_settime(timerid, 0, &one_minute, (struct itimerspec
== -1) {
perror("timer_create");
exit(1);

}

pause();
if (timer_delete(timerid) == -1) {

perror("timer_delete");
exit(1);

}
return 0;

}

AUTHOR
timer_create() , timer_delete() , timer_settime() , timer_gettime() , and
timer_getoverrun() were derived from the proposed IEEE POSIX P1003.4 standard, draft 14.

SEE ALSO
clocks(2), getitimer(2).

STANDARDS CONFORMANCE
timer_create() : POSIX.4

timer_delete() : POSIX.4

timer_getoverrun() : POSIX.4

timer_gettime() : POSIX.4

timer_settime() : POSIX.4

HP-UX Release 11.0: October 1997 − 4 − Section 2−−385

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

times(2) times(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
times() fills the structure pointed to by buffer with time-accounting information. The structure defined
in <sys/times.h > is as follows:

struct tms {
clock_t tms_utime; /* user time */
clock_t tms_stime; /* system time */"
clock_t tms_cutime; /* user time, children */
clock_t tms_cstime; /* system time, children */

};

This information comes from the calling process and each of its terminated child processes for which it has
executed a wait() , wait3() , or waitpid() . The times are in units of 1 / CLK_TCK seconds, where
CLK_TCK is processor dependent The value of CLK_TCKcan be queried using the sysconf() function
(see sysconf(2)).

tms_utime is the CPU time used while executing instructions in the user space of the calling process.

tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utime s and tms_cutime s of the child processes.

tms_cstime is the sum of the tms_stime s and tms_cstime s of the child processes.

RETURN VALUE
Upon successful completion, times() returns the elapsed real time, in units of 1 / CLK_TCKof a second,
since an arbitrary point in the past (such as system start-up time). This point does not change from one
invocation of times() to another. If times() fails, −1 is returned and errno is set to indicate the
error.

Remarks
times() has a granularity of one tick. Processes which run less than one tick may not register any value.

ERRORS
[EFAULT] times() fails if buffer points to an illegal address. The reliable detection of this error is

implementation dependent.

SEE ALSO
time(1), gettimeofday(2), exec(2), fork(2), sysconf(2), time(2), wait(2).

WARNINGS
Not all CPU time expended by system processes on behalf of a user process is counted in the system CPU
time for that process.

STANDARDS CONFORMANCE
times() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−386 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

truncate(2) truncate(2)

NAME
ftruncate, truncate - truncate a file to a specified length

SYNOPSIS
#include <unistd.h>

int ftruncate(int fildes, off_t length);

int truncate(const char *path, off_t length);

DESCRIPTION
The ftruncate() function causes the regular file referenced by fildes to have a size of length bytes.

The truncate() function causes the regular file named by path to have a size of length bytes.

The effect of ftruncate() and truncate() on other types of files is unspecified. If the file previously
was larger than length, the extra data is lost. If it was previously shorter than length, bytes between the
old and new lengths are read as zeroes. With ftruncate() , the file must be open for writing; for trun-
cate() , the process must have write permission for the file.

If the request would cause the file size to exceed the soft file size limit for the process, the request will fail
and the implementation will generate the SIGXFSZ signal for the process.

These functions do not modify the file offset for any open file descriptions associated with the file. On suc-
cessful completion, if the file size is changed, these functions will mark for update the st_ctime and
st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID bits of the file mode
may be cleared.

RETURN VALUE
Upon successful completion, ftruncate() and truncate() returns 0. Otherwise a −1 is returned, and
errno is set to indicate the error.

ERRORS
The ftruncate() and truncate() functions will fail if:

[EINTR] A signal was caught during execution.

[EINVAL] The length argument was less than 0.

[EFBIG] or [EINVAL] The length argument was greater than the maximum file size.

[EIO] An I/O error occurred while reading from or writing to a file system.

The ftruncate() function will fail if:

[EBADF] or [EINVAL] The fildes argument is not a file descriptor open for writing.

[EINVAL] The fildes argument references a file that was opened without write per-
mission.

The truncate() function will fail if:

[EACCES] A component of the path prefix denies search permission, or write permis-
sion is denied on the file.

[EISDIR] The named file is a directory.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG] The length of the specified pathname exceeds PATH_MAXbytes, or the
length of a component of the pathname exceeds NAME_MAXbytes.

[ENOENT] A component of path does not name an existing file or path is an empty
string.

[ENOTDIR] A component of the path prefix of path is not a directory.

[EROFS] The named file resides on a read-only file system.

The truncate() function may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX} .

HP-UX Release 11.0: October 1997 − 1 − Section 2−−387

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

truncate(2) truncate(2)

SEE ALSO
open(2), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−388 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

truncate() truncate()

HP-UX EXTENSIONS

SYNOPSIS
int truncate(const char *path, size_t length);

int ftruncate(int fildes, size_t length);

ERRORS
If truncate() fails, errno is set to one of the following values:

[EACCES] MAC access is denied on the file.

[EDQUOT] The user’s disk quota block limit has been reached for this file system.

[EFAULT] path points outside the process’s allocated address space. The reliable detection of this
error is implementation dependent.

[EINVAL] length was greater than the maximum file size.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

If ftruncate() fails, errno is set to one of the following values:

[EDQUOT] The user’s disk quota block limit has been reached for this file system.

AUTHOR
truncate() was developed by the University of California, Berkeley.

SEE ALSO
ftruncate64(2), open(2), truncate64(2).

STANDARDS CONFORMANCE
truncate(): AES ftruncate(): AES, SVID3

HP-UX Release 11.0: October 1997 − 1 − Section 2−−389

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

NAME
ttrace - tracing facility for multithreaded processes

SYNOPSIS
#include <sys/ttrace.h>

int ttrace (ttreq_t request, pid_t pid, lwpid_t lwpid,
uint64_t addr, uint64_t data, uint64_t addr2);

Remarks
While the posix API is defined and will not change, the present underlying system calls are not guaranteed
to be compatible with future versions.

Much of the functionality of this capability is highly dependent on the underlying hardware. An application
that uses this system call should not be expected to be portable across architectures or implementations.

DESCRIPTION
The ttrace() system call provides a means by which a process can control the execution of another pro-
cess. Its primary use is for the implementation of breakpoint and event driven debugging; see adb(1) and
dde(1). ttrace() is designed to function for both single and multithreaded traced processes. The traced
process behaves normally until one of its threads encounters a signal (see signal(2) for the list), or an event
(these are discussed in detail in the EVENTS section below) at which time the thread enters a stopped
state and the tracing process is notified via ttrace_wait() .

The request argument determines the action to be taken by ttrace() and is one of the following:

TT_PROC_SETTRC
This request must be issued by a child process if it is to be traced by its parent.

For this request, the pid, lwpid, addr, and addr2 arguments must be set to 0 (zero) and
data must be set to TT_VERSION. Peculiar results occur if the parent does not expect to
trace the child.

Note that it is critical for future backward compatibility that the TT_VERSION macro
itself be used and not its value.

All other requests are to be used only by the tracing process. They are divided in two groups: requests that
target a process and requests that target a specific thread within the process. For all process-wide requests
(those prefixed by TT_PROC_), pid is the process ID of the traced process and lwpid must be set to zero.

The process-wide requests are:

TT_PROC_ATTACH
This request allows the calling process to trace the process identified by pid. If the execut-
able image of process pid is NFS mounted, it is necessary that the mount point be a hard,
non-interruptible mount point, for the request to complete successfully. The process pid
does not have to be a child of the calling process, but the effective user ID of the calling pro-
cess must match the real and saved uid of the process pid unless the effective user ID of the
tracing process is super-user.

When this call returns, the target process (all its threads) is stopped.

For this request, the lwpid, addr and addr2 arguments must be set to zero and data must
be TT_VERSION (see TT_PROC_SETTRCabove).

TT_PROC_DETACH
This request detaches the traced process and allows it to continue executing. It behaves
identically to TT_PROC_CONTINUEexcept that the process is no longer being traced after
the call returns.

For this request, the lwpid, addr, data and addr2 arguments must be set to zero.

TT_PROC_RDTEXT
TT_PROC_RDDATA

These requests allow reading from the target process text (TT_PROC_RDTEXT) or data
space (TT_PROC_RDDATA).

The addr argument specifies the offset to be read from. The data argument specifies the
number of bytes to read and the addr2 argument specifies where to store that data in the
tracing process.

Section 2−−390 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

The lwpid argument must be set to zero.

TT_PROC_WRTEXT
TT_PROC_WRDATA

These requests allow writing into the target process text (TT_PROC_WRTEXT) and data
spaces (TT_PROC_WRDATA).

The addr argument specifies the offset to be written to. The data argument specifies the
number of bytes to write.a The addr2 argument specifies where to get the data in the trac-
ing process.

The lwpid argument must be set to zero.

TT_PROC_STOP
This request causes the traced process (all its threads) to stop. If a thread was already
stopped by the debugger prior to this call, its state is not modified.

The lwpid, addr, data and addr2 arguments must be set to zero.

TT_PROC_CONTINUE
This request causes the entire traced process to resume execution. All threads that had
been stopped directly (request) or indirectly (event) by the debugger are resumed with all
their pending signals intact.

The data, addr and addr2 arguments must be set to zero.

TT_PROC_GET_PATHNAME
This request is used by the calling process to access the path name of the executable file
provided as a path or file argument to exec() . The request reads data bytes of data of
the pathname string from the traced process’ context into the data buffer in user space
pointed to by addr.

In the typical case, data is equal to the value of the ttexec_data_t.tts_len member of the
ttstate_t structure returned via the TT_LWP_GET_STATEor other ttrace
requests returning a Lightweight Process (LWP or lwp) state. The length of the path does
not include a terminating null character. The data is available during the entire life of the
process.

The lwpid and addr2 arguments must be set to zero.

TT_PROC_GET_EVENT_MASK
This request returns the process-wide event flags and signal mask values.

The data argument specifies the number of bytes to be read from the context of the traced
process into the ttevent_t data structure in user space pointed to by addr.

The lwpid and addr2 arguments must be set to zero.

The ttevent_t data structure is as follows:

typedef struct {
sigset_t tte_signals;
ttevents_t tte_events;
tteopt_t tte_opts;

} ttevent_t;

The options provided in tte_opts control the behavior of child processes produced by
fork() and are as follows:

TTEO_NONE = 0x0
TTEO_NOSTRCCHLD = 0x1
TTEO_PROC_INHERIT = 0x2
TTEO_LWP_INHERIT = 0x4
TTEO_NORM_SIGTRAP = 0x8

If TTEO_NOSTRCCHLDis set, the child process resulting from a fork() will not be
traced. This makes it possible for a debugger to debug another debugger. The
TTEO_PROC_INHERITand TTEO_LWP_INHERIToptions allow events to be inherited
by child processes and/or threads. Refer to the EVENTS section below.

If TTEO_NORM_SIGTRAPis set, the SIGTRAP signal behaves normally. That is, it is get-
ting delivered (the default behavior is to drop these signals).

HP-UX Release 11.0: October 1997 − 2 − Section 2−−391

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

TT_PROC_SET_EVENT_MASK
This request allows the tracing process to establish events and signals the traced process
will respond to. Refer to the EVENTS section for a description of these events.

The addr argument is a pointer to a ttevent_t structure to be copied into the target
process. The data argument specifies the number of bytes to be transferred.

The lwpid and addr2 arguments must be set to zero.

TT_PROC_GET_FIRST_LWP_STATE
This request returns the ttstate_t structure associated with the first thread on the
stopped list. It resets the list pointer to the first entry in the list. The
TT_PROC_GET_NEXT_LWP_STATErequest (see below) provides the means to examine
the state of other stopped threads.

The data argument specifies the number bytes to be read from the context of the traced
process into the ttstate_t data structure in user space pointed to by addr. The lwpid
and addr2 arguments must be zero.

The ttstate_t structure provides the debugger with the means to query the system for
the state of a thread. It is established when a thread enters the debugger stopped state
and, except for the TTS_WAITEDFORbit, is invariant until the thread is resumed. Its lay-
out is as follows:

typedef struct {
pid_t tts_pid;
lwpid_t tts_lwpid;
uint64_t tts_user_tid;
ttevents_t tts_event;
ttsf_t tts_flags;
int tts_scno;
int tts_scnargs;
uint64_t tts_scarg[SCALL_MAXARGS];
union {

ttexec_data_t tts_exec;
ttfork_data_t tts_fork;
ttsignal_data_t tts_signal;
ttthread_data_t tts_thread;
ttsyscall_data_t tts_syscall;
ttexit_data_t tts_exit;
char tts_fill[128];

} tts_u;
} ttstate_t;

tts_pid is the process ID.

tts_lwpid is the lwpid of the stopped thread.

tts_user_tid is the thread’s user ID.

tts_event is the event that caused the stop (TTEVT_NONEif the thread stopped
because of a ttrace command).

The tts_flags provide information about the state of the thread before it was stopped.
The information specifies whether or not the thread has been waited for by
ttrace_wait() , whether or not it is processing a system call, whether it is a 32-bit or a
64-bit process and whether the thread is in the exit() system call. The values are as fol-
lows:

TTS_WASSUSPENDED = 0x0001
TTS_WASSLEEPING = 0x0002
TTS_WASRUNNING = 0x0004
TTS_WAITEDFOR =0x0008
TTS_INSYSCALL = 0x0010
TTS_IS32BIT = 0x0020
TTS_ATEXIT = 0x0040

The following three arguments provide information regarding the system call being exe-
cuted when the thread was stopped. This information is valid only if the

Section 2−−392 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

TTS_INSYSCALL bit is set in tts_flags .

tts_scno is the system call number.

tts_scnargs is the number of arguments of the system call.

tts_scarg is the argument list of the system call.

The data associated with a TTEVT_EXECevent is as follows:

typedef struct {
int tts_pathlen;

} ttexec_data_t;

tts_pathlen is the length of the pathname of the exec() system call.

The data associated with a TTEVT_FORKor TTEVT_VFORKevent is as follows:

typedef struct {
pid_t tts_fpid;
lwpid_t tts_flwpid;
int tts_isparent;

} ttfork_data_t;

tts_fpid is the process ID of the other side of the fork.

tts_flwpid is the thread ID of the other side of the fork.

tts_isparent is zero for the child event and one for the parent.

The data associated with a TTEVT_SIGNAL event is as follows:

typedef struct {
int tts_signo;
ttsigf_t tts_sigflags;
uint64_t tts_sigaction;
siginfo_t tts_siginfo;

} ttsignal_data_t;

tts_signal is the signal number.

tts_sigflags is TTSF_USERSIGINFOif a siginfo was delivered with the signal, 0
otherwise.

tts_sigaction is the disposition of the signal.

tts_siginfo is the siginfo , if applicable.

The data associated with a TTEVT_LWP_CREATE, TTEVT_LWP_TERMINATEor
TTEVT_LWP_ABORT_SYSCALLevent is as follows:

typedef struct {
lwpid_t tts_target_lwpid;

} ttthread_data_t;

tts_target_lwpid is the lwpid of the targeted lwp.

The data associated with a TTEVT_SYSCALLevent is as follows:

typedef struct {
int64_t tts_rval[2];
int tts_errno;

} ttsyscall_data_t;

The tts_rval fields are the return value(s) of the system call.

tts_errno is the error status if the system call failed.

The data associated with a TTEVT_LWP_EXITevent is as follows:

typedef struct {
int tts_exitcode;

} ttexit_data_t;

tts_exitcode is the exit code of the process.

HP-UX Release 11.0: October 1997 − 4 − Section 2−−393

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

TT_PROC_GET_NEXT_LWP_STATE
This request is identical to TT_PROC_GET_FIRST_LWP_STATEexcept that it returns
the state for the next thread on the stopped list. As events cause threads to stop, they are
added to this list. This provides a way for the tracing process to examine the state of all the
stopped threads in the target process. Both these requests return either a 1 (one) if valid
data is returned or 0 (zero) otherwise. Valid data is returned if the status is that there was
a stopped thread for which to return.

TT_PROC_GET_MPROTECT
This request allows the debugger to obtain protection information for a page in the address
space of the code being debugged. The addr argument specifies the address for which the
protection is to be obtained. The addr2 argument specifies the address of an integer in
which the protection data will be copied.

For this request, the lwpid and data arguments must be set to zero.

TT_PROC_SET_MPROTECT
This requests allows the debugger to modify the protection of the address space of the code
being debugged. The addr argument specifies the start address. The data argument
specifies the extent (in bytes) of the space to be modified. The addr2 argument contains the
new protection. Note that protection changes affect whole pages (see mprotect (2) for more
information).

For this request, the lwpid argument must be set to zero.

TT_PROC_SET_SCBM
This request allows the debugger to pass a bitmap to the kernel indicating which system
calls should cause a debugger stop.

The addr argument must be set to TTSCBM_SELECTor TTSCBM_UNSELECTto indicate
whether the bitmap represents a positive (meaning that the calls in the bitmap will result
in a stop) or a negative (meaning that all calls except those in the bit map will result in a
stop) list.

The data argument is the size of the bitmap, in bytes. A size of zero indicates that the
current bitmap, if any, should be cleared.

The addr2 argument is the user address where the bitmap is located. If data is zero, this
value must be zero too.

The lwpid argument must be zero.

TT_PROC_EXIT
This request causes the traced process to terminate. It has the same consequence as
exit() being invoked by one of the process threads. The lwpid, addr, data and addr2
arguments must be zero.

TT_PROC_CORE
This request causes the traced process to generate a core file in the process’s current work-
ing directory. The core file is named core.pid where pid is the process ID of the target pro-
cess. The process’s state is left unchanged. The lwpid, addr, data and addr2 arguments
must be zero.

All other requests are targeted to a specific thread in the traced process. Also, all other requests require
both the pid of the traced process and an lwpid specifying a valid thread in the process being traced. These
requests are prefixed by TT_LWP_and are as follows:

TT_LWP_STOP
This request causes the thread identified by lwpid to stop executing. If the thread is already stopped
by the debugger, or by an event, an error is returned.

The addr, data and addr2 arguments must be zero.

TT_LWP_CONTINUE
This request causes the thread identified by lwpid to resume execution or, rather, to return to the
state it was in prior to being stopped by the debugger. If the thread had not previously been
stopped by the debugger, an error is returned.

Section 2−−394 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

If addr is not TT_NOPC, that value is loaded in the program counter before execution is resumed.
Unexpected behavior will result if this value is not within the same function since only the PC, not the
context, is being modified.

If data is non-zero, it is expected to be a valid signal number and the thread will continue as if it had
received this signal.

The addr2 argument must be zero.

TT_LWP_SINGLE
This request causes the stopped thread identified by lwpid to resume execution for one machine
instruction. It causes a flag to be set so that an interrupt occurs upon the completion of one machine
instruction, and then executes the same steps as listed above for the TT_LWP_CONTINUErequest.

TT_LWP_GET_EVENT_MASK
This request is the same as TT_PROC_GET_EVENT_MASKexcept for the thread identified by lwpid.

TT_LWP_SET_EVENT_MASK
This request is the same as TT_PROC_SET_EVENT_MASKexcept for the thread identified by lwpid.

TT_LWP_GET_STATE
This calls returns the state of the thread identified by lwpid. If the thread was not previously stopped
by the debugger or waiting to be continued after an event, an error is returned.

SECURITY FEATURES
For security reasons, ttrace() inhibits the set-user-ID facility on subsequent exec() calls.

EVENTS
As noted earlier, a tracing process can set event flags in the context of a traced process, or its individual
threads, to cause the threads to respond to specific events during their execution. When an event flag is set
in the context of the process, all threads in the process respond to the event. When set in the context of a
thread, only the specific thread will respond to the event.

IMPORTANT: If an event is requested by the process, the event mask of the thread is not examined. For
the event mask of the thread to be significant, the process event must be be unset. Similarly, if an event
option is enabled in the process, the option for the thread is not considered. Event masks may be inherited
across fork() using the tte_opts options in the ttevent_t structure. If TTEO_PROC_INHERIT
is set, the child process inherits the event mask of its parent. If TTEO_LWP_INHERITis set, the lwp
inherits the event mask of the lwp that invoked fork() . If the latter is set, the lwp created by
lwp_create() also inherits the event mask of the creating thread.

These events are:

TTEVT_SIGNAL This event flag indicates that the traced thread needs to examine signal mask bits when
processing signals. This means that, by default, threads stop when receiving a signal. If
the signal being processed has its mask bit set, signal processing continues as though
the process were not traced: the traced thread is not stopped, and the tracing process is
not notified of the signal. On the other hand, if the signal mask bit is not set for the sig-
nal being processed, the traced thread is stopped and the tracing process is notified via
ttrace_wait() .

Note that the SIGKILL signal can never be unmasked. It behaves as though its mask
bit were always set. This means that a SIGKILL signal cannot be used to stop a traced
thread. The SIGTRAP signal is also special in that it is used to stop traced threads
when they respond to a trap, such as a breakpoint or a single step. Consequently,
masking SIGTRAP, even though allowed, will result in unexpected behavior in these
conditions.

TTEVT_FORK This event flag indicates that the traced thread needs to take special action when it
invokes fork() . When set, both the parent thread and the initial thread in the child
process stop (after the child process is marked as a traced process and adopts its
parent’s debugger). Both threads log the fact that they stopped in response to a
TTEVT_FORKevent. The parent thread provides the pid of the child process in the
appropriate portion of the ttstate_t structure. The initial thread of the child pro-
cess provides the pid of the parent in the same location. See the ttstate_t structure
description for further details.

HP-UX Release 11.0: October 1997 − 6 − Section 2−−395

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

TTEVT_VFORK This event flag indicates that the traced thread needs to take special action when it
invokes vfork() . The behavior is identical to that of TTEVT_FORK but it is impor-
tant to note that the caveats with respect to vfork() , continue to apply here. In par-
ticular, it needs to be remembered that when the child process stops, its parent is
asleep, and that the child borrows the parent’s address space until a call to exec() or
an exit (either by a call to exit() or abnormally) takes place. Continuing the parent
process before the above steps take place results in an error.

TTEVT_EXEC This event flag indicates that a traced thread needs to notify the debugger upon comple-
tion of loading the new executable file, in the exec() system call. The length of the
pathname string (not including a null terminating character) is returned in the
ttstate_t structure and the path may subsequently be obtained using the
TT_PROC_GET_PATHNAMErequest.

TTEVT_SYSCALL_RETURN
This event flag indicates that the traced process will notify the debugger upon return of
all system calls. The traced process will also provide the following information: the sys-
tem call number, its number of arguments and all its arguments, its return value and its
error return in the ttstate_t structure. If the system call is a fork() , vfork()
or exec() and if, respectively, the TTEVT_FORK, TTEVT_VFORKor TTEVT_EXEC
event is set, only the notification associated with these events is performed. See the
TT_PROC_SET_SCBMrequest.

TTEVT_SYSCALL_ENTRY
This event flag requests notification of system call entry points. By default, all system
calls stop at this event if it is selected. The information provided is the same as for
TTEVT_SYSCALL_RETURNevents but the return value and error are always zero.

TTEVT_SYSCALL_RESTART
Identical to TTEVT_SYSCALL_ENTRYbut for system call restarts.

TTEVT_EXIT This event flag indicates that the traced process needs to notify the debugger action
when it invokes exit() . When set, the traced thread stops while still potentially mul-
tithreaded.

TTEVT_LWP_CREATE
This event flag indicates that the debugger wants to be notified when the
lwp_create() system call is invoked to create a thread. When set, the calling
thread stops and provides the debugger with the lwpid of the newly created thread.

TTEVT_LWP_EXIT
This event flag indicates that the debugger wants to be notified when a thread is exiting
via the lwp_exit() system call. The thread stops upon entry to the system call.

TTEVT_LWP_TERMINATE
This event flag indicates that the debugger wants to be notified when a caller thread
invokes the lwp_terminate() call on a target thread. When set, the calling thread
stops upon entering the system call and provides the lwpid of the thread to be ter-
minated in the ttstate_t structure.

TTEVT_LWP_ABORT_SYSCALL
This event flag indicates that the debugger is to be notified when the
lwp_abort_syscall() system call is invoked. The lwpid of the target thread is
provided in the ttstate_t structure.

DEPENDENCIES
If the addr argument to a TT_LWP_CONTINUEor TT_LWP_SINGLE request is not TT_NOPC, the
Instruction Address Offset Queue (program counter) is loaded with the values addr and addr+4 before exe-
cution resumes. Otherwise, execution resumes from the point where it was interrupted.

Additional requests are available:

TT_LWP_RUREGSWith this request, the words at offset addr in the save_state structure are
returned to the tracing process. The data argument is the size of the read. The
addr2 argument points to the location in the debugger space where the data will be
written. The addr argument must be word-aligned and addr+data must be less or
equal to sizeof (save_state_t) (see <machine/save_state.h>).

Section 2−−396 − 7 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

NOTE: Only 4 and 8 bytes reads and writes are currently supported.

TT_LWP_WUREGSWith this request, data bytes of data pointed to by addr2 are written at offset addr in
the save_state structure. Only these locations can be written in this way: the
general registers, most floating-point registers, a few control registers, and certain
bits of the interruption processor status word.

NOTE: Only 4 and 8 bytes reads and writes are currently supported.

ERRORS
If a request fails, ttrace returns -1 and errno is set to one of the following:

[EINVAL] request is an illegal number.

[EINVAL] A non-zero value has been passed in a parameter expecting a zero value or vice-versa.

[EINVAL] The data argument of TT_PROC_SETTRCor TT_PROC_ATTACH is not
TT_VERSION.

[EINVAL] Size too large for data transfer.

[EINVAL] Invalid signal number.

[EINVAL] Misaligned request or not a word multiple (TT_PROC_RDTEXT,
TT_PROC_WRTEXT).

[EINVAL] Invalid signal (TT_LWP_CONTINUE, TT_LWP_SINGLE).

[EINVAL] Invalid offset (TT_LWP_RUREGS, TT_LWP_WUREGS).

[EINVAL] ptrace() and ttrace() requests are being mixed.

[EINVAL] An offset in the save_state structure is not word-aligned.

[EINVAL] An invalid register is targeted by TT_LWP_WUREGS.

[EINVAL] The size argument to a TT_PROC_GET_PATHNAMEis larger than MAXPATHLEN.

[EACCES] The pid argument to the TT_PROC_ATTACHis the pid of the invoker.

[EACCES] The process is already being traced.

[EACCES] Attempting to trace a process whose binary resides on a soft/interruptible NFS mount
point.

[EACCES] The executable image of the process being attached resides across an interruptible
NFS mount.

[EFAULT] Invalid user address.

[EPERM] The specified thread cannot be attached for tracing.

[ESRCH] pid and/or lwpid identify a process or a thread to be traced that does not exist or has
not executed a ttrace() with the TT_PROC_SETTRCrequest.

[EINTR] Cannot suspend process or attach is interrupted (TT_PROC_ATTACH).

[EPROTO] Attempting to stop a thread already stopped by the debugger.

[EPROTO] Attempting to resume a thread not stopped by the debugger.

[EPROTO] Attempting to read or write registers while the thread is not stopped.

[EPROTO] Attempting to obtain the state of a thread which was not stopped by the debugger.

[EPROTO] Invoked before an exec event took place (TT_PROC_GET_PATHNAME).

[EPROTO] The process is exiting and the request is not allowed in this condition.

[EPROTO] The debugger is attempting to modify wide registers after having modified narrow
registers.

[EPROTO] The debugger is attempting to modify the address space of a process in the middle of a
vfork.

[ENODATA] Data in this register is not readable or not writable at this time.

HP-UX Release 11.0: October 1997 − 8 − Section 2−−397

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace(2) ttrace(2)

[EDEADLK] One thread of a multithreaded process (p1) has performed a vfork() , the child (p2)
is stopped at the vfork event and the debugger is attempting to stop or resume a
thread in the parent process (p1).

[ENOMEM] System is out of memory.

AUTHOR
ttrace was developed by HP.

SEE ALSO
adb(1), fork(2), vfork(2), exec(2), signal(2), wait(2), ttrace_wait(2).

STANDARDS CONFORMANCE
ttrace() : LOCAL

Section 2−−398 − 9 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace_wait(2) ttrace_wait(2)

NAME
ttrace_wait - wait for ttrace event

SYNOPSIS
#include <sys/ttrace.h>

int ttrace_wait(pid_t pid, lwpid_t lwpid, ttwopt_t option,
ttstate_t *tsp, size_t size);

DESCRIPTION
The ttrace_wait() system call provides a means to wait for a ttrace() event to occur. A tracing
process (debugger) will normally invoke ttrace_wait() after a process or any of its threads has been
set running.

ttrace_wait() synchronizes tracing requests directed at threads within the traced process. This
mechanism differs from the process-oriented synchronization provided by wait() or waitpid() (see
wait(2)).

The pid argument identifies the process-id of a traced process which the debugger expects to stop. If pid is
a positive value, and lwpid is zero, then ttrace_wait() will wait for any thread in the traced process
identified by pid to stop in response to an outstanding ttrace event. The information concerning the thread
that hit the event point is available in the ttstate_t structure (see ttrace(2)).

The lwpid argument identifies the Lightweight Process (LWP) id of a thread in the traced process pid for
which the debugger must wait to validate ttrace() request completion. If both pid and lwpid are non-
zero values, ttrace_wait() suspends the calling process until the specified LWP in the traced process
stops.

When multiple child processes are simultaneously traced, ttrace_wait() can be used to identify the
process-id and LWP id of a thread which stopped in response to any outstanding ttrace() request esta-
blished for the group of traced child processes. This is achieved by invoking ttrace_wait() with both
pid and lwpid set to 0 (zero).

A zero pid and non-zero lwpid will return an error.

The option argument must specify either TTRACE_WAITOKor TTRACE_NOWAIT. These values control
the synchronizing effect of ttrace_wait() on the calling process. The TTRACE_NOWAITvalue causes
ttrace_wait() to behave in non-blocking mode and return to the calling process immediately whether
or not a pre-existing ttrace request completed on behalf of the tracing process. With TTRACE_WAITOK,
ttrace_wait() suspends the calling process until the requested pid and/or LWP stop.

As mentioned above, the tsp argument references a ttstate_t structure (see ttrace(2)) which provides all the
needed information regarding the stopped thread. The size argument specifies the size of the ttstate_t
structure referenced by addr.

RETURN VALUE
If the call succeeds, ttrace_wait() will return 1 (one) if the event was never waited for, 0 (zero) other-
wise. If the call fails, -1 is returned and errno is set to the appropriate value.

ERRORS
The ttrace_wait() system call fails if one or more of the following is true:

[EINVAL] pid is zero and lwpid is non-zero.

[EINVAL] The option is invalid.

[EINVAL] The lwpid is not controlled by process pid.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−399

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

t

ttrace_wait(2) ttrace_wait(2)

[ESRCH] The pid or lwpid do not identify an existing process (LWP).

[EACCES] The pid does not identify a process debugged by the invoking process.

[ECHILD] The process (LWP) died while it was waited for.

[EINTR] ttrace_wait() was interrupted by a signal.

[EFAULT] An invalid address was given for the kernel to write data into.

AUTHOR
ttrace_wait() was developed by HP.

SEE ALSO
ttrace(2), wait(2).

Section 2−−400 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

ualarm(2) ualarm(2)

NAME
ualarm - set the interval timer

SYNOPSIS
#include <unistd.h>

useconds_t ualarm(useconds_t useconds, useconds_t interval);

DESCRIPTION
The ualarm() function causes the SIGALRM signal to be generated for the calling process after the
number of real-time microseconds specified by the useconds argument has elapsed. When the interval argu-
ment is non-zero, repeated timeout notification occurs with a period in microseconds specified by the inter-
val argument. If the notification signal, SIGALRM, is not caught or ignored, the calling process is ter-
minated.

Implementations may place limitations on the granularity of timer values. For each interval timer, if the
requested timer value requires a finer granularity than the implementation supports, the actual timer
value will be rounded up to the next supported value.

Interactions between ualarm() and either alarm() or sleep() are unspecified.

RETURN VALUE
The ualarm() function returns the number of microseconds remaining from the previous ualarm()
call. If no timeouts are pending or if ualarm() has not previously been called, ualarm() returns 0.

ERRORS
No errors are defined.

APPLICATION USAGE
The ualarm() function is a simplified interface to setitimer() , and uses the ITIMER_REAL inter-
val timer.

SEE ALSO
alarm(2), getitimer(2), sleep(3C), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−401

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

ulimit(2) ulimit(2)

NAME
ulimit - get and set user limits

SYNOPSIS
#include <ulimit.h>

long ulimit(int cmd, ...);

Remarks
The ANSI C ", ... " construct denotes a variable length argument list whose optional [or required]
members are given in the associated comment (/* */).

DESCRIPTION
ulimit() provides for control over process limits. Available values for cmd are:

UL_GETFSIZE Get the file size limit of the process. The limit is in units of 512-byte blocks and
is inherited by child processes. Files of any size can be read. The optional
second argument is not used.

UL_SETFSIZE Set the file size limit of the process to the value of the optional second argument
which is taken as a long. Any process can decrease this limit, but only a process
with an effective user ID of super-user can increase the limit. Note that the
limit must be specified in units of 512-byte blocks.

UL_GETMAXBRK Get the maximum possible break value (see brk(2)). Depending on system
resources such as swap space, this maximum might not be attainable at a given
time. The optional second argument is not used.

ERRORS
ulimit() fails if one or more of the following conditions is true.

[EINVAL] cmd is not in the correct range.

[EPERM] ulimit() fails and the limit is unchanged if a process with an effective user ID
other than super-user attempts to increase its file size limit.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Errors return a −1, with errno set to indi-
cate the error.

SEE ALSO
brk(2), write(2).

STANDARDS CONFORMANCE
ulimit() : AES, SVID2, SVID3, XPG2, XPG3, XPG4

Section 2−−402 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

umask(2) umask(2)

NAME
umask - set and get file creation mask

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t cmask);

DESCRIPTION
umask() sets the process’s file mode creation mask to umask() and returns the previous value of the
mask. Only the file access permission bits of the masks are used.

The bits set in cmask specify which permission bits to turn off in the mode of the created file, and should be
specified using the symbolic values defined in stat(5).

EXAMPLES
The following creates a file named path in the current directory with permissions
S_IRWXU|S_IRGRP|S_IXGRP, so that the file can be written only by its owner, and can be read or exe-
cuted only by the owner or processes with group permission, even though group write permission and all
permissions for others are passed in to creat() .

#include <sys/types.h>
#include <sys/stat.h>

int fildes;

(void) umask(S_IWGRP|S_IRWXO);
fildes = creat("path", S_IRWXU|S_IRWXG|S_IRWXO);

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), mknod(1M), chmod(2), creat(2), mknod(2), open(2).

STANDARDS CONFORMANCE
umask() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−403

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

umount(2) umount(2)

NAME
umount - unmount a file system

SYNOPSIS
#include <sys/mount.h>

int umount(const char *name);

DESCRIPTION
umount() requests that a previously mounted file system contained on the block special device identified
by name be unmounted. name is a pointer to a path name. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary interpretation.

umount() can also request that a file system mounted previously on the directory identified by name be
unmounted. After unmounting the file system, name reverts to its ordinary interpretation.

umount() can be invoked only by the user with the appropriate privilege.

NETWORKING FEATURES
NFS

path must indicate a directory name when unmounting an NFS file system.

RETURN VALUE
If successful, umount() returns a value of 0. Otherwise, it returns a value of −1 and sets errno to
indicate the error.

ERRORS
umount() fails if one or more of the following are true:

[EPERM] The effective user ID of the process is not that of a user with appropriate privileges.

[ENOENT] name does not exist.

[ENOTBLK] name is not a block special device.

[EINVAL] name is not mounted.

[EBUSY] A file on name is busy.

[EFAULT] name points outside the allocated address space of the process. Reliable detection of this
error is implementation dependent.

[ENXIO] The device associated with name does not exist.

[ENOTDIR] A component of name is not a directory.

[ENOENT] name is null.

[ENAMETOOLONG]
name exceeds PATH_MAXbytes, or a component of name exceeds NAME_MAXbytes while
_POSIX_NO_TRUNCis in effect.

[EACCES] A component of the path prefix of name denies search permission.

[ELOOP] Too many symbolic links were encountered in translating the path name.

WARNINGS
If umount() is called from the program level (that is, not from the mount(1M) level), the table of
mounted devices contained in /etc/mnttab is not updated automatically. Updating of /etc/mnttab
is performed by the mount and syncer commands (see mount(1M) and syncer(1M) for more informa-
tion).

SEE ALSO
mount(1M), syncer(1M), mount(2), vfsmount(2).

STANDARDS CONFORMANCE
umount() : SVID2, SVID3, XPG2

Section 2−−404 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

uname(2) uname(2)

NAME
uname(), setuname() - get information about computer system; set node name (system name)

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);

int setuname(const char *name, size_t namelen);

DESCRIPTION
uname()

The uname() system call places information identifying the computer system in the utsname structure
pointed to by name.

The utsname structure, defined in <sys/utsname.h> , is set up as follows:

#define UTSLEN 9
#define SNLEN 15

char sysname[UTSLEN];
char nodename[UTSLEN];
char release[UTSLEN];
char version[UTSLEN];
char machine[UTSLEN];
char idnumber[SNLEN];

Each field is a null-terminated string.

The sysname field contains the name of the operating system, HP-UX on standard HP-UX systems.

The nodename field contains the name by which the computer system is known in a communications net-
work.

The release field contains the release identifier of the operating system, such as A.09.01 .

The version field contains additional information about the operating system. This value can change in
future releases. The first character of the version field identifies the license level:

A Two-user system
B 16-user system
C 32-user system
D 64-user system
E 8-user system
U 128-user, 256-user, or unlimited-user system

The machine field contains the hardware and model identifiers of the computer system.

The idnumber field contains a unique identification number within that class of hardware, possibly a
hardware or software serial number. This field contains a null string if there is no identification number.

setuname()
The setuname() system call sets the node name (system name), as returned in the nodename field of
the utsname structure, to name, which has a length of namelen characters. This is usually executed by
/sbin/init.d/hostname at system boot time. Names are limited to UTSLEN - 1 characters;
UTSLENis defined in <sys/utsname.h> .

RETURN VALUE
uname() and setuname() return the following values:

n Successful completion. n is a nonnegative value.
-1 Failure. errno is set to indicate the error.

ERRORS
If uname() or setuname() fails, errno is set to one of the following values.

[EFAULT] name points to an illegal address. The reliable detection of this error is implementation
dependent.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−405

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

uname(2) uname(2)

[EPERM] setuname() was attempted by a process lacking appropriate privileges.

AUTHOR
uname() was developed by AT&T and HP.

SEE ALSO
hostname(1), uname(1), setuname(1M), gethostname(2), sethostname(2).

STANDARDS CONFORMANCE
uname() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−406 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

unlink(2) unlink(2)

NAME
unlink - remove directory entry; delete file

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

DESCRIPTION
The unlink() system call removes the directory entry named by the path name pointed to by path.

When all links to a file have been removed and no process has the file open, the space occupied by the file is
freed and the file ceases to exist. If one or more processes have the file open when the last link is removed,
only the directory entry is removed immediately so that processes that do not already have the file open
cannot access the file. After all processes close their references to the file, if there are no more links to the
file, the space occupied by the file is then freed and the file ceases to exist.

RETURN VALUE
unlink() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If unlink() fails, errno is set to one of the following values:

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EACCES] The process does not have read/write access permission to the parent directory.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[EFAULT] path points outside the process’s allocated address space. The reliable detection
of this error is implementation dependent.

[ELOOP] Too many symbolic links were encountered in translating the path name.

[ENAMETOOLONG] The length of the specified path name exceeds PATH_MAXbytes, or the length of
a component of the path name exceeds NAME_MAX bytes while
_POSIX_NO_TRUNCis in effect.

[ENOENT] The named file does not exist (for example, path is null or a component of path
does not exist).

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The directory containing the file to be removed has the sticky bit set and neither
the containing directory nor the file to be removed are owned by the effective
user ID.

[EPERM] The named file is a directory and the effective user ID is not a user with
appropriate privileges.

[EROFS] The directory entry to be unlinked is part of a read-only file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure (shared text) file
that is being executed.

WARNINGS
If unlink() is used on a directory that is not empty (contains files other than . and ..), the directory is
unlinked, the files become orphans, and the directory link count is left with an inaccurate value unless they
are linked by some other directory.

If unlink() is used on a directory that is empty (contains only the files . and ..), the directory is
unlinked, but the parent directory’s link count is left with an inaccurate value.

In either of the above cases, the file system should be checked using fsck (see fsck(1M)). To avoid these
types of problems, use rmdir() instead (see rmdir(2)).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−407

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

unlink(2) unlink(2)

SEE ALSO
rm(1), close(2), link(2), open(2), rmdir(2), remove(3C).

STANDARDS CONFORMANCE
unlink() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−408 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

usleep(2) usleep(2)

NAME
usleep - suspend execution for an interval

SYNOPSIS
#include <unistd.h>

int usleep(useconds_t useconds);

DESCRIPTION
The usleep() function suspends the current process from execution for the number of microseconds
specified by the useconds argument. Because of other activity, or because of the time spent in processing
the call, the actual suspension time may be longer than the amount of time specified.

The useconds argument must be less than 1,000,000. If the value of useconds is 0, then the call has no
effect.

The usleep() function uses the process’ real-time interval timer to indicate to the system when the pro-
cess should be woken up.

There is one real-time interval timer for each process. The usleep() function will not interfere with a
previous setting of this timer. If the process has set this timer prior to calling usleep() , and if the time
specified by useconds equals or exceeds the interval timer’s prior setting, the process will be woken up
shortly before the timer was set to expire.

Implementations may place limitations on the granularity of timer values. For each interval timer, if the
requested timer value requires a finer granularity than the implementation supports, the actual timer
value will be rounded up to the next supported value.

Interactions between usleep() and either alarm() or sleep() are unspecified.

RETURN VALUE
On successful completion, usleep() returns 0. Otherwise, it returns −1 and sets errno to indicate the
error.

ERRORS
The usleep() function may fail if:

[EINVAL] The time interval specified 1,000,000 or more microseconds.

APPLICATION USAGE
The usleep() function is included for its historical usage. The setitimer() function is preferred over
this function.

SEE ALSO
alarm(2), getitimer(2), sigaction(2), sleep(3C), <unistd.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−409

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

ustat(2) ustat(2)

NAME
ustat() - get mounted file system statistics

SYNOPSIS
#include <ustat.h>

int ustat(dev_t dev, struct ustat *buf);

DESCRIPTION
The ustat() system call returns information about a mounted file system. dev is a device number identi-
fying a device containing a mounted file system. buf is a pointer to a ustat structure (defined in
<ustat.h>) that includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name or null */
char f_fpack[6]; /* Filsys pack name or null */
int f_blksize; /* Block size */

The value of f_tfree is the number of free blocks of size f_blksize .

RETURN VALUE
ustat() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If ustat() fails, errno is set to one of the following values.

[EFAULT] buf points outside the process’s allocated address space. The reliable detection of this
error is implementation dependent.

[EINVAL] dev is not the device number of a device containing a mounted file system.

WARNINGS
For some file systems, the number of free inodes does not change. Such file systems will return -1 in the
field f_tinode .

For some file systems, the inodes can be dynamically allocated. For such file systems, the field f_tinode
contains the number of free inodes at the current time.

AUTHOR
ustat() was developed by AT&T and HP.

SEE ALSO
touch(1), stat(2), statvfs(2), fs(4), fs_vxfs(4).

STANDARDS CONFORMANCE
ustat() : SVID2, SVID3, XPG2

Section 2−−410 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

utime(2) utime(2)

NAME
utime() - set file access and modification times

SYNOPSIS
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION
The utime() system call sets the access and modification times of the file to which the path argument
refers.

If times is a NULL pointer, the access and modification times of the file are set to the current time. A pro-
cess must be the owner of the file or have write permission on the file to use utime() in this manner.

If times is not a NULL pointer, times is interpreted as a pointer to a utimbuf structure, and the access and
modification times are set to the values contained in the designated structure. Only the owner of the file or
a user with appropriate privileges can use utime() this way.

The following times in the utimbuf structure defined in <utime.h> are measured in seconds since
00:00:00 UTC (Coordinated Universal Time), January 1, 1970.

time_t actime; /* access time */
time_t modtime; /* modification time */

RETURN VALUE
utime() returns the following values:

0 Successful completion.
-1 Failure. errno is set to indicate the error.

ERRORS
If utime() fails, errno is set to one of the following values.

[EACCES] Search permission is denied by a component of the path prefix.

[EACCES] The effective user ID is not a user with appropriate privileges, and not the owner of
the file, times is a NULL pointer, and write access is denied.

[EFAULT] times is not a NULL pointer, and it points outside the process’s allocated address
space. The reliable detection of this error is implementation-dependent.

[EFAULT] path points outside the process’s allocated address space. The reliable detection of
this error is implementation-dependent.

[ENAMETOOLONG]
The length of the specified path name exceeds PATH_MAXbytes, or the length of a
component of the path name exceeds NAME_MAXbytes while _POSIX_NO_TRUNCis
in effect.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The effective user ID is not a user with appropriate privileges. and not the owner of
the file, and times is not a NULL pointer.

[EROFS] The file system containing the file is mounted read-only.

DEPENDENCIES
NFS

utime() may return [EPERM] when invoked on a remote file owned by a superuser, even if the invoking
user has write permission on the file.

SEE ALSO
touch(1), stat(2).

STANDARDS CONFORMANCE
utime() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

HP-UX Release 11.0: October 1997 − 1 − Section 2−−411

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

u

utimes(2) utimes(2)

NAME
utimes - set file access and modification times

SYNOPSIS
#include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

DESCRIPTION
The utimes() function sets the access and modification times of the file pointed to by the path argument
to the value of the times argument. The utimes() function allows time specifications accurate to the
microsecond.

For utimes() , the times argument is an array of timeval structures. The first array member
represents the date and time of last access, and the second member represents the date and time of last
modification. The times in the timeval structure are measured in seconds and microseconds since the
Epoch, although rounding toward the nearest second may occur.

If the times argument is a null pointer, the access and modification times of the file are set to the current
time. The effective user ID of the process must be the same as the owner of the file, or must have write
access to the file or appropriate privileges to use this call in this manner. Upon completion, utimes() will
mark the time of the last file status change, st_ctime , for update.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to indicate the
error, and the file times will not be affected.

ERRORS
The utimes() function will fail if:

[EACCES] Search permission is denied by a component of the path prefix; or the times
argument is a null pointer and the effective user ID of the process does not
match the owner of the file and write access is denied.

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENAMETOOLONG] The length of the path argument exceeds {PATH_MAX} or a pathname
component is longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty
string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not a null pointer and the calling process’ effective
user ID has write access to the file but does not match the owner of the file
and the calling process does not have the appropriate privileges.

[EROFS] The file system containing the file is read-only.

The utimes() function may fail if:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

SEE ALSO
<sys/time.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−412 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

v

vfork(2) vfork(2)

NAME
vfork - spawn new process; share virtual memory

SYNOPSIS
#include <unistd.h>

pid_t vfork(void);

REMARKS
vfork() is a higher performance version of fork() that is provided on some systems where a perfor-
mance advantage can be attained.

If the calling process is multi-threaded, the newly created child process will only contain one thread. This
one thread will be a copy of the thread calling vfork() .

vfork() differs from fork() only in that the child process can share code and data with the calling
process (parent process). This speeds cloning activity significantly at a risk to the integrity of the parent
process if vfork() is misused.

The use of vfork() for any purpose except as a prelude to an immediate exec() or exit() is not
supported. Any program that relies upon the differences between fork() and vfork() is not portable
across HP-UX systems.

All HP-UX implementations must provide the entry vfork() , but it is permissible for them to treat it
identically to fork . On some implementations the two are not distinguished because the fork() imple-
mentation is as efficient as possible. Other versions may do the same to avoid the overhead of supporting
two similar calls.

DESCRIPTION
vfork() can be used to create new processes without fully copying the address space of the old process.
If a forked process is simply going to do an exec() (see exec(2)), the data space copied from the parent to
the child by fork() is not used. This is particularly inefficient in a paged environment, making vfork
is particularly useful. Depending upon the size of the parent’s data space, vfork() can give a significant
performance improvement over fork() .

vfork() differs from fork() in that the child borrows the parent’s memory and thread of control until
a call to exec() or an exit (either by a call to exit() or abnormally (see exec(2) and exit(2)). The
parent process is suspended while the child is using its resources.

vfork() returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

vfork() can normally be used just like fork() . It does not work, however, to return while running in
the child’s context from the procedure which called vfork() since the eventual return from vfork()
would then return to a no longer existent stack frame. Be careful, also, to call _exit() rather than
exit() if you cannot exec() , since exit() flushes and closes standard I/O channels, thereby damag-
ing the parent process’s standard I/O data structures. (Even with fork() it is wrong to call exit()
since buffered data would then be flushed twice.)

The [vfork ,exec] window begins at the vfork() call and ends when the child completes its exec()
call.

RETURN VALUE
Upon successful completion, vfork() returns a value of 0 to the child process and returns the process ID
of the child process to the parent process. Otherwise, a value of −1 is returned to the parent, no child pro-
cess is created, and errno is set to indicate the error.

ERRORS
vfork() fails and no child process is created if any of the following conditions are encountered:

[EAGAIN] The system-wide limit on the total number of processes under execution would be
exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execution by a sin-
gle user would be exceeded.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−413

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

v

vfork(2) vfork(2)

DEPENDENCIES
Series 800

Process times for the parent and child processes within the [vfork ,exec] window may be inaccurate.

Parent and child processes share the same stack space within the [vfork ,exec] window. If the size
of the stack has been changed within this window by the child process (return from or call to a func-
tion, for example), it is likely that the parent and child processes will be killed with signal SIGSEGV
or SIGBUS.

In the [vfork ,exec] window, a call to signal() (see signal(2) that installs a catching function
can affect handling of the signal by the parent. The parent is not affected if the handling is being set
to SIG_DFL or SIG_IGN , or if either sigaction() or sigvector() is used (see sigaction(2)
and sigvector (2)).

AUTHOR
vfork() was developed by the University of California, Berkeley.

SEE ALSO
exec(2), exit(2), fork(2), wait(2).

Section 2−−414 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

v

vfsmount(2) vfsmount(2)

NAME
vfsmount - mount a file system

SYNOPSIS
#include <sys/mount.h>

int vfsmount(int type,
const char *dir,
int flags,
caddr_t data);

Remarks
This routine is included only for compatibility with past releases. It works only with UFS (HFS), NFS, and
CDFS file systems. For maximum portability and improved functionality, new applications should use the
mount() system call (see mount(2)).

DESCRIPTION
The vfsmount() system call attaches a file system to a directory. After a successful return, references
to directory dir refer to the root directory of the newly mounted file system. dir is a pointer to a null-
terminated string containing a path name. dir must exist already, and must be a directory. Its old con-
tents are inaccessible while the file system is mounted.

type indicates the type of the file system. It must be one of the types described below. vfsmount() does
not check that the file system is actually of type type; if type is incorrect, vfsmount() may cause the pro-
cess to hang. To prevent such problems, statfsdev() (see statfsdev(3C)) should be called before
vfsmount() to check the file system type, which statfsdev() places in the f_fsid[1] field of the
statfs structure that it returns.

The flags argument determines whether the file system can be written to. It also controls whether pro-
grams from the mounted file system are allowed to have set-user-ID execution. Physically write-protected
and magnetic tape file systems must be mounted read-only. Failure to do so results in a return of −1 by
vfsmount() and a value of [EIO] in errno . The following values for the flags argument are defined in
<sys/mount.h> :

M_RDONLY Mount done as read-only.

M_NOSUID Execution of set-user-ID programs not permitted.

data is a pointer to a structure containing arguments specific to the value contained in type. The following
values for type are defined in <sys/mount.h> :

MOUNT_CDFSMount a local CD-ROM file system. data points to a structure of the following format:

struct cdfs_args {
char *fspec;

};

fspec points to the name of the block special file that is to be mounted.

MOUNT_UFS Mount a local HFS file system. data points to a structure of the following format:

struct ufs_args {
char *fspec;
int flags;

};

fspec points to the name of the block special file that is to be mounted. This is identi-
cal in use and function to the first argument of mount() (see mount(2)).

flags points to a bit map that sets options. The following values of the bits are defined
in <sys/mount.h> :

MS_DELAY Specify that the writes to disks are to be delayed till the buffer
needs to be reused. This is the default on Series 800 systems, as
it was prior to release 10.0.

MS_BEHIND Specify that the writes to disks are to be done asynchronously,
where possible, without waiting for completion. This is the
default on Series 700 systems, as it was prior to release 10.0.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−415

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

v

vfsmount(2) vfsmount(2)

MS_BEHINDand MS_DELAYare mutually exclusive.

MS_NO_FSASYNCSpecify that rigorous posting of file system metadata is to be
used. This is the default.

MS_FSASYNC Specify that relaxed posting of file system metadata is to be
used. This may lead to better performance for certain applica-
tions; but there is increased potential for data loss in case of a
crash.

MS_FSASYNCand MS_NO_FSASYNCare mutually exclusive.

NOTES
The MOUNT_NFStype is no longer supported through this interface.

RETURN VALUE
vfsmount() returns the following values:

0 Successful completion.
-1 Failure. No file system is mounted. errno is set to indicate the error.

ERRORS
If vfsmount() fails, errno is set to one of the following values.

[EBUSY] dir is not a directory, or another process currently holds a reference to it.

[EBUSY] No space remains in the mount table.

[EBUSY] The superblock for the file system had a bad magic number or an out-of-range block size.

[EBUSY] Not enough memory was available to read the cylinder group information for the file sys-
tem.

[EFAULT] data or dir points outside the allocated address space of the process.

[EINVAL] type is not MOUNT_UFS, or MOUNT_CDFS.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EIO] An attempt was made to mount a physically write protected or magnetic tape file system as
read-write.

[ELOOP] Too many symbolic links were encountered while translating the path name of file system
referred to by data or dir.

[ENAMETOOLONG]
The path name of the file system referred to by data or dir is longer than PATH_MAX
bytes, or the length of a component of the path name exceeds NAME_MAXbytes while
_POSIX_NO_TRUNCis in effect.

[ENOENT] The file system referred to by data or dir does not exist.

[ENOENT] The file system referred to by data does not exist.

[ENOTBLK] The file system referred to by data is not a block device. This message can occur only dur-
ing a local mount.

[ENOTDIR] A component of the path prefix in dir is not a directory.

[ENOTDIR] A component of the path prefix of the file system referred to by data or dir is not a direc-
tory.

[ENXIO] The major device number of the file system referred to by data is out of range (indicating
that no device driver exists for the associated hardware).

[EPERM] The caller does not have appropriate privileges.

DEPENDENCIES
NFS

If vfsmount() fails, errno can also be set to one of the following values.

[EFAULT] A pointer in the data structure points outside the process’s allocated address space.

Section 2−−416 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

v

vfsmount(2) vfsmount(2)

[EINVAL] A value in a field of data is out of proper range.

See mountd(1M), getfh(2), and inet(7F) for more information.

WARNINGS
The mount command (see mount(1M)) is preferred over vfsmount() because mount supports all
mounting options that are available from vfsmount() directly, plus mount also maintains the
/etc/mnttab file which lists what file systems are mounted.

AUTHOR
vfsmount() was developed by HP and Sun Microsystems, Inc.

SEE ALSO
mount(1M), mount(2), umount(2).

HP-UX Release 11.0: October 1997 − 3 − Section 2−−417

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait(2) wait(2)

NAME
wait, waitpid - wait for child process to stop or terminate

SYNOPSIS
#include <sys/types.h> OH
#include <sys/wait.h>

pid_t wait(int *stat_loc);

pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION
The wait() and waitpid() functions allow the calling process to obtain status information pertaining
to one of its child processes. Various options permit status information to be obtained for child processes
that have terminated or stopped. If status information is available for two or more child processes, the
order in which their status is reported is unspecified.

The wait() function will suspend execution of the calling process until status information for one of its
terminated child processes is available, or until delivery of a signal whose action is either to execute a
signal-catching function or to terminate the process. If status information is available prior to the call to
wait() , return will be immediate.

The waitpid() function will behave identically to wait() , if the pid argument is (pid_t)−1 and the
options argument is 0. Otherwise, its behaviour will be modified by the values of the pid and options argu-
ments.

The pid argument specifies a set of child processes for which status is requested. The waitpid() func-
tion will only return the status of a child process from this set:

• If pid is equal to (pid_t)−1, status is requested for any child process. In this respect, waitpid()
is then equivalent to wait() .

• If pid is greater than 0, it specifies the process ID of a single child process for which status is
requested.

• If pid is 0, status is requested for any child process whose process group ID is equal to that of the
calling process.

• If pid is less than (pid_t)−1, status is requested for any child process whose process group ID is
equal to the absolute value of pid.

The options argument is constructed from the bitwise-inclusive OR of zero or more of the following flags,
defined in the header <sys/wait.h> .

WCONTINUED The waitpid() function will report the status of any continued child pro-
cess specified by pid whose status has not been reported since it continued
from a job control stop.

WNOHANG The waitpid() function will not suspend execution of the calling process
if status is not immediately available for one of the child processes specified
by pid.

WUNTRACED The status of any child processes specified by pid that are stopped, and
whose status has not yet been reported since they stopped, will also be
reported to the requesting process.

If the calling process has SA_NOCLDWAITset or has SIGCHLD set to SIG_IGN , and the process has no
unwaited for children that were transformed into zombie processes, it will block until all of its children ter-
minate, and wait() and waitpid() will fail and set errno to ECHILD.

If wait() or waitpid() return because the status of a child process is available, these functions will
return a value equal to the process ID of the child process. In this case, if the value of the argument
stat_loc is not a null pointer, information will be stored in the location pointed to by stat_loc . If and only if
the status returned is from a terminated child process that returned 0 from main() or passed 0 as the
status argument to _exit() or exit() , the value stored at the location pointed to by stat_loc will be 0.
Regardless of its value, this information may be interpreted using the following macros, which are defined
in <sys/wait.h> and evaluate to integral expressions; the stat_val argument is the integer value
pointed to by stat_loc .

Section 2−−418 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait(2) wait(2)

WIFEXITED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that
terminated normally.

WEXITSTATUS(stat_val)
If the value of WIFEXITED(stat_val) is non-zero, this macro evalu-
ates to the low-order 8 bits of the status argument that the child process
passed to _exit() or exit() , or the value the child process returned
from main() .

WIFSIGNALED(stat_val)
Evaluates to non-zero value if status was returned for a child process that
terminated due to the receipt of a signal that was not caught (see
<signal.h>).

WTERMSIG(stat_val)
If the value of WIFSIGNALED(stat_val) is non-zero, this macro
evaluates to the number of the signal that caused the termination of the
child process.

WIFSTOPPED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that
is currently stopped.

WSTOPSIG(stat_val)
If the value of WIFSTOPPED(stat_val) is non-zero, this macro evalu-
ates to the number of the signal that caused the child process to stop.

WIFCONTINUED(stat_val)
Evaluates to a non-zero value if status was returned for a child process that
has continued from a job control stop.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the WUN-
TRACED flag and did not specify the WCONTINUED flag, exactly one of the macros
WIFEXITED(*stat_loc) , WIFSIGNALED(*stat_loc) , and WIFSTOPPED(*stat_loc) will
evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that specified the WUN-
TRACED and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc) ,
WIFSIGNALED(*stat_loc) , WIFSTOPPED(*stat_loc) , and WIFCONTINUED(*stat_loc)
will evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the WUN-
TRACEDor WCONTINUEDflags, or by a call to the wait() function, exactly one of the macros
WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) will evaluate to a non-zero value.

If the information pointed to by stat_loc was stored by a call to waitpid() that did not specify the WUN-
TRACEDflag and specified the WCONTINUEDflag, by a call to the wait() function, exactly one of the
macros WIFEXITED(*stat_loc) , WIFSIGNALED(*stat_loc) , and
WIFCONTINUED(*stat_loc) will evaluate to a non-zero value.

There may be additional implementation-dependent circumstances under which wait() or waitpid()
report status. This will not occur unless the calling process or one of its child processes explicitly makes use
of a non-standard extension. In these cases the interpretation of the reported status is
implementation-dependent.

If a parent process terminates without waiting for all of its child processes to terminate, the remaining
child processes will be assigned a new parent process ID corresponding to an implementation-dependent
system process.

RETURN VALUE
If wait() or waitpid() returns because the status of a child process is available, these functions will
return a value equal to the process ID of the child process for which status is reported. If wait() or
waitpid() returns due to the delivery of a signal to the calling process, −1 will be returned and errno
will be set to EINTR. If waitpid() was invoked with WNOHANGset in options, it has at least one child
process specified by pid for which status is not available, and status is not available for any process
specified by pid, 0 will be returned. Otherwise, (pid_t)−1 will be returned, and errno will be set to indi-
cate the error.

HP-UX Release 11.0: October 1997 − 2 − Section 2−−419

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait(2) wait(2)

ERRORS
The wait() function will fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The function was interrupted by a signal. The value of the location pointed to by stat_loc is
undefined.

The waitpid() function will fail if:

[ECHILD] The process or process group specified by pid does not exist or is not a child of the calling
process.

[EINTR] The function was interrupted by a signal. The value of the location pointed to by stat_loc is
undefined.

[EINVAL] The options argument is not valid.

APPLICATION USAGE
Threads Considerations

In a multi-threaded application, only the calling thread is suspended by wait() or waitpid() .

wait() and waitpid() will not return until all threads in the process have reached the desired state.
For example, wait() and waitpid() will not return until all threads have terminated. If the WUN-
TRACEDor WCONTINUEDoptions are specified for waitpid() , the function will not return until all
threads have stopped or continued respectively.

SEE ALSO
exec(2), exit(2), fork(2), wait3(2), waitid(2), <sys/types.h>, <sys/wait.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following change is incorporated for alignment with the ISO POSIX-1 standard:

• Text describing conditions under which 0 will be returned when WNOHANGis set in options is
added to the RETURN VALUE section.

Other changes are incorporated as follows:

• The header <sys/types.h> is now marked as optional (OH); this header need not be included
on XSI-conformant systems.

• Error return values throughout the DESCRIPTION and RETURN VALUE sections are changed
to show the proper casting (that is, (pid_t)−1.

• The words "If the implementation supports job control" are removed from the description of WUN-
TRACED. This is because job control is defined as mandatory for Issue 4 conforming implementa-
tions.

Issue 4, Version 2
The following changes are incorporated in the DESCRIPTION for X/OPEN UNIX conformance:

• The WCONTINUEDoptions flag and the WIFCONTINUED(stat_val) macro are added.

• Text following the list of options flags explains the implications of setting the SA_NOCLDWAITsig-
nal flag, or setting SIGCHILD to SIG_IGN .

• Text following the list of macros, which explains what macros return non-zero values in certain
cases, is expanded and the value of the WCONTINUEDflag on the previous call to waitpid() is
taken into account.

Section 2−−420 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait(2) wait(2)

HP-UX EXTENSIONS

NAME
wait(), waitpid() - wait for child or traced process to stop or terminate

DESCRIPTION
wait()

If a parent process terminates without waiting for its child processes to terminate, the parent process ID of
each child process is set to 1. This means the initialization process inherits the child processes.

WCOREDUMP(*stat_loc)
If the value of WIFSIGNALED(*stat_loc) is nonzero, this macro
evaluates to a nonzero value if a "core image" was produced (see signal(5)).

waitpid()
WNOWAIT Keep the process whose status is returned in *stat_loc in a waitable state.

The process may be waited for again with identical results, provided the
state of the process doesn’t change in the interim.

WUNTRACED If and only if this flag is set, waitpid() or wait3() returns informa-
tion on child or attached processes that are stopped but not traced (with
ptrace()) because they received a SIGTTIN , SIGTTOU, SIGTSTP, or
SIGSTOP signal, and whose status has not yet been reported. Regardless
of this flag, status is returned for child or attached processes that have ter-
minated or are stopped and traced and whose status has not yet been
reported.

Notes
Earlier HP-UX versions documented the bit encodings of the status returned by wait() rather than the
macros WCOREDUMP, WEXITSTATUS, WIFEXITED , WIFSIGNALED, WIFSTOPPED, WSTOPSIG, and
WTERMSIG. Applications using those bit encodings will continue to work correctly. However, new applica-
tions should use the macros for maximum portability.

In earlier HP-UX versions, the macros WIFEXITED , WIFSIGNALED, and WIFSTOPPEDhave the same
definitions as the correspondingly named macros in the BSD 4.3 and earlier systems. Existing applications
that depend on these definitions will continue to work correctly. However, if the application is recompiled,
the feature test macro _BSD must be turned on for the compilation so that the old definitions of these mac-
ros are obtained. New definitions of these macros are in effect by default. The only difference between the
old and new definitions is the type of the argument. Type union wait is used in the BSD definitions while
type int is used in the default definitions.

ERRORS
If wait() or waitpid() fails, errno is set to one of the following values.

[EACCES] The calling process of waitpid() does not have read permission to the
pid.

[EFAULT] stat_loc points to an illegal address. The reliable detection of this error is
implementation-dependent.

WARNINGS
The behavior of wait() and waitpid() is affected if the SIGCLD signal is set to SIG_IGN . See the
WARNINGS section of signal(5). Signal handlers that cause system calls to be restarted can affect the
EINTR condition described above (see bsdproc(3C), sigaction(2), and sigvector (2)).

AUTHOR
wait(), waitpid(), and wait3() were developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
Exit conditions ($?) in sh(1); exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(5).

HP-UX Release 11.0: October 1997 − 1 − Section 2−−421

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait(2) wait(2)

STANDARDS CONFORMANCE
wait(): AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

waitpid(): AES, SVID3, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 2−−422 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait3(2) wait3(2)

NAME
wait3 - wait for child process to change state

SYNOPSIS
#include <sys/wait.h>

pid_t wait3 (int *stat_loc, int options,
struct rusage *resource_usage);

DESCRIPTION
The wait3() function allows the calling process to obtain status information for specified child processes.

The following call:

wait3(stat_loc, options, resource_usage);

is equivalent to the call:

waitpid((pid_t)-1, stat_loc, options);

except that on successful completion, if the resource_usage argument to wait3() is not a null pointer, the
rusage structure that the third argument points to is filled in for the child process identified by the
return value.

RETURN VALUE
See wait(2).

ERRORS
In addition to the error conditions specified on waitpid() , under the following conditions, wait3()
may fail and set errno to:

[ECHILD] The calling process has no existing unwaited-for child processes, or if the
set of processes specified by the argument pid can never be in the states
specified by the argument options.

APPLICATION USAGE
Threads Considerations

In a multi-threaded application, only the calling thread is suspended by wait3() .

wait3() will not return until all threads in the process have reached the desired state. For example,
wait3() will not return until all threads have terminated. If the WUNTRACEDor WCONTINUEDoptions
are specified, wait3() will not return until all threads have stopped or continued respectively.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), <sys/wait.h>.

CHANGE HISTORY
First released in Issue 4, Version 2.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−423

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

wait3() wait3()

HP-EXTENSIONS

SYNOPSIS
pid_t wait3(int *stat_loc, int options, int *reserved);

DESCRIPTION
The wait3() system call is equivalent to waitpid() with the value of pid equal to zero. The third
parameter to wait3() , reserved , is currently unused and must always be a null pointer.

ERRORS
If wait3() fails, errno is set to one of the following values.

[EINVAL] The options argument to waitpid() or wait3() is invalid.

[EINVAL] wait3() was passed a nonnull pointer value for its third argument.

WARNINGS
The behavior of wait3() is affected if the SIGCLD signal is set to SIG_IGN . See the WARNINGS sec-
tion of signal(5). Signal handlers that cause system calls to be restarted can affect the EINTR condition
described above (see bsdproc(3C), sigaction(2), and sigvector (2)).

AUTHOR
wait3() was developed by HP, AT&T, and the University of California, Berkeley.

SEE ALSO
Exit conditions ($?) in sh(1); exec(2), exit(2), fork(2), pause(2), ptrace(2), signal(5).

Section 2−−424 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

waitid(2) waitid(2)

NAME
waitid - wait for child process to change state

SYNOPSIS
#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

DESCRIPTION
The waitid() function suspends the calling process until one of its children changes state. It records the
current state of a child in the structure pointed to by infop. If a child process changed state prior to the call
to waitid() , waitid() returns immediately.

The idtype and id arguments are used to specify which children waitid() will wait for.

If idtype is P_PID , waitid() will wait for the child with a process ID equal to (pid_t)pid.

If idtypeis P_PGID, waitid() will wait for any child with a process group ID equal to (pid_t)pid.

If idtypeis P_ALL, waitid() will wait for any children and id is ignored.

The options argument is used to specify which state changes waitid() will wait for. It is formed by
OR-ing together one or more of the following flags:

WEXITED Wait for processes that have exited.

WSTOPPED Status will be returned for any child that has stopped upon receipt of a sig-
nal.

WCONTINUED Status will be returned for any child that was stopped and has been contin-
ued.

WNOHANG Return immediately if there are no children to wait for.

WNOWAIT Keep the process whose status is returned in infop in a waitable state. This
will not affect the state of the process; the process may be waited for again
after this call completes.

The infop argument must point to a siginfo_t structure. If waitid() returns because a child process
was found that satisfied the conditions indicated by the arguments idtype and options, then the structure
pointed to by infop will be filled in by the system with the status of the process. The si_signo member will
always be equal to SIGCHLD.

RETURN VALUE
If waitid() returns due to the change of state of one of its children, 0 is returned. Otherwise, −1 is
returned and errno is set to indicate the error.

ERRORS
The waitid() function will fail if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EINTR] The waitid() function was interrupted due to the receipt of a signal by the calling
process.

[EINVAL] An invalid value was specified for options, or idtype and id specify an invalid set of
processes.

APPLICATION USAGE
Threads Considerations

In a multi-threaded application, only the calling thread is suspended by waitid() .

waitid() will not return until all threads in the process have reached the desired state. For example, if
the WEXITED, WSTOPPEDor WCONTINUEDoptions are specified, waitid() will not return until all
threads in the process have terminated, stopped or continued respectively.

SEE ALSO
exec(2), exit(2), wait(2), <sys/wait.h>.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−425

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

waitid(2) waitid(2)

CHANGE HISTORY
First released in Issue 4, Version 2.

Section 2−−426 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

write(2) write(2)

NAME
write, writev - write on a file

SYNOPSIS
#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
The write() function attempts to write nbyte bytes from the buffer pointed to by buf to the file associated
with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file; otherwise, the
results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds from the position in the
file indicated by the file offset associated with fildes. Before successful return from write() , the file
offset is incremented by the number of bytes actually written. On a regular file, if this incremented file
offset is greater than the length of the file, the length of the file will be set to this file offset. If the O_SYNC
flag of the file status flags is set and fildes refers to a regular file, a successful write() does not return
until the data is delivered to the underlying hardware. On a file not capable of seeking, writing always
takes place starting at the current position. The value of a file offset associated with such a device is
undefined.

If the O_APPENDflag of the file status flags is set, the file offset will be set to the end of the file prior to
each write and no intervening file modification operation will occur between changing the file offset and the
write operation.

If a write() requests that more bytes be written than there is room for (for example, the ulimit or the
physical end of a medium), only as many bytes as there is room for will be written. For example, suppose
there is space for 20 bytes more in a file before reaching a limit. A write of 512 bytes will return 20. The
next write of a non-zero number of bytes will give a failure return (except as noted below) and the imple-
mentation will generate a SIGXFSZ signal for the process.

If write() is interrupted by a signal before it writes any data, it will return −1 with errno set to
EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will return the number of
bytes written.

If the value of nbyte is greater than {SSIZE_MAX} , the result is implementation-dependent.

After a write() to a regular file has successfully returned:

• Any successful read() from each byte position in the file that was modified by that write will
return the data specified by the write() for that position until such byte positions are again
modified.

• Any subsequent successful write() to the same byte position in the file will overwrite that file
data.

Write requests to a pipe or FIFO will be handled the same as a regular file with the following exceptions:

• There is no file offset associated with a pipe, hence each write request will append to the end of the
pipe.

• Write requests of {PIPE_BUF} bytes or less will not be interleaved with data from other
processes doing writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may have
data interleaved, on arbitrary boundaries, with writes by other processes, whether or not the
O_NONBLOCKflag of the file status flags is set.

• If the O_NONBLOCKflag is clear, a write request may cause the process to block, but on normal
completion it will return nbyte.

• If the O_NONBLOCKflag is set, write() requests will be handled differently, in the following
ways:

HP-UX Release 11.0: October 1997 − 1 − Section 2−−427

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

write(2) write(2)

- The write() function will not block the process.

- A write request for {PIPE_BUF} or fewer bytes will have the following effect: If there is
sufficient space available in the pipe, write() will transfer all the data and return the
number of bytes requested. Otherwise, write() will transfer no data and return −1 with
errno set to EAGAIN.

- A write request for more than {PIPE_BUF} bytes will case one of the following:

a. When at least one byte can be written, transfer what it can and return the number of bytes
written. When all data previously written to the pipe is read, it will transfer at least
{PIPE_BUF} bytes.

b. When no data can be written, transfer no data and return −1 with errno set to EAGAIN.

When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-blocking writes
and cannot accept the data immediately:

• If the O_NONBLOCKflag is clear, write() will block until the data can be accepted.

• If the O_NONBLOCKflag is set, write() will not block the process. If some data can be written
without blocking the process, write() will write what it can and return the number of bytes
written. Otherwise, it will return −1 and errno will be set to EAGAIN.

Upon successful completion, where nbyte is greater than 0, write() will mark for update the st_ctime
and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID bits of the file
mode may be cleared.

If fildes refers to a STREAM, the operation of write() is determined by the values of the minimum and
maximum nbyte range ("packet size") accepted by the STREAM. These values are determined by the top-
most STREAM module. If nbyte falls within the packet size range, nbyte bytes will be written. If nbyte does
not fall within the range and the minimum packet size value is 0, write() will break the buffer into max-
imum packet size segments prior to sending the data downstream (the last segment may contain less than
the maximum packet size). If nbyte does not fall within the range and the minimum value is non-zero,
write() will fail with errno set to ERANGE. Writing a zero-length buffer (nbyte is 0) to a STREAMS
device sends 0 bytes with 0 returned. However, writing a zero-length buffer to a STREAMS-based pipe or
FIFO sends no message and 0 is returned. The process may issue I_SWROPT ioctl() to enable
zero-length messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing to a
STREAM that is not a pipe or FIFO:

• If O_NONBLOCKis clear, and the STREAMcannot accept data (the STREAMwrite queue is full
due to internal flow control conditions), write() will block until data can be accepted.

• If O_NONBLOCKis set and the STREAMcannot accept data, write() will return −1 and set
errno to [EAGAIN] .

• If O_NONBLOCKis set and part of the buffer has been written while a condition in which the
STREAMcannot accept additional data occurs, write() will terminate and return the number of
bytes written.

In addition, write() and writev() will fail if the STREAMhead had processed an asynchronous error
before the call. In this case, the value of errno does not reflect the result of write() or writev() but
reflects the prior error.

The writev() function is equivalent to write() , but gathers the output data from the iovcnt buffers
specified by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt−1]. iovcnt is valid if greater than 0
and less than or equal to {IOV_MAX} , defined in <limits.h> .

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. The writev() function will always write a complete area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0, wri-
tev() will return 0 and have no other effect. For other file types, the behaviour is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and no data is transferred.

RETURN VALUE
Upon successful completion, write() will return the number of bytes actually written to the file associ-
ated with fildes. This number will never be greater than nbyte. Otherwise, −1 is returned and errno is

Section 2−−428 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

write(2) write(2)

set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written. Otherwise, it
returns a value of −1, the file-pointer remains unchanged, and errno is set to indicate an error.

ERRORS
The write() and writev() functions will fail if:

[EAGAIN] The O_NONBLOCKflag is set for the file descriptor and the process would be delayed
in the write() operation.

[EBADF] The fildes argument is not a valid file descriptor open for writing.

[EFBIG] An attempt was made to write a file that exceeds the implementation-dependent max-
imum file size or the process’ file size limit.

[EINTR] The write operation was terminated due to the receipt of a signal, and no data was
transferred.

[EIO] A physical I/O error has occurred.

[EIO] The process is a member of a background process group attempting to write to its con-
trolling terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU and the process group of the process is orphaned. This error may also be
returned under implementation-dependent conditions.

[ENOSPC] There was no free space remaining on the device containing the file.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by any pro-
cess, or that only has one end open. A SIGPIPE signal will also be sent to the pro-
cess.

[ERANGE] The transfer request size was outside the range supported by the STREAMSfile asso-
ciated with fildes.

The writev() function will fail if:

[EINVAL] The sum of the iov_len values in the iov array would overflow an ssize_t.

The write() and writev() functions may fail if:

[EINVAL] The STREAMor multiplexer referenced by fildes is linked (directly or indirectly)
downstream from a multiplexer.

[ENXIO] A request was made of a non-existent device, or the request was outside the capabili-
ties of the device.

[ENXIO] A hangup occurred on the STREAMbeing written to.

A write to a STREAMSfile may fail if an error message has been received at the STREAMhead. In this
case, errno is set to the value included in the error message.

The writev() function may fail and set errno to:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX} .

SEE ALSO
chmod(2), creat(2), dup(2), fcntl(2), getrlimit(2), lseek(2), open(2), pipe(2), ulimit(2), <limits.h>, <stropts.h>,
<sys/uio.h>, <unistd.h>.

CHANGE HISTORY
First released in Issue 1.

Derived from Issue 1 of the SVID.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

• The type of the argument buf is changed from char * to const void* , and the type of the argument
byte is changed from unsigned size_t.

• The DESCRIPTION section is changed:

HP-UX Release 11.0: October 1997 − 3 − Section 2−−429

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

write(2) write(2)

- to indicate that writing at end-of-file is atomic

- to identify that {SSIZE_MAX} is now used to determine the maximum value of nbyte

- to indicate the consequences of activities after a call to the write() function

- To improve clarity, the text describing operations on pipes or FIFOs when O_NONBLOCKis set
is restructured.

Other changes are incorporated as follows:

• The header <unistd.h> is added to the SYNOPSIS section.

• Reference to ulimit in the DESCRIPTION section is marked as an extension.

• Reference to the process’ file size limit and the ulimit() function are marked as extensions in
the description of the EFBIG error.

• The ENXIO error is marked as an extension.

• The APPLICATION USAGE section is removed.

• The description of EINTR is amended.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance:

• The writev() function is added to the SYNOPSIS.

• The DESCRIPTION is updated to describe the reading of data from STREAMSfiles, an operational
description of the writev() function is included, and a statement is added indicating that
SIGXFSZ will be generated if an attempted write operation would cause the maximum file size to
be exceeded.

• The RETURN VALUE section is updated to describe values returned by the writev() function.

• The ERRORS section has been restructured to describe errors that apply to both write() and
writev() apart from those that apply to writev() specifically. The EIO , ERANGE, and EINVAL
errors are also added.

Section 2−−430 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

write(2) write(2)

HP-UX EXTENSIONS

DESCRIPTION
The iovec structure is defined in /usr/include/sys/uio.h .

For ordinary files, if the O_DSYNCfile status flag is set, the write does not return until both the file data
and the file attributes required to retrieve the data are physically updated. If the O_SYNCflag is set, the
behavior is identical to that for O_DSYNC, with the addition that all file attributes changed by the write
operation (including access time, modification time and status change time) are also physically updated
prior to returning to the calling process.

For block special files, if the O_DSYNCor the O_SYNCflag is set, the write does not return until the data
is physically updated. How the data reaches the physical media is implementation- and hardware-
dependent.

A write to an ordinary file is prevented if enforcement-mode file and record locking is set, and another pro-
cess owns a lock on the segment of the file being written:

If O_NDELAYor O_NONBLOCKis set, the write returns −1 and sets errno to EAGAIN.

If O_NDELAYand O_NONBLOCKare clear, the write does not complete until the blocking record lock
is removed.

If the file being written is a pipe (or FIFO), the system-dependent maximum number of bytes that it can
store is given by PIPSIZ (defined in <sys/inode.h>). The minimum value of PIPSIZ on any HP-UX
system is 8192. When writing a pipe, the following conditions apply:

If the O_NDELAYor O_NONBLOCKfile status flag is set:

If nbyte is less than or equal to PIPSIZ and sufficient room exists in the pipe or FIFO , the
write() succeeds and returns the number of bytes written;

If nbyte is less than or equal to PIPSIZ but insufficient room exists in the pipe or FIFO , the
write() returns having written nothing. If O_NONBLOCKis set, -1 is returned and errno
is set to [EAGAIN]. If O_NDELAYis set, 0 is returned.

If nbyte is greater than PIPSIZ and the pipe or FIFO is full, the write returns having written
nothing. If O_NONBLOCKis set, -1 is returned and errno is set to [EAGAIN]. If O_NDELAY
is set, 0 is returned.

If nbyte is greater than PIPSIZ , and some room exists in the pipe or FIFO, as much data as fits
in the pipe or FIFO is written, and write() returns the number of bytes actually written, an
amount less than the number of bytes requested.

If the O_NDELAYand O_NONBLOCKfile status flags are clear:

The write() always executes correctly (blocking as necessary), and returns the number of
bytes written.

For character special devices, if the stopio() call was used on the same device after it was opened,
write() returns -1 , sets errno to [EBADF], and issues the SIGHUPsignal to the process.

write() clears the potential and granted privilege vectors on the file.

If the write is performed by any user other than the owner or a user who has appropriate privileges,
write() clears the set-user-ID, set-group-ID, and sticky bits on all nondirectory files. If the write is per-
formed by the owner or a user who has appropriate privileges, the behavior is file-system dependent. In
some file systems, the write clears the set-user-ID, set-group-ID, and sticky bits on a nondirectory file. In
other file systems, the write does not clear these bits on a nondirectory file.

For directories, write() does not clear the set-user-ID, set-group-ID, and sticky bits.

ERRORS
If write() or writev() fails, the file offset remains unchanged and errno is set to one of the follow-
ing values.

[EAGAIN] Enforcement-mode file and record locking was set, O_NDELAYwas set, and there was
a blocking record lock.

HP-UX Release 11.0: October 1997 − 1 − Section 2−−431

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man2/!!!intro.2L__L

___ L L ___

w

write(2) write(2)

[EDEADLK] A resource deadlock would occur as a result of this operation (see lockf(2) and
fcntl(2)).

[EDQUOT] User’s disk quota block limit has been reached for this file system.

[EFBIG] The file is a regular file and nbyte is greater than zero and the starting position is
greater than or equal to the offset maximum established in the open file description
associated with fildes.

[ENOLCK] The system record lock table is full, preventing the write from sleeping until the
blocking record lock is removed.

[ENOSPC] Not enough space on the file system. The process does not possess the limit
effective privilege to override this restriction.

If writev() fails, the file offset remains unchanged and errno is set to one of the following values:

[EFAULT] iov_base or iov points outside of the allocated address space. The reliable detection of
this error is implementation dependent.

[EINVAL] One of the iov_len values in the iov array is negative.

If write() or writev() fails, the file offset is updated to reflect the amount of data transferred and
errno is set to one of the following values.

[EFAULT] buf points outside the process’s allocated address space. The reliable detection of this
error is implementation dependent.

EXAMPLES
Assuming a process opened a file for writing, the following call to write() attempts to write mybufsize
bytes to the file from the buffer to which mybuf points.

#include <string.h>

int fildes;
size_t mybufsize;
ssize_t nbytes;
char *mybuf = "aeiou and sometimes y";
mybufsize = (size_t)strlen (mybuf);
nbytes = write (fildes, (void *)mybuf, mybufsize);

WARNINGS
Check signal(5) for the appropriateness of signal references on systems that support sigvector () (see
sigvector (2)). sigvector () can affect the behavior described on this page.

Character special devices, and raw disks in particular, apply constraints on how write() can be used.
See specific Section 7 manual entries for details on particular devices.

AUTHOR
write() was developed by HP, AT&T, the University of California, Berkeley, and SecureWare Inc.

SEE ALSO
mkfs(1M) creat(2), dup(2), fcntl(2), lockf(2), lseek(2), open(2), pipe(2), sigvector(2), ulimit(2), ustat(2), sig-
nal(5).

STANDARDS CONFORMANCE
write() : AES, SVID2, SVID3, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1, POSIX.4

Section 2−−432 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Allan Prentice [allanp] STANDARD

/tmp/12570tempL__________________________________ L

___ L L ___

LL L

L

Section 4

File Formats

__
__STANDARD Printed by: Allan Prentice [allanp] STANDARD

/tmp/12570tempL__________________________________ L

___ L L ___

LL L

L

Section 4

File Formats

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__________________________________ L

___ L L ___

intro(4) intro(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for the file formats are
given where applicable. Usually, these structures can be found in directories /usr/include or
/usr/include/sys .

SEE ALSO
hier(5), Introduction(9).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−1

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include <a.out.h> (for SOM files)

#include <elf.h> (for ELF files)

DESCRIPTION
PA32 SOM a.out

The file name a.out is the default file name for the output file from the assembler (see as(1)), compilers,
and the linker (see ld(1)). The assembler and compilers create relocatable object files, ready for input to
the linker. The linker creates executable object files and shared library files.

An object file consists of a file header, auxiliary headers, space dictionary, subspace dictionary, symbol
table, relocation information, compiler records, space string table, symbol string table, and the data for ini-
tialized code and data. Not all of these sections are required for all object files. The file must begin with
the file header, but the remaining sections do not have to be in any particular order; the file header con-
tains pointers to each of the other sections of the file.

A relocatable object file, created by the assembler or compiler, must contain at least the following sections:
file header, space dictionary, subspace dictionary, symbol table, relocation information, space string table,
symbol string table, and code and data. It may also contain auxiliary headers and compiler records. Relo-
catable files generally contain unresolved symbols. The linker combines relocatable files and searches
libraries to produce an executable file. The linker can also be used to combine relocatable files and produce
a new relocatable file as output, suitable for input to a subsequent linker run.

An executable file, created by the linker, typically contains the following sections: file header, an HP-UX
auxiliary header, space dictionary, subspace dictionary, symbol table, space string table, symbol string
table, and code and data. The linker also copies any auxiliary headers and compiler records from the input
files to the output file. If the file has been stripped (see strip(1)), it will not contain a symbol table, symbol
string table, or compiler records. An executable file must not contain any unresolved symbols.

A shared library file, created by the linker, contains the same sections found in an executable file, with
additional information added to the code section of the file. This additional information contains a header,
export table, import table, and dynamic relocation records to be used by the dynamic loader.

Programs consist of two loadable spaces: a shared, non-writable, code space named $TEXT$; and a
private, writable, data space named $PRIVATE$. A program may contain another loadable, private space
named $THREAD_SPECIFIC$. A program may contain other unloadable spaces that contain data
needed by development tools. For example, symbolic debugging information is contained in a space named
$DEBUG$or $PINFO$. The linker treats loadable and unloadable spaces exactly the same, so the full
generality of symbol resolution and relocation is available for the symbolic debugging information.

Spaces have an addressing range of 4,294,967,296 (2ˆ32) bytes. Each loadable space is divided into four
1,073,741,824 (2ˆ30) byte quadrants. The HP-UX operating system places all code in the first quadrant of
the $TEXT$ space, all data in the second quadrant of the $PRIVATE$ space, and all shared library code
in the third quadrant of shared memory space.

Each space is also divided into logical units called subspaces. When the linker combines relocatable object
files, it groups all subspaces from the input files by name, then arranges the groups within the space by a
sort key associated with each subspace. Subspaces are not architecturally significant; they merely provide
a mechanism for combining individual parts of spaces independently from many input files. Some typical
subspaces in a program are shown in the following table:

$SHLIB_INFO$ Information needed for dynamic loading
$MILLICODE$ Code for millicode routines
LIT Sharable literals
$CODE$ Code
$UNWIND$ Stack unwind information
$GLOBAL$ Outer block declarations for Pascal
$DATA$ Static initialized data
$COMMON$ FORTRAN common
BSS Uninitialized data
$TBSS$ Thread local storage

Section 4−−2 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

Subspaces can be initialized or uninitialized (although typically, only BSS and $TBSS$ are uninitial-
ized). The subspace dictionary entry for an initialized subspace contains a file pointer to the initialization
data, while the entry for an uninitialized subspace contains only a 32-bit pattern used to initialize the entire
area at load time.

In a relocatable file, initialized code and data often contain references to locations elsewhere in the file, and
to unresolved symbols defined in other files. These references are patched at link time using the relocation
information. Each entry in the relocation information (a "fixup") specifies a location within the initialized
data for a subspace, and an expression that defines the actual value that should be placed at that location,
relative to one or two symbols.

The linker summarizes the subspace dictionary in the HP-UX auxiliary header when creating an executable
file. HP-UX programs contain only three separate sections: one for the code, one for initialized data, and
one for uninitialized data. By convention, this auxiliary header is placed immediately following the file
header.

When an a.out file is loaded into memory for execution, three areas of memory are set up: the a.out
code is loaded into the first quadrant of a new, sharable space; the data (initialized followed by uninitial-
ized) is loaded into the second quadrant of a new, private space; and a stack is created beginning at a fixed
address near the middle of the second quadrant of the data space.

If the a.out file uses shared libraries, then the dynamic loader /usr/lib/dld.sl is loaded into
memory and called to map into memory all shared libraries requested by the program. The shared library
text is loaded into the third quadrant of the shared memory space, and the shared library data is allocated
in the second quadrant of the data space.

The file format described here is a common format for all operating systems designed for HP’s Precision
Architecture. Therefore, there are some fields and structures that are not used on HP-UX or have been
reserved for future use.

File Header
The format of the file header is described by the following structure declaration from <filehdr.h> .

struct header {
short int system_id; /* system id */
short int a_magic; /* magic number */
unsigned int version_id; /* a.out format version */
struct sys_clock file_time; /* timestamp */
unsigned int entry_space; /* index of space containing entry point */
unsigned int entry_subspace; /* subspace index of entry */
unsigned int entry_offset; /* offset of entry point */
unsigned int aux_header_location; /* file ptr to aux hdrs */
unsigned int aux_header_size; /* sizeof aux hdrs */
unsigned int som_length; /* length of object module */
unsigned int presumed_dp; /* DP value assumed during compilation */
unsigned int space_location; /* file ptr to space dict */
unsigned int space_total; /* # of spaces */
unsigned int subspace_location; /* file ptr to subsp dict */
unsigned int subspace_total; /* # of subspaces */
unsigned int loader_fixup_location; /* space reference array */
unsigned int loader_fixup_total; /* # of space reference recs */
unsigned int space_strings_location; /* file ptr to sp. strings */
unsigned int space_strings_size; /* sizeof sp. strings */
unsigned int init_array_location; /* location of init pointers */
unsigned int init_array_total; /* # of init pointers */
unsigned int compiler_location; /* file ptr to comp recs */
unsigned int compiler_total; /* # of compiler recs */
unsigned int symbol_location; /* file ptr to sym table */
unsigned int symbol_total; /* # of symbols */
unsigned int fixup_request_location; /* file ptr to fixups */
unsigned int fixup_request_total; /* # of fixups */
unsigned int symbol_strings_location; /* file ptr to sym strings */
unsigned int symbol_strings_size; /* sizeof sym strings */
unsigned int unloadable_sp_location; /* file ptr to debug info */
unsigned int unloadable_sp_size; /* size of debug info */

HP-UX Release 11.0: October 1997 − 2 − Section 4−−3

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

unsigned int checksum; /* header checksum */
};

The timestamp is a two-word structure as shown below. If unused, both fields are zero.

struct sys_clock {
unsigned int secs;
unsigned int nanosecs;

};

Auxiliary Headers
The auxiliary headers are contained in a single contiguous area in the file, and are located by a pointer in
the file header. Auxiliary headers are used for two purposes: to attach users’ version and copyright strings
to an object file, and to contain the information needed to load an executable program. In an executable
program, the HP-UX auxiliary header must precede all other auxiliary headers. The following declarations
are found in <aouthdr.h> .

struct aux_id {
unsigned int mandatory : 1; /* linker must understand aux hdr info */
unsigned int copy : 1; /* copy aux hdr without modification */
unsigned int append : 1; /* merge multiple entries of same type */
unsigned int ignore : 1; /* ignore aux hdr if type unknown */
unsigned int reserved : 12; /* reserved */
unsigned int type : 16; /* aux hdr type */
unsigned int length; /* sizeof rest of aux hdr */

};

/* Values for the aux_id.type field */
#define HPUX_AUX_ID 4
#define VERSION_AUX_ID 6
#define COPYRIGHT_AUX_ID 9
#define SHLIB_VERSION_AUX_ID 10

struct som_exec_auxhdr { /* HP-UX auxiliary header */
struct aux_id som_auxhdr; /* aux header id */
long exec_tsize; /* text size */
long exec_tmem; /* start address of text */
long exec_tfile; /* file ptr to text */
long exec_dsize; /* data size */
long exec_dmem; /* start address of data */
long exec_dfile; /* file ptr to data */
long exec_bsize; /* bss size */
long exec_entry; /* address of entry point */
long exec_flags; /* loader flags */
long exec_bfill; /* bss initialization value */

};

/* Values for exec_flags */
#define TRAP_NIL_PTRS 01

struct user_string_aux_hdr { /* Version string auxiliary header */
struct aux_id header_id; /* aux header id */
unsigned int string_length; /* strlen(user_string) */
char user_string[1]; /* user-defined string */

};

struct copyright_aux_hdr { /* Copyright string auxiliary header */
struct aux_id header_id; /* aux header id */
unsigned int string_length; /* strlen(user_string) */
char copyright[1]; /* user-defined string */

};

struct shlib_version_aux_hdr {
struct aux_id header_id; /* aux header id */
short version; /* version number */

};

Section 4−−4 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

Space Dictionary
The space dictionary consists of a sequence of space records, as defined in <spacehdr.h> .

struct space_dictionary_record {
union name_pt name; /* index to space name */
unsigned int is_loadable: 1; /* space is loadable */
unsigned int is_defined: 1; /* space is defined within file */
unsigned int is_private: 1; /* space is not sharable */
unsigned int has_intermediate_code: 1; /* contains intermediate

code */
unsigned int is_tspecific: 1; /* space is $thread_specific$ */
unsigned int reserved: 11; /* reserved */
unsigned int sort_key: 8; /* sort key for space */
unsigned int reserved2: 8; /* reserved */
int space_number; /* space index */
int subspace_index; /* index to first subspace */
unsigned int subspace_quantity; /* # of subspaces in space */
int loader_fix_index; /* index into loader fixup array */
unsigned int loader_fix_quantity; /* # of loader fixups in space */
int init_pointer_index; /* index into init pointer array */
unsigned int init_pointer_quantity; /* # of init ptrs */

};

The strings for the space names are contained in the space strings table, which is located by a pointer in the
file header. Each entry in the space strings table is preceded by a 4-byte integer that defines the length of
the string, and is terminated by one to five null characters to pad the string out to a word boundary.
Indices to this table are relative to the start of the table, and point to the first byte of the string (not the
preceding length word). The union defined below is used for all such string pointers; the character pointer
is defined for programs that read the string table into memory and wish to relocate in-memory copies of
space records.

union name_pt {
char *n_name;
unsigned int n_strx;

};

Subspace Dictionary
The subspace dictionary consists of a sequence of subspace records, as defined in <scnhdr.h> . Strings
for subspace names are contained in the space strings table.

struct subspace_dictionary_record {
int space_index; /* index into space dictionary */
unsigned int access_control_bits: 7; /* access and priv levels

of subsp */
unsigned int memory_resident: 1; /* lock in memory during exec */
unsigned int dup_common: 1; /* duplicate data symbols allowed */
unsigned int is_common: 1; /* initialized common block */
unsigned int is_loadable: 1; /* subspace is loadable */
unsigned int quadrant: 2; /* quadrant in space subsp

should reside in */
unsigned int initially_frozen: 1; /* lock in memory

when OS booted */
unsigned int is_first: 1; /* must be first subspace */
unsigned int code_only: 1; /* subspace contains only code */
unsigned int sort_key: 8; /* subspace sort key */
unsigned int replicate_init: 1; /* init values to be replicated

to fill subsp len */
unsigned int continuation: 1; /* subspace is a continuation */
unsigned int is_tspecific: 1; /* subspace contains TLS */
unsigned int reserved: 5; /* reserved */
int file_loc_init_value; /* file location or init value */
unsigned int initialization_length; /* length of initialization */
unsigned int subspace_start; /* starting offset */
unsigned int subspace_length; /* total subspace length */

HP-UX Release 11.0: October 1997 − 4 − Section 4−−5

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

unsigned int reserved2: 16; /* reserved */
unsigned int alignment: 16; /* alignment required */
union name_pt name; /* index of subspace name */
int fixup_request_index; /* index to first fixup */
unsigned int fixup_request_quantity; /* # of fixup requests */

};

Symbol Table
The symbol table consists of a sequence of entries described by the structure shown below, from
<syms.h> . Strings for symbol and qualifier names are contained in the symbol strings table, whose struc-
ture is identical with the space strings table.

struct symbol_dictionary_record {
unsigned int hidden: 1; /* symbol not visible to loader */
unsigned int secondary_def: 1; /* secondary def symbol */
unsigned int symbol_type: 6; /* symbol type */
unsigned int symbol_scope: 4; /* symbol value */
unsigned int check_level: 3; /* type checking level */
unsigned int must_qualify: 1; /* qualifier required */
unsigned int initially_frozen: 1; /* lock in memory

when OS booted */
unsigned int memory_resident: 1; /* lock in memory during exec */
unsigned int is_common: 1; /* common block */
unsigned int dup_common: 1; /* duplicate data symbols allowed */
unsigned int xleast: 2; /* MPE-only */
unsigned int arg_reloc: 10; /* parameter relocation bits */
union name_pt name; /* index to symbol name */
union name_pt qualifier_name; /* index to qual name */
unsigned int symbol_info; /* subspace index */
unsigned int symbol_value; /* symbol value */

};

/* Values for symbol_type */
#define ST_NULL 0 /* unused symbol entry */
#define ST_ABSOLUTE 1 /* non-relocatable symbol */
#define ST_DATA 2 /* initialized data symbol */
#define ST_CODE 3 /* generic code symbol */
#define ST_PRI_PROG 4 /* program entry point */
#define ST_SEC_PROG 5 /* secondary prog entry point*/
#define ST_ENTRY 6 /* procedure entry point */
#define ST_STORAGE 7 /* storage request */
#define ST_STUB 8 /* MPE-only */
#define ST_MODULE 9 /* Pascal module name */
#define ST_SYM_EXT 10 /* symbol extension record */
#define ST_ARG_EXT 11 /* argument extension record */
#define ST_MILLICODE 12 /* millicode entry point */
#define ST_PLABEL 13 /* MPE-only */
#define ST_OCT_DIS 14 /* Used by OCT only--ptr to translated code */
#define ST_MILLI_EXT 15 /* address of external millicode */
#define ST_TSTORAGE 16 /* TLS common symbol */

/* Values for symbol_scope */
#define SS_UNSAT 0 /* unsatisfied reference */
#define SS_EXTERNAL 1 /* import request to external symbol */
#define SS_LOCAL 2 /* local symbol */
#define SS_UNIVERSAL 3 /* global symbol */

The meaning of the symbol value depends on the symbol type. For the code symbols (generic code, program
entry points, procedure and millicode entry points), the low-order two bits of the symbol value encode the
execution privilege level, which is not used on HP-UX, but is generally set to 3. The symbol value with
those bits masked out is the address of the symbol (which is always a multiple of 4). For data symbols, the
symbol value is simply the address of the symbol. For thread local storage symbols (not commons), the
symbol value is the thread local storage offset in a library or executable file, and is the size of the symbol if
in a relocatable object file. For storage requests and thread local storage commons, the symbol value is the

Section 4−−6 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

number of bytes requested; the linker allocates space for the largest request for each symbol in the BSS
or $TBSS$ subspaces, unless a local or universal symbol is found for that symbol (in which case the storage
request is treated like an unsatisfied reference).

If a relocatable file is compiled with parameter type checking, extension records follow symbols that define
and reference procedure entry points and global variables. The first extension record, the symbol exten-
sion record, defines the type of the return value or global variable, and (if a procedure or function) the
number of parameters and the types of the first three parameters. If more parameter type descriptors are
needed, one or more argument extension records follow, each containing four more descriptors. A check
level of 0 specifies no type checking; no extension records follow. A check level of 1 or more specifies check-
ing of the return value or global variable type. A check level of 2 or more specifies checking of the number
of parameters, and a check level of 3 specifies checking the types of each individual parameter. The linker
performs the requested level of type checking between unsatisfied symbols and local or universal symbols
as it resolves symbol references.

union arg_descriptor {
struct {
unsigned int reserved: 3; /* reserved */
unsigned int packing: 1; /* packing algorithm used */
unsigned int alignment: 4; /* byte alignment */
unsigned int mode: 4; /* type of descriptor and its use */
unsigned int structure: 4; /* structure of symbol */
unsigned int hash: 1; /* set if arg_type is hashed */
int arg_type: 15; /* data type */
} arg_desc;
unsigned int word;

};

struct symbol_extension_record {
unsigned int type: 8; /* always ST_SYM_EXT */
unsigned int max_num_args: 8; /* max # of parameters */
unsigned int min_num_args: 8; /* min # of parameters */
unsigned int num_args: 8; /* actual # of parameters */
union arg_descriptor symbol_desc; /* symbol type desc. */
union arg_descriptor argument_desc[3]; /* first 3 parameters */

};

struct argument_desc_array {
unsigned int type: 8; /* always ST_ARG_EXT */
unsigned int reserved: 24; /* reserved */
union arg_descriptor argument_desc[4]; /* next 4 parameters */

};

The alignment field in arg_descriptor indicates the minimum alignment of the data, where a
value of n represents 2ˆn byte alignment. The values for the mode, structure , and arg_type (when
the data type is not hashed) fields in arg_descriptor are given in the following table.

HP-UX Release 11.0: October 1997 − 6 − Section 4−−7

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

Value mode structure arg_type___
0 any any any
1 value parm scalar void
2 reference parm array signed byte
3 value-result struct unsigned byte
4 name pointer signed short
5 variable long ptr unsigned short
6 function return C string signed long
7 procedure Pascal string unsigned long
8 long ref parm procedure signed dbl word
9 function unsigned dbl word

10 label short real
11 real
12 long real
13 short complex
14 complex
15 long complex
16 packed decimal
17 struct/array

For procedure entry points, the parameter relocation bits define the locations of the formal parameters and
the return value. Normally, the first four words of the parameter list are passed in general registers
(r26-r23) instead of on the stack, and the return value is returned in r29 . Floating-point parameters in
this range are passed instead in floating-point registers (fr4-fr7) and a floating-point value is returned
in fr4 . The parameter relocation bits consist of five pairs of bits that describe the first four words of the
parameter list and the return value. The leftmost pair of bits describes the first parameter word, and the
rightmost pair of bits describes the return value. The meanings of these bits are shown in the following
table.

Bits Meaning__
00 No parameter or return value
01 Parameter or return value in general register
10 Parameter or return value in floating-point register
11 Double-precision floating-point valueL

L
L
L
L
L

For double-precision floating-point parameters, the odd-numbered parameter word should be marked 11
and the even-numbered parameter word should be marked 10 . Double-precision return values are simply
marked 11 .

Every procedure call is tagged with a similar set of bits (see "Relocation Information" below), so that the
linker can match each call with the expectations of the procedure entry point. If the call and entry point
mismatch, the linker creates a stub that relocates the parameters and return value as appropriate.

Relocation Information
Each initialized subspace defines a range of fixups that apply to the data in that subspace. A fixup request
is associated with every word that requires relocation or that contains a reference to an unsatisfied symbol.
In relocatable object files created prior to HP-UX Release 3.0 on Series 800 systems, each fixup request is a
five-word structure describing a code or data word to be patched at link time. Object files created on
Release 3.0 or later contain variable-length fixup requests that describe every byte of the subspace. The
version_id field in the file header distinguishes these two formats; the constant VERSION_ID is found in
older object files, and the constant NEW_VERSION_IDis found in newer ones.

In older object files, fixups can compute an expression involving zero, one, or two symbols and a constant,
then extract a field of bits from that result and deposit those bits in any of several different formats
(corresponding to the Precision Architecture instruction set). The fixup_request_index field in the subspace
dictionary entry indexes into the fixup request area defined by the file header and the
fixup_request_quantity field refers to the number of fixup requests used for that subspace. The structure of
a fixup request is contained in <reloc.h> .

struct fixup_request_record {
unsigned int need_data_ref: 1; /* reserved */
unsigned int arg_reloc: 10; /* parameter relocation bits */
unsigned int expression_type: 5; /* how to compute value */
unsigned int exec_level: 2; /* reserved */
unsigned int fixup_format: 6; /* how to deposit bits */

Section 4−−8 − 7 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

unsigned int fixup_field: 8; /* field to extract */
unsigned int subspace_offset; /* subspace offset of word */
unsigned int symbol_index_one; /* index of first symbol */
unsigned int symbol_index_two; /* index of second symbol */
int fixup_constant; /* constant */

};

/* Values for expression_type */
#define e_one 0 /* symbol1 + constant */
#define e_two 1 /* symbol1 - symbol2 + constant */
#define e_pcrel 2 /* symbol1 - pc + constant */
#define e_con 3 /* constant */
#define e_plabel 7 /* symbol1 + constant */
#define e_abs 18 /* absolute, 1st sym index is address */

/* Values for fixup_field (assembler mnemonics shown) */
#define e_fsel 0 /* F’: no change */
#define e_lssel 1 /* LS’: inverse of RS’ */
#define e_rssel 2 /* RS’: rightmost 11 bits, signed */
#define e_lsel 3 /* L’: leftmost 21 bits */
#define e_rsel 4 /* R’: rightmost 11 bits */
#define e_ldsel 5 /* LD’: inverse of RD’ */
#define e_rdsel 6 /* RD’: rightmost 11 bits, filled left with ones */
#define e_lrsel 7 /* LR’: L’ with "rounded" constant */
#define e_rrsel 8 /* RR’: R’ with "rounded" constant */
#define e_nsel 9 /* N1’: set all bits to zero: for id of 3-inst

code gen sequence */

/* Values for fixup_format (typical instructions shown) */
#define i_exp14 0 /* 14-bit immediate (LDW, STW) */
#define i_exp21 1 /* 21-bit immediate (LDIL, ADDIL) */
#define i_exp11 2 /* 11-bit immediate (ADDI, SUBI) */
#define i_rel17 3 /* 17-bit pc-relative (BL) */
#define i_rel12 4 /* 12 bit pc-relative (COMBT, COMBF, etc.) */
#define i_data 5 /* whole word */
#define i_none 6
#define i_abs17 7 /* 17-bit absolute (BE, BLE) */
#define i_milli 8 /* 17-bit millicode call (BLE) */
#define i_break 9 /* reserved (no effect on HP-UX) */

In newer object files, relocation entries consist of a stream of bytes. The fixup_request_index field in the
subspace dictionary entry is a byte offset into the fixup dictionary defined by the file header, and the
fixup_request_quantity field defines the length of the fixup request stream, in bytes, for that subspace. The
first byte of each fixup request (the opcode) identifies the request and determines the length of the request.

In general, the fixup stream is a series of linker instructions that governs how the linker places data in the
a.out file. Certain fixup requests cause the linker to copy one or more bytes from the input subspace to
the output subspace without change, while others direct the linker to relocate words or resolve external
references. Still others direct the linker to insert zeroes in the output subspace or to leave areas uninitial-
ized without copying any data from the input subspace, and others describe points in the code without con-
tributing any new data to the output file.

The include file <reloc.h> defines constants for each major opcode. Many fixup requests use a range of
opcodes; only a constant for the beginning of the range is defined. The meaning of each fixup request is
described below. The opcode ranges and parameters for each fixup are described in the table further below.

R_NO_RELOCATION Copy L bytes with no relocation.

R_ZEROES Insert L zero bytes into the output subspace.

R_UNINIT Skip L bytes in the output subspace.

R_RELOCATION Copy one data word with relocation. The word is assumed to contain a 32-bit
pointer relative to its own subspace.

R_DATA_ONE_SYMBOLCopy one data word with relocation relative to an external symbol whose symbol
index is S.

HP-UX Release 11.0: October 1997 − 8 − Section 4−−9

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

R_DATA_PLABEL Copy one data word as a 32-bit procedure label, referring to the symbol S. The
original contents of the word should be 0 (no static link) or 2 (static link
required).

R_SPACE_REF Copy one data word as a space reference. This fixup request is not currently
supported.

R_REPEATED_INIT Copy L bytes from the input subspace, replicating the data to fill M bytes in the
output subspace.

R_PCREL_CALL Copy one instruction word with relocation. The word is assumed to be a pc-
relative procedure call instruction (for example, BL). The target procedure is
identified by symbol S, and the parameter relocation bits are R.

R_ABS_CALL Copy one instruction word with relocation. The word is assumed to be an abso-
lute procedure call instruction (for example, BLE). The target procedure is
identified by symbol S, and the parameter relocation bits are R.

R_DP_RELATIVE Copy one instruction word with relocation. The word is assumed to be a dp-
relative load or store instruction (for example, ADDIL , LDW, STW). The target
symbol is identified by symbol S. The linker forms the difference between the
value of the symbol S and the value of the symbol $global$. By convention,
the value of $global$ is always contained in register 27. Instructions may
have a small constant in the displacement field of the instruction.

R_DLT_REL Copy one instruction word with relocation. The word is assumed to be a
register-18-relative load or store instruction (for example, LDW, LDO, STW). The
target symbol is identified by symbol S. The linker computes a linkage table
offset relative to register 18 (reserved for a linkage table pointer in position-
independent code) for the symbol S.

R_CODE_ONE_SYMBOLCopy one instruction word with relocation. The word is assumed to be an
instruction referring to symbol S (for example, LDIL , LDW, BE). Instructions
may have a small constant in the displacement field of the instruction.

R_MILLI_REL Copy one instruction word with relocation. The word is assumed to be a short
millicode call instruction (for example, BLE). The linker forms the difference
between the value of the target symbol S and the value of symbol 1 in the
module’s symbol table. By convention, the value of symbol 1 should have been
previously loaded into the base register used in the BLE instruction. The
instruction may have a small constant in the displacement field of the instruc-
tion.

R_CODE_PLABEL Copy one instruction word with relocation. The word is assumed to be part of a
code sequence forming a procedure label (for example, LDIL , LDO), referring to
symbol S. The LDO instruction should contain the value 0 (no static link) or 2
(static link required) in its displacement field.

R_BREAKPOINT Copy one instruction word conditionally. On HP-UX, the linker always replaces
the word with a NOPinstruction.

R_ENTRY Define a procedure entry point. The stack unwind bits, U, and the frame size, F,
are recorded in a stack unwind descriptor.

R_ALT_ENTRY Define an alternate procedure entry point.

R_EXIT Define a procedure exit point.

R_BEGIN_TRY Define the beginning of a try/recover region.

R_END_TRY Define the end of a try/recover region. The offset R defines the distance in bytes
from the end of the region to the beginning of the recover block.

R_BEGIN_BRTAB Define the beginning of a branch table.

R_END_BRTAB Define the end of a branch table.

R_AUX_UNWIND Define an auxiliary unwind table. CNis a symbol index of the symbol that labels
the beginning of the compilation unit string table. SN is the offset, relative to
the CNsymbol, of the scope name string. SK is an integer specifying the scope
kind.

Section 4−−10 − 9 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

R_STATEMENT Define the beginning of statement number N.

R_SEC_STATEMENT Define the beginning of a secondary statement number N.

R_DATA_EXPR Pop one word from the expression stack and copy one data word from the input
subspace to the output subspace, adding the popped value to it.

R_CODE_EXPR Pop one word from the expression stack, and copy one instruction word from the
input subspace to the output subspace, adding the popped value to the displace-
ment field of the instruction.

R_FSEL Use an F´ field selector for the next fixup request instead of the default appropri-
ate for the instruction.

R_LSEL Use an L-class field selector for the next fixup request instead of the default
appropriate for the instruction. Depending on the current rounding mode, L´,
LS´, LD´, or LR´ may be used.

R_RSEL Use an R-class field selector for the next fixup request instead of the default
appropriate for the instruction. Depending on the current rounding mode, R´,
RS´, RD´, or RR´ may be used.

R_N_MODE Select round-down mode (L´/R´). This is the default mode at the beginning of
each subspace. This setting remains in effect until explicitly changed or until the
end of the subspace.

R_S_MODE Select round-to-nearest-page mode (LS´/RS´). This setting remains in effect until
explicitly changed or until the end of the subspace.

R_D_MODE Select round-up mode (LD´/RD´). This setting remains in effect until explicitly
changed or until the end of the subspace.

R_R_MODE Select round-down-with-adjusted-constant mode (LR´/RR´). This setting remains
in effect until explicitly changed or until the end of the subspace.

R_DATA_OVERRIDE Use the constant V for the next fixup request in place of the constant from the
data word or instruction in the input subspace.

R_TRANSLATED Toggle "translated" mode. This fixup request is generated only by the linker dur-
ing a relocatable link to indicate a subspace that was originally read from an
old-format relocatable object file.

R_COMP1 Stack operations. The second byte of this fixup request contains a secondary
opcode. In the descriptions below, A refers to the top of the stack and B refers to
the next item on the stack. All items on the stack are considered signed 32-bit
integers.

R_PUSH_PCON1 Push the (positive) constant V.
R_PUSH_DOT Push the current virtual address.
R_MAX Pop A and B, then push max(A, B).
R_MIN Pop A and B, then push min(A, B).
R_ADD Pop A and B, then push A + B.
R_SUB Pop A and B, then push B − A.
R_MULT Pop A and B, then push A * B.
R_DIV Pop A and B, then push B / A.
R_MOD Pop A and B, then push B % A.
R_AND Pop A and B, then push A & B.
R_OR Pop A and B, then push A | B.
R_XOR Pop A and B, then push A XOR B.
R_NOT Replace A with its complement.
R_LSHIFT If C = 0, pop A and B, then push B << A. Otherwise,

replace A with A << C.
R_ARITH_RSHIFT If C = 0, pop A and B, then push B >> A. Otherwise,

replace A with A >> C. The shifting is done with sign
extension.

R_LOGIC_RSHIFT If C = 0, pop A and B, then push B >> A. Otherwise,
replace A with A >> C. The shifting is done with zero
fill.

HP-UX Release 11.0: October 1997 − 10 − Section 4−−11

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

R_PUSH_NCON1 Push the (negative) constant V.

R_COMP2 More stack operations.

R_PUSH_PCON2 Push the (positive) constant V.
R_PUSH_SYM Push the value of the symbol S.
R_PUSH_PLABEL Push the value of a procedure label for symbol S. The

static link bit is L.
R_PUSH_NCON2 Push the (negative) constant V.

R_COMP3 More stack operations.

R_PUSH_PROC Push the value of the procedure entry point S. The
parameter relocation bits are R.

R_PUSH_CONST Push the constant V.

R_PREV_FIXUP The linker keeps a queue of the last four unique multi-byte fixup requests. This
is an abbreviation for a fixup request identical to one on the queue. The queue
index X references one of the four; X = 0 refers to the most recent. As a side
effect of this fixup request, the referenced fixup is moved to the front of the
queue.

R_N0SEL Indicates that the following fixup is applied to the first of a three-instruction
sequence to access data, generated by the compilers to enable the importing of
shared library data.

R_N1SEL Uses a (N´) field selector for the next fixup request. This indicates that zero bits
are to be used for the displacement on the instruction. This fixup is used to iden-
tify three-instruction sequences to access data (for importing shared library
data).

R_LINETAB Defines the beginning of a line table. CU is a symbol index of the symbol that
labels the beginning of the line table. SM is the offset relative to the CU symbol.
ES designates the version information for the current line table.

R_LINETAB_ESC Defines an escape entry to be entered into the line table. ES designates the
escape entry entered in the table. M designates the number of R_STATEMENT
fixups to be interpreted as raw 8-bit table data.

R_LTP_OVERRIDE Override the following fixup, which is expected to be a R_DATA_ONE_SYMBOL
fixup to copy one data word without relocation when building a shared library.
The absolute byte offset of the symbol relative to the linkage table pointer is
copied. If the linker is building a complete executable, the absolute virtual
address is copied.

R_COMMENT Fixup used to pass comment information from the compiler to the linker. This
fixup has a 5 byte argument that can be skipped and ignored by applications.

R_TP_OVERRIDE Override the next one of these fixups seen: R_DP_RELATIVE, R_DLT_REL, or
R_DATA_ONE_SYMBOL, to use the thread local storage offset when fixing the
instruction. This fixup is also used to catch thread local storage symbol
mismatches.

R_RESERVED Fixups in this range are reserved for internal use by the compilers and linker.

The following table shows the mnemonic fixup request type and length and parameter information for each
range of opcodes. In the parameters column, the symbol D refers to the difference between the opcode and
the beginning of the range described by that table entry; the symbols B1, B2, B3, and B4 refer to the value
of the next one, two, three, or four bytes of the fixup request, respectively.

Section 4−−12 − 11 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

Mnemonic Opcodes Length Parameters__
R_NO_RELOCATION 0-23 1 L = (D+1) * 4

24-27 2 L = (D<<8 + B1 + 1) * 4
28-30 3 L = (D<<16 + B2 + 1) * 4

31 4 L = B3 + 1
R_ZEROES 32 2 L = (B1 + 1) * 4

33 4 L = B3 + 1
R_UNINIT 34 2 L = (B1 + 1) * 4

35 4 L = B3 + 1
R_RELOCATION 36 1 none
R_DATA_ONE_SYMBOL 37 2 S = B1

38 4 S = B3
R_DATA_PLABEL 39 2 S = B1

40 4 S = B3
R_SPACE_REF 41 1 none
R_REPEATED_INIT 42 2 L = 4; M = (B1 + 1) * 4

43 3 L = (B1 + 1) * 4; M = (B1 + 1) * L
44 5 L = (B1 + 1) * 4; M = (B3 + 1) * 4
45 8 L = B3 + 1; M = B4 + 1

R_PCREL_CALL 48-57 2 R = rbits1(D); S = B1
58-59 3 R = rbits2(D<<8 + B1); S = B1
60-61 5 R = rbits2(D<<8 + B1); S = B3

R_ABS_CALL 64-73 2 R = rbits1(D); S = B1
74-75 3 R = rbits2(D<<8 + B1); S = B1
76-77 5 R = rbits2(D<<8 + B1); S = B3

R_DP_RELATIVE 80-111 1 S = D
112 2 S = B1
113 4 S = B3

R_DLT_REL 120 2 S = B1
121 4 S = B3

R_CODE_ONE_SYMBOL 128-159 1 S = D
160 2 S = B1
161 4 S = B3

R_MILLI_REL 174 2 S = B1
175 4 S = B3

R_CODE_PLABEL 176 2 S = B1
177 4 S = B3

R_BREAKPOINT 178 1 none
R_ENTRY 179 9 U,F = B8 (U is 37 bits; F is 27 bits)

180 6 U = B5 >> 3; F = pop A
R_ALT_ENTRY 181 1 none
R_EXIT 182 1 none
R_BEGIN_TRY 183 1 none
R_END_TRY 184 1 R = 0

185 2 R = sign_extend(B1) * 4
186 4 R = sign_extend(B3) * 4

R_BEGIN_BRTAB 187 1 none
R_END_BRTAB 188 1 none
R_STATEMENT 189 2 N = B1

190 3 N = B2
191 4 N = B3

R_DATA_EXPR 192 1 none
R_CODE_EXPR 193 1 none
R_FSEL 194 1 none
R_LSEL 195 1 none
R_RSEL 196 1 none
R_N_MODE 197 1 none
R_S_MODE 198 1 none
R_D_MODE 199 1 none
R_R_MODE 200 1 none
R_DATA_OVERRIDE 201 1 V = 0

202 2 V = sign_extend(B1)

HP-UX Release 11.0: October 1997 − 12 − Section 4−−13

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

203 3 V = sign_extend(B2)
204 4 V = sign_extend(B3)
205 5 V = B4

R_TRANSLATED 206 1 none
R_AUX_UNWIND 207 12 CU,SN,SK = B11 (CU is 24 bits;

SN is 32 bits; SK is 32 bits)
R_COMP1 208 2 OP = B1; V = OP & 0x3f; C = OP & 0x1f
R_COMP2 209 5 OP = B1; S = B3; L = OP & 1;

V = ((OP & 0x7f) << 24) | S
R_COMP3 210 6 OP = B1; V = B4;

R = ((OP & 1) << 8) | (V >> 16);
S = V & 0xffffff

R_PREV_FIXUP 211-214 1 X = D
R_N0SEL 216 1 none
R_N1SEL 217 1 none
R_SEC_STMT 215 1 none
R_LINETAB 218 9 ES = B1; CU = B3; SM = B4
R_LINETAB_ESC 219 3 ES = B1; M = B1
R_LTP_OVERRIDE 220 1 none
R_COMMENT 221 6 OP = B1; V = B2 to B6
R_TP_OVERRIDE 222 1 none
R_RESERVED 224-255 reserved

Parameter relocation bits are encoded in the fixup requests in two ways, noted as rbits1 and rbits2 in the
above table.

The first encoding recognizes that the most common procedure calls have only general register arguments
with no holes in the parameter list. The encoding for such calls is simply the number of parameters in gen-
eral registers (0 to 4), plus 5 if there is a return value in a general register.

The second encoding is more complex. The 10 argument relocation bits are compressed into 9 bits by elim-
inating some impossible combinations. The encoding is the combination of three contributions. The first
contribution is the pair of bits for the return value, which are not modified. The second contribution is 9 if
the first two parameter words together form a double-precision parameter; otherwise, it is 3 times the pair
of bits for the first word plus the pair of bits for the second word. Similarly, the third contribution is
formed based on the third and fourth parameter words. The second contribution is multiplied by 40, the
third is multiplied by 4, then the three are added together.

Compiler Records
Compiler records are placed in relocatable files by each compiler or assembler to identify the version of the
compiler that was used to produce the file. These records are copied into the executable file by the linker,
but are strippable. The structure of a compiler record is shown below. All strings are contained in the
symbol string table.

The format of the compilation record is described by the following structure declaration from
<compunit.h> .

struct compilation_unit {
union name_pt name; /* entry name */
union name_pt language_name; /* language used */
union name_pt product_id; /* compiler ID */
union name_pt version_id; /* compiler version */
unsigned int reserved: 31; /* reserved */
unsigned int chunk_flag: 1; /* MPE-only */
struct sys_clock compile_time; /* time file was compiled */
struct sys_clock source_time; /* time file was last modified */

};

PA64 ELF a.out
The file name a.out is the default output file name from the link editor, ld(1). The link editor will make
an a.out executable if there were no errors in linking. The output file of the assembler, as(1), also follows
the format of the a.out file although its default file name is different.

Programs that manipulate ELF files may use the library that elf(3E) describes. An overview of the file for-
mat follows. For more complete information, see the references given below.

Section 4−−14 − 13 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

Linking View Execution View
_______________________ _______________________

ELF header ELF header
_____________________		______________________
Program header table		Program header table
optional		
_____________________		_____________________
Section 1		

. . .		Segment 1
_____________________		_____________________
Section n		

. . .		Segment 2
_____________________		_____________________
.
_____________________		_____________________
Section header table		Section header table
		optional
_____________________		_____________________

An ELF header resides at the beginning and holds a ‘‘road map’’ describing the file’s organization. Sections
hold the bulk of object file information for the linking view: instructions, data, symbol table, relocation
information, and so on. Segments hold the object file information for the program execution view. As
shown, a segment may contain one or more sections.

A program header table, if present, tells the system how to create a process image. Files used to build a
process image (execute a program) must have a program header table; relocatable files do not need one. A
section header table contains information describing the file’s sections. Every section has an entry in the
table; each entry gives information such as the section name, the section size, and so on. Files used during
linking must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF header, and the section
header table following the sections, actual files may differ. Moreover, sections and segments have no
specified order. Only the ELF header has a fixed position in the file.

When an a.out file is loaded into memory for execution, three logical segments are set up: the text seg-
ment, the data segment (initialized data followed by uninitialized, the latter actually being initialized to all
0’s), and a stack. The text segment is not writable by the program; if other processes are executing the
same a.out file, the processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text address. (If the system sup-
ports more than one page size, the ‘‘maximal page’’ is the largest supported size.) When the process image
is created, the part of the file holding the end of text and the beginning of data may appear twice. The
duplicated chunk of text that appears at the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the actual page size without having to
realign the beginning of the data section to a page boundary. Therefore, the first data address is the sum of
the next maximal page boundary past the end of text plus the remainder of the last text address divided by
the maximal page size. If the last text address is a multiple of the maximal page size, no duplication is
necessary. The stack is automatically extended as required. The data segment is extended as requested by
the brk(2) system call.

FILES
<a.out.h>
<aouthdr.h>
<compunit.h>
<filehdr.h>
<reloc.h>
<scnhdr.h>
<spacehdr.h>
<syms.h>

HP-UX Release 11.0: October 1997 − 14 − Section 4−−15

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

a.out(4) a.out(4)

SEE ALSO
System Tools

as(1) Translate assembly code to machine code
cc(1) Invoke the HP-UX C compiler
ld(1) Invoke the link editor

Miscellaneous
crt0(3) Execution startup routine
elf(3E) For the ELF a.out only
end(3C) Symbol of the last locations in program
magic(4) Magic number for HP-UX implementations
nm(1) Print name list of object file
strip(1) Strip symbol and line number information from an object file

Section 4−−16 − 15 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

acct(4) acct(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct() (see acct(2)) have records in the form defined by
<sys/acct.h> , whose contents are:

typedef ushort comp_t; /* "floating point":
13-bit fraction, 3-bit exponent */

struct acct {
char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
uid_t ac_uid; /* Accounting user ID */
gid_t ac_gid; /* Accounting group ID */
dev_t ac_tty; /* control typewriter */
time_t ac_btime; /* Beginning time */
comp_t ac_utime; /* acctng user time in clock ticks */
comp_t ac_stime; /* acctng system time in clock ticks */
comp_t ac_etime; /* acctng elapsed time in clock ticks */
comp_t ac_mem; /* memory usage in clicks */
comp_t ac_io; /* chars trnsfrd by read/write */
comp_t ac_rw; /* number of block reads/writes */
char ac_comm[8]; /* command name */

};
#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /* record type: 00 = acct */

In ac_flag , the AFORKflag is turned on by each fork() and turned off by an exec() (see fork(2)
and exec(2)). The ac_comm field is inherited from the parent process and is reset by any exec() . Each
time the system charges the process with a clock tick, it also adds to ac_mem the current process size,
computed as follows:

(data size) + (text size) + (number of in-core processes sharing text) +
sum of ((shared memory segment size) / (number of in-core processes attached to segment))

For systems with virtual memory, the text, data, and shared memory sizes refer to the resident portion of
the memory segments. The value of ac_mem/ (ac_stime +ac_utime) can be viewed as an approxima-
tion to the mean process size, as modified by text-sharing.

The tacct structure, which resides with the source files of the accounting commands, represents the
total accounting format used by the various accounting commands:

/*
* total accounting (for acct period), also for day
*/
struct tacct {

uid_t ta_uid; /* userid */
char ta_name[8]; /* login name */
float ta_cpu[2]; /* cum. cpu time, p/np (mins) */
float ta_kcore[2]; /* cum kcore-minutes, p/np */
float ta_con[2]; /* cum. connect time, p/np, mins */
float ta_du; /* cum. disk usage */
long ta_pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions */
unsigned short ta_dc; /* count of disk samples */
short ta_fee; /* fee for special services */

};

WARNINGS
The ac_mem value for a short-lived command gives little information about the actual size of the com-
mand because ac_mem can be incremented while a different command (such as the shell) is being

HP-UX Release 11.0: October 1997 − 1 − Section 4−−17

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

acct(4) acct(4)

executed by the process.

Kernel internal structures may change from release to release without warning. Applications directly rely-
ing on these structures are not supported.

SEE ALSO
acct(2), acct(1M), acctcom(1M), exec(2), fork(2).

STANDARDS CONFORMANCE
acct : SVID2, SVID3, XPG2

Section 4−−18 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

ar(4) ar(4)

NAME
ar - common archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The ar command is used to concatenate several files into an archive file (see ar(1)). Archives are used
mainly as libraries to be searched by the link editor (see ld(1)).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string */

Following the archive magic string are the archive file members. Each file member is preceded by a file
member header which is of the following format:

#define ARFMAG "‘\n" /* header trailer string */
#define AR_NAME_LEN 16 /* ar_name size, includes ‘/’ */

struct ar_hdr /* archive file member header - printable ascii */
{

char ar_name[16]; /* file member name - ‘/’ terminated */
char ar_date[12]; /* file member date - decimal */
char ar_uid[6]; /* file member user id - decimal */
char ar_gid[6]; /* file member group id - decimal */
char ar_mode[8]; /* file member mode - octal */
char ar_size[10]; /* file member size - decimal */
char ar_fmag[2]; /* ARFMAG - string to end header */

};

All information in the file member headers is in printable ASCII. The numeric information contained in the
headers is stored as decimal numbers (except for ar_mode which is in octal). Thus, if the archive con-
tains printable files, the archive itself is printable.

The contents of the ar_name field are slash (/) terminated and blank-padded. The ar_date field is the
modification date of the file at the time of its insertion into the archive. Common format archives can be
moved from system to system as long as the portable archive command ar is used. Note that older ver-
sions of ar did not use the common archive format, and those archives cannot be read or written by the
common archiver.

Each archive file member begins on an even byte boundary; a new-line character is inserted between files if
necessary. Nevertheless, the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file. If the archive symbol table exists, the first
file in the archive has a zero-length name (i.e., ar_name[0] == ’/’ and ar_name[1] == ’ ’).
The contents of this archive member are machine-dependent. Refer to the appropriate a.out(4) manual
entry for more information.

Each archive which contains object files (see a.out(4)) may include an archive symbol table. This symbol
table is used by the link editor (see ld(1)) to determine which archive members must be loaded during the
link edit process. The archive symbol table (if it exists) is always the first member in the archive (but is
never listed) and is automatically created and/or updated by ar .

If a member with a file name greater than 15 bytes exists within the archive, then the archive will also con-
tain an additional special member to store the long file name string table. The special string table member
has a zero length name where ar_name[0] == ’/’ and ar_name[1] == ’/’ .

If a special string table exists, it will precede all non-special archive members. If both a symbol table
member and a string table member exist then the symbol table member will always precede the string table
member.

Each entry in the string table is followed by a slash and a new-line character. The offset of the table begins
at zero. If an archive member name exceeds 15 bytes, then the ar_name entry in the member’s header
does not contain a name, instead it contains the offset into the string table preceded by a slash.

For example, the member name thisverylongfilename.o contains /0 in the ar_name field.
This value represents the offset into the string table. The member name

HP-UX Release 11.0: October 1997 − 1 − Section 4−−19

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

ar(4) ar(4)

yetanotherlongfilename.o contains /27 in the ar_name field. The long name string table
would have the following format:

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9___
0 t | h | i | s | i | s | a | v | e | r |___

10 y | l | o | n | g | f | i | l | e | n |___
20 a | m | e | . | o | / | \n | y | e | t |___
30 a | n | o | t | h | e | r | l | o | n |___
40 g | f | i | l | e | n | a | m | e | . |___
50 o | / | \n |_________________LL
L
L
L
L
L
L

SEE ALSO
System Tools:

ar(1) create archived libraries
ld(1) invoke the link editor

Miscellaneous:
a.out(4) assembler, compiler, and linker output
magic(4) magic number for HP-UX implementations
ranlib(1) regenerate an archive symbol table
strip(1) strip symbol and line number information from an object file

CAVEATS
strip removes the archive symbol table member from the archive (see strip(1)). The archive symbol table
must be restored by using the -ts option of the ar command or the ranlib(1) command before the
archive can be used with the ld link editor.

Section 4−−20 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

arraytab(4) arraytab(4)

NAME
arraytab - disk array configuration table

DESCRIPTION
Arraytab is a table of supported configurations for HP SCSI disk array products. Each table entry includes a
set of parameter values that specify an array configuration. The array configuration table is located in
/etc/hpC2400/arraytab .

HP SCSI disk array devices are highly configurable. The physical disk mechanisms in an array can be
grouped in special ways to provide various levels of data redundancy, and data read/write performance.
These levels are known as RAID (for Redundant Array of Inexpensive Disks) levels.

Using a process called striping, data from each read or write operation can be distributed across multiple
physical disk mechanisms to provide load balancing and/or to add data redundancy for protection against
the failure of physical disk mechanisms. Striping is done in increments of the physical disk block size for
all RAID levels except RAID_3 (which uses byte striping). The stripe size, also known as segment size,
establishes the degree of data spread across the set of disk mechanisms.

Logical disks are created by defining address regions that include all or part of the address space of a disk
group. Each logical disk are separately addressable. For example:

Physical Physical
Block Drive

Address 1 2 3__
0 X X X |

X X X | Logical Drive 0
X X X |

. Y Y Y |

. Y Y Y | Logical Drive 1

. Y Y Y |

Z Z Z |
Z Z Z | Logical Drive 2

N Z Z Z |

In this example, 3 physical drives have been grouped into a single RAID group (1 vertical partition). Three
logical disks have then been formed by partitioning the composite logical address space (in blocks) into 3
logical regions.

A logical configuration which has more than one logical partition per physical disk group is called a sub-
LUN. If the logical partition includes the entire address space of the disk group, the logical partition is
called a regular LUN.

Each array configuration requires two types of specifications—physical specifications, and logical
specifications. A physical specification determines which disk mechanisms form the groups. A logical
configuration specifies the type and location of each physical disk mechanism (in the array) that is to be
used within the logical partition. The logical configuration also specifies the size and characteristics of the
logical partition.

Raid Levels
The disk array can be configured using one of the following RAID levels, depending on the I/O requirements
of the system, and the degree of data availability required. Data availability (redundancy) is achieved at
the expense of storage capacity, and possibly performance.

RAID_0: This level provides no data redundancy, however disks may be grouped in a set, and data
striped across the disk set to provide load balancing.

A special case exists when a drive group of size 1 is defined (independent mode). In this case
the physical disk mechanisms appear to the system as they would if there were no array con-
troller. The array controller is transparent, providing only address selection among the disks
connected to it. When configured in this manner the disks operate independently for every I/O
request.

RAID_1: This level provides disk mirroring. Two sets of disks maintain identical copies of the data. By
choosing the number of disks in each set larger than one, data can be striped across the disks
in each set (RAID_0) to provide better load balancing; the redundant disk sets provide availa-
bility.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−21

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

arraytab(4) arraytab(4)

RAID_3: This level uses byte striping across a set of n drives, with an additional drive maintaining an
XOR parity check byte for each byte of data. The resulting logical disk sector size is n times
the sector size of one disk. Data can be recovered, if a drive fails, by using the redundancy of
the parity drive while operating in a ‘‘degraded’’ mode. Since reads and writes to the indivi-
dual mechanisms are accomplished in parallel, long I/O requests to the array complete in 1/nth
the time, exclusive of the access time, allowing higher bandwidth I/O rates. Because the
mechanisms operate in concert during the input/output operation, only one I/O may process at
a time. Disks configured in RAID_3 have access time characteristics of a single disk, but are
capable of transferring data at higher rates. This mode is most useful with long I/O requests.

RAID_5: This level uses block striping across a set of n drives. XOR parity information is maintained
across the set of the drives on a block basis, such that the failure of any one drive allows con-
tinued operation in a ‘‘degraded’’ mode. While degraded, data from the failed drive is recon-
structed from the parity information, and the data on the remaining disks. Unlike RAID_3,
block sizes can be the same as for a single disk; however, write performance suffers when
write requests are less than n blocks, because read-modify-write operations must be done on
the data drive, and the parity drive. Because the XOR parity data is maintained on a block
basis, drive mechanisms can operate independently, allowing multiple I/O requests to process
concurrently on the set of disks. This mode is most useful for short I/O requests. This mode
allows parallel processing of I/Os requests across the set of disks, however data transfer rates
are equivalent to those of a single disk.

CONFIGURATION TABLE
Entries in the configuration table are formed from a number of fields, each terminated by a ‘‘:’’ character.
The fields are organized as shown below:

Drive Group Name (Physical Configuration Name)
Drive List

. . .

Drive List

Logical Configuration Name
Logical partition configuration

Logical partition configuration

. . .

Logical partition configuration

Each part of the specification is terminated by a ’New Line’ character. The fields are generally composed of
an identifier token, followed by parameter value or values, separated by ‘‘# ’’. Comments may also be placed
within the file by leading the field with ‘‘# ’’. All following characters up to ’New Line’ will be ignored. A
character may be escaped by immediately preceding it with ‘‘\ ’’. Logical configurations and physical
configurations may appear in any order, provided the syntax requirements are met. Physical disk
configuration labels must be unique within the table. Logical configuration labels need not be unique.
However, configurations with non-unique labels should have different parameter values for the array con-
troller type field, or specify a different disk group. Logical disk configurations are searched sequentially—
the first labeled specification which matches will be used. The following list describes the arraytable
parameters and their use.

Name Type Description

ct str Array Controller Type. This parameter must be specified in at least one logical partition of a
logical configuration. The field consists of the concatenated vendor ID and product ID strings
which are returned by the SCSI Inquiry message to the array controller, with ‘‘_ ’’ separating
these two strings. This field defines array product for which this configuration may be used.
For example, HP_C2425D or HP_C2430D. dl num Physical Drive list. Each drive
group consists of 1 or more lists of disk mechanisms, each specified by the array channel
number, the channel ID of the disk mechanism on the channel, and a disk identifier label,
respectively. A drive list may have up to 5 drives listed. The order of the drives in the list
determines the order in which data is placed on the drives. This order is defined by the drive

Section 4−−22 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

arraytab(4) arraytab(4)

sequence label dN, where N is a number from 0 to 4. Subsequent lists may be used to create
drive groups larger than 5 disks. The disk identifier label is a string formed from the vendor
ID and product ID strings returned from a SCSI Inquiry message, separated by ‘‘_ ’’. Certain
constraints are made for the drive groups and drive lists, depending upon the number of drives
and the RAID level chosen. See restrictions below.

lp num Logical partition within the logical configuration. A logical configuration will have one or more
logical partitions, with each logical partition consisting of a portion or the whole of a drive
group (See LUN type). Address space is allocated to each logical partition in the order in
which it is found in the table, and begin start from the beginning block of the disk group. A
logical partition number corresponds with the SCSI logical unit (LUN) number.

lt str Logical partition or LUN type. A logical partition may be either ‘‘regular LUN’’ (reg) or ‘‘sub-
LUN’’ (sub). A sub-LUN allows configuring multiple logical disks for a group of disks, each to
an arbitrary capacity. A regular LUN allows a logical disk capacity of the composite disk capa-
city of a group of drives, or 2 GByte, whichever is smaller. When the regular LUN option is
used, the capacity parameter is ignored by the array controller. Additional logical drives may
be configured to use the remaining capacity beyond 2 GByte if the regular LUN mode is
chosen.

bs num Block size of the logical partition or LUN in bytes. This value must be specified in increments
of the native disk mechanism sector size. Currently supported values are 512, 1024, 2048,
4096 bytes.

cv num Capacity of the logical partition or LUN in blocks. If this value is set to 0, the array will
configure as many blocks as are available (not previously configured in another LUN).

ss num Segment size. The size in bytes of a contiguous segment of the logical address space which will
reside on a single physical disk. This allows controlling how many disks are involved with a
single I/O request. If I/O requests are mostly random, single block requests, this value should
be set to the block size. If the I/O requests are typically more than a single sequential block,
then this value should be set to the number of bytes which minimizes the number of disks
necessary to service most I/Os. The value must be an integral number of the block size.

is num The size in bytes of the first segment of the LUN. This allows this area to be set to a size
different than the remainder of the disk, an area typically used as the boot block for some sys-
tems. This must be an integral number of the block size. If there are no special requirements,
this parameter should be set to 0.

rl str RAID level. Acceptable strings are { RAID_0 , RAID_1 , RAID_3 , RAID_5 }. The RAID
modes are described above.

gn str Group name. This is the label used to identify the physical drive group or configuration to be
used with the logical configuration.

gs num Number of physical drives in the drive group.

rs num Reconstruction size. This is the number of logical disk blocks which will be reconstructed in
one operation when a drive data set is being repaired. A larger value will cause the recon-
struction to complete more quickly (and efficiently), but will cause longer delays in processing
other I/O requests.

rf num Reconstruction frequency. This is the period of time between reconstruction operations,
specified in 0.1 Sec. (see Reconstruction Size). This parameter is useful in systems which do
not do I/O request queuing to allow I/Os to process smoothly while reconstructing the data set.

lf num LUN configuration flags. There are 16 possible LUN configuration flags. Currently only 6 of
these flags are defined. It is not recommended that these fields be altered. The flags are used
to enable certain features of the array controller for the specified LUN. The flags may be set
by specifying the hexadecimal value for all the flags. The flags are defined as follows:

Bit 0 off Not used.

Bit 1 on Automatic reconstruction disable. Enabled allows the array controller to
automatically begin data restruction when the replacement of a failed
disk is detected.

Bit 2 off Not used.

HP-UX Release 11.0: October 1997 − 3 − Section 4−−23

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

arraytab(4) arraytab(4)

Bit 3 off Not used.

Bit 4 on Asynchronous Event Notification polling enable.

Bit 5 on Parity verification enable.

Bit 6 on Write with parity verification enable.

Bit 7 off Not used.

Bit 8 off Mode Sense: Current. Current values are accessed during mode sense.
This bit should not be set concurrently with Bit 9.

Bit 9 off Mode Sense: Saved. Saved values are accessed during mode sense. This
bit should not be set concurrently with Bit 10.

Bit 10-15 off Not used.

RAID LEVEL RESTRICTIONS:
The following restrictions apply to RAID configurations for the array:

RAID_0:

• No disk list may contain more than 1 disk per channel
• For groups larger than 5 disks, additional lists are defined and data is accessed in the order of

definition.

RAID_1:

In this mode the lists define the set of disks for data, and the set of disks which form the mirrored
pair.

• Two lists must be specified.
• The two lists must be of equal length.
• No list may contain more than 1 disk per channel
• Corresponding entries in the two lists (these form a mirrored disk pair) cannot be on the

same channel.

RAID_3:

• There must be an odd number of disks in the disk list.
• Disks in the disk list must be on separate channels.
• The first disk of the set must be on channel 1, followed in order by the other channels. Thus

a 3 disk set will use channels 1 through 3.
• The disk on the last channel is the parity disk. (Channel 3 for 3 disk configuration, channel 5

for 5 disk configuration.)
• Maximum configuration is 1 list of 5 disks.

RAID_5:

• The disk list cannot contain more than 1 disk per channel.
• Maximum configuration is 1 list of 5 disks.

EXAMPLE:
PGroup1: dl#0: d0#1#0#HP_02425: d1#2#0#HP_02425: d2#3#0#HP_02425:

LConfig: lp#0: gs#3: gn#PGroup1: r#RAID_3: is#0: ss#8192:\
cv#204994: ct#HP_C2425D

lp#1: gs#3: gn#PGroup1: r#RAID_3: is#0: ss#8192:\
cv#8192: ct:#HP_C2425D

FILE SYSTEM CONSIDERATIONS:
The performance of the disk array will depend heavily upon the RAID level used, and the application. In
addition, the disk array configuration parameters should be chosen with consideration of the parameters
used for the file system in use on the array.

WARNING:
The configurations found in /etc/hpC2400/arraytab have been chosen and certified by HP for
proper operation on HP systems. Use of configurations other than these have NOT been certified for
proper operation, and cannot be warranted.

Section 4−−24 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

arraytab(4) arraytab(4)

For configurations using logical partitions exceeding 2 GB it is necessary that the 2 GB governor flag be
turned off in the array controller. See see(1M).

DEPENDENCIES:
Series 700:

LUN address 6 and 7 are reserved for use with array management utilities, and should not be configured.

Series 800:
LUN address 6 and 7 are reserved for use with array management utilities, and should not be configured.

Only RAID levels 0 (Independent), 3, and 5 are supported.

RAID 0 configurations must span only a single disk (Independent mode) and result in separate addressable
logical partitions, one for each physical disk.

RAID 3 and RAID 5 configurations must result in a single logical partition, which span all disks on the
array.

AUTHOR:
arraytab was developed by HP.

FILES
/etc/hpC2400/arraytab

SEE ALSO
newarray(1M), mkfs(1M), buildfs(1M), cfl(1M), fs(4), see(1M).

HP-UX Release 11.0: October 1997 − 5 − Section 4−−25

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

audeventstab(4) audeventstab(4)

NAME
audeventstab - define and describe audit system events

DESCRIPTION
The /usr/audit/audeventstab file lists audit event numbers, corresponding mnemonic names, and
brief explanations of each event. Blank lines and comments (beginning with a # character) are allowed.
Each non-comment, non-blank line in this file contains three parts:

event Audit event number in decimal: a single field separated by whitespace.

name Corresponding mnemonic name: a single field separated by whitespace.

explanation Remainder of the line, following a # character.

For kernel-generated audit events, event numbers match kernel-internal system call numbers, and event
names are system call names. For events from self-auditing programs, names are macros defined in
<sys/audit.h >.

EXAMPLES
To extract a list of event numbers and names from the file by stripping comments and ignoring blank lines:

tab=’ ’
sed < /usr/audit/audeventstab -e ’s/#. ∗//’ -e "/ˆ[$tab] ∗$/d"

AUTHOR
audeventstab was developed by HP.

FILES
/usr/audit/audeventstab

SEE ALSO
audisp(1M), audevent(1M).

Section 4−−26 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

audit(4) audit(4)

NAME
audit - file format and other information for auditing

SYNOPSIS
#include <sys/audit.h>

DESCRIPTION
Audit records are generated when users make security-relevant system calls, as well as by self-auditing
processes that call audwrite() (see audwrite(2)). Access to the auditing system is restricted to super-
user.

Each audit record consists of an audit record header and a record body. The record header is comprised of
time, process ID, error, event type, and record body length. The time refers to the time the audited event
completes in either success or failure; the process ID belongs to the process being audited; the event type is
a field identifying the type of audited activity; the length is the record body length expressed in bytes. The
exact format of the header is defined in <sys/audit.h > as follows:

struct audit_hdr {
u_long ah_time; /* date/time (tv_sec of timeeval) */
u_short ah_pid; /* process ID */
u_short ah_error; /* success/failure */
u_short ah_event; /* event being audited */
u_short ah_len; /* length of variant part */

};

The record body is the variable-length component of an audit record containing more information about the
audited activity. For records generated by system calls, the body contains the parameters of the system
calls; for records generated by self-auditing processes, the body consists of a high-level description of the
event (see audwrite(2)).

The records in the audit file are compressed to save file space. When a process is audited the first time, a
pid identification record (PIR) is written into the audit file containing information that remains constant
throughout the lifetime of the process. This includes the parent’s process ID, audit ID, real user ID, real
group ID, effective user ID, effective group ID, and the terminal ID (tty). The PIR is entered only once per
process per audit file, and is also defined in <sys/audit.h > as follows:

struct pir_body { /* pir-related info */
short ppid; /* parent process ID */
int32_t aid; /* audit ID */
uid_t ruid; /* user_ID */
gid_t rgid; /* group ID */
uid_t euid; /* effective user_ID */
gid_t egid; /* effective group_ID */
dev_t tty; /* tty number */

};

Information accumulated in an audit file is analyzed and displayed by audisp (see audisp(1M)).

Whenever auditing is turned on, a ‘‘current’’ audit file is required and a ‘‘next’’ audit file (for backup) is
recommended (see audsys(1M) and audomon(1M)). When the ‘‘current’’ audit file is full and the ‘‘next’’
audit file is available, the auditing system switches files automatically.

AUTHOR
audit was developed by HP.

SEE ALSO
audsys(1M), audevent(1M), audisp(1M), audomon(1M), audwrite(2), getevent(2), setevent(2).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−27

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

authcap(4) authcap(4)

NAME
authcap - security databases for trusted systems

SYNOPSIS
/tcb/files/auth/*
/tcb/files/auth/system/*

DESCRIPTION
All security-relevant databases are stored in an ASCII format in the file system. This format is converted to
binary structures by support routines described in Section 3 manual entries. This manual entry describes
the format of these databases, and describes the philosophy of conversion into data structures.

Hierarchy Structure
The complete database resides in two hierarchies: /tcb/files/auth/* and /tcb/files . The
first hierarchy contains the Protected Password database, and has subdirectories with single letter names,
each of which is a starting letter for user names. Within each of these directories are regular files, each
containing an authcap(4) format file containing the Protected Password entry for a particular user. Thus,
all user names beginning with x have their respective authentication and identity information in a file in
directory /tcb/files/auth/x .

Directories within /tcb/files/auth/system and /tcb/files contain system-wide information.
Global system settings reside in directory /tcb/files/auth/system . Terminal and device assign-
ment files are located in directory /tcb/files .

The following database files reside in directory system :

default Default Control

The following database files reside in directory /tcb/files :

ttys Terminal Control
devassign Device Assignment

File Format
Each data file (/tcb/files/auth/system and /tcb/files)has the same format. Each file con-
sists of one virtual line, optionally split into multiple physical lines with the \ character present at the end
of all lines except the last. For example, the line

smk:u_name=smk:u_id#16:u_pwd=a78/a1.eitfn6:chkent:

can be split into:

smk:u_name=smk:u_id#16:\
:u_pwd=a78/a1.eitfn6:\
:chkent:

Note that all capabilities must be immediately preceded and followed with the : separator. Multiple line
entries require : at the end of each line and at the beginning of each continuation line in the entry. Con-
tinuation lines are indented by a tab character. Multiple entries are separated by a new-line character that
is not preceded by a continuation character:

daa:u_name=daa:u_id#75:u_maxtries#9:chkent:
smk:u_name=smk:u_id#76:u_maxtries#5:chkent:

Line Format
The format of a line is briefly as follows:

name:cap1:cap2:cap3:...:capn:chkent:

The entry is referenced by the name. The end of the name part of the entry is terminated by the : charac-
ter.

At the end of each entry is the chkent field. This is used as an integrity check on each entry. The auth-
cap(3) routines reject all entries that do not contain the chkent terminator.

Each entry has 0 or more capabilities, each terminated with the : character. Each capability has a unique
name. Numeric capabilities have the format:

id#num

Section 4−−28 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

a

authcap(4) authcap(4)

where num is a decimal or (0-preceded) octal number. Boolean capabilities have the format:

id

or

id@

where the first form signals the presence of the capability and the second form signals the absence of the
capability. String capabilities have the format:

id=string

where string is 0 or more characters. The \ and : characters are escaped as \ \ and \: respectively.

File Locking
All databases use a lock file, the existence of which means that the file is currently being rewritten. Occa-
sionally, the lock files remain after a system crash and must be removed manually. The lock file is formed
by appending -t to the database file name.

Fields/Flags
All databases are converted into structures by programs. The data structures consist of two substructures,
each of which has one member for each field in the database entry. The field structure contains a field
value (for example, a number, a boolean flag, a directory string, or a mask), while the flag value (one bit)
indicates the presence or absence of the field in that entry.

AUTHOR
SecureWare Inc.

SEE ALSO
default(4), devassign(4), getdvagent(3), getprdfent(3), getprpwent(3), getprtcent(3), prpwd(4), ttys(4).

HP-UX Release 11.0: October 1997 − 2 − Section 4−−29

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

b

bootconf(4) bootconf(4)

NAME
/stand/bootconf - boot device configuration table

DESCRIPTION
This file contains the address and disk layout type of the system’s boot devices or lif volumes. It is used by
the Software Distributor and HP-UX kernel control scripts (fileset OS-Core.KERN-RUN) to
determine how and where to update the initial boot loader. Normally the kernel’s checkinstall script
queries the system’s hardware and creates the file. In rare cases when either the system configuration can-
not be automatically determined or additional and/or alternate boot devices should be automatically
updated, the administrator must edit the /stand/bootconf file manually.

There is one line in the file for each boot device. Each line contains the following blank-separated fields in
the order shown:

disk type A flag indicating how the file system(s) on the disk are laid out. The flag must be one
of the following:

l Indicates that the root disk is in LVM format. If LVM mirrors are used, then
each of the "mirrors" must have its own line.

p Indicates that the root disk has Series 800-style hard partitions and that the
boot volume is is section 6.

w Indicates that the root disk is in the Release 9.X Series 700-style "whole disk"
format with no partitions, but boot and swap space are reserved outside the
file system.

device file The absolute path of the device special file that accesses the physical device where the
boot area is located. For LVM root disks, the device special file is the physical
volume(s) returned by the vgdisplay -v command. For Series 800 hard parti-
tions, this is the device special file that points to section six of the disk. For Series
700-style "whole disks" this is the device file that references the entire disk.

Blank lines are permitted. Any line beginning with a # is considered to be a comment.

DIAGNOSTICS
The Software Distributor log file /var/adm/sw/swagent.log contains diagnostic messages under
the OS-Core.KERN-RUN fileset if the bootconf file is incorrect. Most of the messages are self-
explanatory; a few warrant additional explanation:

... is either empty or improperly formatted...
If there are no other messages about bootconf , the file is probably empty. Otherwise, the file is not
in the proper format, and the other messages will explain what the problem is.

device file ... does not contain a valid boot LIF ...
The specified device file does not point to a disk where there is a lif which contains the file HPUX.

... has an invalid character in the flag field...
Some character other than #, l , p, or w is in the first field of a line.

... contains contradictory boot LIF types...
As of release 10.0, the boot areas in /stand/bootconf must all be on the same type of disk lay-
out.

... has unrecognized extra characters...
There are characters after the device file specification.

EXAMPLES
The boot area is on an LVM root disk:

Boot Device configuration file
This file contains information regarding the location
of the boot LIF. It is used by the KERN-RUN fileset to
update the boot kernel.
l /dev/dsk/c2t7d0

The system has LVM mirroring on root (the device files indicate that the system is running on a 9.0 release
being prepared for updating to 10.0):

Section 4−−30 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

b

bootconf(4) bootconf(4)

Boot Device configuration file
This file contains information regarding the location
of the boot LIF. It is used by the KERN-RUN fileset to
update the boot kernel.
l /dev/dsk/c1d0s2
l /dev/dsk/c4d0s2
l /dev/dsk/c5d0s2

The boot area is on a hard partitioned disk:

Boot Device configuration file
This File contains information regarding the location
of the boot LIF. It is used by the KERN-RUN fileset to
update the boot kernel.
p /dev/dsk/0s0

The boot area is on a whole disk layout:

Boot Device configuration file
This File contains information regarding the location
of the boot LIF. It is used by the KERN-RUN fileset to
update the boot kernel.
w /dev/dsk/6s0

WARNINGS
All of the boot devices in the file must have the same disk layout.

AUTHOR
bootconf was developed by the Hewlett-Packard Company.

FILES
/stand/bootconf

SEE ALSO
mediainit(1), hpux(1M), mkboot(1M), vgdisplay(1M), lif(4).

Software Distributor documentation.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−31

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

cdnode(4) cdnode(4)

NAME
cdnode - format of a CDFS cdnode

SYNOPSIS
#include <sys/types.h>
#include <sys/cdnode.h>

DESCRIPTION
This entry describes the cdnode structure and related concepts for the CDFS file system. Refer to other
inode(4) manual pages for information regarding the inode structure for other file systems.

The CDFS file system does not have the concept of a separate entity called an inode. The information nor-
mally found in an HFS inode is kept in a cdnode data structure. However, the cdnode data structure does
not reside on the physical media, but instead is kept in kernel memory space only. The cdnode information
is used to uniquely identify a file.

The information kept in the cdnode structure is obtained from two other data structures in the CDFS file
system:

1. Directory record for the file or directory, and

2. Extended attribute record (XAR) for the file or directory, if one exists.

Because few files usually have XARs associated with them, the cdnode information most often consists only
of attributes given by the directory record for the file.

Since cdnodes are kept in kernel memory, they cannot be directly accessed by the user. The stat() sys-
tem call attempts to map whatever information is included in the cdnode for a given file into the standard
stat structure (see stat(2)). However, since a cdnode includes information that does not have corresponding
fields in the stat structure, that information cannot be mapped and therefore cannot be accessed. No
method is provided to access an entire cdnode structure.

FILES
/usr/include/sys/cdnode.h
/usr/include/sys/cdfsdir.h

SEE ALSO
stat(2), cdrom(4), cdfsdir(4).

Section 4−−32 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

cdrom(4) cdrom(4)

NAME
cdrom - CD-ROM background information

DESCRIPTION
This manual entry provides general information on existing CD-ROM standards, terminology, data layout,
and levels of support. More detailed information is available in the standard documents listed in SEE
ALSO.

Not all topics discussed here are supported in the current HP-UX release. Refer to the DEPENDENCIES
section for details about the contents of the current release.

Standard Formats
Currently, two standard formats are defined for CD-ROM.

The High Sierra Group (HSG) standard was produced by the CD-ROM Ad Hoc Advisory Committee, and is
documented in a publication entitled The Working Paper for Information Processing − Volume and File
Structure of Compact Read Only Optical Discs for Information Interchange. This document is available
from the National Information Standards Organization (NISO).

The second standard, which evolved from the HSG standard, was produced by the International Organiza-
tion for Standardization (ISO). This standard is documented in a publication entitled Information Process-
ing − Volume and File Structure of CD-ROM for Information Interchange, reference number ISO 9660:
1988 (E).

Data Layout
The data layout on a CD-ROM can be represented as follows:___

System Area - 32 kilobytes__
Volume Descriptor______________________________

.

.

.______________________________
Volume Descriptor Terminator______________________________

.

.

.__
Path Table______________________________
Path Table______________________________

.

.

.__
Directory and File Data

.

.

.__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

There are typically four sections in the CD-ROM data (indicated by double horizontal lines in the table
above): Only the first two sections must occur in the order shown above.

The System Area consists of the first sixteen 2048-byte blocks on the media. The contents of this section
are not specified by either standard; here, the creator of the CD-ROM can put data that is relevant to the
system for which the CD-ROM is intended.

The Volume Descriptor typically contains one primary volume descriptor and zero or more supplemen-
tary volume descriptors. Each volume descriptor is 2048 bytes in length, and describes the attributes and
structure of a directory hierarchy on the CD-ROM. The list of volume descriptors is terminated by one or
more volume descriptor terminators. A volume descriptor terminator is also 2048 bytes in length, and
simply signals the end of the volume descriptor section.

The Path Table contains all the path tables for all directory hierarchies on the CD-ROM. Path tables do
not have to be constrained to this section of the CD-ROM data, but can be interspersed with Directory
and File Data (described below) to minimize seek times.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−33

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

cdrom(4) cdrom(4)

The Directory and File Data contains data for all directory hierarchies on the CD-ROM and, as described
above, can be made noncontiguous by the occasional inclusion of a path table.

Volumes and Directory Hierarchies
A volume is a single physical CD-ROM. A directory hierarchy is a hierarchical file system written on a
volume. Multiple directory hierarchies can be placed on a single volume, or a single directory hierarchy can
span multiple volumes. Each directory hierarchy on a volume is described by a volume descriptor.

Directory hierarchies on the same volume can be totally independent of each other with each one defining a
totally unique and unrelated file system. They can also be related to each other through the sharing of data
between them.

A volume set is a set of one or more volumes that are to be treated as a unit. Each successive volume in
the volume set updates or augments the data on the volumes preceding it. Thus, the last volume in a
volume set is always the volume which describes the most up-to-date directory hierarchy for the volume
set. A unique and ascending value called the volume sequence number, is assigned to each volume in a
volume set. Volume sets are useful for updating large multivolume databases without having to rework the
entire set.

Volume Descriptors
Each directory hierarchy on a volume is described by a volume descriptor. There are several types of
volume descriptors, but the two of most interest are the primary volume descriptor and the supple-
mentary volume descriptor. Their content is almost identical, but they have different intended uses.

The primary volume descriptor describes the primary directory hierarchy on a volume. If there are addi-
tional directory hierarchies on the volume, or different ways to view the same directory hierarchy, these
are described by supplementary volume descriptors. In the case of a volume set, the primary volume
descriptor on each volume describes the primary directory hierarchy for that volume and all preceding
volumes in the set thus far.

Volume descriptors contain the following information:

standard ID (identifies the format of the volume);
system ID;
volume ID;
size of the volume;
volume set size;
volume sequence number;
logical block size;
path table size;
pointers to the path tables;
directory record for the root directory;
volume set ID;
publisher ID;
data preparer ID;
application ID;
copyright file name;
abstract file name;
bibliographic file name (ISO only);
volume creation date and time;
volume modification date and time;
volume expiration date and time;
volume effective date and time;
application use area.

Path Tables
A path table defines a directory hierarchy structure within a volume. Each path table contains a record
for each directory in the hierarchy. In each record are kept the directory’s name, the length of any
extended attribute record associated with the directory, the logical block number of the block in which the
directory begins, and the number of the parent directory for that directory. (All directories in a path table
are numbered according to the order in which they appear in the path table.)

There are two types of path tables. One is a type-L path table in which all numerical values in each path
table record are recorded least-significant-byte-first. The other type, type-M, is a path table in which all
numerical values are recorded most-significant-byte-first. One of each type of path table is required by both

Section 4−−34 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

cdrom(4) cdrom(4)

standards. The ISO standard allows for one additional optional copy of each type of path table, while the
HSG standard allows for up to three additional optional copies of each type. Additional copies of path
tables are useful for redundancy or seek time minimization.

Extended Attribute Records
An extended attribute record (abbreviated XAR) is a data structure specifying additional information
about the file or directory with which the XAR is associated. An XAR contains the following information:

owner id;
group id;
permissions;
creation date and time;
modification date and time;
expiration date and time;
effective date and time;
record information;
application use area.

If an XAR is recorded, the XAR is written beginning at the first block of the file or directory. The actual
data for the file or directory is written beginning at the next block after the block in which the XAR ends.

Where possible, XAR information is mapped into the stat structure by the stat() system call (see
stat(2)). However, many items do not map very well due to lack of appropriate fields in the stat structure
for information provided by the XAR. To preserve backward compatibility of the stat structure, such infor-
mation is discarded by stat() . The fsctl() system call can be used to obtain the XAR for a particular
file or directory (see fsctl(2)).

Interleaving
For performance reasons, data in a file can be interleaved when recorded on the volume. This is accom-
plished by dividing the file into pieces called file units. The size of each file unit (in logical blocks) is called
the file unit size. The interleaved file is then recorded onto the volume by writing a file unit, skipping one
or more blocks, writing another file unit, skipping more blocks, and so on until the entire file is recorded.
The number of blocks to skip between file units is called the interleave gap size. Blocks making up the
interleave gap are available for assignment to other files.

File unit and interleave gap sizes are kept in the directory record for each file. Thus, the file unit and
interleave gap sizes may change from file to file, but cannot change within the same file (unless the file is
written in sections − see below).

Directories cannot be interleaved.

File Sections
In order to be able to share data between files, a file can be broken up into file sections. File sections for a
particular file are not necessarily all the same size.

Each file section is treated like a separate file in that each section gets its own directory record. This
implies that each file section has its own size, its own XAR, and its own unique file unit and interleave gap
sizes. However, all file sections for the same file must all share the same file name. The order of the file
sections in the file is determined by the order of the directory records for each section. A bit in each direc-
tory record determines whether or not that record is the last record for the file.

A file section can appear more than once in a single file, or appear many times in many different files. A
file section in one volume can also be claimed by a file in a subsequent volume in a volume set (this is how
updates are accomplished).

Each file section can have its own XAR. However, if the final file section of a file has no associated XAR,
the entire file is treated as if it has no XAR. This is done to make updates work sensibly.

Directories must always consist of a single section.

Implementation and Interchange Levels
CD-ROM standards define two levels of implementation and three levels of interchange. implementation
levels provide a way for receiving systems that support CD-ROM to specify their level of support. The
implementation levels are:

Level 1 The system is permitted to ignore supplementary volume descriptors, their associated
path tables, and all directory and file data associated with them.

HP-UX Release 11.0: October 1997 − 3 − Section 4−−35

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

cdrom(4) cdrom(4)

Level 2 No restrictions apply.

In all cases, receiving systems must fulfill the receiving system requirements specified in section 10 of the
ISO standard (no equivalent section exists for HSG).

Interchange levels provide a way to specify the data structure and complexity that exists on a CD-ROM.
The levels are:

Level 1 Each file consists of a single file section. File names contain no more than eight charac-
ters, and file name extensions contain no more than three. Directory names contain no
more than eight characters.

Level 2 Each file consists of a single file section.

Level 3 No restrictions apply.

DEPENDENCIES
HP-UX supports only the primary volume descriptor. When a volume is mounted, HP-UX mounts the
directory hierarchy described by the first primary volume descriptor it finds. Supplementary volume
descriptors are recognized and ignored, as are their associated directory hierarchies.

Directory hierarchies spanning multiple volumes are not supported.

Volume sets consisting of more than one volume are not supported.

Path tables are ignored in HP-UX. The normal path name lookup scheme used in HFS file systems is used
instead. This is done to allow other mountable file systems to be mounted on top of a mounted CDFS file
system. Also, since HP-UX maintains a cache of cdnodes for CDFS files (see cdnode(4)), the additional per-
formance gains provided by path tables are minimal.

HP-UX does not support multiple file sections. Each file must be recorded in a single file section.

HP-UX supports level 1 implementation and level 2 interchange.

NOTES
Additional CD-ROM formats are supported using PFS (Portable File System) utilities. See pfs(4) for more
details.

SEE ALSO
fsctl(2), stat(2), cdnode(4), pfs(4).

Information Processing - Volume and File Structure of CD-ROM for Information Interchange , Ref. No. ISO
9660: 1988 (E).

The Working Paper for Information Processing − Volume and File Structure of Compact Read Only Optical
Discs for Information Interchange, National Information Standards Organization [Z39].

Section 4−−36 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

charmap(4) charmap(4)

NAME
charmap - symbolic translation file for localedef scripts

SYNOPSIS
localedef -f charmap locale_name

DESCRIPTION
Invoking the localedef command with the -f option causes symbolic names in the locale descrip-
tion file to be translated into the encodings given in the charmap file (see localedef(1M)). As a recommen-
dation, a locale description file should be written completely with symbolic names.

The charmap file has two sections: a declarations section and a character definition section.

Declarations Section
Declarations can precede the character definitions.

Each consists of the symbol (including the surrounding angle brackets), followed by one or more blanks (or
tabs or space characters), followed by the value of the symbol.

Certain declarations are required for multibyte character codesets. For single-byte codesets, all are
optional.

Following is a list of possible declarations:

<code_set_name> value

Used to declare the name of the coded character set for which the charmap file is defined. This key-
word is required for multibyte character codesets. For HP15 encoding scheme, HP15 needs to be
part of the name. For EUC encoding scheme, EUCneeds to be part of the name.

<cswidth> value

Used to declare the cswidth parameter of the coded character set for which the charmap file is defined
(see euset(1)).

<mb_cur_max> value

Used to declare the maximum number of bytes in a multibyte character. Defaults to 1 if not given.
For multibyte character codesets, this keyword must be specified.

<mb_cur_min> value

Used to declare the minimum number of bytes in a character for the encoded character set. The value
must be less than or equal to <mb_cur_max> . If not given, the default is equal to
<mb_cur_max> .

<escape_char> value

Used to declare the escape character, which is used to escape characters that otherwise would have
special meaning. If not given, the default is backslash (\).

<comment_char> value

Used to declare the comment character, which is used to begin comments and should be placed in
column one of the charmap file. If not given, the default is the # character.

Character Definition Section
The character-set mapping definitions immediately follow an identifier line containing the string CHAR-
MAPand precede a trailer line consisting of the string END CHARMAP. (Empty lines and lines beginning
with the comment character are ignored.)

The character definitions are of two forms.

The first form defines a single character and its encoding:

<symbolic_name> encoding

A symbolic_name is one or more visible characters from the portable character set as specified by XPG,
enclosed in angle brackets. Metacharacters such as angle brackets, escape characters, or comment charac-
ters must be escaped if they are used in the name. Two or more symbolic names can be given for the same
encoding.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−37

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

charmap(4) charmap(4)

The encoding is a character constant in one of three forms:

decimal An escape character followed by the letter d, followed by one to three decimal digits.

octal An escape character followed by one to three octal digits.

hexadecimal An escape character followed by an x , followed by two hexadecimal digits.

Multibyte characters are represented by the concatenation of character constants. All constants used in the
encoding of a multibyte character must be of the same form.

The second form defines a range of characters consisting of all characters from the first symbolic name to
the second, inclusive:

<symbolic_name>... <symbolic_name> encoding

The symbolic name must consist of one or more nonnumeric characters followed by an integer formed of
one or more decimal digits. The integer part of the second symbolic name must be larger than that of the
first. The range is then interpreted as a list of symbolic names consisting of the same character portion and
successive integer values from the first through the last. These names are assigned successive encodings
starting with the one given.

For example, the character definition line

<C4>...<C6> \d129

is equivalent to:

<C4> \d129
<C5> \d130
<C6> \d131

EXAMPLES
For examples, see any of the files under /usr/lib/nls/loc/charmaps directory.

SEE ALSO
localedef(1M), localedef(4).

STANDARDS COMPLIANCE
localedef POSIX.2, XPG4.

Section 4−−38 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

core(4) core(4)

NAME
core - format of core image file

DESCRIPTION
The HP-UX system writes out a file containing a core image of a terminated process when certain signals
are received (see signal(5) for the list of reasons). The most common causes are memory violations, illegal
instructions, floating point exceptions, bus errors, and user-generated quit signals. The core image file is
called core and is written in the process’s working directory (provided it is allowed by normal access con-
trols). A process with an effective user ID different from its real user ID does not produce a core image.

The file contains sufficient information to determine what the process was doing at the time of its termina-
tion. Core file contents consist of objects that represent different segments of a process. Each object is pre-
ceded by a corehead data structure, and each corehead data structure describes the corresponding
object following it. The structure is defined in <sys/core.h >, and includes the following members:

int type;
space_t space;
caddr_t addr;
size_t len;

The space and addr members specify the virtual memory address in the process where the described object
began. The len member is the length of the object in bytes.

The following possible values for type are defined in <sys/core.h >:

CORE_DATA Process data as it existed at the time the core image was created. This includes
initialized data, uninitalized data, and the heap at the time the core image is gen-
erated.

CORE_EXEC A compiler-dependent data structure containing the exec data structure, the magic
number of the executable file, and the command (see the declaration of the
proc_exec structure in <sys/core.h >).

CORE_FORMAT The version number of the core format produced. This number changes with each
HP-UX release where the core format itself has changed. However, it does not
necessarily change with every HP-UX release. CORE_FORMATcan thus be easily
used by core-reading tools to determine whether they are compatible with a given
core image. This type is expressed by a four-byte binary integer.

CORE_KERNEL The null-terminated version string associated with the kernel at the time the core
image was generated.

CORE_PROC An architecture-dependent data structure containing per-process information such
as hardware register contents. See the declaration of the proc_info structure
in <sys/core.h >.

CORE_STACK Process stack contents at the time the core image was created.

Objects dumped in a core image file are not arranged in any particular order. Use corehead informa-
tion to determine the type of the object that immediately follows it.

SEE ALSO
adb(1), cdb(1), xdb(1), setuid(2), crt0(3), end(3C), signal(5).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−39

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

c

cpio(4) cpio(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio is not used (see cpio(1)), is:

struct {
short c_magic,

c_dev;
ushort c_ino,

c_mode,
c_uid,
c_gid;

short c_nlink,
c_rdev,
c_mtime[2],
c_namesize,
c_filesize[2];

char c_name[c_namesize rounded to word];
} Hdr;

When the cpio -c option is used, the header information is described by:

sscanf(Chdr,"%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%11lo%6ho%11lo",
&Hdr.c_magic,&Hdr.c_dev,&Hdr.c_ino,&Hdr.c_mode,
&Hdr.c_uid,&Hdr.c_gid,&Hdr.c_nlink,&Hdr.c_rdev,
&Longtime,&Hdr.c_namesize,&Longfile);

Longtime and Longfile are equivalent to Hdr.c_mtime and Hdr.c_filesize , respectively. The con-
tents of each file are recorded together with other items describing the file. Every instance of c_magic
contains the constant 070707 (octal). The items c_dev through c_mtime have meanings explained in
stat(2). The length of the null-terminated path name c_name , including the null byte, is given by
c_namesize .

The last record of the archive always contains the name TRAILER!!! . Directories and the trailer are
recorded with c_filesize equal to zero.

It will not always be the case that c_dev and c_ino correspond to the results of stat() , but the
values are always sufficient to tell whether two files in the archive are linked to each other.

When a device special file is archived by HP-UX cpio (using the -x option), c_rdev contains a magic
constant which is dependent upon the implementation doing the writing. H_rdev flags the device file as
an HP-UX 32-bit device specifier, and c_filesize contains the 32-bit device specifier (see stat(2)). If the
-x option is not present, special files are not archived or restored. Non-HPUX device special files are never
restored.

SEE ALSO
cpio(1), find(1), stat(2).

STANDARDS CONFORMANCE
cpio : XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1

Section 4−−40 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

default(4) default(4)

NAME
default - system default database file for a trusted system

SYNOPSIS
/tcb/files/auth/system/default

DESCRIPTION
The system default database is unique in that it defines system-wide global parameters for a trusted sys-
tem. It is designed to provide values for users and devices on a global scale rather than requiring an
administrator to replicate values in user or device databases when they are all the same. In addition to
being easier to specify global values, it is also much easier to make a global system change if necessary.

The system default database is made up of four types of values:

system-wide parameters These are parameters that do not have corresponding specifications in any
other trusted system database. If a system-wide parameter is not specified
in the default database, then it is undefined.

user parameters These parameters are typically specified in a protected password database
file.

terminal control parameters These parameters are typically specified in the terminal control database
file.

device assignment parameters These parameters are typically specified in the device assignment database
file.

System default parameters may be specified for fields found in the protected password, terminal control,
and device assignment databases. When a specific entry is retrieved from one of these databases, a struc-
ture called, ufld that contains all of the explicitly specified values, is provided to the caller. A second struc-
ture, called sfld, is also provided which defines those values supplied from the system default database.
Each of these structures has a corresponding flag structure called uflg and sflg, respectively, that indicates
which fields in each structure have been specified and are valid for use. Programs honor the user or device
specific value first if one is provided. Otherwise, the program may choose to use the system default value if
one has been specified. If neither value is specified, the program may supply a reasonable default value or
abort.

For descriptions of the specific fields provided by the protected password, terminal control, and device
assignment databases, see the corresponding manual pages listed in the SEE ALSO section for those data-
bases. The following fields are unique to the system default database and can not be specified in any of the
other system databases.

d_name This name is set to the string "default".

d_boot_authenticate This flag field indicates whether or not boot authentication is required to
boot the machine. If authentication is required, it is performed by the sys-
tem init(1M) program prior to completing system boot.

EXAMPLES
The following is an example of a typical system default database. Refer to authcap(4) for descriptions of the
file and line formats.

default:\
:d_name=default:\
:d_boot_authenticate@:\
:u_pwd=*:\
:u_minchg#0:u_maxlen#10:u_exp#15724800:u_life#31449600:\
:u_pickpw@:u_genpwd@:u_restrict@:u_nullpw@:\
:u_genchars@:u_genletters@:\
:u_maxtries#5:u_lock:\
:t_logdelay#2:t_maxtries#10:\
:chkent:

This system default database defines the four different types of values which are supported. First, values
that can be assigned on a system-wide only basis are defined. Boot authentication at system startup is not
enabled. Login programs will provide password expiration warnings if the password expires in less than
604800 seconds from the current system time (this translates into 60*60*24*7 or 7 days).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−41

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

default(4) default(4)

The system default database also defines numerous protected password database default values. Fields
that begin with u_ correspond to protected password fields. Similarly, fields starting with the t_ prefix
are terminal control database fields. These field types are used to supply system-wide default values if a
user or device specific value is not supplied by the corresponding database. See the appropriate manual
pages listed in the SEE ALSO section for these databases for a complete description of the applicable fields.

FILES
/tcb/files/auth/system/default system default database file for a trusted system; see

authcap(4)

/tcb/files/auth/*/* protected password database files; see prpwd(4)

/tcb/files/ttys terminal control database file; see ttys(4)

/tcb/files/devassign device assignment database file; see devassign(4)

AUTHOR
SecureWare Inc.

SEE ALSO
getprdfent(3), authcap(4), devassign(4), prpwd(4), ttys(4).

Section 4−−42 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

devassign(4) devassign(4)

NAME
devassign - device assignment database file for a trusted system

SYNOPSIS
/tcb/files/devassign

DESCRIPTION
The system supports a single device assignment database that contains entries for local and remote login
terminals.

The format of the terminal control database file is identical to other trusted system authentication database
files. For more information on the file format, see authcap(4). The file consists of keyword field identifiers
and values for those fields. The keyword identifiers supported and their use include:

v_devs This field specifies a comma separated list of aliases that refer to the same device defined
by the entry. Use of this field avoids the need to replicate device assignment database
entries for all device aliases.

v_type This field specifies the device that is described by the entry. Device types supported
include:

terminal The device is assigned as a local or remote login terminal device.

v_users This field, if specified, contains a comma separated list of user names that are permitted to
use the device for login or the import/export of data. If the list is not present, all users are
permitted to use the device. If the list is present, it is searched for a match by the login
program to determine if the user is permitted to use the device.

EXAMPLES
The following is an example of a device assignment database entry for a terminal device assigned as a login
device:

tty0:v_devs=/dev/tty0:\
:v_type=terminal:\
:chkent:

AUTHOR
SecureWare Inc.

SEE ALSO
cpio(1), login(1), tar(1), getdvagent(3), authcap(4), default(4).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−43

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

devices(4) devices(4)
(Series 800 Only)

NAME
devices - file of driver information for insf, mksf, lssf

DESCRIPTION
The devices file contains a description of I/O drivers, pseudo-drivers, hardware addresses and
block/character major numbers. It is created by uxgen (see uxgen(1M)). This file normally resides in the
directory /etc .

This is an ASCII file consisting of zero or more lines where each line is terminated by a new-line character.
Each line begins with a name which normally represents an I/O driver or pseudo-driver. Tokens are
separated by white space.

Each parameter in the line is preceded by a keyword. All parameters are optional. The keywords are: lu ,
address , b_major , and c_major . representing logical unit number, hardware address, block major
number, character major number, respectively. Parameters can appear in any order after the name; how-
ever, they must be directly preceded by their keyword.

The following lines represent typical entries in a devices file:

cn c_major 0
disc0 lu 0 address 28.0.0 b_major 0 c_major 4
disc0 lu 1 address 28.0.2 b_major 0 c_major 4

AUTHOR
devices was developed by HP.

SEE ALSO
insf(1M), mksf(1M), lssf(1M), uxgen(1M).

Section 4−−44 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

dialups(4) dialups(4)

NAME
dialups, d_passwd - dialup security control

DESCRIPTION
dialups and d_passwd are used to control the dialup security feature of login (see login(1)). If
/etc/dialups is present, the first word on each line is compared with the name of the line upon which
the login is being performed (including the /dev/ , as returned by ttyname() (see ttyname(3C)). If the
login is occurring on a line found in dialups , dialup security is invoked. Anything after a space or tab is
ignored.

When dialup security is invoked, login requests an additional password, and checks it against that found
in /etc/d_passwd . The command name found in the ‘‘program to use as shell’’ field of /etc/passwd
is used to select the password to be used. Each entry in d_passwd consists of three fields, separated by
colons. The first is the command name, matching an entry in passwd . The second is the encrypted pass-
word to be used for dialup security for those users logging in to use that program. The third is commen-
tary, but the second colon is required to delimit the end of the password. A null password is designated
with two adjacent colons. The entry for /usr/bin/sh is used if no other entry matches the command
name taken from passwd .

FILES
/etc/dialups dial-in tty lines
/etc/d_passwd passwords

SEE ALSO
login(1), passwd(4).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−45

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

dir(4) dir(4)

NAME
dir - format of directories on short-name HFS file systems

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

REMARKS
This entry describes the System V-compatible directory format for the HFS file system. It is provided
strictly for backward compatibility and compatibility with applications expecting a System V file system
environment. It is not compatible with the similar but more general HFS directory format in
<dirent.h >, which describes a format identical to that used in an HFS file system supporting long file
names up to 255 bytes in length.

The dirent structure defined in <dirent.h > should be used in conjunction with the directory(3C) rou-
tines for portability to other industry UNIX implementations.

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user can write into a directory. The fact
that a file is a directory is indicated by a bit in the flag word of its i-node entry (see fs(4)). The structure of
a directory entry as given in the <sys/dir.h > header file is:

#define DIRSIZ 14
#define DIRSIZ_CONSTANT 14
#define DIR_PADSIZE 10
#define MAXNAMLEN 255
struct direct {

u_long d_ino; /* inode number of entry */
u_short d_reclen; /* length of this record */
u_short d_namlen; /* length of string in d_name */
char d_name[DIRSIZ_CONSTANT];
char d_pad[DIR_PADSIZE];

};

/*
* DIRSTRCTSIZ is the number of bytes in the structure
* representing a System V-compatible (14-character
* maximum file name length) HFS directory entry.
*/

#define DIRSTRCTSIZ 32 /* sizeof(struct direct) */

By convention, the first two entries in each directory are for . and .. (‘‘dot’’ and ‘‘dot dot’’). The first is
an entry for the directory itself. The second is for the parent directory. The meaning of .. is modified for
the root directory of the master file system; there is no parent, so . . and . have the same meaning.

AUTHOR
dir was developed by AT&T and HP.

SEE ALSO
fs(4), directory(3C).

Section 4−−46 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

disktab(4) disktab(4)

NAME
disktab - disk description file

SYNOPSIS
#include <disktab.h>

DESCRIPTION
disktab is a simple database that describes disk geometries. Entries in disktab consist of a number of
colon-separated fields. The first entry for each disk gives the names by which the disk is known, separated
by vertical bar (|) characters.

This file is provided for backward compatibility with previous HP-UX releases only. Its use is discouraged.

The following list indicates the normal values stored for each disk entry. Sectors are of size DEV_BSIZE,
defined in <sys/param.h >.

Name Type Description___
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
b0 num Block size (bytes)
f0 num Fragment size (bytes)
s0 num Size of disk in sectors
rm num Revolution per minute

Example:

HP_7914:
:132.1 MB:ns#16:nt#7:nc#1152:\
:s0#129024:b0#8192:f0#1024:\
:se#256:rm#3600:

AUTHOR
disktab was developed by HP and the University of California, Berkeley.

FILES
/etc/disktab

SEE ALSO
newfs(1M), getdiskbyname(3C).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−47

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

dosif(4) dosif(4)

NAME
DOSIF - DOS Interchange Format description

DESCRIPTION
DOSIF (DOS Interchange Format) is the name given to the media format used by the DOS operating system.
This format is based upon that used in IBM PC and PC AT and HP Vectra systems.

The DOS utilities described in Section 1 (referred to hereafter as dos∗(1)) are provided for reading data from
and writing data to DOSIF volumes. Use these utilities to retrieve information from a DOSIF volume.

The dos∗(1) utilities are the only HP-UX commands that can interact directly with the contents of a DOSIF
volume. The only other way to interact with the contents of a DOSIF volume is to use an HP-UX DOS emula-
tion or coprocessor facility such as SoftPC or the DOS Coprocessor. mount cannot be used on a DOSIF
volume because the operating system does not recognize it (see mount(1M)).

When constructing file names for dos∗(1) commands, start with the HP-UX path name of the DOSIF volume,
then add a colon (:) followed by the file name:

device_file : file

or

path_name : file

Note: This file naming convention is suitable for use only in arguments to the dos∗(1) utilities. It does not
constitute a legal path name for any other use in HP-UX applications.

Metacharacters * , ?, and [...] can be used when specifying both HP-UX and DOS file names. These must
be quoted when specifying a DOS file name, because file name expansion must be performed by the DOS util-
ities, not by the shell. The dos∗(1) utilities expand file names as described in regexp(5) under PATTERN
MATCHING NOTATION.

By convention, if the HP-UX device name and a trailing colon are specified, but no file or directory name is
provided (for example, /dev/rdsk/c1t1d0:), the root (/) of the DOS file system is assumed.

EXAMPLES
Specify DOSIF file /dos/ivy accessed through HP-UX special file /dev/rdsk/c1t1d0 :

/dev/rdsk/c1t1d0:/dos/ivy

Specify DOSIF file /math accessed through the DOS volume stored as HP-UX file
/home/mydir/driveC :

/home/mydir/driveC:/math

SEE ALSO
dos2ux(1), doschmod(1), doscp(1), dosdf(1), dosls(1), dosmkdir(1), dosrm(1).

Section 4−−48 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

dp(4) dp(4)

NAME
dp - dedicated ports file used by DDFA software and Telnet port identification feature

DESCRIPTION
The dp file has two uses:

Datacommunications and Terminal Controller Device File Access
The dp file is used by the Datacommunications and Terminal Controller Device File Access
(DDFA) software to allow terminal server ports to be programmatically accessed from HP-UX
applications in the same way as devices connected directly to the HP-UX system. It contains a
one-line entry for each configured terminal server port.

The dp file contains the information the DDFA software needs to set up and manage an out-
bound connection to a specified terminal server port. The file is parsed by the Dedicated Port
Parser (dpp) which spawns an Outbound Connection Daemon (ocd) for each outbound connec-
tion specified in the file.

Telnet Port Identification
The dp file is used by the HP-UX telnet daemon (telnetd) to identify the calling port and
board of a telnet connection from an HP Datacommunications and Terminal Controller (DTC).

At connection time, the host negotiates the telnet environment option and the DTC replies with
the port and board number of the connecting device. Telnetd maps the port and board
numbers to the well-known name for the device, which has previously been configured in the dp
file.

Datacommunications and Terminal Controller Device File Access
For outbound connections, an entry should have the following format:

dtc_name board/ port pseudonym config_file log_level

The exact details of each field are given below.

Telnet Port Identification
To configure the dp file for using the Telnet port identification feature, the default file
/usr/examples/ddfa/dp should be copied to a new file and the copy configured with the appropriate
values for the incoming connections. The recommended procedure is to create a directory to hold the dp
file and the modified port configuration files.

An entry for this purpose should have the following format:

dtc_name board/ port pseudonym

The exact details of each field are given below.

Configuration Information
There are three ways to specify a terminal server port:

• Explicitly specify its IP address.

• Specify the node name or the IP address of the DTC then specify the board and port.

• Specify the node name or the IP address of the terminal server and the TCP port service address of
the port.

Comments in the dp file can be appended by starting them with a # character. Everything after the # is
ignored by the parser. Fields in the dp file are separated by space characters.

See ddfa(7) for more information on how to configure the DDFA software.

The fields of an entry of the dp file are as follows:

dtc_name This field is the node name or the IP address of the terminal server being accessed or the
IP address of the port on the terminal server. A node name must be defined in a name
database.

board/ port This field contains the terminal server port address with the parts separated by the /
character. It is not necessary to pad the values with leading zeros. The port address is
not checked by dpp , but is checked by ocd . Valid values are 0 through 7 for board, and
0 through 31 for port (these restrictions do not apply if the TCP port service address is
specified instead).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−49

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

dp(4) dp(4)

If the dtc_name field explicitly defines the node name or the IP address of the terminal
server port, the value in the board/ port field must be xx/xx (use X or x).

If the field is of the form xx/ n where n is a decimal number, n is assumed to be the TCP
port service address and it is used when the connection is established.

pseudonym This field is the absolute path of the device file known to the system and the end-user
application. The device file name portion of the path name is limited to 14 characters.

pc_file_path This field is the path to a port configuration file which contains the configuration infor-
mation for the terminal server port. This field is mandatory for outbound connections as
dpp uses the presence of this field as its flag to spawn a daemon for the entry.

log_level This field is the logging level for the particular ocd and it determines the severity of
messages sent to /var/adm/syslog . The logging levels (and how they relate to sys-
tem logging levels) are as follows:

0 Log only LOG_CRIT messages.
1 Log only LOG_CRIT and LOG_ERR messages.
2 Log only LOG_CRIT, LOG_ERR, and LOG_WARNING messages.
3 Log all messages.

It is optional and may only be specified for outbound connections. If it is omitted, the
logging level is set to 1.

EXAMPLES
The following examples illustrate file entry syntax.

A printer is connected to port 1 of board 3 of a DTC with the IP address 11.234.87.123. The device attached
to the port can be accessed with the HP-UX spooler by using the device file /dev/telnet/lp1_ocd .

11.234.87.123 03/01 /dev/telnet/lp1_ocd /usr/examples/ddfa/pcf

A printer is connected to a terminal server port with IP address 11.234.87.124. The board/ port field con-
tains xx/xx . The device attached to the port can be accessed with the HP-UX spooler by using the device
file /dev/telnet/lp2_ocd .

11.234.87.124 xx/xx /dev/telnet/lp2_ocd /usr/examples/ddfa/pcf

A printer is connected to a port accessed with TCP port service address 5001 of a terminal server with the
IP address 11.234.87.215. The device attached to the port can be accessed with the HP-UX spooler by using
the device file /dev/telnet/lp3_ocd .

11.234.87.215 xx/5001 /dev/telnet/lp3_ocd /usr/examples/ddfa/pcf

A terminal is connected to port 1 of board 2 of a DTC with the IP address 11.234.87.215 and wishes to use
Telnet port identification.

11.234.87.215 02/01 /dev/telnet/tm02

WARNINGS
In order to ensure that commands (such as ps) display the correct device file name (that is, the pseu-
donym), all pseudonyms should be placed into the directory /dev/telnet . If pseudonyms are not
specified for placement in this directory, the correct display of device file names with many commands is
not guaranteed.

In addition, in order to ensure that commands (such as w, passwd , finger , and wall) work correctly,
each pseudonym must be unique in its first 17 characters (including the directory prefix /dev/telnet/).
If pseudonyms are not unique in their first 17 characters, the correct functioning of many commands is not
guaranteed.

FILES
/usr/sbin/dpp
/usr/sbin/ocd
/usr/sbin/ocdebug
/var/adm/dpp_login.bin
/var/adm/utmp.dfa
/usr/examples/ddfa/dp
/usr/examples/ddfa/pcf

Section 4−−50 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

d

dp(4) dp(4)

SEE ALSO
dpp(1M), ocd(1M), ocdebug(1M), syslog(3C), pcf(4), ddfa(7).

HP-UX Release 11.0: October 1997 − 3 − Section 4−−51

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

e

exports(4) exports(4)

NAME
exports, xtab - directories to export to NFS clients

SYNOPSIS
/etc/exports

/etc/xtab

DESCRIPTION
File /etc/exports describes the directories that can be exported to NFS clients. The system adminis-
trator creates it using a text editor. mountd processes it each time a mount request is received (see
mountd(1M)).

/etc/exports is read automatically by the exportfs command (see exportfs(1M)). If this file is
changed, exportfs must be run (exportfs -a) before the changes can affect the daemon’s operation.

If this file is present at boot time the /sbin/init.d/nfs.server script will execute an exportfs
command and export the file systems listed in the file.

/etc/xtab contains entries for directories that are currently exported. This file should only be accessed
by programs using getexportent (see exportent(3N)). (Use exportfs -u to remove entries from
this file).

An entry for a directory consists of a command line of the following form:

directory - option[, option] ...

where directory is the path name of a directory (or file).

options can have any of the following values and forms:

ro Export the directory read-only. If not specified, the directory is exported read-write. The
ro and rw options are mutually exclusive.

rw= hostname[: hostname] ...
Export the directory read-mostly. Read-mostly means read-only to most machines, but
read-write to those specified. If neither ro nor rw is specified, the directory is exported
read-write to all. The ro and rw options are mutually exclusive.

anon= uid
If a request comes from an unknown user, use uid as the effective user ID. Note: Root
users (uid 0) are always considered ‘‘unknown’’ by the NFS server unless they are included
in the root option below.

The default value for this option is 65534. Setting anon to 65535 disables anonymous
access.

root= hostname[: hostname] ...
Give root access only to the root users from a specified hostname. The default is for no
hosts to be granted root access. For this option hostname cannot be a netgroup name.

access= client[: client] ...
Give mount access to each client listed. A client can either be a hostname or a netgroup
(see netgroup(4)). Each client in the list is first checked in the netgroup database, then
in the hosts database. A directory name with no accompanying name list allows any
machine to mount the given directory.

async Specifying async increases write performance on the NFS server by causing asynchronous
writes on the NFS server. The async option can be specified anywhere on the command
line after directory . Before using this option, refer to WARNINGS below.

A # character anywhere in the file indicates a comment that extends to the end of the line.

/etc/exports contains a list of file systems and the netgroup or machine names allowed to
remotely mount each file system (see netgroup(4)). The file system names are left-justified and fol-
lowed by a list of names separated by white space. The names are searched for in /etc/netgroup
then in /etc/hosts . A file system name with no accompanying name list means the file system is
available to everyone.

A # anywhere in the file indicates a comment extending to the end of that line.

Section 4−−52 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

e

exports(4) exports(4)

EXAMPLES
/usr/games cocoa fudge # export to only these machines
/usr -access=clients # export to my clients
/usr/local # export to the world
/usr2 -access=bison:deer:pup # export to only these machines
/var/adm -root=bison:deer # give root access only to these
/usr/new -anon=0 # give all machines root access
/usr/temp -rw=ram:alligator # export read-write only to these
/usr/bin -ro # export read-only to everyone
/usr/stuff -access=bear,anon=65534,ro

several options on one line

WARNINGS
If the async option is used, an unreported data loss may occur ONLY on a write and ONLY if the NFS
server experiences a failure after the write reply has been sent to the client. Specifically, blocks which have
been queued for the server’s disk, but have not yet been written to the disk may be lost.

You cannot export either a parent directory or a subdirectory of an exported directory that resides within
the same file system . It is not allowed, for instance, to export both /usr and /usr/local if both direc-
tories reside on the same disk partition.

AUTHOR
exports was developed by Sun Microsystems, Inc.

FILES
/etc/exports
/etc/xtab
/etc/hosts
/etc/netgroup
/sbin/init.d/nfs.server

SEE ALSO
exportfs(1M), mountd(1M), nfsd(1M), exportent(3N), hosts(4), netgroup(4).

HP-UX Release 11.0: October 1997 − 2 − Section 4−−53

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs(4) fs(4)

NAME
fs - format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs.h>
#include <sys/inode.h>
#include <sys/ino.h>
#include <sys/sysmacros.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital information. The first 8 kbytes on
a volume contain a volume header which identifies that volume as a Logical Interchange Format (LIF)
volume. Such volume may be divided into a number of sections.

Each section can contain a file system. The first 8 kbytes in each section is ignored, except where it coin-
cides with the volume header discussed above. The actual file system begins next with the "super block."
The layout of the super block as defined by the include file <sys/fs.h > is:

#define FS_MAGIC 0x011954
#define FS_MAGIC_LFN 0x095014
#define FS_CLEAN 0x17
#define FS_OK 0x53
#define FS_NOTOK 0x31
struct fs {

struct fs *fs_link; /* linked list of file systems */
struct fs *fs_rlink; /* used for incore super blocks */
daddr_t fs_sblkno; /* addr of super-block in filesys */
daddr_t fs_cblkno; /* offset of cyl-block in filesys */
daddr_t fs_iblkno; /* offset of inode-blocks in filesys*/
daddr_t fs_dblkno; /* offset of first data after cg */
long fs_cgoffset; /* cylinder group offset in cylinder*/
long fs_cgmask; /* used to calc mod fs_ntrak */
time_t fs_time; /* last time written */
long fs_size; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fs_ncg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs */
long fs_fsize; /* size of frag blocks in fs */
long fs_frag; /* number of frags in a block in fs*/

/* these are configuration parameters */
long fs_minfree; /* minimum percentage of free blocks*/
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second */

/* these fields can be computed from the others */
long fs_bmask; /* ‘‘blkoff’’ calc of blk offsets */
long fs_fmask; /* ‘‘fragoff’’ calc of frag offsets */
long fs_bshift; /* ‘‘lblkno’’ calc of logical blkno */
long fs_fshift; /* ‘‘numfrags’’ calc number of frags*/

/* these are configuration parameters */
long fs_maxcontig; /* max number of contiguous blks */
long fs_maxbpg; /* max number of blks per cyl group */

/* these fields can be computed from the others */
long fs_fragshift; /* block to frag shift */
long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant*/
long fs_sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fs_nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB */
long fs_nspf; /* value of NSPF */
long fs_sparecon[6]; /* reserved for future constants */

Section 4−−54 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs(4) fs(4)

/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_nsect; /* sectors per track */
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */
long fs_ncyl; /* cylinders in file system */

/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group */
long fs_fpg; /* blocks per group * fs_frag */

/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */

/* these fields are cleared at mount time */
char fs_fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs_fsmnt[MAXMNTLEN];/* name mounted on */

/* these fields retain the current block allocation info */
long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS]; /* list of fs_cs info buffers */
long fs_cpc; /* cyl per cycle in postbl */
short fs_postbl[MAXCPG][NRPOS];/*head of blocks per rotation */
long fs_magic; /* magic number */
char fs_fname[6]; /* name of file system */
char fs_fpack[6]; /* pack name of file system */
u_char fs_rotbl[1]; /* list of blocks for each rotation */

/* actually longer */
};

A file system consists of a number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn describes the cylinder groups. The super-block
is critical data and is replicated in each cylinder group to protect against catastrophic loss. This is done at
file system creation time and the critical super-block data does not change, so the copies need not be refer-
enced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of ‘blocks’. File system blocks of at most
size MAXBSIZE can be optionally broken into smaller pieces, each of which is addressable; these pieces
may be DEV_BSIZE, or some multiple of a DEV_BSIZE unit (DEV_BSIZE is defined in
<sys/param.h >).

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last data block of
a file is allocated only as many fragments of a large block as are necessary, if that file is small enough to not
require indirect data blocks. The file system format retains only a single pointer to such a fragment, which
is a piece of a single large block that has been divided. The size of such a fragment is determinable from
information in the inode, using the blksize(fs, ip, lbn) macro.

The file system records space availability at the fragment level; to determine block availability, aligned
fragments are examined.

I-numbers begin at 0. Inodes 0 and 1 are reserved. Inode 2 is used for the root directory of the file system.
The lost+found directory is given the next available inode when it is initially created by mkfs .

fs_minfree gives the minimum acceptable percentage of file system blocks that can be free. If the freel-
ist drops below this level, only the super-user may continue to allocate blocks. This can be set to 0 if no
reserve of free blocks is deemed necessary. However, severe performance degradations result if the file
system is run at greater than 90% full; thus the default value of fs_minfree is 10%.

The best trade-off between block fragmentation and overall disk utilization and performance varies for each
intended use of the file system. Suggested values can be found in the system administrator’s manual for
each implementation.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−55

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs(4) fs(4)

Cylinder-Group-Related Limits
Each cylinder keeps track of the availability of blocks at different rotational positions, so that sequential
blocks can be laid out with minimum rotational latency. NRPOS is the number of rotational positions
which are distinguished. For example, with NRPOS 8 the resolution of the summary information is 2ms for
a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the same
cylinder. It is used in determining the rotationally optimal layout for disk blocks within a file; the default
value for fs_rotdelay is 2ms. Suggested values of fs_rotdelay for different disks can be found in
the system administrator’s manual.

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI bytes of
disk space. The inode allocation strategy is extremely conservative.

MAXIPGbounds the number of inodes per cylinder group, and is needed only to keep the structure simpler
by having only a single variable size element (the free bit map).

Important Note: MAXIPGmust be a multiple of INOPB(fs) .

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096, it is possible to create files of
size 232 with only two levels of indirection. MINBSIZE must be big enough to hold a cylinder group block,
thus MINBSIZE must always be greater than sizeof(struct cg) . Note that super blocks are never
more than size SBSIZE .

The path name on which the file system is mounted is maintained in fs_fsmnt . MAXMNTLENdefines
the amount of space allocated in the super block for this name. The limit on the amount of summary infor-
mation per file system is defined by MAXCSBUFS. It is currently parameterized for a maximum of two mil-
lion cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group’s data blocks.
These blocks are read in from fs_csaddr (size fs_cssize) in addition to the super block.

Important Note: sizeof (struct csum) must be a power of two in order for the fs_cs macro to
work.

The two possible values for fs_magic are FS_MAGIC, the default magic number for an HFS file system
with a fixed-size directory format that limits file name length to DIRSIZ (14), and FS_MAGIC_LFN, the
magic number of a file system using a variable-size directory format that supports file names of up to
MAXNAMLEN(255) characters in length.

Super Block for a File System:
MAXBPCbounds the size of the rotational layout tables and is limited by the fact that the super block is of
size SBSIZE . The size of these tables is inversely proportional to the block size of the file system. The size
of the tables is increased when sector sizes are not powers of two, as this increases the number of cylinders
included before the rotational pattern repeats (fs_cpc). The size of the rotational layout tables is derived
from the number of bytes remaining in (struct fs) .

MAXBPGbounds the number of blocks of data per cylinder group, and is limited by the fact that cylinder
groups are, at most, one block. The size of the free block table is derived from the size of blocks and the
number of remaining bytes in the cylinder group structure (struct cg) .

inode:
The inode is the focus of all file activity in the HP-UX file system. There is a unique inode allocated for each
active file, each continuation inode, each current directory, each mounted-on file, text file, and the root. An
inode is ‘‘named’’ by its device-and-i-number pair. For the format of an inode and its flags, see inode(4).

DEPENDENCIES
Series 700

Series 700 systems support only one section per volume. Thus, there can only be one file system on each
volume and the first 8 Kbytes of a file system is the boot area. This area contains the LIF volume header,
the directory that defines the contents of the volume, and the bootstrapping program.

AUTHOR
fs was developed by HP and the University of California, Berkeley.

Section 4−−56 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs(4) fs(4)

SEE ALSO
inode(4), lif(4).

HP-UX Release 11.0: October 1997 − 4 − Section 4−−57

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs_vxfs(4) fs_vxfs(4)

NAME
fs (vxfs) - format of VxFS file system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/kern_sem.h>
#include <sys/fs/vx_hpux.h>
#include <sys/fs/vx_port.h>
#include <sys/fs/vx_inode.h>
#include <sys/fs/vx_fs.h>

DESCRIPTION
The vxfs super-block always begins at byte offset 8192 from the start of the file system. The super-block
location is fixed so utilities know where to look for it.

The super-block contains the following fundamental sizes and offsets:

fs_magic
The magic number for the file system (VX_MAGIC). This number identifies the file system as
being a vxfs FSType.

fs_version
The version number of the file system layout (VX_VERSION). This is currently 2 for the vxfs
Version 2 disk layout and 3 for the Version 3 layout.

fs_ctime
The creation date of the file system. The time(2) system call supplies the time.

fs_ectime
This field is a placeholder in instances when the creation date for a file system is expanded for
more precision. It currently is zero.

fs_logstart
The block address of the first Log Area block. It currently is two.

fs_logend
The block address of the last Log Area block. The Log Area size in blocks may be specified as
part of mkfs(1M). If not specified, a default of 512 blocks is used. A minimum size of 32 blocks is
enforced. For smaller file systems, the default is reduced to avoid wasting space.

fs_bsize
The block size of the file system. The current choices are 1024, 2048, 4096, and 8192 bytes.

fs_size
The number of blocks in the file system, expressed as the number of blocks of size fs_bsize. The
fs_size field is a signed 32 bit number. The maximum number of blocks in a vxfs file sys-
tem is limited to 31 bits.

fs_dsize
The number of data blocks in the file system. A data block is a block which may be allocated to a
file in the file system.

fs_ninode
The number of inodes in the file system allocation units. For Version 2 or Version 3 layout file
systems, this field is 0.

fs_nau
The number of allocation units in the file system. The number of allocation units may be
specified as part of mkfs(1M).

fs_defiextsize
The default size for indirect data extents, expressed in blocks. This field is currently set to 64 by
default.

fs_oilbsize
The size of an old inode list block, expressed in bytes. For Version 2 and 3 layouts, this is initial-
ized to 0 and not used.

Section 4−−58 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs_vxfs(4) fs_vxfs(4)

fs_immedlen
The size, in bytes, of the immediate data area in each inode. This value is 96 for the vxfs file
system.

fs_ndaddr
The number of direct extents supported by the VX_EXT4 mapping type (see the section describ-
ing inode list). This value is 10 for the vxfs file system.

The preceding fields define the size and makeup of the file system. To reduce the calculations required in
utilities, a number of values are derived from the fundamental values and placed in the super-block.

The super-block contains the following derived offsets:

fs_aufirst
The address, in blocks, of the first allocation unit. There can be a gap between the end of the
intent log and the first allocation unit. This gap could be used to align the first allocation unit on
a desired boundary.

fs_emap
The offset in blocks of the free extent map (emap) from the start of an allocation unit.

fs_imap
The offset in blocks of the free inode map (imap) from the start of an allocation unit.

fs_iextop
The offset in blocks of the extended inode operation map from the start of an allocation unit. For
Version 2 and 3 layouts, this is initialized to 0 and not used.

fs_istart
The offset in blocks of the inode list (ilist) from the start of an allocation unit. For Version 2
and 3 layouts, this is initialized to 0 and not used.

fs_bstart
The offset in blocks of the first data block from the start of an allocation unit. An allocation unit
header may contain padding to align the first data block.

fs_femap
The offset in blocks of the first free extent map (emap) from the start of the file system.

fs_fimap
The offset in blocks of the first free inode map (imap) from the start of the file system.

fs_fiextop
The offset in blocks of the first extended inode operation map from the start of the file system.
For Version 2 and 3 layouts, this is initialized to 0 and not used.

fs_fistart
The offset in blocks of the first ilist from the start of the file system. For Version 2 and 3 layouts,
this is initialized to 0 and not used.

fs_fbstart
The offset in blocks of the first data block from the start of the file system.

fs_nindir
The number of entries in an indirect address extent. An indirect address extent is currently
8192 bytes in length, making the current value for fs_nindir 2048.

fs_aulen
The length of an allocation unit in blocks.

fs_auimlen
The length of a free inode map in blocks. For Version 2 and 3 layouts, this is initialized to 0 and
not used.

fs_auemlen
The length of a free extent map in blocks.

fs_auilen
The length, in blocks, of the inode list for this allocation unit. For Version 2 and 3 layouts, this is
initialized to 0 and not used.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−59

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs_vxfs(4) fs_vxfs(4)

fs_aupad
The length, in blocks, of the allocation unit alignment padding.

fs_aublocks
The number of data blocks in an allocation unit.

fs_maxtier
The log base 2 of fs_aublocks.

fs_inopb
The number of inode entries per fs_bsize block in the inode list. The vxfs inode is currently
256 bytes long.

fs_inopau
The number of inodes in an allocation unit.

fs_inopilb
The number of inode entries per fs_oilbsize block in the inode list. For Version 2 and 3 layouts,
this field is obsolete.

fs_ndiripau
Expected number of directory inodes per allocation unit. For Version 2 and 3 layouts, this is ini-
tialized to 0 and not used.

fs_iaddrlen
The size, in blocks, of an indirect address block. An indirect address block is 8K bytes. This field
will be set to (8K / fs_bsize).

fs_bshift
The log base 2 of fs_bsize. Used to convert a byte offset into a block offset.

fs_inoshift
The log base 2 of fs_inopb. Used to convert an inode number into a block offset in the inode list.

fs_bmask
A mask value such that (byte_offset & fs_bmask) rounds the offset to the nearest smaller block
boundary.

fs_boffmask
A mask value such that (byte_offset & fs_boffmask) yields the offset from the start of the nearest
smaller block boundary.

fs_inomask
A mask value such that (inode_number & fs_inomask) yields the offset from the start of the con-
taining inode list block of the corresponding inode list entry. For Version 2 and 3 layouts, this
field is obsolete.

fs_checksum
A simple checksum of the above fields. A macro, VX_FSCHECKSUMis provided to verify or cal-
culate the checksum.

The above fields are initialized when the file system is created and do not change unless the file system is
resized. These fields are replicated in each allocation unit header.

There are additional fields which are considered to be dynamic:

fs_free
The current number of free data blocks.

fs_ifree
The current number of free inodes. For Version 2 and 3 layouts, a separate free inode count is
kept for each fileset; this is initialized to 0 and is not used.

fs_efree
An array of the current number of free extents of each extent size in the file system.

fs_flags
The following flags are recognized:

VX_FULLFSCK
Set when a file system requires a full structural check to recover from an error. If this flag
is set, a full check will be performed after the replay recovery is finished.

Section 4−−60 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs_vxfs(4) fs_vxfs(4)

VX_NOLOG
Set when the file system was mounted with the VX_MS_NOLOGoption. If this flag is set,
then no log replay recovery will be performed.

VX_LOGBAD
Set when an I/O error has invalidated the log. If this flag is set, then no log replay recovery
will be performed.

VX_LOGRESET
Set when the log ID runs over VX_MAXLOGID(2ˆ30). The log ID will be reset at the next
appropriate opportunity (such as a mount or 60-second sync).

VX_RESIZE
Set when a file system resizing is in progress. If an fsck(1M) sees this flag, it will have to
perform resize recovery. Refer to fsadm(1M) for a description of file system expansion.

VX_UPGRADING
Set when a file system upgrade is in progress. If an fsck(1M) sees this flag, it will have to
perform upgrade recovery.

fs_mod
Set whenever a mounted file system is modified. It is used to indicate if the super-block needs to
be written when a sync operation is performed.

fs_clean
Set to VX_DIRTY when a file system is mounted for read/write access. Set to VX_CLEAN
upon umount or successful fsck(1M). The file system cannot be mounted for read/write access
unless the fs_clean field is VX_CLEAN.

fs_reserved
Reserved for future use.

fs_firstlogid
Initial log ID to use when the file system is mounted.

fs_time
Last time the super-block was written to disk, indicated as the number of seconds that have
elapsed since 00:00 January 1, 1970.

fs_fname
File system name (6 characters).

fs_fpack
File system pack label (6 characters).

fs_logversion
The version number of the log format. This field is set by the kernel on each mount to ensure
that an fsck(1M) running log replay understands the log format written by the kernel.

The log format may change with each release, so all file systems should be clean before upgrading to a
new release.

The read-only area that supports the vxfs Version 2 layout has the following fields:

fs_oltext
This is an array of two extent addresses. These extent addresses point to the two replicated
copies of the first object location table extent.

fs_oltsize
This is the size, in blocks, of the object location table extents pointed to by fs_oltext .

fs_iauimlen
The length, in blocks, of a free inode map in an inode allocation unit.

fs_iausize
The size, in blocks, of an inode allocation unit.

fs_dinosize
The size, in bytes, of a disk inode. This is currently 256 bytes.

fs_checksum2
This is a checksum of the fields specific to the Version 2 layout.

HP-UX Release 11.0: October 1997 − 4 − Section 4−−61

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fs_vxfs(4) fs_vxfs(4)

SEE ALSO
fsck(1M), fsdb(1M), inode_vxfs(4), mkfs(1M), mount(2).

Section 4−−62 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fspec(4) fspec(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the HP-UX system with non-standard tabs, (meaning
tabs that are not set at every eighth column). Generally, such files must be converted to a standard format
− frequently by replacing all tabs with the appropriate number of spaces − before they can be processed by
HP-UX system commands. A format specification occurring in the first line of a text file specifies how tabs
are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded by the
brackets <: and :> . Each parameter consists of a keyletter, possibly followed immediately by a value.
The following parameters are recognized:

t tabs The t parameter specifies tab settings for the file. The value of tabs must be one of
the following:

1. A list of column numbers separated by commas, indicating tabs set at the
specified columns;

2. A - followed immediately by an integer n, indicating tabs at intervals of n
columns;

3. A - followed by the name of a ‘‘canned’’ tab specification.

Standard tabs are specified by t-8 , or equivalently, t1 , 9, 17 , 25 , etc. Recognized
canned tabs are defined by the tabs command (see tabs(1)).

ssize The s parameter specifies a maximum line size. The value of size must be an integer.
Size checking is performed after tabs have been expanded, but before the margin is
inserted at the beginning of the line.

mmargin The mparameter specifies a number of spaces to be inserted at the beginning of each
line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values (assumed for parameters not supplied) are t-8 and m0. If the s parameter is not
specified, no size checking is performed. If the first line of a file does not contain a format specification, the
above defaults are assumed for the entire file. The following is an example of a line containing a format
specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code the d parameter.

Several HP-UX system commands correctly interpret the format specification for a file. Among them is ed ,
which can be used to convert files to a standard format acceptable to other HP-UX system commands.

SEE ALSO
ed(1), newform(1), tabs(1).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−63

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fstab(4) fstab(4)

NAME
fstab - static information about the file systems

SYNOPSIS
#include <fstab.h>

DESCRIPTION
fstab is an ASCII file that resides in directory /etc . Programs read it, but do not write to or from it.
System administrators are responsible for creating and maintaining this file properly.

/etc/fstab contains a list of mountable file-system entries. Each file-system entry appears on a
separate line, and consists of fields separated by one or more blanks or tabs.

The order of entries in /etc/fstab is important only for entries without a pass number field. Entries
without a pass number are sequentially checked by fsck (see fsck(1M)) after the entries with a pass
number have been checked.

Each file-system entry must contain a device special file and may additionally contain all of the following
fields, in the following order:

directory

type

options

backup frequency

pass number (on parallel fsck)

comment

If any field after the name of the device special file is present, all fields must be present in the order indi-
cated, to ensure correct place-holding.

Entries from this file are accessed using getmntent() (see getmntent(3X)).

The fields are separated by white space, and a # as the first non-whitespace character in an entry or field
indicates a comment.

device special file A block device special file name. This field is used by fsck , mount , swapon ,
crashconf , and other commands to identify the location of the storage device on
which the file system resides.

directory Name of the root of the mounted file system that corresponds to the device special file.
If type is swapfs , directory can be the name of any directory within a file system.
Only one directory should be specified per file system. directory must already exist
and must be given as an absolute path name.

type Can be swap , swapfs , dump, ignore , or a file system type (for example, hfs ,
vxfs , cdfs , nfs , or lofs).

If type is swap , the device special file is made available as an area of swap space by
the swapon command (see swapon(1M)). The options field is valid. The fields direc-
tory , pass number, and backup frequency are ignored for swap entries.

If type is swapfs , the file system in which directory resides is made available as
swap space by swapon . The options field is valid. The fields device special file, pass
number, and backup frequency are ignored for swapfs entries.

If type is dump, the device special file is made available as an area into which a sys-
tem crash dump may occur, by the crashconf command (see crashconf(1M)). The
fields options, directory , pass number, and backup frequency are ignored for dump
entries.

Entries marked by the type ignore are ignored by all commands and can be used to
mark unused sections. If type is specified as either ignore , dump, swap , or
swapfs , the entry is ignored by the mount and fsck commands (see mount(1M)
and fsck(1M)). fsck also ignores entries with type specified as cdfs , nfs , or lofs .

options A comma-separated list of option keywords, as found in mount(1M) or swapon(1M).
The keywords used depend on the parameter specified in type.

Section 4−−64 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fstab(4) fstab(4)

backup frequency Reserved for possible use by future backup utilities.

pass number Used by the fsck command to determine the order in which file system checks are
done. The root file system should be specified with a pass number of 1, to be checked
first, and other file systems should have larger numbers. (A file system with a pass
number of zero is ignored by the fsck command.)

File systems within a drive should be assigned different pass numbers, but file sys-
tems on different drives can be checked on the same pass, to utilize possible parallel-
ism available in the hardware. If pass number is not present, fsck checks each such
file system sequentially after all eligible file systems with pass numbers have been
checked.

comment An optional field that begins with a # character and ends with a new-line character.
Space from the pass number to the comment field (if present) or to the new-line is
reserved for future use.

There is no limit to the number of device special file fields in /etc/fstab .

NETWORKING FEATURES
NFS

If the field type is nfs , a remote NFS file system is implied. For NFS file systems, the device special file
should be the serving machine name followed by ":" followed by the path on the serving machine of the
directory being served. The pass number and backup frequency fields are ignored for NFS entries.

EXAMPLES
Examples of typical /etc/fstab entries:

Add an HFS file system at /home using default mount options; (backup frequency 0) fsck pass 2:

/dev/dsk/c0t6d0 /home hfs defaults 0 2 # /home disk

Add a swap device to a system managed using LVM, with default options (Note, the directory field
(/) cannot be empty, even though it is ignored):

/dev/vg01/lv10 / swap defaults 0 0 # swap device

Add a swap device on a system implementing whole-disk layout to use the space after the end of the
file system (options=end):

/dev/dsk/c0t5d0 / swap end 0 0 # swap at end of device

Add file system swap space on the file system containing directory /swap . type is swapfs ; set
options to min=10 , lim=4500 , res=100 , and pri=0 (see swapon(1M)) for explanation of
options). device field is ignored but must not be empty:

default /swap swapfs min=10,lim=4500,res=100,pri=0 0 0

(Note that both a file system entry and a swap entry are required for devices providing both services.)

Use a device for dump space if the system crashes. directory field is ignored but must not be empty:

/dev/dsk/c0t5d0 / dump defaults 0 0

(Note that both a swap entry and a dump entry are required for devices providing both services.)

DEPENDENCIES
NFS

Here is an example for mounting an NFS file system for systems that support NFS file systems:

server:/mnt /mnt nfs rw,hard 0 0 #mount from server.

AUTHOR
fstab was developed by HP, AT&T, Sun Microsystems, Inc., and the University of California, Berkeley.

FILES
/etc/fstab
/usr/include/fstab.h

HP-UX Release 11.0: October 1997 − 2 − Section 4−−65

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

fstab(4) fstab(4)

SEE ALSO
fsck(1M), mount(1M), swapon(1M), crashconf(1M), getfsent(3X), getmntent(3X), mnttab(4).

Section 4−−66 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

f

ftpusers(4) ftpusers(4)

NAME
ftpusers - security file for ftpd(1M)

DESCRIPTION
ftpd rejects remote logins to local user accounts that are named in /etc/ftpusers . Each restricted
account name must appear alone on a line in the file. The line cannot contain any white space. User
accounts that specify a restricted login shell in /etc/passwd should be listed in /etc/ftpusers
because ftpd accesses local accounts without using their login shells. UUCP accounts should be listed in
/etc/ftpusers . If /etc/ftpusers does not exist, ftpd skips the security check.

EXAMPLES
Given an /etc/ftpusers file containing the following:

Only lines that exactly match user account names are
significant. Blank lines are harmless because they
do not match any account names. However you must be
careful.

uucp
guest

ftpd would reject login attempts using the local accounts careful. , uucp , or guest .

AUTHOR
ftpusers was developed by the University of California, Berkeley.

SEE ALSO
ftp(1), ftpd(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−67

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

NAME
gated.config - GateDaemon Configuration Guide

SYNOPSIS
/etc/gated.conf

DESCRIPTION
Configuration Overview

• Introduction

• Statement Summary

• Preferences and Route Selection

• Trace Statements and Global Options

• Directive Statements

• Options Statements

• Interface Statements and Configuration

• Definition Statements

Protocol Statements
• Protocol Overview

• Interior gateway protocols (igps)

• RIP, HELLO, OSPF

• Exterior gateway protocols (egps)

• EGP, BGP

• ICMP Statement

• Redirect Statement

• Router Discovery Statement

• Kernel Interface

• Static Routes

Control Statements
• Route filtering

• Matching AS paths

• Route Importation

• Route Exportation

• Route Aggregation

Appendices
• Glossary of Terms

• References

Introduction to Configuring GateD
Syntax

The gated configuration file consists of a sequence of statements terminated by a semi-colon (‘; ’). State-
ments are composed of tokens separated by white space, which can be any combination of blanks, tabs and
newlines. This structure simplifies identification of the parts of the configuration associated with each other
and with specific protocols. Comments may be specified in either of two forms. One form begins with a
pound sign (‘#’) and runs to the end of the line. The other form, C style, starts with a ‘/* ’ and continues
until it reaches ‘*/ ’.

Syntax description conventions
Keywords and special characters that the parser expects exactly are displayed using bold type. Parameters
are displayed in italic variable definition style. Parameters shown in square brackets (‘[’ and ‘] ’) are used

Section 4−−68 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

to show optional keywords and parameters. The vertical bar (‘| ’) is used to indicate between a choice of
optional parameters. Parentheses (‘(’ and ‘) ’) are used to group keywords and parameters when necessary.

For example, in the syntax description:

[backbone | (area area)]

The square brackets say that either parameter is optional. The keywords are backbone and area. The
vertical bar indicates that either ‘‘backbone’’ or ‘‘area area’’ may be specified. Since area is in the variable
definition style, it is a parameter that needs to be provided.

Statement Grouping
The configuration statements and the order in which these statements appear divide gated.conf into
options statements, interface statements, definition statements, protocol statements, static statements,
control statements, and aggregate statements. Entering a statement out of order causes an error when
parsing the configuration file.

Two other types of statements do not fit in these categories: %directive statements and %trace statements.
These statements provide instructions to the parser and control tracing from the configuration file. They do
not relate to the configuration of any protocol and may occur anywhere in the gated.conf file.

Statement Summary
A summary table of the configuration statements (in the configuration statement summary) lists each
GateD configuration statement by name, identifies the statement type, and provides a short synopsis of the
command function. More detailed definitions and descriptions of each of the eight classes of GateD state-
ments follow in separate sections.

GateD Configuration Statement Summary
The GateD configuration commands are summarized below. The table lists each command by name,
identifies the statement type, and gives a synopsis of the statement function:

Summary of GateD Configuration Statements
%directory (directive) sets the directory for include files.

%include (directive) includes a file into gated.conf.

traceoptions (trace) specifies which events are traced.

options (definition) defines GateD options.

interfaces (definition) defines GateD interfaces.

autonomoussystem (definition) defines the AS number.

routerid (definition) defines the originating router (BGP, OSPF).

martians (definition) defines invalid destination addresses.

rip (protocol) enables RIP protocol.

hello (protocol) enables HELLO protocol.

isis (protocol) enables ISIS protocol.

kernel (protocol) configures kernel interface options.

ospf (protocol) enables OSPF protocol.

egp (protocol) enables EGP protocol.

bgp (protocol) enables BGP protocol.

redirect (protocol) configures the processing of ICMP redirects.

icmp (protocol) configures the processing of general ICMP packets.

static (static) defines static routes.

import (control) defines which routes to import.

export (control) defines which routes to export.

aggregate (control) defines which routes to aggregate.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−69

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

generate (control) defines which routes to generate.

Preference
Preference is the value GateD uses to order preference of routes from one protocol or peer over another.
Preference can be set in the GateD configuration files in several different configuration statements. Prefer-
ence can be set based on network interface over another, from one protocol over another, or from one
remote gateway over another. Preference may not be used to control the selection of routes within an igp,
this is accomplished automatically by the protocol based on metric. Preference may be used to select routes
from the same egp learned from different peers or autonomous systems. Each route has only one prefer-
ence value associated with it, even though preference can be set at many places in the configuration file.
Simply, the last or most specific preference value set for a route is the value used. (See Glossary of
Terms: Preference.) The preference value is an arbitrarily assigned value used to determine the order of
routes to the same destination in a single routing database. The active route is chosen by the lowest prefer-
ence value. Some protocols implement a second preference (preference2), sometimes referred to as a tie-
breaker.

Selecting a route
• The route with the best (numerically smallest) preference is preferred.

• If the two routes have the same preference, the route with the best (numerically smallest) prefer-
ence2 (also known as a tie-breaker) is preferred.

• A route learned from a igp is preferred to a route learned from an egp. Least preferred is a route
learned indirectly by an igp from an egp.

• If AS path information is available, it is used to help determine the most preferred route.

• A route with an AS path is preferred over one without an AS path.

• If the AS paths and origins are identical, the route with the lower metric is preferred.

• A route with an AS path origin of igp is preferred over a route with an AS path origin of egp.
Least preferred is an AS path with an unknown origin.

• A route with a shorter AS path is preferred.

• If both routes are from the same protocol and AS, the one with the lowest metric is preferred.

• The route with the lowest numeric next-hop address is used.

Assigning preferences
A default preference is assigned to each source from which GateD receives routes. Preference values range
from 0 to 255 with the lowest number indicating the most preferred route.

The following table summarizes the default preference values for routes learned in various ways. The table
lists the statements (some of these are clauses within statements) that set preference, and shows the types
of routes to which each statement applies. The default preference for each type of route is listed, and the
table notes preference precedence between protocols. The narrower the scope of the statement, the higher
precedence its preference value is given, but the smaller the set of routes it affects.

Preference Of Defined by Statement Default___
direct connected networks interface 0
OSPF routes ospf 10
IS-IS level 1 routes isis level 1 15
IS-IS level 2 routes isis level 2 18
internally generated default gendefault 20
redirects redirect 30
routes learned via route socket kernel 40
static routes from config static 60
ANS SPF (SLSP) routes slsp 70
HELLO routes hello 90
RIP routes rip 100
point-to-point interface 110
routes to interfaces that are down interfaces 120
aggregate/generate routes aggregate/generate 130
OSPF AS external routes ospf 150
BGP routes bgp 170
EGP egp 200

Section 4−−70 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Sample Preference Specifications
interfaces {

interface 138.66.12.2 preference 10 ;
} ;
rip yes {

preference 90 ;
} ;
import proto rip gateway 138.66.12.1 preference 75 ;

In these statements the preference applicable to routes learned via RIP from gateway 138.66.12.1 is 75.
The last preference applicable to routes learned via RIP from gateway 128.66.12.1 is defined in the accept
statement. The preference applicable to other RIP routes is found in the rip statement. The preference set
on the interface statement applies only to the route to that interface.

Trace Statements
Trace statements control tracing options. The GateD tracing options may be configured at many levels.
Tracing options include the file specifications, control options, and global and protocol specific tracing
options. Unless overridden, tracing options from the next higher level are inherited by lower levels. For
example, BGP peer tracing options are inherited from BGP group tracing options, which are inherited from
global BGP tracing options, which are inherited from global GateD tracing options. At each level tracing
specifications override the inherited options.

Global tracing options
There are two types of global options, those which only affect global operations and those which have poten-
tial significance to protocols.

Global significance only
The trace flags that only have global significance are:

parse Trace the lexical analyzer and parser. Mostly used by GateD developers for debugging.

adv Trace the allocation of and freeing of policy blocks. Mostly used by the GateD developers for
debugging.

symbols Used to trace symbols read from the kernel at startup. The only useful way to specify this
level of tracing is via the -t option on the command line since the symbols are read from
the kernel before parsing the configuration file.

iflist Used to trace the reading of the kernel interface list. It is useful to specify this with the -t
option on the command line since the first interface scan is done before reading the
configuration file.

Protocol significance
The options flags that have potential significance to protocols are:

all Turn on all of the following.

general A shorthand notation for specifying both normal and route .

state Trace state machine transitions in the protocols.

normal Trace normal protocols occurrences. Abnormal protocol occurrences are always traced.

policy Trace application of protocol and user-specified policy to routes being imported and
exported.

task Trace system interface and processing associated with this protocol or peer.

timer Trace timer usage by this protocol or peer.

route Trace routing table changes for routes installed by this protocol or peer.

Not all of the above options apply to all of the protocols. In some cases their use does not make sense (for
instance, RIP does not have a state machine) and in some instances the requested tracing has not been
implemented (such as RIP support of the policy option).

It is not currently possible to specify packet tracing from the command line. This is because a global option
for packet tracing would potentially create too much output.

HP-UX Release 11.0: October 1997 − 4 − Section 4−−71

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

When protocols inherit their tracing options from the global tracing options, tracing levels that do not make
sense (such as parse , adv and packet tracing options) are masked out.

Global tracing statements have an immediate effect, especially parsing options that effect the parsing of the
configuration file. Tracing values inherited by protocols specified in the configuration file are initially inher-
ited from the global options in effect as they are parsed, unless they are overridden by more specific
options. After the configuration file is read, tracing options that were not explicitly specified are inherited
from the global options in effect at the end of the configuration file.

Packet tracing
Tracing of packets is very flexible. For any given protocol there are one or more options for tracing packets.
all protocols allow use of the packets keyword allows for tracing all packets sent and received by the proto-
col. most protocols have other options for limiting tracing to a useful subset of packet types. These tracing
options can be further controlled with the following modifiers:

detail detail must be specified before send or recv . Normally packets are traced in a terse
form of one or two lines. When detail is specified, a more verbose format is used to pro-
vide further detail on the contents of the packet.

send
recv These options limit the tracing to packets sent or received. Without these options both sent

and received packets will be traced.

Detail , if specified, must be before send or recv . If a protocol allows for several different types of packet
tracing, modifiers may be applied to each individual type. But be aware that within one tracing
specification the trace flags are summed up, so specifying detail packets will turn on full tracing for all
packets.

Traceoptions syntax
traceoptions ["trace_file" [replace] [size size[k|m] files files]]

[control_options] trace_options [except trace_options] ;

traceoptions none ;

trace_file Specifies the file to receive tracing information. If this file name does not begin with a slash
(/), the directory where gated was started in prepended to the name.

replace Tracing should start by replacing an existing file. The default is to append to an existing
file.

size size[k|m] files files
Limit the maximum size of the trace file to the specified size (minimum 10k). When the
trace file reaches the specified size, it is renamed to file.0 , then file.1 , file.2 up to
the maximum number of files (minimum specification is 2).

control_options
Specifies options that control the appearance of tracing. Valid values are:

nostamp
Specifies that a timestamp should not be prepended to all trace lines.

except trace_options
Used to enable a broad class of tracing and then disable more specific options.

none Specifies that all tracing should be turned off for this protocol or peer.

Directive Statements
Directive statements provide direction to the GateD configuration language parser about included files and
the directories in which these files reside. Directive statements are immediately acted upon by the parser.
Other statements terminate with a semi-colon (;), but directive statements terminate with a newline. The
two directive statements are:

%directory "directory"
Defines the directory where the include files are stored. When it is used, GateD looks in the
directory identified by pathname for any included files that do not have a fully qualified filename,
such as files that do not begin with "/". This statement does not actually change the current the
directory, it just specifies the prefix applied to included file names.

Section 4−−72 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

%include "filename"
Identifies an include file. The contents of the file is included in the gated.conf file at the point in
the gated.conf file where the %include directive is encountered. If the filename is not fully
qualified (does not begin with "/"), it is considered to be relative to the directory defined in the
%directory directive. The %include directive statement causes the specified file to be parsed
completely before resuming with this file. Nesting up to ten levels is supported. The maximum
nesting level may be increased by changing the definition of FI_MAX in parse.h .

In a complex environment, segmenting a large configuration into smaller more easily understood segments
might be helpful, but one of the great advantages of GateD is that it combines the configuration of several
different routing protocols into a single file. Segmenting a small file unnecessarily complicates routing
configurations.

Options Statements
Options statements allow specification of some global options. If used, options must appear before any
other type of configuration statement in the gated.conf file.

The options statement syntax is:

options
[nosend]
[noresolv]
[gendefault [preference preference] [gateway gateway]]
[syslog [upto] log_level]
[mark time]
;

The options list can contain one or more of the following options:

gendefault [preference preference] [gateway gateway]
When gendefault is enabled, when a BGP or EGP neighbor is up it causes the creation of a
default route with the special protocol default . This can be disabled per BGP/EGP group with
the nogendefault option. By default, this route has a preference of 20. This route is normally
not installed in the kernel forwarding table, it is only present so it can be announced to other
protocols. If a gateway is specified, the default route will be installed in the kernel forwarding
table with a next hop of the listed gateway.

Note that the use of the more general option is preferred to the use of this gendefault option.
The gendefault option may go away in future releases. The the section on Route Aggregation
for more information on the generate statement.

nosend
Do not send any packets. This option makes it possible to run GateD on a live network to test
protocol interactions without actually participating in the routing protocols. The packet traces in
the GateD log can be examined to verify that GateD is functioning properly. This is most useful
for RIP and HELLO and possibly the SMUX SNMP interface. This option does not yet apply to
BGP and is less than useful with EGP and OSPF.

noresolv
By default GateD will try to resolve symbolic names into IP addresses by using the gethost-
byname() and getnetbyname() library calls. These calls usually use the Domain Name System
(DNS) instead of the hosts local host and network tables. If there is insufficient routing informa-
tion to send DNS queries, GateD will deadlock during startup. This option can be used to
prevent these calls, symbolic names will result in configuration file errors.

syslog [upto] log_level
Controls the amount of data GateD logs via syslog on systems where setlogmask() is supported.
The available logging levels and other terminology are as defined in the setlogmask(3) man
page. The default is equivalent to syslog upto info .

mark time
Specifying this option causes gated to output a message to the trace log at the specified interval.
This can be used as one method of determining if gated is still running.

Interfaces Statement
Interface Syntax

interfaces {
options

HP-UX Release 11.0: October 1997 − 6 − Section 4−−73

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

[strictinterfaces]
[scaninterval time]
;

interface interface_list
[preference preference]
[down preference preference]
[passive]
[simplex]
[reject]
[blackhole]
;

define address
[broadcast address] | [pointtopoint address]
[netmask mask]
[multicast]
;

} ;

An interface is the connection between a router and one of its attached networks. A physical interface may
be specified by interface name, by IP address, or by domain name, (unless the network is an unnumbered
point-to-point network.) Multiple levels of reference in the configuration language allow identification of
interfaces using wildcard, interface type name, or delete word address. Be careful with the use of interface
names as future Unix operating systems may allow more than one address per interface. The interface_list
is a list of one or more interface names including wildcard names (names without a number) and names
which may specify more than one interface or address, or the token all for all interfaces.

options
Allows configuration of some global options related to interfaces. These are:

strictinterfaces
Indicates that it is a fatal error to reference an interface in the configuration file that is not
present when GateD is started and not listed in a define statement. Without this option a
warning message will be issued but GateD will continue.

scaninterval time
Specifies how often GateD scans the kernel interface list for changes. The default is every
15 seconds on most systems, and 60 seconds on systems that pass interface status changes
through the routing socket (BSD 4.4). Note that GateD will also scan the interface list on
receipt of a SIGUSR2.

interface interface_list
Sets interface options on the specified interfaces. An interface list is all or a list of interface
names (see warning about interface names), domain names, or numeric addresses. Options avail-
able on this statement are:

preference preference
Sets the preference for routes to this interface when it is up and appears to be functioning
properly. The default preference is 0.

down preference preference
Sets the preference for routes to this interface when GateD does not believe it to be func-
tioning properly, but the kernel does not indicate it is down. The default value is 120 .

passive
Prevents GateD from changing the preference of the route to this interface if it is not
believed to be functioning properly due to lack of received routing information. GateD will
only perform this check if the interface is actively participating in a routing protocol.

simplex
Defines an interface as unable to hear its own broadcast packets. Some systems define an
interface as simplex with the IFF_SIMPLEX flag, on others it needs to be specified in the
configuration file. On simplex interfaces, packets from myself are assumed to have been
looped back in software and are not used as an indication that the interface is functioning
properly.

reject
Specifies that the address of the interface which matches these criteria will be used as the

Section 4−−74 − 7 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

local address when installing reject routes in the kernel. Should only be used with systems
based on BSD 4.3 Tahoe or earlier which have installed a reject/blackhole pseudo interface.

blackhole
Specifies that the address of the interface which matches these criteria will be used as the
local address when installing reject routes in the kernel. Should only be used with systems
based on BSD 4.3 Tahoe or earlier which have installed a reject/blackhole pseudo interface.

define address
Defines interfaces that might not be present when GateD is started so they may be referenced in
the configuration file when strictinterfaces is defined. Possible define keywords are:

broadcast address
Defines the interface as broadcast capable (Ethernet or Token Ring) and specifies the broad-
cast address.

pointopoint address
Defines the interface as a point-to-point interface (SLIP or PPP) and specifies the address
on the local side. The first address on the define statement references the address of the
host on the remote end of the interface, the address specified after this pointopoint
keyword defines the address on the local side of the interface.

An interface not defined as broadcast or point-to-point is assumed to be non-broadcast multiac-
cess (NBMA), such as an X.25 network.

netmask mask
Specifies the subnetmask to be used on this interface. This is ignored on pointtopoint inter-
faces.

multicast
Specifies that the interface is multicast capable.

Interface lists
An interface list is a list of references to interfaces or groups of interfaces. There are four methods available
for referring to interfaces. They are listed here from most general to most specific.

all This refers to all available interfaces.

Interface name wildcard
This refers to all the interfaces of the same type. Unix interfaces consist of the name of the dev-
ice driver, like ie , and a unit number, like 0, 5 or 22 . Reference to the name contain only
alphabetic characters and match any interfaces that have the same alphabetic part.

For example, ie on a Sun would refer to all Interlan Ethernet interfaces, le would refer to all
Lance Ethernet interfaces. But ie would not match iel0 .

Interface name
This refers to a specific interface, usually one physical interface. These are specified as an alpha-
betic part followed by a numeric part. This will match one specific interface. But be aware that
on many systems, there can be more than one protocol (IP) address on a given physical interface.
For example, ef1 will match an interface named ef1 , but not an interface named ef10 .

Interface address
This matches one specific interface. The reference can be by protocol address (10.0.0.51), or by
symbolic hostname (nic.ddn.mil). Note that a symbolic hostname reference is only valid when it
resolves to only one address. Use of symbolic hostnames is not recommended.

If many interface lists are present in the configuration file with more than one parameter, these parame-
ters are collected at run-time to create the specific parameter list for a given interface. If the same parame-
ter is specified on more than one list, the parameters with the most specific interface is used.

For example, consider a system with three interfaces, le0 , le1 and du0 .

rip yes {
interface all noripin noripout ;
interface le ripin ;
interface le1 ripout ;

} ;
RIP packets would only be accepted from interfaces le0 and le1 , but not from du0 . RIP packets would
only be sent on interface le1 .

HP-UX Release 11.0: October 1997 − 8 − Section 4−−75

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

IP Interface addresses and routes
The BSD 4.3 and later networking implementations allow four types of interfaces. Some implementations
allow multiple protocol addresses per physical interface, these are mostly based on BSD 4.3 Reno or later.

loopback
This interface must have the address of 127.0.0.1. Packets sent to this interface are sent back to
the originator. This interface is also used as a catch all interface for implementing other features,
such as reject and blackhole routes. Although a netmask is reported on this interface, it is
ignored. It is useful to assign an additional address to this interface that is the same as the
OSPF or BGP router id; this allows routing to a system based on the router id which will work if
some interfaces are down.

broadcast
This is a multi-access interface capable of a physical level broadcast, such as Ethernet, Token
Ring and FDDI. This interface has an associated subnet mask and broadcast address. The inter-
face route to an broadcast network will be a route to the complete subnet.

point-to-point
This is a tunnel to another host, usually on some sort of serial link. This interface has a local
address, and a remote address. Although it may be possible to specify multiple addresses for a
point-to-point interface, there does not seem to be a useful reason for doing so.

The remote address must be unique among all the interface addresses on a given router. The
local address may be shared among many point-to-point and up to one non-point-to-point inter-
face. This is technically a form of the router id method for addressless links. This technique con-
serves subnets as none are required when using this technique.

If a subnet mask is specified on a point-to-point interface, it is only used by RIP version 1 and
HELLO to determine which subnets may be propagated to the router on the other side of this
interface.

non-broadcast multi-access or nbma
This type of interface is multi-access, but not capable of broadcast. And example would be frame
relay and X.25. This type of interface has a local address and a subnet mask.

GateD insures that there is a route available to each IP interface that is configured and up. Normally this
this done by the ifconfig command that configures the interface; GateD does it to insure consistency.

For point-to-point interfaces, gated installs some special routes. If the local address on one or more point-
to-point interfaces is not shared with a non-point-to-point interface, gated installs a route to the local
address pointing at the loopback interface with a preference of 110. This insures that packets originating on
this host destined for this local address are handled locally. OSPF prefers to route packets for the local
interface across the point-to-point link where they will be returned by the router on the remote end. This is
used to verify operation of the link. Since OSPF installs routes with a preference of 10, these routes will
override the route installed with a preference of 110.

If the local address of one or more point-to-point interfaces is shared with a non-point-to-point interface,
gated installs a route to the local with a preference of 0 that will not be installed in the forwarding table.
This is to prevent protocols like OSPF from routing packets to this address across a serial interface when
this system could be functioning as a host.

When the status of an interface changes, GateD notifies all the protocols, which take the appropriate
action. GateD assumes that interfaces which are not marked UP do not exist. While this might not be the
most correct action, it is the way things currently work.

GateD ignores any interfaces that have invalid data for the local, remote or broadcast addresses or the sub-
net mask. Invalid data includes zeros in any field. GateD will also ignore any point-to-point interface that
has the same local and remote addresses, it assumes it is in some sort of loopback test mode.

Definition Statements
Definition statements are general configuration statements that relate to all of GateD or at least to more
than one protocol. The three definition statements are autonomoussystem , routerid and martians . if
used, autonomoussystem , routerid and martians must appear before any other type of configuration
statement in gated.conf file.

Autonomous System configuration
autonomoussystem autonomous_system [loops number] ;

Section 4−−76 − 9 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Sets the autonomous system number of this router to be autonomous system . This option is required if
BGP or EGP are in use. The AS number is assigned by the Network Information Center (NIC).

Loops is only for protocols supporting AS paths, such as BGP. It controls the number of times this auto-
nomous system may appear in an AS path and defaults to 1 (one).

Router ID configuration
routerid host ;

Sets the router identifier for use by the BGP and OSPF protocols. The default is the address of the first
interface encountered by GateD. The address of a non-point-to-point interface is preferred over the local
address of a point-to-point interface and an address on a loopback interface that is not the loopback address
(127.0.0.1) is most preferred.

Martian configuration
martians {

host host [allow] ;
network [allow] ;
network mask mask [allow] ;
network masklen number [allow] ;

default [allow] ;
} ;

Defines a list of martian addresses about which all routing information is ignored. Sometimes a
misconfigured system sends out obviously invalid destination addresses. These invalid addresses, called
martians, are rejected by the routing software. This command allows additions to the list of martian
addresses. See the section on Route Filtering for more information on specifying ranges. Also, the allow
parameter may be specified to explicitly allow a subset of a range that was disallowed.

Sample Definition Statements
options gendefault ;
autonomoussystem 249 ;
interface 128.66.12.2 passive ;
martians {

0.0.0.26
};

The statements in the sample perform the following functions:

• The options statement tells the system to generate a default route when it peers with an EGP or
BGP neighbor.

• The autonomoussystem statement tells GateD to use AS number 249 for in EGP and BGP.

• The interface statement tells GateD not to mark interface 128.66.12.2 as down even if it sees no
traffic.

• The martians statement prevents routes to 0.0.0.26 from ever being accepted.

Protocol Overview
Routing protocols determine the "best" route to each destination and distribute routing information among
the systems on a network. Routing protocols are divided into two general groups: interior and exterior pro-
tocols. GateD software combines management of the interior and exterior routing protocols in one software
daemon.

Interior Routing Protocols
Interior protocols are used to exchange reachability information within an autonomous system (AS). They
are referred to as a class by the acronym igp. There are several interior protocols:

RIP The Routing Information Protocol, Version 1 and Version 2, is the most commonly used interior proto-
col. RIP selects the route with the lowest metric as the best route. The metric is a hop count
representing the number of gateways through which data must pass to reach its destination. The long-
est path that RIP accepts is 15 hops. If the metric is greater than 15, a destination is considered
unreachable and GateD discards the route. RIP assumes the best route is the one that uses the fewest
gateways which is the shortest path, not taking into account congestion or delay on route.

HP-UX Release 11.0: October 1997 − 10 − Section 4−−77

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

The RIP version 1 protocol is described in RFC 1058 and the RIP version 2 protocol is described in
RFC 1388.

HELLO
HELLO , another interior protocol, uses delay as the deciding factor in choosing the best route.
Round-trip time is the length of time it takes a datagram to travel from the source and destination.
HELLO is historically significant for the Internet as it was the protocol used among the original proto-
type NSFNET backbone fuzzball gateways. Today, like fuzzballs, HELLO is a little-used protocol.

An earlier version of the HELLO protocol is described in RFC 891.

OSPF
Open Shortest Path First is a link-state protocol. OSPF is better suited than RIP for complex net-
works with many routers. OSPF provides equal cost multipath routing.

OSPF is described in RFC 1583, the MIB is defined in RFC 1253. Other related documents are RFC
1245, RFC 1246 and RFC 1370.

Exterior Routing Protocols
Exterior protocols are used to exchange routing information between autonomous systems. Exterior proto-
cols are only required when an autonomous system must exchange routing information with another auto-
nomous system. Routers within an autonomous system run an interior routing protocol like RIP. Only
those gateways that connect an autonomous system to another autonomous system need to run an exterior
routing protocol. There are two exterior protocols currently supported by GateD:

EGP
Exterior Gateway Protocol: Originally EGP reachability information was passed into
ARPANET/MILNET "core" gateways where the best routes were chosen and passed back out to all
connected autonomous systems. As the Internet moved toward a less hierarchical architecture, EGP,
an exterior routing protocol which assumes a hierarchical structure, became less effective.

The EGP protocol is described in RFC 827 and RFC 904.

BGP
Border Gateway Protocol is replacing EGP as the exterior protocol of choice. BGP exchanges reacha-
bility information between autonomous systems, but provides more capabilities than EGP. BGP uses
path attributes to provide more information about each route as an aid in selecting the best route.
Path attributes may include, for example, administrative preferences based on political, organiza-
tional, or security (policy) considerations in the routing decision. BGP supports nonhierarchical topolo-
gies and can be used to implement a network structure of equivalent autonomous systems.

BGP version 1 is described in RFC 1105, version 2 in RFC 1163, version 3 in RFC 1267. The version 3
MIB is described in RFC 1269. The two documents, RFC 1164 and RFC 1268 describe the application
of version 2 and three in the internet. A protocol analysis of and experience with BGP version 3 are
available in RFC 1265 and RFC 1266. RFC 1397 talks about advertising a default route in BGP ver-
sion 2 and 3. And finally, RFC 1403 describes BGP - OSPF interaction.

Other Routing Protocols
Router Discovery

The Router Discovery protocol is used to inform hosts of the availability of hosts it can send packets to
and is used to supplement a statically configured default router. This is the preferred protocol for
hosts to run, they are discouraged from wiretapping routing protocols.

Router Discovery is described in RFC 1256.

Routing Information Protocol (RIP)
One of the most widely used interior gateway protocols is the Routing Information Protocol (RIP). RIP is an
implementation of a distance-vector, or Bellman-Ford routing protocol for local networks. It classifies
routers as active and passive (silent). Active routers advertise their routes (reachability information) to oth-
ers; passive routers listen and update their routes based on advertisements, but do not advertise. Typically,
routers run RIP in active mode, while hosts use passive mode.

A router running RIP in active mode broadcasts updates at set intervals. Each update contains paired
values where each pair consists of an IP network address and an integer distance to that network. RIP uses
a hop count metric to measure the distance to a destination. In the RIP metric, a router advertises directly
connected networks at a metric of 1. Networks which are reachable through one other gateway are two
hops etc. Thus, the number of hops or hop count along a path from a given source to a given destination

Section 4−−78 − 11 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

refers to the number of gateways that a datagram would encounter along that path. Using hop counts to
calculate shortest paths does not always produce optimal results. For example, a path with hop count 3 that
crosses three Ethernets may be substantially faster that a path with a hop count 2 that crosses two slow-
speed serial lines. To compensate for differences in technology many routers advertise artificially high hop
counts for slow links.

As delivered with most UNIX systems, RIP is run by the routing daemon, routed (pronounced route-"d").
A RIP routing daemon dynamically builds on information received through RIP updates. When started up,
it issues a REQUEST for routing information and then listens for responses to the request. If a system
configured to supply RIP hears the request, it responds with a RESPONSE packet based on information in
its routing database. The RESPONSE packet contains destination network addresses and the routing
metric for each destination.

When a RIP RESPONSE packet is received, the routing daemon takes the information and rebuilds the
routing database adding new routes and "better" (lower metric) routes to destinations already listed in the
database. RIP also deletes routes from the database if the next router to that destination says the route
contains more than 15 hops, or if the route is deleted. All routes through a gateway are deleted if no
updates are received from that gateway for a specified time period. In general, routing updates are issued
every 30 seconds. In many implementations, if a gateway is not heard from for 180 seconds, all routes from
that gateway are deleted from the routing database. This 180 second interval also applies to deletion of
specific routes.

RIP version 2 (more commonly known as RIP II) add additional capabilities to RIP. Some of these capabili-
ties are compatible with RIP I and some are not. To avoid supplying information to RIP I routes that could
be mis-interpreted, RIP II can only use non-compatible features when its packets are multicast. On inter-
faces that are not capable of IP multicast, RIP I compatible packets are used that do not contain potentially
confusing information.

Some of the most notable RIP II enhancements are:

Next hop
The primary ones are the ability to advertise a next hop to use other than the router supplying the
routing update. This is quite useful when advertising a static route to a dumb rotuer that does not
run RIP as it avoids having packets destined through the dumb router from having to cross a network
twice.

RIP I routers will ignore next hop information in RIP II packets. This may result in packets crossing
a network twice, which is exactly what happens with RIP I. So this information is provided in RIP I
compatible RIP II packets.

Network Mask
RIP I assumes that all subnetworks of a given network have the same network mask. It uses this
assumption to calculate the network masks for all routes received. This assumption prevents subnets
with different netmasks from being included in RIP packets. RIP II adds the ability to explicitly
specify the network mask with each network in a packet.

While RIP I routers will ignore the network mask in RIP II packets, their calculation of the network
mask will quite possibly be wrong. For this reason, RIP I compatible RIP II packets must not contain
networks that would be mis-interpreted. These network must only be provided in native RIP II pack-
ets that are multicast.

Authentication
RIP II packets may also contain one of two types of authentication string that may be used to verify
the validity of the supplied routing data. Authentication may be used in RIP I compatible RIP II pack-
ets, but be aware that RIP I routers will ignore it.

The first method is a simple password in which an authentication key of up to 16 characters is
included in the packet. If this does not match what is expected, the packet will be discarded. This
method provides very little security as it is possible to learn the authentication key by watching RIP
packets.

The second method is still experimental and may change in incompatible ways in future releases. This
method uses the MD5 algorithm to create a crypto-checksum of a RIP packet and an authentication
key of up to 16 characters. The transmitted packet does not contain the authentication key itself,
instead it contains a crypto-checksum, called the digest. The receiving router will perform a calcula-
tion using the correct authentication key and discard the packet if the digest does not match. In addi-
tion, a sequence number is maintained to prevent the replay of older packets. This method provides a
much stronger assurance that routing data originated from a router with a valid authentication key.

HP-UX Release 11.0: October 1997 − 12 − Section 4−−79

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Two authentication methods can be specified per interface. Packets are always sent using the primary
method, but received packets are checked with both the primary and secondary methods before being
discarded. In addition, a separate authentication key is used for non-router queries.

RIP-I and network masks
RIP-I derives the network mask of received networks and hosts from the network mask of the interface the
packet via which the packet was received. If a received network or host is on the same natural network as
the interface over which it was received and that network is subnetted (the specified mask is more specific
than the natural netmask), the subnet mask is applied to the destination. If bits outside the mask are set,
it is assumed to be a host. Otherwise it is assumed to be a subnet.

On point-to-point interfaces, the netmask is applied to the remote address. The netmask on these interfaces
is ignored if it matches the natural network of the remote address or is all ones.

Unlike in previous releases, the zero subnet mask (a network that matches the natural network of the
interface, but has a more specific, or longer, network mask) is ignored. If this is not desirable, a route filter
may be used to reject it.

The RIP Statement
rip yes | no | on | off [{

broadcast ;
nobroadcast ;
nocheckzero ;
preference preference ;
defaultmetric metric ;
query authentication [none | [[simple|md5] password]] ;
interface interface_list

[noripin] | [ripin]
[noripout] | [ripout]
[metricin metric]
[metricout metric]
[version 1]|[version 2 [multicast|broadcast]]
[[secondary] authentication [none | [[simple|md5] password]] ;

trustedgateways gateway_list ;
sourcegateways gateway_list ;
traceoptions trace_options ;

}] ;

The rip statement enables or disables RIP. If the rip statement is not specified, the default is rip on
; . If enabled, RIP will assume nobroadcast when there is only one interface and broadcast when there
is more than one.

The options are as follows:

broadcast
Specifies that RIP packets will be broadcast regardless of the number of interfaces present. This
is useful when propagating static routes or routes learned from anther protocol into RIP. In some
cases, the use of broadcast when only one network interface is present can cause data packets
to traverse a single network twice.

nobroadcast
Specifies that RIP packets will not be broadcast on attached interfaces, even if there are more
than one. If a sourcegateways clause is present, routes will still be unicast directly to that
gateway.

nocheckzero
Specifies that RIP should not make sure that reserved fields in incoming version 1 RIP packets
are zero. Normally RIP will reject packets where the reserved fields are zero.

preference preference
Sets the preference for routes learned from RIP. The default preference is 100. This preference
may be overridden by a preference specified in import policy.

defaultmetric metric
Defines the metric used when advertising routes via RIP that were learned from other protocols.
If not specified, the default value is 16 (unreachable). This choice of values requires you to expli-
citly specify a metric in order to export routes from other protocols into RIP. This metric may be

Section 4−−80 − 13 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

overridden by a metric specified in export policy.

query authentication [none | [[simple|md5] password]] ;
Specifies the authentication required of query packets that do not originate from routers. The
default is none.

interface interface_list
Controls various attributes of sending RIP on specific interfaces. See the section on interface list
specification for the description of the interface_list.

Note that if there are multiple interfaces configured on the same subnet, RIP updates will only
be sent from first one one which RIP output is configured. This limitation is required because of
the way the Unix kernel operates. It will hopefully be removed in a future release.

The possible parameters are:

noripin
Specifies that RIP packets received via the specified interface will be ignored. The default is
to listen to RIP packets on all non-loopback interfaces.

ripin
This is the default. This argument may be necessary when noripin is used on a wildcard
interface descriptor.

noripout
Specifies that no RIP packets will be sent on the specified interfaces. The default is to send
RIP on all broadcast and non-broadcast interfaces when in broadcast mode. The sending
of RIP on point-to-point interfaces must be manually configured.

ripout
This is the default. This argument is necessary when it is desired to send RIP on point-to-
point interfaces and may be necessary when noripin is used on a wildcard interface
descriptor.

metricin metric
Specifies the RIP metric to add to incoming routes before they are installed in the routing
table. The default is the kernel interface metric plus 1 (which is the default RIP hop count).
If this value is specified, it will be used as the absolute value. The kernel metric will not be
added. This option is used to make this router prefer RIP routes learned via the specified
interface(s) less than RIP routes from other interfaces.

metricout metric
Specifies the RIP metric to be added to routes that are send via the specified interface(s).
The default is zero. This option is used to make other routers prefer other sources of RIP
routes over this router.

version 1
Specifies that RIP packets send via the specified interface(s) will be version 1 packets. This
is the default.

version 2
Specifies that RIP version 2 packets will be sent on the specified interfaces(s). If IP multi-
cast support is available on this interface, the default is to send full version 2 packets. If it
is not available, version 1 compatible version 2 packets will be sent.

multicast
Specifies that RIP version 2 packets should be multicast on this interface. This is the
default.

broadcast
Specifies that RIP version 1 compatible version 2 packets should be broadcast on this inter-
face, even if IP multicast is available.

[secondary] authentication [none | [simple|md5] password]
This defines the authentication type to use. It applies only to RIP version 2 and is ignored
for RIP-1 packets. The default authentication type is none . If a password is specified, the
authentication type defaults to simple . The password should be a quoted string with
between 0 and 16 characters.

HP-UX Release 11.0: October 1997 − 14 − Section 4−−81

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

If secondary is specified, this defines the secondary authentication. If omitted, the pri-
mary authentication is specified. The default is primary authentication of none and no
secondary authentication.

trustedgateways gateway_list
Defines the list of gateways from which RIP will accept updates. The gateway_list is simply a list
of host names or IP addresses. By default, all routers on the shared network are trusted to sup-
ply routing information. But if the trustedgateways clause is specified only updates from the
gateways in the list are accepted.

sourcegateways gateway_list
Defines a list of routers to which RIP sends packets directly, not through multicast or broadcast.
This can be used to send different routing information to specific gateways. Updates to gateways
in this list are not affected by noripout on the interface.

traceoptions trace_options
Specifies the tracing options for RIP. (See Trace Statements and the RIP specific tracing options
below.)

Tracing options
The policy option logs info whenever a new route is announce, the metric being announced changes or a
route goes or leaves holddown.

Packet tracing options (which may be modified with detail , send or recv):

packets All RIP packets.

request RIP information request packets, such as REQUEST, POLL and POLLENTRY

response
RIP RESPONSEpackets, which is the type of packet that actually contains routing informa-
tion.

other Any other type of packet. The only valid ones are TRACE_ONand TRACE_OFFboth of
which are ignored.

The Hello Protocol
It is really better not to use HELLO unless you have a specific need for it. We plan to drop it some time
around GateD 4.0.

The HELLO protocol is an interior protocol that uses a routing metric based on the length of time it takes a
packet to make the trip between the source and the destination. HELLO packets carry timestamp informa-
tion which allows receivers to compute the shortest delay paths to destinations. The "best" route is the
route with the shortest time delay. The unit of time used in HELLO is milliseconds. If a HELLO update
packet takes less than 100 milliseconds to travel between two routers, a minimum value of 100 is used for
that hop. Thus on networks built of high-speed interfaces HELLO essentially defaults to using hop counts.
As in any routing algorithm, HELLO cannot change routes too rapidly or it would be unstable. To avoid
instabilities, implementations of HELLO build in hysteresis and "hesitate" to change routes until they have
confidence that the change will be lasting.

By default HELLO, like RIP, uses the kernel interface metric set by the ifconfig command to influence
metric added to routes as they are installed in the routing table (metricin). Since the kernel interface
metric is in hops, it must be translated into HELLOs millisecond metric. In order to do that, the following
table is used:

Hops HELLO metric
0 0
1 100
2 148
3 219
4 325
5 481
6 713
7 1057
8 1567
9 2322

10 3440
11 5097

Section 4−−82 − 15 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

12 7552
13 11190
14 16579
15 24564
16 30000

HELLO and network masks
HELLO derives the network mask of received networks and hosts from the network mask of the interface
the packet via which the packet was received. If a received network or host is on the same natural network
as the interface over which it was received and that network is subnetted (the specified mask is more
specific than the natural netmask), the subnet mask is applied to the destination. If bits outside the mask
are set, it is assumed to be a host. Otherwise it is assumed to be a subnet.

On point-to-point interfaces, the netmask is applied to the remote address. The netmask on these interfaces
is ignored if it matches the natural network of the remote address or is all ones.

Unlike in previous releases, the zero subnet mask (a network that matches the natural network of the
interface, but has a more specific, or longer, network mask) is ignored. If this is not desirable, a route filter
may be used to reject it.

The Hello Statement
hello yes | no | on | off [{

broadcast ;
nobroadcast ;
preference preference ;
defaultmetric metric ;
interface interface_list

[nohelloin] | [helloin]
[nohelloout] | [helloout]
[metricin metric]
[metricout metric] ;

trustedgateways gateway_list ;
sourcegateways gateway_list ;
traceoptions trace_options ;

}] ;

the hello statement enables or disables HELLO. If the hello statement is not specified, the default is
hello off . If enabled, HELLO will assume nobroadcast when there is only one interface and broad-
cast when there is more than one interface.

broadcast
Specifies that HELLO packets will be broadcast regardless of the number of interfaces present.
This is useful when propagating static routes or routes learned from anther protocol into
HELLO. In some cases, the use of broadcast when only one network interface is present can
cause data packets to traverse a single network twice.

nobroadcast
Specifies that HELLO packets will not be broadcast on attached interfaces, even if there are
more than one. If a sourcegateways clause is present, routes will still be unicast directly to
that gateway.

preference preference
Sets the preference for routes learned from HELLO. The default preference is 90. This prefer-
ence may be overridden by a preference specified in import policy.

defaultmetric metric
Defines the metric used when advertising routes via HELLO that were learned from other proto-
cols. If not specified, the default value is 30000 (unreachable). This choice of values requires you
to explicitly specify a metric in order to export routes from other protocols into HELLO. This
metric may be overridden by a metric specified in export policy.

interface interface_list
Controls various attributes of sending HELLO on specific interfaces. See the section on interface
list specification for the description of the interface_list.

Note that if there are multiple interfaces configured on the same subnet, HELLO updates will
only be sent from first one one which HELLO output is configured. This limitation is required

HP-UX Release 11.0: October 1997 − 16 − Section 4−−83

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

because of the way the Unix kernel operates. It will hopefully be removed in a future release.

The possible parameters are:

nohelloin
Specifies that HELLO packets received via the specified interface will be ignored. The
default is to listen to HELLO on all non-loopback interfaces.

helloin
This is the default. This argument may be necessary when nohelloin is used on a wild-
card interface descriptor.

nohelloout
Specifies that no HELLO packets will be sent on the specified interfaces. The default is to
send HELLO on all broadcast and non-broadcast interfaces when in broadcast mode. The
sending of HELLO on point-to-point interfaces must be manually configured.

helloout
This is the default. This argument is necessary when it is desired to send HELLO on point-
to-point interfaces and may be necessary when nohelloin is used on a wildcard interface
descriptor.

metricin metric
Specifies the HELLO metric to add to incoming routes before they are installed in the rout-
ing table. The default is the kernel interface metric plus 1 (which is the default HELLO hop
count). If this value is specified, it will be used as the absolute value. The kernel metric will
not be added. This option is used to make this router prefer HELLO routes learned via the
specified interface(s) less than HELLO routes from other interfaces.

metricout metric
Specifies the HELLO metric to be added to routes that are send via the specified
interface(s). The default is zero. This option is used to make other routers prefer other
sources of HELLO routes over this router.

trustedgateways gateway_list
Defines the list of gateways from which HELLO will accept updates. The gateway_list is simply a
list of host names or IP addresses. By default, all routers on the shared network are trusted to
supply routing information. But if the trustedgateways clause is specified only updates from
the gateways in the list are accepted.

sourcegateways gateway_list
Defines a list of routers to which HELLO sends packets directly, not through multicast or broad-
cast. This can be used to send different routing information to specific gateways. Updates to
gateways in this list are not affected by noripout on the interface.

traceoptions trace_options
Specifies the tracing options for HELLO. (See Trace Statements and the HELLO specific tracing
options below.)

The default preference is 90. The default metric is 30000.

Tracing options
The policy option logs info whenever a new route is announce, the metric being announced changes or a
route goes or leaves holddown.

Packet tracing options (which may be modified with detail , send and/or recv):

packets
All HELLO packets

The OSPF Protocol
Open Shortest Path Routing (OSPF) is a shortest path first (SPF) or link-state protocol. OSPF is an interior
gateway protocol that distributes routing information between routers in a single autonomous system.
OSPF chooses the least cost path as the best path. Suitable for complex networks with a large number of
routers, OSPF provides equal cost multipath routing where packets to a single destination can be sent via
more than one interface simultaneously. In a link-state protocol, each router maintains a database describ-
ing the entire AS topology, which it builds out of the collected link state advertisements of all routers. Each
participating router distributes its local state (the usable interfaces and reachable neighbors of the router)
throughout the AS by flooding. Each multiaccess network that has at least two attached routers has a

Section 4−−84 − 17 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

designated router and a backup designated router. The designated router floods a link state advertisement
for the multiaccess network and has other special responsibilities. The designated router concept reduces
the number of adjacencies required on a multiaccess network.

OSPF allows networks to be grouped into areas. Routing information passed between areas is abstracted,
potentially allowing a significant reduction in routing traffic. OSPF uses four different types of routes, listed
in order of preference: intra-area, inter-area, type 1 external and type 2 external. Intra-area paths have
destinations within the same area, inter-area paths have destinations in other OSPF areas and Auto-
nomous System External (ASE) routes are routes to destinations external to the AS. Routes imported into
OSPF as type 1 routes are supposed to be from igps whose external metrics are directly comparable to
OSPF metrics. When a routing decision is being made, OSPF will add the internal cost to the AS Border
router to the external metric. Type 2 ASEs are used for egps whose metrics are not comparable to OSPF
metrics. In this case, only the internal OSPF cost to the AS Border router is used in the routing decision.

From the topology database, each router constructs a tree of the shortest paths with itself as the root. This
shortest-path tree gives the route to each destination in the AS. Externally derived routing information
appears on the tree as leaves. The link-state advertisement format distinguishes between information
acquired from external sources and information acquired from internal routers, so there is no ambiguity
about the source or reliability of routes. Externally derived routing information (for example, routes
learned from EGP or BGP) is passed transparently through the autonomous system and is kept separate
from the OSPF internally derived data. Each external route can also be tagged by the advertising router,
enabling a passing of additional information between routers on the borders of the autonomous system.

OSPF optionally includes type of service (TOS) routing and allows administrators to install multiple routes
to a given destination for each type of service (low delay or high throughput.) A router running OSPF uses
the destination address and the type of service to choose the best route to the destination.

OSPF intra- and inter-area routes are always imported into the GateD routing database with a preference
of 10. It would be a violation of the protocol if an OSPF router did not participate fully in the OSPF of the
area, so it is not possible to override this. Although it is possible to give other routes lower preference
values explicitly, it is ill-advised to do so.

Hardware multicast capabilities are also used where possible to deliver link-status messages. OSPF areas
are connected by the backbone area, the area with identifier 0.0.0.0. All areas must be logically contiguous
and the backbone is no exception. To permit maximum flexibility, OSPF allows the configuration of virtual
links enable the backbone area to appear contiguous despite the physical reality.

All routers in an area must agree on the parameters of that area. A separate copy of the link-state algo-
rithm is run for each area. Because of this, most configuration parameters are defined on a per area basis.
All routers belonging to an area must agree on the configuration of that area. Misconfiguration will lead to
adjacencies not forming between neighbors, and routing information might not flow, or even loop.

Authentication
All OSPF protocol exchanges are authenticated. Authentication guarantees that routing information is only
imported from trusted routers, to protect the Internet and its users. A variety of authentication schemes
can be used but a single scheme must be configured for each area. This enables some areas to use much
stricter authentication than others. OSPF protocol exchanges may be authenticated. Authentication
guarantees that routing information is imported only from trusted routers, to protect the Internet and its
users. There are two authentication schemes available. The first uses a simple authentication key of up to 8
characters and is standardized. The second is still experimental and uses the MD5 algorithm and an
authentication key of up to 16 characters.

The simple password provides very little protection because in many cases it is possible to easily capture
packets from the network and learn the authentication key. The experimental MD5 algorithm provides
much more protection as it does not include the authentication key in the packet.

The OSPF specification currently specifies that the authentication type be configured per area with the abil-
ity to configure separate passwords per interface. This has been extended to allow the configuration of
different authentication types and keys per interface. In addition it is possible to specify both a primary and
a secondary authentication type and key on each interface. Outgoing packets use the primary authentica-
tion type, but incoming packets may match either the primary or secondary authentication type and key.

The OSPF Statement
ospf yes | no | on | off [{

defaults {
preference preference ;

HP-UX Release 11.0: October 1997 − 18 − Section 4−−85

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

cost cost ;
tag [as] tag ;
type 1 | 2 ;

} ;
exportlimit routes ;
exportinterval time ;
traceoptions trace_options ;
monitorauthkey authkey ;
monitorauth none | ([simple | md5] authkey) ;
backbone | (area area) {

authtype 0 | 1 | none | simple ;
stub [cost cost] ;
networks {

network [restrict] ;
network mask mask [restrict] ;
network masklen number [restrict] ;
host host [restrict] ;

} ;
stubhosts {

host cost cost ;
} ;
interface interface_list; [cost cost] {

interface_parameters
} ;
interface interface_list nonbroadcast [cost cost] {

pollinterval time ;
routers {

gateway [eligible] ;
} ;
interface_parameters

} ;
Backbone only:
virtuallink neighborid router_id transitarea area {

interface_parameters
} ;

} ;
}] ;

The following are the interface_parameters referred to above. The may be specified on any class of interface
and are described under the interface clause.

enable | disable ;
retransmitinterval time ;
transitdelay time ;
priority priority ;
hellointerval time ;
routerdeadinterval time ;
authkey auth_key ;

defaults
These parameters specify the defaults used when importing OSPF ASE routes into the gated routing
table and exporting routes from the gated routing table into OSPF ASEs.

preference preference
The preference is used to determine how OSPF routes compete with routes from other pro-
tocols in the gated routing table. The default value is 150.

cost cost
The cost is used when exporting a non-OSPF route from the GateD routing table into OSPF
as an ASE. The default value is 1. This may be explicitly overridden in export policy.

tag [as] tag
OSPF ASE routes have a 32 bit tag field that is not used by the OSPF protocol, but may be
used by export policy to filter routes. When OSPF is interacting with an egp, the tag field
may be used to propagate AS path information, in which case the as keyword is specified

Section 4−−86 − 19 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

aht the tag is limited to 12 bits of information. If not specified, the tag is set to zero.

type 1 | 2
Routes exported from the GateD routing table into OSPF default to becoming type 1 ASEs.
This default may be explicitly changed here and overridden in export policy.

ASE export rate
Because of the nature of OSPF, the rate at which ASEs are flooded must be limited. These two param-
eters can be used to adjust those rate limits.

exportinterval time
This specifies how often a batch of ASE link state advertisements will be generated and
flooded into OSPF. The default is once per second.

exportlimit routes
This parameter specifies how many ASEs will be generated and flooded in each batch. The
default is 100.

traceoptions trace_options
Specifies the tracing options for OSPF. (See Trace Statements and the OSPF specific tracing options
below.)

monitorauthkey authkey
OSPF state may be queried using the ospf_monitor (This should be a hyperlink) utility. This utility
sends non-standard OSPF packets which generate a text response from OSPF. By default these
requests are not authenticated, if an authentication key is configured, the incoming requests must
match the specified authentication key. No OSPF state may be changed by these packets, but the act
of querying OSPF can utilize system resources.

backbone
area area

Each OSPF router must be configured into at least one OSPF area. If more than one area is
configured, at least one must the be backbone . The backbone may only be configured using the
backbone keyword, it may not be specified as area 0 . The backbone interface may be a virtual-
link .

authtype 0 | 1 | none | simple
OSPF specifies an authentication scheme per area. Each interface in the area must use this same
authentication scheme although it may use a different authenticationkey . The currently
valid values are none (0) for no authentication, or simple (1) for simple password authentica-
tion.

stub [cost cost]
A stub area is one in which there are no ASE routes. If a cost is specified, this is used to
inject a default route into the area with the specified cost.

networks
The networks list describes the scope of an area. Intra-area LSAs that fall within the specified
ranges are not advertised into other areas as inter-area routes. Instead, the specified ranges are
advertised as summary network LSAs. If restrict is specified, the summary network LSAs are
not advertised. Intra-area LSAs that do not fall into any range are also advertised as summary
network LSAs. This option is very useful on well designed networks in reducing the amount of
routing information propagated between areas. The entries in this list are either networks, or a
subnetwork/mask pair. See the section on Route Filtering for more detail about specifying
ranges.

stubhosts
This lists specifies directly attached hosts that should be advertised as reachable from this router
and the costs they should be advertised with. Point-to-point interfaces on which it is not desir-
able to run OSPF should be specified here.

It is also useful to assign a additional address to the loopback interface (one not on the 127 net-
work) and advertise it as a stub hosts. If this address is the same one used as the router-id, it
enables routing to OSPF routers by router-id, instead of by interface address. This is more reli-
able than routing to one of the routers interface addresses which may not always be reachable.

interface interface_list [cost cost]
This form of the interface clause is used to configure a broadcast (which requires IP multicast
support) or a point-to-point interface. See the section on interface list specification for the

HP-UX Release 11.0: October 1997 − 20 − Section 4−−87

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

description of the interface_list.

Each interface has a cost . The costs of all interfaces a packet must cross to reach a destination
are summed to get the cost to that destination. The default cost is one, but another non-zero
value may be specified.

Interface parameters common to all types of interfaces are:

retransmitinterval time
The number of seconds between link state advertisement retransmissions for adjacen-
cies belonging to this interface.

transitdelay time
The estimated number of seconds required to transmit a link state update over this
interface. Transitdelay takes into account transmission and propagation delays and
must be greater than 0.

priority priority
A number between 0 and 255 specifying the priority for becoming the designated
router on this interface. When two routers attached to a network both attempt to
become designated router, the one with the highest priority wins. A router whose
router priority is set to 0 is ineligible to become designated router.

hellointerval time
The length of time, in seconds, between Hello packets that the router sends on the
interface.

routerdeadinterval time
The number of seconds not hearing Hello packets of a router before the neighbors of
the router will declare it dovn.

authkey auth_key
Used by OSPF authentication to generate and verify the authentication field in the
OSPF header. The authentication key can be configured on a per interface basis. It is
specified by one to eight decimal digits separated by periods, a one to eight byte hexa-
decimal string preceded by 0x , or a one to eight character string in double quotes.

Point-to-point interfaces also support this additional parameter:

nomulticast
By default, OSPF packets to neighbors on point-to-point interfaces are sent via the IP
multicast mechanism. Although, some implementations of IP multicasting for Unix
have a bug that precludes the use of IP multicasting on these interfaces. Gated will
detect this condition and fall back to using sending unicast OSPF packets to this
point-to-point neighbor.

If the use of IP multicasting is not desired because the remote neighbor does not sup-
port it, the nomulticast parameter may be specified to force the use of unicast OSPF
packets. This option may also be used to eliminate warnings when Gated detects the
bug mentioned above.

interface interface_list nonbroadcast [cost cost]
This form of the interface clause is used to specify a nonbroadcast interface on a non-
broadcast multi-access (NBMA) media. Since an OSPF broadcast media must support IP
multicasting, a broadcast capable media, such as Ethernet, that does not support IP multicasting
must be configured as a non-broadcast interface.

A non-broadcast interface supports any of the standard interface clauses listed above, plus
the following two that are specific to non-broadcast interfaces:

pollinterval time
Before adjacency is established with a neighbor, OSPF packets are sent periodically at
the specified pollinterval .

routers
By definition it is not possible to send broadcast packets to discover OSPF neighbors
on a non-broadcast, so all neighbors must be configured. The list includes one or more
neighbors and an indication of their eligibility to become a designated router.

Section 4−−88 − 21 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

virtuallink neighborid router_id transitarea area
Virtual links are used to establish or increase connectivity of the backbone area. The neigh-
borid is the router_id of the other end of the virtual link. The transit area specified must also
configured on this system. All standard interface parameters defined by the interface clause
above may be specified on a virtual link.

Tracing options
In addition to the following OSPF specific trace flags, OSPF supports the state which traces interface and
neighbor state machine transitions.

lsabuild
Link State Advertisement creation

spf Shortest Path First (SPF) calculations

Packet tracing options (which may be modified with detail , send and recv):

hello
OSPF HELLOpackets which are used to determine neighbor reachability.

dd OSPF Database Description packets which are used in synchronizing OSPF databases.

request
OSPF Link State Request packets which are used in synchronizing OSPF databases.

lsu OSPF Link State Update packets which are used in synchronizing OSPF databases.

ack OSPF Link State Ack packets which are used in synchronizing OSPF databases.

The Exterior Gateway Protocol (EGP)
The Exterior Gateway Protocol (EGP) is an exterior routing protocol used for exchanging routing informa-
tion with gateways in other autonomous systems. Unlike interior protocols, EGP propagates only reachabil-
ity indications, not true metrics. EGP updates contain metrics, called distances which range from 0 to 255.
GateD will only compare EGP distances learned from the same AS. them.

Before EGP sends routing information to a remote router, it must establish an adjacency with that router.
This is accomplished by an exchange of Hello (not to be confused with the HELLO protocol, or OSPF
HELLO messages) and I Heard You (I-H-U) messages with that router. Computers communicating via
EGP are called EGP neighbors, and the exchange of HELLO and I-H-U messages is referred to as acquiring
a neighbor. Once the neighbor is acquired, the system polls the neighbor for routing information. The
neighbor responds by sending an update containing routing information. If the system receives a poll from
its neighbor, it responds with its own update packet. When the system receives an update, it includes
routes from the update into its routing database. If the neighbor fails to respond to three consecutive polls,
GateD assumes that the neighbor is down and removes the routes of that neighbor from its database.

The EGP Statement
egp yes | no | on | off
[{

preference preference ;
defaultmetric metric ;
packetsize number ;
traceoptions trace_options ;
group

[peeras autonomous_system]
[localas autonomous_system]
[maxup number]

{
neighbor host

[metricout metric]
[preference preference]
[preference2 preference]
[ttl ttl]
[nogendefault]
[importdefault]
[exportdefault]
[gateway gateway]
[lcladdr local_address]

HP-UX Release 11.0: October 1997 − 22 − Section 4−−89

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

[sourcenet network]
[minhello | p1 time]
[minpoll | p2 time]
[traceoptions trace_options]

;
} ;

}] ;

preference preference
Sets the preference for routes learned from RIP. The default preference is 200. This preference
may be overridden by a preference specified on the group or neighbor statements or by
import policy.

defaultmetric metric ;
Defines the metric used when advertising routes via EGP. If not specified, the default value is
255 which some systems may consider unreachable. This choice of values requires you to expli-
citly specify a metric when exporting routes to EGP neighbors. This metric may be overridden by
a metric specified on the neighbor or group statements or in export policy.

packetsize maxpacketsize
This defines the expected maximum size of a packet that EGP expects to receive from this neigh-
bor. If a packet larger than this value is received, it will be incomplete and have to be discarded.
The length of this packet will be noted and the expected size will be increased to be able to
receive a packet of this size. Specifying the parameter here will prevent the first packet from
being dropped. If not specified, the default size is 8192 bytes. All packet sizes are rounded up to a
multiple of the system page size.

traceoptions trace_options
Specifies the tracing options for EGP. By default these are inherited from the global trace
options. These values may be overridden on a group or neighbor basis. (See Trace Statements
and the EGP specific tracing options below.)

group
EGP neighbors must be specified as members of a group . A group is usually used to group all
neighbors in one autonomous system. Parameters specified on the group clause apply to all of the
subsidiary neighbors unless explicitly overridden on a neighbor clause. Any number of group
clauses may specify any number of neighbor clauses.

Any parameters from the neighbor subclause may be specified on the group clause to provide
defaults for the whole group (which may be overridden for individual neighbors). In addition, the
group clause is the only place to set the following attributes:

peeras
Identifies the autonomous system number expected from peers in the group. If not
specified, it will be learned dynamically.

localas
Identifies the autonomous system which GateD is representing to the group. The
default is that which has been set globally in the autonomoussystem statement.
This option is usually only used when masquerading as another autonomous system
and its use is discouraged.

maxup
Specifies the number of neighbors GateD should acquire from this group. The default
is to acquire all of the neighbors in the group. GateD will attempt to acquire the first
maxup neighbors in the order listed. If one of the first neighbors is not available, it will
acquire one further down the list. If after start-up GateD does manage to acquire the
more desirable neighbor, it will drop the less desirable one.

neighbor neighbor_address
Each neighbor subclause defines one EGP neighbor within a group. The only part of the sub-
clause that is required is the neighbor_address argument which is the symbolic host name or
IP address of the neighbor. All other parameters are optional.

preference preference
Specifies the preference used for routes learned from these neighbors. This can differ
from the default EGP preference set in the egp statement, so that GateD can prefer
routes from one neighbor, or group of neighbors, over another. This preference may be

Section 4−−90 − 23 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

explicitly overridden by import policy.

preference2 preference
In the case of a preference tie, the second preference, preference2 may be used
to break the tie. The default value is 0.

metricout metric
This defines a metric to be used for all routes sent to this neighbor. The value over-
rides the default metric set in the egp statement and any metrics specified by export
policy, but only for this specific neighbor or group of neighbors.

nogendefault
Prevents GateD from generating a default route when EGP receives a valid update
from its neighbor. The default route is only generated when the gendefault option is
enabled.

importdefault
Enables GateD to accept the default route (0.0.0.0) if it is included in a received EGP
update. If not specified, the default route contained in an EGP update is ignored. For
efficiency, some networks have external routers announce a default route to avoid
sending large EGP update packets.

exportdefault
Enables GateD to include the default route (0.0.0.0) in EGP updates sent to this EGP
neighbor. This allows the system to advertise the default route via EGP. Normally a
default route is not included in EGP updates.

gateway gateway
If a network is not shared with a neighbor, gateway specifies a router on an attached
network to be used as the next hop router for routes received from this neighbor. This
option is only rarely used.

lcladdr local_address
Specifies the address to be used on the local end of the connection with the neighbor.
The local address must be on an interface which is shared with the neighbor or with
the gateway of the neighbor when the gateway parameter is used. A sessionwill only
be opened when an interface with the appropriate local address (through which the
neighbor or gateway address is directly reachable) is operating.

sourcenet network
Specifies the network queried in the EGP Poll packets. By default this is the network
shared with neighbors address specified. If there is no network shared with the neigh-
bor, one of the network the neighbor is attached to should be specified. This parame-
ter can also be used to specify a network shared with the neighbor other than the one
on which the EGP packets are sent. This parameter is normally not needed.

p1 time
minhello time

Sets the minimum acceptable interval between the transmission of EGP HELLO pack-
ets. The default hello interval is 30 seconds. If the neighbor fails to respond to three
hello packets, GateD stops trying to acquire the neighbor. Setting a larger interval
gives the neighbor a better chance to respond. Minhello is an alias for the P1 value
defined in the EGP specification.

p2 time
minpoll time

Sets the time interval between polls to the neighbor. The default is 120 seconds. If
three polls are sent without a response, the neighbor is declared "down" and all routes
learned from that neighbor are removed from the routing database. A longer polling
interval supports a more stable routing database but is not as responsive to routing
changes. Minpoll is an alias for the P2 value defined in the EGP specification.

ttl ttl
By default, GateD sets the IP TTL for local neighbors to one and the TTL for non-local
neighbors to 255. This option is provided when attempting to communicate with
improperly functioning routers that ignore packets sent with a TTL of one.

HP-UX Release 11.0: October 1997 − 24 − Section 4−−91

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

traceoptions trace_options
Specifies the tracing options for this EGP neighbor. By default these are inherited
from group or EGP global trace options. (See Trace Statements and the EGP specific
tracing options below.)

Tracing options
The state and policy options work with EGP.

Packet tracing options (which may be modified with detail , send and recv):

packets
All EGP packets

hello
EGP HELLO/I-HEARD-U packets which are used to determine neighbor reachability.

acquire
EGP ACQUIRE/CEASEpackets which are used to initiate and terminate EGP sessions.

update
EGP POLL/UPDATEpackets which are used to request and receive reachability updates.

The BGP Protocol
The Border Gateway Protocol (BGP) is an exterior routing protocol used for exchanging routing information
between autonomous systems. BGP is used for exchange of routing information between multiple transit
autonomous systems as well as between transit and stub autonomous systems. BGP is related to EGP but
operates with more capability, greater flexibility, and less required bandwidth. BGP uses path attributes to
provide more information about each route, and in particular maintain an AS path, which includes the AS
number of each autonomous system the route has transited, providing information sufficient to prevent
routing loops in an arbitrary topology. Path attributes may also be used to distinguish between groups of
routes to determine administrative preferences, allowing greater flexibility in determining route preference
to achieve a variety of administrative ends.

BGP supports two basic types of sessions between neighbors, internal (sometimes referred to as IBGP) and
external. Internal sessions are run between routers in the same autonomous system, while external ses-
sions run between routers in different autonomous systems. When sending routes to an external peer the
local AS number is prepended to the AS path, hence routes received from an external peer are guaranteed
to have the AS number of that peer at the start of the path. Routes received from an internal neighbor will
not in general have the local AS number prepended to the AS path, and hence will in general have the
same AS path that the route had when the originating internal neighbor received the route from an exter-
nal peer. Routes with no AS numbers in the path may be legitimately received from internal neighbors;
these indicate that the received route should be considered internal to your own AS.

The BGP implementation supports three versions of the BGP protocol, versions 2, 3 and 4. BGP versions 2
and 3 are quite similar in capability and function. They will only propagate classed network routes, and the
AS path is a simple array of AS numbers. BGP 4 will propagate fully general address-and-mask routes, and
the AS path has some structure to represent the results of aggregating dissimilar routes.

External BGP sessions may or may not include a single metric, which BGP calls the Multi-Exit Discrimina-
tor, in the path attributes. For BGP versions 2 and 3 this metric is a 16-bit unsigned integer, for BGP ver-
sion 4 it is a 32-bit unsigned integer. In either case smaller values of the metric are to be preferred.
Currently this metric is only used to break ties between routes with equal preference from the same neigh-
bor AS. Internal BGP sessions carry at least one metric in the path attributes, which BGP calls the
LocalPref. The size of the metric is identical to the MED. For BGP versions 2 and 3 this metric is con-
sidered better when its value is smaller, for version 4 it is better when it is larger. BGP version 4 sessions
may optionally carry a second metric on internal sessions, this being an internal version of the Multi-Exit
Discriminator. The use of these metrics is dependent on the type of internal protocol processing which is
specified.

BGP collapses routes with similar path attributes into a single update for advertisement. Routes that are
received in a single update will be readvertised in a single update. The churn caused by the loss of a neigh-
bor will be minimized and the initial advertisement sent during peer establishment will be maximally
compressed. BGP does not read information from the kernel message-by-message, but fills the input buffer.
It processes all complete messages in the buffer before reading again. BGP also does multiple reads to clear
all incoming data queued on the socket. This feature may cause other protocols to be blocked for prolonged
intervals by a busy peer connection.

Section 4−−92 − 25 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

All unreachable messages are collected into a single message and sent prior to reachable routes during a
flash update. For these unreachable announcements, the next hop is set to the local address on the connec-
tion, no metric is sent and the path origin is set to incomplete. On external connections the AS path in
unreachable announcements is set to the local AS, on internal connections the AS path is set to zero length.

The BGP implementation expects external peers to be directly attached to a shared subnet, and expects
those peers to advertise next hops which are host addresses on that subnet (though this constraint can be
relaxed by configuration for testing). For groups of internal peers, however, there are several alternatives
which may be selected from by specifying the group type. Type internal groups expect all peers to be
directly attached to a shared subnet so that, like external peers, the next hops received in BGP advertise-
ments may be used directly for forwarding. Type routing groups instead will determine the immediate
next hops for routes by using the next hop received with a route from a peer as a forwarding address. This
forwarding address is used to look up an immediate next hop in routes of the IGP. Such groups support dis-
tant peers, but need to be informed of the IGP whose routes they are using to determine immediate next
hops. Finally, type igp groups expect routes from the group peers to not be used for forwarding at all.
Instead they expect that copies of the BGP routes received will also be received via an IGP, and that the
BGP routes will only be used to determine the path attributes associated with the IGP routes. Such groups
also support distant peers, and also need to be informed of the IGP they are running with.

For internal BGP group types (and for test groups), where possible a single outgoing message is built for all
group peers based on the common policy. A copy of the message is sent to every peer in the group, with
possible adjustments to the next hop field as appropriate to each peer. This minimizes the computational
load of running large numbers of peers in these types of groups. BGP allows unconfigured peers to connect
if an appropriate group has been configured with an allow clause.

The BGP Statement
bgp yes | no | on | off
[{

preference preference ;
defaultmetric metric ;
traceoptions trace_options ;
group type (external peeras autonomous_system)

| (internal peeras autonomous_system)
| (igp peeras autonomous_system proto proto)
| (routing peeras autonomous_system proto proto

interface interface_list)
| (test peeras autonomous_system)

{
allow {

network
network mask mask
network masklen number
all
host host

} ;
peer host

[metricout metric]
[localas autonomous_system]
[nogendefault]
[gateway gateway]
[preference preference]
[preference2 preference]
[lcladdr local_address]
[holdtime time]
[version number]
[passive]
[sendbuffer number]
[recvbuffer number]
[indelay time]
[outdelay time]
[keep [all | none]]
[showwarnings]
[noauthcheck]

HP-UX Release 11.0: October 1997 − 26 − Section 4−−93

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

[noaggregatorid]
[keepalivesalways]
[v3asloopokay]
[nov4asloop]
[logupdown]
[ttl ttl]
[traceoptions trace_options]
;

} ;
}] ;

external | internal | igp | test

The bgp statement enables or disables BGP. By default BGP is disabled. The default metric for announcing
routes via BGP is not to send a metric.

preference preference
Sets the preference for routes learned from RIP. The default preference is 170. This preference
may be overridden by a preference specified on the group or peer statements or by import pol-
icy.

defaultmetric metric
Defines the metric used when advertising routes via BGP. If not specified, no metric is pro-
pagated. This metric may be overridden by a metric specified on the neighbor or group state-
ments or in export policy.

traceoptions trace_options
Specifies the tracing options for BGP. By default these are inherited from the global trace
options. These values may be overridden on a group or neighbor basis. (See Trace Statements
and the BGP specific tracing options below.)

Groups
BGP peers are grouped by type and the autonomous system of the peers. Any number of groups may be
specified, but each must have a unique combination of type and peer autonomous system. There are four
possible group types:

group type external peeras autonomous_system
In the classic external BGP group, full policy checking is applied to all incoming and outgoing
advertisements. The external neighbors must be directly reachable through one of the local inter-
faces of the machine . By default no metric is included in external advertisements, and the next
hop is computed with respect to the shared interface.

group type internal peeras autonomous_system
An internal group operating where there is no IP-level IGP, for example an SMDS network or
MILNET. All neighbors in this group are required to be directly reachable via a single interface.
All next hop information is computed with respect to this interface. Import and export policy
may be applied to group advertisements. Routes received from external BGP or EGP neighbors
are by default readvertised with the received metric.

group type igp peeras autonomous_system proto proto
An internal group that runs in association with an interior protocol. The IGP group examines
routes which the IGP is exporting and sends an advertisement only if the path attributes could
not be entirely represented in the IGP tag mechanism. Only the AS path, path origin, and transi-
tive optional attributes are sent with routes. No metric is sent, and the next hop is set to the
local address used by the connection. Received internal BGP routes are not used or readvertised.
Instead, the AS path information is attached to the corresponding IGP route and the latter is
used for readvertisement. Since internal IGP peers are sent only a subset of the routes which the
IGP is exporting, the export policy of the IGP is used. There is no need to implement the "don’t
routes from peers in the same group" constraint since the advertised routes are routes that IGP
already exports.

group type routing peeras autonomous_system proto proto interface interface_list
An internal group which uses the routes of an interior protocol to resolve forwarding addresses.
A type routing group propagates external routes between routers which are not directly con-
nected. A type routing group computes immediate next hops for these routes by using the BGP
next hop which arrived with the route as a forwarding address. The forwarding address is to be

Section 4−−94 − 27 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

resolved via the routing information of an internal protocol. In essence, internal BGP is used to
carry AS external routes, while the IGP is expected to only carry AS internal routes, and the
latter is used to find immediate next hops for the former.

The proto names the interior protocol to be used to resolve BGP route next hops, and may be the
name of any IGP in the configuration. By default the next hop in BGP routes advertised to type
routing peers will be set to the local address on the BGP connection to those peers, as it is
assumed a route to this address will be propagated via the IGP. The interface_list can optionally
provide a list interfaces whose routes are carried via the IGP for which third party next hops
may be used instead.

group type test peeras autonomous_system
An extension to external BGP which implements a fixed policy using test peers. Fixed policy and
special case code make test peers relatively inexpensive to maintain. Test peers do not need to be
on a directly attached network. If GateD and the peer are on the same (directly attached) sub-
net, the advertised next hop is computed with respect to that network. Otherwise the next hop is
the current next hop of the local machine. All routing information advertised by and received
from a test peer is discarded, and all BGP routes that can be advertised are sent back to the test
peer. Metrics from EGP-derived and BGP-derived routes are forwarded in the advertisement.
Otherwise no metric is included.

Group parameters
The BGP statement has group clauses and peer subclauses. Any number of peer subclauses may be
specified within a group. A group clause usually defines default parameters for a group of peers, these
parameters apply to all subsidiary peer subclauses. Any parameters from the peer subclause may be
specified on the group clause to provide defaults for the whole group (which may be overridden for indivi-
dual peers).

Specifying peers
Within a group, BGP peers may be configured in one of two ways. They may be explicitly configured with a
peer statement, or implicitly configured with the allow statement. Both are described here:

allow
The allow clauses allows for peer connections from any addresses in the specified range of net-
work and mask pairs. All parameters for these peers must be configured on the group clause.
The internal peer structures are created when an incoming open request is received and des-
troyed when the connection is broken. For more detail on specifying the network/mask pairs, see
the section on Route Filtering.

peer host
A peer clause configures an individual peer. Each peer inherits all parameters specified on a
group as defaults. Those default may be overridden by parameters explicitly specified on the
peer subclaus.

Within each group clause, individual peers can be specified or a group of potential peers can be specified
using allow . Allow is used to specify a set of address masks. If GateD receives a BGP connection request
from any address in the set specified, it will accept it and set up a peer relationship.

Peer parameters
The BGP peer subclause allows the following parameters, which can also be specified on the group
clause. All are optional.

metricout metric
If specified, this metric is used as the primary metric on all routes sent to the specified peer(s).
This metric overrides the default metric, a metric specified on the group and any metric specified
by export policy.

localas autonomous_system
Identifies the autonomous system which GateD is representing to this group of peers.. The
default is that which has been set globally in the autonomoussystem statement.

nogendefault
Prevents GateD from generating a default route when EGP receives a valid update from its
neighbor. The default route is only generated when the gendefault option is enabled.

gateway gateway
If a network is not shared with a peer, gateway specifies a router on an attached network to be

HP-UX Release 11.0: October 1997 − 28 − Section 4−−95

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

used as the next hop router for routes received from this neighbor. This parameter is not needed
in most cases.

preference preference
Specifies the preference used for routes learned from these peers. This can differ from the
default BGP preference set in the bgp statement, so that GateD can prefer routes from one
peer, or group of peer, over others. This preference may be explicitly overridden by import pol-
icy.

preference2 preference
In the case of a preference tie, the second preference, preference2 may be used to break
the tie. The default value is 0.

lcladdr local_address
Specifies the address to be used on the local end of the TCP connection with the peer. For exter-
nal peers the local address must be on an interface which is shared with the peer or with the
gateway of the peer when the gateway parameter is used. A session with an external peer will
only be opened when an interface with the appropriate local address (through which the peer or
gateway address is directly reachable) is operating. For other types of peers, a peer session will
be maintained when any interface with the specified local address is operating. In either case
incoming connections will only be recognized as matching a configured peer if they are addressed
to the configured local address.

holdtime time
Specifies the BGP holdtime value to use when negotiating the connection with this peer, in
seconds. According to BGP, if GateD does not receive a keepalive, update, or notification mes-
sage within the period specified in the Hold Time field of the BGP Open message, then the BGP
connection will be closed. The value must be either 0 (no keepalives will be sent) or at least 3.

version version
Specifies the version of the BGP protocol to use with this peer. If not specified, the highest sup-
ported version is used first and version negotiation is attempted. If it is specified, only the
specified version will be offered during negotiation. Currently supported version are 2, 3 and 4.

passive
Specifies that active OPENs to this peer should not be attempted. GateD should wait for the peer
to issue an open. By default all explicitly configured peers are active, they periodically send
OPEN messages until the peer responds.

sendbuffer buffer_size
recvbuffer buffer_size

Control the amount of send and receive buffering asked of the kernel. The maximum supported
is 65535 bytes although many kernels have a lower limit. By default, GateD configures the max-
imum supported. These parameters are not needed on normally functioning systems.

indelay time
outdelay time

Used to dampen route fluctuations. Indelay is the amount of time a route learned from a BGP
peer must be stable before it is accepted into the gated routing database. Outdelay is the
amount of time a route must be present in the gated routing database before it is exported to
BGP. The default value for each is 0, meaning that these features are disabled.

keep all
Used to retain routes learned from a peer even if the AS paths of the routes contain one of our
exported AS numbers.

showwarnings
Causes GateD to issue warning messages when receiving questionable BGP updates such as
duplicate routes and/or deletions of non-existing routes. Normally these events are silently
ignored.

noauthcheck
Normally GateD verifies that incoming packets have an authentication field of all ones. This
option may be used to allow communication with an implementation that uses some other form
of authentication.

noaggregatorid
Causes GateD to specify the routerid in the aggregator attribute as zero (instead of its routerid)

Section 4−−96 − 29 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

in order to prevent different routers in an AS from creating aggregate routes with different AS
paths.

keepalivesalways
Causes gated to always send keepalives, even when an update could have correctly substituted
for one. This allows interoperability with routers that do not completely obey the protocol
specifications on this point.

v3asloopokay
By default gated will not advertise routes whose AS path is looped (with an AS appearing more
than once in the path) to version 3 external peers. Setting this flag removes this constraint.
Ignored when set on internal groups or peers.

nov4asloop
Prevents routes with looped AS paths from being advertised to version 4 external peers. This can
be useful to avoid advertising such routes to peer which would incorrectly forward the routes on
to version 3 neighbors.

logupdown
Causes a message to be logged via the syslog mechanism whenever a BGP peer enters or leaves
the ESTABLISHEDstate.

ttl ttl
By default, GateD sets the IP TTL for local peers to one and the TTL for non-local peers to 255.
This option mainly is provided when attempting to communicate with improperly functioning
routers that ignore packets sent with a TTL of one. Not all kernels allow the TTL to be specified
for TCP connections.

traceoptions trace_options
Specifies the tracing options for this BGP neighbor. By default these are inherited from group or
BGP global trace options. (See Trace Statements and the BGP specific tracing options below.)

Tracing options
Note that the state option works with BGP, but does not provide true state transition information.

Packet tracing options (which may be modified with detail , send and recv):

packets
All BGP packets

open
BGP OPENpackets which are used to establish a peer relationship.

update
BGP UPDATEpackets which are used to pass network reachability information.

keepalive
BGP KEEPALIVE packets which are used to verify peer reachability.

The ICMP Statement
On systems without the BSD routing socket, gated listens to ICMP messages received by the system.
Currently gated only does processing on ICMP redirect packets, but more functionality may be added in the
future, such as support for the router discovery messages. Processing of ICMP redirect messages is handled
by the redirect statement.

Currently the only reason to specify the icmp statement is to be able to trace the ICMP messages that
gated receives.

The ICMP statement
icmp {

traceoptions trace_options ;
}

traceoptions trace_options ;
Specifies the tracing options for ICMP. (See Trace Statements and the ICMP specific tracing options
below.)

HP-UX Release 11.0: October 1997 − 30 − Section 4−−97

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Tracing options
Packet tracing options (which may be modified with detail and recv):

packets
All ICMP packets received.

redirect
Only ICMP REDIRECTpackets received.

routerdiscovery
Only ICMP ROUTER DISCOVERYpackets received.

info Only ICMP informational packets, which include mask request/response, info request/response,
echo request/response and time stamp request/response.

error
Only ICMP error packets, which include time exceeded, parameter problem, unreachable and
source quench.

Redirect Processing
The redirect code is passed ICMP or ISO redirects learned by monitoring ICMP messages, or via the
routing socket on systems that support it. It processes the redirect request and decides whether to accept
the redirect. If the redirect is accepted, a route is installed in the gated routing table with the protocol
redirect . Redirects are deleted from the routing table after 3 minutes.

If GateD determines that a redirect is not acceptable, it tries to figure out if the kernel forwarding table has
been modified. On systems where ICMP messages are monitored this is accomplished by trying to second
guess what the kernel would have done with the redirect. On systems with the routing socket, the kernel
provides and indication of whether the redirect was accepted; GateD ignores redirects that were not pro-
cessed.

If GateD has determined that the state of the kernel forwarding table has been changed, the necessary
requests to the kernel are made to restore the correct state.

Note that on currently available systems it is not possible to disable the processing of ICMP redirects, even
when the system is functioning as a router. To ignore the effects of redirects, GateD must process each one
and actively restore any changes it made to the state of the kernel. Because of the mechanisms involved,
there will be windows where the effects of redirects are present in the kernel.

By default, GateD removes redirects when actively participating in an interior gateway protocol (RIP,
HELLO, OSPF or IS-IS). It is not possible to enable redirects once they have been automatically disabled.
Listening to RIP or HELLO in nobroadcast mode does not cause redirects to be ignored, nor does the use of
EGP and BGP. Redirects must be manually configured off in these cases.

Note that in accordance with the latest IETF Router Requirements document, GateD insures that all ICMP
net redirects are processed as host redirects. When an ICMP net redirect is accepted, GateD issues the
requests to the kernel to make sure that the kernel forwarding table is updated to reflect a host redirect
instead of a net redirect.

The redirect statement does not prevent the system from sending redirects, only from listening to them.

The Redirect Statement
redirect yes | no | on | off
[{

preference preference ;
interface interface_list

[noredirects] | [redirects] ;
trustedgateways gateway_list ;
traceoptions trace_options ;

}] ;

preference
Sets the preference for a route learned from a redirect. The default is 30.

interface interface_list
The interface statement allows the enabling and disabling of redirects on an interface-by-
interface basis. See the section on interface list specification for the description of the
interface_list. The possible parameters are:

Section 4−−98 − 31 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

noredirects
Specifies that redirects received via the specified interface will be ignored. The default
is to accept redirects on all interfaces.

redirects
This is the default. This argument may be necessary when noredirects is used on a
wildcard interface descriptor.

trustedgateways gateway_list
Defines the list of gateways from which redirects will be accepted. The gateway_list is simply a
list of host names or addresses. By default, all routers on the shared network(s) are trusted to
supply redirects. But if the trustedgateways clause is specified only redirects from the gate-
ways in the list are accepted.

traceoptions trace_options
There are no redirect-specific tracing options. All non-error messages are traced under the nor-
mal class.

Tracing options
There are no Redirect -specific tracing options. All non-error messages are traced under the normal
class.

The Router Discovery Protocol
The Router Discovery Protocol is an IETF standard protocol used to inform hosts of the existence of
routers. It is intended to be used instead of having hosts wiretap routing protocols such as RIP. It is used in
place of, or in addition to statically configured default routes in hosts.

The protocol is split into to portions, the server portion which runs on routers, and the client portion that
runs on hosts. GateD treats these much like two separate protocols, only one of which may be enabled at a
time.

The Router Discovery Server
The Router Discovery Server runs on routers and announces their existence to hosts. It does this by period-
ically multicasting or broadcasting a Router Advertisement to each interface on which it is enabled.
These Router Advertisements contain a list of all the routers addresses on a given interface and their
preference for use as a default router.

Initially these Router Advertisements occur every few seconds, then fall back to every few minutes. In
addition, a host may send a Router Solicitation to which the router will respond with a unicast Router
Advertisement (unless a multicast or broadcast advertisement is due momentarily).

Each Router Advertisement contains a Advertisement Lifetime field indicating for how long the advertised
addresses are valid. This lifetime is configured such that another Router Advertisement will be sent before
the lifetime has expired. A lifetime of zero is used to indicate that one or more addresses are no longer
valid.

On systems supporting IP multicasting, the Router Advertisements are by default send to the all-hosts mul-
ticast address 224.0.0.1 . However, the use of broadcast may be specified. When Router Advertisements
are being sent to the all-hosts multicast address, or an interface is configured for the limited-broadcast
address 255.255.255.255 , all IP addresses configured on the physical interface are included in the
Router Advertisement. When the Router advertisements are being sent to a net or subnet broadcast, only
the address associated with that net or subnet is included.

The Router Discovery Server Statement
routerdiscovery server yes | no | on | off [{

traceoptions trace_options ;
interface interface_list

[minadvinterval time]
[maxadvinterval time]
[lifetime time]
;

address interface_list
[advertise] | [ignore]
[broadcast] | [multicast]
[ineligible] | [preference preference]
;

HP-UX Release 11.0: October 1997 − 32 − Section 4−−99

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

}] ;

traceoptions trace_options
Specifies the Router Discovery tracing options. (See Trace Statements and the Router Discovery
specific tracing options below.)

interface interface_list
Specifies the parameters that apply to physical interfaces. Note a slight difference in convention
from the rest of GateD, interface specifies just physical interfaces (such as le0 , ef0 and en1),
while address specifies protocol (in this case IP) addresses.

Interface parameters are:

maxadvinterval time
The maximum time allowed between sending broadcast or multicast Router Advertise-
ments from the interface. Must be no less than 4 and no more than 30:00 (30 minutes
or 1800 seconds). The default is 10:00 (10 minutes or 600 seconds).

minadvinterval time
The minimum time allowed between sending unsolicited broadcast or multicast
Router Advertisements from the interface. Must be no less than 3 seconds and no
greater than maxadvinterval. The default is 0.75 * maxadvinterval.

lifetime time
The lifetime of addresses in a Router Advertisement. Must be no less than maxadvin-
terval and no greater than 2:30:00 (two hours, thirty minutes or 9000 seconds). The
default is 3 * maxadvinterval.

address interface_list
Specifies the parameters that apply to the specified set of addresses on this physical interfaces.
Note a slight difference in convention from the rest of GateD, interface specifies just physical
interfaces (such as le0 , ef0 and en1), while address specifies protocol (in this case IP)
addresses.

advertise
Specifies that the specified address(es) should be included in Router Advertisements.
This is the default.

ignore
Specifies that the specified address(es) should not be included in Router Advertise-
ments.

broadcast
Specifies that the given address(es) should be included in a broadcast Router Adver-
tisement because this system does not support IP multicasting, or some hosts on
attached network do not support IP multicasting. It is possible to mix addresses on a
physical interface such that some are included in a broadcast Router Advertisement
and some are included in a multicast Router Advertisement. This is the default if the
router does not support IP multicasting.

multicast
Specifies that the given address(es) should only be included in a multicast Router
Advertisement. If the system does not support IP multicasting, the address(es) will
not be included. If the system supports IP multicasting, the default is to include the
address(es) in a multicast Router Advertisement if the given interface supports IP
multicasting. If the given interface does not support IP multicasting, the address(es)
will be included in a broadcast Router Advertisement.

preference preference
The preferability of the address(es) as a default router address, relative to other
router addresses on the same subnet. A 32-bit, signed, twos-complement integer, with
higher values meaning more preferable. Note that hex 80000000 may only be
specified as ineligible . The default is 0.

ineligible
Specifies that the given address(es) will be assigned a preference of (hex 80000000)
which means that it is not eligible to be the default route for any hosts.

Section 4−−100 − 33 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

This is useful when the address(es) should not be used as a default route, but are
given as the next hop in an ICMP redirect. This allows the hosts to verify that the
given addresses are up and available.

The Router Discovery Client
A host listens for Router Advertisements via the all-hosts multicast address (224.0.0.2) if IP multicasting
is available and enabled, or on the interface broadcast address. When starting up, or when reconfigured, a
host may send a few Router Solicitations to the all-routers multicast address, 224.0.0.2 , or the interface
broadcast address.

When a Router Advertisement with non-zero lifetime is received, the host installs a default route to each of
the advertised addresses. If the preference ineligible, or the address is not on an attached interface, the
route is marked unusable but retained. If the preference is usable, the metric is set as a function of the
preference such that the route with the best preference is used. If more than one address with the same
preference is received, the one with the lowest IP address will be used. These default routes are not export-
able to other protocols.

When a Router Advertisement with a zero lifetime is received, the host deletes all routes with next-hop
addresses learned from that router. In addition, any routers learned from ICMP redirects pointing to these
addresses will be deleted. The same will happen when a Router Advertisement is not received to refresh
these routes before the lifetime expires.

The Router Discovery Client Statement
routerdiscovery client yes | no | on | off [{

traceoptions trace_options ;
preference preference ;
interface interface_list

[enable] | [disable]
[broadcast] | [multicast]
[quiet] | [solicit]
;

}] ;

traceoptions trace_options
Specifies the tracing options for OSPF. (See Trace Statements and the OSPF specific tracing
options below.)

preference preference ;
Specifies the preference of all Router Discovery default routes. The default is 55.

interface interface_list
Specifies the parameters that apply to physical interfaces. Note a slight difference in convention
from the rest of GateD, interface specifies just physical interfaces (such as le0 , ef0 and en1).
The Router Discovery Client has no parameters that apply only to interface addresses.

enable Specifies that Router Discovery should be performed on the specified
interface(s). This is the default.

disable Specifies that Router Discovery should not be performed on the specified
interface(s).

broadcast Specifies that Router Solicitations should be broadcast on the specified
interface(s). This is the default if IP multicast support is not available on this
host or interface.

multicast Specifies that Router Solicitations should be multicast on the specified
interface(s). If IP multicast is not available on this host and interface, no soli-
citation will be performed. The default is to multicast Router Solicitations if
the host and interface support it. Otherwise Router Solicitations are broad-
cast.

quiet Specifies that no Router Solicitations will be sent on this interface, even
though Router Discovery will be performed.

solicit Specifies that initial Router Solicitations will be sent on this interface. This is
the default.

HP-UX Release 11.0: October 1997 − 34 − Section 4−−101

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Tracing options
The Router Discovery Client and Server support the state trace flag which traces various protocol
occurrences.

state State transitions
The Router Discovery Client and Server do not directly support any packet tracing options, tracing of
router discovery packets is enabled via the ICMP Statement.

The Kernel Statement
While the kernel interface is not technically a routing protocol, it has many characteristics of one, and
GateD handles it similarly to one. The routes GateD chooses to install in the kernel forwarding table are
those that will actually be used by the kernel to forward packets.

The add, delete and change operations GateD must use to update the typical kernel forwarding table take a
non-trivial amount of time. This does not present a problem for older routing protocols (RIP, EGP), which
are not particularly time critical and do not easily handle very large numbers of routes anyway. The newer
routing protocols (OSPF, BGP) have stricter timing requirements and are often used to process many more
routes. The speed of the kernel interface becomes critical when these protocols are used.

To prevent GateD from locking up for significant periods of time installing large numbers of routes (up to a
minute or more has been observed on real networks), the processing of these routes is now done in batches.
The size of these batches may be controlled by the tuning parameters described below, but normally the
default parameters will provide the proper functionality.

During normal shutdown processing, GateD normally deletes all the routes it has installed in the kernel
forwarding table, except for those marked with retain. Optionally, GateD can leave all routes in the kernel
forwarding table by not deleting any routes. In this case changes will be made to insure that routes with a
retain indication are installed in the table. This is useful on systems with large numbers of routes as it
prevents the need to re-install the routes when GateD restarts. This can greatly reduce the time it takes to
recover from a restart.

Forwarding tables and Routing tables
The table in the kernel that controls the forwarding of packets is a forwarding table, also know in ISO
speak as a forwarding information base, or FIB. The table that GateD uses internally to store routing infor-
mation it learns from routing protocols is a routing table, known in ISO speak as a routing information
base, or RIB. The routing table is used to collect and store routes from various protocols. For each unique
combination of network and mask an active route is chosen, this route will be the one with the best (numer-
ically smallest) preference. All the active routes are installed in the kernel forwarding table. The entries in
this table are what the kernel actually uses to forward packets.

Updating the Forwarding Table
There are two main methods of updating the kernel FIB, the ioctl() interface and the routing socket
interface. Their various characteristics are described here.

Updating the Forwarding Table with the ioctl interface
The ioctl interface to the forwarding table was introduced in BSD 4.3 and widely distributed in BSD 4.3.
This is a one-way interface, it only allows GateD to update the kernel forwarding table. It has several other
limitations:

Fixed subnet masks
The BSD 4.3 networking code assumed that all subnets of a given network had the same subnet
mask. This limitation is enforced by the kernel. The network mask is not stored in the kernel
forwarding table, but determined when a packet is forwarded by searching for interfaces on the
same network.

One way interface
GateD is able to update the kernel forwarding table, but it is not aware of other modifications of
the forwarding table. GateD is able to listen to ICMP messages and guess how the kernel has
updated the forwarding table with response to ICMP redirects.

Blind updates
GateD is not able to detect changes to the forwarding table resulting from the use of the the
route command by the system administrator. Use of the route command on systems that use the
ioctl() interface is strongly discouraged while GateD is running.

Section 4−−102 − 35 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Changes not supported
In all known implementations, there is no change operation supported, to change a route that
exists in the kernel, the route must be deleted and a new one added.

Updating the Forwarding Table with the routing socket interface
The routing socket interface to the kernel forwarding table was introduced in BSD 4.3 Reno, widely distri-
buted in BSD 4.3 Net/2 and improved in BSD 4.4. This interface is simply a socket, similar to a UDP
socket, on which the kernel and GateD exchange messages. It has several advantages over the ioctl()
interface:

Variable subnet masks
The network mask is passed to the kernel explicitly. This allows different masks to be used on
subnets of the same network. It also allows routes with masks that are more general than the
natural mask to be used. This is known as classless routing.

Two way interface
Not only is GateD able to change the kernel forwarding table with this interface, but the kernel
can also report changes to the forwarding table to GateD. The most interesting of these is an
indication that a redirect has modified the kernel forwarding table; this means that gated no
longer needs to monitor ICMP messages to learn about redirects. Plus, there is an indication of
whether the kernel processed the redirect, GateD can safely ignore redirect messages that the
kernel did not process.

Updates visible
Changes to the routing table by other processes, including the route command are received via
the routing socket. This allows GateD to insure that the kernel forwarding table is in sync with
the routing table. Plus it allows the system administrator the ability to do some operations with
the route command while gated is running.

Changes supported
There is a functioning change message that allows routes in the kernel to be atomically changed.
Some early versions of the routing socket code had bugs in the change message processing.
There are compilation time and configuration time options that cause delete and add sequences
to be used in lieu of change messages.

Expandable
New levels of kernel/GateD communications may be added by adding new message types.

Reading the Forwarding Table
When GateD starts up it reads the kernel forwarding table and installs corresponding routes in the routing
table. These routes are called remnants and are timed out after a configured interval (which defaults to 3
minutes), or as soon as a more attractive route is learned. This allows forwarding to occur during the time
it takes the routing protocols to start learning routes.

There are three main methods for reading the forwarding table from the kernel.

Reading forwarding table via kmem
On many systems, especially those based on BSD 4.3, GateD must have knowledge of the kernel data struc-
tures and can go into the kernel to read the current state of forwarding table. This method is slow and sub-
ject to error if the kernel forwarding table is updated while GateD is in the middle of reading it. This can
happen if the system administrator uses the route command, or an ICMP redirect message is received
while GateD is starting up.

Due to an oversight some systems, such as OSF/1, which are based on BSD 4.3 Reno or later, do not have
the getkerninfo() system call described below which allows GateD to read routes from the kernel
without know about kernel internal structures. On these systems it is necessary to read the kernel radix
tree from the kernel by poking around in kernel memory. This is even more error prone than reading the
hash based forwarding table.

Reading the forwarding table via getkerninfo/sysctl
Besides the routing socket, BSD 4.3 Reno introduced the getkerninfo() system call. This call allows a
user process (of which GateD is one) to read various information from the kernel without knowledge of the
kernel data structures. In the case of the forwarding table, it is returned to gated atomically as a series of
routing socket messages. This prevents the problem associated with the forwarding table changing while
GateD is in the process of reading it.

HP-UX Release 11.0: October 1997 − 36 − Section 4−−103

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

BSD 4.4 changed the getkerninfo() interface into the sysctl() interface, which takes different
parameters, but otherwise functions identically.

Reading the forwarding table via OS specific methods
Some operating systems, for example SunOS 5, define their own method of reading the kernel forwarding
table. The SunOS 5 version is similar in concept to the getkerninfo() method.

Reading the interface list
The kernel support subsystem of GateD is responsible for reading the status of the kernel physical and pro-
tocol interfaces periodically. GateD detects changes in the interface list and notifies the protocols so they
can start or stop instances or peers. The interface list is read one of two ways:

Reading the interface list with SIOCGIFCONF
On systems based on BSD 4.3, 4.3 Reno and 4.3 Net/2 the SIOCGIFCONF ioctl interface is used to read
the kernel interface list. Using this method a list of interfaces and some basic information about them is
return by the SIOCGIFCONF call. Other information must be learned by issuing other ioctls to learn the
interface network mask, flags, MTU, metric, destination address (for point-to-point interfaces) and broad-
cast address (for broadcast capable interfaces).

GateD reads re-reads this list every 15 second looking for changes. When the routing socket is in use, it
also re-reads it whenever a messages is received indicating a change in routing configuration. Receipt of a
SIGUSR2signal also causes GateD to re-read the list. This interval may be explicitly configured in the inter-
face configuration.

Reading the interface list with sysctl
BSD 4.4 added the ability to read the kernel interface list via the sysctl system call. The interface status is
returned atomically as a list of routing socket messages which GateD parses for the required information.

BSD 4.4 also added routing socket messages to report interface status changes immediately. This allows
GateD to react quickly to changes in interface configuration.

When this method is in use, GateD re-reads the interface list only once a minute. It also re-reads it on rout-
ing table changes indications and when a SIGUSR2 is received. This interval may be explicitly configured in
the interface configuration.

Reading interface physical addresses
Later version of the getkerninfo() and sysctl() interfaces return the interface physical addresses as
part of the interface information. On most systems where this information is not returned, GateD scans the
kernel physical interface list for this information for interfaces with IFF_BROADCAST set, assuming that
their drivers are handled the same as Ethernet drivers. On some systems, such as SunOS 4 and SunOS 5,
system specific interfaces are used to learn this information

The interface physical addresses are useful for IS-IS, for IP protocols, they are not currently used, but may
be in the future.

Reading kernel variables
At startup, GateD reads some special variables out of the kernel. This is usually done with the nlist (or
kvm_nlist) system call, but some systems use different methods.

The variables read include the status of UDP checksum creation and generation, IP forwarding and kernel
version (for informational purposes). On systems where the routing table is read directly from kernel
memory, the root of the hash table or radix tree routing table is read. On systems where interface physical
addresses are not supplied by other means, the root of the interface list is read.

Special route flags
The later BSD based kernel support the special route flags described here.

RTF_REJECT
Instead of forwarding a packet like a normal route, routes with RTF_REJECTcause packets to be
dropped and unreachable messages to be sent to the packet originators. This flag is only valid
on routes pointing at the loopback interface.

RTF_BLACKHOLE
Like the RTF_REJECT flag, routes with RTF_BLACKHOLEcause packets to be dropped, but
unreachable messages are not sent. This flag is only valid on routes pointing at the loopback
interface.

Section 4−−104 − 37 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

RTF_STATIC
When GateD starts, it reads all the routes currently in the kernel forwarding table. Besides
interface routes, it usually marks everything else as a remnant from a previous run of GateD
and deletes it after a few minutes. This means that routes added with the route command will
not be retained after GateD has started.

To fix this the RTF_STATIC flag was added. When the route command is used to install a route
that is not an interface route it sets the RTF_STATIC flag. This signals to GateD that said route
was added by the systems administrator and should be retained.

Kernel Configuration
kernel {

options
[nochange]
[noflushatexit]
[remnantholdtime time]
;

routes number ;
flash

[limit number]
[type interface | interior | all]
;

background
[limit number]
[priority flash | higher | lower]
;

traceoptions trace_options ;
} ;

options option_list
Configure kernel options. The valid options are:

nochange
On systems supporting the routing socket this insures that changes operations will
not be performed, only deletes and adds. This is useful on early versions of the routing
socket code where the change operation was broken.

noflushatexit
During normal shutdown processing GateD deletes all routes from the kernel forward-
ing table that do not have a retain indication. The noflushatexit option prevents
route deletions at shutdown. Instead, routes are changed and added to make sure that
all the routes marked with retain get installed.

This is handy on systems with thousands of routes. Upon startup GateD will notice
which routes are in the kernel forwarding table and not have add them back.

remnantholddimte time
Normally remnant routes read from the kernel forwarding table at startup are timed
out in three minutes or as soon as they are overridden. This option allows the interval
to be configured to a value between zero and 15 minutes. Setting it to zero causes
these routes to be deleted immediately.

routes number
On some systems kernel memory is at a premium. With this parameter a limit can be placed on
the maximum number of routes GateD will install in the kernel. Normally gated
adds/changes/deletes routes in interface/internal/external order. It queues interface routes first,
followed by internal routes, followed by external routes, and processes the queue from the begin-
ning. If a this parameter is specified and the limit is hit, GateD does two scans of the list instead.
On the first scan it does deletes, and also deletes all changed routes, turning the queued changes
into adds. It then rescans the list doing adds in interface/internal/external order until it hits the
limit again. This will tend to favor internal routes over external routes. The default is not to
limit the number of routes in the kernel forwarding table.

flash
When routes change, the process of notifying the protocols is called a flash update. The kernel
forwarding table interface is the first to be notified. Normally a maximum of 20 interface routes

HP-UX Release 11.0: October 1997 − 38 − Section 4−−105

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

may be processed during one flash update. The flash command allows tuning of these parame-
ters.

limit number
Specifies the maximum number of routes which may be processed during one flash
update. The default is 20 . A value of -1 will cause all pending route changes of the
specified type to be processed during the flash update.

type interface | interior | all
Specifies the type of routes that will be processed during a flash update. Interior
specifies that interior routes (See the definition of interior gateway protocols) will also
be installed. All specifies the inclusion of exterior routes (See the definition of exte-
rior gateway protocols) as well. The default is interface which specifies that only
interface routes will be installed during a flash update.

Specifying flash limit -1 all causes all routes to be installed during the flash update; this
mimics the behavior of previous versions of GateD.

background
Since only interface routes are normally installed during a flash update, the remaining routes
are processed in batches in the background, that is, when no routing protocol traffic is being
received. Normally, 120 routes are installed at a time to allow other tasks to be performed and
this background processing is done at lower priority than flash updates the following parameters
allow tuning of these parameters:

limit number
Specifies the number of route which may be processed at during one batch. The
default is 120.

priority flash | higher | lower
Specifies the priority of the processing of batches of kernel updates in relationship to
the flash update processing. The default is lower which means that flash updates are
processed first. To process kernel updates at the same priority as flash updates,
specify flash ; to process them at a lower priority, use lower .

Tracing options
While the kernel interface is not technically a routing protocol, in many cases it is handled as one. The fol-
lowing two symbols make sense when entered from the command line since the code that uses them is exe-
cuted before the trace file is parsed.

symbols
Symbols read from the kernel, by nlist() or similar interface.

iflist
Interface list scan. This option is useful when entered from the command line as the first inter-
face list scan is performed before the configuration file is parsed.

The following tracing options may only be specified in the configuration file. They are not valid from the
command line.

remnants
Routes read from the kernel when GateD starts.

request
Requests by GateD to Add/Delete/Change routes in the kernel forwarding table.

Static Statements
Static statements define the static routes used by GateD. A single static statement can specify any
number routes. The static statements occur after protocol statements and before control statements in
the gated.conf file. Any number of static statements may be specified, each containing any number of
static route definitions. These routes can be overridden by routes with better preference values.

static {
(host host) | default |
(network [(mask mask) | (masklen number)])

gateway gateway_list
[interface interface_list]
[preference preference]
[retain]

Section 4−−106 − 39 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

[reject]
[blackhole]
[noinstall] ;

(network [(mask mask) | (masklen number)])
interface interface
[preference preference]
[retain]
[reject]
[blackhole]
[noinstall] ;

} ;

host host gateway gateway_list
(network [(mask mask) | (masklen number)])
default gateway gateway_list

This is the most general form of the static statement. It defines a static route through one or
more gateways. Static routes are installed when one or more of the gateways listed are avail-
able on directly attached interfaces. If more than one eligible gateways are available, they are
limited by the number of multipath destinations supported (this compile time parameter is
currently almost always one on Unix).

Parameters for static routes are:

interface interface_list
When this parameter is specified, gateways are only considered valid when they are on one
of these interfaces.See the section on interface list specification for the description of the
interface_list.

preference preference
This option selects the preference of this static route. The preference controls how this
route competes with routes from other protocols. The default preference is 60.

retain
Normally gated removes all routes except interface routes from the kernel forwarding table
during a graceful shutdown. The retain option may be used to prevent specific static
routes from being removed. This is useful to insure that some routing is available when
gated is not running.

reject
Instead of forwarding a packet like a normal route, reject routes cause packets to be
dropped and unreachable messages to be sent to the packet originators. Specifying this
option causes this route to be installed as a reject route. Not all kernel forwarding engines
support reject routes.

blackhole
A blackhole route is the same as a reject route except that unreachable messages
are not supported.

noinstall
Normally the route with the lowest preference is installed in the kernel forwarding table
and is the route exported to other protocols. When noinstall is specified on a route, it
will not be installed in the kernel forwarding table when it is active, but it will still be eligi-
ble to be exported to other protocols.

(network [(mask mask) | (masklen number)]) interface interface
This form defines a static interface route which is used for primitive support of multiple network
addresses on one interface. The preference , retain , reject , blackhole and noinstall
options are the same as described above.

Control Statements Overview
Control statements control routes that are imported from routing peers and routes that are exported to
these peers. These are the final statements to be included in the gated.conf file. The control statements are:

• the Import Statement

• the Export Statement

HP-UX Release 11.0: October 1997 − 40 − Section 4−−107

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

• the Aggregate Statement

• the Generate Statement

Route Filtering
Routes are filtered by specifying configuration language that will match a certain set of routes by destina-
tion, or by destination and mask. Among other places, route filters are used on martians , import and
export statements.

The action taken when no match is found is dependent on the context, for instance import and export
route filters assume an all reject ; at the end a list.

A route will match the most specific filter that applies. Specifying more than one filter with the same desti-
nation, mask and modifiers will generate an error.

Filtering syntax
network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
all
default
host host

These are all the possible formats for a route filter. Not all of these formats are available in all places, for
instance the host and default formats are not valid for martians .

In most cases it is possible to specify additional parameters relevant to the context of the filter. For exam-
ple, on a martian statement it is possible to specify the allow keyword, on an import statement you
can specify a preference, and on a export you can specify a metric.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]

Matching usually requires both an address and a mask, although the mask is implied in the
shorthand forms listed below. These three forms vary in how the mask is specified. In the first
form, the mask is implied to be the natural mask of the network. In the second, the mask is
explicitly specified. In the third, the mask is specified by the number of contiguous one bits.

If no additional parameters are specified, any destination that falls in the range given by the net-
work and mask is matched. The mask of the destination is ignored. If a natural network is
specified, the network, any subnets, and any hosts will be match. The two optional modifiers
cause the mask of the destination to be considered also:

exact
This parameter specifies that the mask of the destination must match the supplied
mask exactly. This is used to match a network, but no subnets or hosts of that net-
work.

refines
Specifies that the mask of the destination must be more specified (longer) than the
filter mask. This is used to match subnets and/or hosts of a network, but not the net-
work.

all This entry matches anything. It is equivalent to:

0.0.0.0 mask 0.0.0.0

default
Matches the default route. To match, the address must be the default address and the mask
must be all zeros. This is equivalent to:

0.0.0.0 mask 0.0.0.0 exact

host host
Matches the specific host. To match, the address must exactly match the specified host and the
network mask must be a host mask (all ones). This is equivalent to:

host mask 255.255.255 exact

Section 4−−108 − 41 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Matching AS paths
An AS path is a list of autonomous_systems that routing information has passed through to get to this
router, and an indicator of the origin of the AS path. This information can be used to prefer one path to a
destination network over another. The primary method for doing this with GateD is to specify a list of pat-
terns to be applied to AS paths when importing and exporting routes.

Each autonomous system that a route passed through prepends its AS number to the beginning of the AS
path.

The origin information details the completeness of AS path information. An origin of igp indicates the route
was learned from an interior routing protocol and is most likely complete. An origin of egp indicates the
route was learned from an exterior routing protocol that does not support AS paths (EGP for example) and
the path is most likely not complete. When the path information is definitely not complete, an origin of
incomplete is used.

AS path regular expressions are defined in RFC 1164 section 4.2.

AS path matching syntax
An AS path is matched using the following syntax.

aspath aspath_regexp origin any | ([igp] [egp] [incomplete])

This specifies that an AS matching the aspath_regexp with the specified origin is matched.

AS path regular expressions
Technically, an AS path regular expression is a regular expression with the alphabet being the set of AS
numbers. An AS path regular expression is composed of one or more AS paths expressions. An AS path
expressions is composed of AS path terms and AS path operators.

AS path terms
An AS path term is one of the following three objects:

autonomous_system
.
(aspath_regexp)

where

autonomous_system Any valid autonomous system number, from one through 65534 inclusive.

. Matches any autonomous system number.

(aspath_regexp) Parentheses group subexpressions--an operator, such as * or ? works on a
single element or on a regular expression enclosed in parentheses

AS path operators
An AS path operator is one of the following:

aspath_term {m,n}
aspath_term {m}
aspath_term {m,}
aspath_term *
aspath_term +
aspath_term ?
aspath_term | aspath_term

aspath_term {m,n}
a regular expression followed by {m,n} (where m and n are both non-negative integers and m <= n)
means at least m and at most n repetitions.

aspath_term {m}
a regular expression followed by {m} (where m is a positive integer) means exactly m repetitions.

aspath_term {m,}
a regular expression followed by {m,} (where m is a positive integer) means m or more repetitions.

aspath_term *
an AS path term followed by * means zero or more repetitions. This is shorthand for {0,} .

HP-UX Release 11.0: October 1997 − 42 − Section 4−−109

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

aspath_term +
a regular expression followed by + means one or more repetitions. This is shorthand for {1,} .

aspath_term ?
a regular expression followed by ? means zero or one repetition. This is shorthand for {0,1} .

aspath_term | aspath_term
matches the AS term on the left, or the AS term on the right.

The Import Statement
Importation of routes from routing protocols and installation of the routes in the GateD routing database is
controlled by import statements. The format of an import statement varies depending on the source pro-
tocol.

Specifying preferences
In all cases, one of two keywords may be specified to control how routes compete with other protocols:

restrict
preference preference

restrict
Specifies that the routes are not desired in the routing table. In some cases this means that the
routes are not installed in the routing table. In others it means that they are installed with a
negative preference; this prevents them from becoming active so they will not be installed in the
forwarding table, or exported to other protocols.

preference preference
Specifies the preference value used when comparing this route to other routes from other proto-
cols. The route with the lowest preference available at any given route becomes the active route,
is installed in the forwarding table, and is eligible to be exported to other protocols. The default
preferences are configured by the individual protocols.

Route Filters
All the formats allow route filters as shown below. See the section on route filters for a detailed explanation
of how they work. When no route filtering is specified (when restrict is specified on the first line of a
statement), all routes from the specified source will match that statement. If any filters are specified, only
routes that match the specified filters will be imported. Put differently, if any filters are specified, an all
restrict ; is assumed at the end of the list.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
default
host host

Importing routes from BGP and EGP
import proto bgp | egp autonomoussystem autonomous_system

restrict ;
import proto bgp | egp autonomoussystem autonomous_system

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

import proto bgp aspath aspath_regexp
origin any | ([igp] [egp] [incomplete])
restrict ;

import proto bgp aspath aspath_regexp
origin any | ([igp] [egp] [incomplete])
[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

EGP importation may be controlled by autonomous system. BGP also supports controlling propagation by
the use of an AS path regular expressions, which are documented in the section on Matching AS paths.
Note that EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host
and default route filters are meaningless. BGP version 4 supports the propagation of any destination

Section 4−−110 − 43 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

along with a contiguous network mask.

EGP and BGP both store any routes that were rejected implicitly by not being mentioned in a route filter,
or explicitly with the restrict keyword in the routing table with a negative preference. A negative
preference prevents a route from becoming active, which prevents it from being installed in the forwarding
table, or exported to other protocols. This alleviates the need to break and re-establish a session upon
reconfiguration if importation policy is changed.

Importing routes from an RIP, HELLO and Redirects
import proto rip | hello | redirect

[(interface interface_list) | (gateway gateway_list)]
restrict ;

import proto rip | hello | redirect
[(interface interface_list) | (gateway gateway_list)]
[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

The importation of RIP, HELLO and Redirect routes may be controlled by any of protocol, source interface
and source gateway. If more than one is specified, they are processed from most general (protocol) to most
specific (gateway).

RIP and HELLO do not support the use of preference to choose between routes of the same protocol. That
is left to the protocol metrics. These protocols do not save routes that were rejected since they have short
update intervals.

Importing routes from OSPF
import proto ospfase [tag ospf_tag] restrict ;
import proto ospfase [tag ospf_tag]

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

Due to the nature of OSPF, only the importation of ASE routes may be controlled. OSPF intra- and inter-
area routes are always imported into the gated routing table with a preference of 10. If a tag is specified,
the import clause will only apply to routes with the specified tag.

It is only possible to restrict the importation of OSPF ASE routes when functioning as an AS border router.
This is accomplished by specifying an export ospfase clause. Specification of an empty export clause may
be used to restrict importation of ASEs when no ASEs are being exported.

Like the other interior protocols, preference can not be used to choose between OSPF ASE routes, that is
done by the OSPF costs. Routes that are rejected by policy are stored in the table with a negative prefer-
ence.

The Export Statement
The import statement controls which routes received from other systems are used by GateD, and the
export statement controls which routes are advertised by GateD to other systems. Like the import state-
ment, the syntax of the export statement varies slightly per protocol. The syntax of the export state-
ment is similar to the syntax of the import statement, and the meanings of many of the parameters are
identical. The main difference between the two is that while route importation is just controlled by source
information, route exportation is controlled by both destination and source.

The outer portion of a given export statement specifies the destination of the routing information you are
controlling. The middle portion restricts the sources of importation that you wish to consider. And the
innermost portion is a route filter used to select individual routes.

Specifying metrics
The most specific specification of a metric is the one applied to the route being exported. The values that
may be specified for a metric depend on the destination protocol that is referenced by this export state-
ment.

restrict
metric metric

restrict
Specifies that nothing should be exported. If specified on the destination portion of the export

HP-UX Release 11.0: October 1997 − 44 − Section 4−−111

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

statement, it specifies that nothing at all should be exported to this destination. If specified on
the source portion, it specifies that nothing from this source should be exported to this destina-
tion. If specified as part of a route filter, it specifies that the routes matching that filter should
not be exported.

metric metric
Specifies the metric to be used when exporting to the specified destination.

Route Filters
All the formats allow route filters as shown below. See the section on route filters for a detailed explanation
of how they work. When no route filtering is specified (when restrict is specified on the first line of a
statement), all routes from the specified source will match that statement. If any filters are specified, only
routes that match the specified filters will be exported. Put differently, if any filters are specified, an all
restrict ; is assumed at the end of the list.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
default
host host

Specifying the destination
As mentioned above, the syntax of the export statement varies depending on the protocol it is being
applied to. One thing that applies in all cases is the specification of a metric. All protocols define a default
metric to be used for routes being exported, in most cases this can be overridden at several levels of the
export statement.

The specification of the source of the routing information being exported (the export_list) is described
below.

Exporting to EGP and BGP
export proto bgp | egp as autonomous system

restrict ;
export proto bgp | egp as autonomous system

[metric metric] {
export_list ;

} ;

Exportation to EGP and BGP is controlled by autonomous system, the same policy is applied to all routers
in the AS. EGP metrics range from 0 to 255 inclusive with 0 being the most attractive.

BGP metrics are 16 bit unsigned quantities. They range from 0 to 65535 inclusive with 0 being the most
attractive. While BGP version 4 actually supports 32 bit unsigned quantities, GateD does not yet support
this.

If no export policy is specified, only routes to attached interfaces will be exported. If any policy is specified,
the defaults are overridden; it is necessary to explicitly specify everything that should be exported.

Note that EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host
and default route filters are meaningless. BGP version 4 supports the propagation of any destination
along with a contiguous network mask.

Exporting to RIP and HELLO
export proto rip | hello

[(interface interface_list) | (gateway gateway_list)]
restrict ;

export proto rip | hello
[(interface interface_list) | (gateway gateway_list)]
[metric metric] {
export_list ;

} ;

Exportation to RIP and HELLO is controlled by any of protocol, interface or gateway. If more than one is
specified, they are processed from most general (protocol) to most specific (gateway).

It is not possible to set metrics for exporting RIP routes into RIP, or exporting HELLO routes into HELLO.
Attempts to do this are silently ignored.

Section 4−−112 − 45 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

If no export policy is specified, RIP and interface routes are exported into RIP and HELLO and interface
routes are exported into HELLO. If any policy is specified, the defaults are overridden. It is necessary to
explicitly specify everything that should be exports.

RIP version 1 and HELLO assume that all subnets of the shared network have the same subnet mask so
they are only able to propagate subnets of that network. RIP version 2 removes that restriction and is capa-
ble of propagating all routes when not sending version 1 compatible updates.

To announce routes which specify a next hop of the loopback interface (static and internally generated
default routes) via RIP or HELLO, it is necessary to specify the metric at some level in the export clause.
Just setting a default metric for RIP or HELLO is not sufficient. This is a safeguard to verify that the
announcement is intended.

Exporting to OSPF
export proto osfpase [type 1 | 2] [tag ospf_tag]

restrict ;
export proto osfpase [type 1 | 2] [tag ospf_tag]

[metric metric] {
export_list ;

} ;

It is not possible to create OSPF intra- or inter-area routes by exporting routes from the GateD routing
table into OSPF. It is only possible to export from the GateD routing table into OSPF ASE routes. It is also
not possible to control the propagation of OSPF routes within the OSPF protocol.

There are two types of OSPF ASE routes, type 1 and type 2, see the OSPF protocol configuration for a
detailed explanation of the two types. The default type is specified by the defaults subclause of the ospf
clause. This may be overridden by a specification on the export statement.

OSPF ASE routes also have the provision to carry a tag. This is an arbitrary 32 bit number that can be
used on OSPF routers to filter routing information. See the OSPF protocol configuration for detailed infor-
mation on OSPF tags. The default tag specified by the ospf defaults clause may be overridden by a tag
specified on the export statement.

Specifying the source
The export list specifies export based on the origin of a route and the syntax varies depending on the
source.

Exporting BGP and EGP routes
proto bgp | egp autonomoussystem autonomous_system

restrict ;
proto bgp | egp autonomoussystem autonomous_system

[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

BGP and EGP routes may be specified by source autonomous system. All routes may be exported by as
path, see below for more information.

Exporting RIP and HELLO routes
proto rip | hello

[(interface interface_list) | (gateway gateway_list)]
restrict ;

proto rip | hello
[(interface interface_list) | (gateway gateway_list)]
[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

RIP and HELLO routes may be exported by protocol, source interface and/or source gateway.

Exporting OSPF routes
proto ospf | ospfase restrict ;
proto ospf | ospfase [metric metric] {

route_filter [restrict | (metric metric)] ;
} ;

HP-UX Release 11.0: October 1997 − 46 − Section 4−−113

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Both OSPF, and OSPF ASE routes may be exported into other protocols. See below for information on
exporting by tag.

Exporting routes from non-routing protocols
Non-routing with interface

proto direct | static | kernel
[(interface interface_list)]
restrict ;

proto direct | static | kernel
[(interface interface_list)]
[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

These protocols may be exported by protocol, or by the interface of the next hop. These protocols are:

direct
Routes to directly attached interfaces.

static
Static routes specified in a static clause.

kernel
On systems with the routing socket, routes learned from the routing socket are installed in the
GateD routing table with a protocol of kernel. These routes may be exported by referencing this
protocol. This is useful when it is desirable to have a script install routes with the route com-
mand and propagate them to other routing protocols.

Non-routing by protocol
proto default | aggregate

restrict ;
proto default | aggregate

[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

These protocols may only be referenced by protocol.

default
Refers to routes created by the gendefault option. It is recommended that route generation be
used instead.

aggregate
Refers to routes synthesized from other routes when the aggregate and generate statements
are used. See the section on Route Aggregation for more information.

Exporting by AS path
proto proto | all aspath aspath_regexp

origin any | ([igp] [egp] [incomplete])
restrict ;

proto proto | all aspath aspath_regexp
origin any | ([igp] [egp] [incomplete])
[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

When BGP is configured, all routes are assigned an AS path when they are added to the routing table. For
all interior routes this AS path specifies IGP as the origin and no ASes in the AS path (the current AS is
added when the route is exported). For EGP routes this AS path specifies EGP as the origin and the source
AS as the AS path. For BGP routes, the AS path is stored as learned from BGP.

AS path regular expressions are documented in the section on Matching AS paths.

Exporting by route Tag
proto proto | all tag tag restrict ;
proto proto | all tag tag

[metric metric] {

Section 4−−114 − 47 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

route_filter [restrict | (metric metric)] ;
} ;

Both OSPF and RIP version 2 currently support tags, all other protocols always have a tag of zero. The
source of exported routes may be selected based on this tag. This is useful when routes are classified by tag
when the are exported into a given routing protocol.

Route Aggregation
Route aggregation is a method of generating a more general route given the presence of a specific route. It
is used, for example, at an autonomous system border to generate a route to a network to be advertised via
EGP given the presence of one or more subnets of that network learned via RIP. Older versions of GateD
automatically performed this function, generating an aggregate route to a natural network (using the old
Class A, B and C concept) given an interface to a subnet of that natural network. However that was not
always the correct thing to do, and with the advent of classless interdomain routing it is even more fre-
quently the wrong thing to do, so aggregation must be explicitly configured. No aggregation is performed
unless explicitly requested in an aggregate statement.

Route aggregation is also used by regional and national networks to reduce the amount of routing informa-
tion passed around. With careful allocation of network addresses to clients, regional networks can just
announce one route to regional networks instead of hundreds.

Aggregate routes are not actually used for packet forwarding by the originator of the aggregate route, only
by the receiver (if it wishes). A router receiving a packet which does not match one of the component routes
which led to the generation of an aggregate route is supposed to respond with an ICMP network unreach-
able message. This is to prevent packets for unknown component routes from following a default route into
another network where they would be forwarded back to the border router, and around and around again
and again, until their TTL expires. Sending an unreachable message for a missing piece of an aggregate is
only possible on systems with support for reject routes.

A slight variation of aggregation is the generation of a route based on the existence of certain conditions.
This is sometimes known as the route of last resort. This route inherits the next hops and aspath from the
contributor specified with the lowest (most favorable) preference. The most common usage for this is to gen-
erate a default based on the presence of a route from a peer on a neighboring backbone.

Aggregation and Generation syntax
aggregate default

| (network [(mask mask) | (masklen number)])
[preference preference] [brief] {
proto [all | direct | static | kernel | aggregate | proto]

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

restrict ;
proto [all | direct | static | kernel | aggregate | proto]

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;
} ;

generate default
| (network [(mask mask) | (masklen number)])
[preference preference] {

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

restrict ;
proto [all | direct | static | kernel | aggregate | proto]

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;
} ;

HP-UX Release 11.0: October 1997 − 48 − Section 4−−115

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Routes that match the route filters are called contributing routes. They are ordered according to the aggre-
gation preference that applies to them. If there are more than one contributing routes with the same aggre-
gating preference, the preferences of the route are used to order the routes. The preference of the aggre-
gate route will be that of the contributing route with the lowest aggregate preference.

preference preference
Specifies the preference to assign to the resulting aggregate route. The default preference is 130.

brief
Used to specify that the AS path should be truncated to the longest common AS path. The
default is to build an AS path consisting of SETs and SEQUENCEs of all contributing AS paths.

proto proto
In addition to the special protocols listed, the contributing protocol may be chosen from among
any of the ones supported (and currently configured into) GateD.

as autonomous_system
Restrict selection of routes to those learned from the specified autonomous system.

tag tag
Restrict selection of routes to those with the specified tag.

aspath aspath_regexp
Restrict selection of routes to those that match the specified AS path.

restrict
Indicates that these routes are not to be considered as contributors of the specified aggregate.
The specified protocol may be any of the protocols supported by GateD.

route_filter
See below.

A route may only contribute to an aggregate route which is more general than itself; it must match the
aggregate under its mask. Any given route may only contribute to one aggregate route, which will be the
most specific configured, but an aggregate route may contribute to a more general aggregate.

Route Filters
All the formats allow route filters as shown below. See the section on route filters for a detailed explanation
of how they work. When no route filtering is specified (when restrict is specified on the first line of a
statement), all routes from the specified source will match that statement. If any filters are specified, only
routes that match the specified filters will be considered as contributors. Put differently, if any filters are
specified, an all restrict ; is assumed at the end of the list.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
default
host host

Glossary of Terms
Terms used in descriptions throughout this document are defined below:

adjacency
A relationship formed between selected neighboring routers for the purpose of exchanging routing
information. Not every pair of neighboring routers becomes adjacent.

autonomous system
A set of routers under a single technical administration, using an interior gateway protocol and com-
mon metrics to route packets within the AS, and using an exterior gateway protocol to route packets
to other ASs. Since this classic definition was developed, it has become common for a single AS to use
several interior gateway protocols and sometimes several sets of metrics within an AS. The use of the
term Autonomous System stresses that even when multiple igps and metrics are used, the adminis-
tration of an AS appears to other ASs to have a single coherent interior routing plan and presents a
consistent picture of what networks are reachable through it. The AS is represented by a number
between 1 and 65534, assigned by the Internet Assigned Numbers Authority.

BGP
Border Gateway Protocol

One of a class of exterior gateway protocols, described in more detail in the BGP section of the

Section 4−−116 − 49 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

Protocol Overview.

cost An OSPF metric. See metric.

delay
A HELLO metric. Valid values are from zero to 30000 inclusive. The value of 30000 is the maximum
metric and means unreachable. See metric.

designated router
OSPF: Each multiaccess network that has at least two attached routers as a designated router. The
designated router generates a link state advertisement for the multiaccess network and assists in run-
ning the protocol. The designated router is elected by the HELLO protocol.

destination
Any network or any host.

distance
An EGP metric. See metric. Valid values are from zero to 255 inclusive.

egp
exterior gateway protocol
exterior routing protocol

A class of routing protocols used to exchange routing information within an autonomous system. A
detailed explanation of exterior gateway protocols is available in the Protocol Overview.

EGP
Exterior Gateway Protocol

One of a class of exterior gateway protocols, described in more detail in the EGP section of the Proto-
col Overview.

gateway
An intermediate destination by which packets are delivered to their ultimate destination. A host
address of another router that is directly reachable via an attached network. As with any host address
it may be specified symbolically.

gateway_list
A list of one or more gateway s separated by white space.

HELLO
One of a class of interior gateway protocols, described in more detail in the HELLO section of the Pro-
tocol Overview.

host
The IP address of any host. Usually specified as a dotted quad, four values in the range of 0 to 255
inclusive separated by dots (.). For example 132.236.199.63 or 10.0.0.51 . It may also be
specified as an eight digit hexidecimal string preceded by 0x . For example 0x???????? or
0x0a000043 . Finally, if options noresolv is not specified, a symbolic hostname. For example
gated.cornell.edu or nic.ddn.mil . The numeric forms are much preferred over the symbolic
form.

interface
The host address of an attached interface. This is the address of a broadcast, nbma or loopback
interface and the remote address of a point-to-point interface. As with any host address it may be
specified symbolically.

interface
The connection between a router and one of its attached networks. A physical interface may be
specified by a single IP address, domain name, or interface name. (Unless the network is an unnum-
bered point-to-point network.) Multiple levels of reference in the configuration language allow
identification of interfaces using wildcard, interface type name, or delete word address. Be careful
with the use of interface names as future Unix operating systems may allow more than one address
per interface. Dynamic interfaces can be added or deleted and indicated as up or down as well as
changes to address, netmask and metric parameters.

igp
interior gateway protocol
interior routing protocol

One of a class of routing protocols used to exchange routing information within an autonomous sys-
tem. A detailed explanation of interior gateway protocols is available in the Protocol Overview.

HP-UX Release 11.0: October 1997 − 50 − Section 4−−117

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

interface_list
A list of one or more interface names including wildcard names (names without a number) and names
which may specify more than one interface or address, or the token "all" for all interfaces. See the
section on interface lists for more information.

IS-IS
One of a class of interior gateway protocols.

local_address
The host address of an attached interface. This is the address of a broadcast, nbma or loopback
interface and the local address of a point-to-point interface. As with any host address it may be
specified symbolically.

mask
A means of subdividing networks using address modification. A mask is a dotted quad specifying
which bits of the destination are significant. Except when used in a route filter, GateD only supports
contiguous masks.

mask length
The number of significant bits in the mask.

metric
One of the units used to help a system determine the best route. Metrics may be based on hop count,
routing delay, or an arbitrary value set by the administrator depending on the type of routing proto-
col. Routing metrics may influence the value of assigned internal preferences. (See preference.)

This sample table shows the range of possible values for each routing protocol metric and the value
used by each protocol (See Protocol Overview.) to reach a destination.

SAMPLE ROUTING PROTOCOL METRICS
Protocol Metric Represents Range Unreachable
-------- ----------------- ----- -----------
RIP distance (hop-count) 0-15 16
HELLO delay (milliseconds) 0-29999 30000
OSPF cost of path 0-????? Delete
ISIS cost of path 0-254 Delete
EGP distance (unused) 0-65535 255
BGP unspecified 0-65534 65535

multiaccess networks
Those physical networks that support the attachment of multiple (more than two) routers. Each pair
of routers on such a network is assumed to be able to communicate directly.

natural mask
The format of an IP address contains the network address and the host address. The natural mask is
a default value applied to the 3 class addresses:
0xff000000 for class A (network.host.host.host),
0xffff0000 for class B (network.network.host.host) and
0xffffff00 for class C (network.network.network.host).

neighbor
Another router which with implicit or explicit communication is established by a routing protocol.
Neighbors are usually on a shared network, but not always. This term is mostly used in OSPF and
EGP. Usually synonymous with peer.

neighboring routers
Two routers that have interfaces to a common network. On multiaccess networks, routers are dynami-
cally discovered by the OSPF HELLO protocol.

network
Any packet-switched network. A network may be specified by its IP address or network name. The
host bits in a network specification must be zero. Default may be used to specify the default network
(0.0.0.0).

network
The IP address of a network. Usually specified as a dotted quad, one to four values in the range of 0 to
255 inclusive separated by dots (.). For example 132.236.199 , 132.236 or 10 . It may also be
specified as a hexidecimal string preceded by 0x with an even number of digits between two and
eight. For example 0x?????? , 0x???? or 0x0a . Also allowed is the symbolic value default which

Section 4−−118 − 51 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

has the distinguished value 0.0.0.0 , the default network. If options noresolv is not specified, a
symbolic network name can be used, for example nr-tech-prod , cornellu-net and arpanet .
The numeric forms are much preferred over the symbolic form.

number
A positive integer.

OSPF
Open Shortest Path First

One of a class of interior gateway protocols, described in more detail in the OSPF section of the Proto-
col Overview.

ospf_area
peer

Another router which with implicit or explicit communication is established by a routing protocol.
Peers are usually on a shared network, but not always. This term is mostly used by BGP. Usually
synonymous with neighbor.

port
A UDP or TCP port number. Valid values are from 1 through 65535 inclusive.

preference
A preference is a value between 0 (zero) and 255 used to select between many routes to the same
destination. The route with the best (numerically lowest) preference is as the active route. The active
route is the one installed in the kernel forwarding table and exported to other protocols. Preference
zero is usually reserved for routes to directly attached interfaces. A default preference is assigned to
each source from which GateD receives routes. (See Preference.)

prefix
A contiguous mask covering the most significant bits of an address. The prefix length specifies how
many bits are covered.

QoS
quality of service

The OSI equivalent of TOS.

RIP
Routing Information Protocol

One of a class of interior gateway protocols, described in more detail in the RIP section of the Protocol
Overview.

router id
A 32-bit number assigned to each router running the OSPF protocol. This number uniquely identifies
the router within the autonomous system.

router_id
An IP address used as unique identifier assigned to represent a specific router. This is usually the
address of an attached interface.

RIB
routing information base
routing database
routing table

The repository of all of the GateD retained routing information, used to make decisions and as a
source for routing information which is propagated.

simplex
An interface may be marked as simplex either by the kernel, or by interface configuration. A simplex
interface is an interface on a broadcast media that is not capable of receiving packets it broadcasts.

GateD takes advantage of interfaces that are capable of receiving their own broadcast packets to mon-
itor whether an interface appears to be functioning properly.

time
A time value, usually a time interval. It may be specified in any one of the following forms:

number A non-negative decimal number of seconds. For example, 27 , 60 or
3600 .

HP-UX Release 11.0: October 1997 − 52 − Section 4−−119

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

number:number A non-negative decimal number of minutes followed by a seconds
value in the range of zero to 59 inclusive. For example, 0:27 , 1:00
or 60:00 .

number:number:number A non-negative decimal number of hours followed by a minutes value
in the range of zero to 59 inclusive followed by a seconds value in the
range of zero to 59 inclusive. For example, 0:00:27 , 0:01:00 or
1:00:00 .

time to live
ttl The Time To Live (TTL) of an IP packet. Valid values are from one (1) through 255 inclusive.

TOS
type of service

The type of service is for internet service quality selection. The type of service is specified along the
abstract parameters precedence, delay, throughput, reliability, and cost. These abstract parameters
are to be mapped into the actual service parameters of the particular networks the datagram
traverses. The vast majority of IP traffic today uses the default type of service.

WARNINGS
gated contains provisions for BGP protocol, but it is not officially supported by HP at the present time.
The route aggregation and generation statements which generate a more general route from compressing
the specific routes through the explicit configuration are not supported in this release.

AUTHORS
See gated(1M).

SEE ALSO
RFC 827: E. Rosen, Exterior Gateway Protocol EGP

RFC 891: D. Mills, DCN local-network protocols

RFC 904: D. Mills, Exterior Gateway Protocol formal specification

RFC 1058: C. Hedrick, Routing Information Protocol

RFC 1105: K. Lougheed, Y. Rekhter, Border Gateway Protocol BGP

RFC 1163: K. Lougheed, Y. Rekhter, A Border Gateway Protocol (BGP)

RFC 1164: J. Honig, D. Katz, M. Mathis, Y. Rekhter, J. Yu, Application of the Border Gateway Proto-
col in the Internet

RFC 1227: M. Rose, SNMP MUX Protocol and MIB.

RFC 1245: J. Moy, OSPF Protocol Analysis

RFC 1246: J. Moy, Experience with the OSPF Protocol

RFC 1253: F. Baker, R. Coltun, OSPF Version 2 Management Information Base

RFC 1256: S. Deering, ICMP Router Discovery Messages

RFC 1265: Y. Rekhter, BGP Protocol Analysis

RFC 1266: Y. Rekhter, Experience with the BGP Protocol

RFC 1267: K. Lougheed, Y. Rekhter, A Border Gateway Protocol 3 (BGP-3)

RFC 1268: P. Gross, Y. Rekhter, Application of the Border Gateway Protocol in the Internet

RFC 1269: J. Burruss, S. Willis, Definitions of Managed Objects for the Border Gateway Protocol (Ver-
sion 3)

RFC 1321: R. Rivest, The MD5 Message-Digest Algorithm

RFC 1370: Internet Architecture Board Applicability Statement for OSPF

RFC 1388: G. Malkin, RIP Version 2 Carrying Additional Information

RFC 1397: D. Haskin, Default Route Advertisement In BGP2 And BGP3 Versions Of The Border Gate-
way Protocol

Section 4−−120 − 53 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gated.conf(4) gated.conf(4)

RFC 1403: K. Varadhan, BGP OSPF Interaction

RFC 1583: J. Moy, OSPF Version 2

HP-UX Release 11.0: October 1997 − 54 − Section 4−−121

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

gettydefs(4) gettydefs(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty to set up the speed and terminal set-
tings for a line (see getty(1M)). It supplies information on what the login prompt should look like. It
also supplies the speed to try next if the user indicates the current speed is not correct by typing a Break
character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted characters of the form \b , \n ,
\c , etc., as well as \ nnn, where nnn is the octal value of the desired character. The various fields are:

label This is the string against which getty tries to match its second argument. It is often the
speed, such as 1200 , at which the terminal is supposed to run, but it need not be (see
below).

initial-flags These flags are the initial ioctl() settings to which the terminal is to be set if a termi-
nal type is not specified to getty (see ioctl(2)). The flags that getty understands are
the same as the ones listed in /usr/include/sys/termio.h (see termio(7)). Nor-
mally only the speed flag is required in the initial-flags. getty automatically sets the
terminal to raw input mode and takes care of most of the other flags. The initial-flag set-
tings remain in effect until getty executes login .

final-flags These flags take the same values as the initial-flags and are set just before getty exe-
cutes login . The speed flag is again required. The composite flag SANEtakes care of
most of the other flags that need to be set so that the processor and terminal are communi-
cating in a rational fashion. The other two commonly specified final-flags are TAB3, so
that tabs are sent to the terminal as spaces, and HUPCL, so that the line is hung up on the
final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above fields where white space
is ignored (a space, tab or new-line), they are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated by the user typing a Break char-
acter, getty searches for the entry with next-label as its label field and set up the termi-
nal for those settings. Usually, a series of speeds are linked together in this fashion, into a
closed set. For example, 2400 linked to 1200 , which in turn is linked to 300 , which
finally is linked to 2400 .

If getty is called without a second argument, the first entry of /etc/gettydefs is used, thus mak-
ing the first entry of /etc/gettydefs the default entry. It is also used if getty cannot find the
specified label. If /etc/gettydefs itself is missing, there is one entry built into the command which
brings up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs , it be run through getty
with the check option to ensure that there are no errors.

EXAMPLES
The following two lines show an example of 300/1200 baud toggle, which is useful for dial-up ports:

1200# B1200 HUPCL # B1200 SANE IXANY IXANY TAB3 #login: #300
300# B300 HUPCL # B300 SANE IXANY IXANY TAB3 #login: #1200

The following line shows a typical 9600 baud entry for a hard-wired connection:

9600# B9600 # B9600 SANE IXANY IXANY ECHOE TAB3 #login: #9600

FILES
/etc/gettydefs

SEE ALSO
getty(1M), login(1), ioctl(2), termio(7).

Section 4−−122 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

group(4) group(4)

NAME
group, logingroup - group file, grp.h

DESCRIPTION
group contains for each group the following information:

• group name

• encrypted password

• numerical group ID

• comma-separated list of all users allowed in the group

This is an ASCII file. Fields are separated by colons, and each group is separated from the next by a new-
line. No spaces should separate the fields or parts of fields on any line. If the password field is null, no
password is associated with the group.

There are two files of this form in the system, /etc/group and /etc/logingroup . The file
/etc/group exists to supply names for each group, and to support changing groups by means of the
newgrp utility (see newgrp(1)). /etc/logingroup provides a default group access list for each user
via login and initgroups() (see login(1) and initgroups(3C)).

The real and effective group ID set up by login for each user is defined in /etc/passwd (see
passwd(4)). If /etc/logingroup is empty or non-existent, the default group access list is empty. If
/etc/logingroup and /etc/group are links to the same file, the default access list includes the
entire set of groups associated with the user. The group name and password fields in
/etc/logingroup are never used; they are included only to give the two files a uniform format, allow-
ing them to be linked together.

All group IDs used in /etc/logingroup or /etc/passwd should be defined in /etc/group . No
user should be associated with more than NGROUPS(see setgroups(2)) groups in /etc/logingroup .

These files reside in directory /etc . Because of the encrypted passwords, these files can and do have gen-
eral read permission and can be used, for example, to map numerical group IDs to names.

The group structure is defined in <grp.h > and includes the following members:

char *gr_name; /* the name of the group */
char *gr_passwd; /* the encrypted group password */
gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* null-terminated array of pointers

to member names */

NETWORKING FEATURES
NIS

The /etc/group file can contain a line beginning with a plus (+), which means to incorporate entries
from Network Information Services (NIS). There are two styles of + entries: + means to insert the entire
contents of NIS group file at that point, and +name means to insert the entry (if any) for name from NIS at
that point. If a + entry has a non-null password or group member field, the contents of that field overide
what is contained in NIS. The numerical group ID field cannot be overridden.

A group file can also have a line beginning with a minus (-), these entries are used to disallow group
entries. There is only one style of - entry; an entry that consists of - name means to disallow any subse-
quent entry (if any) for name. These entries are disallowed regardless of whether the subsequent entry
comes from the NIS or the local group file.

WARNINGS
Group files must not contain any blank lines. Blank lines can cause unpredictable behavior in system
administration software that uses these files.

Group ID (gid) 9 is reserved for the Pascal Language operating system and the BASIC Language operating
system. These are operating systems for Series 300/400 computers that can co-exist with HP-UX on the
same disk. Using this gid for other purposes can inhibit file transfer and sharing.

The length of each line in /etc/group is limited to LINE_MAX, as defined in <limits.h >. Because
of this limit, users should not be listed in their primary group - only in their additional groups.

If /etc/group is linked to /etc/logingroup , group membership for a user is managed by NIS, and
no NIS server is able to respond, that user cannot log in until a server does respond.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−123

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

g

group(4) group(4)

There is no single tool available to completely ensure that /etc/passwd , /etc/group , and
/etc/logingroup are compatible. However, pwck and grpck can be used to simplify the task (see
pwck(1M)).

There is no tool for setting group passwords in /etc/group .

DEPENDENCIES
NIS

EXAMPLES
Here is a sample /etc/group file:

other:*:1:root,daemon,uucp,who,date,sync
-oldproj
bin:*:2:root,bin,daemon,lp
+myproject:::bill,steve
+:

Group other has a gid of 1 and members root , daemon, uucp , who, date , and sync . The group
oldproj is ignored since it appears after the entry -oldproj . Also, the group myproject has
members bill and steve , and the password and group ID of the NIS entry for the group myproject .
All groups listed in the NIS are pulled in and placed after the entry for myproject .

WARNINGS
The plus (+) and minus (-) features are part of NIS. Therefore if NIS is not installed, these features cannot
work.

FILES
/etc/group
/etc/logingroup

SEE ALSO
groups(1), newgrp(1), passwd(1), setgroups(2), crypt(3C), getgrent(3C), initgroups(3C), passwd(4).

STANDARDS CONFORMANCE
group : SVID2, SVID3, XPG2

Section 4−−124 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

h

hosts(4) hosts(4)

NAME
hosts - host name data base

DESCRIPTION
The file /etc/hosts associates Internet (IP) addresses with official host names and aliases. This allows
a user to refer to a host by a symbolic name instead of an Internet address.

Note: This file must contain all addresses for local interfaces that ifconfig needs at boot time (see
ifconfig(1M)). When using the name server (see named(1M)), or Network Information Service (see
ypserv (1M)), this file often serves as a backup when the server is not running. In such circumstances, it is
a common practice for /etc/hosts to contain a few addresses of machines on the local network.

/etc/hosts should contain a single line for each host with the following information:

<internet address> <official host name> <aliases>

Aliases are other names by which a host is known. They can substitute for the official host name in most
commands. For example:

192.45.36.5 hpdxsg testhost

In this example, users can use remote login on hpdxsg by using the command:

rlogin testhost

instead of

rlogin hpdxsg

If your system is in a domain naming environment, an official host name consists of the full domain
extended host name. For example:

192.45.36.5 hpdxsg.xsg.hp.com hpdxsg testhost

A line cannot start with a blank (space or tab character). Items are separated by any number or combina-
tion of space or tab characters (blanks). A # character indicates the beginning of a comment. Characters
from the # to the end of the line are not interpreted by routines that search the file. Trailing blanks are
allowed at the end of a line.

For the Internet, this file is normally created from the official host database maintained at the Network
Information Control Center (NIC), although local changes may be required to bring it up to date with
respect to unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional Internet dot notation using the inet_addr() rou-
tine from the Internet address manipulation library (see inet(3N)). Host names can contain any printable
character other than a white space, newline, or comment character.

EXAMPLES
See /etc/hosts .

AUTHOR
hosts was developed by the University of California, Berkeley.

SEE ALSO
gethostent(3N), inet(3N), nsswitch.conf(4).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−125

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

h

hosts.equiv(4) hosts.equiv(4)

NAME
hosts.equiv, .rhosts - security files authorizing access by remote hosts and users on local host

DESCRIPTION
The /etc/hosts.equiv file and files named .rhosts found in users’ home directories specify remote
hosts and users that are "equivalent" to the local host or user. Users from equivalent remote hosts are per-
mitted to access a local account using rcp or remsh or to rlogin to the local account without supplying
a password (see rcp(1), remsh(1), and rlogin(1)). The security provided by hosts.equiv is implemented
by the ruserok() library routine, (see rcmd(3N)).

In this description, hostequiv means either the system /etc/hosts.equiv file or the user .rhosts
file. Note that .rhosts must be owned by the user in whose home directory it is found and it must not be
a symbolic link. The /etc/hosts.equiv file defines system-wide equivalency, whereas a user’s
.rhosts file defines equivalency between the local user and any remote users to whom the local user
chooses to allow or deny access.

An entry in the hostequiv file is a single line (no continuations) in the format:

[hostname [username]] [#comment]

Thus, it can be:

• A blank line.

• A comment line, beginning with a #.

• A host name, optionally followed by a comment.

• A host name and user name, optionally followed by a comment.

A host or user name is a string of printable characters, excluding whitespace, newlines, and #.

Names are separated by whitespace.

For a user to be granted access, both the remote host name and the user name must "match" an entry in
hostequiv. When a request is made for access, the /etc/hosts.equiv file is searched first. If a match
is found, access is permitted. If no match is found, the .rhosts file is searched, if one exists in the local
user’s home directory. If the local user is a superuser, /etc/hosts.equiv is ignored.

A host name or user name must match the corresponding field entry in hostequiv in one of the following
ways:

Literal match A host name in hostequiv can literally match the official host name (not an
alias) of the remote host.

A user name in hostequiv can literally match the remote user name. For a
user name to have literal match in the /etc/hosts.equiv file, the
remote user name must literally match the local user name.

Domain-extended match The remote host name to be compared with entries in hostequiv is typically
the official host name returned by gethostbyaddr() (see
gethostent(3N)). In a domain-naming environment, this is a domain-
qualified name. If a host name in hostequiv does not literally match the
remote host name, the host name in hostequiv with the local domain name
appended may match the remote host name.

- name If the host name in hostequiv is of this form, and if name literally matches
the remote host name or if name with the local domain name appended
matches the remote host name, access is denied regardless of the user
name.

If the user name in hostequiv is of this form, and name literally matches
the remote user name, access is denied.

Even if access is denied in this way by /etc/hosts.equiv , access can
still be allowed by .rhosts .

+ Any remote host name matches the host name + in hostequiv.

Any remote user matches the user name +.

+@netgroup_name netgroup_name is the name of a network group as defined in netgroup(4).
If the host name in hostequiv is of this form, the remote host name (only)

Section 4−−126 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

h

hosts.equiv(4) hosts.equiv(4)

must match the specified network group according to the rules defined in
netgroup(4) in order for the host name to match.

Similarly, if the user name in hostequiv is of this form, the remote user
name (only) must match the specified network group in order for the user
name to match.

-@netgroup_name netgroup_name is the name of a network group as defined in netgroup(4).
If the host name in hostequiv is of this form, and if the remote host name
(only) matches the specified network group according to the rules defined in
netgroup(4), access is denied.

Similarly, if the user name in hostequiv is of this form, and if the remote
user name (only) matches the specified network group, access is denied.

Even if access is denied in this way by /etc/hosts.equiv , access can
still be allowed by .rhosts .

EXAMPLES
1. /etc/hosts.equiv on hostA contains the line:

hostB

and /etc/hosts.equiv on hostB is empty. User chm on hostB can use remsh to hostA , or
rlogin to account chm on hostA without being prompted for a password. chm will, however, be
prompted for a password with rlogin , or denied access with remsh , from hostA to hostB .

If .rhosts in the home directory of user chm on hostB contains:

hostA

or

hostA chm

then user chm can access hostB from hostA .

2. hostA is in the domain arg.bob.com . hostB and hostC are in the domain oink.bob.com .
.rhosts in the home directory of user chm on hostB contains:

hostC
hostA

User chm can access hostB from hostC , since hostC.oink.bob.com matches hostC with
hostB ’s local domain oink.bob.com appended. But user chm from hostA cannot access
hostB , since hostA.arg.bob.com does not match hostA.oink.bob.com . In order for user
chm to be able to access hostB from hostA , chm’s .rhosts file on hostB must contain:

hostA.arg.bob.com

since hostA is in a different domain.

3. .rhosts in the home directory of user chm on hostA contains:

hostB root

/etc/hosts.equiv on hostB contains the line:

hostA

However, there is no file .rhosts in the home directory of user chm on hostB . The user root on
hostB can rlogin to account chm on hostA without being prompted for a password, but root on
hostA cannot rlogin to account chm on hostB .

4. .rhosts in the home directory of user chm on hostA contains:

+
-hostB
+ root

User chm from any host is allowed to access account chm on hostA . User root from any host
except hostB can access account chm on hostA .

5. /etc/hosts.equiv on hostA contains the lines:

HP-UX Release 11.0: October 1997 − 2 − Section 4−−127

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

h

hosts.equiv(4) hosts.equiv(4)

+ -chm
hostB

Any user from hostB except chm is allowed to access an account on hostA with the same user
name. However, if .rhosts in the home directory of user chm on hostA contains:

hostB

then user chm from hostB can access account chm on hostA .

6. /etc/hosts.equiv on hostA contains the line:

+@example_group

The network group example_group consists of:

example_group (, ,EXAMPLE_DOMAIN)

If hostA is not running Network Information Service (NIS), user chm on any host can access account
chm on hostA .

If hostA is running Network Information Service (NIS), and hostA is in the domain
EXAMPLE_DOMAIN, user chm on any host, whether in EXAMPLE_DOMAINor not, can access
account chm on hostA .

However, if .rhosts in the home directory of user chm on hostA contains the line:

-@example_group

and hostA is either not running Network Information Service (NIS) or is in domain
EXAMPLE_DOMAIN, no user chm on any host can access the account chm on hostA . If hostA is
running Network Information Service (NIS) but is not in the domain EXAMPLE_DOMAIN, this line
has no effect.

7. /etc/hosts.equiv on hostA contains the line:

-@example_group

The network group example_group consists of:

example_group (hostB, ,)

All users on hostB are denied access to hostA .

However, if .rhosts in the home directory of a user on hostA contains any of the following lines:

+@example_group chm
hostB chm
+ chm

then user chm on hostB can access that account on hostA .

WARNINGS
For security purposes, the files /etc/hosts.equiv and .rhosts should exist and be readable and
writable only by the owner, even if they are empty.

Care must be exercised when creating the /etc/hosts.equiv

The -l option to remshd and rlogind prevents any authentication based on .rhosts files for users
other than a superuser.

AUTHOR
hosts.equiv was developed by the University of California, Berkeley.

The +, - name, +@netgroup_name, and -@netgroup_name, extensions were developed by Sun Microsys-
tems, Inc.

FILES
$HOME/.rhosts
/etc/hosts.equiv

SEE ALSO
rcp(1), rdist(1), remsh(1), rlogin(1), remshd(1M), rlogind(1M), gethostent(3N), rcmd(3N), netgroup(4).

Section 4−−128 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inetd.conf(4) inetd.conf(4)

NAME
inetd.conf - configuration file for inetd

DESCRIPTION
On invocation, the inetd daemon reads its configuration information from the /etc/inetd.conf
configuration file, and possibly at some later time in response to a SIGHUPsignal (see inetd(1M)).

Each line in the file is treated either as a comment or as configuration information for a given service.
Comments are denoted by a # at the beginning of a line. Noncomment lines contain seven or nine required
fields, depending on the service name specified in the first field. Fields are separated by tabs and/or spaces.
A line can be continued if it terminates with a \ . Each configuration line in the file contains the following
fields in the order indicated:

• service name

• socket type

• protocol

• wait nowait

• user

• server program

• program number (NFS RPC services only)

• version number (NFS RPC services only)

• server program arguments

Fields are constructed as follows:

service name rpc if the server is RPC-based (NFS); otherwise, the name of a valid service in
file /etc/services . For example, shell for the remsh service (see
remsh(1)), login for the rlogin service (see rlogin(1)), and telnet for the
telnet service (see telnet(1)).

socket type stream , dgram , or xti , depending on whether the server socket is a stream
or a datagram socket, or intended for a program built using the XTI API.

protocol Must be a valid protocol as given in /etc/protocols ; for example, tcp or
udp . If XTI is specified in the socket type field, a full pathname to a device may
be specified here, such as /dev/tcp ; otherwise, the protocol specified here will
be appended to /dev/ . For example, if tcp is specified for an XTI application,
the path /dev/tcp will be used.

wait nowait Specifies whether inetd should act as a single- or multi-threaded server.

wait Instructs inetd to start one server to handle an incoming request,
and cease listening for new requests for the same service until the
server started exits.

nowait Instructs inetd to start one server for each incoming request.

Most UDP-based services use wait for this field, while TCP-based services use
nowait .

user User ID to be used when the server is running.

server program Absolute path name of the program executed by inetd when it finds a request
on the server’s socket.

server program arguments
Arguments to the server program. The same as in normal use, starting with
argv[0] , which is the name of the program.

If service name is rpc (NFS RPC services), two extra fields are required. They must appear between the
server program field and the server program arguments field:

program number Defines a particular service grouping and is unique.

version number Version supported by the RPC service. This number can be a single value, or a
range, if the program handles multiple versions; for example, 1 or 1-3 . Ranges

HP-UX Release 11.0: October 1997 − 1 − Section 4−−129

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inetd.conf(4) inetd.conf(4)

are separated by a hyphen (-). Version numbers allow RPC protocols to be
extended and modified, and make it possible for old and new protocols to share
the same server process.

Built-in inetd Services
The inetd daemon provides several "trivial" services internally by use of built-in routines (see inetd(1M)
for a list of these services). To configure an internal service, specify internal as the server program
name, and omit the server program arguments field.

EXAMPLES
Configure the shell service to use TCP protocol, and run the server remshd as user root .

shell stream tcp nowait root /usr/lbin/remshd remshd

Configure the FTP server to timeout an inactive session after 75 seconds.

ftp stream tcp nowait root /usr/lbin/ftpd ftpd -t75

Configure an RPC-based service. Note that the service name field contains rpc and two more fields are
used: the program number (100008) and version number (1).

rpc dgram udp wait root /usr/lib/netsvc/rwall/rpc.rwalld 100008 1
rpc.rwalld

Configure inetd to use the built-in daytime TCP service.

daytime stream tcp nowait root internal

AUTHOR
inetd.conf was developed by the University of California, Berkeley.

NFS was developed by Sun Microsystems, Inc.

SEE ALSO
inetd(1M), exec(2), fork(2), inetd.sec(4), protocols(4), services(4).

Section 4−−130 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inetd.sec(4) inetd.sec(4)

NAME
inetd.sec - optional security file for inetd

DESCRIPTION
When inetd accepts a connection from a remote system, it checks the address of the host requesting the
service against the list of hosts to be allowed or denied access to the specific service (see inetd(1M)). The
file inetd.sec allows the system administrator to control which hosts (or networks in general) are
allowed to use the system remotely. This file constitutes an extra layer of security in addition to the nor-
mal checks done by the services. It precedes the security of the servers; that is, a server is not started by
the Internet daemon unless the host requesting the service is a valid host according to inetd.sec .

If file /var/adm/inetd.sec does not exist, security is limited to that implemented by the servers.
inetd.sec and the directory /var/adm should be writable only by their owners. Changes to
inetd.sec apply to any subsequent connections.

Lines in inetd.sec beginning with # are comments. Comments are not allowed at the end of a line of
data.

The lines in the file contain a service name, permission field, and the Internet addresses or official names of
the hosts and networks allowed to use that service in the local host. The fields in each line are as follows:

<service name> <allow deny > <host/net addresses, host/net names>

service name is the name (not alias) of a valid service in file /etc/services . The service name for
RPC-based services (NFS) is the name (not alias) of a valid service in file /etc/rpc . A service name in
/etc/rpc corresponds to a unique RPC program number.

allow deny determines whether the list of remote hosts in the next field is allowed or denied access to
the specified service. Multiple allow deny lines for each service are not unsupported. If there are mul-
tiple allow deny lines for a particular service, all but the last line are ignored.

Addresses and names are separated by white space. Any mix of addresses and names is allowed. To con-
tinue a line, terminate it with \ .

Host names and network names are the official names of the hosts or networks as returned by gethost-
byaddr() or getnetbynumber() , respectively. Wildcard characters (*) and range characters (-) are
allowed. The * and the - can be present in any of the fields of the address. An address field is a string of
characters separated by a dot (.).

EXAMPLES
Use a wildcard character to permit a whole network to communicate with the local host without having to
list all the hosts in that network. For example, to allow all hosts with network addresses starting with a
10 , as well as the single host with address 192.54.24.5 to use rlogin:

login allow 10.* 192.54.24.5

On a system running NFS, deny host 192.54.24.5 access to sprayd, an RPC-based server:

sprayd deny 192.54.24.5

A range is a field containing a - character. To deny hosts in network 10 (arpa) with subnets 3 through 5
access to remsh :

shell deny 10.3-5.*

The following entry denies rlogin access to host cory.berkeley.edu , any hosts on the network
named testlan , and the host with internet address 192.54.24.5 :

login deny 192.54.24.5 cory.berkeley.edu testlan

If a remote service is not listed in the security file, or if it is listed but it is not followed by allow or deny ,
all remote hosts can attempt to use it. Security is then provided by the service itself. The following lines, if
present in inetd.sec , allow or deny access to the service indicated:

Allow all hosts to use ftp :

ftp

Deny all access to the shell service; i.e., remsh :

shell deny

HP-UX Release 11.0: October 1997 − 1 − Section 4−−131

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inetd.sec(4) inetd.sec(4)

Allow access to the shell service by any host:

shell allow
or

shell

AUTHOR
inetd.sec was developed by HP.

NFS was developed by Sun Microsystems, Inc.

FILES
/var/adm/inetd.sec

SEE ALSO
inetd(1M), gethostent(3N), getnetent(3N), hosts(4), inetd.conf(4), networks(4), protocols(4), rpc(4), ser-
vices(4).

Section 4−−132 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inetsvcs.conf(4) inetsvcs.conf(4)

NAME
inetsvcs.conf - configuration file for secure internet services

DESCRIPTION
The internet services, ftp, rcp, remsh, rlogin and telnet, use the /etc/inetsvcs.conf configuration file to
decide their behavior (i.e., whether to allow network authentication using Kerberos V5 or not). The con-
tents of the file decide whether the secure internet services are to be enabled or not. This configuration file
is updated by the program inetsvcs_sec . The default entry in the file is as follows:

kerberos false
With this entry, all the specified services show their traditional behavior (i.e., provide authentication by
prompting for the user’s password).

To enable secure internet services, the inetsvcs_sec program is used to update the configuration file with
the following entry:

kerberos true

WARNING
This file should not be updated manually. The services will not run if an invalid entry exists in this file. The
program inetsvcs_sec must be used to update the configuration file.

SEE ALSO
sis(5), inetsvcs_sec(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−133

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

info(4) info(4)

NAME
info - diskless client configuration information file

DESCRIPTION
The info file is a POSIX shell sourceable file which contains parameter definitions used at boot time. Typ-
ically, it will be an empty file and default values will be used for all parameters. Following is the list of
parameters which can be defined in the info file:

ROOT_SERVER_IP Specifies the IP address of the client’s private root server. If this is not
specified, the client’s private root server defaults to the boot server.

PRIVATE_ROOT Specifies the pathname to the client’s private root on the private root
server. If this is not specified, the client’s private root path defaults to
/export/private_roots/ client_name.

MOUNT_ROOT_OPTS Specifies the NFS mount options to mount the client’s private root from the
private root server. If this is not specified, the mount options default to
boot,hard,nointr,nodevs .

MOUNT_STAND_OPTSSpecifies the NFS mount options to mount the client’s /stand directory
from the boot server. If this is not specified, the mount options default to
boot,hard,nointr,nodevs .

NO_SWAP_TO_NFS Specifies whether NFS should be configured as primary swap. (NOTE: In
order to swap to NFS, a diskless kernel must be configured with tunable
parameter remote_nfs_swap set to 1.) If a diskless machine has a local
swap disk and swap to NFS is not desired, the NO_SWAP_TO_NFSparam-
eter should be set to the value of 1 and the diskless kernel should be
configured without setting remote_nfs_swap to 1. If this parameter is
not specified in the info file and the kernel tunable parameter
remote_nfs_swap is set to 1, then NFS will be configured as primary
swap.

REMOVE_EXTRA_SWAPFILES
If not set, this parameter defaults to a value of 1, and results in the remo-
val of all swapfiles above the configured swap minimum (swap min is
specified in the client’s /etc/fstab) when a diskless client boots. This
ensures that extraneous swapfiles at boot time are removed, thus freeing
disk space. If REMOVE_EXTRA_SWAPFILESis set to 0 in the info file,
removal of extra swapfiles is disabled. This may result in faster boot times
due to the time savings in creating additional swap files.

The info file resides in the same directory as the client’s kernel (/export/tftpboot/ client/stand)
on the boot server and is retrieved at boot time using tftp command. By default, when a diskless client is
created, an empty info file is placed in the client’s kernel directory. This ensures that all parameters
revert to their default values (see above). If the file is not present, this is an error.

EXAMPLES
An example info file is shown below:

Sample info(4) file:
set NO_SWAP_TO_NFS
NO_SWAP_TO_NFS=1

FILES
/export/tftpboot/ client/stand/info

Section 4−−134 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inittab(4) inittab(4)

NAME
inittab - script for the boot init process

DESCRIPTION
The /etc/inittab file supplies the script to the boot init daemon in its role as a general process
dispatcher (see init(1M)). The process that constitutes the majority of boot init ’s process dispatching
activities is the line process /usr/sbin/getty that initiates individual terminal lines. Other processes
typically dispatched by boot init are daemons and shells.

The inittab file is composed of entries that are position-dependent and have the following format:

id: rstate: action: process

Each entry is delimited by a newline; however, a backslash (\) preceding a newline indicates a continuation
of the entry. Up to 1024 characters per entry are permitted. Comments can be inserted in the process field
by starting a "word" with a # (see sh(1)). Comments for lines that spawn getty s are displayed by the
who command (see who(1)). It is expected that they will contain some information about the line such as
the location. There are no limits (other than maximum entry size) imposed on the number of entries within
the inittab file.

The entry fields are:

id A one- to four-character value used to uniquely identify an entry. Duplicate entries cause
an error message to be issued, but are otherwise ignored. The use of a four-character value
to identify an entry is strongly recommended (see WARNINGS below).

rstate Defines the run level in which this entry is to be processed. Run levels correspond to a
configuration of processes in the system where each process spawned by boot init is
assigned one or more run levels in which it is allowed to exist. Run levels are represented
by a number in the range 0 through 6. For example, if the system is in run level 1, only
those entries having a 1 in their rstate field are processed.

When boot init is requested to change run levels, all processes that do not have an entry
in the rstate field for the target run level are sent the warning signal (SIGTERM) and
allowed a 20-second grace period before being forcibly terminated by a kill signal (SIG-
KILL). You can specify multiple run levels for a process by entering more than one run
level value in any combination. If no run level is specified, the process is assumed to be
valid for all run levels, 0 through 6.

Three other values, a, b and c , can also appear in the rstate field, even though they are not
true run levels. Entries having these characters in the rstate field are processed only when
a user init process requests them to be run (regardless of the current system run level).
They differ from run levels in that boot init can never enter "run level" a, b, or c . Also,
a request for the execution of any of these processes does not change the current numeric
run level.

Furthermore, a process started by an a, b, or c option is not killed when boot init
changes levels. A process is killed only if its line in inittab is marked off in the action
field, its line is deleted entirely from inittab , or boot init goes into the single-user
state.

action A keyword in this field tells boot init how to treat the process specified in the process
field. The following actions can be specified:

boot Process the entry only at boot init ’s boot-time read of the inittab
file. Boot init starts the process, does not wait for its termination,
and when it dies, does not restart the process. In order for this instruc-
tion to be meaningful, the rstate should be the default or it must match
boot init ’s run level at boot time. This action is useful for an initiali-
zation function following a hardware boot of the system.

bootwait Process the entry only at boot init ’s boot-time read of the inittab
file. Boot init starts the process, waits for its termination, and, when
it dies, does not restart the process.

initdefault An entry with this action is only scanned when boot init is initially
invoked. Boot init uses this entry, if it exists, to determine which run
level to enter initially. It does this by taking the highest run level
specified in the rstate field and using that as its initial state. If the

HP-UX Release 11.0: October 1997 − 1 − Section 4−−135

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inittab(4) inittab(4)

rstate field is empty, boot init enters run level 6.

The initdefault entry cannot specify that boot init start in the
single-user state. Additionally, if boot init does not find an initde-
fault entry in inittab , it requests an initial run level from the user
at boot time.

off If the process associated with this entry is currently running, send the
warning signal (SIGTERM) and wait 20 seconds before forcibly ter-
minating the process via the kill signal (SIGKILL). If the process is
nonexistent, ignore the entry.

once When boot init enters a run level that matches the entry’s rstate ,
start the process and do not wait for its termination. When it dies, do
not restart the process. If boot init enters a new run level but the
process is still running from a previous run level change, the process is
not restarted.

ondemand This instruction is really a synonym for the respawn action. It is func-
tionally identical to respawn but is given a different keyword in order
to divorce its association with run levels. This is used only with the a,
b, or c values described in the rstate field.

powerfail Execute the process associated with this entry only when boot init
receives a power-fail signal (SIGPWRsee signal(5)).

powerwait Execute the process associated with this entry only when boot init
receives a power-fail signal (SIGPWR) and wait until it terminates
before continuing any processing of inittab .

respawn If the process does not exist, start the process; do not wait for its termi-
nation (continue scanning the inittab file). When it dies, restart the
process. If the process currently exists, do nothing and continue scan-
ning the inittab file.

sysinit Entries of this type are executed before boot init tries to access the
console. It is expected that this entry will be only used to initialize dev-
ices on which boot init might attempt to obtain run level information.
These entries are executed and waited for before continuing.

wait When boot init enters the run level that matches the entry’s rstate ,
start the process and wait for its termination. Any subsequent reads of
the inittab file while boot init is in the same run level cause boot
init to ignore this entry.

process This is a sh command to be executed. The entire process field is prefixed with exec
and passed to a forked sh as "sh -c ’exec command’ ". For this reason, any sh syn-
tax that can legally follow exec can appear in the process field. Comments can be inserted
by using the ; # comment syntax.

WARNINGS
The use of a four-character id is strongly recommended. Many pty servers use the last two characters of
the pty name as an id. If an id chosen by a pty server collides with one used in the inittab file, the
/etc/utmp file can become corrupted. A corrupt /etc/utmp file can cause commands such as who to
report inaccurate information.

FILES
/etc/inittab File of processes dispatched by boot init .

SEE ALSO
sh(1), getty(1M), exec(2), open(2), signal(5).

Section 4−−136 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inode(4) inode(4)

NAME
inode - format of an inode

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An inode for a plain file or directory in a file system has the following structure as it appears on a disk
block, defined in <sys/ino.h> .

struct dinode {
u_short di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
short di_uid_lsb; /* owner’s user id */
short di_gid_lsb; /* owner’s group id */
quad di_size; /* number of bytes in file */
time_t di_atime; /* time last accessed */
long di_atspare;
time_t di_mtime; /* time last modified */
long di_mtspare;
time_t di_ctime; /* time of last file status change */
long di_ctspare;
daddr_t di_db[NDADDR]; /* disk block addresses */
daddr_t di_ib[NIADDR]; /* indirect blocks */
long di_flags; /* status */
long di_blocks; /* blocks actually held */
long di_gen; /* file generation number */
short di_uid_msb; /* owner’s user id (top 16 bits) */
short di_gid_msb; /* owner’s group id (top 16 bits) */
long di_spare[2]; /* reserved, currently unused */
ino_t di_contin; /* continuation inode number */

};

A continuation inode contains a file’s optional access control list (ACL) entries, and has the following struc-
ture as it appears on a disk block:

struct cinode {
u_short ci_mode; /* mode and type of file */
short ci_nlink; /* number of links to file */

/* optional ACL entries */
struct acl_entry_internal_lsb ci_acl_lsb[NOPTENTRIES];

/* least sig bytes of ACL uids/gids */
struct acl_entry_internal_msb ci_acl_msb[NOPTENTRIES];

/* most sig bytes of ACL uids/gids */
char ci_spare[3]; /* reserved, currently unused */
long ci_ciflags; /* status */

};

For the meaning of the defined types u_short , quad , daddr_t , and time_t , see types(5).

Continuation inodes are distinguished from other inodes by their file type. See <sys/inode.h> for the
definition of these values.

See <sys/inode.h> for the definition of inode structures for special files, pipes, or FIFOs.

WARNINGS
Kernel internal structures may change from release to release without warning. Applications directly rely-
ing on these structures are not supported.

AUTHOR
AT&T, the University of California, Berkeley, and HP.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−137

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inode(4) inode(4)

SEE ALSO
stat(2), fs(4), types(5).

Section 4−−138 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inode_vxfs(4) inode_vxfs(4)

NAME
inode (vxfs) - format of a VxFS inode

SYNOPSIS
#include <sys/param.h>
#include <sys/kern_sem.h>
#include <sys/fs/vx_hpux.h>
#include <sys/fs/vx_port.h>
#include <sys/fs/vx_inode.h>

DESCRIPTION
The inode list consists of fs_inopau inode entries in each allocation unit.

Although a vxfs inode is typically 256 bytes in length, an inode size of 512 bytes can be used instead.

An inode entry has the following format:

i_mode
The mode and type of file.

i_nlink
The number of links to the file.

i_uid
The inode owner.

i_gid
The inode group.

i_size
The size in bytes of the file. Eight bytes have been allocated.

i_atime
Time of last access, in struct timeval format.

i_mtime
Time of last modification, in struct timeval format.

i_ctime
Time of last inode change, in struct timeval format.

i_aflags
These flags are used to control the allocation and extension of files.

VX_AF_IFBAD
If this flag is set, the inode is invalid in some way. It should be cleared when fsck(1M)
is run.

VX_AF_NOEXTEND
If this flag is set, the file may not be extended once the current reservation is
exceeded. The reservation may be increased by the VX_SETEXT ioctl, but the file
will not be automatically extended.

VX_AF_NOGROW
If this flag is set, the file may not be extended once the current reservation is
exceeded. It should be cleared on truncation or when setext (1M) is run. This flag is
usually set because an I/O error occurs while extending a file.

VX_AF_ALIGN
If this flag is set, the file must be allocated in extents of a fixed size and alignment. If
an extent of i_fixextsize blocks aligned on an i_fixextsize boundary can’t be found, then
the allocation will fail. The alignment is relative to the beginning of the allocation
unit.

i_orgtype
Mapping type. Indicates how the inode mapping area is to be interpreted. Currently there are
three mapping types supported:

IORG_EXT4
Mapping area consists of an array of 32-bit extent block addresses and sizes.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−139

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inode_vxfs(4) inode_vxfs(4)

IORG_IMMED
Mapping area itself is a data block. This mapping is referred to as Immediate Inode
Data.

IORG_TYPED
Mapping area consists of type-extent structures.

i_eopflags
Extended inode operation flag area.

i_eopdata
Extended inode operation data area.

i_ftarea
This is a union. The contents are determined by file type.

For devices, the following fields are supported:

i_rdev
The device number of a block or character special device.

For directories, the following fields are supported:

i_dotdot
The parent directory inode inumber if the inode is a directory. This replaces the stan-
dard ‘‘..’’ entry in the first directory block. The vxfs file system does not have expli-
cit ‘‘.’’ and ‘‘..’’ entries.

For regular files, the following fields are supported:

i_reserve
The number of data blocks reserved for exclusive use by the file (preallocation). A
preallocation may be requested using ioctl(2). See vxfsio (7).

i_fixextsize
Set when the inode has a fixed extent size. The default is to have a variable extent
size allocation policy. A fixed extent size may be specified using ioctl(2). See
vxfsio (7).

For structural files, the following fields are supported:

i_matchino
(Version 2 and 3 layouts only.) The inode number of the ‘‘matching’’ inode. For repli-
cated files, this is the inode of the replica. For extent map reorganization files, this is
the inode of the file being reorganized.

i_fsetindex
(Version 2 and 3 layouts only.) The index of the fileset associated with this inode.

i_blocks
The number of blocks currently allocated to the file, including any blocks allocated for indirect
address extents.

i_gen
The generation number. A serial number which is incremented whenever the inode is freed and
reallocated. It is designed to provide a ‘‘handle’’ for stateless servers such as NFS.

i_vversion
A count of the number of times the inode metadata has been modified. This field is a 64-bit
number.

ic_org
The mapping area. This field is a union based on the value of i_orgtype and the file system
type.

For the vxfs IORG_IMMED organization type, the following structure is used:

i_immed
The Immediate Inode data area, NIMMED_N(currently 96) bytes in length (see
fs_immedlen). Any directory or symbolic link which is <= 96 bytes in length will
be stored directly in the inode.

Section 4−−140 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inode_vxfs(4) inode_vxfs(4)

For the vxfs IORG_EXT4 organization type, the following structure is used:

i_ies
Indirect extent size. This is the size in blocks of the indirect data extents in the file.

i_ie
Array of indirect address extents. There are NIADDR (currently 2) indirect address
extents. The indirect address extents are 8192 bytes long. Each indirect address
extent may contain up to 2048 extent addresses. The first indirect address extent is
used for single indirection. With single indirection, each entry in the indirect address
extent indicates the starting block number of a data extent. The second indirect
address extent is a double indirect address extent. With double indirection, each
entry in the indirect address extent indicates the starting block number of a single
indirect address extent.

i_dext
An array of structures containing the direct extent addresses and sizes. Up to
NDADDR_N(currently ten) direct extents are supported. Since a variable length
extent allocation policy is used, each direct extent may have a different size. Each
structure contains the following elements:

i_de Direct extent address.

i_des Direct extent size.

i_iattrino
(Version 2 and 3 layouts only.) Indirect attribute inode. This identifies the inode in the attribute
fileset that contains indirect attribute references.

The remaining bytes of the inode are reserved for extended attribute records, which are formatted as fol-
lows:

length
The exact length of the attribute record. If this is not a multiple of 4 bytes, the start of the next
attribute record is found by rounding the length up to a 4 byte boundary.

format
The format of the data layout of the remainder of the attribute record. Each attribute consists of
a class identifying the attribute’s administrative domain; a subclass identifying the attribute
within the administrative domain; and data. The valid record formats are:

ATTR_EXTIMMED
This record extends the immediate data area so that files larger than 96 bytes can be
stored directly in the inode.

ATTR_IMMED
The attribute is stored directly in the inode. The fields in the rest of this record are:

class
The class of the attribute.

subclass
The subclass of the attribute.

data
The attribute data.

ATTR_DIRECT
When attributes are too large to store directly in the inode, each attribute is stored in
its own file. This record lists each attribute along with the inode number correspond-
ing to the file in which the attribute is stored. The number of entries in the list is
determined by the length of the record. The fields in each entry are:

class
The class of the attribute.

subclass
The subclass of the attribute.

length
The length of the attribute data. This allows attribute operations to check

HP-UX Release 11.0: October 1997 − 3 − Section 4−−141

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

inode_vxfs(4) inode_vxfs(4)

the length of an attribute without reading the attribute inode.

inumber
The inode number of the file containing the attribute data. The inode is
part of the attribute fileset.

The attribute records in the inode are terminated by a record with a format of zero (for compatibility with
file systems that have the last 80 bytes of all inodes set to NULL).

SEE ALSO
fs_vxfs(4), stat(2), types(5).

Section 4−−142 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

ioconfig(4) ioconfig(4)
(Series 800 Only)

NAME
ioconfig - ioconfig entry format

SYNOPSIS
#include <sys/ioconfig.h>

DESCRIPTION
The ioconfig file provides the mapping between information stored in device file dev_t (major
number and logical unit) and the information the I/O system uses to communicate with devices (hardware
paths and manager paths).

At boot time ioinit reads the file and stores the information in the io_tree kernel data structure
(see ioinit(1M)). The ioconfig file is created by insf at install time and is modified by insf and
rmsf when devices are added or removed (see insf(1M) and rmsf(1M)). The only purpose of the iocon-
fig file to maintain configuration information when the system is not running. While the system is run-
ning, all accesses are made directly to the kernel io_tree structure, although any tools that change the
kernel structures must also keep ioconfig consistent.

The ioconfig file begins with the ioconfig magic number.

#define IOCONFIG_MAGIC 0x2122494f /* magic number */

Following the magic number is an array of ioconfig_entry structures, which logically form a tree
structure defining the connectivity of the various levels of software modules and managers, the device class
and hardware address of each element, and the logical unit associated with each leaf node. The root of the
tree is array element 0.

Each ioconfig_entry contains the following fields as defined in <sys/ioconfig.h >:

#define IOCONFIG_FILE "/etc/ioconfig"
#define MAX_ID 16
#define NONE -1

typedef char io_name_type[MAX_ID];

typedef struct {
int parent; /* parent in io_tree */
int sibling; /* sibling in io_tree */
int child; /* child in io_tree */
io_name_type manager; /* manager name */
io_name_type module; /* module name */
io_name_type class; /* device class */
int lu; /* logical unit number */
int hdw_address; /* hardware address */

} ioconfig_entry;

The definitions of each element are as follows:

parent , sibling , child
Each of the parent, sibling, and child fields is the array index of another ioconfig structure
within the file. This allows the file to represent the tree structure of the kernel io_tree
without using pointers. The value NONEindicates there is no node of the appropriate type.

hdw_address
Hardware address of the entity. The value NONEindicates the node corresponds to a manager
controlling a logical device (one without a hardware address).

manager
A NULL-terminated character string representing the manager name.

module A NULL-terminated character string representing the module name.

class A NULL-terminated character string representing the device class.

lu Logical unit associated with this particular node by the user. Meaningful only for leaf nodes; has
the value NONEfor all others.

There can be multiple chains of nodes in ioconfig with the same manager names, module names,
and/or hardware addresses, provided each manager name/lu pair uniquely identifies a single leaf node.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−143

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

ioconfig(4) ioconfig(4)
(Series 800 Only)

AUTHOR
ioconfig was developed by HP.

FILES
/etc/ioconfig

SEE ALSO
ioinit(1M), insf(1M), rmsf(1M), magic(4).

Section 4−−144 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

i

issue(4) issue(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a login prompt. This is
an ASCII file which is read by the getty program then written to any terminal spawned or respawned
from the inittab file.

FILES
/etc/issue

SEE ALSO
getty(1M), login(1).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−145

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

lif(4) lif(4)

NAME
lif - logical interchange format description

DESCRIPTION
LIF (Logical Interchange Format) is a Hewlett-Packard standard mass-storage format that can be used for
interchange of files among various HP computer systems. A LIF volume contains a header (identifying it as
a LIF volume) and a directory that defines the contents (i.e. files) of the volume. The size of the directory is
fixed when the volume is initialized (see lifinit(1)) and sets an upper bound on the number of files that can
be created on the volume.

HP-UX contains a set of utilities (referred to as lif∗(1)) that can be used to:

• Initialize a LIF volume (i.e. create a header and an empty directory),

• Copy files to and from LIF volumes,

• List the contents of LIF volumes,

• Remove LIF files,

• Rename LIF files.

The lif∗(1) utilities are the only utilities within HP-UX where the internal structure of a LIF volume is
known. To the rest of HP-UX, a LIF volume is simply a file containing some unspecified data. The term LIF
volume should in no way be confused with the HP-UX notion of a file system volume or mountable volume.

LIF utilities on HP-UX currently support three file types, ASCII (1), BINARY (-2) and BIN (-23951).

Three copying modes are associated with these file types:

ASCII If the copying mode is ASCII and an HP-UX file is being copied to a LIF volume, the utility
strips the trailing LF (line-feed) character, and inserts two bytes of record length in front of
each record. These records are then written to a LIF-formatted medium. When copying a
LIF ASCII file to HP-UX the two-byte record length is stripped and a trailing LF is appended.
These records are then written to the destination. In this mode of copying, the length of
the file is preserved. The default file type for this mode of copying is ASCII (1).

BINARY If the copying mode is BINARY, and an HP-UX file is being copied to a LIF volume, the util-
ity simply inserts two bytes for record length in front of each 1-Kbyte record. A trailing
fractional block has a count reflecting the number of bytes in that block. No interpretation
is placed on the content of the records. These records are then written to a LIF-format
medium. When copying a LIF file to an HP-UX file in BINARY copying mode, the record
lengths are stripped and the content of records is directly written to the destination. In
this mode of copying, the length of the binary file is preserved. The default file type for this
mode of copying is BINARY (-2).

RAW If the copying mode is RAW, and an HP-UX file is being copied to a LIF volume, the utility
simply copies the raw data to the destination. File sizes that are not integer multiples of
256 bytes are padded with nulls to the next higher multiple. Therefore, file sizes are not
preserved . When copying a LIF file to an HP-UX file in RAW mode, the information is copied
directly without any interpretation placed on the content of the source. The default file
type for this mode of copying is BIN (-23951).

A LIF volume can be created on any HP-UX file (either regular disk file or device special file) that supports
random access via lseek() (see lseek(2)). Do not mount the special file before using lif∗(1) utilities. See
lifinit(1) for details. Within a LIF volume, individual files are identified by 1- to 10-character file names.
File names can consist of uppercase alphanumeric characters (A through Z, 0 through 9) and the under-
score character (_). The first character of a LIF file name must be a letter (A through Z). The lif∗(1) utili-
ties accept any file name (including illegal file names generated on other systems), but can only create legal
names. This means that files whose names contain lowercase letters can be read but not created.

LIF file names are specified to the lif∗(1) utilities by concatenating the HP-UX path name for the LIF volume
followed by the LIF file name, separating the two with a colon (:). For example:

/dev/fd.0:ABC specifies LIF file ABCaccessed via HP-UX device special file /dev/fd.0 .

myfile:ABC specifies LIF file ABCwithin HP-UX disk file myfile .

Note that this file-naming convention is applicable only for use as arguments to the lif∗(1) utilities, and
does not constitute valid path naming for any other use within the HP-UX operating system.

Section 4−−146 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

lif(4) lif(4)

Do not mount the special file while using lif∗(1) utilities.

SEE ALSO
lifcp(1), lifinit(1), lifls(1), lifrename(1), lifrm(1).

HP-UX Release 11.0: October 1997 − 2 − Section 4−−147

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

loadmods(4) loadmods(4)

NAME
loadmods - loadable modules to load into the running kernel during boot

DESCRIPTION
The /etc/loadmods file contains the names of dynamically loadable kernel modules that are loaded into
the running kernel at boot time. If the system administrator wants a dynamically loadable kernel module
to be demand loaded on every system reboot, s/he may add the name of the module to this file.

If the /etc/loadmods file is present at boot time, the /sbin/init.d/kminit script executes the
kmadmin command and demand loads the modules listed in the file.

An entry for a module consists of a line of the following form:

module_name

The specified module must have been configured as loadable (see config(1M)).

Blank lines and lines beginning with ‘# ’ or ‘* ’ are considered comments and are ignored.

FILES
/sbin/init.d/kminit

SEE ALSO
config(1M), kmsystem(1M), kmadmin(1M), master(4).

Section 4−−148 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

NAME
localedef - format and semantics of locale definition file

DESCRIPTION
This is a description of the syntax and meaning of the locale definition that is provided as input to the
localedef command to create a locale (see localedef(1M)).

The following is a list of category tags, keywords and subsequent expressions which are recognized by
localedef . The order of keywords within a category is irrelevant with the exception of the copy key-
word and other exceptions noted under the LC_COLLATEdescription. (Note that, as a convention, the
category tags are composed of uppercase characters, while the keywords are composed of lowercase charac-
ters).

Category Tags and Keywords
The following keywords do not belong to any category and should appear in the beginning of the locale
definition file:

comment_char
Single character indicating the character to be interpreted as starting a comment line within the
locale definition file. This character should be in the first column of a comment line. The default
comment_char is #. All lines with a comment_char in the first column are ignored.

escape_char
A single character indicating the character to be interpreted as an escape character within the
script. The default escape_char is \ . escape_char is used to escape localedef metacharacters to
remove special meaning and in the character constant decimal, octal, and hexadecimal formats.
It is also used to continue a line onto the next, if escape_char is the last character on the line
(before the new-line character).

The following keywords can be used in any category:

copy
A string naming another valid locale available on the system. This causes the category in the
locale being created to be a copy of the same category in the named locale. Since the copy key-
word defines the entire category, if used, it must be the only keyword in the category.

The following six categories are recognized:

LC_CTYPE:
This category defines character classification, case conversion and other character attributes. The fol-
lowing predefined character classifications are recognized:

upper Character codes classified as uppercase letters. Characters specified in the
cntrl , digit , punct or space classifications cannot be specified in this
category.

lower Character codes classified as lowercase letters. Same restrictions applicable to
the upper category apply to this classification.

digit Character codes classified as numeric. Only ten characters in contiguous ascend-
ing sequence by numerical value can be specified. Alternative digits cannot be
specified here.

space Character codes classified as white-space. No character specified for the upper ,
lower , alpha , digit , graph or xdigit categories can be included in this
classification.

punct Character codes classified as punctuation characters. No character included in
the upper , lower , alpha , digit , cntrl , xdigit or space categories
can be specified.

cntrl Character codes classified as control characters. No character included in the
upper , lower , alpha , digit , punct , graph , print or xdigit can be
included here.

blank Character codes classified as blank characters. The <space> and <tab> charac-
ters are automatically included.

xdigit Character codes classified as hexadecimal digits. Only the characters defined for
the digit class can be specified, followed by one or more sets of six characters,

HP-UX Release 11.0: October 1997 − 1 − Section 4−−149

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

with each set in ascending order.

alpha Character codes classified as letters. Characters classified as cntrl , digit ,
punct or space cannot be specified. Characters specified as upper and
lower classes are automatically included in this class.

print Character codes classified as printable characters. Characters specified for
upper , lower , alpha , digit , xdigit , and punct classes and the
<space> character are automatically included. No character from the cntrl
category can be specified.

graph Character codes classified as printable characters, except the <space> character.
In all other respect this classification is similar to the print category.

The following two are special classifications, used to designate valid first-of-two and second-of-two
bytes . Note that these are byte classifications and not character classifications; hence, they cannot
be used with the iswctype interface (see wctype(3C)), in the same manner as the other classifications
can be used.

first Valid first bytes of two-byte characters.

second Valid second bytes of two-byte characters.

Character case conversion definitions:

toupper Lowercase to uppercase character relationships.

tolower Uppercase to lowercase character relationships.

Miscellaneous character attribute and classifications:

alt_punct String mapped into the ASCII equivalent string ‘‘b!"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{}˜’’,
where b is a blank (a langinfo(5) item).

charclass Defines one or more locale-specific character class names as strings separated by
semicolons. Each named character class can then be defined subsequently in the
LC_CTYPEdefinition. The first character of a character class name must be a
letter and the class name cannot match any of the predefined classifications (e.g.,
space , letter , cntrl).

direction String operand indicates text direction (a langinfo(5) item). String operand "1"
indicates right-to-left text direction.

context String operand indicates character context analysis. String "1" indicates Arabic
context analysis is required.

LC_COLLATE:
The LC_COLLATEcategory provides collation sequence definition for relative ordering between col-
lating elements (single- and multi-character collating elements) in the locale. The following keywords
belong to this category and should come between the category tag LC_COLLATE and END
LC_COLLATE. The first two keywords can be in any order, but must come before the
order_start keyword. Any number of the first two keywords can be specified.

collating-element < symbol> from string
Defines a multi-character collating element, symbol, composed of the characters
in string. String is limited to two characters.

collating-symbol < symbol>
Makes symbol a collating symbol which can be used to define a place in the col-
lating sequence. Symbol does not represent any actual character.

order_start
Denotes the start of the collation sequence. The directives have an effect on
string collation.

The lines following the order_start keyword and before the order_end
keyword contain collating element entries, one per line.

Operands can optionally appear after the order_start keyword to defined
rules for string comparison using a multiple-weight scheme (if no operands are
specified, a single forward operand is assumed). The possible operands are:

Section 4−−150 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

forward Specifies that comparison operations proceed from start of string
towards the end of it.

backward Specifies that comparison operations proceed from end of string
towards the beginning of it.

order_end Marks the end of the list of collating element entries.

LC_MONETARY:
The LC_MONETARYcategory defines the rules and symbols used to format monetary numeric infor-
mation. The following keywords belong to this category and should come between the category tag
LC_MONETARYand END LC_MONETARY:

int_curr_symbol
The operand is a four-character string used to designate the international
currency symbol.

currency_symbol
The operand is a string used as the local currency symbol.

mon_decimal_point
The operand is a string containing the symbol used as the decimal delimiter
(radix character).

mon_thousands_sep
The operand is a string containing the symbol used as a separator for groups of
digits to the left of decimal delimiter.

mon_grouping
The operand is a semicolon-separated list of integers. The initial integer defines
the size of the group immediately preceding the decimal delimiter, and the fol-
lowing integers define the preceding groups. If the last integer is not -1, then
the size of the previous group (if any) will be repeatedly used for the remainder
of the digits. If the last integer is -1, then no further grouping will be performed.

positive_sign
The operand is a srting to indicate a non-negative monetary quantity.

negative_sign
The operand is a srting to indicate a negative monetary quantity.

int_frac_digits
The operand is an integer representing the number of fractional digits used in
formatted monetary values using int_curr_symbol .

frac_digits
The operand is an integer representing the number of fractional digits used in
formatted monetary values using currency_symbol .

p_cs_precedes
The operand is an integer which if set to 1 indicates the currency_symbol
or int_curr_symbol precedes a monetary quantity, and if set to 0 the sym-
bol succeeds the value.

p_sep_by_space
The operand is an integer which if set to 1 indicates a space separates the
currency_symbol or int_curr_symbol from the value, and otherwise
if set to 0.

n_cs_precedes
The operand is an integer which if set to 1 indicates the currency_symbol
or int_curr_symbol precedes a negative monetary quantity, and if set to 0
the symbol succeeds the negative value.

n_sep_by_space
The operand is an integer which if set to 1 indicates a space separates the
currency_symbol or int_curr_symbol from negative monetary value,
and otherwise if set to 0.

p_sign_posn
The operand is an integer which setting indicates the positioning of the

HP-UX Release 11.0: October 1997 − 3 − Section 4−−151

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

positive_sign for a non-negative monetary quantity. The possible values
are:

0 Parenthesis surround the quantity and the currency_symbol or
int_curr_symbol .

1 The sign string precedes the quantity and the currency_symbol
or int_curr_symbol .

2 The sign string succeeds the quantity and the currency_symbol
or int_curr_symbol .

3 The sign string precedes the currency_symbol or
int_curr_symbol .

4 The sign string succeeds the currency_symbol or
int_curr_symbol .

n_sign_posn
The operand is an integer which setting parallels that of p_sign_posn , but for
negative monetary quantities.

LC_NUMERIC:
The LC_NUMERICcategory defines rules and symbols used to format non-monetary numeric infor-
mation. The following keywords belong to this category and should come between the category tag
LC_NUMERICand END LC_NUMERIC:

decimal_point
The operand is a string containing the symbol used as the decimal delimiter
(radix character) in numeric, non-monetary formatted quantities. This keyword
cannot be omitted and cannot be set to the empty string.

thousands_sep
The operand is a string containing the symbol used as a separator for groups of
digits to the left of the decimal delimiter.

grouping The operand is a semicolon-separated list of integers. The initial integer defines
the size of the group immediately preceding the decimal delimiter, and the fol-
lowing integers define the preceding groups. If the last integer is not -1, then
the size of the previous group (if any) will be repeatedly used for the remainder
of the digits. If the last integer is -1, then no further grouping will be performed.

alt_digit String mapped into the ASCII equivalent string ‘‘0123456789b+-.,eE’’, where b is
a blank (a langinfo(5) item). The alt_digit keyword is a HP extension to the
localedef POSIX standards and it has a different meaning than the
alt_digits defined in POSIX standards.

LC_TIME:
The LC_TIME category defines the rules for generating locale-specific formatted date strings. The
following mandatory keywords belong to this category and should come between the category tag
LC_TIME and END LC_TIME:

abday Seven semicolon-separated strings giving abbreviated names for the days of the
week beginning with Sunday.

day Seven semicolon-separated strings giving full names for the days of the week
beginning with Sunday.

abmon Twelve semicolon-separated strings giving abbreviated names for the months,
beginning with January.

mon Twelve semicolon-separated strings giving full names for the months, beginning
with January.

d_t_fmt The operand is a string defining the appropriate date and time representation.

d_fmt The operand is a string defining the appropriate date representation.

t_fmt The operand is a string defining the appropriate time representation.

am_pm The operand is two semicolon-separated strings giving the representations for
AMand PM.

Section 4−−152 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

t_fmt_ampm The operand is a string defining the appropriate time representation in the 12-
hour clock format with am_pm.

era The operand is a semi-colon-separated list of strings. Each string defines the
name and date of an era or emperor for a locale. Each string should conform to
the following format:

direction : offset : start_date : end_date : name : format

where:

direction Either a + or - character. The + character indicates the
time axis should be such that the years count in the positive
direction when moving from the starting date towards the end-
ing date. The - character indicates the time axis should be
such that the years count in the negative direction when mov-
ing from the starting date towards the ending date.

offset A number in the range [SHRT_MIN,SHRT_MAX] indicating
the number of the first year of the era.

start_date A date in the form yyyy / mm/ dd where yyyy , mm, and dd are
the year, month and day numbers, respectively, of the start of
the era. Years prior to the year 0 A.D. are represented as
negative numbers. For example, an era beginning March 5th
in the year 100 B.C. would be represented as 3-100/3/5 .
Years in the range [SHRT_MIN+1,SHRT_MAX-1] are sup-
ported.

end_date The ending date of the era in the same form as the start_date
above or one of the two special values -* or +* . A value of
-* indicates the ending date of the era extends to the begin-
ning of time while +* indicates it extends to the end of time.
The ending date can be chronologically either before or after
the starting date of an era. For example, the expressions for
the Christian eras A.D. and B.C. would be:

+:0:0000/01/01:+ ∗:A.D.:%o %N
+:1:-0001/12/31:- ∗:B.C.:%o %N

name A string representing the name of the era which is substituted
for the %Ndirective of date and strftime() (see date(1)
and strftime(3C)).

format A string for formatting the %E directive of date(1) and
strftime(3C). This string is usually a function of the %oand
%Ndirectives. If format is not specified, the string specified
for the LC_TIME category keyword era_d_fmt (see below)
is used as a default.

era_d_fmt The operand is a string defining the format of date in era notation.

era_t_fmt The operand is a string defining the format of time in era notation.

era_d_t_fmt
The operand is a string defining the format of date and time in era notation.

alt_digits The operand is a semi-colon-separated list of strings. The first string is the alter-
native symbol corresponding to zero, the second string is the alternative symbol
corresponding to one, and so on. Note that if the HP-UX-proprietary
alt_digit keyword has been specified in the same locale, the first ten sym-
bols should be identical for these two keywords.

In addition to the above, the following HP-UX-proprietary keywords are recognized (these are pro-
vided for backward compatibility and their use is otherwise not recommended): year_unit ,
mon_unit , day_unit , rour_unit , min_unit , sec_unit .

LC_MESSAGES:
The LC_MESSAGEScategory defines the format and values for affirmative and negative responses.
The following keywords belong to this category and should come between the category tag

HP-UX Release 11.0: October 1997 − 5 − Section 4−−153

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

LC_MESSAGESand END LC_MESSAGES:

yesexpr The string operand is an Extended Regular Expression matching acceptable
affirmative responses to yes/no queries.

noexpr The string operand is an Extended Regular Expression matching acceptable
negative responses to yes/no queries.

yesstr The string operand identifies the affirmative response for yes/no questions. This
keyword is now obsolete and yesexpr should be used instead.

nostr The string operand identifies the negative response for yes/no questions This
keyword is now obsolete and noexpr should be used instead.

Keyword Operands
Keyword operands consist of character-code constants and symbols, strings, and metacharacters. The types
of legal expressions are: character lists , string lists , integer lists , shift , collat-
ing element entries , regular expression , character constants and string :

character lists
character list operands consist of single character-code constants or symbolic names
separated by semicolons, or a character-code range consisting of a constant or symbolic
name followed by an ellipsis followed by another constant or symbolic name. The constant
preceding the ellipsis must have a smaller code value than the constant following the
ellipsis. A range represents a set of consecutive character codes. If the list is longer than a
single line, the escape character must be used at the end of each line as a continuation
character. It is an error to use any symbolic name that is not defined in an accompanying
charmap file (see charmap(4)).

string lists
string list operands consist of strings separated by semicolons. If longer than one
line, the escape character must be used for continuation.

string string operands consist of a sequence of zero or more characters surrounded by double
quotes ("). Within a string, the double-quote character must be preceded by an escape char-
acter. The following escape sequences also can be used:

\n newline

\t horizontal tab

\b backspace

\r carriage return

\f form feed

\\ backslash

\’ single quote

\ ddd bit pattern

The escape \ ddd consists of the escape character followed by 1, 2, or 3 octal digits
specifying the value of the desired character (for other possible bit pattern
specification, see character constants below). Also, an escape character (\) and an
immediately-following newline are ignored.

Although the backslash (\) has been used for illustration, another escape character can be
substituted by the escape_char keyword.

character constants
Constants represent character codes in the operands. They can be used in the following
forms:

decimal constants An escape character followed by a ’d’ followed by up to three
decimal digits.

octal constants An escape character followed by up to three octal digits.

hexadecimal constants An escape character followed by a ’x’ followed by two hexade-
cimal digits.

Section 4−−154 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

character constants A single character (e.g., A) having the numerical value of the char-
acter in the machine’s character set.

symbolic names A string enclosed between < and > is a symbolic name.
localedef input files are recommended to be written entirely in
symbolic names, utilizing a user defined or system-supplied char-
map file. This aids portability of localedef input files between
different encoded character sets (see charmap(4)).

Symbolic names can be defined within a locale definition file by the
collating-element and collating-symbol keywords.
These are not character constants. It is an error if such an inter-
nally defined symbolic name collides with one defined in a charmap
file.

integer lists
Integer list operands consists of one or more decimal digits separated by semicolons.

shift Shift operands follow keywords toupper and tolower , and must consist of two
character-code constants enclosed by left and right parentheses and separated by a comma.
Each such character pair is separated from the next by a semicolon. For tolower , the
first constant represents an uppercase character and the second the corresponding lower-
case character. For toupper , the first constant represents an lowercase character and
the second the corresponding uppercase character.

collating element entry
The order_start keyword is followed by collating element entries, one per line, in
ascending order by collating position. The collating element entries have the form:

collation_element[weight[;weight]]

collation_element can be a character, a collating symbol enclosed in angle brackets
representing a character or collating element, the special symbol UNDEFINED or an
ellipsis (...).

A character stands for itself; a collating symbol can be a symbolic name for a character that
is interpreted by the charmap file, a multi-character collating element defined by a
collating-element keyword, or a collating symbol defined by the collating-
symbol keyword .

The special symbol UNDEFINEDspecifies the collating position of any characters not expli-
citly defined by collating element entries. For example, if some group of characters is to be
omitted from the collation sequence and just collate after all defined characters, a collating
symbol might be defined before the order_start keyword:

collating-symbol <HIGH>

Then somewhere in the list of collating element entries:

UNDEFINED <HIGH>

Notice that there is no second weight. This means that on a second pass all characters col-
late by their encoded value.

An ellipsis is interpreted as a list of characters with an encoded value higher than that of
the character on the preceding line and lower than that on the following line. Because it is
tied to encoded value of characters, the ellipsis is inherently non-portable. If it is used, a
warning is issued and no output generated unless the -c option was given.

The weight operands provide information about how the collating element is to be collated
on first and subsequent passes. Weight can be a two-character string, the special symbol
IGNORE, or a collating element of any of the forms specified for collating_element except
UNDEFINED. If there are no weights, the character is collating strictly by its position in
the list. If there is only one weight given, the character sorts by its relative position in the
list on the second collation pass.

An equivalence class is defined by a series of collating element entries all having the same
character or symbol in the first weight position. For example, in many locales all forms of
the character This is represented in the collating element entries as:

HP-UX Release 11.0: October 1997 − 7 − Section 4−−155

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

’A’ ’A’;’A’ # first element of equivalence class
’a’ ’A’;’a’ # next element of class

Two-to-one collating elements are specified by collating-elements defined before the
order_start keyword. For example, the two-to-one collating element CH in Spanish,
would be defined before the order_start keyword as

collating element <CH> from CH

It would then be used in a collating element entry as <CH>.

A one-to-two collating element is defined by having a two-character string in one of the
weight positions. For example, if the character ’X’ collates equal to the pair "AE", the col-
lating element entry would be:

’X’ AE ;’X’

A don’t-care character is defined by the special symbol IGNORE. For example, the dash
character, ’-’ may be a don’t care on the first collation pass. The collating element entry
is:

’-’ IGNORE;’-’

Symbols defined by the collating-symbol keyword can be used to indicate that a
given character collates higher or lower than some position in the sequence. For example if
all characters with an encoded value less than that of ’0’ are to collate lower than all
other characters on the first pass, and in relative order on the second pass, define a collat-
ing symbol before the order_start keyword:

collating-symbol <LOW>

The first two collating element entries are then:

... <LOW>;...
’0’ ’0’;’0’

This also illustrates the use of the ellipsis to indicate a range. The first ellipsis is inter-
preted as "all characters in the encoded character set with a value lower than ’0’"; the
second ellipsis means that all characters in the range defined by the first collate in relative
order.

regular expression
regular expression operands conform to the Extended Regular Expressions
specifications as described in regexp(5).

Metacharacters
Metacharacters are characters having a special meaning to localedef in operands. To escape the special
meaning of these characters, surround them with single quotes or precede them by an escape character.
localedef meta-characters include:

< Indicates the beginning of a symbolic name.

> Indicates the end of a symbolic name.

(Indicates the beginning of a character shift pair following the toupper and tolower key-
words.

) Indicates the end of a character shift pair.

, Used to separate the characters of a character shift pair.

" Used to quote strings.

; Used as a separator in list operands.

escape character
Used to escape special meaning from other metacharacters and itself. It is backslash (\) by
default, but can be redefined by the escape_char keyword.

Comments
Comments are lines beginning with a comment character. The comment character is pound sign (#) by
default, but can be redefined by the comment_char keyword. Comments and blank lines are ignored.

Section 4−−156 − 8 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

localedef(4) localedef(4)

Separators
Separator characters include blanks and tabs. Any number of separators can be used to delimit the key-
words, metacharacters, constants and strings that comprise a localedef script except that all characters
between < and > are considered to be part of the symbolic name even they are <blank>s.

EXAMPLE
Please see the files under /usr/lib/nls/loc/src for examples of locale description files. These files
were used to create the various locales which are delivered with HP-UX.

HP-UX Release 11.0: October 1997 − 9 − Section 4−−157

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

lvmpvg(4) lvmpvg(4)

NAME
lvmpvg - LVM physical volume group information file

SYNOPSIS
/etc/lvmpvg

DESCRIPTION
lvmpvg is an ASCII file that stores the volume-group information for all of the physical volume groups in
the system. The information is stored in a hierarchical format.

First, it starts with a volume group under which multiple physical volume groups can exist. Under each
physical volume group, a list of physical volumes can be specified. There must be at least one physical
volume group in each volume group that appears in this file. The physical-volume-group name must be
unique within the corresponding volume group, although it is permissible to use a common physical volume
group name across different volume groups. There can be as many volume groups in this file as there are
in the system.

Instead of using the vgcreate and vgextend commands, the administrator can edit this file to create
and extend physical volume groups. However, care must be taken to ensure that all physical volumes to be
included in the file have already been defined in their respective volume groups by previous use of
vgcreate or vgextend .

The lvmpvg file format has the following structure. VGand PVGare keywords that introduce the names
of the volume group and physical volume group, respectively. No comments are allowed in this file.

VG vg_name
PVG pvg_name
pv_path

. . .
PVG pvg_name
pv_path

. . .
VG vg_name
PVG pvg_name
pv_path

. . .

The variables are defined as follows:

pv_path The block device path name of a physical volume within the volume group.

pvg_name The name of the physical volume group. It must be unique within the volume group.

vg_name The path name of the volume group.

EXAMPLES
The following example shows an lvmpvg file containing two volume groups: the first containing two phy-
sical volume groups, each with two physical volumes defined in it; the second containing three physical
volume groups, each with one physical volume defined in it.

VG /dev/vg00
PVG PVG0
/dev/dsk/c2t0d0
/dev/dsk/c2t1d0
PVG PVG1
/dev/dsk/c3t0d0
/dev/dsk/c3t1d0
VG /dev/vg01
PVG PVG0
/dev/dsk/c4t0d0
PVG PVG1
/dev/dsk/c5t0d0
PVG PVG2
/dev/dsk/c6t0d0

Section 4−−158 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

l

lvmpvg(4) lvmpvg(4)

SEE ALSO
vgcreate(1M), vgextend(1M), vgreduce(1M), vgremove(1M).

HP-UX Release 11.0: October 1997 − 2 − Section 4−−159

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

magic(4) magic(4)

NAME
magic - magic numbers for HP-UX implementations

SYNOPSIS
#include <magic.h>

DESCRIPTION
The magic.h file localizes all information about HP-UX ‘‘magic numbers’’ in one file, thus facilitating uni-
form treatment of magic numbers. This file specifies the location of the magic number in a file (always the
start of the file) and the structure of the magic number:

struct magic_number {
unsigned short system_id;
unsigned short file_type;

};
typedef struct magic_number MAGIC;

magic.h includes definitions for the system IDs of all HP machines running HP-UX, and file types that are
common to all implementations. There may be additional implementation-dependent file types. The
predefined file types are:

/* for object code files */
#define RELOC_MAGIC 0x106 /* relocatable only */
#define EXEC_MAGIC 0x107 /* normal executable */
#define SHARE_MAGIC 0x108 /* shared executable */
#define DEMAND_MAGIC 0x10B /* demand-load executable */
#define LISP_MAGIC 0x10C /* compiled Lisp */
#define DL_MAGIC 0x10D /* dynamic load library */
#define SHL_MAGIC 0x10E /* shared library */
#define HPE_MAGIC 0x150 /* HPE boot image */

The values for system_id are defined in model(4).

WARNINGS
Files managed by cpio use a different form of magic number that is incompatible with <magic.h >.

SEE ALSO
ar(1), ld(1), a.out(4), ar(4), model(4).

Section 4−−160 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

master(4) master(4)

NAME
master - master kernel configuration information

DESCRIPTION
A master file contains sections of information in a form suitable for config , enabling it to create a kernel
configuration file. Master files are found in the directory /usr/conf/master.d .

Master files are of two types:

• A kernel master file is of the type which usually carries information on several drivers/subsystems.

• A kernel module master file carries information on an individual module. Such master files are
named after the module to which they belong and are installed onto a system via kminstall .

Each section of a master file begins with a line containing a $ in column one followed by a section keyword.
The section continues to the end of the file or until a line containing only three $ characters is encountered.
Lines beginning with an asterisk (*) are comments.

Kernel Master File
The following table lists the section keywords for the kernel master file and their purpose. Note that some
of the section keywords may also be used for the kernel module master file described later:

Section keyword Section purpose

$DEVICE Device driver specification
$CDIO Context Dependent I/O table
$DRIVER_INSTALL List of drivers with installation functions
$DYN_MAJOR Dynamic block and character major numbers
$ALIAS Driver alias table
$TUNABLE Tunable parameters
$DRIVER_DEPENDENCY Driver-to-driver dependency table
$DRIVER_LIBRARY Library location of driver table
$LIBRARY Required/optional library table
$SUBSYSTEMS_DEFINE Subsystems requiring #defines
$STREAMS_SYNC_LEVEL STREAMS synchronization level table
$STREAMS_DVR_SYNC STREAMS driver and module synchronization table

Each section consists of text fields separated by space and tab characters and is described separately below.
Bit mask fields are expressed as hexadecimal values which are constructed by computing the logical OR of
the component bit values.

$DEVICE Section
NOTE: This section is provided for compatibility with previous HP-UX releases. New drivers should be
added to the $DRIVER_INSTALL section.

Software drivers are defined using five fields defined as follows:

Field_1 Device name, used in the user-specified system_file (8 characters maximum).

Field_2 Handler name, used by the kernel to prefix routines such as cs80_read , lp_write , and oth-
ers (8 characters maximum).

Field_3 Driver characteristics, which are specified by computing the logical OR using the hexadecimal bit
mask value of the following seven bits.

0x40 STREAMS module
0x20 STREAMS driver
0x10 I/O card or pseudo driver
0x08 Allow only one specification of driver
0x04 Required device (included in all systems)
0x02 Block device
0x01 Character device

Field_4 Functions for the device, specified by creating a bit mask using the following bits:

0x100000 Turn off map buffer to kernel flag (C_MAP_BUFFER_TO_KERNEL)
0x010000 Set driver is multiprocessor capable flag (C_MGR_IS_MP)
0x008000 Set STREAMS clone major device flag (C_CLONESMAJOR)

HP-UX Release 11.0: October 1997 − 1 − Section 4−−161

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

master(4) master(4)

0x004000 Set STREAMS System V release 3 style open flag (SVR3_OPEN)
0x002000 Set STREAMS System V release 4 style open flag (SVR4_OPEN)
0x001000 Autochanger mount routine exists
0x000800 option1 handler exists (Series 700 only)
0x000400 dump handler exists
0x000200 size handler exists
0x000100 link routine exists
0x000080 open handler exists
0x000040 close handler exists
0x000020 read handler exists
0x000010 write handler exists
0x000008 ioctl handler exists
0x000004 select handler exists
0x000002 seltru handler exists
0x000001 Set device close routine called on all closes flag (C_ALLCLOSES)

Field_5 Block major device number if a block-type device; otherwise -1.

Field_6 Character major device number if a character-type device; otherwise -1.

$CDIO Section
CDIO (Context Dependent I/O) list. List of I/O modules specific to the bus and/or driver environment, and
whether they are required in a minimal system.

Field_1 CDIO name.

Field_2 1 if the CDIO is required for a minimal system; otherwise 0.

$DYN_MAJOR Section
Dynamic major numbers. A range of block and character major numbers reserved for drivers whose major
numbers are assigned dynamically.

Field_1 block or char .

Field_2 A major number or a range of major numbers. A range is specified as
lo_major_num- hi_major_num.

$DRIVER_INSTALL Section
Driver install section is a list of drivers, shown with their block and character major numbers

Field_1 Driver name.

Field_2 Block major device number if a block-type device; otherwise -1.

Field_3 Character major device number if a character-type device; otherwise -1.

Field_4 1 if the driver is required for a minimal system; otherwise 0.

$ALIAS Section
Aliases for names are defined as follows:

Field_1 Alias name => product number (8 characters maximum)

Field_2 Device name (8 characters maximum)

$TUNABLE Section
Tunable parameters are defined as follows:

Field_1 Parameter name as used in the user-specified system_file (20 characters maximum).

Field_2 Parameter name as used in the #define statement in tune.h (20 characters maximum). In
previous releases, the #define statement in which the parameter name was used, was in
conf.c .

Field_3 Default value for the parameter (60 characters maximum).

Field_4 Minimum value for the parameter (60 characters maximum).

Section 4−−162 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

master(4) master(4)

$DRIVER_DEPENDENCY Section
List of drivers and the other drivers they depend on.

Field_1 Dependent driver.

Field_2-N Name of supporting drivers or CDIO’s.

$DRIVER_LIBRARY Section
List of drivers and the library or libraries containing the driver object code.

Field_1 Driver name.

Field_2-N Name of libraries containing driver code.

$LIBRARY Section
Library list. List of object code libraries and whether they are required is a minimal system.

Field_1 Library name.

Field_2 1 if the library is required for a minimal system; otherwise 0.

$SUBSYSTEMS_DEFINE Section
List of subsystems and/or drivers that require #define IDENTIFIER statements in conf.c . If needed,
the identifier will be converted to upper case.

Field_1 Subsystem/driver name.

Field_2 (Optional) Name of identifier to define. If this field is not present, the identifier will be Field_1
in upper case.

$STREAMS_SYNC_LEVEL Section
List of possible STREAMS synchronization levels. Please refer to the documentation that accompanied the
STREAMS/UX product for a more detailed description of this table and STREAMS synchronization levels.

Field_1 Synchronization level.

$STREAMS_DVR_SYNC Section
List of STREAMS modules and drivers and the synchronization levels that they require. Please refer to the
documentation that accompanied the STREAMS/UX product for more information about this table.

Field_1 Driver or module name.

Field_2 Synchronization level. (Must be present in a $STREAM_SYNC_LEVELlist.)

Field_3 (Optional) Additional STREAMS synchronization information.

Kernel Module Master File
The following section keywords and purposes are used only in the kernel module master files.

Section keyword Section purpose

$VERSION File format version
$LOADABLE Load capability of module
$INTERFACE Interface used by module
$TYPE Module type specific information

If required, kernel module master files may use the following section keywords and purposes described ear-
lier.

Section keyword Section purpose

$DRIVER_DEPENDENCY Dependency to other kernel modules.
$TUNABLE Same as $TUNABLEsection.
$DRIVER_INSTALL Same as $DRIVER_INSTALL.

For kernel modules, $DRIVER_INSTALL section information is used to link the kernel module into the
kernel statically. The first field of this section indicates the module_name.

Each section consists of text fields separated by space and tab characters and is described separately below.

HP-UX Release 11.0: October 1997 − 3 − Section 4−−163

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

master(4) master(4)

$VERSION Section
Format version.

Format version starts from one.

Field_1 Version number. (decimal number)

Example

$VERSION
1
$$$

$LOADABLE Section
Capability of a kernel module.

If the section exists, the module is dynamically loadable. Otherwise it can be only statically linked into the
kernel. Boot device related kernel modules should not supply the section. Kernel module without $LOAD-
ABLE section cannot be configured as dynamically loadable module.

Example

$LOADABLE
$$$

If the module is using stub, keyword stub should be specified within the section.

Example

$LOADABLE
stub
$$$

$INTERFACE Section
List of used interfaces by kernel modules.

NOTE: base may be specified in Field 1 alternatively. If base is specified, interface enforcement and
version control will be exempted and module will need to be maintained by its developer to be in synchroni-
zation with kernel or other components.

Field_1 Interface name. (string)

Field_2 Version name. (string)

Example

$INTERFACE
wsio2 1
xyz 4
$$$

$TYPE Section
Module type and type specific information list.

Field_1 Kernel module name.

Field_2 Module type name.

wsio2_class , wsio2_intfc , wsio_class , wsio_intfc , streams_mod ,
streams_drv , misc are valid.

Fields 3 - 6 contains module type specific fields for these types; wsio2_class , wsio2_intfc ,
wsio_class , wsio_intfc , streams_drv :

Field_3 Class name.

Field_4 Flags.

c character device driver.

b block device driver.

p pseudo driver.

Section 4−−164 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

master(4) master(4)

s supports scanning.

m MP capable driver.

i Save information to ioconfig.

Field_5 block device major number.

Field_6 character device major number.

Example

$TYPE
wsio2 stape2 tape c -1 203
$$$

EXAMPLES
The following entry in the $DRIVER_INSTALL section will enable the kernel to dynamically assign block
and/or character major number(s) for a custom driver, mydriver .

mydriver -1 -1 0

FILES
/usr/conf/master.d Master files directory

SEE ALSO
kminstall(1M),config(1M), kmsystem(1M).

HP-UX Release 11.0: October 1997 − 5 − Section 4−−165

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

mnttab(4) mnttab(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mntent.h>

DESCRIPTION
mnttab resides in directory /etc and contains a table of devices mounted by the mount command (see
mount(1M)). The file contains a line of information for each mounted filesystem which is structurally ident-
ical to the contents of /etc/fstab described by fstab(4).

There are a number of lines of the form:

special_file_name dir type opts freq passno mount_time

consisting of entries similar to:

/dev/dsk/c0d0s0 / hfs rw 0 1 537851723

/etc/mnttab is accessed by programs that use getmntent() (see getmntent(3X)), It should never be
manually edited, nor should setmnt ever be used to create invalid entries in /etc/mnttab (see
setmnt(1M)).

mount_time contains the time the file system was mounted using mount . Its value is the number of
seconds since the Epoch (00:00:00 Coordinated Universal Time, January 1, 1970 (see time(2).

mount and umount rewrite the mnttab file whenever a file system is mounted or unmounted if
mnttab is found to be out of date with the mounted file system table maintained internally by the HP-UX
kernel. syncer also updates mnttab if it is out of date (see syncer(1M).

WARNINGS
The table is provided only as a means for programs to return information about mounted file systems.

/etc/mnttab should never be manually edited. Any manual changes made to /etc/mnttab are
overwritten without warning by syncer , mount , and umount .

AUTHOR
mnttab was developed by the University of California, Berkeley, Sun Microsystems, Inc., and HP.

FILES
/etc/mnttab

SEE ALSO
mount(1M), getmntent(3X), fstab(4).

Section 4−−166 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

m

model(4) model(4)

NAME
model - HP-UX machine identification

SYNOPSIS
#include <model.h>

DESCRIPTION
There are certain inevitable distinctions between HP-UX implementations due to hardware differences.
Where such distinctions exist, conditional compilation or other definitions can be used to isolate the
differences. Flags and typedefs to resolve these distinctions are collected in the <model.h > header file
which contains constants identifying various HP-UX implementations.

For example, header file model.h contains the following constants whose values are defined in
<sys/magic.h >:

#define HP_S_500 HP9000_ID
#define HP_S_200 HP98x6_ID
#define HP_S_300 CPU_HP_MC68020
#define HP_S_800 CPU_PA_RISC1_0
#define HP_S_700 CPU_PA_RISC1_1

Other such constants are added as appropriate when HP-UX extends to other machines in subsequent
releases.

In addition, model.h has a statement defining the preprocessor constant MYSYSto represent the
specific implementation for which compilation is desired. MYSYSis always equal to one of the constants
above.

Conditional compilation can be used to adapt a single file for execution on more than one HP-UX implemen-
tation if the file contains implementation- or architecture-dependent features. For example, the code seg-
ment:

#if MYSYS==HP_S_400
<statements>

#endif

causes statements following the if statement to be compiled only if the system processor is an HP 9000
Series 400 machine.

model.h also contains typedefs for several predefined types to enhance portability of certain types of code
and files.

int8 , u_int8 Signed and unsigned 8-bit integers.
int16 , u_int16 Signed and unsigned 16-bit integers.
int32 , u_int32 Signed and unsigned 32-bit integers.
machptr , u_machptr Signed and unsigned integers large enough to hold a pointer.

Certain C preprocessor conditional compilation variables are defined to aid in implementation-dependent
code. See cpp(1).

SEE ALSO
cc(1), cpp(1), magic(4).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−167

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

netconfig(4) netconfig(4)

NAME
netconfig - network configuration database

SYNOPSIS
/etc/netconfig

DESCRIPTION
The network configuration database, /etc/netconfig , is a system file used to store information about
networks that are connected to the system. The netconfig database and the routines that access it (see
getnetconfig(3N)) are part of the Network Selection component. The Network Selection component also
includes getnetpath() routines to provide application-specific network search paths. These routines
access the netconfig database based on the environment variable NETPATH (see environ(5)).

netconfig contains an entry for each network available on the system. Entries are separated by new-
lines. Fields are separated by whitespace and occur in the order in which they are described below. Whi-
tespace can be embedded as blank or tab. Lines in /etc/netconfig that begin with a # (hash) in
column 1 are treated as comments.

Each of the valid lines in the netconfig database correspond to an available transport. Each entry is of
the form:

network_ID semantics_flag protocol_family protocol_name network_device translation_libraries

network_ID A string used to uniquely identify a network. network_ID consists of non-null characters, and
has a length of at least 1. No maximum length is specified. This namespace is locally
significant and the local system administrator is the naming authority. All network_ID ’s on a
system must be unique.

semantics The semantics field is a string identifying the ‘‘semantics’’ of the network, that is, the set of
services it supports, by identifying the service interface it provides. The semantics field is
mandatory. The following semantics are recognized.

tpi_clts Transport Provider Interface, connectionless

tpi_cots_ord Transport Provider Interface, connection oriented, supports orderly
release.

flag The flag field records certain two-valued (‘‘true’’ and ‘‘false’’) attributes of networks. flag is a
string composed of a combination of characters, each of which indicates the value of the
corresponding attribute. If the character is present, the attribute is ‘‘true.’’ If the character is
absent, the attribute is ‘‘false.’’ ‘‘- ’’ indicates that none of the attributes are present. Only one
character is currently recognized:

v Visible (‘‘default’’) network. Used when the environment variable NET-
PATH is unset.

protocol_family
The protocol_family and protocol_name fields are provided for protocol-specific applications.

The protocol_family field contains a string that identifies a protocol family. The
protocol_family identifier follows the same rules as those for network_IDs; the string consists
of non-null characters, it has a length of at least 1, and there is no maximum length specified.
A - in the protocol_family field indicates that no protocol family identifier applies (the network
is experimental). An example protocol family:

inet Internetwork: UDP, TCP, etc.

protocol_name
The protocol_name field contains a string that identifies a protocol. The protocol_name
identifier follows the same rules as those for network_IDs; that is, the string consists of non-
NULL characters, it has a length of at least 1, and there is no maximum length specified. A
‘‘- ’’ indicates that none of the names listed apply. The following protocol names are recog-
nized.

tcp Transmission Control Protocol

udp User Datagram Protocol

network_device
The network_device is the full pathname of the device used to connect to the transport

Section 4−−168 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

netconfig(4) netconfig(4)

provider. Typically, this device will be in the /dev directory. The network_device must be
specified.

translation_libraries
The name-to-address translation libraries support a ‘‘directory service’’ (a name-to-address
mapping service) for the network. A ‘‘- ’’ in this field indicates the absence of any
translation_libraries. This has a special meaning for networks of the protocol family inet: its
name-to-address mapping is provided by the name service switch based on the entries for hosts
and services in switch() (see nsswitch.conf(4)). For networks of other families, a ‘‘- ’’ indi-
cates non-functional name-to-address mapping. Otherwise, this field consists of a comma-
separated list of pathnames to dynamically linked libraries. The pathname of the library can
be either absolute or relative.

Each field corresponds to an element in the struct netconfig structure. struct netconfig and
the identifiers described on this manual page are defined in <netconfig.h> . This structure includes
the following members:

char *nc_netid Network ID, including NULL terminator.

unsigned long nc_semantics
Semantics.

unsigned long nc_flag Flags.

char *nc_protofmly Protocol family.

char *nc_proto Protocol name.

char *nc_device Full pathname of the network device.

unsigned long nc_nlookups
Number of directory lookup libraries.

char **nc_lookups Names of the name-to-address translation libraries.

unsigned long nc_unused[9]
Reserved for future expansion.

The nc_semantics field takes the following values, corresponding to the semantics identified above:

NC_TPI_CLTS
NC_TPI_COTS_ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute identified above, is currently
recognized. NC_NOFLAGindicates the absence of any attributes.

NC_VISIBLE

EXAMPLES
Below is a sample netconfig file:

#
The ’Network Configuration’ File.
#
Each entry is of the form:
#
<network_id> <semantics> <flags> <protofamily> <protoname> <device> \
<nametoaddr_libs>
#
The ’-’ in <nametoaddr_libs> for inet family transports indicates
redirection to the name service switch policies for ’hosts’ and
’services’. The ’-’ may be replaced by nametoaddr libraries that
comply with the SVr4 specs, in which case the name service switch
will not be used for netdir_getbyname, netdir_getbyaddr,
gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddr_libs for the inet family, and currently
nametoaddr_libs are not supported.
#
udp tpi_clts v inet udp /dev/udp -
tcp tpi_cots_ord v inet tcp /dev/tcp -

HP-UX Release 11.0: October 1997 − 2 − Section 4−−169

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

netconfig(4) netconfig(4)

AUTHOR
netconfig was developed by Sun Microsystems, Inc.

FILES
<netconfig.h>

/etc/netconfig

SEE ALSO
getnetconfig(3N), getnetpath(3N), nsswitch.conf(4).

Section 4−−170 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

netgroup(4) netgroup(4)

NAME
netgroup - list of network groups

DESCRIPTION
File /etc/netgroup defines network-wide groups, and is used for permission checking when executing
remote mounts, remote logins, and remote shells. For remote mounts, the information in netgroup
classifies machines; for remote logins and remote shells, it classifies users. Each line of the netgroup
file defines a group and has the format

groupname member1 member2 ...

where member i is either another group name, or a triple.

(hostname, username, domainname)

If any of these three fields are left empty, it signifies a wild card. Thus

universal (,,)

defines a group to which everyone belongs. Field names that begin with something other than a letter,
digit or underscore (such as -) do not match any value. For example, consider the following entries.

justmachines (analytica,-,YOURDOMAIN)
justpeople (-,root,YOURDOMAIN)

Machine analytica belongs to the group justmachines in the domain YOURDOMAIN, but no users
belong to it. Similarly, the user root belongs to the group justpeople in the domain YOURDOMAIN,
but no machines belong to it.

Note, the domain name field must match the current domain name (as returned by the domainname
command), or the entry is not matched. Also, the user-name field is ignored for remote mounts. Only the
hostname and domainname are used.

The Network Information Service (NIS) can serve network groups. When so used, they are stored in the fol-
lowing NIS maps.

netgroup
netgroup.byuser
netgroup.byhost

Refer to ypserv (1M) and ypfiles(4) for an overview of Network Information Service.

AUTHOR
netgroup was developed by Sun Microsystems, Inc.

FILES
/etc/netgroup

SEE ALSO
makedbm(1M), mountd(1M), ypmake(1M), ypserv(1M), getnetgrent(3C), hosts.equiv(4), ypfiles(4).

Installing and Administering NFS Services , Chapter 7: NIS Configuration.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−171

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

netrc(4) netrc(4)

NAME
netrc - login information for ftp and rexec

DESCRIPTION
The .netrc file contains login and initialization information used by the ftp autologin process, by the
rexec() library routine, and by the rexec command (see ftp(1), rexec(3N), and remsh(1)), respectively.
This file is optional. It exists, if at all, in the user’s home directory.

If the .netrc file contains password or account information for use other than for anonymous ftp , its
owner must match the effective user ID of the current process. Its read, write, and execute mode bits for
group and other must all be zero, and it must be readable by its owner. Otherwise, the file is ignored.

The file can contain the following tokens, separated by white space (spaces, tabs, or newlines) or commas
(,). To include a comma as part of a token, enclose that token in quotation marks (").

machine name Identify a remote machine name. The autologin process searches the .netrc
file for a machine token that matches the remote machine specified on the ftp
command line, as an ftp open command argument, or as the * ahost parame-
ter to rexec() . Once a match is made, the subsequent .netrc tokens are
processed, stopping when the end-of-file is reached or another machine token
or a default token is encountered.

default Same as machine name except that default matches any name. There can
be only one default token, and it must be after all machine tokens. This is
normally used for ftp as follows:

default login anonymous password user@site

This provides automatic anonymous ftp login to machines not specified in
.netrc . This can be overridden in ftp by using the -n flag to disable autolo-
gin.

login name Identify a user on the remote machine. If this token is present, the ftp or
rexec() autologin process initiates a login using the specified name. If this
token matches the user name used by the rexec -l command option, or, by
default, the local user name, rexec uses the password token, if present.

password string Supply a password. If this token is present, the autologin process supplies the
specified string if the remote server requires a password as part of the login pro-
cess. Note that if this token is present in the .netrc file for any user other
than anonymous , ftp aborts the autologin process if the .netrc is readable
by anyone other than the owner. Also note that the passwords in .netrc are
not encrypted.

account string Supply an additional account password for ftp login. If this token is present,
the autologin process supplies the specified string if the remote server requires
an additional account password, or the autologin process initiates an acct com-
mand if it does not.

macdef name Define an ftp macro. This token is just like the ftp macdef command. A
macro is defined with the specified name; its contents begin with the next
.netrc line and continue until an empty line (consecutive newline characters)
is encountered. If a macro named init is defined, it is automatically executed
as the last step in the ftp autologin process.

EXAMPLES
The following is a valid entry for the host hpxdzg whose guest account has the password sesame :

machine hpxdzg login guest password sesame

WARNINGS
It is a security risk to have unencrypted passwords in a file.

AUTHOR
netrc was developed by the University of California, Berkeley.

Section 4−−172 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

netrc(4) netrc(4)

FILES
$HOME/.netrc

SEE ALSO
ftp(1), remsh(1), rexec(3N).

HP-UX Release 11.0: October 1997 − 2 − Section 4−−173

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nettlgen.conf(4) nettlgen.conf(4)

NAME
nettlgen.conf - network tracing and logging configuration file

SYNOPSIS
/etc/nettlgen.conf

DESCRIPTION
/etc/nettlgen.conf ,gpr the configuration file for Common Network Tracing and Logging com-
mands, contains configuration information used by the nettl and netfmt commands (see nettl(1M) and
netfmt(1M)). The nettlconf command (see nettlconf(1M)) maintains log and subsystem data in this file,
allowing subsystems to safely add, modify, or delete existing entries in the file. nettlconf also allows
system administrators to customize logging resource usage parameters and file names in the file. Changes
to this file should only be made using the nettlconf command.

The file is composed of records containing fields which are separated by colons (:). Each line is a unique
record containing either global log information or subsystem information. The first field in each record is
the tag field which identifies the type of information contained in that record. A LOG tag identifies log
information; a SS tag identifies subsystem information. Blank lines or lines beginning with # are ignored.

Log Record
The log record defines static information used to configure logging defaults such as the name of the log file
and whether to turn console logging on or off. Note that only the last log record encountered in the file is
used; prior log records are ignored. Users can alter the log information to suit their particular needs using
the nettlconf command. For the log information changes to take effect, the system administrator
must stop and restart the tracing and logging facility using the nettl command.

Log record fields are as follows:

Field
Number Name Description___

1 tag Contains LOG tag string.

2 Console Logging Flag Set to 1 if console logging is to be
enabled, 0 if not.

3 Log Port Size Amount of memory to reserve for
internal log message buffers.
Specified in Kbyte units. Valid range
is 1 - 32. The default is 8.

4 Maximum Log File Space Determines the maximum logging file
space to be allowed. Specified in
Kbyte units. This value is the com-
bined size of the 2 ping-ponged log
files. Valid range is 1 - 10240. The
default is 1000.

5 Log File prefix Path and name of the log file, without
the type and age extension (.LOG0x,
where x is 0 or 1).

6 Console Filter File Name of filter configuration file used
for console logging.

The Console Logging Flag determines if console logging is to be enabled when the tracing and logging
facility is started. Console logging is used to display log messages on the system console using criteria
specified in the file named by Console Filter File. If there is no console present or console logging is not
desired this feature can be turned off using the nettlconf command. During system bootup, the Con-
sole Logging Flag is always updated to reflect the value of the NETTL_CONSOLE variable in the
/etc/rc.config.d/nettl file.

If more information is desired than the special terse form used for console logging, turn off console logging
and start a formatter with an options file specifying the filters to use (see netfmt(1M)).

The Log Port Size defines the number of outstanding messages possible in the log queue. For logging,
256-byte buffers are used. The number chosen here indicates how much space to allocate in kilobytes. The
default size is 8192 bytes (specified by 8), which is split into thirty-two 256-byte blocks. The first block is
reserved by the system, leaving 31 blocks for log messages. Each log message starts on a new block, taking

Section 4−−174 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nettlgen.conf(4) nettlgen.conf(4)

64 bytes of overhead. In addition, each block takes 8 bytes of overhead. The largest message that can be
stored using the default size is 7624 bytes ((31 ∗ 256) - (31 ∗ 8) - 64). Most log messages are fairly small, so
choosing 8K of buffer is sufficient for the logging facility to keep up with a large volume of messages.

The Maximum Log File Space determines the maximum logging file space to be allowed. Log files are
split into two parts. When an individual log file reaches one-half of the maximum specified here, the log-
ging system deletes any existing old file, renames the current file to the old file, and starts a new file. The
default specification allows for 1 Megabyte of total log file storage (each file does not exceed 500K bytes).
Since logging is usually infrequent and log messages are fairly small, this should be more than adequate for
all needs. The rate at which the file space fills up depends on what level of logging is turned on for each
subsystem, the volume of traffic, frequency of connections, etc; and is very difficult to predict.

The Console Filter File specifies the name of the file containing formatter filters used for console logging.
This file contains filters that control the logged information displayed on the console. The syntax of this file
is the same as the filter configuration files that are used with the netfmt command. See netfmt(1M) for
more details on filter configuration files.

If the console filter file does not exist, the specified file is created with a default set of filters which will
display DISASTER messages on the console. If the console filter file does exist and contains a time_from
filter, the time_of_day and day_of_year fields in the filter will be updated every time nettl is started.

The Console Filter File field is optional. If omitted the default file /var/adm/conslog.opts will
be used.

Subsystem Record
The subsystem record defines the information for that subsystem, and has ten fields including the tag field.
The fields are separated by colons (:); thus no field can contain a colon. An empty field can be represented
by the string NULL. NOTE: the information in the subsystem records should only be changed by the sub-
system using the nettlconf command during product installation. Users should not change this infor-
mation unless directed by a Hewlett-Packard support representative.

Subsystem record fields are as follows:

Field
Number Name Description__

1 tag Contains SS tag string.

2 Subsystem ID An integer between 0 and 255. This
number is set by the HP factory and
must not be changed.

3 Subsystem Mnemonic A text string consisting of letters,
numbers, and the underscore charac-
ter. The string is set at the factory
and must not be changed.

4 Initial Log Class Logging class for the subsystem when
the tracing and logging facility is ini-
tialized. This is a numeric value as
shown below.

5 Subsystem Type Set to s if the subsystem is streams
based and exists in the kernel, k if the
subsystem exists in the kernel and
non-streams based, u if not.

6 Subformatter Shared Library Name of the shared library file con-
taining the subformatter functions
listed below.

7 Subformatter Message Catalog Basename of the message catalog to
use when formatting data for this sub-
system.

8 Subformatter Function C function in the subformatter library
to call when formatting data for this
subsystem.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−175

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nettlgen.conf(4) nettlgen.conf(4)

9 Subformatter Options C function in the subformatter library
to call to get filter options for this sub-
system.

10 Group Name A text string to be used in the header
banner line in the formatted output.

The recommended setting for the default logging level is set by the products’ configuration scripts. It can
be changed by the user if another level of logging is desired on initialization. The available classes are
Disaster (8), Error (4), Warning (2), and Informative (1). Classes can be combined by adding the numbers;
thus Disaster and Error together become 12. The logging level can also be changed at run time using the
nettl -log command. Disaster class is always turned on, even if not specified in this configuration file;
thus, specifying the value 14 or 6 turns on Disaster, Error and Warning.

If the subformatter library file name does not contain an absolute path, it is assumed to be under
/usr/lib . The subformatter library must be a shared library.

EXTERNAL INFLUENCES
Message catalogs are found in the path determined by the environment variable NLSPATH. Default mes-
sage catalogs are found in /usr/lib/nls/%L/%N.cat where the contents of the LANGenvironment
variable is substituted for the %Lfield, and the name specified in this parameter is substituted for the %N
field.

EXAMPLES
The following example shows the default logging information. Console logging is enabled; logging uses 8
Kbytes to hold log messages; the log files are limited to 1000 Kbytes total (500 Kbytes per file); the log files
are /var/adm/nettl.LOG00 and /var/adm/nettl.LOG01 ; and the console logging filter file is
/var/adm/conslog.opts . Most recent data is always in the .LOG00 file.

#
LOG INFORMATION
#

LOG:1:8:1000:/var/adm/nettl:/var/adm/conslog.opts

The following example turns off console logging, and limits the size of the log file space to 100 Kbytes.
Other values are the same as the default.

#
LOG INFORMATION
#

LOG:0:8:100:/var/adm/nettl:/var/adm/conslog.opts

The following example shows a typical subsystem record. These records should not be changed by the user,
but are set by the subsystems using nettlconf during product installation.

#
TEST SUBSYSTEMS
#

SS:96:TEST_ID_1:8:u:NULL:netfmt:subsys_GENERIC_format: \
ss_96_go:FORMATTER
SS:97:TEST_ID_2:8:u:NULL:netfmt:subsys_GENERIC_format: \
ss_97_go:FORMATTER

Note : The continuation marks in this example (\ at end-of-line) and the following one are placed for reada-
bility purposes only. nettl and netfmt do not understand continuation marks.

The following entry must always be included in the configuration file. This defines the subsystem for the
formatter itself; if it is not in the file, the formatter will not operate properly.

#
FORMATTER SUBSYSTEMS
#

SS:127:FORMATTER:12:u:NULL:netfmt:subsys_GENERIC_format: \
subsys_127_get_options:FORMATTER

Section 4−−176 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nettlgen.conf(4) nettlgen.conf(4)

FILES
/etc/nettlgen.conf

SEE ALSO
netfmt(1M), nettl(1M), nettlconf(1M).

HP-UX Release 11.0: October 1997 − 4 − Section 4−−177

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

networks(4) networks(4)

NAME
networks - network name data base

DESCRIPTION
The /etc/networks file associates Internet (IP) addresses with official network names and aliases.
This allows the user to refer to a network by a symbolic name instead of using an Internet address. For
each network, a single line should be present with the following information:

<official network name> <network number> <aliases>

Aliases are other names under which a network is known. For example:

loop 192.46.4 testlan

where the network named loop is also called testlan .

A line cannot start with a blank (tab or space character). Items are separated by any number or combina-
tion of blanks. A # character indicates the beginning of a comment. Characters from the # up to the end
of the line are not interpreted by routines which search the file. Trailing blanks are allowed at the end of a
line. For the Internet, this file is normally created from the official network database maintained at the
Network Information Control Center (NIC), though local changes may be required to bring it up-to-date
regarding unofficial aliases and/or unknown networks.

Network numbers can be specified in conventional Internet dot notation using the inet_network()
routine from the internet address manipulation library (see inet(3N). Network names can contain any
printable character other than a white space, new-line, or comment character.

EXAMPLES
See /etc/networks .

AUTHOR
networks was developed by the University of California, Berkeley.

FILES
/etc/networks

SEE ALSO
getnetent(3N).

Section 4−−178 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nisfiles(4) nisfiles(4)

NAME
nisfiles - NIS+ database files and directory structure

SYNOPSIS
/var/nis

DESCRIPTION
The Network Information Service Plus (NIS+) uses a memory-based, replicated database. This database
uses a set of files in the /var/nis directory for checkpointing to stable storage and for maintaining a
transaction log. Additionally, the NIS+ server and client use files in this directory to store binding and
state information.

The NIS+ service implements an authentication and authorization system that is built upon Secure RPC.
In this implementation, the service uses a table named cred.org_dir. domain-name to store the public
and private keys of principals that are authorized to access the NIS+ namespace. It stores group access
information in the subdomain groups_dir. domain-name as group objects. These two tables appear as
files in the /var/nis/ hostname directory on the NIS+ server.

Unlike the previous versions of the network information service in NIS+, the information in the tables is
initially loaded into the service from the ASCII files on the server and then updated using NIS+ utilities
(nistbladm -D). Some sites may wish to periodically regenerate the ASCII files for archival purposes.
To do this, a script should be added in the crontab(1) of the server that lists these tables and creates the
ASCII file from the result.

Note: Except for the NIS_COLDSTARTand NIS_SHARED_DIRCACHEfile, no other files should be
manipulated by commands such as cp(1), mv(1) or rm(1). The transaction log file keeps logs of all changes
made, and hence the files cannot be manipulated independently.

The files described below are stored in the /var/nis directory:

NIS_COLDSTART
This file contains NIS+ directory objects that are to be preloaded into the NIS+ cache at startup
time. This file is usually created at NIS+ installation time. See nisinit(1M) or nisclient(1M).

NIS_SHARED_DIRCACHE
This file contains the current cache of NIS+ bindings being maintained by the cache manager.
The contents can be viewed with nisshowcache(1M).

hostname.log
This file contains a transaction log that is maintained by the NIS+ service. It can be viewed
using the nislog(1M) command. This file contains holes. Its apparent size may be a lot higher
than its actual size. There is only one transaction log per server.

hostname.dict
This file is a dictionary that is used by the NIS+ database to locate its files. It is created by the
default NIS+ database package.

hostname.dict.log
This is the log file for the database dictionary. When the server is checkpointed (nisping
-C), this file will be deleted.

hostname This directory contains databases that the server uses.

hostname/root.object
On root servers, this file contains a directory object that describes the root of the name space.

hostname/parent.object
On root servers, this file contains a directory object that describes the parent namespace. This
file is created by the nisinit(1M) command.

hostname/ table_name
For each table in the directory there will be a file with the same name that stores the informa-
tion about that table. If there are subdirectories within this directory, the database for the table
is stored in the file table_name. subdirectory.

hostname/ table_name.log
This file contains the database log for the table table_name. The log file maintains the state of
individual transactions to each database. When a database has been checkpointed (that is, all
changes have been made to the hostname/table_name stable storage), this log file will be deleted.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−179

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nisfiles(4) nisfiles(4)

Currently, NIS+ does not automatically do checkpointing. The system administrator may want
to do nisping -C (see nisping(1M)) operations periodically (such as, once a day) to checkpoint
the log file. This can be done either through a cron(1M) job, or manually.

hostname/root_dir
On root servers, this file stores the database associated with the root directory. It is similar to
other table databases. The corresponding log file is called root_dir.log .

hostname/cred.org_dir
This table contains the credentials of principals in this NIS+ domain.

hostname/groups_dir
This table contains the group authorization objects needed by NIS+ to authorize group access.

hostname/serving_list
This file contains a list of all NIS+ directories that are being served by the NIS+ server on this
server. When this server is added or deleted from any NIS+ directory object, this file is updated
by the server.

AUTHOR
nisfiles was developed by Sun Microsystems, Inc.

SEE ALSO
cp(1), crontab(1), mv(1), rm(1), nis+(1), niscat(1), nismatch(1), nistbladm(1), nisclient(1M), nisinit(1M),
nislog(1M), nisping(1M), nis_db(3N), nis_objects(3N).

Section 4−−180 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nlist(4) nlist(4)

NAME
nlist, nlist64 - nlist and nlist64 structure formats, respectively

SYNOPSIS
#include <nlist.h>

Remarks
The exact content of the structures defined below can be best found by examining
/usr/include/nlist.h . It varies somewhat between various HP-UX implementations.

DESCRIPTION
nlist() and nlist64() can be used to extract information from the symbol table in an object file (see
nlist(3C)). They are basically the same tool except nlist() can only process SOM files on a PA32 system
while nlist64() can process SOM and Elf files on either a PA32 or PA64 system. Since symbol tables
are machine dependent (as defined in each implementation’s copy of <a.out.h >), a header file, nlist.h
is defined to encapsulate the differences.

The nlist function, either nlist() or nlist64() , when used with the corresponding nlist structure,
can be used to extract certain information about selected symbols in the symbol table. The data associated
with each symbol is machine specific, thus only the name and position of the n_name field in the function
is standardized by HP-UX. The rest of the structure includes at least the value and type of the symbol.
The names and meanings of all fields not standardized will change no more than necessary.

struct nlist {
char *n_name;
/* other fields as needed;

the following are suggested if they apply */
char *n_qual;
unsigned short n_type;
unsigned short n_scope;
unsigned int n_info;
unsigned long n_value;

};

struct nlist64 {
char *n_name;
/* other fields as needed;

the following are suggested if they apply */
char *n_qual;
unsigned short n_type;
unsigned short n_scope;
unsigned long n_info;
unsigned long long n_value;
unsigned int is_elf:1;
unsigned int is_32:1;
unsigned int reserved1:30;
unsigned long long reserved2;
unsigned long long reserved3;

};

SEE ALSO
nlist(3C), a.out(4).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−181

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nsswitch.conf(4) nsswitch.conf(4)

NAME
nsswitch.conf - configuration file for the name-service switch

SYNOPSIS
/etc/nsswitch.conf

DESCRIPTION
The operating system uses a number of "databases" of information about hosts, users (passwd), groups
and so forth. Data for these can come from a variety of sources: host-names and -addresses, for example,
may be found in /etc/hosts , NIS, NIS+ or DNS. One or more sources may be used for each database;
the sources and their lookup order are specified in the /etc/nsswitch.conf file.

The following databases use the switch:

Database Used by
aliases sendmail
automount automount
group getgrnam()
hosts gethostbyname()
netgroup innetgr()
networks getnetbyname()
passwd getpwnam() , getspnam()
protocols getprotobyname()
publickey getpublickey() , secure_rpc()
rpc getrpcbyname()
sendmailvars sendmail
services getservbyname()

The following sources may be used:

Source Uses
files /etc/hosts , /etc/passwd , and so forth
nis NIS (YP)
nisplus NIS+
dns Valid only for hosts ; uses the Internet Domain Name Service.
compat Valid only for passwd and group ; implements "+" and "-".

(See "Interaction with +/- syntax" below)

There is an entry in /etc/nsswitch.conf for each database. Typically these entries will be simple,
like "protocols: files" or "networks: files nisplus". However, when multiple sources are specified it is some-
times necessary to define precisely the circumstances under which each source will be tried. A source can
return one of the following codes:

Status Meaning
SUCCESS Requested database entry was found
UNAVAIL Source is not responding or corrupted
NOTFOUND Source responded "no such entry"
TRYAGAIN Source is busy, might respond to retries

For each status code, two actions are possible:

Action Meaning
continue Try the next source in the list
return Return now

The complete syntax of an entry is

<entry> ::= <database> ":" [<source> [<criteria>]]* <source>
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "=" <action>
<status> ::= "success" | "notfound" | "unavail" | "tryagain"
<action> ::= "return" | "continue"

Each entry occupies a single line in the file. Lines that are blank, or that start with white space character
are ignored. Everything on a line following a # character is also ignored; the # character can begin any-
where in a line, to be used to begin comments. The <database> and <source> names are case-sensitive, but
<action> and <status> names are case-insensitive.

Section 4−−182 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nsswitch.conf(4) nsswitch.conf(4)

The library functions contain compiled-in default entries that are used if the appropriate entry in
nsswitch.conf is absent or syntactically incorrect.

The default criteria are to continue on anything except SUCCESS; in other words, [SUCCESS=return
NOTFOUND=continue UNAVAIL=continue TRYAGAIN=continue].

The default, or explicitly specified, criteria are meaningless following the last source in an entry; and are
ignored since the action is always to return to the caller irrespective of the status code the source returns.

Interaction with netconfig
In order to ensure that they all return consistent results based on the inet family of entries, gethost-
byname() , getservbyname() , and netdir_getbyname() functions are all implemented in terms
of the same internal switch library functions. These functions obtain the system-wide source lookup policy
for hosts and services based on the inet family entries in netconfig() . For services and
hosts only the "-" in the last column, which represents nametoaddr libraries, is supported.

Interaction with NIS+ YP-compatibility Mode
The NIS+ server can be run in "YP-compatibility mode", where it handles NIS (YP) requests as well as
NIS+ requests. In this case, the clients get much the same results from the "nis" source as from "nisplus";
however, "nisplus" is recommended instead of "nis".

Interaction with NIS (YP) server in DNS-forwarding Mode
The NIS (YP) server can be run in "DNS-forwarding mode", where it forwards lookup requests to DNS for
host-names and -addresses that do not exist in its database. In this case, specifying "nis" as a source for
"hosts" is sufficient to get DNS lookups; "dns" need not be specified explicitly as a source.

The NIS+ server in "YP-compatibility mode" can also be run in "DNS-forwarding mode" (see rpc.nisd(1M)).
Forwarding is effective only for requests originating from its YP clients; "hosts" policy on these clients
should be configured appropriately.

Interaction with +/- syntax
Releases prior to HP-UX 10.30 did not have the name-service switch support for passwd and group but did
allow the user some policy control. In /etc/passwd one could have entries of the form +user (include
the specified user from NIS passwd.byname), -user (exclude the specified user) and + (include everything,
except excluded users, from NIS passwd.byname). The desired behavior was often "everything in the file
followed by everything in NIS", expressed by a solitary + at the end of /etc/passwd . The switch pro-
vides an alternative for this case ("passwd: files nis") that does not require + entries in /etc/passwd

If this is not sufficient, the "compat" source provides full +/- semantics. It reads /etc/passwd for
getpwnam() functions and, if it finds +/- entries, invokes an appropriate source. By default the source is
"nis", but this may be overridden by specifying "nisplus" as the source for the pseudo-database
passwd_compat .

The compat source also provides full +/- semantics for group ; the relevant pseudo-database is
group_compat .

Useful Configurations
The compiled-in default entries for all databases use NIS (YP) as the enterprise level name-service and are
identical to those in the default configuration of this file:

passwd: files nis
group: files nis
hosts: nis [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files
protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files
netgroup: nis
automount: files nis
aliases: files nis
services: files nis
sendmailvars: files

The policy "nis [NOTFOUND=return] files" implies "if nis is UNAVAIL, continue on to files , and if
nis returns NOTFOUND, return to the caller; in other words, treat nis as the authoritative source of
information and try files only if nis is down."

HP-UX Release 11.0: October 1997 − 2 − Section 4−−183

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nsswitch.conf(4) nsswitch.conf(4)

If compatibility with the +/- syntax for passwd and group is required, simply modify the entries for
passwd and group to:

passwd: compat
group: compat

If NIS+ is the enterprise level name-service, the default configuration should be modified to use nisplus
instead of nis for every database on client machines. The file /etc/nsswitch.nisplus contains a
sample configuration that can be copied to /etc/nsswitch.conf to set this policy.

If the use of +/- syntax is desired in conjunction with nisplus , use the following four entries:

passwd: compat
passwd_compat: nisplus
group: compat
group_compat: nisplus

In order to get information from the Internet Domain Name Service for hosts that are not listed in the
enterprise level name-service, NIS+, use the following configuration and set up the
/etc/resolv.conf file (see resolver (4) for more details):

hosts: nisplus dns [NOTFOUND=return] files

Enumeration -- getXXXent()
Many of the databases have enumeration functions: passwd has getpwent() , hosts has gethos-
tent() , and so on. These were reasonable when the only source was files but often make little sense
for hierarchically structured sources that contain large numbers of entries, much less for multiple sources.
The interfaces are still provided and the implementations strive to provide reasonable results, but the data
returned may be incomplete (enumeration for hosts is simply not supported by the dns source), incon-
sistent (if multiple sources are used), formatted in an unexpected fashion (for a host with a canonical name
and three aliases, the nisplus source will return four hostents, and they may not be consecutive), or
very expensive (enumerating a passwd database of 5000 users is probably a bad idea). Furthermore,
multiple threads in the same process using the same reentrant enumeration function (get XXXent_r()
are supported) share the same enumeration position; if they interleave calls, they will enumerate disjoint
subsets of the same database.

In general the use of the enumeration functions is deprecated. In the case of passwd , and group , it may
sometimes be appropriate to use fgetgrent() , fgetpwent() , and fgetspent() (see getgrent(3C),
and getpwent(3C), respectively), which use only the files source.

WARNINGS
Within each process that uses nsswitch.conf() , the entire file is read only once. If the file is later
changed, the process will continue using the old configuration.

Programs that use the get XXby YY() functions cannot be linked statically since the implementation of
these functions requires dynamic linker functionality to access the shared objects
/usr/lib/nss_SSS.sl.1 at run time.

The use of both nis and nisplus as sources for the same database is strongly discouraged since both
the name-services are expected to store similar information and the lookups on the database may yield
different results depending on which name-service is operational at the time of the request.

Misspelled names of sources and databases will be treated as legitimate names of (most likely nonexistent)
sources and databases.

The following functions do not use the switch: fgetgrent() , fgetpwent() , fgetspent() ,
getpw() , and putpwent() .

Applications linked with libc.1 will display different default actions for NOTFOUNDand TRYAGAIN.
Applications linked with libc.1 will have the switch search terminate if the Name Service returns a result of
NOTFOUNDor TRYAGAIN.

This will be an issue for exisiting nsswitch.conf files that specify name service lookup criteria that contains
no <criterion> between <source> entries.

Example: hosts: dns files

For applications linked with libc.1, the fallback to files will only occur if DNSreturns UNAVAIL. For all
other applications, the fallback to files will occur unless DNSreturns SUCCESS.

Section 4−−184 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

n

nsswitch.conf(4) nsswitch.conf(4)

For applications linked with libc.1 and other applications to have the same behavior, a <criterion> must be
specified between <source>.

For libc.1 behavior:

hosts: dns [NOTFOUND=return TRYAGAIN=return] files

For the default system behavior:

hosts: dns [NOTFOUND=continue TRYAGAIN=continue] files

AUTHOR
nsswitch.conf was developed by Sun Microsystems, Inc.

FILES
A source named SSS is implemented by a shared object named nss_SSS.1 that resides in /usr/lib .

/etc/nsswitch.conf configuration file
/usr/lib/nss_compat.1 implements "compat" source
/usr/lib/nss_dns.1 implements "dns" source
/usr/lib/nss_files.1 implements "files" source
/usr/lib/nss_nis.1 implements "nis" source
/usr/lib/nss_nisplus.1 implements "nisplus" source
/etc/netconfig configuration file for netdir() functions that redirects

hosts/services policy to the switch
/etc/nsswitch.files sample configuration file that uses "files" only
/etc/nsswitch.nis sample configuration file that uses "files" and "nis"
/etc/nsswitch.nisplus sample configuration file that uses "files" and "nisplus"

SEE ALSO
nis+(1), automount(1M), rpc.nisd(1M), sendmail(1M), getgrent(3C), getpwent(3C), gethostent(3N),
getnetent(3N), getnetgrent(3C), getprotoent(3N), getpublickey(3N), getrpcent(3C), getservent(3N),
netdir(3N), secure_rpc(3N), netconfig(4), resolver(4), ypfiles(4).

HP-UX Release 11.0: October 1997 − 4 − Section 4−−185

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pam.conf(4) pam.conf(4)

NAME
pam.conf - configuration file for pluggable authentication modules

SYNOPSIS
/etc/pam.conf

DESCRIPTION
pam.conf is the configuration file for the Pluggable Authentication Module architecture, or PAM. A PAM
module provides functionality for one or more of four possible services: authentication, account manage-
ment, session management, and password management.

An authentication service module provides functionality to authenticate a user and set up user credentials.
A account management module provides functionality to determine if the current user’s account is valid.
This includes checking for password and account expiration, as well as verifying access hour restrictions. A
session management module provides functionality to set up and terminate login sessions. A password
management module provides functionality to change a user’s authentication token or password.

Simplified PAM.CONF configuration file
The pam.conf file contains a listing of services. Each service is paired with a corresponding service
module. When a service is requested, its associated module is invoked. Each entry has the following for-
mat:

service_name module_type control_flag module_path options

Below is an example of the pam.conf configuration file with support for authentication, account manage-
ment, and session management modules.

login auth required /usr/lib/security/libpam_unix.1 debug
login session required /usr/lib/security/libpam_unix.1
login account required /usr/lib/security/libpam_unix.1
dtlogin session required /usr/lib/security/libpam_unix.1
other auth required /usr/lib/security/libpam_unix.1
other password required /usr/lib/security/libpam_unix.1

service_name The service_name denotes the service (for example, login , or dtlogin). The keyword,
other , indicates the module all other applications which have not been specified should
use. The other keyword can also be used if all services of the same module_type have the
same requirements. In the example above, since all of the services use the same session
module, they could have been replaced by a single other line.

module_type module_type denotes the service module type: authentication (auth), account management
(account), session management (session), or password management (password).

control_flag The control_flag field determines the behavior of stacking, and will be discussed in more
detail below.

module_path The module_path field specifies the pathname to a shared library object which implements
the service functionality. If the pathname is not absolute, it is assumed to be relative to
/usr/lib/security .

options The options field is used by the PAM framework layer to pass module specific options to the
modules. It is up to the module to parse and interpret the options. This field can be used
by the modules to turn on debugging or to pass any module specific parameters such as a
TIMEOUT value. It can also be used to support unified login. The options supported by
the modules are documented in their respective manual pages. For example, pam_unix(5)
lists the options accepted by the UNIX module.

Integrating Multiple Authentication Services With Stacking
When a service_name of the same module_type is defined more than once, the service is said to be stacked.
Each module referenced in the module_path for that service is then processed in the order that it occurs in
the configuration file. The control_flag field specifies the continuation and failure semantics of the modules,
and may be required , optional , or sufficient .

The PAM framework processes each service module in the stack. If all required modules in the stack
succeed, then success is returned (optional and sufficient error values are ignored). If one or more
required modules fail, then the error value from the first required module that failed is returned.

Section 4−−186 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pam.conf(4) pam.conf(4)

If none of the service modules in the stack are designated as required , then the PAM framework
requires that at least one optional or sufficient module succeed. If all fail then the error value
from the first service module in the stack is returned.

The only exception to the above is caused by the sufficient flag. If a service module that is designated
as sufficient succeeds, then the PAM framework immediately returns success to the application (all
subsequent services modules, even required ones, in the stack are ignored), given that all prior
required modules had also succeeded. If a prior required module failed, then the error value from
that module is returned.

If a module does not exist or can not be opened, then the pam.conf entry is ignored and an error will be
logged through syslog(3C) at the LOG_CRIT level.

Below is a sample configuration file that stacks the login , and dtlogin services.

login auth required /usr/lib/security/libpam_unix.1. debug
login auth optional /usr/lib/security/libpam_inhouse.1
dtlogin auth sufficient /usr/lib/security/libpam_unix.1 debug
dtlogin auth required /usr/lib/security/libpam_inhouse.1

In the case of login , the user is authenticated by the UNIX and inhouse authentication modules. The
required keyword for control_flag requires that the user be allowed to login only if the user is authenti-
cated by the UNIX service module. Inhouse authentication is optional by virtue of the optional key-
word in the control_flag field. The user can still log in even if inhouse authentication fails.

In the case of dtlogin , the sufficient keyword for control_flag specifies that if the UNIX authentica-
tion check succeeds, then PAM should return success to dtlogin . The inhouse authentication module
(the next module in the stack) will only be invoked if the UNIX authentication check fails.

Some modules may return PAM_IGNORE in certain situations. In these cases the PAM framework ignores
the entire entry in pam.conf regardless of whether or not it is required , optional or suffi-
cient .

Configuration Per User
pam.conf contains information to configure all the users on a system. But sometimes it is necessary to
configure user by user. A user policy definition is made through a specific module named
libpam_updbe.1 . This module reads a file named /etc/pam_user.conf which describes the
user’s configurations.

Below is a sample configuration file (/etc/pam.conf) that uses the module libpam_updbe.1 .

login auth required /usr/lib/security/libpam_updbe.1
login auth required /usr/lib/security/libpam_unix.1
su auth required /usr/lib/security/libpam_updbe.1
su auth required /usr/lib/security/libpam_unix.1
OTHER auth required /usr/lib/security/libpam_unix.1

login password required /usr/lib/security/libpam_updbe.1
login password required /usr/lib/security/libpam_unix.1
passwd password required /usr/lib/security/libpam_updbe.1
passwd password required /usr/lib/security/libpam_unix.1
OTHER password required /usr/lib/security/libpam_unix.1

The module libpam_updbe.1 searches the configuration file /etc/pam_user.conf and reads the
configuration associated with the login name of the current user. If there is no configuration concerning the
current user in the pam_user.conf file, the PAM framework ignores the line containing
libpam_updbe.1 . The pam.conf applies for those users who are not configured in pam_user.conf .

NOTES
If an error is found in an entry due to invalid service_name , module_type , or control_flag, then the entry is
ignored. If there are no valid entries for the given module_type, the PAM framework returns an error to
the application.

EXAMPLES
The following is a sample pam.conf configuration file. Lines that begin with the # symbol are treated as
comments, and therefore ignored.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−187

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pam.conf(4) pam.conf(4)

#
PAM configuration
#
Authentication management for login service is stacked.
Both UNIX and inhouse authentication functions are invoked.
login auth required /usr/lib/security/libpam_unix.1
login auth required /usr/lib/security/libpam_inhouse.1 try_first_pass
dtlogin auth required /usr/lib/security/libpam_unix.1
dtlogin auth required /usr/lib/security/libpam_inhouse.1 try_first_pass
#
Other services use UNIX authentication
other auth required /usr/lib/security/libpam_unix.1
#
Account management for login service is stacked.
UNIX account management is required; inhouse account management is optional
login account required /usr/lib/security/libpam_unix.1
login account optional /usr/lib/security/libpam_inhouse.1
dtlogin account required /usr/lib/security/libpam_unix.1
dtlogin account optional /usr/lib/security/libpam_inhouse.1
other account required /usr/lib/security/libpam_unix.1
#
Session management
other session required /usr/lib/security/libpam_unix.1
#
Password management
other password required /usr/lib/security/libpam_unix.1

The following is a sample pam.conf configuration which uses the libpam_updbe.1 module to
configure a user. Lines that begin with the # symbol are treated as comments, and therefore ignored.

#
PAM configuration
#
Authentication management for login service is stacked.
Both UNIX and inhouse authentication functions are invoked.
login auth required /usr/lib/security/libpam_updbe.1
login auth required /usr/lib/security/libpam_unix.1
login auth required /usr/lib/security/libpam_inhouse.1 try_first_pass
dtlogin auth required /usr/lib/security/libpam_updbe.1
dtlogin auth required /usr/lib/security/libpam_unix.1
dtlogin auth required /usr/lib/security/libpam_inhouse.1 try_first_pass
#
Other services use UNIX authentication
other auth required /usr/lib/security/pam_unix.so.1
#
Account management for login service is stacked.
UNIX account management is required; inhouse account management is optional
login account required /usr/lib/security/libpam_unix.1
login account optional /usr/lib/security/libpam_inhouse.1
dtlogin account required /usr/lib/security/libpam_unix.1
dtlogin account optional /usr/lib/security/libpam_inhouse.1
other account required /usr/lib/security/libpam_unix.1
#
Session management
other session required /usr/lib/security/libpam_unix.1
#
Password management
passwd password required /usr/lib/security/libpam_updbe.1
passwd password required /usr/lib/security/libpam_unix.1
other password required /usr/lib/security/libpam_unix.1

Section 4−−188 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pam.conf(4) pam.conf(4)

Utilities and Files
A list of utilities that are known to use PAM include: login , passwd , su , and dtlogin .

The PAM configuration file does not dictate either the name or the location of the service specific modules.
The convention, however, is the following:

/usr/lib/security/libpam_ service_name .x
Implements various function of specific authentication services.

/etc/pam.conf
Configuration file.

/usr/lib/libpam.1
Implements the PAM framework library.

SEE ALSO
dtlogin(1), login(1), passwd(1), su(1), pam(3).

HP-UX Release 11.0: October 1997 − 4 − Section 4−−189

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pam_user.conf(4) pam_user.conf(4)

NAME
pam_user.conf - users configuration file for pluggable authentication modules

SYNOPSIS
/etc/pam_user.conf

DESCRIPTION
pam_user.conf is the user configuration file for the Pluggable Authentication Module architecture, or
PAM. It is not designed to replace the PAM system configuration file, pam.conf . For PAM to work prop-
erly, pam.conf is mandatory (see pam.conf(4)). pam_user.conf is optional. It is used only when a
user basis configuration is needed. It mainly specifies options to be used by service modules on a user basis.

The options defined in pam.conf indicate the default for users who are not configured in
pam_user.conf or if the module type is not configured for some users. For the configuration in
pam_user.conf to take effect, pam.conf needs to configure service module libpam_updbe (see
pam.conf(4)).

Simplified PAM_USER.CONF Configuration File
The pam_user.conf file contains a listing of login names. Each login name is paired with a correspond-
ing service module with or without options specified. Each entry has the following format:

login_name module_type module_path options

Below is an example of the pam_user.conf configuration file.

tom auth /usr/lib/security/libpam_unix.1 debug use_psd
tom auth /usr/lib/security/libpam_dce.1 use_first_pass
tom account /usr/lib/security/libpam_unix.1 use_psd
tom account /usr/lib/security/libpam_dce.1 try_first_pass

susan auth /usr/lib/security/libpam_unix.1
susan auth /usr/lib/security/libpam_dce.1 try_first_pass

The login_name denotes the login name of a user (for example, tom, susan). For detailed information on
module_type , module_path, and options, see pam.conf(4).

The first entry indicates that when the UNIX authentication is invoked for tom , the options "debug" and
"use_psd" will be used. The second entry indicates that when the DCE authentication is invoked for tom ,
the option "use_first_pass" will be used. The module type "password" is not configured for tom , therefore,
the /etc/pam.conf options will take effect. For those users who are not configured, the
/etc/pam.conf options apply.

NOTES
If an error is found in an entry due to invalid login_name or module_type , then the entry is ignored. If
there are no valid entries for the given module_type , the PAM framework ignores pam_user.conf and
reads the configuration in pam.conf .

EXAMPLES
The following is a sample pam_user.conf configuration file. Lines that begin with the # symbol are
treated as comments, and therefore ignored.

#
PAM user configuration
#

Authentication management
john auth /usr/lib/security/libpam_unix.1
john auth /usr/lib/security/libpam_inhouse.1 try_first_pass

david auth /usr/lib/security/libpam_unix.1 use_psd
david auth /usr/lib/security/libpam_inhouse.1 try_first_pass

susan auth /usr/lib/security/libpam_unix.1 use_psd
susan auth /usr/lib/security/libpam_inhouse.1 try_first_pass

Password management
john password /usr/lib/security/libpam_unix.1
david password /usr/lib/security/libpam_unix.1 use_psd

Section 4−−190 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pam_user.conf(4) pam_user.conf(4)

susan password /usr/lib/security/libpam_unix.1 use_psd

SEE ALSO
pam(3), pam.conf(4).

HP-UX Release 11.0: October 1997 − 2 − Section 4−−191

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

passwd(4) passwd(4)

NAME
passwd - password file, pwd.h

DESCRIPTION
passwd contains the following information for each user:

• login name
• encrypted password
• numerical user ID
• numerical group ID
• reserved field, which can be used for identification
• initial working directory
• program to use as shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon. Each user
is separated from the next by a newline. This file resides in the /etc directory. It can and does have gen-
eral read permission and can be used, for example, to map numerical user IDs to names. If the password
field is null and the system has not been converted to a trusted system, no password is demanded.

If the shell field is null, /usr/bin/sh is used.

The encrypted password consists of 13 characters chosen from a 64-character set of "digits" described below,
except when the password is null, in which case the encrypted password is also null. Login can be
prevented by entering in the password field a character that is not part of the set of digits (such as *).

The characters used to represent "digits" are . for 0, / for 1, 0 through 9 for 2 through 11, A through Z for
12 through 37, and a through z for 38 through 63.

Password aging is put in effect for a particular user if his encrypted password in the password file is fol-
lowed by a comma and a nonnull string of characters from the above alphabet. (Such a string must be
introduced in the first instance by a superuser.) This string defines the "age" needed to implement pass-
word aging.

The first character of the age, M, denotes the maximum number of weeks for which a password is valid. A
user who attempts to login after his password has expired is forced to supply a new one. The next charac-
ter, m, denotes the minimum period in weeks that must expire before the password can be changed. The
remaining characters define the week (counted from the beginning of 1970) when the password was last
changed (a null string is equivalent to zero). M and m have numerical values in the range 0 through 63
that correspond to the 64-character set of "digits" shown above. If m = M = 0 (derived from the string . or
..), the user is forced to change his password next time he logs in (and the "age" disappears from his entry
in the password file). If m > M (signified, for example, by the string ./), then only a superuser (not the
user) can change the password. Not allowing the user to ever change the password is discouraged, espe-
cially on a trusted system.

Trusted systems support password aging and password generation. For more information on converting to
trusted system and on password, see Managing Systems and Workgroups and sam(1M).

getpwent(3C) designates values to the fields in the following structure declared in <pwd.h> :

struct passwd {
char *pw_name;
char *pw_passwd;
uid_t pw_uid;
gid_t pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;
aid_t pw_audid;
int pw_audflg;

};

It is suggested that the range 0−99 not be used for user and group IDs (pw_uid and pw_gid in the above
structure) so that IDs that might be assigned for system software do not conflict.

The user’s full name, office location, extension, and home phone stored in the pw_gecos field of the
passwd structure can be set by use of the chfn command (see chfn(1)) and is used by the finger(1)

Section 4−−192 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

passwd(4) passwd(4)

command. These two commands assume the information in this field is in the order listed above. A portion
of the user’s real name can be represented in the pw_gecos field by an & character, which some utilities
(including finger) expand by substituting the login name for it and shifting the first letter of the login
name to uppercase.

SECURITY FEATURES
On trusted systems, the encrypted password for each user is stored in the file
/tcb/files/auth/ c/ user_name (where c is the first letter in user_name). Password information files
are not accessible to the public. The encrypted password can be longer than 13 characters . For example,
the password file for user david is stored in /tcb/files/auth/d/david . In addition to the pass-
word, the user profile in /tcb/files/auth/ c/ user_name also contains:

• numerical audit ID

• numerical audit flag

Like /etc/passwd , this file is an ASCII file. Fields within each user’s entry are separated by colons.
Refer to authcap(4) and prpwd(4) for details. The passwords contained in /tcb/files/auth/ c/* take
precedence over those contained in the encrypted password field of /etc/passwd . User authentication is
done using the encrypted passwords in this file . The password aging mechanism described in passwd(1),
under the section called SECURITY FEATURES, applies to this password .

NETWORKING FEATURES
NIS

The passwd file can have entries that begin with a plus (+) or minus (-) sign in the first column. Such
lines are used to access the Network Information System network database. A line beginning with a plus
(+) is used to incorporate entries from the Network Information System. There are three styles of +
entries:

+ Insert the entire contents of the Network Information System password file at that point;

+name Insert the entry (if any) for name from the Network Information System at that point

+@name Insert the entries for all members of the network group name at that point.

If a + entry has a nonnull password, directory, gecos, or shell field, they override what is contained in the
Network Information System. The numerical user ID and group ID fields cannot be overridden.

The passwd file can also have lines beginning with a minus (-), which disallow entries from the Network
Information System. There are two styles of - entries:

- name Disallow any subsequent entries (if any) for name.

-@name Disallow any subsequent entries for all members of the network group name.

WARNINGS
User ID (uid) 17 is reserved for the Pascal Language operating system. User ID (uid) 18 is reserved for the
BASIC Language operating system. These are operating systems for Series 300 and 400 computers that
can coexist with HP-UX on the same disk. Using these uids for other purposes may inhibit file transfer and
sharing.

The login shell for the root user (uid 0) must be /sbin/sh. Other shells such as sh, ksh, and csh are all
located under the /usr directory which may not be mounted during earlier stages of the bootup process.
Changing the login shell of the root user to a value other than /sbin/sh may result in a non-functional
system.

The information kept in the pw_gecos field may conflict with unsupported or future uses of this field.
Use of the pw_gecos field for keeping user identification information has not been formalized within any
of the industry standards. The current use of this field is derived from its use within the Berkeley Software
Distribution. Future standards may define this field for other purposes.

The following fields have character limitations as noted:

• Login name field can be no longer than 8 characters;

• Initial working directory field can be no longer than 63 characters;

• Program field can be no longer than 44 characters.

• Results are unpredictable if these fields are longer than the limits specified above.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−193

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

passwd(4) passwd(4)

The following fields have numerical limitations as noted:

• The user ID is an integer value between −2 and UID_MAX inclusive.

• The group ID is an integer value between 0 and UID_MAX inclusive.

• If either of these values are out of range, the getpwent(3C) functions reset the ID value to
(UID_MAX).

EXAMPLES
NIS Example

Here is a sample /etc/passwd file:

root:3Km/o4Cyq84Xc:0:10:System Administrator:/:/sbin/sh
joe:r4hRJr4GJ4CqE:100:50:Joe User,Post 4A,12345:/home/joe:/usr/bin/ksh
+john:
-bob:
+@documentation:no- login:
-@marketing:
+:::Guest

In this example, there are specific entries for users root and joe , in case the Network Information Sys-
tem are out of order.

• User john ’s password entry in the Network Information System is incorporated without
change.

• Any subsequent entries for user bob are ignored.

• The password field for anyone in the netgroup documentation is disabled.

• Users in netgroup marketing are not returned by getpwent(3C) and thus are not allowed to
log in.

• Anyone else can log in with their usual password, shell, and home directory, but with a
pw_gecos field of Guest .

NIS Warnings
The plus (+) and minus (-) features are NIS functionality; therefore, if NIS is not installed, they do not
work. Also, these features work only with /etc/passwd , but not with a system that has been converted
to a trusted system. When the system has been converted to a trusted system, the encrypted passwords
can be accessed only from the protected password database, /tcb/files/auth/*/* . Any user entry
in the Network Information System database also must have an entry in the protected password database.

The uid of −2 is reserved for remote root access by means of NFS. The pw_name usually given to this uid
is nobody . Since uids are stored as signed values, the following define is included in <pwd.h> to match
the user nobody .

UID_NOBODY (-2)

FILES
/tcb/files/auth/*/* Protected password database used when system is converted to trusted sys-

tem.
/etc/passwd Standard password file used by HP-UX.

SEE ALSO
chfn(1), finger(1), login(1), passwd(1), a64l(3C), crypt(3C), getprpwent(3), getpwent(3C), authcap(4), lim-
its(5).

STANDARDS CONFORMANCE
passwd : SVID2, SVID3, XPG2

Section 4−−194 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pcf(4) pcf(4)

NAME
pcf - port configuration file used by DDFA software

Description
A port configuration file is used by the Datacommunications and Terminal Controller Device File Access
(DDFA) software to configure individual terminal server ports. The generic name of the template file is
pcf . In practice, it is renamed for each port that needs different configuration values and the values are
altered appropriately for the device attached to the port. A port configuration file is referenced by an entry
in the Dedicated Ports file (dp). The Dedicated Port Parser (dpp) parses the dp file and spawns an Out-
bound Connection Daemon (ocd) for each valid entry in the dp file. A valid entry is one in which the
fourth field is the name of a port configuration file.

The master port configuration file is /usr/examples/ddfa/pcf and it should only be referenced in
the dp file if the default values it contains are correct for the ports. If different values are needed,
/usr/examples/ddfa/pcf should be copied to another directory and the copy should be modified and
referenced in the dp file. The recommended procedure is to create a directory to hold the port
configuration files and the modified dp file.

See ddfa(7) for more information on how to configure the DDFA software.

A port configuration file consists of the names of variables and their values. The variables are shown ter-
minated by a colon (:), but this is not mandatory. A variable and its value can be separated by spaces or
tabs. Only one variable-value pair is allowed per line. Only the value should be altered. The variable
name should not be changed.

A file contains the following information:

telnet_mode: This can have the value disable or enable . When it is enabled, data transfer
over the network uses the Telnet protocol. This option must be enabled for a DTC.

timing_mark: This can have the value disable or enable . When it is enabled, a telnet timing
mark negotiation is sent to the terminal server after all user data has been
transferred. ocd waits for a reply to the timing mark negotiation before closing the
connection. This ensures that all data has been output from the terminal server to
the device before the buffers are flushed. It should be enabled for a DTC.

telnet_timer: This defines the time in seconds during which the software waits for a response to the
telnet timing mark and binary negotiation. If the timer expires, an error message is
logged to /var/adm/syslog and the error is transmitted to the user application.

binary_mode: This can have the value disable or enable . When it is enabled, data transfer
over the network is in binary mode and treatment of special characters (such as
XON/XOFF) is disabled.

Due to the absence of flow control, data integrity cannot be guaranteed when
binary_mode is enabled.

Note that even if binary_mode is disabled, it can be negotiated at any time by the
application setting IXON to 0 in the termio data structure.

open_tries: This defines the number of times the software tries to open a connection before giving
up. If the value is 0 the software tries ‘‘forever’’ (approximately 68 years). If the
retry process fails, an error message is logged to /var/adm/syslog and the error
is transmitted to the user application.

The retry process can be interrupted by sending the SIGUSR2 signal to the ocd pro-
cess using kill -17 pid.

Note that if the application exits after asking ocd to open the connection to the ter-
minal server, ocd continues trying to open until the combination of the
open_tries and open_timer are exceeded.

open_timer: This defines the time in seconds between open tries. If the value is 0, ocd uses an
exponential retry period algorithm up to 32 seconds (i.e., 1 2 4 8 16 32 32 32 ...).

close_timer: This defines the time in seconds between the close call made by the application on the
pty slave and the moment when the connection is actually closed. Setting this value
to, for example, 5 seconds avoids the overhead of opening and closing the connection
when a spooler spools several files at a time. Setting a sufficiently high value
effectively leaves the connection permanently open.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−195

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pcf(4) pcf(4)

status_request:
This can have the value disable or enable . When it is enabled, the software
sends a status request to the device attached to the terminal server and processes the
reply as follows:

LP_OK (0x30) ocd continues processing.

LP_NO_PAPER(0x31) ocd retries within the limits of the status timer.

LP_BUSY (0x32) ocd retries within the limits of the status timer.

LP_OFF_LINE (0x34) ocd retries within the limits of the status timer.

LP_DATA_ERROR(0x38) ocd retries within the limits of the status timer.

status_timer: This defines the time in seconds during which the software waits for the reply to the
status request. If the timer expires, an error message is logged to
/var/adm/syslog and the error is transmitted to the user application.

eight_bit: This can have the value disable or enable . Normally, data bytes processed by
the pty have bit 7 stripped. If eight_bit is enabled, the stripping is disabled. If
eight_bit is disabled, stripping is enabled and bit 7 is stripped. This can also be
achieved by changing the termio structure of the pseudonym using ioctl() commands.

tcp_nodelay: This can have the value disable or enable . When it is enabled, data is sent to
the LAN as it is received. It can be disabled if the software is sending packets faster
than the server can accept them.

The default values are:

telnet_mode enable
timing_mark enable
telnet_timer 120
binary_mode disable
open_tries 1500
open_timer 30
close_timer 5
status_request disable
status_timer 30
eight_bit disable
tcp_nodelay enable

WARNINGS
In order to ensure that commands (such as ps) display the correct device file name (that is, the pseu-
donym), all pseudonyms should be placed into the directory /dev/telnet . If pseudonyms are not
specified for placement in this directory, the correct display of device file names with many commands is
not guaranteed.

In addition, in order to ensure that commands (such as w, passwd , finger , and wall) work correctly,
each pseudonym must be unique in its first 17 characters (including the directory prefix /dev/telnet/).
If pseudonyms are not unique in their first 17 characters, the correct functioning of many commands is not
guaranteed.

FILES
/usr/sbin/dpp
/usr/sbin/ocd
/usr/sbin/ocdebug
/var/adm/dpp_login.bin
/var/adm/utmp.dfa
/usr/examples/ddfa/dp
/usr/examples/ddfa/pcf

SEE ALSO
dpp(1M), ocd(1M), ocdebug(1M), dp(4), ddfa(7).

Section 4−−196 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pdf(4) pdf(4)

NAME
pdf - Product Description File

DESCRIPTION
A Product Description File describes product files contained in the HP-UX operating system. It consists
of a file containing a single line entry for each file described, where each entry contains the following fields:

pathname
owner
group
mode
size
links
version
checksum
linked_to

Fields are separated by a colon (:), and contain the information indicated:

pathname Absolute pathname of the file (starts with /). If pathname is preceded by ?, it is an
optional file that may or may not be present on the system.

owner Symbolic or numeric ID of the owner of the file.

group Symbolic or numeric ID of the group of the file.

mode Symbolic representation of file type and permission information as displayed by the
ls -l command.

size Size of the file in bytes. In the case of device special files, it is the major/minor
number. Directory sizes are not recorded.

links Number of hard links to pathname.

version Numeric value of the revision of the file. Commands supporting PDFs determine this
value by invoking the what command on the file and searching for a revision number
(see what(1)). If no revision is found, ident invoked (see ident(1)). The version
number recorded is the first one encountered. If no version number is found, the field
is empty.

checksum Result of the application of the Ethernet (and hence IEEE 802.3) CRC checksum algo-
rithm to the file’s contents.

linked_to File to which pathname is linked, whether with a hard or symbolic link. If path-
name is not a link, this field is empty.

Some commands (namely pdfdiff and pdfck) rely on the convention that one file in a set of hard links
is considered the primary file, indicating no linked_to file in the PDF, while the remaining files in the set all
indicate the primary file as the linked_to (see pdfdiff(1M) and pdfck(1M)). This convention prevents double
counting in size calculations, and allows some efficiencies in algorithms for checking consistency of links.

Empty fields indicate a ‘‘don’t care’’ status. Any field except pathname can be empty.

comment lines in the file begin with the percent character (%). The first line of the file is always the com-
ment:

% Product Description File

The second comment line is produced by the mkpdf command’s -c option. For HP-UX files, this comment
usually indicates the product name and release.

EXAMPLE
Here is an example product description file:

% Product Description File
% fileset TEST, Release 1.0
/usr/bin/basename:bin:bin:-r-xr-xr-x:2244:1:66.2:4066520052:
/usr/bin/cat:bin:bin:-r-xr-xr-x:4740:1:66.2:2516588651:
/usr/bin/ccat:bin:bin:-r-xr-xr-x:24576:2:66.12:330130894:
/usr/bin/dirname:bin:bin:-r-xr-xr-x:1936:1:64.3:549465715:
/usr/bin/grep:bin:bin:-r-xr-xr-x:11988:3:66.11:2104745188:

HP-UX Release 11.0: October 1997 − 1 − Section 4−−197

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pdf(4) pdf(4)

/usr/bin/ls:bin:bin:-r-xr-xr-x:24576:6:66.3:312786007:
/usr/bin/ll:::::6:::/usr/bin/ls
/usr/bin/su:root:bin:-r-sr-xr-x:90112:1:66.2:3088851439:
% total size is 160172 bytes.
% total size is 158 blocks.

WARNINGS
The checksum algorithm is different than that used by the 7.0 Release version of the commands.

Use of PDFs is discouraged since this functionality is obsolete and is being replaced with Software Distribu-
tor (see sd(4)).

AUTHOR
The specification of PDF is derived from an early draft proposal for Bill of Materials in IEEE POSIX P1003.2
(Draft 2). This proposal was later dropped from the standard. The implementation is by HP.

SEE ALSO
mkpdf(1M), pdfdiff(1M), pdfck(1M).

Section 4−−198 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pdgwcfg.conf(4) pdgwcfg.conf(4)

NAME
pdgwcfg.conf - HPDPS gateway printer configuration file

DESCRIPTION
When invoked, the pdgwcfg utility (see pdgwcfg(1M)) reads the configuration information from the
/etc/pdgwcfg.conf configuration file. It is used to assist in administering the creation and/or dele-
tion of gateway printers in an HPDPS Basic (non-DCE) environment.

/etc/pdgwcfg.conf contains the following configurable values:

GatewayPrinter:[LocalHostField],LocalSpooler,RemoteHost ,RemoteLogicalPrinter[,’Attributes’]

GatewayPrinter The name of the gateway printer. Should be a contiguous string of characters
with no metacharacters. Can be the same name as the RemoteLogicalPrinter for
naming consistency across the enterprise.

LocalHostField An optional field to specify on which hosts this gateway printer should exist. It
has the format:

LocalHost1|LocalHost2|...

or

-LocalHost1|-LocalHost2|...

If the field is empty, it is assumed this entry applies to all hosts. One can expli-
citly define the applicable hosts by separating the hosts with the ’|’ character.
One can also explicitly define an exclude list by prepending the hostname with a
’-’ character.

LocalSpooler The name of the spooler in the local environment to which this gateway printer
is to be added. The spooler must be operational at the time the gateway printer
is created.

RemoteHost Foreign host where the foreign logical printer exists. If the local host on which
this file is being processed matches the RemoteHost value, the entry is ignored
(the logical printer already exists on this local host).

RemoteLogicalPrinter
Name of the existing foreign logical printer. It must have already been created
and be accessible at the time the gateway printer is created.

’Attributes’ An optional field to allow specification of attributes for the gateway printer. The
entire list of attributes should be enclosed by one set of either ’’ or "" characters.
It is taken as an entire string for input into the pdcreate(1) command following
the -x option.

Do not separate the fields by whitespace. A # character in the first column indicates a comment line
and will be ignored. Any line with only whitespace will be ignored. A continuation character \ can be
used for entries that extend to the next line.

EXAMPLES
Each line in the following example /etc/pdgwcfg.conf file is preceded by a comment (beginning with
#) that explains the entry. Please note that this is an example. Taken as a whole, it is not intended to
represent a configuration that you should use. Its sole purpose is to show the flexibility of the configuration
file.

/etc/pdgwcfg.conf
HPDPS Gateway Configuration File used by pdgwcfg(1M)

Gateway printers named ’mopier’ in spoolers ’local_spl’
will only be created on ’host8’ and ’host9’.
The logical printer ’joesmopier’ is located on ’host3’.
Note: the gateway printer can have a different name than
the local printer.
mopier:host8|host9,local_spl,host3,joesmopier

Gateway printers named ’hplaser’ in spoolers ’dps_common_spl’
will be created on all systems to which this file is propagated
(since no local hosts are explicitly called out after the colon)
except ’host2’ (since that is where the printer exists).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−199

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pdgwcfg.conf(4) pdgwcfg.conf(4)

The logical printer is ’hplaser’ located on ’host2’.
Note: all systems have a DPS spooler named dps_common_spl running
Note: the gateway printer can have the same name as the local
printer for naming consistency across the enterprise.
hplaser:,dps_common_spl,host2,hplaser

Gateway printers named ’hpdeskjet’ in spoolers ’dps_common_spl’
will be created on all systems to which this file is propagated
except on host1, host2, and host7 (and host4 since that is
where the printer exists).
The logical printer is ’hpdeskjet’ located on ’host4’.
Note: all systems have a DPS spooler named dps_common_spl running
hpdeskjet:-host1|-host2|-host7,dps_common_spl,host4,hpdeskjet

Gateway printers named ’hpcolorlaser’ in spoolers ’dps_common_spl’
will be created on all systems to which this file is propagated
except on host5 (and host4 since that is where the printer exists).
The logical printer is ’hpcolorlaser’ located on ’host4’.
A message attribute is provided for this gateway printer
Note: all systems have a DPS spooler named dps_common_spl running
hpcolorlaser:\

-host5,dps_common_spl,host4,hpcolorlaser,\
"message=’For Marketing Dept. use only’"

WARNINGS
Once a gateway printer is created, any subsequent modifications to the gateway printer entry in
pdgwcfg.conf are ignored. If gateway printer attributes must be modified, then use pdset (see
pdset(1)). If this is impractical and the gateway printer can be deleted and recreated without impact, one
could temporarily comment out the entry and invoke pdgwcfg (causing the gateway printer to be
deleted), then uncomment and modify the entry in pdgwcfg.conf and invoke pdgwcfg (causing the
gateway printer to be recreated).

Both the local HPDPS environment and all applicable foreign HPDPS environments must be operating at
the time the pdgwcfg utility is invoked.

AUTHOR
pdgwcfg.conf was developed by HP.

SEE ALSO
pdgwcfg(1M), pdcreate(1), pddelete(1), pdset(1).

HP Distributed Print Service Administration Guide (re: gateway printers)

Section 4−−200 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

pfs(4) pfs(4)

NAME
pfs, PFS - portable file system

DESCRIPTION
The Portable File System, or PFS, allows access to a variety of CD-ROM file systems. Currently supported
file systems include: iso9660 , high sierra , RockRidge Interchange .

The PFS package consists of 7 programs:

pfs_mountd is responsible for maintaining local and remote mounts. It must be running on
both PFS clients and PFS servers. The pfs_mountd program validates argu-
ments, and spawns pfs_mountd.rpc .

pfs_mountd.rpc is the RPC server code associated with pfs_mountd . It should not be exe-
cuted directly.

pfsd responds to all client requests for a given mounted CD-ROM file system. pfsd
needs to be running on all systems designated as PFS servers. pfsd validates
arguments, and spawns pfsd.rpc .

pfsd.rpc is the RPC server code associated with pfsd . It should not be executed
directly.

pfs_exportfs makes local directories available for mounting by PFS clients.

pfs_mount mounts CD-ROM file system locally or from server.

pfs_umount unmounts CD-ROM file system locally or from server.

Client file access calls are converted to PFS protocol requests, and are sent to the server system over the
network. The server receives the request, performs the actual file system operation, and sends a response
back to the client.

The Portable File System operates in a stateful fashion using remote procedure (RPC - rfc1057) calls built
on top of external data representation (XDR - rfc1014) protocol. The RPC protocol provides for version and
authentication parameters to be exchanged for security over the network.

A server can grant access to a specific filesystem to certain clients by adding an entry for that filesystem to
the server’s /etc/pfs_exports file and running pfs_exportfs (1M).

A client gains access to that filesystem with the pfs_mount command. Once the filesystem is mounted
by the client, the server issues a file handle to the client for each file (or directory) the client accesses or
creates. If the disc is unmounted at the server, the file handles becomes stale, and remote requests will
return stale file handle messages.

A server may also be a client with respect to filesystems it has mounted over the network, but its clients
cannot gain access to those filesystems. Instead, the client must mount a filesystem directly from the
server on which it resides.

ERRORS
Generally physical disk I/O errors detected at the server are returned to the client for action. If the server
is down or inaccessible, the client will see the message:

PFS server host not responding, retrying...

It will retry 4 times, and then finally return failure.

AUTHOR
pfs was developed by Young Minds, Inc.

FILES
/etc/pfs_exports

SEE ALSO
pfs_exports(5), fstab(4), pfs_mount(1M), pfs_exportfs(1M), pfsd(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−201

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Auth(4) ppp.Auth(4)

NAME
ppp.Auth - PPP authentication file format

DESCRIPTION
The file /etc/ppp/Auth contains values used by HP PPP’s implementation of the link-level authentica-
tion protocols, CHAP (Challenge Handshake Authentication Protocol) and PAP (Password Authen-
tication Protocol). This implementation of both CHAP and PAP conforms to RFC 1334, PPP Authentica-
tion Protocols.

CHAP is a stronger authentication mechanism and should be used whenever possible, in preference over
PAP.

Format
Each authentication specification is on its own single line of up to 1023 characters. Comments begin with a
‘#’ and extend to the end of the line; blank lines, or lines beginning with a ‘#’, are ignored. Fields are
separated by horizontal white space (blanks or tabs).

If pppd is using CHAP authentication, the first word on the line must match the peer’s Name as received
in a CHAP Challenge or Response packet and the second word is used for the Secret . If pppd is using PAP
authentication, the first word on the line must match the Peer-ID in a transmitted or received PAP
Authenticate-Request packet and the second word is used for the Password. The default value used for the
Name in transmitted CHAP packets or for the Peer-ID in transmitted PAP packets is the hostname(1) of
the machine pppd is running on.

In the midst of the Name/Peer-ID and Secret/Password strings, ˆx is translated into the appropriate control
character before matching, and \xxx represents the character corresponding to the octal number xxx .
Other special sequences are:

\s Matches a space character (ASCII 0x20).

\ t Matches a horizontal tab character (ASCII 0x09).

\n Matches a line feed character (ASCII 0x0a).

\ r Matches a carriage return character (ASCII 0x0d).

The fields have the following meaning:

name The Name field of a sent or received CHAP Challenge or Response message, or the Peer-ID
field of a sent or received PAP Authenticate-Request message. For transmitted packets,
this is the hostname unless overridden by the pppd name option.

secret The secret word that the peer also knows.

optional address restrictions
A set of zero or more patterns restricting the addresses that we will allow to be used with
the named peer. Patterns are separated by spaces or tabs and are parsed from left to right.
Each pattern may begin with an exclamation mark to indicate that the following pattern
should not be allowed. The rest of the pattern consists of digits and periods, and optionally
a leading or trailing asterisk, which will match anything. If none of the patterns match,
then the address will be allowed if the last pattern began with an exclamation point, and
will be disallowed otherwise.

EXAMPLE
The following Auth provides pppd with a secret for use when a peer claims to be other-host, robin, or
‘Jack’s machine’.

#
Auth - PPP authentication name/secret file
Format:
#name secret optional address restrictions
other-host secret-key !137.175.9.2 137.175.9.*/0xffffff00
robin dK3ig8G8hs 137.175.11.4
Jack’s\smachine I\sam\sa\sjelly\sdonut.

SECURITY CONCERNS
The file /etc/ppp/Auth should be mode 600 or 400, and owned by root.

Section 4−−202 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Auth(4) ppp.Auth(4)

AUTHOR
ppp.Auth was developed by the Progressive Systems.

SEE ALSO
tun(4), ppp.Devices(4), ppp.Dialers(4), ppp.Filter(4), ppp.Keys(4), ppp.Systems(4), services(4), pppd(1), RFC
792, RFC 1548, RFC 1332, RFC 1334.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−203

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Devices(4) ppp.Devices(4)

NAME
ppp.Devices - PPP physical device description file format

DESCRIPTION
The file /etc/ppp/Devices associates dialer types with physical devices and speeds. pppd examines it
when placing a call to a neighboring machine. If no suitable speed is found, or if all devices associated with
that speed are busy, pppd will try again later.

Format
Entries are one to a line; blank lines are ignored. Comments begin with a ‘#’ and extend to the end of the
line. Upper/lower case distinctions are significant. Fields on a line are separated by horizontal white space
(blanks or tabs).

Each entry must contain three or more fields, in this order:

dialer Either the string ‘Direct’, or the name of the modem dialing chat script (found in Dialers) to
use with this device, or the name of an external dialer program.

device The name of the device in the /dev directory (ttya , cua , etc.). Device names for SnapLink
connections are followed by a slash and the port number in use (rsd2a/0 , rrz4a/2 , etc.).

speed The baud rate of the synchronous connection, or a string to be matched against the speed field
of entries in Systems when the Systems device field is set to ACU. Speeds must either be
valid async baud-rate numbers (as found in <sys/ttydev.h>) or must begin with them
(2400, 38400, 19200-PEP, etc.), or must be speeds of which the SnapLink hardware is capable
(9600, 56000, 64000, 1536000, etc.)

optional parameters
Any special handling for this device. Currently supported values include:

xonxoff Specifies that the line be conditioned for in-band (‘software’) flow control,
using the characters DC3 (ˆS, XOFF, ASCII 0x13) to stop the flow and DC1
(ˆQ, XON, ASCII 0x11) to resume. The default is to use no flow control.
For an outbound connection, this may be specified either in Devices or on
the pppd command line.

internal-clocking
The SnapLink will provide the synchronous clock signal. By default, it
expects the modem, CSU/DSU or modem eliminator to provide the clock
signal. Internal-clocking cannot be used with RS-232 cables on the Sna-
pLink.

32-bit-fcs The SnapLink will calculate 32-bit FCS values for transmitted frames, and
check received frames with 32-bit FCS calculations. This is not negotiable
at connection establishment time. 32-bit FCS is only available when run-
ning synchronous PPP on the SnapLink.

min-flags= minflags
The number of additional HDLC flag characters the SnapLink should insert
between data frames. The default and minimum is 2; the maximum is 16.

ignore-cd Ignore the state of the CD (Carrier Detect, also called DCD, Data Carrier
Detect) signal. This is useful for systems that don’t support CD but want to
run PPP over a dedicated line.

External Dailer
The external dialer program is run with the following arguments:

device name The contents of the Device field from the Devices entry.

speed The contents of the Speed field of the Systems and Devices entries.

telephone number The contents of the Phone Number field of the Systems entry.

optional parameters Copied from the Optional Parameters section of the Devices entry.

If the external dialer program exits with status 0, then the dial attempt is considered to have succeeded.
Any other exit status indicates a failure.

Section 4−−204 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Devices(4) ppp.Devices(4)

EXAMPLE
#
Devices - PPP devices file
#
#Dialer device speed Optional parameters
T2500-PEP cua 19200-PEP rtscts
T1600 cub 38400 rtscts
Direct rsd0a/0 1536000 internal-clocking
Oddball rsd0a/1 64000 cua 9600 5551212

In the last line of this example, the 64Kb synchronous modem on the SnapLink’s port 1 has an asynchro-
nous dialer interface attached to the workstation’s port ‘a’. The Systems line would look like

host Oddball rsd0a/1 64000 0

There must be a program (or an executable shell script) called /etc/ppp/Oddball that dials the
modem when invoked as

Oddball rsd0a/1 64000 0 cua 9600 5551212

A warning message will be printed for each unrecognized optional parameter if the debug level is 2 or more.

The external dialer is invoked as root , so you should take appropriate security precautions with its con-
tent and file protection.

AUTHOR
ppp.Devices was developed by the Progressive Systems.

SEE ALSO
tun(4), ppp.Auth(4), ppp.Dialers(4), ppp.Filter(4), ppp.Keys(4), ppp.Systems(4), pppd(1), RFC 1548, RFC
1332, RFC 1144, RFC 1055.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−205

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Dialers(4) ppp.Dialers(4)

NAME
ppp.Dialers - PPP dialer description file format

DESCRIPTION
The file /etc/ppp/Dialers describes how to dial each type of modem attached to the UNIX system
that is to be made available for outbound PPP calls. pppd examines it when placing a call to a neighboring
machine.

When pppd selects a line from Systems , it uses the ‘speed’ field to select an entry in Devices , from
which it uses the ‘dialer’ field to select an entry in Dialers . pppd then interprets the ‘chat script’ field
from that dialer description.

Format
Entries are one to a line; blank lines are ignored. Comments begin with a ‘#’ and extend to the end of the
line. Upper/lower case distinctions in the dialer field are significant for matching purposes, as are strings
in the chat script. Fields on a line are separated by horizontal white space (blanks or tabs). If a chat script
ends with a backslash (‘\’), the next line is considered a continuation of the chat script. Continuations may
only occur in the midst of a chat script.

Each entry must contain these fields, in this order:

dialer The name of this dialer, to be matched against the dialer field in Devices .

chat-script A description of the conversation that pppd holds with the modem.

Chat Script Particulars
A chat script takes the form of a space-separated list of expect-send pairs. Each pair consists (at minimum)
of a field to expect the ‘remote’ end to send, then a field to send in response. Unless a ‘send’ string ends
with \c , pppd will follow it by sending a carriage return character (ASCII 0x0d).

Chat scripts are ‘expect send expect send ...’ or ‘expect-send-expect send ...’, where the send following the
hyphen is executed if the preceding expect fails to match received text.

Certain special words may be used in the chat script to control the behavior of pppd as it attempts to dial.
Both ABORT and TIMEOUT must be in the ‘expect’ phase of the chat script.

ABORTabort-string If pppd sees abort-string while executing the remainder of the chat script,
abort the dialing attempt and note the failure in the log file.

TIMEOUTtimeout-time While executing the current chat script, wait timeout-time seconds for a
response before considering the dialing attempt to have timed out. Writes
have a fixed 60-second timeout.

The expect-send couplet of ’" ’ P_WORD sets the line parity accordingly:

P_AUTO Set transmission parity based on the parity observed in characters received in ‘expect’
strings. This is the default.

P_ZERO Transmit characters with the parity bit set to zero (8 bits, no parity).

P_ONE Transmit characters with the parity bit set to one.

P_EVEN Transmit characters with even parity.

P_ODD Transmit characters with odd parity.

In the midst of either an ‘expect’ string or a ‘send’ string, ˆ x gets translated into the appropriate control
character, and \ x gets translated into x. Other special sequences are:

\s Send or receive a space character (ASCII 0x20).

\ t Send or receive a horizontal tab character (ASCII 0x09).

\n Send or receive a line feed character (ASCII 0x0a).

\ r Send or receive a carriage return character (ASCII 0x0d).

\\ Send or receive a backslash character (ASCII 0x5c).

\ˆ Send or receive a carat character (ASCII 0x5e).

^ character Send or receive the single character Ctrl-character (ASCII 0x00 through 0x1f).

Section 4−−206 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Dialers(4) ppp.Dialers(4)

\ ddd Send or receive a character, specified in octal digits.

\p Pause for .25 second before proceeding (send only).

\d Delay for two seconds before proceeding (send only).

\K Send a break (.25 second of zero bits).

\M Disable hangups (sets CLOCAL or LNOHANG).

\m enable hangups (unsets CLOCAL or LNOHANG) (the default).

\c Don’t append a carriage return character after sending the preceding string (send only).

\q Don’t print succeeding send strings (e.g. a password) in any debugging or logging output.
Subsequent \q sequences toggle ‘quiet’ mode.

\T Insert the telephone number (found in the fifth field of Systems) here.

EXAMPLE
#
Dialers - PPP dialers file
#
#Dialer Chat script
T1600 ABORT NO\sCARRIER ABORT NO\sDIALTONE ABORT BUSY \

ABORT RRING\r\n\r\nRRING\r\n\r\nRRING \
ABORT ERROR TIMEOUT 5 "" AT OK-AT-OK \
ATS111=0DT\T TIMEOUT 30 CONNECT

#
T2500-PEP \

ABORT NO\sCARRIER ABORT NO\sDIALTONE ABORT BUSY \
ABORT RRING\r\n\r\nRRING\r\n\r\nRRING \
ABORT ERROR TIMEOUT 5 "" AT OK-AT-OK \
ATS111=0DT\T TIMEOUT 30 CONNECT\sFAST

#
USRv32bis \

ABORT ERROR ABORT NO\sANSWER ABORT NO\sCARRIER \
ABORT BUSY ABORT RRING\r\n\r\nRRING\r\n\r\nRRING \
ABORT NO\sDIAL\sTONE TIMEOUT 5 "" AT&F \
OK-ATQ0-OK ATB0E0X7&B1&H1&I0&K3&R2&S1 OK-AT-OK \
ATS01=1S02=255S19=0 OK-AT-OK ATDT\T TIMEOUT 30 \
CONNECT

AUTHOR
ppp.Dialers was developed by the Progressive Systems.

SEE ALSO
tun(4), ppp.Auth(4), ppp.Devices(4), ppp.Filter(4), ppp.Keys(4), ppp.Systems(4), pppd(1), RFC 1548, RFC
1332, RFC 1144, RFC 1055.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−207

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Filter(4) ppp.Filter(4)

NAME
ppp.Filter - PPP packet filter specification file format

DESCRIPTION
The file /etc/ppp/Filter describes how on-demand PPP links are to be managed. By default, any
type of packet causes the link (if down) to be brought up (connected to its remote end); any packet is
allowed to traverse the link; and any packet is sufficient to reset the idle timer, expiration of which would
cause the link to be shut down. This combination is not always appropriate behavior, so the filter file
allows individual control based on the packet type and its source or destination. These selection criteria
may be specified for any of the three phases of operation: bringing up the link, passing packets on the link,
and shutting down the link due to inactivity. Packet logging detail may also be selected using the same cri-
teria.

Format
Comments begin with a ‘#’ and extend to the end of the line; blank lines, or lines beginning with a ‘#’, are
ignored. Upper/lower case distinctions are ignored in hostname specifications, but are significant else-
where. Fields are separated by horizontal or vertical white space (blanks or tabs or newlines).

If a line begins with a hostname or IP address or the special word ‘default’, that line is considered to be the
beginning of a new set of filtering specifications. The filtering specifications will be applied to any packet
crossing the point-to-point link connecting this host to the peer named by that initial hostname or IP
address. The hostname or IP address in the first column of the filter file refers to the peer (system or
router or terminal server) at the remote end of the point-to-point (PPP or SLIP) link. The hostname or IP
address in the first column of the filter file, and associated with the link peer, is unrelated to the source or
destination IP address of any packet crossing the link. If the link peer’s address doesn’t match any name or
address specified in the first column of filter file, the filter specification following the special word ‘default’
will be used.

If a newline is followed by white space, that line is a continuation of the filtering specification already in
progress.

There are four keywords to describe the actions taken by pppd in response to a particular packet:

bringup Describes those packets that will cause a call to be placed and a connection initiated.
Packets of this sort also must qualify to ‘pass’ across the link, either by being explicitly
mentioned or by inclusion in a larger class in the ‘pass’ section.

pass Describes those packets that will be allowed to traverse the link on an already-
established connection. Only packets which would be passed can cause the link to be
brought up. Any packet that is not passed is optionally logged, then discarded.

keepup Describes packets that will reset the idle timer, thereby keeping the line connected.

log Describes packets whose headers or contents are to be noted in the log file.

After each action keyword comes stanzas, separated by white space, describing packets that fit the criteria
for that action. Each stanza is processed in the order shown in the file, and contain restrictions or permis-
sions on the packets encountered. As soon as a pattern or a condition is found that matches the packet in
question, pppd takes the indicated action and ignores the rest of the listed stanzas (i.e. inclusive or with
shortcut evaluation).

Stanzas may contain IP protocol numbers, optionally hyphen-separated ranges of TCP or UDP port
numbers along with the /tcp or /udp qualifier, numbers representing ICMP message types or codes
(which can be found in <netinet/ip_icmp.h>) along with the ‘/icmp’ qualifier, service names
corresponding to entries in /etc/services , or names or IP addresses of hosts or networks, or the spe-
cial keyword ‘all’, which is the default for all actions except ‘log’, where the default is ‘!all’. (Usually, it is
unnecessary to use ‘all’; as a convenience, pppd automatically adds a ‘!all’ at the end of a stanza list if the
last stanza is not negated, and add an ‘all’ at the end of a stanza list if the last stanza is negated. For exam-
ple, in the typical case of ‘log’ this sensibly results in only those packets matching the stanzas shown being
logged, and no others. In the typical case of ‘pass’, this results in certain listed packets being restricted, but
allowing the passage of all others.)

If a network is specified, either by name or by address, then the corresponding network mask must also be
specified if it is of a different size than the default for that class of network. The network mask and addi-
tional ‘and’ conditions within a stanza are separated by slashes (‘/’), and may be specified either as a series
of decimal numbers separated by periods, or as a single 32-bit hexadecimal number. The sense of a stanza
may be negated by prefixing it with an exclamation mark (‘!’).

Section 4−−208 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Filter(4) ppp.Filter(4)

In the ‘log’ filter specification, the special keyword ‘trace’ causes the contents (as well as headers) of the indi-
cated type of packet to be written to the log file. Also in the ‘log’ filter specification, the special flag
‘rejected’ signifies that the packet is to be logged only if it was rejected by the ‘pass’ filter.

Since TCP data streams are opened when the initiator sends a SYN packet to the intended recipient, pppd
can distinguish between outbound (sent from this host) and inbound (coming from the other end of the link)
uses of TCP applications such as telnet or FTP. The special keyword ‘syn’ allows filtering or logging these
connection starters. Qualifying it with ‘recv’ or ‘send’ allows sessions to be started or logged only if they are
initiated in the indicated direction. The special keyword ‘fin’ allows filtering or logging the packets that
close TCP connections.

The ‘src’ and ‘dst’ keywords serve to distinguish ports, addresses or hostnames, as applying to the source or
destination, respectively, of the packet. If both are applied to the same stanza (e.g. .../src/dst), then
both the source and destination address and/or port must match.

The unreach= keyword causes an ICMP Destination Unreachable message (RFC 792 and RFC 1122 sec-
tion 3.2.2.1) to be sent to the packet’s source address, bearing the indicated code field, which may be chosen
from

net The destination network is unreachable.

host The destination host is unreachable.

prot The designated transport protocol is not supported.

protocol The designated transport protocol is not supported.

port The designated transport protocol (e.g., UDP) is unable to demultiplex the datagram
but has no protocol mechanism to inform the sender.

needfrag Fragmentation is needed and the Don’t Fragment flag is set.

srcfail Source route failed.

net-unknown The destination network is unknown.

host-unknown The destination host is unknown.

host-isolated The source host is isolated.

net-prohibited Communication with the destination network is administratively prohibited.

host-prohibited Communication with the destination host is administratively prohibited.

net-tos The destination network is unreachable for the designated type of service.

host-tos The destination host is unreachable for the designated type of service.

The ip-opt= keyword can be used to select packets based on whether they bear various IP options (RFC
1122 section 3.2.1.8 and RFC 791 section 3.1 (pps 16ff)), selected from

rr Record Route is used to trace the route an internet datagram takes.

ts Time Stamp.

security Security is used to carry Security, Compartmentation, User Group (TCC), and Han-
dling Restriction Codes compatible with DOD requirements.

lsrr Loose Source Routing is used to route the internet datagram based on information
supplied by the source.

ssrr Strict Source Routing is used to route the internet datagram based on information
supplied by the source.

srcrt Either Loose Source Routing or Strict Source Routing.

any Any IP option - could even match the No Operation option.

EXAMPLES
Default Behavior

The following Filter file describes the default behavior of pppd , either in the absence of a filter
specification file or in the case of an empty file:

Filter - PPP configuration file,
binding packet types to actions.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−209

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Filter(4) ppp.Filter(4)

Describes the default behavior of the daemon:
default bringup all pass all keepup all log !all

The default behavior is no restriction of packets, and no logging.

Internet Firewall
A ‘pass’ line like this might be appropriate as a security firewall between an organizational network and the
larger Internet:

internet-gateway
bringup !ntp !3/icmp !5/icmp !11/icmp !who !route

!nntp !89
pass nntp/137.39.1.2 !nntp

telnet/syn/recv/137.175.0.0
!telnet/syn/recv !ftp/syn/recv
!login/syn/recv !shell/syn/recv !who
!sunrpc !chargen !tftp !supdup/syn/recv
!exec !syslog !route !6000/tcp/syn/send

keepup !send !ntp !3/icmp !5/icmp !11/icmp
!who !route !89

log rejected

This ‘pass’ specification allows NNTP (Usenet news) transactions with one peer and no others. It allows
incoming Telnet sessions from hosts on only one network, disallows all other incoming Telnet, SUPDUP,
and FTP sessions, and allows all outgoing Telnet SUPDUP, and FTP sessions.

It allows X Window System clients running elsewhere to display on local window servers, but it allows no
local X clients to use displays located elsewhere. It disallows all SUN RPC traffic, thereby guarding the
local YP/NIS and NFS servers from outside probes and filesystem mounts. Alas, it also disallows local
machines from mounting filesystems resident on NFS servers elsewhere, but this can’t be helped because
NFS uses RPC which is a UDP service, and therefore without the SYN and FIN packets that can be used to
characterize the direction in which a TCP stream is being initiated. It blocks several other sorts of traffic
that could be used for nefarious purposes, and the absence of a trailing ‘!all’ means that any traffic not
explicitly blocked is permitted to pass.

The ‘bringup’ and ‘keepup’ lines are appropriate for an intermittent dial-up connection, so that various error
conditions won’t cause the link to be established, nor to keep the call open beyond its usefulness. OSPF
(Open Shortest Path First) routing packets (IP protocol number 89, from RFC-1340) will cross the link, but
won’t cause it to be brought up, nor keep it up if it’s otherwise idle. Usenet news traffic won’t bring up the
link, but once started, the link won’t be shut off in the middle of a news batch. The ‘log rejected’ line keeps
a record of every packet that is blocked by the ‘pass’ line, so that unsuccessful penetration attempts will be
noted.

An Extremely Complex Example
The following Filter file instructs the daemon that a connection to any neighbor except the host ‘back-
bone’ be brought up in response to any packet except for those generated by NTP, ICMP Destination
Unreachable, and rwhod . If those are the only types of packets flowing across the link, it will not be kept
up, but all packets are allowed to cross the link while it is up. Packets sent out will not reset the idle timer,
but packets received from the peer will. If the peer goes down and modem problems cause the phone not to
be hung up, (and the idle command-line argument has been specified) pppd will hang up the connection
and retry.

In the special case of the host ‘backbone’ (perhaps a server belonging to a network connectivity vendor),
only telnet and FTP sessions, SMTP electronic mail, NNTP network news, and Domain Name System
queries are considered sufficient cause to bring the link up or to keep it up if otherwise idle.

Once the link is up, all the above plus NTP clock chimes and ICMP messages may flow across the link. No
packets to or from a particular host, nor any packets except Domain Name System queries and responses
for any host on subnet 42 of the class B network 137.175 are ever allowed to cross the link, nor would they
cause the link to be initiated. We allow telnet and FTP sessions only if they are initiated in the outbound
direction.

We log one-line descriptions of various ICMP problem messages (Unreachable, Time Exceeded), and the
complete contents of ICMP messages reporting IP header problems. We log all telnet and FTP sessions,
including inbound attempts (though they will fail because they are excluded in the ‘pass’ specification
above). We also log the header of the first packet of any electronic mail message flowing over this link on
its way to or from a specific host.

Section 4−−210 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Filter(4) ppp.Filter(4)

#
Filter - PPP configuration file binding packet
types to actions.
#
For packets that would pass, these services
will bring up the link:
#
backbone bringup smtp nntp domain telnet ftp
#
Once brought up, these will pass (or not):
#

pass !131.119.250.104
domain/137.175.42.0/255.255.255.0
!137.175.42.0/0xffffff00

(alternative ways of
expressing subnet mask)

!telnet/syn/recv !ftp/syn/recv
domain smtp nntp ntp icmp telnet ftp

#
Packets received for the services shown will
reset the idle timer.
#

keepup !send smtp nntp domain telnet ftp
#
Only these messages will have headers or contents
logged, unless higher-level debugging is set:
#

log 3/icmp 11/icmp 12/icmp/trace
telnet/syn ftp/syn
smtp/syn/terminus.netsys.com

#
default bringup !ntp !3/icmp !who

keepup !send !ntp !3/icmp !who

RECOMMENDATIONS
Simpler filter specifications allow pppd to start up quicker and run faster, with less processing overhead
for each packet, but that overhead is likely to present a problem only at very high line speeds (like T1).
The ‘backbone’ example shown above is severe overkill for the sake of illustration, evolved over a period of
several weeks, and took the authors several tries to get right. Start with a simple filter specification and
add each special case only as the need arises, usually as the result of watching packet logs. Then test care-
fully to ensure that your change had only the desired effect.

Be very careful with header logging and even more careful with packet content tracing. Make the selection
criteria very narrow, or the log file will grow extremely large in a short period of time. Also, if the daemon
is running on a diskless workstation or if the log file is on a NFS-mounted file system, excessive amounts of
logging information will drastically impede the daemon’s ability to process at high packet rates.
Remember, NFS writes are synchronous.

If you specify host names, be sure that their addresses are available locally, even with the connection down.
If you find that you must bring up a connection to resolve a domain name, consider using that host’s IP
address (decimal numbers separated by periods) in both Filter and Systems instead.

If you want to specify all Domain Name System traffic, use ‘domain’ which will be expanded to entries for
both 53/tcp and 53/udp . (Some DNS traffic uses each transport.) To allow queries but disable domain
transfers, use !domain/tcp . Similarly, some systems’ older /etc/services files, as distributed by
the manufacturer, list NTP as a TCP service. When the current UDP NTP implementation was installed
on your system, the administrator may have left the old 123/tcp entry along with the correct 123/udp .
The correct solution is to remove the 123/tcp entry from /etc/services . A workaround would be to
specify 123/udp in Filter .

DEC ULTRIX 4.2 and some other systems may have no entry for FTP’s data socket in their
/etc/services file. If you want to log the bulk data connections as well as the control connections,
you’ll need to either add an entry for ‘ftp-data’ to /etc/services , or use 20/tcp explicitly in
Filter . The former is preferable because it will cause the log file entry to contain the symbolic name

HP-UX Release 11.0: October 1997 − 4 − Section 4−−211

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Filter(4) ppp.Filter(4)

(‘ftp-data’) rather than the socket/protocol notation.

If your /etc/services file is missing some application-level protocols that you consider useful, you can
populate it with entries from the Assigned Numbers RFC, number 1340. For example, you may find it use-
ful to add lines like

gopher 70/tcp
gopher 70/udp
kerberos 88/tcp
kerberos 88/udp
snmp 161/tcp
snmp 161/udp
nextstep 178/tcp
nextstep 178/udp
prospero 191/tcp
prospero 191/udp
x11 6000/tcp

if you’re using those applications, and if they’re not already in your /etc/services file as received from
your system’s manufacturer. If you augment your /etc/services this way, then instead of using
entries like

pass !6000/tcp/syn/send

your Filter could use entries like

pass !x11/syn/send

which is much more readable. A list of TCP and UDP service numbers and names, culled from the
Assigned Numbers RFC, is available in Examples/services.ex .

AUTHOR
ppp.Filter was developed by the HP.

SEE ALSO
tun(4), ppp.Auth(4), ppp.Devices(4), ppp.Dialers(4), ppp.Keys(4), ppp.Systems(4), services(4), pppd(1), RFC
791, RFC 792, RFC 1055, RFC 1548, RFC 1332, RFC 1122, RFC 1144, RFC 1340.

Section 4−−212 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Keys(4) ppp.Keys(4)

NAME
ppp.Keys - PPP encryption keys file format

RESTRICTIONS
Encryption is not available in software exported from the USA. The HP’s pppd command does not support
gw-crypt option, customer may contact sales@progressive-systems.com to obtain encryption functional-
ity.

DESCRIPTION
The keys file named in the gw-crypt option on the pppd command line contains key values used by HP
PPP’s implementation of link-level encryption. Before transmission, packets with source and destination
addresses matching the endpoints on a keys file line are encrypted using DES with the key specified on that
keys file line. Upon reception, packets with source and destination addresses matching those on a keys file
line are decrypted using DES with the key specified on that keys file line.

Format
Each key specification is on its own single line of up to 1023 characters. Comments in the keys file begin
with a ‘#’ and extend to the end of the line; blank lines, or lines beginning with a ‘#’, are ignored. Fields are
separated by horizontal white space (blanks or tabs).

The first two words on a key line are compared with the source and destination addresses of each packet to
be transmitted and each received packet. The endpoint address specifications may contain either host or
network names, or host or network addresses. If a network is specified, either by name or by address, then
the corresponding network mask must also be specified if it is of a different size than the default for that
class of network. The mask is separated from the network name or address by a slash (‘/’), and may be
specified either as a series of decimal numbers separated by periods, or as a single 32-bit hexadecimal
number, optionally with a C-style ‘0x’ prefix.

The remainder of the key line is a 56 bit (14 digit) hexadecimal number (without the C-style ‘0x’ prefix),
used as the DES key between the specified pair of hosts or networks. The digits may be separated by hor-
izontal white space for readability. If the key contains fewer or more than 14 hexadecimal digits, the line is
ignored. If the key is weak or semi-weak, a warning message will be printed in the log file and the
specified key will be used for encryption anyway.

EXAMPLE
The following keys file provides pppd with keys for use when encrypting or decrypting traffic between the
indicated pairs of hosts or networks:

#
Keys - PPP encryption keys file
#
Format:
#endpoint endpoint key
frobozz.foo.com glitznorf.baz.edu feed face f00d aa
147.225.0.0 38.145.211.0/0xffffffc0 b1ff a c001 d00d 1
128.49.16.0/0xffffff00 198.137.240.100 0123456789abcd
193.124.250.136 143.231.1.0/0xffffff00 e1c3870e1c3870

RECOMMENDATIONS
Avoid using weak or semi-weak keys. These are weak DES keys:

00000000000000
FFFFFFFFFFFFFF
1E3C78F1E3C78F
E1C3870E1C3870

These are semi-weak DES keys:

01FC07F01FC07F
FE03F80FE03F80
1FC07F00FE03F8
E03F80FF01FC07
01C007001E0078
E003800F003C00
1FFC7FF0FFC3FF

HP-UX Release 11.0: October 1997 − 1 − Section 4−−213

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Keys(4) ppp.Keys(4)

FE3FF8FFE1FF87
003C00F001C007
1E007800E00380
E1FF87FF1FFC7F
FFC3FF0FFE3FF8

SECURITY CONCERNS
The keys file should be mode 600 or 400, and owned by root.

Packets’ IP headers are not encrypted, though their TCP, UDP, or ICMP headers are encrypted along with
the user data portion. This allows encrypted packets to traverse normal internetworks, but permits snoop-
ers to analyze traffic by its endpoints.

Since the TCP, UDP, or ICMP header is encrypted, protocol-based filters along the packet’s path will be
unable to discern whether it is SMTP, Telnet, or any other network service. This means that encrypted
traffic will only permeate packet-filtering firewalls if the firewall allows all traffic between the endpoints,
regardless of traffic type. HP PPP/SLIP software for HP-UX systems, when deployed as the endpoint gate-
ways of the encrypted traffic, decrypt incoming encrypted traffic before applying their configured packet
filtering rules.

AUTHOR
ppp.Keys was developed by the Progressive Systems.

SEE ALSO
tun(4), ppp.Auth(4), ppp.Devices(4), ppp.Dialers(4), ppp.Filter(4), ppp.Systems(4), pppd(1), RFC 792, RFC
1548, RFC 1332, RFC 1334.

Section 4−−214 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Systems(4) ppp.Systems(4)

NAME
ppp.Systems - PPP neighboring systems description file format

DESCRIPTION
The file /etc/ppp/Systems describes how to connect with neighboring systems via PPP.

Format
Entries are one to a line; blank lines are ignored. Comments begin with a ‘#’ and extend to the end of the
line. Upper/lower case distinctions are ignored in hostname specifications, but are significant elsewhere.
Fields on a line are separated by horizontal white space (blanks or tabs). If a chat script ends with a
backslash (‘\’), the next line is considered a continuation of the chat script. Continuations may only occur
in the midst of a chat script.

Each entry must contain six fields, in the following order:

name The hostname or IP address of the destination machine, which should be resolvable locally.

when A string that indicates the days of the week and the times of day when the system can be called
(for example, MoTuTh0800-1740). The day portion may be a list containing any of Su, Mo, Tu,
We, Th, Fr or Sa. The day may also be Wk for any weekday (same as MoTuWeThFr) or Any for
any day (same as SuMoTuWeThFrSa).

You can indicate hours in a range (for example, 0800-1230). If you do not specify a time, calls
will be allowed at any time.

Note that a time range that spans 0000 is permitted. For example, 0800-0600 means that all
times are allowed except times between 6 AM and 8 AM.

Multiple date specifications that are separated by a vertical bar (|) are allowed. For example,
Any0100-0600|Sa|Su means that the system can be called any day between 1 AM and 6 AM or
any time on Saturday and Sunday.

The entire (sequence of) days and times may be followed by a semicolon and up to three decimal
numbers separated by hyphens:

one If only one number follows the semicolon, it is used as the redial delay, which is the ini-
tial time (in seconds) before a failed call will be retried. For example, Any;60 means call
any time, but wait at least 60 seconds after a failure has occurred before trying to call
again. If a call retry fails, pppd will double the delay before trying again. If no initial
retry delay is specified, 10 seconds is assumed.

two If two numbers follow the semicolon, the second number is used as the maximum redial
delay, which is the maximum time (in seconds) to delay before retrying a call. The retry
time will double with each unsuccessful call until it reaches this value, after which the
call will be retried every time the maximum number of seconds passes. If no maximum
retry delay is specified, 3600 seconds is assumed.

three If three numbers follow the semicolon, the first is used as the callback delay, the second
as the redial delay, and the third as the maximum redial delay. The callback delay is
the time (in seconds) to wait before attempting to re-establish a previously active con-
nection that ended because of an abrupt line disconnection (a Hangup or SIGHUP event
in the log file). The default is not to delay before calling back.

During the delay following an unsuccessful call, any level 7 debugging messages written to
pppd.log will have the message ‘dial failed’ appended.

device If set to ‘ACU’, any device in Devices with a matching speed may be used. The device’s dialer
chat script will be executed first, followed by the Systems chat script.

If set to the name of a device in the /dev directory (tty00 , cua , etc.), then there may be an
optional corresponding Direct entry in Devices , Dialers will not be consulted, and only
the Systems chat script will be executed.

If set to ‘tcp’, then it must be followed by a slash, then the hostname or IP address of the system
that will serve as the destination of the PPP link, then another slash, then the socket number on
which to contact the remote PPP daemon.

speed The speed of the connection. If the device field is ACU, the speed field will be string matched
against entries in Devices . Speeds must either be valid speed numbers or must begin with
them (2400, 38400, 19200-PEP, etc.). If the device field is ‘tcp...’ or ‘telnet...’, the speed field is

HP-UX Release 11.0: October 1997 − 1 − Section 4−−215

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Systems(4) ppp.Systems(4)

ignored, but must be present as a place-holder.

phone number
The value to replace the \T escape sequence in the dialer script. If the device field names an
entry in /dev , the phone number field is optional. If the device field is ‘tcp...’ or ‘telnet...’, the
phone number field is ignored if present, but must be present as a placeholder.

chat script
A description of the conversation that pppd holds with the remote machine.

Chat Script Particulars
A chat script takes the form of a word to expect the remote end to send, followed by a word to send in
response. Unless a ‘send’ string ends with \c , pppd will follow it by sending a carriage return character
(ASCII 0x0d).

Chat scripts are ‘expect send expect send ...’ or ‘expect-send-expect send ...’, where the send following the
hyphen is executed if the preceding expect fails to match received text.

Certain special words may be used in chat script ‘send’ strings to control the behavior of pppd as it
attempts to dial. Both ABORT and TIMEOUT must be in the ‘expect’ phase of the chat script.

ABORTabort-string If pppd sees abort-string while executing the remainder of the chat script,
abort the dialing attempt and note the failure in the log file.

TIMEOUTtimeout-time While executing the current chat script, wait timeout-time seconds for an
expected response before regarding the dialing attempt as having failed.
Writes have a fixed 60-second timeout.

The expect-send couplet of ’" ’ P_WORD sets the line parity accordingly:

P_AUTO Set transmission parity based on the parity observed in characters received in ‘expect’
strings. This is the default.

P_ZERO Transmit characters with the parity bit set to zero (8 bits, no parity).

P_ONE Transmit characters with the parity bit set to one.

P_EVEN Transmit characters with even parity.

P_ODD Transmit characters with odd parity.

The backquote character (‘) surrounds the name of a program that is to be run before proceeding. If the
program is run in the ‘send’ phase of a chat script couplet, its standard output will be sent to the peer when
the program exits. Chat script processing continues when the program exits.

In the midst of either an ‘expect’ string or a ‘send’ string, ˆ x gets translated into the appropriate control
character, and \ x gets translated into x. Other special sequences are:

\s Send or receive a space character (ASCII 0x20).

\ t Send or receive a horizontal tab character (ASCII 0x09).

\n Send or receive a line feed character (ASCII 0x0a).

\ r Send or receive a carriage return character (ASCII 0x0d).

\\ Send or receive a backslash character (ASCII 0x5c).

\ˆ Send or receive a carat character (ASCII 0x5e).

^ character Send or receive the single character Ctrl-character (ASCII 0x00 through 0x1f).

\ ddd Send or receive a character, specified in octal digits.

\p Pause for .25 second before proceeding (send only).

\d Delay for two seconds before proceeding (send only).

\K Send a break (.25 second of zero bits).

\M Disable hangups (sets CLOCAL or LNOHANG).

\m enable hangups (unsets CLOCAL or LNOHANG) (the default).

\c Don’t append a carriage return character after sending the preceding string (send only).

Section 4−−216 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

ppp.Systems(4) ppp.Systems(4)

\q Don’t print following send strings (e.g. a password) in any debugging or logging output.
Subsequent \q sequences toggle ‘quiet’ mode.

\A Parse the incoming string as an IP address, written as four decimal numbers separated
by periods, and use it for the local end of the point-to-point connection (receive only).

EXAMPLE
In the example below, we call host ‘everyone’ using a Telebit PEP modem with its DTE interface set at
19200 bps. We call host ‘nobody’ using a V.32/V.42/V.42bis modem that’s capable of driving a 38400 DTE,
and we are connected to host ‘someone’ via a direct cable attached to /dev/ttya , running asynchronous
PPP. We talk to ‘anyone’ via a T1 CSU/DSU attached to port 0 on a SnapLink. And we connect with
pseudo-one via a PPP connection tunneled across a TCP stream to port 77 on realone.somewhere.com.

If we are unsuccessful at connecting with ‘someone’ we will try again in two seconds. If that attempt fails,
we will wait four seconds before the next attempt; then eight, then sixteen, then thirty two, then forty
seconds. We will continue attempting to contact ‘someone’ every forty seconds. Our retry intervals and
maximum backoff values for ‘everyone’ and ‘nobody’ are the default ‘10-3600’.

The notation "" "" means to expect nothing, then send nothing (followed by a carriage return). The implicit
carriage return is often useful for eliciting a response from a remote system.

#
Systems - PPP systems file
#
everyone Any ACU 19200-PEP 5551212 in:--in: Pwe word: \qfoObar
nobody Any ACU 38400 5551213 in:--in: Pthey word: \qbaZz1ng
someone Any;2-40 cua 38400 0 in:--in: Pthem word: \qmeumBle
anyone Any rsd0a/0 1536000
pseudo-one Any;2-2 tcp/realone.somewhere.com/57

RECOMMENDATIONS
The default retry time and backoff (i.e. Any;10-3600) are appropriate for use with dialup connections where
the PPP connection must be reestablished as quickly as possible after an interruption but where it is not
desirable to continuously redial a host that may be down. A much shorter maximum would be appropriate
for a dedicated line between two systems, or where call attempts cost nothing.

Moderate call retry times, such as 60 seconds, work well on systems that can establish connections in either
direction using dialup modems, to avoid deadlocks waiting for telephone busy signals from each calling the
other at the same time. Because of the difference between the behaviors of originating and answering
modems, the 60-second clocks will usually start ticking at different times, allowing one side to call the other
without interference. Alternatively, different call retry times may be specified at either end of a link to
help keep the two systems from calling each other simultaneously.

If you specify host names, be sure that their addresses are available locally, even with the connection down.
If you find that you must bring up a connection to resolve a domain name, consider using that host’s IP
address (decimal numbers separated by periods) in both Filter and Systems instead.

Automatic failover recovery can be arranged between systems that each have multiple modems, or multiple
connection methods. If two systems are connected via a dedicated line (sync or async), that entry should be
first in Systems , followed by another entry describing an on-demand dial-up connection. See the HP PPP
User Guide for more details.

SECURITY CONCERNS
The file /etc/ppp/Systems should be mode 600.

AUTHOR
ppp.Systems was developed by the Progressive Systems.

SEE ALSO
tun(4), ppp.Auth(4), ppp.Services(4), ppp.Dialers(4), ppp.Filter(4), ppp.Keys(4), pppd(1), RFC 1548, RFC
1332, RFC 1144, RFC 1055.

HP-UX Release 11.0: October 1997 − 3 − Section 4−−217

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

privgrp(4) privgrp(4)

NAME
privgrp - format of privileged values

SYNOPSIS
#include <sys/privgrp.h>

DESCRIPTION
setprivgrp() sets a mask of privileges, and getprivgrp() returns an array of structures giving
privileged group assignments on a per-group-ID basis (see getprivgrp (2)). <privgrp.h > contains the con-
stants and structures needed to deal with these system calls, and contains:

/*
* Privileged group definitions --
* the numeric values may vary between implementations.
*/

#define PRIV_RTPRIO 1
#define PRIV_MLOCK 2
#define PRIV_CHOWN 3
#define PRIV_LOCKRDONLY 4
#define PRIV_SETRUGID 5

/* Maximum number of privileged groups in system */
#define PRIV_MAXGRPS 32

/*
* Size of the privilege mask,
* based on largest numbered privilege
*/

#define PRIV_MASKSIZ 1

/*
* Structure defining the privilege mask
*/

struct privgrp_map {
int priv_groupno;
unsigned int priv_mask[PRIV_MASKSIZ];

};

Privileges are as follows:

PRIV_RTPRIO Allows access to the rtprio() system call (see rtprio(2)).
PRIV_MLOCK Allows access to the plock() system call (see plock(2)).
PRIV_CHOWN Allows access to the chown() system calls (see chown(2)).
PRIV_LOCKRDONLY Permits the use of the lockf() system call for setting locks on files open

for reading only (see lockf(2)).
PRIV_SETRUGID Permits the use of the setuid() and setgid() system calls for

changing respectively the real user ID and real group ID of a process (see
setuid(2)).

Privileges are described in a multi-word mask. The value of the #define for each privilege is interpreted
as a bit index (counting from 1). Thus a group-id can have several different privileges associated with it by
having different bits ORed into the mask.

The system is configured with a specified maximum number of groups with special privileges.
PRIV_MAXGRPSdefines this maximum. Of this maximum, one is reserved for global privileges (granted
to all processes), and the remainder can be assigned to actual group-ids.

PRIV_MASKSIZ defines the size of the multi-word mask used in defining privileges associated with a
group-ID.

Privileges are returned to the user from the getprivgrp() system call in an array of structures of type
struct privgrp_map . The structure associates a multi-word mask with a group-ID.

SEE ALSO
getprivgrp(2).

Section 4−−218 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

profile(4) profile(4)

NAME
profile - set up user’s environment at login time

DESCRIPTION
If the file /etc/profile exists, it is executed by the shell for every user who logs in. The file
/etc/profile should be set up to do only those things that are desirable for every user on the system,
or to set reasonable defaults. If a user’s login (home) directory contains a file named .profile , that file
is executed (via the shell’s exec .profile) before the session begins. .profile files are useful for
setting various environment parameters, setting terminal modes, or overriding some or all of the results of
executing /etc/profile .

EXAMPLES
The following example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM

Set file creation mask
umask 22

Tell me when new mail comes in
MAIL=/var/mail/myname

Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin

Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

300) stty cr2 nl0 tabs; tabs;;
300s) stty cr2 nl0 tabs; tabs;;
450) stty cr2 nl0 tabs; tabs;;
hp) stty cr0 nl0 tabs; tabs;;
745|735) stty cr1 nl] -tabs; TERM=745;;
43) stty cr1 nl0 -tabs;;
*) echo "$TERM unknown";;

esac

A more complete model .profile can be found in /etc/skel/.profile .

FILES
$HOME/.profile
/etc/profile

SEE ALSO
env(1), login(1), mail(1), sh(1), stty(1), su(1), environ(5), term(5).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−219

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

proto(4) proto(4)

NAME
proto - prototype job file for at(1)

SYNOPSIS
/var/adm/cron/.proto

/var/adm/cron/.proto. queue

DESCRIPTION
When a job is submitted to at or batch , the job is constructed as a Bourne shell script (see at(1)). The
job file is created in /var/spool/cron/atjobs as follows:

• at creates a header describing the job as an at job or a batch job. at jobs submitted to all
queues other than queue a are listed as batch jobs. The header is:

: at job for an at job, or

: batch job for a batch job.

• A set of Bourne shell commands is added to make the environment (see environ(5)) for the at job
the same as the current environment.

• at then copies text from the prototype file to the job file, except for special variables that are
replaced by other text:

$d Replaced by the current working directory.

$l Replaced by the current file size limit (see ulimit(2)).

$m Replaced by the current umask (see umask(2)).

$t Replaced by the time at which the job should be run, expressed as seconds since Janu-
ary 1, 1970, 00:00 Coordinated Universal Time, preceded by a colon.

$< Replaced by text read by at from the standard input (that is, the commands provided
to at to be run in the job).

• When a job is submitted to queue queue, at uses the file /var/adm/cron/.proto. queue as
the prototype file if it exists. Otherwise it uses the file /var/adm/cron/.proto .

EXAMPLES
The following .proto file creates commands to change the current directory, file size limit, and umask in
the job to their respective values as they existed when at was originally run. These commands are
inserted before the commands in the job:

cd $d
ulimit $l
umask $m
$<

SEE ALSO
at(1), queuedefs(4).

STANDARDS CONFORMANCE
proto : SVID2, SVID3

Section 4−−220 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

protocols(4) protocols(4)

NAME
protocols - protocol name data base

DESCRIPTION
This file associates protocol numbers with official protocol names and aliases. This allows the user to refer
to a protocol by a symbolic name instead of a number. For each protocol a single line should be present
with the following information:

<official protocol name> <official protocol number> <aliases>

These mappings are defined in RFC 1700 Assigned Numbers.

Aliases are other names under which the protocol is also known. For example:

tcp 6 TCP

In this example, the library call getprotobyname() can be invoked as:

p = getprotobyname("TCP");

instead of

p = getprotobyname("tcp");

Both produce the same results.

A line cannot start with a space. Items are separated by any number of blanks and/or tab characters. A #
character indicates the beginning of a comment. Characters from the # to the end of the line are not inter-
preted by routines which search the file.

Protocol names can contain any printable character other than a white space, new-line, or comment charac-
ter. Trailing blanks or tabs are allowed at the end of a line.

EXAMPLES
tcp 6 TCP # transmission control protocol
udp 17 UDP # user datagram protocol

AUTHOR
protocols was developed by the University of California, Berkeley.

SEE ALSO
getprotoent(3N).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−221

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

prpwd(4) prpwd(4)

NAME
prpwd - protected password authentication database files used for trusted systems

SYNOPSIS
/tcb/files/auth/...

DESCRIPTION
An authentication profile is maintained for each user on the system. A user profile is kept in a protected
password database file that is accessible only to the System Administrator. The protected password data-
base files contain among other things the encrypted password for the user account. On a trusted system,
the passwords are hidden from normal users.

The protected password database files do not obviate the need for the /etc/passwd and the /etc/group files.
Users must be defined in the /etc/passwd file in order to use the system. The protected password database
file for a user contains the user name and user id to provide a correlation to the user’s /etc/passwd entry.
These must match or the user account will be treated as invalid.

Protected password database files are maintained in the /tcb/files/auth hierarchy. This directory contains
other directories each named with a single letter from the alphabet. User authentication profiles are stored
in these directories based on the first letter of the user account name. This enables an efficient search
operation to locate the file for a specific user name. For instance, the authentication profile for the root
account is located in the /tcb/files/auth/r directory and can be accessed by opening the file
/tcb/files/auth/r/root.

Fields defined in a file are user specific values. These values override the system default values. Trusted
programs check first for the existence of user specific parameters before using a system default value.

A protected password database file contains keyword field identifiers and, depending on the field type, a
value for that field (certain field types do not require an explicit value). The exact syntax for field
specifications is described in authcap(4). Field specification is consistent for all system authentication data-
bases. The keyword field identifiers supported by the protected password database file and their associated
function are given in the following descriptions:

u_name This is the user name for the account which must match the name of the file and the user
name from the corresponding /etc/passwd entry.

u_id This is the user id for the account which must match the user id field of the corresponding
/etc/passwd entry.

u_pwd This field contains the encrypted password for the account if the account has a password.

u_owner This field contains the owner of the account.

u_booauth If this field exists and contains a value greater than zero (typically 1), and the boot authen-
ticate flag is set in the system default file, then this user has authority to boot the system.
If the boot authenticate flag is not set in the system default file then this field is not used.

u_audid This field contains the audit ID for the user.

u_auditflag This field contains the audit flag for the user.

u_minchg This field specifies the minimum password change time in seconds. If non-zero, the pass-
word cannot be changed until the specified number of seconds since the last successful pass-
word change have passed unless the person changing the password is authorized to over-
ride this constraint.

u_maxlen This field specifies the maximum length of the user account password and should be less
than the system-wide maximum value defined by the <prot.h> constant
AUTH_MAX_PASSWD_LENGTH.

u_exp This field is a time_t value that specifies when the account password will expire. When a
password expires, system authentication programs will request that the password be
changed when the user logs into the system. If the password lifetime expires before the
password is changed, the account will be locked.

u_life This field is a time_t value that specifies the lifetime of a password. If this time is reached,
the account will be locked and can only be unlocked by an authorized system administrator.

u_succhg This field is a time_t value that indicates the time of the last successful password change.
This field should only be set by programs that can be used to change the account password.

Section 4−−222 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

prpwd(4) prpwd(4)

u_unsucchg This field is a time_t value that indicates the time of the last unsuccessful password change.
This field should only be set by programs that can be used to change the account password.

u_acct_expire
This field is the time_t time is seconds that the account will be usable. After this time inter-
val the user will no longer be allowed to login. This field is different from the u_life field in
that the u_life field is the time from the last password change. u_acct_expire is not
affected by the changing of the password.

u_max_llogin This value, in secconds, is the maximum time allowed between logins. If the time between
the last login and the current time exceeds this value, the account is locked and the user
can no longer logon.

u_pw_expire_warning
This value, in seconds, is the time at which a warning will appear prior to the expiration of
the users password.

u_pickpw This value is a flag that controls the ability of the user to pick a password for the account.
This permits an account to be configured so that a user can not pick a password but instead
has a password generated by the system for the account.

u_genpwd This flag field controls the ability of a user to generate a password for the account. The sys-
tem is capable of generating passwords containing random letters, characters, or words.

u_restrict This flag field controls whether password triviality checks are performed on any user
chosen passwords. Triviality checks performed include verifying that the password does not
represent a login or group name, a palindrome, or a word recognized by the spell(1) pro-
gram. See acceptable_password(3) for more information on triviality checks for passwords.

u_nullpw This flag controls the ability of the user to choose a null password for the account.

u_pwchanger This field records the user id of the last person to change the account password if that user
was not the same the account’s user. This is used to warn the user at login time if the
account password has been changed possibly without the knowledge of the user.

u_pw_admin_num
This field holds the random number the user must supply to login after the account is reset
by the system administrator. This field is removed after a successful login.

u_genchars This flag field controls the ability of the user to generate random characters for a password.

u_genletters This flag field controls the ability of the user to generate random letters for a password.

u_tod This field contains a comma separated list of time-of-day specification entries that controls
when the user account can be used for login. For more information on the format of a list
entry, see tod(3).

u_suclog This field is a time_t value that contains the system time of the last successful login to the
account.

u_unsuclog This field is a time_t value that contains the system time of the last unsuccessful login to
the account.

u_suctty This field is a character string that identifies the name of the terminal or remote host asso-
ciated with the last successful login to the account.

A remote host specification consists of the ASCII representation of the Internet address of
the host. This field is converted into an Internet address and is converted to a hostname
using gethostbyaddr(3).

u_numunsuclog
This field contains a count of the number of unsuccessful login attempts to the account.
This field is reset when a successful login to the account occurs.

u_unsuctty This field is a character string that identifies the name of the terminal or remote host asso-
ciated with the last unsuccessful login attempt to the account.

u_maxtries This field specifies the maximum number of consecutive unsuccessful login attempts to the
account that are permitted until the account is locked.

u_lock This flag field is used to administratively lock an account. A user cannot login to a locked
account.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−223

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

prpwd(4) prpwd(4)

EXAMPLES
The following is an example of a typical protected password database file:

perry:u_name=perry:u_id#101:\
:u_pwd=aZXtu1kmSpEzm:\
:u_minchg#0:u_succhg#653793862:u_unsucchg#622581606:u_nullpw:\
:u_suclog#671996425:u_suctty=tty1:\
:u_unsuclog#660768767:u_unsuctty=tty1:\
:u_maxtries#3:chkent:

This protected password database file is for the user perry. The user id for perry is 101. This value must
match the /etc/passwd entry for this user. The account has a password and its encrypted form is specified
by the u_pwd field.

The database file specifies a minimum password change time of 0, indicating the password can be changed
at any time. Furthermore, the account is permitted to have a null password (u_nullpw). The account has
a maximum consecutive unsuccessful login threshold of 3 attempts indicating that the account will be
locked after three failed attempts (u_maxtries). The remaining fields provide account information such as
the last successful and unsuccessful password change times as well as the last successful and unsuccessful
login times and terminal names.

AUTHOR
SecureWare Inc.

SEE ALSO
login(1), acceptable_password(3), getprpwent(3), tod(3), authcap(4), default(4), users(4)

NOTES
The getprpwent(3) routines are used to parse the protected password database files into a structure that can
used by programs. A flag in the structure indicates whether a particular field in the structure and hence
the field is defined. System default values are also provided in the structure. These values are derived from
the /tcb/files/auth/system/default field and can be used by programs in the absence of a user specific
value.

Section 4−−224 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

p

publickey(4) publickey(4)

NAME
publickey - public key database

SYNOPSIS
etc/publickey

DESCRIPTION
/etc/publickey is a local public key database that is used for secure RPC. The /etc/publickey
file can be used in conjunction with or instead of other publickey databases, including the NIS publickey
map and the NIS+ publickey map. Each entry in the database consists of a network user name (which may
refer to either a user or a hostname), followed by the user’s public key (in hex notation), a colon, and then
the user’s secret key encrypted with a password (also in hex notation).

The /etc/publickey file contains a default entry for nobody .

AUTHOR
publickey was developed by Sun Microsystems, Inc.

SEE ALSO
chkey(1), newkey(1M), getpublickey(3N), nsswitch.conf(4).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−225

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

q

queuedefs(4) queuedefs(4)

NAME
queuedefs - queue description file for at, batch, and crontab

SYNOPSIS
/var/adm/cron/queuedefs

DESCRIPTION
The queuedefs file describes the characteristics of the queues managed by cron (see cron(1M)). Each
non-comment line in this file describes one queue. The format of the lines are as follows:

q. [njob j] [nice n] [nwait w]
The fields in this line are:

q The name of the queue, such that a is the default queue for jobs started by at (see at(1)),
b is the queue for jobs started by batch (see at(1)), and c is the queue for jobs run from
a crontab file (see crontab(1)). Queue names d through y designate user-defined
queues.

njob The maximum number of jobs that can be run simultaneously in that queue. Although any
number can be specified here, the total number of jobs that can be run on all the queues is
limited to 100.

nice The nice value to give to all jobs in that queue that are not run with a user ID of super-
user (see nice(1)). The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was deferred because more
than njob jobs were running in that job’s queue, or because more than 100 jobs were run-
ning in all the queues (see njob above).

EXAMPLES
Consider the following queuedefs file:

a.4j1n
b.2j2n90w

The file is interpreted as follows:

a.4j1n The a queue, for at jobs (see at(1)), can have up to 4 jobs running simultaneously,
and those jobs will be run with a nice value of 1.

Since no nwait value is given, if a job cannot be run because too many other jobs are
running, cron will wait 60 seconds before trying again to run it (see cron(1M)).

b.2j2n90w The b queue, for batch jobs (see at(1)), can have up to 2 jobs running simultane-
ously. Those jobs will be run with a nice value of 2. If a job cannot be run because
too many other jobs are running, cron will wait 90 seconds before trying again to
run it.

All other queues can have up to 100 jobs running simultaneously. They will be run with a nice value of
2, and if a job cannot be run because too many other jobs are running, cron will wait 60 seconds before
trying again to run it.

SEE ALSO
at(1), nice(1), crontab(1), cron(1M), proto(4).

STANDARDS CONFORMANCE
queuedefs : SVID2, SVID3

Section 4−−226 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

rc.config(4) rc.config(4)

NAME
rc.config, rc.config.d/ - files containing system configuration information

SYNOPSIS
/etc/rc.config

/etc/rc.config.d/*

/etc/TIMEZONE

DESCRIPTION
The system configuration used at startup is contained in files within the directory /etc/rc.config.d .
The file /etc/rc.config sources all of the files within /etc/rc.config.d and /etc/TIMEZONE
and exports their contents to the environment.

/etc/rc.config
The file /etc/rc.config is a script that sources all of the /etc/rc.config.d/* scripts, and also
sources /etc/TIMEZONE . To read the configuration definitions, only this file need be sourced. This file
is sourced by /sbin/rc whenever it is run, such as when the init command is run to transition
between run states. Each file that exists in /etc/rc.config.d is sourced, without regard to which
startup scripts are to be executed.

/etc/rc.config.d
The configuration information is structured as a directory of files, rather than as a single file containing the
same information. This allows developers to create and manage their own configuration files here, without
the complications of shared ownership and access of a common file.

/etc/rc.config.d/* Files
This is where files containing configuration variable assignments are located.

Configuration scripts must be written to be read by the POSIX shell, and not the Bourne shell, ksh , or
csh . In some cases, these files must also be read and possibly modified by sd control scripts or the sam
program. See sd(4) and sam(1M). For this reason, each variable definition must appear on a separate line,
with the syntax:

variable=value

No trailing comments may appear on a variable definition line. Comment statements must be on separate
lines, with the # comment character in column one. This example shows the required syntax for
configuration files:

Cron configuration. See cron(1M)
Cron configuration. See cron(1M)
#
CRON: Set to 1 to start cron daemon
#
CRON=1

Configuration variables may be declared as array parameters when describing multiple instances of the
variable configuration. For example, a system may contain two network interfaces, each having a unique
IP address and subnet mask (see ifconfig(1M)). An example of such a declaration is as follows:

NET_CARDS=2
IP_ADDRESS[1]=15.1.55.2
SUBNET_MASK[1]=255.255.248.0

IP_ADDRESS[2]=15.1.55.3
SUBNET_MASK[2]=255.255.248.0

Note that there must be no requirements on the order of the files sourced. This means configuration files
must not refer to variables defined in other configuration files, since there is no guarantee that the variable
being referenced is currently defined. There is no protection against environment variable namespace colli-
sion in these configuration files. Programmers must take care to avoid such problems.

/etc/TIMEZONE
The file /etc/TIMEZONE contains the definition of the TZ environment variable. This file is required by
POSIX. It is sourced by /sbin/rc at the same time the /etc/rc.config.d/* files are sourced.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−227

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

rc.config(4) rc.config(4)

SEE ALSO
rc(1M).

Section 4−−228 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

rcsfile(4) rcsfile(4)

NAME
rcsfile - format of RCS files

DESCRIPTION
An RCS file is an ASCII file. Its contents are described by the grammar below. The text is free format,
i.e., spaces, tabs and newline characters have no significance except in strings. Strings are enclosed by @
symbols. If a string contains the @symbol, the symbol must be doubled.

The meta syntax uses the following conventions:

| (bar) Separates alternatives.
{ ...} (braces) Encloses optional phrases.
{ ...}* Encloses phrases that may be repeated zero or more times.
{ ...}+ Encloses phrases that must appear at least once and may be repeated.
<...> Encloses nonterminals.

RCS File Grammar
Identifiers are case sensitive. Keywords are in lowercase only. The sets of keywords and identifiers may
overlap.

<rcstext> ::= <admin> {<delta>}* <desc> {<deltatext>}*

<admin> ::= head {<num>};
access {<id>}*;
symbols {<id> : <num>}*;
locks {<id> : <num>}*; {strict ;}
comment {<string>};

<delta> ::= <num>
date <num>;
author <id>;
state {<id>};
branches {<num>}*;
next {<num>};

<desc> ::= desc <string>

<deltatext> ::= <num>
log <string>
text <string>

<num> ::= {<digit>{.}}+

<digit> :: = 0 | 1 | ... | 9

<id> ::= <letter>{<idchar>}*

<letter> :: = A | B | ... | Z | a | b | ... | z

<idchar> ::= Any printing ASCII character except space,
tab, carriage return, newline, and <special>.

<special> :: = ; | : | , | @

<string> ::= @{any ASCII character, with "@" doubled}*@

RCS File Structure
The <delta> nodes form a tree. All nodes whose numbers consist of a single pair (e.g., 2.3, 2.1, 1.3, etc.)
are on the trunk, and are linked through the next field in order of decreasing numbers. The head field in
the <admin> node points to the head of that sequence (i.e., contains the highest pair).

All <delta> nodes whose numbers consist of 2n fields (n>=2) (e.g., 3.1.1.1, 2.1.2.2, etc.) are linked as fol-
lows. All nodes whose first (2n)-1 number fields are identical are linked through the next field in order of
increasing numbers. For each such sequence, the <delta> node whose number is identical to the first

HP-UX Release 11.0: October 1997 − 1 − Section 4−−229

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

rcsfile(4) rcsfile(4)

2(n-1) number fields of the deltas on that sequence is called the branchpoint. The branches field of a
node contains a list of the numbers of the first nodes of all sequences for which it is a branchpoint. This list
is ordered in increasing numbers.

EXAMPLES
head

|
|
v

/ \ / \ | | / \ / \

/ \ / \ | 2.1 | / \ / \
/ \ / \ | | / \ __/ __

/1.2.1.3\ /1.3.1.1\ | | /1.2.2.2\ /1.2.2.1.1.1\
--------- --------- --------- --------- -------------

^ ^ | ^ ^
| | | | |
| | v | |

/ \ | --------- / \ |
/ \ | \ 1.3 / / \ |

/ \ --------- \ / / \-----------
/1.2.1.1\ \ / /1.2.2.1\
--------- \ / ---------

^ | ^
| | |
v
\ 1.2 /
----------------------\ /---------

\ /
\ /

|
|
v

\ 1.1 /

\ /
\ /

\ /

WARNINGS
RCS is designed to be used with text (ASCII) files only. Using RCS with nontext (binary) files results in
data corruption.

AUTHOR
rcsfile was developed by Walter F. Tichy, Purdue University, West Lafayette, IN 47907. Revision
Number: 3.0. Release Date: 83/05/11. Copyright 1982 by Walter F. Tichy.

SEE ALSO
ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsmerge(1), rlog(1), rcsintro(5).

Section 4−−230 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

resolver(4) resolver(4)

NAME
resolver - resolver configuration file

SYNOPSIS
/etc/resolv.conf

DESCRIPTION
The resolver is a set of routines in the C library (see resolver (3N)) that provide access to the Internet
Domain Name System. The resolver configuration file contains information that is read by the resolver
routines the first time they are invoked by a process. The file is designed to be human-readable, and con-
tains a list of keywords with values that provide various types of resolver information.

If the only name server to be queried is on the local machine, then this file is not always necessary. The
domain name could be determined from the host name (see hostname(1)), if it has been set as a fully
qualified domain name.

Recognized configuration options include:

nameserver Internet (IP) address, in dot notation, of a name server that the resolver should query.
Up to MAXNS(currently 3) name servers can be listed, one per keyword. If there are
multiple servers, the resolver library queries them in the order listed. If no
nameserver entries are present, the default is to use the name server on the local
machine. (The algorithm used is: Try a name server; if the query times out, try the
next and continue until all name servers have been tried, then repeat trying all the
name servers until a maximum number of retries have been made).

domain Local domain name. Most queries for names within this domain can use short names
relative to the local domain. If no domain entry is present, the domain is deter-
mined from the local host name returned by gethostname() (see gethostname(2));
the domain part is interpreted as everything after the first dot (.). Finally, if the host
name does not contain a domain part, the root domain is assumed.

search Search list for host-name lookup. If the search option is not used the search list will
contain only the the local domain name. The search list can be changed by listing the
desired domain search path following the search keyword with spaces or tabs
separating the names. Most resolver queries will be attempted using each component
of the search path in turn until a match is found. Note that this process may be slow
and generates a lot of network traffic if the servers for the listed domains are not
local, and that queries time out if no server is available for one of the domains.

The search list is currently limited to six domains with a total of 256 characters.

The first domain in the search list must be the local domain for short names to work
properly in various files (such as .rhosts and inetd.sec)

options Options allows certain internal resolver variables to be modified. The syntax is

options option ...

where currently the option supported is the following:

ndots: n Set a threshold for the number of dots which must appear in a
name given to res_query (see resolver (3N)) before an initial
absolute query will be made. The default for n is ‘‘1’’, meaning
that if there are any dots in a name, the name will be tried first
as an absolute name before any search list elements are
appended to it.

The domain and search keywords are mutually exclusive. If more than one instance of these key-
words is present, the last instance overrides.

The search keyword of a system’s resolv.conf file can be overridden on a per-process basis by set-
ting the environment variable LOCALDOMAINto a space-separated list of search domains. The options
keyword of a system’s resolv.conf file can be amended on a per-process basis by setting the environ-
ment variable RES_OPTIONS to a space separated list of resolver options as explained above under
options .

The keyword and value must appear on a single line, and the keyword (e.g. nameserver) must start the
line. The value follows the keyword, separated by white space.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−231

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

resolver(4) resolver(4)

Note that the resolver routine res_init() silently ignores errors when reading this file (see
resolver (3N)).

EXAMPLES
A typical resolv.conf file resembles the following:

domain div.inc.com
nameserver 15.19.8.119
nameserver 15.19.8.197

WARNING
In order to reduce situations that may cause connections to unintended destinations, the administrator
should carefully select which domains are put in the search list in the resolv.conf file. HP recommends that
the possible domains for the search list be limited to those domains administered within your trusted
organization. For more information on the security implications of search lists please see RFC 1535, located
in /usr/share/doc .

AUTHOR
resolver was developed by the University of California, Berkeley.

FILES
/etc/resolv.conf Resolver configuration file.

SEE ALSO
named(1M), resolver(3N), gethostent(3N), hostname(5), RFC 1535

Section 4−−232 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

rmtab(4) rmtab(4)

NAME
rmtab - local file system mount statistics

DESCRIPTION
File /etc/rmtab contains a record of all clients that mounted remote file systems from this machine.
Whenever a remote mount is done, an entry is made in the rmtab file of the machine serving that file
system. umount removes the entry of a remotely mounted file system. umount -a broadcasts to all
servers that they should remove all entries from rmtab created by the sender of the broadcast message.
The table is a series of lines of the following form:

hostname: directory

This table only preserves information between crashes, and is read only by mountd when it starts (see
mountd(1M)). mountd keeps an in-core table to handle requests from commands such as showmount
and shutdown (see showmount(1M) and shutdown(1M)).

WARNINGS
Although the rmtab table is close to the truth, it is not always totally accurate.

AUTHOR
rmtab was developed by Sun Microsystems, Inc.

FILES
/etc/rmtab

SEE ALSO
mount(1M), mountd(1M), showmount(1M), shutdown(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−233

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

r

rpc(4) rpc(4)

NAME
rpc - rpc program number data base

SYNOPSIS
/etc/rpc

DESCRIPTION
File /etc/rpc contains user-readable names that can be used in place of RPC program numbers. Each
line has the following information:

• Name of server for the RPC program
• RPC program number
• Aliases

Items are separated by any number of blanks and tab characters. A # anywhere in the file indicates a
comment extending to the end of that line.

EXAMPLES
Here is an example of an /etc/rpc file:

#
rpc 12.0 89/09/25
#
rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 etherstat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
selection_svc 100015 selnsvc
dbsessionmgr 100016 unify netdbms dbms
rexd 100017 rex remote_exec
office_auto 100018 alice

AUTHOR
rpc was developed by Sun Microsystems, Inc.

FILES
/etc/rpc

SEE ALSO
getrpcent(3C).

Section 4−−234 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sccsfile(4) sccsfile(4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file consisting of six logical parts:

checksum Sum of all characters in the file except the first line.
delta table Contains information about each delta.
user names Login names and/or numerical group IDs of users who are allowed to add deltas.
flags Definitions of internal keywords. comments Arbitrary descriptive information about

the file.
body Actual text lines intermixed with control lines.

Throughout an SCCS file there are lines beginning with the ASCII SOH (start of heading) character (octal
001). This character is hereafter referred to as the control character and is represented graphically as @.
Any line described below that is not depicted as beginning with the control character is prevented from
beginning with the control character. All lines in the SCCS file are limited to BUFSIZ (defined in
<stdio.h >) characters in length.

Entries of the form DDDDD represent a five-digit string (a number between 00000 and 99999).

The following describes each logical part of an SCCS file detail:

Checksum The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters except those in the first line.
The @hsequence provides a magic number consisting of the two bytes 0x01 and
0x68. (Other versions of UNIX-like operating systems usually use this same value but
it may be displayed or documented as a single number with a different byte order.)

Delta table The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <SID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD . . .
@x DDDDD . . .
@g DDDDD . . .
@m<MR number>

.

.

.
@c <comments> . . .

.

.

.
@e

The first line (@s) contains the number of lines inserted/deleted/unchanged, respec-
tively. The second line (@d) contains the type of the delta (currently, normal: D, and
removed: R), the SID (SCCS ID) of the delta, the date and time when the delta was
created, the login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @glines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @mlines (optional) each contain one MR (modification request) number associated
with the delta; the @clines contain comments associated with the delta.

The @eline ends the delta table entry.

User names The list of login names and/or numerical group IDs of users who are allowed to add
deltas to the file, separated by new-lines. The lines containing these login names
and/or numerical group IDs are surrounded by the bracketing lines @uand @U. An
empty list allows anyone to make a delta. Any line starting with a ! prohibits the
specified group or user from making deltas.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−235

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sccsfile(4) sccsfile(4)

Flags Keywords used internally (see admin(1) for more information on their use). Each flag
line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t <type of program>
@f v <program name>
@f i <keyword string>
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@f n
@f j
@f l <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The above flags function as follows:

t Defines the replacement for the %Y%identification keyword.

v Controls prompting for MR numbers in addition to comments. If the
optional text is present, it defines an MR number-validity checking pro-
gram.

i Controls the warning/error aspect of the ‘‘No id keywords’’ message. When
the i flag is not present, the message is only a warning; when the i flag is
present, this message causes a fatal error (a get on the file fails, or the delta
is not made).

b When the b flag is present, the -b keyletter can be used on the get com-
mand to cause a branch in the delta tree.

m Defines the first choice for the replacement text of the %M%identification
keyword.

f Defines the ‘‘floor’’ release; the release below which no deltas can be added.

c Defines the ‘‘ceiling’’ release; the release above which no deltas can be
added.

d Defines the default SID to be used when none is specified on a get command.

n Causes delta to insert a ‘‘null’’ delta (a delta that applies no changes) in
those releases that are skipped when a delta is made in a new release (such
as, when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped).
The absence of the n flag causes skipped releases to be completely empty.

j Causes get to allow concurrent edits of the same base SID. See admin(1) for
restrictions.

l Defines a list of releases that are locked against editing (get(1) with the -e
keyletter).

q Defines the replacement for the %Q%identification keyword.

z Used in certain specialized interface programs.

Comments Arbitrary text is surrounded by the bracketing lines @t and @T. The comments sec-
tion typically contains a description of the file’s purpose.

Body Consists of text lines and control lines. Text lines do not begin with the control char-
acter; control lines do. There are three kinds of control lines:

Type Represented By:

insert @I DDDDD
delete @DDDDDD

Section 4−−236 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sccsfile(4) sccsfile(4)

end @EDDDDD

The digit string is the serial number corresponding to the delta for the control line.

WARNINGS
SCCS files can be any length, but the number of lines in the text file itself cannot exceed 99999 lines.

SEE ALSO
admin(1), delta(1), get(1), prs(1).

HP-UX Release 11.0: October 1997 − 3 − Section 4−−237

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

NAME
sd(4) - all objects that Software Distributor (SD) uses, their attributes and storage formats

DESCRIPTION
Remarks

• SD-UX commands are included with the HP-UX operating system and manage software on the
local host only.

• To install and manage software simultaneously on multiple remote hosts (including HP-UX, other
UNIX platforms, Windows NT, and PCs) from a central controller, you must purchase the HP
OpenView Software Distributor which provides extended software management capabilities. Infor-
mation specific only to the OpenView product is marked with a heading similar the following:

The following information applies to HP OpenView Software Distributor only.

Command Overview
The SD commands create, install, distribute and manage software objects (bundles, products, subproducts
and filesets). In addition, they define and manage other objects in support of the software administration
tasks which users perform. This manual page describes the SD software object classes, their attributes, and
the file formats used to store their definitions.

For an overview of all SD commands, see the sd(5) manual page by typing: man 5 sd

Layout Version
The objects described here conform to layout_version 1.0 of the IEEE Standard 1387.2: Software Adminis-
tration (POSIX). The previous SD layout_version 0.8 is also supported. For more details, see swpackage(4)
or the layout_version option in sd(5).

OBJECT CLASSES
The SD object classes are:

host A machine at which software is installed, will be installed, or is being managed. A host con-
tains one or more roots (installed filesystems) and zero or more depots.

depot A directory location which contains software products or bundles that are available for ins-
tallation. It is a customizable source of software used for direct installation. It can also
represent a distribution medium (e.g. tape or CD-ROM) which contains products or bundles
available for installation. Depot corresponds to the distribution class defined in POSIX.

media Vehicle for software delivery. When a depot is located on one or more media in
layout_version=1.0 , the unique sequence number identifying each medium is in the
media class.

root A set of installed software objects, usually the operational software installed in the primary
root filesystem, "/". It also represents the set of software objects installed into an alternate
root directory. Root corresponds to the installed_software class defined in POSIX.

vendor The vendor who packaged and distributed a product or bundle. It is an optional component
of a product or a bundle.

category A classification for a product or bundle, such as "systems_management," "desktop," or
"patch."

bundle A bundle is a way of encapsulating products, subproducts and filesets into a single software
object. More than one bundle can contain the same software objects. A bundle can be
thought of as a particular "configuration" of software. It is a convenient way to group
software objects together for easy selection. Bundle is NOT a superset of product.

product A software object which vendors package and distribute, and which users purchase and
install. A product contains one or more filesets and zero or more subproducts. A product
can also contain zero or more control_files.

subproduct
A subset or partitioning of a software product. It is an optional component of a product.
and contains one or more filesets .

Section 4−−238 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

fileset A grouping of one or more files contained in a product or sub-product. It groups a subset of
a product’s files into a manageable unit. A fileset can also contain zero or more
control_files.

file The actual files that make up a fileset that get installed, configured, and removed.

control_files
The scripts developed by vendors to perform product- or fileset-specific operations during
various software management tasks. Often called control_scripts.

OBJECT ATTRIBUTES
The following tables summarize the valid attributes for each software object class. A subset of these attri-
butes can be defined for an object when creating products or bundles with swpackage . See swpackage(4)
for details on this subset.

The attribute value types are defined in the next section, "VALUE TYPES".

Host Attributes
__
Attribute Value Type Size Example__
machine_type uname_string 32 9000/720__
name one_line_string 64 newdist.fc.hp.com__
os_name uname_string 32 HP-UX__
os_release uname_string 32 A.09.01__
os_version uname_string 32 C__
contained depots list of depot objects__
contained roots list of root directories__L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

machine_type
The host’s machine and architecture designation. (uname -m field).

name
The official name of the network host.

os_name
The host’s operating system name. (uname -s).

os_release
The host’s operating system release. (uname -r).

os_version
The host’s operating system version. (uname -v).

contained depots
The depots registered at the host.

contained roots
The root filesystems registered on this system.

HP-UX Release 11.0: October 1997 − 2 − Section 4−−239

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

Depot Attributes

Attribute Value Type Size Example___
copyright multi_line_string 8K "This depot ..."___
data_model_revision revision_string 64 2.40___
description multi_line_string 8K "This depot ..."___
dfiles tag_string 64 dfiles___
layout_version revision_string 64 1.0___
mod_date one_line_string 64 Tue Jun 22 12:52:09 1997___
mod_time unsigned_integer 740774837___
name_max unsigned_integer 255___
number one_line_string 64 B2358-13601___
path_max unsigned_integer 1023___
pfiles tag_string 64 pfiles___
tag tag_string 64 APPLICATIONS_CD___
title one_line_string 256 Applications Software___
uuid one_line_string 64 25CA7C86-6F0C-9353__
contained bundles list of bundle objects___
contained products list of product objects___
contained media media object___
contained vendors vendor objects___
contained categories category objects___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

copyright
The copyright information for the depot or tape.

data_model_revision
The HP specific format revision used to store the depot definition.

description
The multi-paragraph description of the distribution depot/tape.

dfiles
The name of a directory that contains any attributes that must be stored as files.

layout_version
The version of the IEEE Standard 1387.2
(1.0 or 0.8) to which the HP-specific data_model_revision conforms.

mod_date
The string format of the mod_time .

mod_time
The time of the last operation performed on the depot.

name_max
The maximum length of file basenames in the depot.

number
The part or manufacturing number of the depot/tape.

path_max
The maximum length of file pathnames in the depot.

pfiles
The name of a directory that contains any product control_files or any product attributes that
must be stored as files.

tag The identifier (short name) for the distribution depot/tape.

title
The full name (one-line description) of the distribution depot/tape.

uuid
The depot’s Universal Unique Identifier (UUID).

Section 4−−240 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

contained bundles
The bundles available from the depot.

contained products
The products available from the depot.

contained media
The object defining the sequence number used to identify each medium.

contained vendors
The objects defining a vendor object that is associated with subsequent bundle and product
objects that define a vendor_tag attribute.

contained categories
The objects defining a vendor object that is associated with subsequent software objects and
define a category_tag attribute.

Media Attributes
Generated by swpackage.

Attribute Value Type Size Example___
sequence_number one_line_string 64 1___LL
L

LL
L

LL
L

LL
L

LL
L

sequence_number
For a multiple tape distribution, this attribute defines the unique sequence_number of each
medium.

Root Attributes
__
Attribute Value Type Size Example__
data_model_revision revision_string 64 2.40__
description multi-line_string 2048 "This root is ..."__
dfiles tag_string 64 dfiles__
layout_version revision_string 64 1.0__
mod_date one_line_string 64 Mon Jun 14 13:01:19 1997__
mod_time unsigned_integer 740774837__
path one_line_string 256 /xx/xx/xx__
pfiles tag_string 64 pfiles__
root_type one_line_string 256 shared__
contained bundles list of bundle objects__
contained products list of product objects__
contained vendors vendor objects__
contained categories category objects__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

data_model_revision
The HP specific format revision used to store the root definition.

description
A multi-line description of the root.

layout_version
The version of the IEEE Standard 1387.2 (1.0 or 0.8) to which the HP-specific
data_model_revision conforms.

mod_date
The string format of the mod_time .

mod_time
The time of the last operation performed on the root.

path
The path to the root.

root_type
The type of root: shared, private or none.

HP-UX Release 11.0: October 1997 − 4 − Section 4−−241

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

contained bundles
The bundles installed into the root.

contained products
The products installed into the root.

contained vendor
The object defining a vendor object that is associated with subsequent bundle and product objects
that define a vendor_tag attribute.

contained category
The object defining a vendor object that is associated with subsequent software objects that
define a category_tag attribute.

Vendor Attributes
__
Attribute Value Type Size Example__
description multi_line_string 8K "This vendor ..."__
title one_line_string 256 Hewlett-Packard Company__
tag tag_string 64 HP__
uuid one_line_string 64 1234567-CDEF-0123-4569__LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

description
The multi-paragraph description of the vendor.

tag The identifier (short name) for the vendor. Used to associate a vendor object with subsequent
product or bundle objects having a vendor_tag attribute of the same value.

title
The full name (one-line description) for the vendor.

uuid
The vendor’s Universal Unique Identifier (UUID).

When listing the attributes of a vendor associated with the specified product or bundle using swlist , the
option -a vendor lists all of the vendor attributes. The option -a vendor. attribute can be used to list
specific vendor attributes (e.g. -a vendor.title).

Category Attributes
__
Attribute Value Type Size Example__
description multi_line_string 8K normal patches__
revision revision_string 64 0.0__
tag tag_string 64 normal_patch__
title one_line_string 256 patches for normal use__LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

description
A more detailed description of the category.

tag A short name identifying the category. Each category must have a unique tag. This attribute has
no default value. The category tag patch is reserved. When is_patch is set to true for a
software object, a built-in category_tag attribute of value patch is automatically
included.

title
A longer name of the category used for presentation purposes.

revision
Determines which category object definition to maintain in a depot when a definition being
installed or copied does not match a definition already in the depot with the same
category_tag . The category definition with the higher revision is maintained.

Section 4−−242 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

Bundle and Product Attributes
NOTE:

• Attributes marked with a + apply only to the product class.

• Attributes marked with a - apply only to the bundle class.

• Attributes marked with a * determine the uniqueness of a product or bundle object. Their
values may also be of the type version_component when used in a version component of a
software specification.

Attribute Value Type Size Example___
+ all_filesets one-line list of commands agent data man

tag_string values___
* architecture one_line_string* 64 HP-UX_A.09.00_800___

category_tag tag_string 64 normal___
- contents repeatable list of 8K foo.bar,r=1.0,a=,v=HP

software_specs x.y,r=2.0,a=,v=___
control_directory path_string 255 SD___
copyright multi_line_string 8K "This product ..."___
create_date one_line_string 64 Mon Jun 14 13:01:19___
create_time unsigned_integer 740084479___
data_model_revision revision_string 64 2.40___
description multi_line_string 8K "This product ..."___
directory path_string 1024___
install_date one_line_string 16 199802241212.34___
install_source one_line_string 1024 zook.com:/depot___
install_type one_line_string 16 physical___
instance_id tag_string 64 1___

+ is_locatable boolean 8 true___
is_patch boolean 8 true___

+ job_file one_line_string 256 <pcjob___
layout_version revision_string 64 1.0___

+* location path_string 1024 /___
machine_type uname_string 64 9000/7*|9000/8*___
mod_date one_line_string 64 Mon Jun 14 13:01:19 1997___
mod_time unsigned_integer 740084479___
number one_line_string 64 J2326AA___
os_name uname_string 64 HP-UX___
os_release uname_string 64 ?.09.*___
os_version uname_string 64 [A-Z]___

+ postkernel (future) path_string 255 /usr/bin/kernel_build___
+ qualifier one_line_string 64 "My product"___
+ readme multi_line_string 1024K < README___
* revision revision_string 64 2.0___

share_link one_line_string 256 "sbin"___
size unsigned_integer 14638872___
software_spec software_spec SD,r=2.0___

* tag tag_string 64 SD___
title one_line_string 256 Software Distributor___

* vendor_tag tag_string 64 HP__
+ contained control scripts list of control script objects___
+ contained filesets list of fileset objects___
+ contained subproducts list of subproduct objects___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

all_filesets
All the filesets originally packaged into the product.

architecture
The target system(s) on which the product will run.

HP-UX Release 11.0: October 1997 − 6 − Section 4−−243

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

category_tag
A repeatable tag-based attribute identifying a set of categories of which the software object is a
member. This is used as a selection mechanism and can be used independent of patches. The
default value is an empty list or patch if the is_patch attribute is set to true . The
category tag patch is reserved.

Like vendor_tag , this attribute associates this product or bundle with a category object con-
taining additional information about the category (for example, a one-line title definition and a
description of the category).

contents
The list of fully qualified software_specs for a bundle. (Applies to bundles only).

control_directory
The relative pathname to the product catalog directory within the depot/root catalog that con-
tains control scripts for the product.

copyright
The copyright information for the product.

create_date
The string format of the create_time .

create_time
The time at which the bundle or product was created.

data_model_revision
The format revision used to store the product definition.

directory
The default pathname in which the product’s files will be installed.

description
The multi-paragraph description of the product.

install_date
The installation date of the product or bundle.

install_source
The source from which the product was installed.

install_type
The type of installation - "physical" or "NFS_mount".

instance_id
The secondary identifier for products which have the same tag (or truncated tag) value.

is_locatable
Defines whether (or not) the product can be installed into an arbitrary directory.

is_patch
Identifies a software object as a patch. The default value is false . When set to true , a built-
in category_tag attribute of value patch is automatically included.

job_file
For HP OpenView Software Distributor PC products, this indicates the existence of the
pcjob control_file.

layout_version
The version of the IEEE Standard 1387.2 (1.0 or 0.8) to which the HP-specific
data_model_revision conforms.

location
The installed pathname of the product.

machine_type
The machine(s) on which the product will run.

mod_date
The string format of the mod_time .

mod_time
The time of the last operation performed on the product.

Section 4−−244 − 7 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

number
The part or order number for the product.

os_name
The operating system(s) on which the product will run.

os_release
The operating system release(s) on which the product will run.

os_version
The operating system versions(s) on which the product will run.

postkernel
(Not yet implemented.)The path to a script that is run after kernel filesets are installed.

qualifier
A user-specified name that identifies a product or set of product versions.

readme
The most recent information for the product.

revision
The revision (release number, version number) of the product.

share_link
Sharing point(s) for product.

size
The size of the product in bytes.

software_spec
The fully qualified software specification for the bundle or product. This attribute can be used to
identify a unique bundle or product.

tag The identifier (short name) for the product.

title
The full name (one-line description) of the product.

vendor_tag
Associates this product or bundle with a vendor object containing additional attributes describing
the vendor. The vendor object must have a matching tag attribute.

contained control scripts
The scripts defined for the product.

contained filesets
The fileset defined for the product.

contained subproducts
The subproducts defined for the product.

HP-UX Release 11.0: October 1997 − 8 − Section 4−−245

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

Subproduct Attributes

Attribute Value Type Size Example___
contents repeatable list of tag_string values commands data man___
description multi_line_string 8K "This subproduct ..."___
size unsigned_integer 14638872___
software_spec software_specification Networking.Run,r=1.0___
tag tag_string 64 Manager___
title one_line_string 256 Management Utilities___L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

contents
A list of the filesets that make up the subproduct.

description
The multi-paragraph description of the subproduct.

size
The size of the subproduct in bytes.

software_spec
The full software specification for the subproduct. This attribute can be used to identify a unique
subproduct.

tag The identifier (short name) for the subproduct.

title
The full name (one-line description) of the subproduct.

Section 4−−246 − 9 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

Fileset Attributes
__
Attribute Value Type Size Example__
ancestor repeatable list of software specs oldprod.fs__
applied_patches software_spec product.fileset,version__
architecture one_line_string 64 HP-UX_9.00_700/800__
category_tag tag_string 64 patch_normal__
control_directory path_string 255 SD__
corequisites repeatable list of software_specs SD.man__
create_date one_line_string 64 Mon Jun 14 13:01:19__
create_time unsigned_integer 740084479__
data_model_revision revision_string 64 2.40__
description multi_line_string 8K "This fileset ..."__
exrequisites (future) repeatable list of software_specs SD.man__
install_date one-line string 16 199402241414.34__
install_source one_line_string 1024 zook.com:/depot__
instance_id tag_string 1__
is_kernel boolean 8 false__
is_locatable (future) boolean 8 true__
is_packaged_in_place boolean 8 false__

vis_patch boolean 8 true__
is_reboot boolean 8 false__
is_secure boolean 8 false__
is_sparse boolean 8 false__
location (future) path_string 1024 /__
machine_type uname_string 64 9000/[78]*__
media_sequence_number unsigned_integer 1__
mod_date one_line_string 64 Mon Jun 14 13:01:19 1997__
mod_time unsigned_integer 740084479__
os_name uname_string 64 HP-UX__
os_release uname_string 64 ?.09.*__
os_version uname_string 64 ?__
patch_state patch_state_string 16 applied__
pose_as_os_name uname string 64 HP-UX:64__
pose_as_os_release uname string 64 B.10.30__
prerequisites repeatable list of software_specs SD.agent__
revision revision_string 64 2.15__
size unsigned_integer 14638872__
state state_enumeration corrupt__
software_spec software_spec Networking.Run,r=1.0__
superseded_by software_spec product.fileset,version__
supersedes software_spec product.fileset,

fr=revision__
tag tag_string 64 commands__
title one_line_string 256 Commands__
contained control scripts list of control script objects__
contained files list of file objects__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

ancestor
A list of filesets that will match the current fileset when installed on a target system if the
match_target installation option is specified. Also determines the base to which a patch is
applied. (Note that an ancestor attribute is not the same as a corequisite , exre-
quisite , or prerequisite .)

applied_patches
Determines the list of patches that have been applied to a base fileset. This attribute applies to
installed base (non-patch) software only.

HP-UX Release 11.0: October 1997 − 10 − Section 4−−247

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

architecture
Describes the target system(s) on which the fileset will run if filesets for multiple architectures
are included in a single product. Provides a human-readable summary of the four uname(1)
attributes which define the exact target system(s) the fileset supports. Most filesets do not
include an architecture; only a product architecture need be defined.

category_tag
A repeatable tag-based attribute identifying a set of categories of which the software object is a
member. This is used as a selection mechanism and can be used independent of patches. The
default value is an empty list or patch if the is_patch attribute is set to true . The
category tag patch is reserved.

Like vendor_tag , this attribute can be used as a pointer to a category object that contains
additional information about the category (for example, a one-line title definition and a descrip-
tion of the category).

control_directory
The relative pathname to the fileset catalog directory in the product catalog that contains the
control_scripts for the fileset.

corequisites
A list of dependencies on software that must be installed before this software is run.

data_model_revision
The format revision used to store the fileset definition.

description
The multi-paragraph description of the fileset.

exrequisites
(Not yet implemented.) A list of dependencies on software that may not be installed when this
software is installed.

install_date
The date the fileset was installed.

install_source
The source from which the product was installed.

instance_id
The secondary identifier for filesets which have the same tag (or truncated tag) value.

is_kernel
Defines whether or not the fileset contains kernel files.

is_locatable
(Not yet implemented.) Defines whether or not the fileset can be installed into an arbitrary direc-
tory.

is_packaged_in_place
For a fileset within a depot, this attribute defines whether or not the fileset is packaged in place.
If true, then the fileset’s contents are actually references to the original source files used to con-
struct the fileset.

is_patch
Identifies a software object as a patch. The default value is false . When set to true , a built-
in category_tag attribute of value patch is automatically included.

is_reboot
Defines whether or not the fileset requires a reboot after install.

is_secure
Defines whether or not the fileset is encrypted on a CD-ROM media, requiring a codeword to
install.

is_sparse
Indicates that a fileset contains only a subset of files in the base (ancestor) fileset and that the
contents are to be merged with the base fileset. The default value is false . If the is_patch
attribute is true , is_sparse is also set to true for the fileset, although it can be forced to
false.

Section 4−−248 − 11 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

location
(Not yet implemented.) The installed pathname of the fileset.

machine_type
Defines the machine(s) on which the product will run if a fileset architecture has been defined. (If
not specified, swpackage assigns a value of "*", meaning the fileset runs on all machines.) If
there are multiple machine platforms, use wildcards or the ’|’ character to identify them. This
attribute should pattern match to the value of uname -m on the supported target machine(s).

media_sequence_number
For a multiple tape distribution, defines the tape on which the fileset is archived.

mod_date
The string format of the mod_time .

mod_time
The time of the last operation performed on the fileset.

os_name
Defines the operating system(s) on which the product will run if a fileset architecture has been
defined. (If not specified, swpackage assigns a value of "*", meaning the fileset runs on all
operating systems.) If there are multiple operating systems, use wildcards or the ’|’ character to
identify them. This attribute should pattern match to the value of uname -s on the supported
target system(s).

os_release
Defines the operating system release(s) on which the product will run if a fileset architecture has
been defined. (If not specified, swpackage assigns a value of "*", meaning the fileset runs on
all releases.) If there are multiple operating system releases, use wildcards or the ’|’ character to
identify them. This attribute should pattern match to the value of uname -r on the supported
target system(s).

os_version
Defines the operating system version(s) on which the product will run if a fileset architecture has
been defined. (If not specified, swpackage assigns a value of "*", meaning the fileset runs on
all versions.) If there are multiple operating system versions, use wildcards or the ’|’ character
to identify them. This attribute should pattern match to the value of uname -v on the sup-
ported target system(s).

patch_state
Lists the current state of an installed patch, either applied, committed, or super-
seded. Applies to installed patches only.

pose_as_os_name
Overrides the existing os_name uname attribute of any target to which the given fileset is
being installed. Used for filesets that define a new OS.

pose_as_os_release
Overrides the existing os_version uname attribute of any target to which the given fileset is
being installed. Used for filesets that define a new OS.

prerequisites
A list of dependencies on software that must be installed before this software can be installed.

revision
The revision (release number, version number) of the fileset.

size
The size of the fileset in bytes.

state
The current state of the fileset (resulting from the most recent operation performed on it).

software_spec
The full software specification for the fileset. Used to identify a unique fileset.

superseded_by
Lists what patch superseded this patch. Applies to installed patches only.

HP-UX Release 11.0: October 1997 − 12 − Section 4−−249

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

supersedes
Used when a patch is replaced by (or merged into) a later patch. The attribute indicates which
previous patches are replaced by the patch being installed or copied. This attribute value is a list
of software specifications of other patches that this patch "supersedes".

tag The identifier (short name) for the fileset.

title
The full name (one-line description) of the fileset tag (or truncated tag) value.

contained control scripts
The scripts defined for the fileset.

contained files
The files defined for the fileset.

Control_File Attributes
__
Attribute Value Type Size Example__
interpreter path_string /usr/package/scripts__
path path_string 255 checkinstall__
result result_enumeration success__
tag tag_string 16 checkinstall__LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

Control_files can be defined for filesets and products.

interpreter
The name of an interpreter used to execute control_files. Currently, only a value of sh is sup-
ported for this attribute. Control scripts can still define their own interpreter in the first line of
the script.

path
The relative pathname to the control_script in the control_directory.

result
The result obtained from executing the control_script.

tag The identifier (short name) for the control_script.

Section 4−−250 − 13 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

File Attributes

Attribute Value Type Size Example___
cksum unsigned_integer 18355158___
compressed_cksum unsigned_integer false___
compressed_size unsigned_integer false___
compression_state compression_enumeration compressed___
compression_type tag_string 64 gzip___
file_attrs unsigned_integer 32___
gid unsigned_integer 0___
group tag_string 64 sys___
is_volatile boolean 8 false___
link_source path_string 1024 /usr/sbin/swinstall___
mode unsigned integer 04555___
mtime unsigned_integer 740084479___
owner tag_string 64 root___
path path_string 255 /usr/sbin/swpackage___
revision revision_string 64 1 .3___
size unsigned_integer 2494464___
source path_string 1024 /mfg/sbin/swinstall___
type file_type_enumeration f___
uid unsigned_integer 0___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

cksum
The 32-bit checksum of the file.

compressed_cksum
The checksum of the compressed file.

compressed_size
The size of the compressed file.

compression_state
The compression state of a file (compressed or not).

compression_type
The type of compression used to store the file.

file_attrs
The DOS file attributes (of a PC file).

gid The GID of the file’s owner.

group
The name of the file’s group.

is_volatile
Defines whether the file can be modified or removed.

link_source
The path to which a hard or symbolic link points.

mode
The file permission mode.

mtime
The last modification time of the file.

owner
The name of the file’s owner.

path
The full pathname to the file.

revision
The what(1) or ident(1) revision of the file.

HP-UX Release 11.0: October 1997 − 14 − Section 4−−251

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

size
The size of the file in bytes.

source
The full path to the source file for files which have been "packaged in place"; see swpackage(1M).

type
The type of file.

uid The UID of the file’s owner.

VALUE TYPES
The value for each attribute must be of a specific type. The types are:

boolean Maximum length: 8 bytes
Examples: true, false

One of the following values:
true
false

compression_enumeration
Maximum length: none

One of the following values:
compressed
uncompressed
not_compressible

file_type_enumeration
Maximum length: none

One of the following values:
a archive
b blank special device
c character special device
d directory
f file
h hard link
p named pipe (FIFO)
s symbolic link

multi_line_string
Maximum length: 8K (1 Mbyte for readme)

Multi-line strings support all isascii() characters. They represent one or more para-
graphs of text. They are usually specified in-line, surrounded by double-quotes. (The pro-
duct readme is stored in a file, and specified using the ‘‘< filename’’ format).

one_line_string
Maximum length: 256 bytes
Examples: Hewlett-Packard Company

One-line strings support a subset of isascii() characters only.
No isspace() characters, except for space and tab, are allowed.

patch_state_string
Maximum length: 16

One of the following values:
applied
committed
superseded

path_string
Maximum length: 255 bytes for tapes, 1024 bytes for depots
Examples: /usr, /mfg/sd/scripts/configure

An absolute or relative path to a file.

Section 4−−252 − 15 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

result_enumeration
Maximum length: none

One of the following values:
none
error
warning
success

revision_string
Maximum length: 64 bytes
Examples: 2.0, A.09.00

Revision strings contain zero or more dot-separated one_line_strings (above).

software_specification
Maximum length: none
Examples: SD.agent or SD,r=2.0,a=HP-UX_A.09.00_800

Software specifications specify software in dependencies, ancestors and other attributes, as
well as command line selections. The next section describes software specification syntax.

state_enumeration
Maximum length: none

One of the following fileset states:
transient
corrupt
available
installed
configured

tag_string
Maximum length: 64 bytes
Examples: HP, SD

Tag strings containing a subset of isascii() characters only.
Requires one or more characters from: A-Z, a-z, 0-9, including the first character.
The isspace() characters are not allowed; see ctype(3C).
Metacharacters not allowed: . , = #
Shell metacharacters not allowed: ; & () { } | < >
Shell quoting characters not allowed: " ‘ ’ \
Directory path character not allowed: /

uname_string
Maximum length: 64 bytes
Examples: 9000/7*|9000/8*, HP-UX, ?.09.*, [A-Z]

Uname strings containing a subset of isascii() characters only.
No isspace() characters are allowed.
Shell pattern matching notation allowed: [] * ? !
Patterns can be "ORed" together using the separator: |

unsigned_integer
Maximum length: none

An integer in the range >= 0 and <= 2ˆ32.

HP-UX Release 11.0: October 1997 − 16 − Section 4−−253

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

SOFTWARE SPECIFICATION SYNTAX
The SD commands and attributes support the following syntax for each software_specification:

bundle[. product[. subproduct][. fileset]][, version]
product[. subproduct][. fileset][, version]

The version component has the form:
[,r <op> revision][,a <op> arch][,v <op> vendor]
[,c <op> category][,l= location][,fr <op> revision]
[,fa <op> arch]
• location applies only to installed software and refers to software installed to a location other than

the default product directory.

• fr and fa apply only to filesets.

• The <op> (relational operator) component can be of the form:

==, >=, <=, <, >, or !=

which performs individual comparisons on dot-separated fields.

For example, r>=B.10.00 chooses all revisions greater than or equal to B.10.00 . The sys-
tem compares each dot-separated field to find matches. Shell patterns are not allowed with these
operators.

• The = (equals) relational operator lets you specify selections with the shell wildcard and
pattern-matching notations:

[] , * , ?, !

For example, the expression r=1[01].* returns any revision in version 10 or version 11.

• All version components are repeatable within a single specification (e.g. r>=A.12 , r<A.20).
If multiple components are used, the selection must match all components.

• Fully qualified software specs include the r= , a= , and v= version components even if they con-
tain empty strings.

• No space or tab characters are allowed in a software selection.

• The software instance_id can take the place of the version component. It has the form:

[instance_id]

within the context of an exported catalog, where instance_id is an integer that distinguishes ver-
sions of products and bundles with the same tag.

HOST OBJECT FORMAT
The file /var/adm/sw/host_object defines the software depots on the local host which have been
registered with the swagentd daemon running on the host. The file has this format:

host
data_model_revision 2.40

distribution Defines a contained (registered) depot
path directory

distribution
path directory

...

Section 4−−254 − 17 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

DEPOT (DISTRIBUTION) FORMAT
A depot is formatted using the following directory structure:

catalog / Catalog of depot’s contents
INDEX Global index (table of contents)
swlock Controls simultaneous modification
dfiles / Stores all depot-specific information

INDEX Defines depot-specific attributes
INFO Defines depot-specific files
_ACL Access Control List (ACL) for the depot
_OWNER Owner and group of the depot’s creator
_LOCK_FILE Controls simultaneous ACL modification
_PROD_DFLT_ACL Default ACL for new products

product_directory/ Catalog for a product
pfiles / Stores all product-specific information

INDEX Defines product attributes
INFO Defines product files and scripts
README The product’s README attribute
scripts Zero or more product control files
pcjob A PC product’s job file (HP OpenView Software Distributor only)
_ACL ACL for the product
_OWNER Owner and group of the product’s creator
_LOCK_FILE Controls simultaneous ACL modification

fileset_directory/ Catalog for a fileset
INDEX Defines fileset attributes
INFO Defines fileset files and scripts
scripts Zero or more fileset control files

fileset_directory/ Catalog for the next fileset

...

product_directory/ Catalog for the next product

...

product_directory/ Contents of a product
fileset_directory/ Contents of a fileset
... Contents of the next fileset

product_directory/ Contents of the next product
...

The format is divided into two areas:

• the catalog , which contains all the information which describes the products contained in the
depot;

• the contents , which stores the actual files contained in each product (one product_directory per
product.)

Product and Fileset Control Directory Names
The product.control_directory and fileset.control_directory values are unique storage directories for a given
product and fileset. They have this syntax:

tag[.instance_id]

The tag component is the product or fileset tag attribute. If more than one product with the same tag
exists in the software depot, the instance_id component is necessary. This component is the product or
fileset instance_id attribute.

On a short-filename filesystem, the tag component is truncated to the first 9 characters (if necessary). All
products with the same truncated tag will also have a unique storage directory based on the instance_id
component.

HP-UX Release 11.0: October 1997 − 18 − Section 4−−255

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

The following DOS information applies only to HP OpenView Software Distributor.

On a DOS filesystem, the tag component is truncated to the first 4 characters (always). All products with
the same truncated tag will also have a unique storage directory based on the instance_id component.

Distribution Tape Format
A distribution tape contains the depot format (above), archived to one or more tapes in tar(1) format. The
entire catalog precedes the depot contents on a distribution tape.

If the distribution spans multiple tapes, then the first tape contains the entire catalog, and as many fileset
contents directories as will fit on the tape. Each additional tape contains only the catalog/INDEX fol-
lowed by as many fileset contents directories as will fit on the tape.

INSTALLED PRODUCTS DATABASE FORMAT
An Installed Products Database (IPD) describes the software installed in a primary or alternate root filesys-
tem. The format of an IPD is similar to the format of a software depot. An IPD is formatted using the fol-
lowing directory structure:

var/adm/sw/products / Catalog of root’s contents
INDEX Global index (table of contents)
swlock Controls simultaneous modification
ifiles / Stores all root-specific information

INDEX Defines root-specific attributes
INFO Defines root-specific files
_ACL Access Control List (ACL) for the root
_OWNER Owner and group of the root’s creator
_LOCK_FILE Controls simultaneous ACL modification

product_directory/ Catalog for a product
pfiles / Stores all product-specific information

INDEX Defines product attributes
INFO Defines product files and scripts
README The product’s README attribute
scripts Zero or more product control files

fileset_directory/ Catalog for a fileset
INDEX Defines fileset attributes
INFO Defines fileset files and scripts
SAVE Defines file attributes for a fileset that

has been patched.
SAVEIPD Defines file attributes for a fileset that

has been patched.
scripts Zero or more fileset control files

fileset_directory/ Catalog for the next fileset

...

product_directory/ Catalog for the next product

...

Product and Fileset Directory Names
The product_directory and fileset_directory values are as described for the depot format above.

Section 4−−256 − 19 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

INDEX FORMAT
An INDEX file describes all of the attributes (except for contained scripts and contained files) of a fileset,
product, depot, or root. In a depot, the fileset, product, and depot INDEX files are concatenated together to
form the catalog/INDEX file. In a root, the fileset, product, and root INDEX files are concatenated
together to form the var/adm/sw/products/INDEX file.

This section describes the keyword syntax used in an INDEX file. The value for each keyword must
meet the type restrictions described in the OBJECT ATTRIBUTES section.

Depot INDEX Format
distribution

tag tag_value
copyright copyright_value
data_model_revision revision_value
description description_value
dfiles dfiles_value
layout_version revision_value
mod_date date_value
mod_time time_value
name_max name_max_value
number number_value
path_max path_max_value
pfiles tag_value
title title_value
uuid uuid_value

media
sequence_number sequence_number_value

No attributes are required.

Root INDEX Format
root

data_model_revision revision_value
description description_value
dfiles dfiles_value
layout_version revision_value
mod_date date_value
mod_time time_value
path path_value
pfiles tag_value
root_type root_value

No attributes are required.

HP-UX Release 11.0: October 1997 − 20 − Section 4−−257

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

Bundle or Product INDEX Format
NOTE:

• The tag attribute is always required for all objects.

• The contents attribute is required for subproducts and bundles .

• Keywords marked with a + apply only to product INDEX format.

• Keywords marked with a - apply only to bundle INDEX format.

vendor
tag tag_value
description description_value
title title_value
uuid uuid_value

category
tag tag_value
description description_value
revision revision_value
title title_value

product or bundle
tag tag_value

+ all_filesets all_filesets_value
architecture architecture_value
category_tag tag_value

- contents contents_value
control_directory control_directory_value
copyright copyright_value
create_date date_value
create_time time_value
data_model_revision revision_value
description description_value

+ directory directory_value
install_date install_date_value
install_source install_source_value
install_type install_type_value
instance_id id_value

+ is_locatable boolean_value
is_patch boolean_value

+ job_file job_file_value
+ location location_value

machine_type machine_type_value
mod_date date_value
mod_time time_value
number number_value
os_name os_name_value
os_release os_release_value
os_version os_version_value

+ postkernel postkernel_value
qualifier qualifier_value

+ readme readme_value
revision revision_value
share_link share_link_value
size size_value
software_spec software_specification_value
title title_value
vendor_tag vendor_tag_value

Section 4−−258 − 21 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

subproduct
tag tag_value
contents contents_value
description description_value
size size_value
software_spec software_specification_value
title title_value

Fileset INDEX Format
NOTE:

• The tag attribute is always required.

• The media_sequence_number attribute is required for filesets within a multiple tape distri-
bution.

• Multiple definitions of ancestor , corequisites , exrequisites and prere-
quisites are allowed.

fileset
tag tag_value
ancestor ancestor_value
applied_patches software_specification_value
architecture architecture_value
category_tag tag_value
control_directory control_directory_value
corequisites corequisites_value
create_date date_value
create_time time_value
data_model_revision revision_value
description description_value
exrequisites exrequisites_value
install_date date_value
install_source install_source_value
instance_id id_value
is_kernel boolean_value
is_locatable boolean_value
is_packaged_in_place boolean_value
is_patch boolean_value
is_reboot boolean_value
is_secure boolean_value
is_sparse boolean_value
location location_value
machine_type machine_type_value
media_sequence_number sequence_value
mod_date date_value
mod_time time_value
os_name os_name_value
os_release os_release_value
os_version os_version_value
patch_state patch_state_value
pose_as_os_release release_value
prerequisites prerequisites_value
revision revision_value
size size_value
state state_value
software_spec software_specification_value
superseded_by software_specification_value
supersedes software_specification_value
title title_value

HP-UX Release 11.0: October 1997 − 22 − Section 4−−259

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

INFO FORMAT
An INFO file describes all of the control scripts and other files contained within a fileset or product. This
section describes the keyword syntax used in an INFO file.

Control File Format
control_file

tag tag_value
interpreter interpreter_value
path path_value
result result_value

The path , and tag attributes are required.

File Format
file

cksum cksum_value
compressed_cksum cksum_value
compressed_size size_value
compression_state compression_state_value
compression_type type_value
file_attrs file_attrs_value
gid gid_value
group group_value
is_volatile boolean_value
link_source source_value
mode mode_value
mtime mtime_value
owner owner_value
path path_value
revision revision_value
size size_value
source_path source_value
type file_type_value
uid uid_value

The path , and type attributes are always required. The link_source attribute is required for hard
link and symbolic link files.

ACL FORMAT
An Access Control List (ACL) has this format:

default_realm = host_name
num_entries = count

entry_type :[key:]permissions
entry_type :[key:]permissions
entry_type :[key:]permissions

See the swacl(1M) manual page for details on the fields in an ACL entry. Note that the permissions of a
stored ACL are literal octal strings, but the permissions displayed by swacl are symbolic.

The _OWNERfile uses a subset of the ACL format. It contains an entry for the user and group names
of the user who created the corresponding object.

Section 4−−260 − 23 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sd(4) sd(4)
(Hewlett-Packard Company)

LOCKING
These commands use a common locking mechanism for reading and modifying both root directories and
software depots. This mechanism allows multiple readers but only one writer on a root or depot.

The commands which modify software in an (alternate) root directory are restricted from simultaneous
modification using fcntl(2) locking on the file

var/adm/sw/products/swlock

relative to the root directory (e.g. /var/adm/sw/products/swlock).

The commands which modify software in a depot are restricted from simultaneous modification using
fcntl(2) locking on the file

catalog/swlock

relative to the depot directory (e.g. /var/spool/sw/catalog/swlock).

All commands set fcntl(2) read locks on roots and depots using the swlock file mentioned above. When a
read lock is set, it prevents other commands from performing modifications (i.e. from setting write locks).

The swacl command is restricted from simultaneous modification of an ACL using fcntl(2) read and write
locks on the

_LOCK_FILE

associated with each ACL.

AUTHOR
Software Distributor was developed by the Hewlett-Packard Company. swagent , swcopy , swin-
stall , swlist , and swpackage were developed by the Hewlett-Packard Company and Mark H. Col-
burn (see pax(1)).

SEE ALSO
The Managing HP-UX Software with SD-UX manual, the HP OpenView Software Distributor
Administrator’s Guide, swpackage(4), sd(5), swacl(1M), swagent(1M), swagentd(1M), swask(1M),
swconfig(1M), swcopy(1M), swgettools(1M), swinstall(1M), swjob(1M), swlist(1M), swmodify(1M),
swpackage(1M), swpackage(4), swreg(1M), swremove(1M), swverify(1M).

HP-UX Release 11.0: October 1997 − 24 − Section 4−−261

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

securenets(4) securenets(4)

NAME
securenet - NIS map security file

DESCRIPTION
The /etc/securenets file defines networks and hosts that may access the NIS maps on a server.
Each line in the file gives a network mask and a net address, each in dotted quad format. For example:

255.255.255.255 133.33.33.33

The file may have any number of netmask/net pairs.

When ypserv is started on the server, it checks for the existence of /etc/securenets and reads its
contents into memory if it exists. ypserv must be stopped and restarted for any changes in
/etc/securenets to take effect.

Upon startup, the netmask and the net address are converted to binary format and logical ANDed. The
result must equal the net address (the second address) to be legal.

If the netmask is 255.255.255.255 (all 1’s in binary), any address in the net address argument will match it.
If any field in the netmask is 0, the corresponding field in the net address must be 0. When used in this
way, the portion of the addresses given as 0 acts as a wild card.

When a client attempts to bind to the server, ypbind checks the client’s IP against those given in the
/etc/securenets file. Again, the address is converted to binary and logical ANDed with the netmask.
The result must equal the net address given in the file. If the client address doesn’t match any pairs in the
file, the binding is refused with the message "no such map in server’s NIS domain".

The securenets file can be used to limit access to specific hosts or to subnets using the wildcard capa-
bility.

If there are syntax errors in the /etc/securenets file, messages are logged to the ypserv logging
file (default /usr/adm/syslog), and ypserv is not started.

If a host has multiple interfaces, each interface address must be allowed in the securenets file for that host
to have reliable NIS access.

EXAMPLES
This line in /etc/securenets provides access only to the host with address 192.33.33.33:

255.255.255.255 192.33.33.33

This entry allows access by any host on the 192.33.33 subnet:

255.255.255.0 192.33.33.0

For broader access, for instance for an entire enterprise, this entry allows any host whose address begins
with "15" to be served:

255.0.0.0 15.0.0.0

SEE ALSO
ypserv(1M)

Section 4−−262 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

services(4) services(4)

NAME
services - service name data base

DESCRIPTION
The file /etc/services associates official service names and aliases with the port number and protocol
the services use. For each service a single line should be present with the following information:

<official service name> <port number/protocol name> <aliases>

Port numbers 0 through 1023 are assigned by RFC 1700. This RFC also lists the conventional use of various
ports with numbers greater than 1023.

Aliases are other names under which a service is known. Library routines such as getservbyname()
can be invoked with a service alias instead of the service official name. For example:

shell 514/tcp cmd

In this example, getservbyname() can be invoked with cmd instead of shell :

sp = getservbyname("cmd", "tcp");

instead of

sp = getservbyname("shell", "tcp");

Both produce the same results.

A line cannot start with a space or tab. Items are separated by any number of blanks (space or tab charac-
ters in any combination). The port number and protocol name are considered a single item. A / is used to
separate the port and protocol (for example, 512/tcp). A # character indicates the beginning of a com-
ment. Characters from the # to the end of the line are not interpreted by routines which search the file.

Service names can contain any printable character other than a white space, newline, or comment charac-
ter. Trailing blanks (spaces or tabs) are allowed at the end of a line.

Not all services listed in this file are available on HP-UX.

EXAMPLES
shell 514/tcp cmd
telnet 23/tcp
login 513/tcp

AUTHOR
services was developed by the University of California, Berkeley.

FILES
/etc/services

SEE ALSO
getservent(3N).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−263

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

shells(4) shells(4)

NAME
shells - list of allowed login shells

SYNOPSIS
/etc/shells

DESCRIPTION
/etc/shells is an ASCII file containing a list of legal shells on the system. Each shell is listed in the file
by its absolute path name.

Lines or portions of lines beginning with # are assumed to be comments and are ignored. Blank lines are
also ignored.

AUTHOR
shells was developed by HP and the University of California, Berkeley.

FILES
/etc/shells

SEE ALSO
chsh(1), ftpd(1M), getusershell(3C).

Section 4−−264 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

sm(4) sm(4)

NAME
sm, sm.bak, state - statd directory and file structures

SYNOPSIS
/var/statmon/sm

/var/statmon/sm.bak

/var/statmon/state

DESCRIPTION
/var/statmon/sm and /var/statmon/sm.bak are directories generated by statd (see
statd(1M)). Each file in /var/statmon/sm represents one or more machines to be monitored by the
statd daemon. Each file in /var/statmon/sm.bak represents one or more machines to be notified
by the statd daemon upon its recovery.

/var/statmon/state is a file generated by statd to record its version number. This version number
is incremented each time a crash or recovery takes place.

SEE ALSO
lockd(1M), statd(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−265

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

snmpd.conf(4) snmpd.conf(4)

NAME
snmpd.conf - configuration file for the SNMP agent

DESCRIPTION
When invoked, the SNMP agent reads its configuration information from the
/etc/SnmpAgent.d/snmpd.conf configuration file. The SNMP agent is either the snmpd(1M)
(included with HP-UX) or the snmpd.ea(1M) (purchased with the OpenView product). The SNMP agent
operates correctly if no values are configured in /etc/SnmpAgent.d/snmpd.conf .

/etc/SnmpAgent.d/snmpd.conf contains the following configurable values:

get-community-name: name IP: addr VIEW: mib-view
Specifies a community name for the agent. The agent responds to SNMP GetRe-
quests with this community name. You can configure the agent to respond to
more than one get community name. If a community name is not entered, the
agent responds to SNMP GetRequests using any community name.

There are two, optional, fields that may be associated with a community name.
They are IP: and VIEW:. These fields allow you to associate manager IP
addresses and MIB views with community names.

Following IP: is a list of IP address in dot notation. The list MUST be space
separated. Only SNMP Requests with one of these IP addresses, as the source
address, will be accepted. Any source IP address will be allowed if; IP: does not
appear on the line, no IP address appears after IP:, or an address of 0.0.0.0 is
placed after IP:. No wildcarding is supported.

The VIEW: is used to associate a MIB view with the community string. Placing
a name or OID from some portion of the MIB tree will cause that object plus all
portions of the tree below that object to be included in the view. Several names
may be placed on the line after VIEW: and MUST be space separated. If the ’-’
character proceeds an object name then it is excluded from the NIB view. For
example: VIEW: internet -mib-2 would allow access to all of internet
except for mib-2. The default mib view will be assigned if VIEW: does not appear
on the line or no MIB view appears after VIEW:. It is important to note that any
MIB object(s) specified after VIEW: override the default MIB view and are
not used in conjunction with it. The default MIB view is specified below under
default-mibVIEW: and is configurable.

Lines may be continued using the ‘‘\’’ character.

set-community-name: name IP: addr VIEW: mib-view
Specifies community name for the agent. The agent responds to the SNMP
SetRequests with this community name. You can configure the agent to respond
to more than one set community name. If a community name is not entered, the
agent returns an error. The IP: and VIEW: fields for set community names are
the same as for get community names. See above.

trap-dest: Specifies a system name where traps are sent (that is, the trap destination).
This system name is usually the host name or IP address of the manager. If
traps should be sent to multiple systems then a trap-dest line should be
included for each system.

location: Specifies the physical location of the agent.

contact: Specifies the person responsible for this agent and information on how to contact
this person.

sys-descr: Specifies the system description. This value becomes the system.sysDescr MIB
object.

default-mibVIEW:
Specifies the new default MIB view. By default, the MIB view of internet is
set by the system. The default MIB view may be changed several times and any-
where in the configuration file. This new MIB view is "in effect" from the point
in the file that it is defined until another default-mibVIEW: is encoun-
tered. To reset the system supplied MIB view, enter default-mibVIEW:
with no MIB objects after it. The MIB view values are specified in the same way

Section 4−−266 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

snmpd.conf(4) snmpd.conf(4)

as for the get-community-name: above.

Separate the fields by blanks or tabs. A # character indicates the beginning of a comment; characters
from the # character to the end of the line are ignored.

EXAMPLES
Each line in the following example snmpd.conf file is preceded by a comment (beginning with #) that
explains the entry. Please note that this is an example. Taken as a whole in is not intended to represent a
configuration that you should use. It’s sole purpose is to show the flexibility of the configuration file.

We’ll specify the location, contact, and sysDescr first.
location: Somewhere in the building.
contact: Jane Doe
sys-descr: HP-UX testsys1 A.09.04 E 9000/887 400509201

This community string has the system default MIB view
and any management station can use it.
get-community-name: globalget

Setting a new default MIB view.
default-mibVIEW: system

The following get and set community names will have the new
default MIB view of system. But are restricted to use by
systems 15.2.2.1 and 15.2.2.3. Note that the sysset community
string is only usable from 15.2.2.1.
get-community-name: sysget IP: 15.2.2.1 15.2.2.3
set-community-name: sysset IP: 15.2.2.1

Resetting the default MIB view back to the original
system default.
default-mibVIEW:

Now allow some specific machines access to limited
portions of the MIB.
Note use of line continuation character ’\’.
get-community-name: monitor IP: 15.3.2.1 15.4.23.1 VIEW: system \
interfaces at ip snmp
get-community-name: public IP: 0.0.0.0 VIEW: system

Set up an administrative role and a root role.
set-community-name: admin IP: 15.3.2.1 15.4.23.1 VIEW: internet \
-private
set-community-name: root IP: 15.3.2.1 VIEW: internet

Specify some trap dests.
trap-dest: 15.2.1.45
trap-dest: 15.3.2.1
trap-dest: 15.4.23.1

AUTHOR
snmpd.conf was developed by HP.

FUTURE DIRECTIONS
The following files are not currently used. They are place holders for the SNMPV2 configuration informa-
tion:

snmpv2.acl , snmpv2.ctx , snmpv2.party , and snmpv2.view

SEE ALSO
snmpd(1M), snmpd.ea(1M).

RFC 1155, RFC 1157, RFC 1212, RFC 1213, RFC 1231, RFC 1398

HP-UX Release 11.0: October 1997 − 2 − Section 4−−267

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

softkeys(4) softkeys(4)

NAME
softkeys - keysh softkey file format

BACKGROUND
keysh softkey information is stored in the form of a softkey node hierarchy. The top level of this hierar-
chy represents the softkey commands themselves; lower levels represent various command options and
parameters.

The softkey labels form a window into this softkey node hierarchy through which the user can view and
select eligible nodes. A node is eligible if it was:

• Enabled by default and has not been subsequently disabled by the selection of some sibling node, or

• Disabled by default, has not been subsequently disabled by the selection of some sibling node, but
has been subsequently enabled by the selection of some sibling node.

When a softkey node is selected, it can enable or disable any of its siblings as appropriate. A new window
into the softkey node hierarchy is then computed as follows:

• If the selected node was not a leaf node, its eligible children are displayed;

• Otherwise, if the node still has eligible siblings remaining, they are redisplayed;

• Otherwise, if the node’s parent still has eligible siblings remaining, they are redisplayed, and so on,
moving up the node hierarchy.

This process of node display and selection continues until the user has entered a complete command.

At that point, keysh performs the editrules associated with each of the selected softkey nodes. These
editrules create the HP-UX command that is fed to the shell for execution.

SOFTKEY FILE FORMAT
Each softkey file contains one or more softkey definitions, each of which is represented as a sub-hierarchy
of softkey nodes.

There are two basic types of softkey nodes:

option "Options" show up on softkey labels and insert literal text into the command-line
when selected. Examples are command and option names.

string ‘‘Strings’’ (or ‘‘parameters’’) show up on softkey labels but do not insert text into the
command-line when selected; rather, they display a hint message. The user must
then type the desired text into the command-line. Examples are file and user names.

Note that the keyword softkey can be used as a synonym for the keyword option .

The basic softkey node definition is composed of the following components:

{option string } softkey
attribute

.

.

.
;

Where softkey is the softkey node name from which the command-line text and softkey label are derived. If
necessary, a single plus sign (+) within softkey can be used to force hyphenation of the softkey label at a
syllable boundary.

If a softkey node has an associated sub-menu, its trailing ; is replaced with a list of child nodes as follows:

{
softkey node

.

.

.
}

Each softkey node can have the following optional attribute fields:

disable count Selecting this node will disable count softkey nodes to the right of this one -
default is 0.

Section 4−−268 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

softkeys(4) softkeys(4)

enable count Selecting this softkey will enable count softkey nodes to the right of this
one - default is 0.

{filter command} This node is only active for filters or commands, respectively - default is
either.

{motorola precision }
This node is only active when keysh is running on a Motorola (MC680x0)
or precision (PA-RISC) processor, respectively - default is either.

disabled This node starts out disabled and must be enabled to be used - default is to
start out enabled.

automatic The command will be entered automatically when this node is selected.

editrule editrule The editrule for this node.

cleanuprule editrule An editrule to be executed after all other editrules associated with this soft-
key command - only one cleanuprule is allowed per softkey command.

hint string The one line hint for this node - only valid for ‘‘string’’ softkey nodes.

help helptext The help for this node (may be more than one line).

required string The one-line error message to display if this node is not selected.

Arguments are as follows:

count A signed integer, the word none , or the word all .

editrule An editrule (described below).

helptext nroff -style help enclosed in quotes (also described below).

string An arbitrary string enclosed in quotes. Note that within quotes, \ escapes the next
character as when using awk(1).

A typical backup softkey node definition resembles:

backup softkey softkey [literal literal] ;

where literal is the literal text string to program the terminal function key with (if different than softkey).

An unquoted hash-mark character (#) in a softkey file delimits a comment to the end of the line.

Softkey Command Translation
To translate softkey commands into HP-UX commands, keysh executes the editrules associated with each
softkey selected by the user. These editrules create a word list via an awk-like editing language. This
translated word list is then passed to the shell for execution.

For a simple translation, this list might resemble:_____________ ______________ ______________
ls -l ∗∗.c

LL
L

LL
L_________

LL
L

LL
L_________

LL
L

LL
L

_____________ ______________ ______________

word[0] word[1] word[2]

Every time an editrule is invoked, the special constants last and next are defined to the index of the
last word in the list (‘‘2’’ in this example) and the would-be-next word in the list (‘‘3’’ in this example),
respectively. In addition, the constant argument is set equal to the user input for the softkey (e.g., *.c
for the softkey corresponding to the file name in this example).

Note that keysh automatically casts numbers and strings back and forth as necessary to carry out edi-
trules. Also, variables are cleared only before the first editrule associated with a softkey command. All
assigned variables are available to subsequent editrules.

Editrules
An editrule is a list of edit statements enclosed in curly-braces (i.e., { and }).

An edit statement is:

• an expression followed by a ; ,
• an if statement, or

HP-UX Release 11.0: October 1997 − 2 − Section 4−−269

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

softkeys(4) softkeys(4)

• a word allocation statement.

Expressions
A simple expression can be any of:

variable single letter from a to z
number unsigned integer
string enclosed in quotes
char enclosed in quotes

last see above
next see above
argument see above

motorola boolean flag
precision boolean flag
command boolean flag
filter boolean flag

word[number] see above

Simple expressions can be combined with any of:

string[number] single-character substring
string[number, number] multiple-character substring

number+number addition
number- number subtraction
number* number multiplication
number/ number division
number%number modulus
string&string concatenation
- number negation

string==string equality
string!= string inequality
number>=number greater than or equal
number<=number less than or equal
number>number greater than
number<number less than
number&&number logical and
number|| number logical or
! number logical not

(string) grouping

The following functions are also supported and return the indicated results:

strlen(string) number of characters in string
strchr(string, char) index of first char in string, or −1
strrchr(string, char) index of last char in string, or −1
trim(string) string without leading/trailing blanks
hex(number) number in hex with leading 0x
octal(number) number in octal with leading 0

Assignments can be done with any of:

variable=string simple assignment
variable+=number add and assign
variable-= number subtract and assign
variable*= number multiply and assign
variable/= number divide and assign
variable%=number modulus and assign
variable&=string concatenate and assign

word[number]= string simple assignment
word[number]+= number add and assign
word[number]-= number subtract and assign

Section 4−−270 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

softkeys(4) softkeys(4)

word[number]*= number multiply and assign
word[number]/= number divide and assign
word[number]%=number modulus and assign
word[number1]&= string concatenate and assign

if Statement
The if statement is similar to the full-block mode if statement in awk, and is structured as follows:

if(number) {
edit statement
.
.
.

} else {
edit statement
.
.
.

}

Where the else part is optional. If number is non-zero, the first block of edit statements is executed.
Otherwise, if the second block of edit statements is present, it is executed.

Word Allocation Statements
Word allocation statements include the following:

insert(number, string); Insert string as a new word in the word list immediately before
word[number] .

append(string); Insert string as a new word in the word list immediately after the last
word in the word list. Equivalent to insert(next, string); .

dash(string); Append string to the last word in the word list if that word already
begins with a dash. Otherwise, a dash is inserted as a new word in
the word list immediately after the last word in the word list and
string is appended to that.

delete(number); Delete word[number] from the word list.

Helptext
Each softkey node can have an associated helptext, to be displayed upon a user request for help. This
helptext is formatted on-the-fly and presented to the user through the preferred pager.

The helptext format is an nroff-like language, supporting a subset of the man(5) macros used to write stan-
dard HP-UX manual entries. In particular, this subset includes:

.nf Begin no-fill mode. Display text as-is, preserving new-lines and
spaces, until a .fi .

.fi Resume fill mode. Display text with words filled onto each output
line, attempting to utilize 90% of the screen width. (This is the
default mode.)

.br Force a break in the current output line. Display subsequent text on
the next line.

.sp Force a break and then display a single blank line (a vertical space).

.P Force a break, display a single blank line, and then begin a new para-
graph with no indent.

.IP tag indent Force a break, display a single blank line, and then display the
specified tag, then begin a new indented paragraph with the
specified indent.

.IL tag indent Begin a new indented line (similar to .IP except no blank line is
displayed).

HP-UX Release 11.0: October 1997 − 4 − Section 4−−271

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

softkeys(4) softkeys(4)

Note that these macros are recognized anywhere in the input helptext, not just at the beginning of a line.
Also, all macro arguments must be present, even if they consist of nothing more than a quoted empty
string.

EXAMPLES
For a custom cd command (see cd(1)):

softkey cd
editrule { append("cd"); }
{

softkey keysh-src disable all
editrule { append("˜/keysh/src"); }
;
softkey keysh-test disable all
editrule { append("˜/keysh/test"); }
;
softkey keysh-doc disable all
editrule { append("˜/keysh/doc"); }
;
softkey demo disable all
editrule { append("˜/demo"); }
;
softkey tmp disable all
editrule { append("/tmp"); }
;
string <dir> disable all
editrule { append(argument); }
required "Enter the name of the directory to move to."
;

}

For other examples, refer to the file /usr/lib/keysh/C/softkeys .

AUTHOR
keysh was developed by HP and AT&T.

FILES
$HOME/.softkeys user softkey definitions file

/usr/lib/keysh/$LANG/softkeys standard softkey definitions file

SEE ALSO
keysh(1), man(5).

Section 4−−272 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

NAME
swpackage - product specification file (PSF) format

DESCRIPTION
Introduction

The swpackage command packages software into:

• a distribution directory (which can be accessed directly or copied onto a CD-ROM),

• a distribution tape (such as DDS, nine-track or cartridge tapes).

Both directory and tape distributions use the same format. See sd(4) for details on this format.

The software is organized into a four-level hierarchy of software objects: bundles, products, subpro-
ducts, and filesets. The files that make up a software package are contained in filesets. Filesets are con-
tained in subproducts and/or products. Currently, only HP creates software bundles to contain the entire
application. The attribute tables that follow show the attributes of each level of the software packaging
hierarchy.

A Product Specification File (PSF) defines how a product is structured and the attributes that apply to
it. This manual page describes the syntax and semantics of a PSF.

Layout Version
SD object and attribute syntax conforms to the layout_version 1.0 specification of the IEEE POSIX 1387.2
Software Administration standard. The previous SD layout_version 0.8 is also supported. SD for HP-UX
version 10.10 and later can read or write either layout version. SD commands still accept the keyword
names associated with the older layout version, but you should use layout_version 0.8 only to create distri-
butions readable by older versions of SD.

What layout_version the SD commands write is controlled by the layout_version option for swpack-
age , swmodify , swcopy , and swlist .

The version used by swpackage can be also controlled by specifying the layout_version attribute in the
PSF. However, if the layout_version attribute in the PSF is 1.0, the is_locatable attribute defaults to true
in all cases, and must be explicitly set to false.

For a full description of the swpackage command, see the swpackage(1M) manual page.

Layout version 1.0 adds significant functionality not recognized by systems supporting only 0.8, including:

• Category class objects (formerly the category and category_title attributes within the
bundle or product class).

• Patch-handling attributes, including applied_patches , is_patch , and patch_state .

• The fileset architecture attribute, which permits you to specify the architecture of the tar-
get system on which the product will run.

In addition to adding new attributes and objects, layout_version 1.0 changes the following preexisting 0.8
objects and attributes as follows:

• Replaces the depot media_sequence_number with the media object with a
sequence_number attribute.

• Replaces the vendor definition within products and bundles with a vendor_tag attribute and
a corresponding vendor object defined outside the product or bundle.

• Pluralizes the corequisite and prerequisite fileset attributes (to corequisites
and prerequisites).

• Changes the timestamp attribute to mod_time .

HP-UX Release 11.0: October 1997 − 1 − Section 4−−273

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

PRODUCT SPECIFICATION FILE SYNTAX
A PSF is structured as follows:

[<distribution specification>]

[<vendor specification>]

[<category specification>]

[<bundle specification>]

...

<product specification>

[<control script specifications>]

[<subproduct specifications>]

<fileset specification>

[<control script specifications>]

<file specifications>

[<fileset specification>]

...

[<vendor specification>]

[<product specification>]

...

In summary, the swpackage user can:

• Specify one or more products.

• For each product, specify one or more filesets.

• For each fileset, specify one or more files.

• (optional) Specify attributes for the target depot or tape.

• (optional) Specify one or more bundles, defining the bundle contents.

• (optional) Specify vendor information to be used with subsequent products and bundles.

• (optional) For each product, specify one or more subproducts, defining the subproduct contents.

• (optional) For each product or fileset, specify one or more control scripts.

Each software object has user-defined attributes. Most attributes are optional. All objects and attributes are
defined using a

keyword value

syntax. The keyword is an identifier for the attribute. Specific rules for each keyword are:

• All keywords require one or more values, except as noted. If the value is missing an error is
given.

• Comments must be preceded by #. A comment can appear on a line by itself or following the
keyword-value syntax on a command line.

• Use double quotes (") to define values that span multiple lines:

"This is an example of a
two-line value."

• Double quotes (") are optional when defining a value that contains embedded whitespace.

Section 4−−274 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Attribute Table
The following tables summarize the objects and attributes which can be defined in a PSF. These objects and
attributes can appear in any order when defining a distribution, vendor, category, product, or bundle,
except that the layout_version attribute must be first. Each object and attribute is identified by a keyword.
Object keywords do not have associated values. Attribute keywords have one or more values.

NOTE:

• Attributes marked with a * determine the uniqueness of a product, bundle, or fileset. Their
values may also be of the type version_component when used in a version component of a
software specification.

• Keywords marked with a + apply to products only.

• Keywords marked with a - apply to bundles only.

• control_files can be defined within products or filesets or both.

Keyword Type Size Example___
distribution

layout_version revision_string 64 1.0
tag tag_string 64 EXAMPLE_DEPOT
copyright multi_line_string 8K < data/copyr.depot
description multi_line_string 8K < data/descr.depot
number one_line_string 64 B2358-13601
title one_line_string 256 Example packages

end___
vendor

tag tag_string 64 HP
description multi_line_string 8K < data/descr.hp
title one_line_string 256 Hewlett-Packard Co.

end___
category

tag tag_string 64 patch_normal
description multi_line_string 8K For normal problems
revision revision_string 64 0.0
title one_line_string 256 Category of Patches

end___
product or bundle
* tag tag_string 64 SD
* architecture one_line_string 64 HP-UX_B.11.00_32/64

category_title one_line_string 256 Systems Management
- contents repeatable list 8K pr.fs,r=1.0,a=,v=

of software_specs
copyright multi_line_string 8K < data/copyr.sd
description multi_line_string 8K < data/descr.sd
directory path_string 1024 /
is_locatable boolean 9 false
is_patch boolean 9 false
machine_type uname_string 64 9000/[78]*:*
number one_line_string 64 B1991A
os_name uname_string 64 HP-UX
os_release uname_string 64 ?.11.*
os_version uname_string 64 ?

+ postkernel path_string 255 /usr/bin/kernel_build
+ readme multi_line_string 1024K < data/README.sd
* revision revision_string 64 A.01.00
+ share_link one-line_string 256

title one_line_string 256 Software Distributor
* vendor_tag tag_string 64 HP

control_files
end___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

HP-UX Release 11.0: October 1997 − 3 − Section 4−−275

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Attribute Table (continued)___
Keyword Type Size Example___
subproduct

tag tag_string 64 Manager
contents one-line list of commands agent data

tag_string values data man
description multi_line_string 8K < data/desc.mgr
title one_line_string 256 Management Utilities

end___
fileset
* tag tag_string 64 commands

ancestor repeatable list product.oldfileset
of product.fileset oldproduct.fileset

architecture one_line_string 80 HP-UX_B.11.00_32/64
category_tag tag_string 64 patch_normal
corequisites software_spec SD.man,r>=2.0
description multi_line_string 8K < data/descr.cmd
is_kernel boolean 9 false
is_patch boolean 9 false
is_reboot boolean 9 false
is_sparse boolean 9 false
machine_type uname_string 64 9000/[78]*:*
os_name uname_string 64 HP-UX
os_release uname_string 64 ?.11.*
os_version uname_string 64 ?
prerequisites software_spec SD.agent,r>=2.0

* revision revision_string 64 2.42
supersedes software_spec 8192 product.fileset, fr=revision
title one_line_string 256 SD Commands
control_files___

control_files
directory path_mapping_string ./commands = /usr/sbin
exrequisites
file_permissions permission_string -u 0222 -o root -g sys
file file specification -m 04555 bin/swinstall (or) *___

end___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Control File Attributes
Control files can be defined within filesets and/or products.

Keyword Type Size Example___

checkinstall path_string 1024 ./scripts/checkinstall
checkremove path_string 1024 ./scripts/checkremove
configure path_string 1024 ./scripts/configure
control_file path_string 1024 ./scripts/subscripts
postinstall path_string 1024 ./scripts/postinstall
postremove path_string 1024 ./scripts/postremove
preinstall path_string 1024 ./scripts/preinstall
preremove path_string 1024 ./scripts/preremove
request path_string 1024 ./scripts/request
unconfigure path_string 1024 ./scripts/unconfigure
unpreinstall path_string 1024 ./scripts/unpreinstall
unpostinstall path_string 1024 ./scripts/unpostinstall
verify path_string 1024 ./scripts/verify___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Section 4−−276 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

VALUE TYPES
The value for each attribute must be of a specific type. The types are:

tag_string
Maximum length: 64 bytes
Examples: HP, SD

Tag strings support a subset of isascii() characters only:
Requires one or more characters from: "A-Z", "a-z", "0-9", including the first character.
The isspace() characters are not allowed.
SDU metacharacters not allowed: . , : =
Shell metacharacters not allowed: # ; & () { } | < >
Shell quoting characters not allowed: " ‘ ’\
Directory path character not allowed: /

one_line_string
Maximum length: 256 bytes
Examples: Hewlett-Packard Company

One-line strings support a subset of isascii() characters only:

No isspace() characters, except for space and tab, are allowed.

multi_line_string
Maximum length: 8K (1Mb for readme)

Multi-line strings support all isascii() characters. They represent one or more para-
graphs of text. They can be specified in-line, surrounded by double-quotes. They can also
be stored in a file, and specified using the ‘‘< filename’’ format.

revision_string
Maximum length: 64 bytes
Examples: 2.0, B.11.00

Revision strings contain zero or more dot-separated one_line_strings (above).

boolean Maximum length: 8 bytes
Examples: true, false

One of the values "true" or "false".

path_string
Maximum length: 255 bytes for tapes, 1024 bytes for depots
Examples: /usr , /mfg/sd/scripts/configure

An absolute or relative path to a file. Many attributes of this type are restricted to 255
bytes in length. This restriction is due to the tar(1) command, which requires a file’s
basename(1) be <= 100 bytes, and a file’s dirname(1) to be <= 155 bytes. (Some implemen-
tations of tar enforce < and not <=.)

uname_string
Maximum length: 64 bytes
Examples: 9000/7*:*|9000/8*:*, HP-UX, ?.11.*

Uname strings containing a subset of isascii() characters only.
No isspace() characters are allowed.
Shell pattern matching notation allowed: [] * ? !
Patterns can be "ORed" together using the separator: |

path_mapping_string
Maximum length: none
Examples: /mfg/sd/files/usr = /usr

A value of the form: ‘‘source[=destination]’’ where the source defines the directory in which
subsequently defined files are located. The optional destination maps the source to a desti-
nation directory in which the files will actually be installed.

HP-UX Release 11.0: October 1997 − 5 − Section 4−−277

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

file_specification
Maximum length: none
Examples: -m 04555 sbin/swinstall or * (to denote all files and directories)

Explicitly specifies a file or directory to be packaged, using the format:

[-m mode] [-o [owner[,]][uid]]
[-g [group[,]][gid]] [-v] [source] [destination]

The source and destination can be paths relative to source and destination directories
specified in the path_mapping_string.

You can also use * to include all files below the source directory specified by a direc-
tory keyword.

permission_string
Maximum length: none
Examples: -u 0222 -o root -g sys

A value of the form:

[-m mode|-u umask] [-o [owner[,]][uid]]
[-g [group[,]][gid]]

where each component defines a default permissions value for each file and directory
defined in a fileset. The default values can be overridden in each file’s specific definition.
The owner and group fields are of type tag_string. The uid and gid fields are of type
unsigned integer. The mode and umask are unsigned integers, but only supports the octal
character set: "0"-"7".

software_specification
Maximum length: none
Examples: SD.agent or SD,r=2.0,a=HP-UX_B.11.00_32

Software specifications are used to specify software in dependencies, ancestors and other
attributes, as well as command line selections. The SD commands and attributes support
the following syntax for each software_specification:

bundle[. product[. subproduct][. fileset]][, version]
product[. subproduct][. fileset][, version]

The version component has the form:
[,r <op> revision][,a <op> arch][,v <op> vendor]
[,c <op> category][,l= location][,fr <op> revision]
[,fa <op> arch]

• location applies only to installed software and refers to software installed to a location
other than the default product directory.

• fr and fa apply only to filesets.

• The <op> (relational operator) component can be of the form:

==, >=, <=, <, >, or !=

which performs individual comparisons on dot-separated fields.

For example, r>=B.10.00 chooses all revisions greater than or equal to B.10.00 .
The system compares each dot-separated field to find matches. Shell patterns are not
allowed with these operators.

• The = (equals) relational operator lets you specify selections with the shell wildcard
and pattern-matching notations:

[] , * , ?, !

For example, the expression r=1[01].* returns any revision in version 10 or ver-
sion 11.

• All version components are repeatable within a single specification (e.g. r>=A.12 ,
r<A.20). If multiple components are used, the selection must match all components.

Section 4−−278 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

• Fully qualified software specs include the r= , a= , and v= version components even if
they contain empty strings.

• No space or tab characters are allowed in a software selection.

• The software instance_id can take the place of the version component. It has the form:

[instance_id]

within the context of an exported catalog, where instance_id is an integer that distin-
guishes versions of products and bundles with the same tag.

PRODUCT SPECIFICATION FILE SEMANTICS
The following sections describe the attributes which can be defined.

Distribution (Depot) Specification
The following is an example of a distribution specification:

distribution or depot

layout_version 1.0
tag APPLICATIONS_CD
copyright < data/copyright.cd
description < data/description.cd
number B2358-13601
title HP-UX Applications Software Disc

[<vendor specification>]

...
[<bundle specification>]

...

<product specification>

[<product specification>]

...

end

distribution or depot
Keyword that begins the distribution specification. Each keyword defines an attribute of the distribu-
tion depot or tape itself. All keywords are optional, even if a distribution specification is included in a
PSF.

layout_version
Defines the semantics to use when parsing the PSF. To ensure IEEE Standard 1387.2 semantics,
define a layout_version of 1.0 , as the first attribute.

tag Defines the identifier (short name) for the distribution depot or tape.

copyright
Defines the copyright information for the distribution depot or tape; the value is either the text itself
(within double-quotes) or a pointer to the filename containing the text.

description
Defines the multi-paragraph description of the distribution depot or tape; the value is either the text
itself (within double-quotes) or a pointer to the filename containing the text.

distribution
If a distribution specification is included in the PSF, swpackage requires only the keyword plus one
or more contained product definitions. The depot keyword can also be used in place of distribu-
tion .

number
Defines the part or manufacturing number of the distribution depot (e.g. CD-ROM) or tape.

title
Defines the full name (one-line description) of the distribution depot or tape.

HP-UX Release 11.0: October 1997 − 7 − Section 4−−279

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

end Ends the distribution specification. This keyword is optional.

Vendor Specification
The layout_version defined for the PSF file determines how vendor specifications are associated with
products and bundles. If a layout_version is not defined or is defined as 1.0 , vendor specifications
will be associated with all subsequent products and bundles that define a matching vendor_tag attri-
bute.

If a layout_version of 0.8 is specified, all subsequent products and bundles will automatically be
assigned a vendor_tag from the last vendor object defined at the distribution level, if any, or from a
vendor object defined within a product or bundle, unless a vendor_tag is explicitly defined.

The following is an example of a vendor specification:

vendor
tag HP
description < data/description.hp
title Hewlett-Packard Company

end

Each keyword defines an attribute of a vendor object. If a vendor specification is included in the PSF,
swpackage requires the vendor and tag keywords.

vendor
Keyword that begins the vendor specification.

tag Defines the identifier (short name) for the vendor.

title
Defines the full name (one-line description) for the vendor.

description
Defines the multi-paragraph description of the vendor; the value is either the text itself (within
double-quotes) or a pointer to the filename containing the text.

end Ends the vendor specification. This keyword is optional.

Category Specification
The following is an example of a category specification.

category
tag
title
description
revision

end

category
Keyword that begins the category specification.

tag Defines the identifier (short name) for the category.

title
Defines the full name (one line description) for the category.

description
A more detailed description of the category.

revision
Determines which category object definition to maintain in a depot when a definition being
installed or copied does not match a definition already in the depot with the same
category_tag .

end Ends the category specification. This keyword is optional.

Section 4−−280 − 8 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Product or Bundle Specifications
The following is an example of a product or bundle specification. Keywords marked with a + apply to pro-
ducts only and keywords marked with a - apply to bundles only. Products are assumed to be locatable
unless they explicitly define the is_locatable attribute to false . Non-locatable products must define this
attribute.

product or bundle
tag SD
architecture HP-UX_B.11.00_32/64
category_tag system_mgt
- contents prod.fs1,r=1.0,a=,v=
copyright < data/copyright.sd
description < data/description.sd
directory /
is_locatable false
is_patch false
machine_type 9000/7*:*
number J2326AA
os_name HP-UX
os_release ?.11.*
os_version [A-Z]
postkernel /usr/lbin/kernel_build
+ readme < data/README.sd
revision 2.0
title HP OpenView Software Distributor
vendor_tag HP

+ [<control script specifications>]

+ [<subproduct specifications>]

+ <fileset specification>

+ [<fileset specification>]

...

end

Each keyword defines an attribute of a product or bundle object. For each product specified, swpackage
requires only the product and tag keywords, plus one or more contained fileset definitions. For
each bundle specified, swpackage requires the bundle , tag , and contents keywords.

product
Required keyword that begins the product specification.

tag Defines the identifier (short name) for the product or bundle.

architecture
Describes the target system(s) on which the product or bundle will run. Provides a human-
readable summary of the four uname(1) attributes which define the exact target system(s) the
product supports.

bundle
Required keyword that begins the bundle specification.

category_tag
A repeatable tag-based attribute identifying a set of categories of which the software object is a
member. This is used as a selection mechanism and can be used independent of patches. The
default value is an empty list or patch if the is_patch attribute is set to true .

Like vendor_tag , this attribute can be used as a pointer to a category object that contains
additional information about the category (for example, a one-line title definition and a descrip-
tion of the category).

Note that the category tag patch is reserved. When is_patch is set to true , a built-in
category_tag attribute of value patch is automatically included.

NOTE: You can only change the patch value by performing a swpackage operation or by
using swmodify to change the value of the is_patch attribute.

HP-UX Release 11.0: October 1997 − 9 − Section 4−−281

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

contents
The list of fully qualified (all version-distinguishing attributes included) software_specs
for the bundle.

copyright
Defines the copyright information for the product or bundle; the value is either the text itself
(within double-quotes) or a pointer to the filename containing the text.

description
Defines the multi-paragraph description of the product or bundle; the value is either the text
itself (within double-quotes) or a pointer to the filename containing the text.

directory
Defines the default, absolute pathname to the directory in which the product’s files will be
installed (i.e. the root directory of the product). If this attribute is not specified, swpackage
assigns a value of "/".

is_locatable
Defines whether the product or bundle can be installed into any directory, or whether it must be
installed into a specific directory. If this attribute is not specified, swpackage assigns a value
of "true".

is_patch
Identifies a software object as a patch. The default value is false . When set to true , a built-
in category_tag attribute of value patch is automatically included.

machine_type
Defines the machine(s) on which the product will run. (If not specified, swpackage assigns a
value of "*", meaning the product runs on all machines.) If there are multiple machine plat-
forms, use wildcards or use the ’|’ character to separate them. This attribute should pattern
match to the value of

uname -m [: getconf HW_CPU_SUPP_BITS]

on the supported target machine(s).

number
Defines the part or order number for the product.

os_name
Defines the operating system(s) on which the product will run. (If not specified, swpackage
assigns a value of "*", meaning the product runs on all operating systems.) If there are multiple
operating systems, use wildcards or use the ’|’ character to separate them. This attribute should
pattern match to the value of

uname -s [: getconf KERNEL_BITS]

on the supported target system(s).

os_release
Defines the operating system release(s) on which the product will run. (If not specified,
swpackage assigns a value of "*", meaning the product runs on all releases.) If there are mul-
tiple operating system releases, use wildcards or use the ’|’ character to separate them. This
attribute should pattern match to the value of uname -r on the supported target system(s).

os_version
Defines the operating system version(s) on which the product will run. (If not specified,
swpackage assigns a value of "*", meaning the product runs on all versions.) If there are mul-
tiple operating system versions, use wildcards or use the ’|’ character to separate them. This
attribute should pattern match to the value of uname -v on the supported target system(s).

readme
Defines the README information for the product or bundle; the value must be a pointer to the
filename containing the text.

revision
Defines the revision (release number, version number) of the product or bundle.

title
Defines the full name (one-line description) of the product or bundle.

Section 4−−282 − 10 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

vendor_tag
Associates this product or bundle with the last defined vendor object, if that object has a match-
ing tag attribute.

end Ends the product or bundle specification. This keyword is optional.

Subproduct Specification
The following is an example of a subproduct specification:

subproduct
tag Manager
contents commands agent data man
description < data/description.manager
title Management Utilities

end

Each keyword defines an attribute of a subproduct object. If a subproduct is specified, swpackage
requires the subproduct , tag , and contents keywords.

subproduct
Keyword that begins the subproduct specification.

tag Defines the identifier (short name) for the subproduct.

contents
Defines the filesets that make up the subproduct. The value is a whitespace separated list of
fileset tag values. In the PSF, fileset definitions are not contained within subproduct
definitions. The contents keyword is used to assign filesets to subproducts.

description
Defines the multi-paragraph description of the subproduct; the value is either the text itself
(within double-quotes) or a pointer to the filename containing the text.

title
Defines the full name (one-line description) of the subproduct.

end Ends the subproduct specification. This keyword is optional.

Fileset Specification
The following is an example of a fileset specification:

fileset
tag commands
ancestor newprod.fs
architecture HP-UX_B.11.00_32/64
category_tag system_mgt
description < data/description.commands
is_kernel false
is_patch false
is_reboot false
is_sparse false
machine_type 9000/[78]*:*
os_name HP-UX
os_release ?.11.*
os_version ?
revision 2.15
supersedes product.fileset,fr=revision
title Commands (management utilities)

[<control file specifications>]

[<dependency specifications>]

[<file specifications>]
end

Each keyword defines an attribute of a fileset object. For each fileset specified, swpackage requires the
fileset and tag keywords, plus zero or more file specifications.

HP-UX Release 11.0: October 1997 − 11 − Section 4−−283

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

fileset
Keyword that begins fileset specification.

tag Defines the identifier (short name) for the fileset.

architecture
Describes the target system(s) on which the fileset will run if filesets for multiple architecture
are included in a single product. Provides a human-readable summary of the four uname(1) attri-
butes which define the exact target system(s) the product supports. Many filesets do not include
an architecture; only a product architecture need be defined.

ancestor
A list of filesets that will match the current fileset when installed on a target system, if the
match_target installation option is specified. Also determines the base to which a patch is
applied.

category_tag
A repeatable tag-based attribute identifying a set of categories of which the software object is a
member. This is used as a selection mechanism and can be used independent of patches. The
default value is an empty list or patch if the is_patch attribute is set to true .

Like vendor_tag , this attribute can be used as a pointer to a category object that contains
additional information about the category (for example, a one-line title definition and a descrip-
tion of the category).

Note that the category tag patch is reserved. When is_patch is set to true , a built-in
category_tag attribute of value patch is automatically included.

NOTE: You can only change the patch value by performing a swpackage operation or by
using swmodify to change the value of the is_patch attribute.

description
Defines the multi-paragraph description of the fileset; the value is either the text itself (within
double-quotes) or a pointer to the filename containing the text.

is_kernel
A value of "true" defines the fileset as being a contributor to the operating system kernel; the tar-
get system(s) kernel build process will be invoked after the fileset is installed. If this attribute is
not specified, swpackage assumes a default value of "false".

is_patch
Identifies a software object as a patch. The default value is false . When set to true , a built-
in category_tag attribute of value patch is automatically included.

is_reboot
A value of "true" declares that the fileset requires a system reboot after installation. If this attri-
bute is not specified, swpackage assumes a default value of "false".

is_sparse
Indicates that a fileset contains only a subset of files in the base (ancestor) fileset and that the
contents are to be merged with the base fileset. The default value is false . If the is_patch
attribute is true , is_sparse is also set to true for the fileset, although it can be forced to
false.

machine_type
Defines the machine(s) on which the files will run if a fileset architecture has been defined. (If
not specified, swpackage assigns a value of "*", meaning the files run on all machines.) If
there are multiple machine platforms, use wildcards or use the ’|’ character to separate them.
This attribute should pattern match to the value of

uname -m [: getconf HW_CPU_SUPP_BITS]

on the supported target machine(s).

Section 4−−284 − 12 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

os_name
Defines the operating system(s) on which the files will run if a fileset architecture has been
defined. (If not specified, swpackage assigns a value of "*", meaning the files run on all
operating systems.) If there are multiple operating systems, use wildcards or use the ’|’ charac-
ter to separate them. This attribute should pattern match to the value of

uname -s [: getconf KERNEL_BITS]

on the supported target system(s).

os_release
Defines the operating system release(s) on which the files will run. (If not specified, swpack-
age assigns a value of "*", meaning the files run on all releases.) If there are multiple operating
system releases, use wildcards or use the ’|’ character to separate them. This attribute should
pattern match to the value of uname -r on the supported target system(s).

os_version
Defines the operating system version(s) on which the files will run. (If not specified, swpack-
age assigns a value of "*", meaning the files runs on all versions.) If there are multiple operat-
ing system versions, use wildcards or use the ’|’ character to separate them. This attribute
should pattern match to the value of uname -v on the supported target system(s).

revision
Defines the revision (release number, version number) of the fileset.

supersedes
Used when a patch is replaced by (or merged into) a later patch. The attribute indicates which
previous patches are replaced by the patch being installed or copied. This attribute value is a list
of software specifications of other patches that this patch "supersedes".

title
Defines the full name (one-line description) of the fileset.

end Ends the fileset specification. This keyword is optional.

Dependency Specification
The following is an example of a dependency specification:

corequisites SD.data
...

prerequisites productA,r>=2.1
...

exrequisites productB,r>=2.1
...

Each keyword/value defines a dependency relationship on another software object. The object can be within
the same product as the dependent fileset, or it can be (within) another product. Dependency specifications
are optional. Multiple dependency specifications are allowed.

corequisites
A list of dependencies on software that must be installed before this software is run. See also the
ancestor , exrequisites , and prerequisites attributes.

prerequisites
A list of dependencies on software that must be installed before this software can be installed.
See also the ancestor , corequisites , and exrequisites attributes.

exrequisites
(Not yet implemented.) A list of dependencies on software that may not be installed when this
software is installed. See also the ancestor , corequisites , and prerequisites
attributes.

HP-UX Release 11.0: October 1997 − 13 − Section 4−−285

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Control Script Specification
The following is an example of a control script specification:

checkinstall scripts/checkinstall
checkremove scripts/checkremove
control_file scripts/subscripts [= tag]"
configure scripts/configure
postinstall scripts/postinstall
postremove scripts/postremove
preinstall scripts/preinstall
preremove scripts/preremove
request scripts/request
unconfigure scripts/unconfigure
unpostinstall scripts/postinstall
unpreinstall scripts/preinstall
verify scripts/verify

Each script specification defines a control script object. The value of each keyword is the source filename
for the control file.

Control scripts are optional. If present, swpackage will copy the specified source filename into the
depot’s storage directory for the associated product or fileset.

checkinstall
Defines the installation check script executed by swinstall . This script is executed during
the analysis of each target, and it checks that the installation can be attempted. If the product
or fileset check script returns 1 (ERROR), the product or fileset (respectively) will not be
installed. If it returns 11 (GLOBAL_ERROR), no products will be installed.

checkremove
Defines the remove check script executed by swremove . This script is executed during the
analysis of each target, and it checks that the remove can be attempted. If the check script
returns 1 (ERROR), the product or fileset will not be removed.

control_file
Defines an arbitrary control file to be included with the product or fileset and stored alongside
the named control files. It is used to include a subscript called by the named scripts or a data file
read by these scripts. If the optional tag component of the value is not specified, swpackage
uses the basename(1) of the source filename as the tag for the control file. Otherwise, the
tag value is used.

configure
Defines the configuration script executed by swinstall and swconfig . This script
configures the target host for the product or fileset (and the product or fileset for any required
information about the target host).

postinstall
Defines the installation post-load script executed by swinstall . A fileset script is executed
immediately after the fileset files are loaded. A product script is executed after all filesets for
that product have been installed.

postremove
Defines the post-remove script executed by swremove . A fileset script is executed immediately
after the fileset files are removed. A product script is executed after all filesets for that product
have been removed.

preinstall
Defines the installation pre-load script executed by swinstall . A fileset script is executed
immediately before the fileset files are loaded. A product script is executed before any filesets for
that product have been installed.

preremove
Defines the pre-remove script executed by swremove . A fileset script is executed immediately
before the fileset files are removed. A product script is executed before any filesets for that pro-
duct have been removed.

Section 4−−286 − 14 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

request
The only script that may be interactive. This script may be run by swask, swinstall, or
swconfig after selection and before the analysis phase in order to request information from
the administrator that will be needed for the configure_script when that script is run later. The
request_script writes all information into the response_file, which the scripts can then use.

unconfigure
Defines the un-configuration script executed by swremove and swconfig . This script
unconfigures the target host for the product or fileset, undoing the configuration performed by
the configure script.

unpostinstall
Defines the installation pre-restore script executed by swinstall . A fileset script is executed
immediately before the fileset files are restored if there is an error and the
autorecover_product option is set to true. Note that unpostinstall scripts are sup-
ported for filesets only. It should undo the steps taken by the postinstall script.

unpreinstall
Defines the installation post-restore script executed by swinstall . A fileset script is executed
immediately after the fileset files are restored if there is an error and the
autorecover_product option is set to true. A product script is executed after all filesets
for that product have been restored. It should undo the steps taken by the preinstall
scripts.

verify
Defines the verification script executed by swverify . This script verifies the configuration per-
formed by the configure script.

File Specification
Within a fileset specification, the user can specify the following file types to be packaged into the fileset by
swpackage :

control file
directory
hard link
regular file
symbolic link

If a recognized, unpackageable type or an unrecognized type is specified, an error is issued.

The swpackage command supports these mechanisms for specifying the files contained in a fileset:

Default permission specification
For some or all of the files and directories in the fileset, the user can define a default set of per-
missions.

Directory mapping
The user can point swpackage at a source directory in which the fileset’s files are located. In
addition, the user can map this source directory to the appropriate (destination) directory in
which this subset of the product’s files will be located.

Explicit file specification
For some or all of the files and directories in the fileset, the user can name each source file and
destination location.

Recursive (implicit) file specification
If a directory mapping is active, the user can tell swpackage to include all files and directories
in the fileset (recursively) below the specified directory.

These mechanisms can all be used in combination with the others.

HP-UX Release 11.0: October 1997 − 15 − Section 4−−287

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Directory Mapping
The directory source[=destination] keyword defines a source directory under which subsequently
listed files are located. In addition, the user can map the source directory to a destination directory
under which the packaged files will be installed. For example, the definition:

directory ./commands = /usr/sbin

causes all files from the ./commands directory to have the prefix /usr/sbin when installed. The
destination directory must be a located within the product.directory attribute, if defined.
(This attribute is defined by the directory keyword in the product specification.)

The destination directory must be an absolute pathname.

The directory keyword is optional.

Recursive File Specification
The file * keyword directs swpackage to recursively include every file (and directory) within the
current source directory in the fileset. (Partial wildcarding is not supported—e.g., file dm* to indicate
all files starting with "dm".)

The directory keyword must have been previously specified before the file * specification can be
used.

All attributes for the destination file object are taken from the source file, unless a file_permissions
keyword is active (this keyword is described below).

The user can specify multiple

directory source[=destination]
file *

pairs to gather files from different source directories into a single fileset.

Explicit File Specification
Instead of, or in addition to, the recursive file specification, the user can explicitly specify the files and
directories to be packaged into a fileset.

The user can use the directory keyword to define a source (and destination) for explicitly specified files. If
no directory keyword is active, then the source path and the absolute destination path must be specified for
each file.

An explicit file specification uses this form:

file [-m mode] [-o [owner[,]][uid]] [-g [group[,]][gid]] [-t type]
[-v] [source] [destination]

file
Specifies an existing file or directory (perhaps within the currently active source directory) to
include in the fileset.

source
Defines the relative or absolute path to the source file.

If this is a relative path, swpackage will search for it relative to the source directory set by
the directory keyword. If no source directory is active, swpackage will search for it relative to
the current working directory in which the command was invoked.

All attributes for the destination file object are taken from the source file, unless a
file_permissions keyword is active, or the -m, -o , or -g , options are also included in the
file specification.

destination
Defines the destination path at which the file will be installed. If destination is a relative
path, the active destination directory set by the directory keyword will be prefixed to it. If it
is a relative path, and no destination directory is active, swpackage generates an error. If the
destination is not specified, the source is used as the destination, with the appropriate mapping
done with the active destination directory (if any).

-m mode
Defines the (octal) mode of a file or directory.

Section 4−−288 − 16 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

-o [owner[,]][uid]
Defines the destination file’s owner name and/or or uid. If only the owner is specified, the owner
and uid attributes are set for the destination file object, based on the packaging host’s
/etc/passwd . If only the uid is specified, it is set as the uid attribute for the destination
object and no owner name is assigned. If both are specified, each sets the corresponding attri-
bute for the file object. During an installation, the owner attribute is used to set the owner name
and uid, unless the owner name is not defined in the target system’s /etc/passwd . In this
case, the uid attribute is used to set the uid.

-g [group[,]][gid]
Defines the destination file’s group name and/or or gid. If only the group is specified, the group
and gid attributes are set for the destination file object, based on the packaging host’s
/etc/group . If only the group is specified, and it contains digits only, it is interpreted as the
gid, and is set as the gid attribute for the destination object; no group name is assigned to the
object. If both are specified, each sets the corresponding attribute for the file object. During an
installation, the group attribute is used to set the group name and gid, unless the group name is
not defined in the target system’s /etc/group . In this case, the gid attribute is used to set
the gid.

-t type
Defines a file of type d (directory), s (symbolic), or h (hard link), for files that need not exist
before packaging.

-v Marks the file as volatile, meaning it can be modified (i.e. deleted) after installed without
impacting the fileset.

When processing existing files in a source directory, a number of problems may be encountered. Errors or
warning messages are printed for each problem. (The swpackage command terminates when errors are
encountered in reading the PSF or accessing the source files.)

Example File Specifications
The following examples illustrate the use of the directory andfile keywords:

Include all files under ./commands/ , to be rooted under /usr/sbin/ :

directory ./commands=/usr/sbin
file *

Include only certain files under ./commands/ and ./nls , to be rooted under /usr/sbin/ and
/var/lib/nls/C/ :

directory ./commands=/usr/sbin
file sbin/swinstall
file sbin/swcopy
...

directory ./nls=/usr/lib/nls/C/
file swinstall.cat
file swremove.cat
...

Explicitly list files and directories, no directory mapping specified:

file ./commands/swinstall /usr/sbin/swinstall
...
file ./nls /usr/lib/nls/C
file ./nls/swinstall.cat /usr/lib/nls/C/swinstall.cat

Use all specification types to include files:

directory ./commands=/usr/sbin
file *

directory ./nls=/usr/lib/nls/C
file swinstall.cat
...
file ./obam/obam.dm /etc/interface.lib/obam/obam.dm

HP-UX Release 11.0: October 1997 − 17 − Section 4−−289

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Redefine specific files previously defined using file * (e.g. to set explicit attributes):

directory ./commands=/usr/sbin
file *
file -m 04500 swcommand
file -o adm -g sys swfile

Default Permission Specification
By default, a destination file object will inherit the mode, owner, and group of the source file. The
file_permissions keyword can be specified to set a default permission umask/mode, owner, and
group for all the files being packaged into the fileset:

file_permissions [-m mode|-u umask] [-o [owner[,]][uid]] \
[-g [group[,]][gid]] [-t type]

file_permissions
Applies only to the fileset it is defined in. Multiple file_permissions can be specified,
later definitions simply replace previous definitions.

-m mode
Defines a default (octal) mode for all file objects.

-u umask
Instead of specifying an octal mode as the default, the user can specify an octal umask(1) value
which gets "subtracted" from an existing source file’s mode to generate the mode of the destina-
tion file.

By specifying a umask , the user can set a default mode for executable files, non-executable files,
and directories. (A specific mode can be set for any file, as described above.)

-o [owner[,]][uid]
Defines the destination file’s owner name and/or or uid (as defined above).

-g [group[,]][gid]
Defines the destination file’s group name and/or or gid (as defined above).

-t type
Defines files that need not exist before packaging.

Example Permission Specifications
The following examples illustrate the use of the file_permission keyword.

Set a read only 444 mode for all file objects (requires override for every executable file and directory):

file_permissions -m 444

Set a read mode for non-executable files, and a read/execute mode for executable files and for directories:

file_permissions -u 222

Set the same mode defaults, plus an owner and group:

file_permissions -u 222 -o bin -g bin

Set the same mode defaults, plus a uid and gid:

file_permissions -u 222 -o 2 -g 2

Set the owner write permission in addition to the above:

file_permissions -u 022 -o 2 -g 2

If the user defines no file_permissions, swpackage uses the default value:

file_permissions -u 000

for destination file objects based on existing source files. (Meaning the mode, owner/uid, group/gid are set
based on the source file, unless specific overrides are specified for a destination file.)

Section 4−−290 − 18 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

EXAMPLES
This example illustrates a typical PSF.

PSF file which defines an example product.
depot

layout_version 1.0

Vendor definition:
vendor

tag HP
title Hewlett-Packard Company
description < data/descr.hp

category
tag system_mgt
title Systems Management Applications
description These are the system management applications
revision 1.0

end

Product definition:
product

tag SD
revision A.01.00
architecture HP-UX_B.11.00_32/64
vendor_tag HP

title HP OpenView Software Distributor
number B1991A
category_tag system_mgt

description < data/descr.sd
copyright < data/copyr.sd
readme < data/README.sd

machine_type *
os_name HP-UX
os_release ?.11.*
os_version ?

directory /
is_locatable false

Create a product script which executes during the swremove
analysis phase. (This particular script returns an ERROR,
which prevents the removal of the SD product.)
checkremove scripts/checkremove.sd

Subproduct definitions:

subproduct
tag Manager
title Management Utilities
contents commands agent data man

end

subproduct
tag Agent
title Agent component
contents agent data man

end

HP-UX Release 11.0: October 1997 − 19 − Section 4−−291

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

swpackage(4) swpackage(4)
(Hewlett-Packard Company)

Fileset definitions:
fileset

tag commands
title SD Commands (management utilities)
revision 2.42

description < data/descr.commands

Dependencies
corequisites SD.data
corequisites SD.agent

Control files:
configure scripts/configure.commands

Files:
directory ./commands=/usr/sbin
file swinstall
file swcopy
...

directory ./nls=/usr/lib/nls/C
file swinstall.cat
file swpackage.cat

directory ./ui=/usr/lib/sw/ui
file *

...

end # commands

... # other filesets

fileset
tag man
title Manual pages for the Software Distributor
revision 2.05

directory ./man/man1m=/usr/man/man1m.Z
file *

directory ./man/man4=/usr/man/man4.Z
file *

directory ./man/man5=/usr/man/man5.Z
file *

end # man

end # SD

AUTHOR
swpackage was developed by the Hewlett-Packard Company and Mark H. Colburn (see pax(1)).

SEE ALSO
The Managing HP-UX Software with SD-UX manual, the HP OpenView Software Distributor
Administrator’s Guide, swpackage(1M), sd(4), sd(5), swacl(1M), swagentd(1M), swconfig(1M), swcopy(1M),
swgettools(1M), swinstall(1M), swjob(1M), swlist(1M), swmodify(1M), swreg(1M), swremove(1M),
swverify(1M).

Section 4−−292 − 20 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

s

symlink(4) symlink(4)

NAME
symlink - symbolic link

DESCRIPTION
A symbolic (or soft) link is a file whose name indirectly refers (points) to a relative or absolute path
name.

During path name interpretation, a symbolic link to a relative path name is expanded to the path name
being interpreted, and a symbolic link to an absolute path name is replaced with the path name being inter-
preted.

Thus, given the path name /a/b/c/d :

If c is a symbolic link to a relative path name such as ../x/y , the path name is interpreted as
/a/b/../x/y/d .

If c is a symbolic link to an absolute path name such as /v/w , the path name is interpreted as
/v/w/d .

All symbolic links are interpreted in this manner, with one exception: when the symbolic link is the last
component of a path name, it is passed as a parameter to one of the system calls: readlink , rename ,
symlink , unlink , chown , or lstat (see readlink(2), rename(2), symlink(2), unlink(2), chown(2) and
lstat(2)). With these calls, the symbolic link, itself, is accessed or affected.

Unlike normal (hard) links, a symbolic link can refer to any arbitrary path name and can span different log-
ical devices (volumes).

The path name can be that of any type of file (including a directory or another symbolic link), and may be
invalid if no such path exists in the system. (It is possible to make symbolic links point to themselves or
other symbolic links in such a way that they form a closed loop. The system detects this situation by limit-
ing the number of symbolic links it traverses while translating a path name.)

The mode and ownership of a symbolic link is ignored by the system, which means that chmod affects the
actual file, but not the file containing the symbolic link (see chmod(1)).

Symbolic links can be created using ln or symlink (see ln(1) and symlink(2)).

AUTHOR
symlink was developed by HP and the University of California, Berkeley.

SEE ALSO
cp(1), symlink(2), readlink(2), link(2), stat(2), mknod(1M).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−293

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

tar(4) tar(4)

NAME
tar - format of tar tape archive

DESCRIPTION
The header structure produced by tar (see tar(1)) is as follows (the array size defined by the constants is
shown on the right):

struct {
char name[NAMSIZ]; (100)
char mode[MODE_SZ]; (8)
char uid[UID_SZ]; (8)
char gid[GID_SZ]; (8)
char size[SIZE_SZ]; (12)
char mtime[MTIME_SZ]; (12)
char chksum[CHKSUM_SZ]; (8)
char typeflag;
char linkname[NAMSIZ]; (100)
char magic[MAGIC_SZ]; (6)
char version[VERSION_SZ]; (2)
char uname[UNAME_SZ]; (32)
char gname[GNAME_SZ]; (32)
char devmajor[DEV_SZ]; (8)
char devminor[DEV_SZ]; (8)
char prefix[PREFIX_SZ]; (155)

} dbuf;

All characters are represented in ASCII. There is no padding used in the header block; all fields are contigu-
ous.

The fields magic, uname, and gname are null-terminated character strings. The fields name, linkname,
and prefix are null-terminated character strings except when all characters in the array contain non-null
characters, including the last character. The version field is two bytes containing the characters 00 (zero-
zero). The typeflag contains a single character. All other fields are leading-zero-filled octal numbers in
ASCII. Each numeric field is terminated by one or more space or null characters.

The name and the prefix fields produce the pathname of the file. The hierarchical relationship of the file is
retained by specifying the pathname as a path prefix, with a slash character and filename as the suffix. If
the prefix contains non-null characters, prefix, a slash character, and name are concatenated without
modification or addition of new characters to produce a new pathname. In this manner, pathnames of at
most 256 characters can be supported. If a pathname does not fit in the space provided, the format-
creating utility notifies the user of the error, and no attempt is made to store any part of the file, header, or
data on the medium.

SEE ALSO
tar(1)

STANDARDS CONFORMANCE
tar : XPG4, FIPS 151-2, POSIX.1

Section 4−−294 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term(4) term(4)

NAME
term - format of compiled term file

SYNOPSIS
term

DESCRIPTION
Compiled terminfo descriptions are placed under the directory /usr/share/lib/terminfo . In order
to avoid a linear search of a huge HP-UX system directory, a two-level scheme is used:
/usr/share/lib/terminfo/ c/ name where name is the name of the terminal, and c is the first char-
acter of name. Thus, hp110 can be found in the file /usr/share/lib/terminfo/h/hp110 .
Synonyms for the same terminal are implemented by multiple links to the same compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit or longer byte is assumed, but
no assumptions about byte ordering or sign extension are made.

The compiled file is created using the tic program (see tic(1M)), and read by the setupterm() rou-
tine. Both of these pieces of software are part of the curses(3X) package. The file is divided into the follow-
ing six parts:

1. The header section begins the file and contains six short integers in the following format:

1. Magic number (octal 0432);
2. Size, in bytes, of the names section;
3. Number of bytes in the Boolean section;
4. Number of short integers in the numbers section;
5. Number of offsets (short integers) in the strings section;
6. Size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of
the value; the second byte contains the most significant 8 bits. (Thus, the value represented is
256∗ second + first.) The value −1 is represented by 0377 , 0377 ; other negative values are ille-
gal. The −1 generally means that a capability is missing from this terminal. Note that this for-
mat corresponds to the hardware of the VAX and PDP-11. Machines where this does not
correspond to the hardware read the integers as two bytes and compute the result.

2. The terminal names section comes next. It contains the first line of the terminfo description,
listing the various names for the terminal, separated by the | character. The section is ter-
minated with an ASCII NUL character.

3. In the Boolean section, the Boolean flags have one byte for each flag. This byte is either 0 or 1
as the flag is absent or present, respectively. The capabilities are in the same order as they are
listed in the file <term.h >.

Between the Boolean section and the number section, a null byte will be inserted, if necessary, to
ensure that the number section begins on an even byte. All short integers are aligned on a short
word boundary.

4. The numbers section is similar to the flags section. Each capability consists of two bytes, and is
stored as a short integer. If the value represented is −1, the capability is considered missing.

5. The strings section is also similar. Each capability is stored as a short integer in the format
above. A value of −1 means the capability is missing. Otherwise, the value is taken as an offset
from the beginning of the string table. Special characters in ˆ X or \ c notation are stored in
their interpreted form, not the printing representation. Padding information $nn and parameter
information %x are stored intact in uninterpreted form.

6. The final section is the string table. It contains all the values of string capabilities referenced in
the string section. Each string is null terminated.

Note that it is possible for setupterm() to expect a different set of capabilities than are actually present
in the file. Either the database might have been updated since setupterm() has been recompiled
(resulting in extra unrecognized entries in the file) or the program may have been recompiled more recently
than the database was updated (resulting in missing entries). The routine setupterm() must be
prepared for both possibilities, which is why the numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of Boolean, number, and string capabilities.

The following example is an octal dump of the description for the HP Portable Computer (HP-110):

HP-UX Release 11.0: October 1997 − 1 − Section 4−−295

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term(4) term(4)

110|hp110|hp110a portable computer,
am, xhp, da, db, mir, cols#80, lines#16, lm#0,
cbt=\Ei, bel=ˆG, cr=\r, tbc=\E3, clear=\E&a0y0C\EJ,
el=\EK, ed=\EJ, hpa=\E&a%p1%dC, cup=\E&a%p1%dy%p2%dC,
cud1=\EB, cub1=\b, cuf1=\EC, cuu1=\EA, cvvis=\E&j@,
dch1=\EP, dl1=\EM, smir=\EQ, smso=\E&dB, sgr0=\E&d@,
rmir=\ER, rmso=\E&d@, is2=\E&j@,
if=/usr/share/lib/tabset/stdcrt, il1=\EL, kbs=\b, kcud1=\EB,
khome=\Eh, kcub1=\ED, kcuf1=\EC, kcuu1=\EA, rmkx=\E&s0A,
smkx=\E&s1A, vpa=\E&a%p1%dY, ind=\n, hts=\E1, ht=\t,

0000 032 001 # \0 025 \0 \b \0 223 \0 254 \0 1 1 0 |
0020 h p 1 1 0 | h p 1 1 0 a p o r
0040 t a b l e c o m p u t e r \0 \0
0060 001 \0 001 \0 \0 \0 \0 \0 \0 \0 001 001 001 \0 \0 \0
0100 \0 \0 \0 \0 P \0 377 377 020 \0 \0 \0 377 377 377 377
0120 377 377 377 377 \0 \0 003 \0 005 \0 377 377 007 \0 \n \0
0140 024 \0 027 \0 032 \0 377 377 $ \0 4 \0 377 377 377 377
0160 7 \0 377 377 377 377 9 \0 377 377 < \0 ? \0 D \0
0200 G \0 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0220 377 377 J \0 377 377 377 377 377 377 M \0 377 377 377 377
0240 377 377 R \0 377 377 377 377 W \0 Z \0 377 377 377 377
0260 377 377 377 377 377 377 _ \0 377 377 d \0 377 377 { \0
0300 377 377 ˜ \0 377 377 377 377 377 377 377 377 377 377 200 \0
0320 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0340 377 377 377 377 377 377 377 377 377 377 377 377 203 \0 377 377
0360 377 377 206 \0 377 377 377 377 377 377 211 \0 377 377 377 377
0400 377 377 214 \0 217 \0 225 \0 377 377 377 377 377 377 377 377
0420 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

0520 377 377 233 \0 377 377 245 \0 377 377 377 377 247 \0 377 377
0540 252 \0 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0560 377 377 377 377 377 377 377 377 377 377 033 i \0 007 \0 \r
0600 \0 033 3 \0 033 & a 0 y 0 C 033 J \0 033 K
0620 \0 033 J \0 033 & a % p 1 % d C \0 033 &
0640 a % p 1 % d y % p 2 % d C \0 033 B
0660 \0 \b \0 033 C \0 033 A \0 033 & j @ \0 033 P
0700 \0 033 M \0 033 Q \0 033 & d B \0 033 & d @
0720 \0 033 R \0 033 & d @ \0 033 & j @ \0 / u
0740 s r / l i b / t a b s e t / s t
0760 d c r t \0 033 L \0 \b \0 033 B \0 033 h \0
1000 033 D \0 033 C \0 033 A \0 033 & s 0 A \0 033
1020 & s 1 A \0 033 & a % p 1 % d Y \0 \n
1040 \0 033 1 \0 \t \0
1046

WARNINGS
Total compiled entries cannot exceed 4096 bytes.

The name field cannot exceed 128 bytes.

Hewlett-Packard Company supports only those terminals that are listed on the current list of supported
devices. However, both non-supported and supported terminals may be in the terminfo database. If non-
supported terminals are used, they may not work correctly.

FILES
/usr/share/lib/terminfo/?/* compiled terminal capability data base

SEE ALSO
tic(1M), untic(1M), curses(3X), terminfo(4).

Section 4−−296 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

NAME
term.h - terminal capabilities

DESCRIPTION
The header <term.h> contains definitions for each of the following symbolic constants and capability names
in the following tables.

In the following table, a Variable is the name by which a C programmer accesses a capability (at the ter-
minfo level). A Capname is the short name for a capability specified in the terminfo source file. It is
used by a person updating the source file and by the tput command.

Booleans
Cap- Termcap

Variable name Code Description

auto_left_margin bw bw cub1 wraps from column 0 to last column
auto_right_margin am am Terminal has automatic margins
back_color_erase bce ut Screen erased with background color
buttons btns BT Number of buttons on the mouse
can_change ccc cc Terminal can re-define existing color
ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for hpa /mhpa caps
cpi_changes_res cpix YF Changing character pitch changes resolution
create_window cwin CW Define win #1 to go from #2,#3 to #4,#5
cr_cancels_micro_mode crxm YB Using cr turns off micro mode
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)
dial_phone dial DI Dial phone number #1
display_clock dclk DK Display time-of-day clock
eat_newline_glitch xenl xn Newline ignored after 80 columns (Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
fixed_pause pause PA Pause for 2-3 seconds
flash_hook hook fh Flash the switch hook
generic_type gn gn Generic line type (e.g., dialup, switch)
get_mouse getm Gm Curses should get button events
goto_window wingo WG Got to window #1
hangup hup HU Hang-up phone
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift, sets parity bit)
has_print_wheel daisy YC Printer needs operator to change character set
has_status_line hs hs Has extra "status line"
hue_lightness_saturation hls hl Terminal uses only HLS color notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes resolution
memory_above da da Display may be retained above the screen
memory_below db db Display may be retained below the screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won’t work, xon/xoff required
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
no_pad_char npc NP Pad character doesn’t exist
non_dest_scroll_region ndscr ND Scrolling region is nondestructive
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
over_strike os os Terminal overstrikes on hard-copy terminal
print_rate cps Ym Print rate in characters per second
prtr_silent mc5i 5i Printer won’t echo on screen
row_addr_glitch xvpa YD Only positive motion for vpa /mvpa caps
semi_auto_right_margin sam YE Printing in last column causes cr
set_pglen_inch slength YI Set page length to #1 hundredth of an inch (use tparm)
status_line_esc_ok eslok es Escape can be used on the status line
tilde_glitch hz hz Hazeltine; can’t print tilde (˜)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff handshaking

HP-UX Release 11.0: October 1997 − 1 − Section 4−−297

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

Numbers
Cap- Termcap

Variable name Code Description

bit_image_entwining bitwin Yo Number of passes for each bit-map row
bit_image_type bitype Yp Type of bit image device
buffer_capacity bufsz Ya Number of bytes buffered before printing
columns cols co Number of columns in a line
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch
init_tabs it it Tabs initially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label
lines lines li Number of lines on a screen or a page
lines_of_memory lm lm Lines of memory if > lines ; 0 means varies
max_attributes ma ma Maximum combined video attributes terminal can display
magic_cookie_glitch xmc sg Number of blank chars left by smso or rmso
max_colors colors Co Maximum number of colors on the screen
max_micro_address maddr Yd Maximum value in micro_..._address
max_micro_jump mjump Ye Maximum value in parm_..._micro
max_pairs pairs pa Maximum number of color-pairs on the screen
maximum_windows Wnum MW Maximum number of definable windows
micro_char_size mcs Yg Character step size when in micro mode
micro_line_size mls Yf Line step size when in micro mode
no_color_video ncv NC Video attributes that can’t be used with colors
num_labels nlab Nl Number of labels on screen (start at 1)
number_of_pins npins Yh Number of pins in print-head
output_res_char orc Yi Horizontal resolution in units per character
output_res_line orl Yj Vertical resolution in units per line
output_res_horz_inch orhi Yk Horizontal resolution in units per inch
output_res_vert_inch orvi Yl Vertical resolution in units per inch
padding_baud_rate pb pb Lowest baud rate where padding needed
virtual_terminal vt vt Virtual terminal number
wide_char_size widcs Yn Character step size when in double wide mode
width_status_line wsl ws Number of columns in status line

Strings
Cap- Termcap

Variable name Code Description

acs_chars acsc ac Graphic charset pairs aAbBcC
alt_scancode_esc scesa S8 Alternate escape for scancode emulation (default is for vt100)
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
bit_image_carriage_return bicr Yv Move to beginning of same row (use tparm)
bit_image_newline binel Zz Move to next row of the bit image (use tparm)
bit_image_repeat birep Xy Repeat bit-image cell #1 #2 times (use tparm)
carriage_return cr cr Carriage return
change_char_pitch cpi ZA Change number of characters per inch
change_line_pitch lpi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scroll_region csr cs Change to lines #1 through #2 (vt100)
char_padding rmp rP Like ip but when in replace mode
char_set_names csnm Zy List of character set names
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins (top, bottom, and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol el1 cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line

Section 4−−298 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

clr_eos ed cd Clear to end of display
code_set_init csin ci Init sequence for multiple codesets
color_names colornm Yw Give name for color #1
column_address hpa ch Horizontal position absolute
command_character cmdch CC Terminal settable cmd character in prototype
cursor_address cup cm Move to row #1 col #2
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 le Move left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal (undo vs/vi)
cursor_right cuf1 nd Non-destructive space (cursor or carriage right)
cursor_to_ll ll ll Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi Yx Define rectangular bit-image region (use tparm)
define_char defc ZE Define a character in a character set
delete_character dch1 dc Delete character
delete_line dl1 dl Delete line
device_type devt dv Indicate language/codeset support
dis_status_line dsl ds Disable status line
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region (use tparm)
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print
enter_horizontal_hl_mode ehhlm n/a turn on horizontal highlight mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_left_hl_mode elhlm n/a Turn on left highlight mode
enter_leftward_mode slm ZI Enable leftward carriage motion
enter_low_hl_mode elohlm n/a turn on low highlight mode
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_right_hl_mode erhlm n/a turn on right highlight mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode (characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm ZO Enable superscript printing
enter_top_hl_mode ethlm n/a Turn on top highlight mode
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion
enter_vertical_hl_mode evhlm n/a turn on vertical highlight mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins

HP-UX Release 11.0: October 1997 − 3 − Section 4−−299

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal) carriage motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit_pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm ZV Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal) carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
form_feed ff ff Hardcopy terminal page eject
from_status_line fsl fs Return from status line
init_1string is1 i1 Terminal or printer initialization string
init_2string is2 is Terminal or printer initialization string
init_3string is3 i3 Terminal or printer initialization string
init_file if if Name of initialization file
init_prog iprog iP Path name of program for initialization
initialize_color initc IC Initialize the definition of color
initialize_pair initp Ip Initialize color-pair
insert_character ich1 ic Insert character
insert_line il1 al Add new blank line
insert_padding ip ip Insert pad after character inserted

The ‘‘key_ ’’ strings are sent by specific keys. The ‘‘key_ ’’ descriptions include the macro, defined in
<curses.h> , for the code returned by the CURSES function getch() when the key is pressed [see
curs_getch(3X)].

Cap- Termcap
Variable name Code Description

key_a1 ka1 K1 upper left of keypad
key_a3 ka3 K3 upper right of keypad
key_b2 kb2 K2 center of keypad
key_backspace kbs kb sent by backspace key
key_beg kbeg @1 sent by beg(inning) key
key_btab kcbt kB sent by back-tab key
key_c1 kc1 K4 lower left of keypad
key_c3 kc3 K5 lower right of keypad
key_cancel kcan @2 sent by cancel key
key_catab ktbc ka sent by clear-all-tabs key
key_clear kclr kC sent by clear-screen or erase key
key_close kclo @3 sent by close key
key_command kcmd @4 sent by cmd (command) key
key_copy kcpy @5 sent by copy key
key_create kcrt @6 sent by create key
key_ctab kctab kt sent by clear-tab key
key_dc kdch1 kD sent by delete-character key
key_dl kdl1 kL sent by delete-line key
key_down kcud1 kd sent by terminal down-arrow key
key_eic krmir kM sent by rmir or smir in insert mode
key_end kend @7 sent by end key
key_enter kent @8 sent by enter/send key
key_eol kel kE sent by clear-to-end-of-line key
key_eos ked kS sent by clear-to-end-of-screen key

Section 4−−300 − 4 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

key_exit kext @9 sent by exit key
key_f0 kf0 k0 sent by function key f0
key_f1 kf1 k1 sent by function key f1
key_f2 kf2 k2 sent by function key f2
key_f3 kf3 k3 sent by function key f3
key_f4 kf4 k4 sent by function key f4
key_f5 kf5 k5 sent by function key f5
key_f6 kf6 k6 sent by function key f6
key_f7 kf7 k7 sent by function key f7
key_f8 kf8 k8 sent by function key f8
key_f9 kf9 k9 sent by function key f9
key_f10 kf10 k; sent by function key f10
key_f11 kf11 F1 sent by function key f11
key_f12 kf12 F2 sent by function key f12
key_f13 kf13 F3 sent by function key f13
key_f14 kf14 F4 sent by function key f14
key_f15 kf15 F5 sent by function key f15
key_f16 kf16 F6 sent by function key f16
key_f17 kf17 F7 sent by function key f17
key_f18 kf18 F8 sent by function key f18
key_f19 kf19 F9 sent by function key f19
key_f20 kf20 FA sent by function key f20
key_f21 kf21 FB sent by function key f21
key_f22 kf22 FC sent by function key f22
key_f23 kf23 FD sent by function key f23
key_f24 kf24 FE sent by function key f24
key_f25 kf25 FF sent by function key f25
key_f26 kf26 FG sent by function key f26
key_f27 kf27 FH sent by function key f27
key_f28 kf28 FI sent by function key f28
key_f29 kf29 FJ sent by function key f29
key_f30 kf30 FK sent by function key f30
key_f31 kf31 FL sent by function key f31
key_f32 kf32 FM sent by function key f32
key_f33 kf33 FN sent by function key f33
key_f34 kf34 FO sent by function key f34
key_f35 kf35 FP sent by function key f35
key_f36 kf36 FQ sent by function key f36
key_f37 kf37 FR sent by function key f37
key_f38 kf38 FS sent by function key f38
key_f39 kf39 FT sent by function key f39
key_f40 kf40 FU sent by function key f40
key_f41 kf41 FV sent by function key f41
key_f42 kf42 FW sent by function key f42
key_f43 kf43 FX sent by function key f43
key_f44 kf44 FY sent by function key f44
key_f45 kf45 FZ sent by function key f45
key_f46 kf46 Fa sent by function key f46
key_f47 kf47 Fb sent by function key f47
key_f48 kf48 Fc sent by function key f48
key_f49 kf49 Fd sent by function key f49
key_f50 kf50 Fe sent by function key f50
key_f51 kf51 Ff sent by function key f51
key_f52 kf52 Fg sent by function key f52
key_f53 kf53 Fh sent by function key f53
key_f54 kf54 Fi sent by function key f54
key_f55 kf55 Fj sent by function key f55
key_f56 kf56 Fk sent by function key f56
key_f57 kf57 Fl sent by function key f57
key_f58 kf58 Fm sent by function key f58
key_f59 kf59 Fn sent by function key f59
key_f60 kf60 Fo sent by function key f60

HP-UX Release 11.0: October 1997 − 5 − Section 4−−301

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

key_f61 kf61 Fp sent by function key f61
key_f62 kf62 Fq sent by function key f62
key_f63 kf63 Fr sent by function key f63
key_find kfnd @0 sent by find key
key_help khlp %1 sent by help key
key_home khome kh sent by home key
key_ic kich1 kI sent by ins-char/enter ins-mode key
key_il kil1 kA sent by insert-line key
key_left kcub1 kl sent by terminal left-arrow key
key_ll kll kH sent by home-down key
key_mark kmrk %2 sent by mark key
key_message kmsg %3 sent by message key
key_mouse kmous Km 0631, Mouse event has occurred
key_move kmov %4 sent by move key
key_next knxt %5 sent by next-object key
key_npage knp kN sent by next-page key
key_open kopn %6 sent by open key
key_options kopt %7 sent by options key
key_ppage kpp kP sent by previous-page key
key_previous kprv %8 sent by previous-object key
key_print kprt %9 sent by print or copy key
key_redo krdo %0 sent by redo key
key_reference kref &1 sent by ref(erence) key
key_refresh krfr &2 sent by refresh key
key_replace krpl &3 sent by replace key
key_restart krst &4 sent by restart key
key_resume kres &5 sent by resume key
key_right kcuf1 kr sent by terminal right-arrow key
key_save ksav &6 sent by save key
key_sbeg kBEG &9 sent by shifted beginning key
key_scancel kCAN &0 sent by shifted cancel key
key_scommand kCMD ∗1 sent by shifted command key
key_scopy kCPY ∗2 sent by shifted copy key
key_screate kCRT ∗3 sent by shifted create key
key_sdc kDC ∗4 sent by shifted delete-char key
key_sdl kDL ∗5 sent by shifted delete-line key
key_select kslt ∗6 sent by select key
key_send kEND ∗7 sent by shifted end key
key_seol kEOL ∗8 sent by shifted clear-line key
key_sexit kEXT ∗9 sent by shifted exit key
key_sf kind kF sent by scroll-forward/down key
key_sfind kFND ∗0 sent by shifted find key
key_shelp kHLP #1 sent by shifted help key
key_shome kHOM #2 sent by shifted home key
key_sic kIC #3 sent by shifted input key
key_sleft kLFT #4 sent by shifted left-arrow key
key_smessage kMSG %a sent by shifted message key
key_smove kMOV %b sent by shifted move key
key_snext kNXT %c sent by shifted next key
key_soptions kOPT %d sent by shifted options key
key_sprevious kPRV %e sent by shifted prev key
key_sprint kPRT %f sent by shifted print key
key_sr kri kR sent by scroll-backward/up key
key_sredo kRDO %g sent by shifted redo key
key_sreplace kRPL %h sent by shifted replace key
key_sright kRIT %i sent by shifted right-arrow key
key_srsume kRES %j sent by shifted resume key
key_ssave kSAV !1 sent by shifted save key
key_ssuspend kSPD !2 sent by shifted suspend key
key_stab khts kT sent by set-tab key
key_sundo kUND !3 sent by shifted undo key
key_suspend kspd &7 sent by suspend key

Section 4−−302 − 6 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

key_undo kund &8 sent by undo key
key_up kcuu1 ku sent by terminal up-arrow key
keypad_local rmkx ke Out of ‘‘keypad-transmit’’ mode
keypad_xmit smkx ks Put terminal in ‘‘keypad-transmit’’ mode
lab_f0 lf0 l0 Labels on function key f0 if not f0
lab_f1 lf1 l1 Labels on function key f1 if not f1
lab_f2 lf2 l2 Labels on function key f2 if not f2
lab_f3 lf3 l3 Labels on function key f3 if not f3
lab_f4 lf4 l4 Labels on function key f4 if not f4
lab_f5 lf5 l5 Labels on function key f5 if not f5
lab_f6 lf6 l6 Labels on function key f6 if not f6
lab_f7 lf7 l7 Labels on function key f7 if not f7
lab_f8 lf8 l8 Labels on function key f8 if not f8
lab_f9 lf9 l9 Labels on function key f9 if not f9
lab_f10 lf10 la Labels on function key f10 if not f10
label_format fln Lf Label format
label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
micro_column_address mhpa ZY Like column_address for micro adjustment
micro_down mcud1 ZZ Like cursor_down for micro adjustment
micro_left mcub1 Za Like cursor_left for micro adjustment
micro_right mcuf1 Zb Like cursor_right for micro adjustment
micro_row_address mvpa Zc Like row_address for micro adjustment
micro_up mcuu1 Zd Like cursor_up for micro adjustment
mouse_info minfo Mi Mouse status information
newline nel nw Newline (behaves like cr followed by lf)
order_of_pins porder Ze Matches software bits to print-head pins
orig_colors oc oc Set all color(-pair)s to the original ones
orig_pair op op Set default color-pair to the original one
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars
parm_delete_line dl DL Delete #1 lines
parm_down_cursor cud DO Move down #1 lines.
parm_down_micro mcud Zf Like parm_down_cursor for micro adjust.
parm_ich ich IC Insert #1 blank chars
parm_index indn SF Scroll forward #1 lines.
parm_insert_line il AL Add #1 new blank lines
parm_left_cursor cub LE Move cursor left #1 spaces
parm_left_micro mcub Zg Like parm_left_cursor for micro adjust.
parm_right_cursor cuf RI Move right #1 spaces.
parm_right_micro mcuf Zh Like parm_right_cursor for micro adjust.
parm_rindex rin SR Scroll backward #1 lines.
parm_up_cursor cuu UP Move cursor up #1 lines.
parm_up_micro mcuu Zi Like parm_up_cursor for micro adjust.
pc_term_options pctrm S6 PC terminal options
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_local pfloc pl Prog funct key #1 to execute string #2
pkey_plab pfxl xl Prog key #1 to xmit string #2 and show string #3
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pln pn Prog label #1 to show string #2
print_screen mc0 ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
pulse pulse PU Select pulse dialing
quick_dial qdial QD Dial phone number #1, without progress detection
remove_clock rmclk RC Remove time-of-day clock
repeat_char rep rp Repeat char #1 #2 times
req_for_input rfi RF Send next input char (for ptys)
req_mouse_pos reqmp RQ Request mouse position report

HP-UX Release 11.0: October 1997 − 7 − Section 4−−303

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

reset_1string rs1 r1 Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Vertical position absolute
save_cursor sc sc Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
set0_des_seq s0ds s0 Shift into codeset 0 (EUC set 0, ASCII)
set1_des_seq s1ds s1 Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
set_a_background setab AB Set background color using ANSI escape
set_a_foreground setaf AF Set foreground color using ANSI escape
set_attributes sgr sa Define the video attributes #1-#9
set_background setb Sb Set current background color
set_bottom_margin smgb Zk Set bottom margin at current line
set_bottom_margin_parm smgbp Zl Set bottom margin at #1 or #2 lines from bottom
set_clock sclk SC Set time-of-day clock
set_color_band setcolor Yz Change to ribbon color #1
set_color_pair scp sp Set current color-pair
set_foreground setf Sf Set current foreground color1
set_left_margin smgl ML Set left margin at current line
set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)
set_lr_margin smglr ML Sets both left and right margins
set_page_length slines YZ Set page length to #1 lines (use tparm)
set_right_margin smgr MR Set right margin at current column
set_right_margin_parm smgrp Zn Set right margin at column #1
set_tab hts st Set a tab in all rows, current column
set_tb_margin smgtb MT Sets both top and bottom margins
set_top_margin smgt Zo Set top margin at current line
set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1 (#2)
set_window wind wi Current window is lines #1-#2 cols #3-#4
start_bit_image sbim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character set
stop_bit_image rbim Zs End printing bit image graphics
stop_char_set_def rcsd Zt End definition of a character set
subscript_characters subcs Zu List of ‘‘subscript-able’’ characters
superscript_characters supcs Zv List of ‘‘superscript-able’’ characters
tab ht ta Tab to next 8-space hardware tab stop
these_cause_cr docr Zw Printing any of these chars causes cr
to_status_line tsl ts Go to status line, col #1
tone tone TO Select touch tone dialing
user0 u0 U0 User string 0
user1 u1 U1 User string 1
user2 u2 U2 User string 2
user3 U3 u3 User string 3
user4 u4 u4 User string 4
user5 u5 u5 User string 5
user6 u6 u6 User string 6
user7 u7 u7 User string 7
user8 u8 u8 User string 8
user9 u9 u9 User string 9
underline_char uc uc Underscore one char and move past it
up_half_line hu hu Half-line up (reverse 1/2 linefeed)
wait_tone wait WA Wait for dial tone
xoff_character xoffc XF X-off character
xon_character xonc XN X-on character
zero_motion zerom Zx No motion for the subsequent character

Section 4−−304 − 8 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

term_c(4) term_c(4)

The following are declared as functions and may be defined as macros:

int tgetent(char * bp, char * name);
int tgetflag(char id[2]);
int tgetnum(char id[2]);
char *tgetstr(char id[2], char ** area);
char *tgoto(char * cap, int col, int row);
int tputs(char * str, int affcnt, int (* putc)(void));

SEE ALSO
curs_termcap(3X), curs_termin(3X), printf(1).

HP-UX Release 11.0: October 1997 − 9 − Section 4−−305

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

NAME
terminfo - printer, terminal, and modem capability database

SYNOPSIS
/usr/lib/terminfo/?/*

List of Section Headings in DESCRIPTION
Terminfo Source Format
Source File Syntax
Minimum Guaranteed Limits
Formal Grammar
Defined Capabilities
Sample Entry
Types of Capabilities in the Sample Entry
Device Capabilities
Insert/Delete Line
Printer Capabilities
Capabilities that Cause Movement
Alternate Character Sets
Dot-Matrix Graphics
Effect of Changing Printing Resolution
Selecting a Terminal
Application Usage

DESCRIPTION
The requirements in this manpage are in effect only for implementations that claim Enhanced Curses com-
pliance.

Terminfo Source Format
The terminfo database contains a description of the capabilities of a variety of devices, such as terminals
and printers. Devices are described by specifying a set of capabilities, by quantifying certain aspects of the
device, and by specifying character sequences that effect particular results.

This manpage specifies the format of terminfo source files.

X/Open-compliant implementations must provide a facility that accepts source files in the format specified
in this manpage as a means of entering information into the terminfo database. The facility for installing
this information into the database is implementation-specific. A valid terminfo entry describing a given
model of terminal can be added to terminfo on any X/Open-compliant implementation to permit use of
the same terminal model.

The "Source File Syntax" section describes the syntax of terminfo source files. A grammar and lexical
conventions appear in the "Formal Grammar" section below. A list of all terminal capabilities defined by
X/Open appears in the "Defined Capabilities" section below. An example follows in the "Sample Entry" sec-
tion below. The "Device Capabilities" section describes the specification of devices in general, such as video
terminals. The "Printer Capabilities" section describes the specification of printers.

The terminfo database is often used by screen-oriented applications such as vi and Curses programs, as
well as by some utilities such as ls and more . This usage allows them to work with a variety of devices
without changes to the programs.

Source File Syntax
Source files can use the ISO 8859-1 codeset. The behavior when the source file is in another codeset is
unspecified. Traditional practice has been to translate information from other codesets into the source file
syntax.

terminfo source files consist of one or more device descriptions. Each description defines a mnemonic
name for the terminal model. Each description consists of a header (beginning in column 1) and one or
more lines that list the features for that particular device. Every line in a terminfo source file must end
in a comma. Every line in a terminfo source file except the header must be indented with one or more
white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields. White space after each
comma is ignored. Embedded commas must be escaped by using a backslash. The following example
shows the format of a terminfo source file:

Section 4−−306 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

alias1 | alias2 | ... | aliasn | longname,
whitespace am, lines #24,
whitespace home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one and must contain at least
two aliases separated by vertical bars. The last field in the header line must be the long name of the device
and it may contain any string.

Alias names must be unique in the terminfo database and they must conform to file naming conventions
established by implementation-specific terminfo compilation utilities. Implementations will recognize
alias names consisting only of characters from the portable file name character set except that implementa-
tions need not accept a first character of minus (-). For example, a typical restriction is that they cannot
contain white space or slashes. There may be further constraints imposed on source file values by the
implementation-specific terminfo compilation utilities.

Each capability in terminfo is of one of the following types:

• Boolean capabilities show that a device has or does not have a particular feature.

• Numeric capabilities quantify particular features of a device.

• String capabilities provide sequences that can be used to perform particular operations on devices.

Capability names adhere to an informal length limit of five characters. Whenever possible, capability
names are chosen to be the same as or similar to those specified by the ANSI X3.64-1979 standard. Seman-
tics are also intended to match those of the ANSI standard.

All string capabilities may have padding specified, with the exception of those used for input. Input capa-
bilities, listed under the Strings section in the following tables, have names beginning with key_ . These
capabilities are defined in <term.h> .

Minimum Guaranteed Limits
All X/Open-compliant implementations support at least the following limits for the terminfo source file:

Source File Characteristic Minimum Guaranteed Value__
Length of a line 1023 bytes
Length of a terminal alias 14 bytes
Length of a terminal model name 128 bytes
Width of a single field 128 bytes
Length of a string value 1000 bytes
Length of a string representing a numeric value 99 digits
Magnitude of a numeric value 0 up to and including 32767__

An implementation may support higher limits than those specified above.

Formal Grammar
The grammar and lexical conventions in this section together describe the syntax for terminfo terminal
descriptions within a terminfo source file. A terminal description that satisfies the requirements of this
section will be accepted by all implementations. (The notation "(n)" refers to a note following the descrip-
tion.)

descriptions : START_OF_HEADER_LINE (1) rest_of_header_line feature_lines
| descriptions START_OF_HEADER_LINE rest_of_header_line
| feature_lines
;

rest_of_header_line : PIPE LONGNAME COMMA NEWLINE
| aliases PIPE LONGNAME COMMA NEWLINE
;

feature_lines : start_feature_line rest_of_feature_line
| feature_lines start_feature_line rest_of_feature_line
;

start_feature_line : START_FEATURE_LINE_BOOLEAN (2)
| START_FEATURE_LINE_NUMERIC(3)
| START_FEATURE_LINE_STRING(4)
;

HP-UX Release 11.0: October 1997 − 2 − Section 4−−307

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

rest_of_feature_line : features COMMA NEWLINE
| COMMA NEWLINE
;

features : COMMA feature
| features COMMA feature
;

aliases : PIPE ALIAS
| aliases PIPE ALIAS
;

feature : BOOLEAN
| NUMERIC
| STRING
;

(1) An ALIAS that begins in column one. This is handled by the lexical analyzer.

(2) A BOOLEAN feature that begins after column one but is the first feature on the feature line.
This is handled by the lexical analyzer.

(3) A NUMERIC feature that begins after column one but is the first feature on the feature line.
This is handled by the lexical analyzer.

(4) A STRING feature that begins after column one but is the first feature on the feature line. This
is handled by the lexical analyzer.

The lexical conventions for terminfo descriptions are as follows:

1. White space consists of the <space> and <tab> characters.

2. An ALIAS may contain any graph characters other than comma (,), slash (/), and bar (|).
(Graph characters are those characters for which isgraph() returns nonzero; see ctype(3C).)

3. A LONGNAME may contain any print characters other than comma (,) and bar (|). (Print char-
acters are those characters for which isprint() returns nonzero; see ctype(3C).)

4. A BOOLEAN feature may contain any print characters other than comma (,), equals (=), and
pound sign (#).

5. A NUMERIC feature consists of:

a. A name which may contain any print character other than comma (,), equals (=), and
pound sign (#).

b. The pound sign (#) character.

c. A positive integer which conforms to the C language convention for integer constants.

6. A STRING feature consists of:

a. A name which may contain any print character other than comma (,), equals (=), and
pound sign (#).

b. The equals (=) character.

c. A string which may contain any print characters other than comma (,).

7. White space immediately following a comma (,) is ignored.

8. Comments consist of the beginning of a line, optional white space, a required pound sign (#), and
a terminating end of line.

9. A header line must begin in column one.

10. A feature line must not begin in column one.

11. Blank lines are ignored.

Defined Capabilities
X/Open defines the capabilities listed in the following table. All X/Open-compliant implementations must
accept each of these capabilities in an entry in a terminfo source file. Implementations use this informa-
tion to determine how properly to operate the current terminal. In addition, implementations return any
of the current terminal’s capabilities when the application calls the query functions listed in tgetent() (in

Section 4−−308 − 3 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

the cases where the following table lists a Termcap code) and tigetflag() (see tgetent(3X) and
tigetflag(3X)).

The table of capabilities has the following columns:

Variable Names for use by the Curses functions that operate on the terminfo database. These
names are reserved and the application must not define them.

Capname The short name for a capability specified in the terminfo source file. It is used for updat-
ing the source file and by the tput command (see tput(1)).

Termcap Codes provided for compatibility with older applications. These codes are TO BE WITH-
DRAWN. Because of this, not all Capnames have Termcap codes.

Description A short summary of the capability.

Booleans
Cap- Term-

Variable name cap Description___
auto_left_margin bw bw cub1 wraps from column 0 to last column
auto_right_margin am am Terminal has automatic margins
back_color_erase bce ut Screen erased with background color
can_change ccc cc Terminal can re-define existing color
ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for hpa /mhpa caps
cpi_changes_res cpix YF Changing character pitch changes resolution
cr_cancels_micro_mode crxm YB Using cr turns off micro mode
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)
eat_newline_glitch xenl xn Newline ignored after 80 columns (Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g., dialup, switch)
get_mouse getm Gm Curses should get button events
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift, sets parity bit)
has_print_wheel daisy YC Printer needs operator to change

character set
has_status_line hs hs Has extra "status line"
hue_lightness_saturation hls hl Terminal uses only HLS color

notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes resolution
memory_above da da Display may be retained above the screen
memory_below db db Display may be retained below the screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won’t work, XON/XOFF required
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
no_pad_char npc NP Pad character doesn’t exist
non_dest_scroll_region ndscr ND Scrolling region is nondestructive
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
over_strike os os Terminal overstrikes on hard-copy terminal
prtr_silent mc5i 5i Printer won’t echo on screen
row_addr_glitch xvpa YD Only positive motion for vpa /mvpa caps
semi_auto_right_margin sam YE Printing in last column causes cr
status_line_esc_ok eslok es Escape can be used on the status line
tilde_glitch hz hz Hazeltine; can’t print tilde (˜)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses XON/XOFF handshaking___

HP-UX Release 11.0: October 1997 − 4 − Section 4−−309

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Numbers
Cap- Term-

Variable name cap Description__
bit_image_entwining bitwin Yo Number of passes for each bit-map row
bit_image_type bitype Yp Type of bit image device
buffer_capacity bufsz Ya Number of bytes buffered before printing
buttons btns BT Number of buttons on the mouse
columns cols co Number of columns in a line
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch
init_tabs it it Tabs initially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label
lines lines li Number of lines on a screen or a page
lines_of_memory lm lm Lines of memory if greater than lines ; 0

means varies
max_attributes ma ma Maximum combined video attributes terminal

can display
magic_cookie_glitch xmc sg Number of blank characters left by smso or rmso
max_colors colors Co Maximum number of colors on the screen
max_micro_address maddr Yd Maximum value in micro_..._address
max_micro_jump mjump Ye Maximum value in parm_..._micro
max_pairs pairs pa Maximum number of color-pairs on the screen
maximum_windows wnum MW Maximum number of definable windows
micro_col_size mcs Yf Character step size when in micro mode
micro_line_size mls Yg Line step size when in micro mode
no_color_video ncv NC Video attributes that can’t be used with colors
num_labels nlab Nl Number of labels on screen (start at 1)
number_of_pins npins Yh Number of pins in print-head
output_res_char orc Yi Horizontal resolution in units per character
output_res_line orl Yj Vertical resolution in units per line
output_res_horz_inch orhi Yk Horizontal resolution in units per inch
output_res_vert_inch orvi Yl Vertical resolution in units per inch
padding_baud_rate pb pb Lowest baud rate where padding needed
print_rate cps Ym Print rate in characters per second
virtual_terminal vt vt Virtual terminal number
wide_char_size widcs Yn Character step size when in double-wide mode
width_status_line wsl ws Number of columns in status line__

Section 4−−310 − 5 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Strings
Cap- Term-

Variable name cap Description__
acs_chars acsc ac Graphic charset pairs aAbBcC
alt_scancode_esc scesa S8 Alternate escape for scancode emulation

(default is for VT100)
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
bit_image_carriage_return bicr Yv Move to beginning of same row
bit_image_newline binel Zz Move to next row of the bit image
bit_image_repeat birep Xy Repeat bit-image cell #1 #2 times
carriage_return cr cr Carriage return
change_char_pitch cpi ZA Change number of characters per inch
change_line_pitch lpi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scroll_region csr cs Change to lines #1 through #2 (VT100)
char_padding rmp rP Like ip but when in replace mode
char_set_names csnm Zy Returns a list of character set names
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins (top, bottom,

and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol el1 cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display
code_set_init csin ci Init sequence for multiple codesets
color_names colornm Yw Give name for color #1
column_address hpa ch Set horizontal position to absolute #1
command_character cmdch CC Terminal settable cmd character

in prototype
create_window cwin CW Define win #1 to go from #2,#3 to #4,#5
cursor_address cup cm Move to row #1 col #2
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 le Move left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)
cursor_right cuf1 nd Non-destructive space (cursor or

carriage right)
cursor_to_ll ll ll Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi Yx Define rectangular bit-image region
define_char defc ZE Define a character in a character set
delete_character dch1 dc Delete character
delete_line dl1 dl Delete line
device_type devt dv Indicate language/codeset support
dial_phone dial DI Dial phone number #1
dis_status_line dsl ds Disable status line
display_clock dclk DK Display time-of-day clock
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup

HP-UX Release 11.0: October 1997 − 6 − Section 4−−311

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print
enter_horizontal_hl_mode ehhlm Turn on horizontal highlight mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_left_hl_mode elhlm Turn on left highlight mode
enter_leftward_mode slm ZI Enable leftward carriage motion
enter_low_hl_mode elohlm Turn on low highlight mode
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_right_hl_mode erhlm Turn on right highlight mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode (characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm ZO Enable superscript printing
enter_top_hl_mode ethlm Turn on top highlight mode
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion
enter_vertical_hl_mode evhlm Turn on vertical highlight mode
enter_xon_mode smxon SX Turn on XON/XOFF handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit_pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm ZV Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal)

carriage motion
exit_xon_mode rmxon RX Turn off XON/XOFF handshaking
fixed_pause pause PA Pause for 2−3 seconds
flash_hook hook fh Flash the switch hook
flash_screen flash vb Visible bell (may move cursor)
form_feed ff ff Hardcopy terminal page eject
from_status_line fsl fs Return from status line
goto_window wingo WG Go to window #1
hangup hup HU Hang-up phone
init_1string is1 i1 Terminal or printer initialization string
init_2string is2 is Terminal or printer initialization string
init_3string is3 i3 Terminal or printer initialization string
init_file if if Name of initialization file
init_prog iprog iP Path name of program for initialization

Section 4−−312 − 7 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

initialize_color initc IC Set color #1 to RGB #2, #3, #4
initialize_pair initp Ip Set color-pair #1 to fg #2, bg #3
insert_character ich1 ic Insert character
insert_line il1 al Add new blank line
insert_padding ip ip Insert pad after character inserted__

The "key_ " strings are sent by specific keys. The "key_ " descriptions include the macro, defined in
<curses.h> , for the code returned by getch() when the key is pressed (see getch(3X)).

Cap- Term-
Variable name cap Description___
key_a1 ka1 K1 Upper left of keypad
key_a3 ka3 K3 Upper right of keypad
key_b2 kb2 K2 Center of keypad
key_backspace kbs kb Sent by backspace key
key_beg kbeg @1 Sent by beg(inning) key
key_btab kcbt kB Sent by back-tab key
key_c1 kc1 K4 Lower left of keypad
key_c3 kc3 K5 Lower right of keypad
key_cancel kcan @2 Sent by cancel key
key_catab ktbc ka Sent by clear-all-tabs key
key_clear kclr kC Sent by clear-screen or erase key
key_close kclo @3 Sent by close key
key_command kcmd @4 Sent by cmd (command) key
key_copy kcpy @5 Sent by copy key
key_create kcrt @6 Sent by create key
key_ctab kctab kt Sent by clear-tab key
key_dc kdch1 kD Sent by delete-character key
key_dl kdl1 kL Sent by delete-line key
key_down kcud1 kd Sent by terminal down-arrow key
key_eic krmir kM Sent by rmir or smir in insert mode
key_end kend @7 Sent by end key
key_enter kent @8 Sent by enter/send key
key_eol kel kE Sent by clear-to-end-of-line key
key_eos ked kS Sent by clear-to-end-of-screen key
key_exit kext @9 Sent by exit key
key_f0 kf0 k0 Sent by function key f0
key_f1 kf1 k1 Sent by function key f1

. . . .

. . . . Similarly for f2 through f61

. . . .
key_f62 kf62 Fq Sent by function key f62
key_f63 kf63 Fr Sent by function key f63
key_find kfnd @0 Sent by find key
key_help khlp %1 Sent by help key
key_home khome kh Sent by home key
key_ic kich1 kI Sent by ins-char/enter ins-mode key
key_il kil1 kA Sent by insert-line key
key_left kcub1 kl Sent by terminal left-arrow key
key_ll kll kH Sent by home-down key
key_mark kmrk %2 Sent by mark key
key_message kmsg %3 Sent by message key
key_mouse kmous Km 0631, mouse event has occurred
key_move kmov %4 Sent by move key
key_next knxt %5 Sent by next-object key
key_npage knp kN Sent by next-page key
key_open kopn %6 Sent by open key
key_options kopt %7 Sent by options key
key_ppage kpp kP Sent by previous-page key
key_previous kprv %8 Sent by previous-object key
key_print kprt %9 Sent by print or copy key
key_redo krdo %0 Sent by redo key
key_reference kref &1 Sent by ref(erence) key

HP-UX Release 11.0: October 1997 − 8 − Section 4−−313

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

key_refresh krfr &2 Sent by refresh key
key_replace krpl &3 Sent by replace key
key_restart krst &4 Sent by restart key
key_resume kres &5 Sent by resume key
key_right kcuf1 kr Sent by terminal right-arrow key
key_save ksav &6 Sent by save key
key_sbeg kBEG &9 Sent by shifted beginning key
key_scancel kCAN &0 Sent by shifted cancel key
key_scommand kCMD *1 Sent by shifted command key
key_scopy kCPY *2 Sent by shifted copy key
key_screate kCRT *3 Sent by shifted create key
key_sdc kDC *4 Sent by shifted delete-char key
key_sdl kDL *5 Sent by shifted delete-line key
key_select kslt *6 Sent by select key
key_send kEND *7 Sent by shifted end key
key_seol kEOL *8 Sent by shifted clear-line key
key_sexit kEXT *9 Sent by shifted exit key
key_sf kind kF Sent by scroll-forward/down key
key_sfind kFND *0 Sent by shifted find key
key_shelp kHLP #1 Sent by shifted help key
key_shome kHOM #2 Sent by shifted home key
key_sic kIC #3 Sent by shifted input key
key_sleft kLFT #4 Sent by shifted left-arrow key
key_smessage kMSG %a Sent by shifted message key
key_smove kMOV %b Sent by shifted move key
key_snext kNXT %c Sent by shifted next key
key_soptions kOPT %d Sent by shifted options key
key_sprevious kPRV %e Sent by shifted prev key
key_sprint kPRT %f Sent by shifted print key
key_sr kri kR Sent by scroll-backward/up key
key_sredo kRDO %g Sent by shifted redo key
key_sreplace kRPL %h Sent by shifted replace key
key_sright kRIT %i Sent by shifted right-arrow key
key_srsume kRES %j Sent by shifted resume key
key_ssave kSAV !1 Sent by shifted save key
key_ssuspend kSPD !2 Sent by shifted suspend key
key_stab khts kT Sent by set-tab key
key_sundo kUND !3 Sent by shifted undo key
key_suspend kspd &7 Sent by suspend key
key_undo kund &8 Sent by undo key
key_up kcuu1 ku Sent by terminal up-arrow key
keypad_local rmkx ke Out of "keypad-transmit" mode
keypad_xmit smkx ks Put terminal in "keypad-transmit" mode
lab_f0 lf0 l0 Labels on function key f0 if not f0
lab_f1 lf1 l1 Labels on function key f1 if not f1
lab_f2 lf2 l2 Labels on function key f2 if not f2
lab_f3 lf3 l3 Labels on function key f3 if not f3
lab_f4 lf4 l4 Labels on function key f4 if not f4
lab_f5 lf5 l5 Labels on function key f5 if not f5
lab_f6 lf6 l6 Labels on function key f6 if not f6
lab_f7 lf7 l7 Labels on function key f7 if not f7
lab_f8 lf8 l8 Labels on function key f8 if not f8
lab_f9 lf9 l9 Labels on function key f9 if not f9
lab_f10 lf10 la Labels on function key f10 if not f10
label_format fln Lf Label format
label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
memory_lock meml ml Lock memory above cursor
memory_unlock memu mu Turn memory lock off
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
micro_column_address mhpa ZY Like column_address for micro adjustment

Section 4−−314 − 9 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

micro_down mcud1 ZZ Like cursor_down for micro adjustment
micro_left mcub1 Za Like cursor_left for micro adjustment
micro_right mcuf1 Zb Like cursor_right for micro adjustment
micro_row_address mvpa Zc Like row_address for micro adjustment
micro_up mcuu1 Zd Like cursor_up for micro adjustment
mouse_info minfo Mi Mouse status information
newline nel nw Newline (behaves like cr followed by lf)
order_of_pins porder Ze Matches software bits to print-head pins
orig_colors oc oc Set all color(-pair)s to the original ones
orig_pair op op Set default color-pair to the original one
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars
parm_delete_line dl DL Delete #1 lines
parm_down_cursor cud DO Move down #1 lines.
parm_down_micro mcud Zf Like parm_down_cursor for micro adjust.
parm_ich ich IC Insert #1 blank chars
parm_index indn SF Scroll forward #1 lines.
parm_insert_line il AL Add #1 new blank lines
parm_left_cursor cub LE Move cursor left #1 spaces
parm_left_micro mcub Zg Like parm_left_cursor for micro adjust.
parm_right_cursor cuf RI Move right #1 spaces.
parm_right_micro mcuf Zh Like parm_right_cursor for micro adjust.
parm_rindex rin SR Scroll backward #1 lines.
parm_up_cursor cuu UP Move cursor up #1 lines.
parm_up_micro mcuu Zi Like parm_up_cursor for micro adjust.
pc_term_options pctrm S6 PC terminal options
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_local pfloc pl Prog funct key #1 to execute string #2
pkey_plab pfxl xl Prog key #1 to xmit string #2 and show string #3
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pln pn Prog label #1 to show string #2
print_screen mc0 ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
pulse pulse PU Select pulse dialing
quick_dial qdial QD Dial phone number #1, without progress detec-

tion
remove_clock rmclk RC Remove time-of-day clock
repeat_char rep rp Repeat char #1 #2 times
req_for_input rfi RF Send next input char (for ptys)
req_mouse_pos reqmp RQ Request mouse position report
reset_1string rs1 r1 Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Set vertical position to absolute #1
save_cursor sc sc Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
set0_des_seq s0ds s0 Shift into codeset 0 (EUC set 0, ASCII)
set1_des_seq s1ds s1 Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
set_a_attributes sgr1 Define second set of video attributes #1−#6
set_a_background setab AB Set background color to #1 using ANSI escape
set_a_foreground setaf AF Set foreground color to #1 using ANSI escape
set_attributes sgr sa Define first set of video attributes #1−#9
set_background setb Sb Set background color to #1

HP-UX Release 11.0: October 1997 − 10 − Section 4−−315

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

set_bottom_margin smgb Zk Set bottom margin at current line
set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 or #2

lines from bottom
set_clock sclk SC Set clock to hours (#1), minutes (#2), seconds (#3)
set_color_band setcolor Yz Change to ribbon color #1
set_color_pair scp sp Set current color pair to #1
set_foreground setf Sf Set foreground color to #1
set_left_margin smgl ML Set left margin at current column
set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)
set_lr_margin smglr ML Sets both left and right margins
set_page_length slines YZ Set page length to #1 lines
set_pglen_inch slength YI Set page length to #1 hundredth of an inch
set_right_margin smgr MR Set right margin at current column
set_right_margin_parm smgrp Zn Set right margin at column #1
set_tab hts st Set a tab in all rows, current column
set_tb_margin smgtb MT Sets both top and bottom margins
set_top_margin smgt Zo Set top margin at current line
set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1 (#2)
set_window wind wi Current window is lines #1−#2 cols #3−#4
start_bit_image sbim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character set
stop_bit_image rbim Zs End printing bit image graphics
stop_char_set_def rcsd Zt End definition of a character set
subscript_characters subcs Zu List of "subscript-able" characters
superscript_characters supcs Zv List of "superscript-able" characters
tab ht ta Tab to next 8-space hardware tab stop
these_cause_cr docr Zw Printing any of these chars causes cr
to_status_line tsl ts Go to status line, col #1
tone tone TO Select touch tone dialing
user0 u0 u0 User string 0
user1 u1 u1 User string 1
user2 u2 u2 User string 2
user3 u3 u3 User string 3
user4 u4 u4 User string 4
user5 u5 u5 User string 5
user6 u6 u6 User string 6
user7 u7 u7 User string 7
user8 u8 u8 User string 8
user9 u9 u9 User string 9
underline_char uc uc Underscore one char and move past it
up_half_line hu hu Half-line up (reverse 1/2 linefeed)
wait_tone wait WA Wait for dial tone
xoff_character xoffc XF XOFF character
xon_character xonc XN XON character
zero_motion zerom Zx No motion for the subsequent character___

Sample Entry
The following entry describes the AT&T 610 terminal. (The pfxl and sgr values have been split for
printing; they would actually be entered as single lines.)

610|610bct|ATT610|att610|AT&T610;80column;98key keyboard,
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}˜˜,
bel=ˆG, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t,

Section 4−−316 − 11 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E)0,
is2=\E[0mˆO, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=ˆH, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kfP=\EOc, kfP0=\ENp,
kfP1=\ENq, kfP2=\ENr, kfP3=\ENs, kfP4=\ENt, kfI=\EOd,
kfB=\EOe, kf4=\EOf, kf(CW=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d

\s\s\s\s\s\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=ˆO, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;%?%p3%p1%

|%t;7%;%?%p7%t;8%;m%?%p9%tˆN%eˆO%;,
sgr0=\E[mˆO, smacs=ˆN, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of terminfo capabilities: boolean, numeric, and
string. All capabilities specified in the terminfo source file must be followed by commas, including the
last capability in the source file. In terminfo source files, capabilities are referenced by their capability
names (as shown in the Capname column of the previous tables).

Boolean Capabilities
A boolean capability is true if its Capname is present in the entry, and false if its Capname is not present
in the entry.

The "@" character following a Capname is used to explicitly declare that a boolean capability is false, in
situations described in the "Similar Terminals" subsection of the "Insert/Delete Line" section below.

Numeric Capabilities
Numeric capabilities are followed by the character "#" and then a positive integer value. The example
assigns the value 80 to the cols numeric capability by coding:

cols#80

Values for numeric capabilities may be specified in decimal, octal or hexadecimal, using normal C-language
conventions.

String Capabilities
String-valued capabilities such as el (clear to end of line sequence) are listed by the Capname, an "=", and
a string ended by the next occurrence of a comma.

A delay in milliseconds may appear anywhere in such a capability, preceded by "$" and enclosed in angle
brackets, as in el=\EK$<3> . The Curses implementation achieves delays by outputting to the terminal an
appropriate number of system-defined padding characters. The tputs() function provides delays when
used to send such a capability to the terminal.

The delay can be any of the following: a number; a number followed by an asterisk, such as 5* ; a number
followed by a slash, such as 5/ ; or a number followed by both, such as 5*/ .

* Shows that the required delay is proportional to the number of lines affected by the operation, and
the amount given is the delay required per affected unit. (In the case of insert characters, the fac-
tor is still the number of lines affected. This is always 1 unless the device has in and the software
uses it.) When a "* " is specified, it is sometimes useful to give a delay of the form 3.5 to specify a
delay per unit to tenths of milliseconds. (Only one decimal place is allowed.)

/ Indicates that the delay is mandatory and padding characters are transmitted regardless of the
setting of xon . If "/ " is not specified or if a device has xon defined, the delay information is
advisory and is only used for cost estimates or when the device is in raw mode. However, any
delay specified for bel or flash is treated as mandatory.

HP-UX Release 11.0: October 1997 − 12 − Section 4−−317

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

The following notation is valid in terminfo source files for specifying special characters:

Notation Represents Character__
^x Control-x (for any appropriate x)
\a Alert
\b Backspace
\E or \e An ESCAPE character
\f Form feed
\l Linefeed
\n Newline
\r Carriage return
\s Space
\t Tab
\ˆ Caret (ˆ)
\\ Backslash (\)
\, Comma (,)
\: Colon (:)
\0 Null
\ nnn Any character, specified as three octal digits__

(See the "X/Open System Interface Definitions, Issue 4, Version 2" specification, "General Terminal Inter-
face".)

Commented-Out Capabilities
Sometimes individual capabilities must be commented out. To do this, put a period before the capability
name. For example, see the second ind in the example in the "Sample Entry" section above. Note that
capabilities are defined in a left-to-right order and, therefore, a prior definition will override a later
definition.

Device Capabilities
Basic Capabilities

The number of columns on each line for the device is given by the cols numeric capability. If the device
has a screen, then the number of lines on the screen is given by the lines capability. If the device wraps
around to the beginning of the next line when it reaches the right margin, then it should have the am capa-
bility. If the terminal can clear its screen, leaving the cursor in the home position, then this is given by the
clear string capability. If the terminal overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability. If the device is a printing terminal, with no soft copy
unit, specify both hc and os . If there is a way to move the cursor to the left edge of the current row,
specify this as cr . (Normally this will be carriage return, control-M.) If there is a way to produce an audi-
ble signal (such as a bell or a beep), specify it as bel . If, like most devices, the device uses the XON/XOFF
flow-control protocol, specify xon .

If there is a way to move the cursor one position to the left (such as backspace), that capability should be
given as cub1 . Similarly, sequences to move to the right, up, and down should be given as cuf1 , cuu1 ,
and cud1 , respectively. These local cursor motions must not alter the text they pass over; for example,
you would not normally use "cuf1=\s " because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are undefined at the left
and top edges of a screen terminal. Programs should never attempt to backspace around the left edge,
unless bw is specified, and should never attempt to go up locally off the top. To scroll text up, a program
goes to the bottom left corner of the screen and sends the ind (index) string. To scroll text down, a pro-
gram goes to the top left corner of the screen and sends the ri (reverse index) string. The strings ind
and ri are undefined when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin . These versions have the same
semantics as ind and ri , except that they take one argument and scroll the number of lines specified by
that argument. They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is output, but
this does not necessarily apply to a cuf1 from the last column. Backward motion from the left edge of the
screen is possible only when bw is specified. In this case, cub1 will move to the right edge of the previous
row. If bw is not given, the effect is undefined. This is useful for drawing a box around the edge of the
screen, for example. If the device has switch-selectable automatic margins, am should be specified in the
terminfo source file. In this case, initialization strings should turn on this option, if possible. If the device
has a command that moves to the first column of the next line, that command can be given as nel

Section 4−−318 − 13 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

(newline). It does not matter if the command clears the remainder of the current line, so if the device has
no cr and lf it may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the AT&T 5320 hardcopy termi-
nal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=ˆG, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as

adm3|lsi adm3,
am, bel=ˆG, clear=ˆZ, cols#80, cr=ˆM, cub1=ˆH,
cud1=ˆJ, ind=ˆJ, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring arguments are described by a argumentized string capability
with escapes in a form (%x) comparable to printf() (see printf(1)). For example, to address the cursor,
the cup capability is given, using two arguments: the row and column to address to. (Rows and columns
are numbered from zero and refer to the physical screen visible to the user, not to any unseen memory.) If
the terminal has memory relative cursor addressing, that can be indicated by mrcup .

The argument mechanism uses a stack and special "%" codes to manipulate the stack in the manner of
Reverse Polish Notation (postfix). Typically a sequence pushes one of the arguments onto the stack and
then prints it in some format. Often more complex operations are necessary. Operations are in postfix
form with the operands in the usual order. That is, to subtract 5 from the first argument, one would use
%p1%{5}%-.

The "%" encodings have the following meanings:

%% Outputs "%".

%[[:] flags] [width [.precision]] [doxXs]
As in printf() ; flags are [-+#] and space.

%c Print pop() gives %c.

%p[1-9] Push the ith argument.

%P[a-z] Set dynamic variable [a-z] to pop() .

%g[a-z] Get dynamic variable [a-z] and push it.

%P[A-Z] Set static variable [a-z] to pop() .

%g[A-Z] Get static variable [a-z] and push it.

%’c’ Push char constant c.

%{nn} Push decimal constant nn.

%l Push strlen(pop()).

%+ %- %* %/ %m
Arithmetic (%mis mod): push(pop integer2 op pop integer1) where integer1 represents
the top of the stack

%& %| %ˆ Bit operations: push(pop integer2 op pop integer1)

%= %> %< Logical operations: push(pop integer2 op pop integer1)

%A %O Logical operations: and, or

%! %˜ Unary operations: push(op pop())

%i (For ANSI terminals) add 1 to the first argument (if one argument present), or first
two arguments (if more than one argument present).

%?expr %t thenpart %eelsepart %;
If-then-else; %eelsepart is optional; else-if’s are possible as in Algol 68:

HP-UX Release 11.0: October 1997 − 14 − Section 4−−319

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

%?c
1

%t b
1

%ec
2

%t b
2

%ec
3

%t b
3

%ec
4

%t b
4

%eb
5

%;

c
i
are conditions; b

i
are bodies.

If the "- " flag is used with "%[doxXs]", then a colon must be placed between the "%" and the "- " to
differentiate the flag from the binary "%-" operator. For example: "%:-16.16s ".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and that the row
and column are zero-padded as two digits. Thus, its cup capability is:

cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a ˆT , with the row and
column simply encoded in binary:

cup=ˆT%p1%c%p2%c

Devices that use "%c" need to be able to backspace the cursor (cub1), and to move the cursor up one line on
the screen (cuu1). This is necessary because it is not always safe to transmit \n , ˆD , and \r , as the sys-
tem may change or discard them. (The library functions dealing with terminfo set tty modes so that tabs
are never expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus:

cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c

After sending "\E= ", this pushes the first argument, pushes the ASCII decimal value for a space (32), adds
them (pushing the sum on the stack in place of the two previous values), and outputs that value as a char-
acter. Then the same is done for the second argument. More complex arithmetic is possible using the
stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this can be given
as home; similarly a fast way of getting to the lower left-hand corner can be given as ll ; this may involve
going up with cuu1 from the home position, but a program should never do this itself (unless ll does)
because it can make no assumption about the effect of moving up from the home position. Note that the
home position is the same as addressing to (0,0): to the top left corner of the screen, not of memory. (Thus,
the \EH sequence on Hewlett-Packard terminals cannot be used for home without losing some of the other
features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given as single argument capabili-
ties hpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these are shorter
than the more general two-argument sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup . If there are argumentised local motions (such as "move n spaces to the right"), these can
be given as cud , cub , cuf , and cuu with a single argument indicating how many spaces to move. These
are primarily useful if the device does not have cup , such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses these capabilities, the codes
to enter and exit this mode can be given as smcup and rmcup . This arises, for example, from terminals,
such as the Concept, with more than one page of memory. If the device has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window must be fixed into the dev-
ice for cursor addressing to work properly. This is also used for the Tektronix 4025, where smcup sets the
command character to be the one used by terminfo . If the rmcup sequence will not restore the screen
after an smcup sequence is output (to the state prior to outputting smcup), specify nrrmc .

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this
should be given as el . If the terminal can clear from the beginning of the line to the current position
inclusive, leaving the cursor where it is, this should be given as el1 . If the terminal can clear from the
current position to the end of the display, then this should be given as ed . ed is only defined from the
first column of a line. (Thus, it can be simulated by a request to delete a large number of lines, if a true ed
is not available.)

Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor is, this should be given as il1 ;
this is done only from the first position of a line. The cursor must then appear on the newly blank line. If
the terminal can delete the line which the cursor is on, then this should be given as dl1 ; this is done only

Section 4−−320 − 15 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

from the first position on the line to be deleted. Versions of il1 and dl1 which take a single argument
and insert or delete that many lines can be given as il and dl .

If the terminal has a settable destructive scrolling region (like the VT100) the command to set this can be
described with the csr capability, which takes two arguments: the top and bottom lines of the scrolling
region. The cursor position is, alas, undefined after using this command. It is possible to get the effect of
insert or delete line using this command — the sc and rc (save and restore cursor) commands are also
useful. Inserting lines at the top or bottom of the screen can also be done using ri or ind on many termi-
nals without a true insert/delete line, and is often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or nondestructive scrolling regions,
create a scrolling region in the middle of the screen, place data on the bottom line of the scrolling region,
move the cursor to the top line of the scrolling region, and do a reverse index (ri) followed by a delete line
(dl1) or index (ind). If the data that was originally on the bottom line of the scrolling region was restored
into the scrolling region by the dl1 or ind , then the terminal has nondestructive scrolling regions. Other-
wise, it has destructive scrolling regions. Do not specify csr if the terminal has nondestructive scrolling
regions, unless ind , ri , indn , rin , dl , and dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all commands affect, it should
be given as the argumentized string wind . The four arguments are the starting and ending lines in
memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if display memory
can be retained below, then db should be given. These indicate that deleting a line or scrolling a full
screen may bring nonblank lines up from below or that scrolling back with ri may bring down nonblank
lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete character operations which
can be described using terminfo. The most common insert/delete character operations affect only the
characters on the current line and shift characters off the end of the line rigidly. Other terminals, such as
the Concept 100 and the Perkin-Elmer Owl, make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an untyped blank on the screen which is either eliminated,
or expanded to two untyped blanks. You can determine the kind of terminal you have by clearing the
screen and then typing text separated by cursor motions. Type "abc def " using local cursor motions (not
spaces) between the abc and the def . Then position the cursor before the abc and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off the
end, then your terminal does not distinguish between blanks and untyped positions. If the abc shifts over
to the def which then move together around the end of the current line and onto the next as you insert,
you have the second type of terminal, and should give the capability in , which stands for "insert null".
While these are two logically separate attributes (one line versus multiline insert mode, and special treat-
ment of untyped spaces) we have seen no terminals whose insert mode cannot be described with the single
attribute.

terminfo can describe both terminals that have an insert mode and terminals which send a simple
sequence to open a blank position on the current line. Give as smir the sequence to get into insert mode.
Give as rmir the sequence to leave insert mode. Now give as ich1 any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert mode will not give ich1 ;
terminals that send a sequence to open a screen position should give it here. (If your terminal has both,
insert mode is usually preferable to ich1 . Do not give both unless the terminal requires both to be used in
combination.) If post-insert padding is needed, give this as a number of milliseconds padding in ip (a
string option). Any other sequence which may need to be sent after an insert of a single character may also
be given in ip . If your terminal needs both to be placed into an "insert mode" and a special code to precede
each inserted character, then both smir /rmir and ich1 can be given, and both will be used. The ich
capability, with one argument, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this as a number of mil-
liseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters on the same line (for
example, if there is a tab after the insertion position). If your terminal allows motion while in insert mode
you can give the capability mir to speed up inserting in this case. Omitting mir will affect only speed.
Some terminals (notably Datamedia) must not have mir because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch with one argument, n, to delete n charac-
ters, and delete mode by giving smdc and rmdc to enter and exit delete mode (any mode the terminal

HP-UX Release 11.0: October 1997 − 16 − Section 4−−321

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor) can be
given as ech with one argument.

Highlighting, Underlining, and Visible Bells
Your device may have one or more kinds of display attributes that allow you to highlight selected charac-
ters when they appear on the screen. The following display modes (shown with the names by which they
are set) may be available:

• A blinking screen (blink)

• Bold or extra-bright characters (bold)

• Dim or half-bright characters (dim)

• Blanking or invisible text (invis)

• Protected text (prot)

• A reverse-video screen (rev)

• An alternate character set (smacs to enter this mode and rmacs to exit it). (If a command is
necessary before you can enter alternate character set mode, give the sequence in enacs or
"enable alternate-character-set" mode.) Turning on any of these modes singly may turn off other
modes.

sgr0 should be used to turn off all video enhancement capabilities. It should always be specified because it
represents the only way to turn off some capabilities, such as dim or blink .

Choose one display method as standout mode and use it to highlight error messages and other text to
which you want to draw attention. Choose a form of display that provides strong contrast but that is easy
on the eyes. (We recommend reverse-video plus half-bright or reverse-video alone.) The sequences to enter
and exit standout mode are given as smso and rmso , respectively. If the code to change into or out of
standout mode leaves one or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then
xmc should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and rmul , respectively. If
the device has a sequence to underline the current character and to move the cursor one space to the right
(such as the Micro-Term MIME), this sequence can be specified as uc .

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they receive mode-setting
sequences, which affect the display algorithm rather than having extra bits for each character. Some ter-
minals, such as the Hewlett-Packard 2621, automatically leave standout mode when they move to a new
line or the cursor is addressed. Programs using standout mode should exit standout mode before moving
the cursor or sending a newline, unless the msgr capability, asserting that it is safe to move in standout
mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement), then this
can be given as flash ; it must not move the cursor. A good flash can be done by changing the screen into
reverse video, pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to make, for
example, a nonblinking underline into an easier to find block or blinking underline) give this sequence as
cvvis . The boolean chts should also be given. If there is a way to make the cursor completely invisible,
give that as civis . The capability cnorm should be given, which undoes the effects of either of these
modes.

If your terminal generates underlined characters by using the underline character (with no special
sequences needed) even though it does not otherwise overstrike characters, then specify the capability ul .
For devices on which a character overstriking another leaves both characters on the screen, specify the
capability os . If overstrikes are erasable with a blank, then this should be indicated by specifying eo .

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set attributes),
taking nine arguments. Each argument is either 0 or nonzero, as the corresponding attribute is on or off.
The nine arguments are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate
character set. Not all modes need to be supported by sgr ; only those for which corresponding separate
attribute commands exist should be supported. For example, let’s assume that the terminal in question
needs the following escape sequences to turn on various modes.

Section 4−−322 − 17 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

tparm()
Argument Attribute Escape Sequence___

none \E[0m
p1 standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset ˆO (off) ˆN (on)___

Note that each escape sequence requires a 0 to turn off other modes before turning on its own mode. Also
note that, as suggested above, standout is set up to be the combination of reverse and dim. Also, because
this terminal has no bold mode, bold is set up as the combination of reverse and underline. In addition, to
allow combinations, such as underline+blink, the sequence to use would be \E[0;3;5m . The terminal
doesn’t have protect mode, either, but that cannot be simulated in any way, so p8 is ignored. The altchar-
set mode is different in that it is either ˆO or ˆN , depending on whether it is off or on. If all modes were to
be turned on, the sequence would be:

\E[0;3;4;5;7;8mˆN

Now look at when different sequences are output. For example, ;3 is output when either p2 or p6 is
true, that is, if either underline or bold modes are turned on. Writing out the above sequences, along with
their dependencies, gives the following:

Sequence When to Output terminfo Translation___
\E[0 always \E[0
;3 if p2 or p6 %?%p2%p6%|%t;3%;
;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;
;5 if p4 %?%p4%t;5%;
;7 if p1 or p5 %?%p1%p5%|%t;7%;
;8 if p7 %?%p7%t;8%;
m always m
^N or ˆO if p9 , ˆN ; else ˆO %?%p9%tˆN%eˆO%;___

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%
|%t;4%;%?%p5%t;5%;%?%p1%p5%
|%t;7%;%?%p7%t;8%;m%?%p9%tˆN%eˆO%;,

Remember that sgr and sgr0 must always be specified.

Keypad
If the device has a keypad that transmits sequences when the keys are pressed, this information can also be
specified. Note that it is not possible to handle devices where the keypad only works in local (this applies,
for example, to the unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not
transmit, specify these sequences as smkx and rmkx . Otherwise the keypad is assumed to always
transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be given as
kcub1 , kcuf1 , kcuu1 , kcud1 and khome, respectively. If there are function keys such as f0, f1, ..., f63,
the sequences they send can be specified as kf0 , kf1 , ..., kf63 . If the first 11 keys have labels other than
the default f0 through f10, the labels can be given as lf0 , lf1 , ..., lf10 .

The codes transmitted by certain other special keys can be given: kll (home down), kbs (backspace),
ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen or erase key), kdch1
(delete character), kdl1 (delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear to
end of screen), kich1 (insert character or enter insert mode), kil1 (insert line), knp (next page), kpp
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop in this
column). In addition, if the keypad has a 3 by 3 array of keys including the four arrow keys, the other five
keys can be given as ka1 , ka3 , kb2 , kc1 , and kc3 . These keys are useful when the effects of a 3 by 3
directional pad are needed. Further keys are defined above in the capabilities list.

HP-UX Release 11.0: October 1997 − 18 − Section 4−−323

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Strings to program function keys can be specified as pfkey , pfloc , and pfx . A string to program screen
labels should be specified as pln . Each of these strings takes two arguments: a function key identifier and
a string to program it with. pfkey causes pressing the given key to be the same as the user typing the
given string; pfloc causes the string to be executed by the terminal in local mode; and pfx causes the
string to be transmitted to the computer. The capabilities nlab , lw and lh define the number of pro-
grammable screen labels and their width and height. If there are commands to turn the labels on and off,
give them in smln and rmln . smln is normally output after one or more pln sequences to make sure
that the change becomes visible.

Tabs and Initialization
If the device has hardware tabs, the command to advance to the next tab stop can be given as ht (usually
control-I). A "backtab" command that moves leftward to the next tab stop can be given as cbt . By conven-
tion, if tty modes show that tabs are being expanded by the computer rather than being sent to the device,
programs should not use ht or cbt (even if they are present) because the user might not have the tab
stops properly set. If the device has hardware tabs that are initially set every n spaces when the device is
powered up, the numeric argument it is given, showing the number of spaces the tabs are set to. This is
normally used by tput init to determine whether to set the mode for hardware tab expansion and
whether to set the tab stops. If the device has tab stops that can be saved in nonvolatile memory, the ter-
minfo description can assume that they are properly set. If there are commands to set and clear tab stops,
they can be given as tbc (clear all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: is1 , is2 , and is3 , initialization strings for the device; iprog , the path name
of a program to be run to initialize the device; and if , the name of a file containing long initialization
strings. These strings are expected to set the device into modes consistent with the rest of the terminfo
description. They must be sent to the device each time the user logs in and be output in the following
order: run the program iprog ; output is1 ; output is2 ; set the margins using mgc, smgl and smgr ;
set the tabs using tbc and hts ; print the file if ; and finally output is3 . This is usually done using the
init option of tput .

Most initialization is done with is2 . Special device modes can be set up without duplicating strings by
putting the common sequences in is2 and special cases in is1 and is3 . Sequences that do a reset from
a totally unknown state can be given as rs1 , rs2 , rf , and rs3 , analogous to is1 , is2 , is3 , and if .
(The method using files, if and rf , is used for a few terminals; however, the recommended method is to
use the initialization and reset strings.) These strings are output by tput reset , which is used when the
terminal gets into a wedged state. Commands are normally placed in rs1 , rs2 , rs3 , and rf only if they
produce annoying effects on the screen and are not necessary when logging in. For example, the command
to set a terminal into 80-column mode would normally be part of is2 , but on some terminals it causes an
annoying glitch on the screen and is not normally needed because the terminal is usually already in 80-
column mode.

If a more complex sequence is needed to set the tabs than can be described by using tbc and hts , the
sequence can be placed in is2 or if .

Any margin can be cleared with mgc. (For instructions on how to specify commands to set and clear mar-
gins, see the "Margins" subsection of the "Capabilities That Cause Movement" section below.

Delays
Certain capabilities control padding in the tty driver. These are primarily needed by hard-copy terminals,
and are used by tput init to set tty modes appropriately (see tput(1)). Delays embedded in the capabili-
ties cr , ind , cub1 , ff , and tab can be used to set the appropriate delay bits to be set in the tty driver.
If pb (padding baud rate) is given, these values can be ignored at baud rates below the value of pb .

Status Lines
If the terminal has an extra "status line" that is not normally used by software, this fact can be indicated.
If the status line is viewed as an extra line below the bottom line, into which one can cursor-address nor-
mally (such as the Heathkit H19’s 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling
region), the capability hs should be given. Special strings that go to a given column of the status line and
return from the status line can be given as tsl and fsl . (fsl must leave the cursor position in the same
place it was before tsl . If necessary, the sc and rc strings can be included in tsl and fsl to get this
effect.) The capability tsl takes one argument, which is the column number of the status line the cursor
is to be moved to.

If escape sequences and other special commands, such as tab, work while in the status line, the flag eslok
can be given. A string which turns off the status line (or otherwise erases its contents) should be given as
dsl . If the terminal has commands to save and restore the position of the cursor, give them as sc and

Section 4−−324 − 19 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

rc . The status line is normally assumed to be the same width as the rest of the screen (that is, cols). If
the status line is a different width (possibly because the terminal does not allow an entire line to be loaded)
the width, in columns, can be indicated with the numeric argument wsl .

Line Graphics
If the device has a line drawing alternate character set, the mapping of glyph to character would be given
in acsc . The definition of this string is based on the alternate character set used in the Digital VT100 ter-
minal, extended slightly with some characters from the AT&T 4410v1 terminal.

VT100+
Glyph Name Character__________________________________
arrow pointing right +
arrow pointing left ,
arrow pointing down .
solid square block 0
lantern symbol I
arrow pointing up -
diamond ‘
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner l
lower left corner m
plus n
scan line 1 o
horizontal line q
scan line 9 s
left tee (L-) t
right tee (-L) u
bottom tee (_L) v
top tee (M L) w
vertical line x
bullet ~__________________________________

The best way to describe a new device’s line graphics set is to add a third column to the above table with
the characters for the new device that produce the appropriate glyph when the device is in alternate-
character-set mode. For example:

VT100+ Character Used
Glyph Name Character on New Device___
upper left corner l R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q ,
vertical line x .___

Now write down the characters left to right; for example:

acsc=lRmFkTjGq\,x.

In addition, terminfo lets you define multiple character sets (see the "Alternate Character Sets" section
below.

Color Manipulation
Most color terminals belong to one of two classes of terminal:

• Tektronix-style

The Tektronix method uses a set of N predefined colors (usually 8) from which an application can
select "current" foreground and background colors. Thus a terminal can support up to N colors
mixed into N*N color-pairs to be displayed on the screen at the same time.

HP-UX Release 11.0: October 1997 − 20 − Section 4−−325

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

• Hewlett-Packard-style

In the HP method, the application cannot define the foreground independently of the background,
or vice-versa. Instead, the application must define an entire color-pair at once. Up to M color-
pairs, made from 2*M different colors, can be defined this way.

The numeric variables colors and pairs define the number of colors and color-pairs that can be
displayed on the screen at the same time. If a terminal can change the definition of a color (for example,
the Tektronix 4100 and 4200 series terminals), this should be specified with ccc (can change color). To
change the definition of a color (Tektronix 4200 method), use initc (initialize color). It requires four argu-
ments: color number (ranging from 0 to colors −1) and three RGB (red, green, and blue) values or three
HLS colors (Hue, Lightness, Saturation). Ranges of RGB and HLS values are terminal-dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or dual-mode terminals
to be operated in HLS mode) one must define a boolean variable hls ; that would instruct the
init_color() function (see can_change_color(3X)) to convert its RGB arguments to HLS before sending
them to the terminal. The last three arguments to the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different from RGB and HLS, a
mapping to either RGB or HLS must be developed.

If the terminal supports ANSI escape sequences to set background and foreground, they should be coded as
setab and setaf , respectively. If the terminal supports other escape sequences to set background and
foreground, they should be coded as setb and setf , respectively. The vidputs() function (see
vidattr(3X)) and the refresh functions use setab and setaf if they are defined. Each of these capabilities
requires one argument: the number of the color. By convention, the first eight colors (0−7) map to, in
order: black, red, green, yellow, blue, magenta, cyan, white. However, color re-mapping may occur or the
underlying hardware may not support these colors. Mappings for any additional colors supported by the
device (that is, to numbers greater than 7) are at the discretion of the terminfo entry writer.

To initialize a color-pair (HP method), use initp (initialize pair). It requires seven arguments: the
number of a color-pair (range=0 to pairs −1), and six RGB values: three for the foreground followed by
three for the background. (Each of these groups of three should be in the order RGB.) When initc or
initp are used, RGB or HLS arguments should be in the order "red, green, blue" or "hue, lightness,
saturation"), respectively. To make a color-pair current, use scp (set color-pair). It takes one argument,
the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of the screen with current
background color. In such cases, bce (background color erase) should be defined. The variable op (origi-
nal pair) contains a sequence for setting the foreground and the background colors to what they were at the
terminal start-up time. Similarly, oc (original colors) contains a control sequence for setting all colors (for
the Tektronix method) or color-pairs (for the HP method) to the values they had at the terminal start-up
time.

Some color terminals substitute color for video attributes. Such video attributes should not be combined
with colors. Information about these video attributes should be packed into the ncv (no color video) vari-
able. There is a one-to-one correspondence between the nine least significant bits of that variable and the
video attributes. The following table depicts this correspondence.

Section 4−−326 − 21 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Bit Decimal Characteristic
Attribute Position Value That Sets__

WA_STANDOUT 0 1 sgr , parameter 1
WA_UNDERLINE 1 2 sgr , parameter 2
WA_REVERSE 2 4 sgr , parameter 3
WA_BLINK 3 8 sgr , parameter 4
WA_DIM 4 16 sgr , parameter 5
WA_BOLD 5 32 sgr , parameter 6
WA_INVIS 6 64 sgr , parameter 7
WA_PROTECT 7 128 sgr , parameter 8
WA_ALTCHARSET 8 256 sgr , parameter 9
WA_HORIZONTAL 9 512 sgr1 , parameter 1
WA_LEFT 10 1024 sgr1 , parameter 2
WA_LOW 11 2048 sgr1 , parameter 3
WA_RIGHT 12 4096 sgr1 , parameter 4
WA_TOP 13 8192 sgr1 , parameter 5
WA_VERTICAL 14 16384 sgr1 , parameter 6__

When a particular video attribute should not be used with colors, set the corresponding ncv bit to 1; other-
wise set it to 0. To determine the information to pack into the ncv variable, add the decimal values
corresponding to those attributes that cannot coexist with colors. For example, if the terminal uses colors
to simulate reverse video (bit number 2 and decimal value 4) and bold (bit number 5 and decimal value 32),
the resulting value for ncv will be 36 (4 + 32).

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be given as pad . Only
the first character of the pad string is used. If the terminal does not have a pad character, specify npc .

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and hd (half-
line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a hardcopy
terminal can eject to the next page (form feed), give this as ff (usually control-L).

If there is a command to repeat a given character a given number of times (to save time transmitting a
large number of identical characters) this can be indicated with the argumentized string rep . The first
argument is the character to be repeated and the second is the number of times to repeat it. Thus,
tparm(repeat_char, ’x’, 10) is the same as xxxxxxxxxx .

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with
cmdch. A prototype command character is chosen which is used in all capabilities. This character is given
in the cmdch capability to identify it. The following convention is supported on some systems: If the
environment variable CCexists, all occurrences of the prototype character are replaced with the character
in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup,
patch, and network, should include the gn (generic) capability so that programs can complain that they do
not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.) If the terminal is one of those supported by the virtual terminal
protocol, the terminal number can be given as vt . A line-turn-around sequence to be transmitted before
doing reads should be specified in rfi .

If the device uses XON/XOFF handshaking for flow control, give xon . Padding information should still be
included so that functions can make better decisions about costs, but actual pad characters will not be
transmitted. Sequences to turn on and off XON/XOFF handshaking may be given in smxon and rmxon . If
the characters used for handshaking are not ˆS and ˆQ , they may be specified with xonc and xoffc .

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted,
this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it will
usually be cleared. If strings exist to turn this "meta mode" on and off, they can be given as smmand rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of memory
can be indicated with lm . A value of lm#0 indicates that the number of lines is not fixed, but that there is
still more memory than fits on the screen.

HP-UX Release 11.0: October 1997 − 22 − Section 4−−327

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Media copy strings which control an auxiliary printer connected to the terminal can be given as:

mc0 Print the contents of the screen.
mc4 Turn off the printer.
mc5 Turn on the printer.

When the printer is on, all text sent to the terminal will be sent to the printer. A variation, mc5p, takes
one argument, and leaves the printer on for as many characters as the value of the argument, then turns
the printer off. The argument should not exceed 255. If the text is not displayed on the terminal screen
when the printer is on, specify mc5i (silent printer). All text, including mc4, is transparently passed to
the printer while an mc5p is in effect.

Special Cases
The working model used by terminfo fits most terminals reasonably well. However, some terminals do
not completely match that model, requiring special support by terminfo . These are not meant to be con-
strued as deficiencies in the terminals; they are just differences between the working model and the actual
hardware. They may be unusual devices or, for some reason, do not have all the features of the terminfo
model implemented.

Terminals that cannot display tilde (˜) characters, such as certain Hazeltine terminals, should indicate hz .

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept 100, should indicate
xenl . Those terminals whose cursor remains on the right-most column until another character has been
received, rather than wrapping immediately upon receiving the right-most character, such as the VT100,
should also indicate xenl .

If el is required to get rid of standout (instead of writing normal text on top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks, should indicate xt (destruc-
tive tabs). This capability is also taken to mean that it is not possible to position the cursor on top of a
"magic cookie". Therefore, to erase standout mode, it is necessary, instead, to use delete and insert line.

For Beehive Superbee terminals that do not transmit the escape or control-C characters, specify xsb , indi-
cating that the f1 key is to be used for escape and the f2 key for control-C.

Similar Terminals
If there are two similar terminals, one can be defined as being just like the other with certain exceptions.
The string capability use can be given with the name of the similar terminal. The capabilities given before
use override those in the terminal type invoked by use . A capability can be canceled by placing
capability-name@prior to the appearance of the string capability use . For example, the entry:

att4424-2|Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 04424 terminal that does not have the rev , sgr , and smul capabilities, and hence can-
not do highlighting. This is useful for different modes for a terminal, or for different user preferences.
More than one use capability may be given.

Printer Capabilities
The terminfo database lets you define capabilities of printers as well as terminals. Capabilities available
for printers are included in the lists in the "Defined Capabilities" section above.

Rounding Values
Because argumentized string capabilities work only with integer values, terminfo designers should create
strings that expect numeric values that have been rounded. Application designers should note this and
should always round values to the nearest integer before using them with a argumentized string capability.

Printer Resolution
A printer’s resolution is defined to be the smallest spacing of characters it can achieve. In general, the hor-
izontal and vertical resolutions are independent. Thus the vertical resolution of a printer can be deter-
mined by measuring the smallest achievable distance between consecutive printing baselines, while the hor-
izontal resolution can be determined by measuring the smallest achievable distance between the leftmost
edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and vertical resolution. The
view of printing that terminfo currently presents is one of printing inside a uniform matrix: All charac-
ters are printed at fixed positions relative to each "cell" in the matrix; furthermore, each cell has the same

Section 4−−328 − 23 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

size given by the smallest horizontal and vertical step sizes dictated by the resolution. (The cell size can be
changed as will be seen later.)

Many printers are capable of "proportional printing", where the horizontal spacing depends on the size of
the character last printed. terminfo does not make use of this capability, although it does provide
enough capability definitions to allow an application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizontal and vertical resolu-
tions suggest, but also of "moving" to a position an integral multiple of the smallest distance away from a
previous position. Thus printed characters can be spaced apart a distance that is an integral multiple of the
smallest distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different "modes". In "normal mode", the exist-
ing terminfo capabilities are assumed to work on columns and lines, just like a video terminal. Thus the
old lines capability would give the length of a page in lines, and the cols capability would give the width
of a page in columns. In "micro mode," many terminfo capabilities work on increments of lines and
columns. With some printers the micro mode may be concomitant with normal mode, so that all the capa-
bilities work at the same time.

Specifying Printer Resolution
The printing resolution of a printer is given in several ways. Each specifies the resolution as the number of
smallest steps per distance:

Characteristic Number of Smallest Steps__
orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line__

When printing in normal mode, each character printed causes movement to the next column, except in spe-
cial cases described later; the distance moved is the same as the per-column resolution. Some printers
cause an automatic movement to the next line when a character is printed in the rightmost position; the
distance moved vertically is the same as the per-line resolution. When printing in micro mode, these dis-
tances can be different, and may be zero for some printers.

Automatic Motion after Printing_________________________________
Normal Mode:
orc Steps moved horizontally
orl Steps moved vertically_________________________________
Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically_________________________________

Some printers are capable of printing wide characters. The distance moved when a wide character is
printed in normal mode may be different from when a regular width character is printed. The distance
moved when a wide character is printed in micro mode may also be different from when a regular character
is printed in micro mode, but the differences are assumed to be related: If the distance moved for a regular
character is the same whether in normal mode or micro mode (mcs=orc), then the distance moved for a
wide character is also the same whether in normal mode or micro mode. This doesn’t mean the normal
character distance is necessarily the same as the wide character distance, just that the distances don’t
change with a change in normal to micro mode. However, if the distance moved for a regular character is
different in micro mode from the distance moved in normal mode (mcs<orc), the micro mode distance is
assumed to be the same for a wide character printed in micro mode, as the table below shows.

Automatic Motion after Printing Wide Character__
Normal Mode or Micro Mode (mcs = orc):
widcs Steps moved horizontally__
Micro Mode (mcs < orc):
mcs Steps moved horizontally__

There may be control sequences to change the number of columns per inch (the character pitch) and to
change the number of lines per inch (the line pitch). If these are used, the resolution of the printer
changes, but the type of change depends on the printer:

HP-UX Release 11.0: October 1997 − 24 − Section 4−−329

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Changing the Character/Line Pitches___
cpi Change character pitch
cpix If set, cpi changes orhi ; otherwise, changes orc

lpi Change line pitch
lpix If set, lpi changes orvi ; otherwise, changes orl

chr Change steps per column
cvr Change steps per line___

The cpi and lpi string capabilities are each used with a single argument, the pitch in columns (or char-
acters) and lines per inch, respectively. The chr and cvr string capabilities are each used with a single
argument, the number of steps per column and line, respectively.

Using any of the control sequences in these strings will imply a change in some of the values of orc , orhi ,
orl , and orvi . Also, the distance moved when a wide character is printed, widcs , changes in relation to
orc . The distance moved when a character is printed in micro mode, mcs, changes similarly, with one
exception: if the distance is 0 or 1, then no change is assumed.

Programs that use cpi , lpi , chr , or cvr should recalculate the printer resolution (and should recalcu-
late other values. See the "Effect of Changing Printing Resolution" section below.

Effects of Changing the Character/Line Pitches___
Before After___

Using cpi with cpix clear:

orhi’ orhi
orc’ orc = orhi / Vcpi___
Using cpi with cpix set:

orhi’ orhi = orc * Vcpi
orc’ orc___
Using lpi with lpix clear:

orvi’ orvi
orl’ orl = orvi / Vlpi___
Using lpi with lpix set:

orvi’ orvi = orl * Vlp
orl’ orl___
Using chr:

orhi’ orhi
orc’ Vchr___
Using cvr:

orvi’ orvi
orl’ Vcvr___
Using cpi or chr:

widcs’ widcs = widcs’ * orc / orc’
mcs’ mcs = mcs’ * orc / orc’___

Vchr, Vcpi, Vcvr, and Vlpi are the arguments used with chr , cpi , cvr , and lpi , respectively. The prime
marks (’) indicate the old values.

Capabilities That Cause Movement
In the following descriptions, "movement" refers to the motion of the "current position". With video termi-
nals this would be the cursor; with some printers, this is the carriage position. Other printers have
different equivalents. In general, the current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a number of full columns or
lines. It also has equivalent string capabilities for control sequences that cause movement a number of
smallest steps.

Section 4−−330 − 25 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

String Capabilities for Motion_________________________________
mcub1 Move 1 step left
mcuf1 Move 1 step right
mcuu1 Move 1 step up
mcud1 Move 1 step down

mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down

mhpa Move N steps from the left
mvpa Move N steps from the top_________________________________

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also, some printers don’t accept
absolute motion to the left of the current position. terminfo has capabilities for specifying these limits.

Limits to Motion__
mjump Limit on use of mcub1, mcuf1 , mcuu1, mcud1
maddr Limit on use of mhpa, mvpa

xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up__

If a printer needs to be in a "micro mode" for the motion capabilities described above to work, there are
string capabilities defined to contain the control sequence to enter and exit this mode. A boolean is avail-
able for those printers where using a carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode_________________________________
smicm Enter micro mode
rmicm Exit micro mode

crxm Using cr exits micro mode_________________________________

The movement made when a character is printed in the rightmost position varies among printers. Some
make no movement, some move to the beginning of the next line, others move to the beginning of the same
line. terminfo has boolean capabilities for describing all three cases.

What Happens After Character Printed in Rightmost Position___
sam Automatic move to beginning of same line___

Some printers can be put in a mode where the normal direction of motion is reversed. This mode can be
especially useful when there are no capabilities for leftward or upward motion, because those capabilities
can be built from the motion reversal capability and the rightward or downward motion capabilities. It is
best to leave it up to an application to build the leftward or upward capabilities, though, and not enter them
in the terminfo database. This allows several reverse motions to be strung together without intervening
wasted steps that leave and reenter reverse mode.

HP-UX Release 11.0: October 1997 − 26 − Section 4−−331

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Entering/Exiting Reverse Modes__
slm Reverse sense of horizontal motions
rlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motion is reversed:
mcub1 Move 1 step right
mcuf1 Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cub1 Move 1 column right
cuf1 Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motion is reversed:
mcuu1 Move 1 step down
mcud1 Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuu1 Move 1 line down
cud1 Move 1 line up
cuu Move N lines down
cud Move N lines up__

The reverse motion modes should not affect the mvpa and mhpa absolute motion capabilities. The reverse
vertical motion mode should, however, also reverse the action of the line "wrapping" that occurs when a
character is printed in the right-most position. Thus printers that have the standard terminfo capability
amdefined should experience motion to the beginning of the previous line when a character is printed in the
rightmost position in reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is not defined; thus, pro-
grams must exit reverse motion modes before using other motion capabilities.

Two miscellaneous capabilities complete the list of motion capabilities. One of these is needed for printers
that move the current position to the beginning of a line when certain control characters, such as linefeed
or formfeed, are used. The other is used for the capability of suspending the motion that normally occurs
after printing a character.

Miscellaneous Motion Strings__
docr List of control characters causing cr
zerom Prevent auto motion after printing next single character__

Margins
terminfo provides two strings for setting margins on terminals: one for the left and one for the right mar-
gin. Printers, however, have two additional margins, for the top and bottom margins of each page. Furth-
ermore, some printers require not using motion strings to move the current position to a margin and then
fixing the margin there, but require the specification of where a margin should be regardless of the current
position. Therefore terminfo offers six additional strings for defining margins with printers.

Setting Margins___
smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line

smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Set right margin at column N
smgtp Set top margin at line N___

The last four strings are used with one or more arguments that give the position of the margin or margins
to set. If both of smglp and smgrp are set, each is used with a single argument, N, that gives the column
number of the left and right margin, respectively. If both of smgtp and smgbp are set, each is used to set
the top and bottom margin, respectively: smgtp is used with a single argument, N, the line number of the

Section 4−−332 − 27 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

top margin; however, smgbp is used with two arguments, N and M, that give the line number of the bot-
tom margin, the first counting from the top of the page and the second counting from the bottom. This
accommodates the two styles of specifying the bottom margin in different manufacturers’ printers. When
coding a terminfo entry for a printer that has a settable bottom margin, only the first or second argu-
ment should be used, depending on the printer. When writing an application that uses smgbp to set the
bottom margin, both arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the column number of the left
and right margins, in that order. Likewise, if only one of smgtp and smgbp is set, then it is used with two
arguments that give the top and bottom margins, in that order, counting from the top of the page. Thus
when coding a terminfo entry for a printer that requires setting both left and right or top and bottom
margins simultaneously, only one of smglp and smgrp or smgtp and smgbp should be defined; the other
should be left blank. When writing an application that uses these string capabilities, the pairs should be
first checked to see if each in the pair is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left-most column. A zero value
for the second argument with smgbp means the bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts
Five sets of strings describe the capabilities printers have of enhancing printed text.

Enhanced Printing__
sshm Enter shadow-printing mode
rshm Exit shadow-printing mode

sitm Enter italicizing mode
ritm Exit italicizing mode

swidm Enter wide character mode
rwidm Exit wide character mode

ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts

ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts__

If a printer requires the sshm control sequence before every character to be shadow-printed, the rshm
string is left blank. Thus programs that find a control sequence in sshm but none in rshm should use the
sshm control sequence before every character to be shadow-printed; otherwise, the sshm control sequence
should be used once before the set of characters to be shadow-printed, followed by rshm . The same is also
true of each of the sitm -ritm , swidm -rwidm , ssupm-rsupm , and ssubm-rsubm pairs.

terminfo also has a capability for printing emboldened text (bold). While shadow printing and embol-
dened printing are similar in that they "darken" the text, many printers produce these two types of print in
slightly different ways. Generally, emboldened printing is done by overstriking the same character one or
more times. Shadow printing likewise usually involves overstriking, but with a slight movement up and/or
to the side so that the character is "fatter".

It is assumed that enhanced printing modes are independent modes, so that it would be possible, for
instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide character should be
given in widcs .

If only a subset of the printable ASCII characters can be printed as superscripts or subscripts, they should
be listed in supcs or subcs strings, respectively. If the ssupm or ssubm strings contain control
sequences, but the corresponding supcs or subcs strings are empty, it is assumed that all printable
ASCII characters are available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the same as for regular
characters. Thus, for example, printing any of the following three examples results in equivalent motion:

Bi B i Bi

HP-UX Release 11.0: October 1997 − 28 − Section 4−−333

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Note that the existing msgr boolean capability describes whether motion control sequences can be used
while in "standout mode". This capability is extended to cover the enhanced printing modes added here.
msgr should be set for those printers that accept any motion control sequences without affecting shadow,
italicized, widened, superscript, or subscript printing. Conversely, if msgr is not set, a program should end
these modes before attempting any motion.

Alternate Character Sets
In addition to allowing you to define line graphics (described in the "Line Graphics" subsection of the
"Insert/Delete Character" section above), terminfo lets you define alternate character sets. The following
capabilities cover printers and terminals with multiple selectable or definable character sets:

Alternate Character Sets___
scs Select character set N
scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N
csnm List of character set names
daisy Printer has manually changed print-wheels___

The scs , rcsd , and csnm strings are used with a single argument, N, a number from 0 to 63 that
identifies the character set. The scsd string is also used with the argument N and another, M, that gives
the number of characters in the set. The defc string is used with three arguments: A gives the ASCII
code representation for the character, B gives the width of the character in dots, and D is zero or one
depending on whether the character is a "descender" or not. The defc string is also followed by a string of
"image-data" bytes that describe how the character looks (see below).

Character set 0 is the default character set present after the printer has been initialized. Not every printer
has 64 character sets, of course; using scs with an argument that doesn’t select an available character set
should cause a null pointer to be returned by tparm() (see tigetflag(3X)).

If a character set has to be defined before it can be used, the scsd control sequence is to be used before
defining the character set, and the rcsd is to be used after. They should also cause a NULL pointer to be
returned by tparm() when used with an argument N that doesn’t apply. If a character set still has to be
selected after being defined, the scs control sequence should follow the rcsd control sequence. By exa-
mining the results of using each of the scs , scsd , and rcsd strings with a character set number in a call
to tparm() , a program can determine which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define each character. To
print any character on printers covered by terminfo , the ASCII code is sent to the printer. This is true
for characters in an alternate set as well as "normal" characters. Thus the definition of a character includes
the ASCII code that represents it. In addition, the width of the character in dots is given, along with an
indication of whether the character should descend below the print line (such as the lower case letter "g" in
most character sets). The width of the character in dots also indicates the number of image-data bytes that
will follow the defc string. These image-data bytes indicate where in a dot-matrix pattern ink should be
applied to "draw" the character; the number of these bytes and their form are defined in the "Dot-Matrix
Graphics" section below.

It’s easiest for the creator of terminfo entries to refer to each character set by number; however, these
numbers will be meaningless to the application developer. The csnm string alleviates this problem by pro-
viding names for each number.

When used with a character set number in a call to tparm() , the csnm string will produce the equivalent
name. These names should be used as a reference only. No naming convention is implied, although anyone
who creates a terminfo entry for a printer should use names consistent with the names found in user
documents for the printer. Application developers should allow a user to specify a character set by number
(leaving it up to the user to examine the csnm string to determine the correct number), or by name, where
the application examines the csnm string to determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not available, the strings
should not be defined. For printers that have manually changed print-wheels or font cartridges, the
boolean daisy is set.

Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing raster graphics images. Three numeric
capabilities and three string capabilities help a program draw raster-graphics images independent of the
type of dot-matrix printer or the number of pins or dots the printer can handle at one time.

Section 4−−334 − 29 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Dot-Matrix Graphics__
npins Number of pins, N, in print-head
spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics__

The sbim string is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the technique used for
most dot-matrix printers: each pass of the printer’s print-head is assumed to produce a dot-matrix that is
N dots high and B dots wide. This is typically a wide, squat, rectangle of dots. The height of this rectangle
in dots will vary from one printer to the next; this is given in the npins numeric capability. The size of
the rectangle in fractions of an inch will also vary; it can be deduced from the spinv and spinh numeric
capabilities. With these three values an application can divide a complete raster-graphics image into
several horizontal strips, perhaps interpolating to account for different dot spacing vertically and horizon-
tally.

The sbim and rbim strings start and end a dot-matrix image, respectively. The sbim string is used with
a single argument that gives the width of the dot-matrix in dots. A sequence of "image-data bytes" are sent
to the printer after the sbim string and before the rbim string. The number of bytes is a integral multi-
ple of the width of the dot-matrix; the multiple and the form of each byte is determined by the porder
string as described below.

The porder string is a comma separated list of pin numbers optionally followed by an numerical offset.
The offset, if given, is separated from the list with a semicolon. The position of each pin number in the list
corresponds to a bit in an 8-bit data byte. The pins are numbered consecutively from 1 to npins , with 1
being the top pin. Note that the term "pin" is used loosely here; "ink-jet" dot-matrix printers don’t have
pins, but can be considered to have an equivalent method of applying a single dot of ink to paper. The bit
positions in porder are in groups of 8, with the first position in each group the most significant bit and the
last position the least significant bit. An application produces 8-bit bytes in the order of the groups in
porder .

An application computes the "image-data bytes" from the internal image, mapping vertical dot positions in
each print-head pass into 8-bit bytes, using a 1 bit where ink should be applied and 0 where no ink should
be applied. This can be reversed (0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a posi-
tion is skipped in porder , a 0 bit is used. If a position has a lower case "x" instead of a pin number, a 1 bit
is used in the skipped position. For consistency, a lower case "o" can be used to represent a 0 filled, skipped
bit. There must be a multiple of 8 bit positions used or skipped in porder ; if not, low-order bits of the last
byte are set to 0. The offset, if given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470, AT&T 475 and C.Itoh 8510
printers provide eight pins for graphics. The pins are identified top to bottom by the 8 bits in a byte, from
least significant to most. The porder strings for these printers would be 8,7,6,5,4,3,2,1 . The AT&T
478 and AT&T 479 printers also provide eight pins for graphics. However, the pins are identified in the
reverse order. The porder strings for these printers would be 1,2,3,4,5,6,7,8 . The AT&T 5310,
AT&T 5320, Digital LA100, and Digital LN03 printers provide six pins for graphics. The pins are identified
top to bottom by the decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits in an 8-bit
byte, although the decimal values are further offset by the value 63. The porder string for these printers
would be ,,6,5,4,3,2,1;63 , equivalent to o,o,6,5,4,3,2,1;63 .

Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are used, the pin or dot spacing may
change:

Changing the Character/Line Pitches______________________________________
cpi Change character pitch
cpix If set, cpi changes spinh

lpi Change line pitch
lpix If set, lpi changes spinv______________________________________

Programs that use cpi or lpi should recalculate the dot spacing:

HP-UX Release 11.0: October 1997 − 30 − Section 4−−335

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

Effects of Changing the Character/Line Pitches__
Before After__

Using cpi with cpix clear:
spinh’ spinh__
Using cpi with cpix set:
spinh’ spinh = spinh’ * orhi / orhi’__
Using lpi with lpix clear:
spinv’ spinv__
Using lpi with lpix set:
spinv’ spinv = spinv’ * orhi / orhi’__
Using chr :
spinh’ spinh__
Using cvr :
spinv’ spinv__

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before using cpi and after
using cpi , respectively. Likewise, orvi’ and orvi are the values of the vertical resolution in steps per
inch, before using lpi and after using lpi , respectively. Thus, the changes in the dots per inch for dot-
matrix graphics follow the changes in steps per inch for printer resolution.

Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce near-letter-quality printing
or draft-quality printing. It is important to be able to choose one or the other because the rate of printing
generally decreases as the quality improves. Three strings describe these capabilities:

Print Quality___________________________________
snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print___________________________________

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have all three levels, the
respective strings should be left blank.

Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program synchronized with a printer, and
because modern printers can buffer data before printing it, a program generally cannot determine at any
time what has been printed. Two numeric capabilities can help a program estimate what has been printed.

Print Rate/Buffer Size___
cps Nominal print rate in characters per second
bufsz Buffer capacity in characters___

cps is the nominal or average rate at which the printer prints characters; if this value is not given, the rate
should be estimated at one-tenth the prevailing baud rate. bufsz is the maximum number of subsequent
characters buffered before the guaranteed printing of an earlier character, assuming proper flow control
has been used. If this value is not given it is assumed that the printer does not buffer characters, but
prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter "a" followed by 1000 addi-
tional characters is guaranteed to cause the letter "a" to print. If the same printer prints at the rate of 100
characters per second, then it should take 10 seconds to print all the characters in the buffer, less if the
buffer is not full. By keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the nominal print rate. A
good way to get a value to put in for cps is to generate a few pages of text, count the number of printable
characters, and then see how long it takes to print the text.

Applications that use these values should recognize the variability in the print rate. Straight text, in short
lines, with no embedded control sequences will probably print at close to the advertised print rate and prob-
ably faster than the rate in cps . Graphics data with a lot of control sequences, or very long lines of text,
will print at well below the advertised rate and below the rate in cps . If the application is using cps to
decide how long it should take a printer to print a block of text, the application should pad the estimate. If
the application is using cps to decide how much text has already been printed, it should shrink the esti-
mate. The application will thus err in favor of the user, who wants, above all, to see all the output in its

Section 4−−336 − 31 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

correct place.

Selecting a Terminal
If the environment variable TERMINFOis defined, any program using Curses checks for a local terminal
definition before checking in the standard place. For example, if TERMis set to att4424 , then the com-
piled terminal definition is found by default in the path

a/att4424

within an implementation-specific directory.

(The "a" is copied from the first letter of att4424 to avoid creation of huge directories.) However, if TER-
MINFOis set to $HOME/myterms , Curses first checks

$HOME/myterms/a/att4424

If that fails, it then checks the default path name.

This is useful for developing experimental definitions or when write permission in the implementation-
defined default database is not available.

If the LINES and COLUMNSenvironment variables are set, or if the program is executing in a window
environment, line and column information in the environment will override information read by ter-
minfo .

Application Usage
The most effective way to prepare a terminal description is by imitating the description of a similar termi-
nal in terminfo and to build up a description gradually, using partial descriptions with a screen-oriented
editor, to check that they are correct. To easily test a new terminal description, the environment variable
TERMINFOcan be set to the path name of a directory containing the compiled description, and programs
will look there rather than in the terminfo database.

Conventions for Device Aliases
Every device must be assigned a name, such as vt100 . Device names (except the long name) should be
chosen using the following conventions. The name should not contain hyphens because hyphens are
reserved for use when adding suffixes that indicate special modes.

These special modes may be modes that the hardware can be in, or user preferences. To assign a special
mode to a particular device, append a suffix consisting of a hyphen and an indicator of the mode to the dev-
ice name. For example, the -w suffix means wide mode; when specified, it allows for a width of 132
columns instead of the standard 80 columns. Therefore, if you want to use a VT100 device set to wide
mode, name the device vt100-w . Use the following suffixes where possible:

Suffix Meaning Example__
-w Wide mode (more than 80 columns) 5410-w
-am With automatic margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
- n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
- np Number of pages of memory c100-4p
-rv Reverse video 4415-rv__

Variations of Terminal Definitions
It is implementation-defined how the entries in terminfo may be created.

There is more than one way to write a terminfo entry. A minimal entry may permit applications to use
Curses to operate the terminal. If the entry is enhanced to describe more of the terminal’s capabilities,
applications can use Curses to invoke those features, and can take advantages of optimizations within
Curses and thus operate more efficiently. For most terminals, an optimal terminfo entry has already
been written.

EXTERNAL INFLUENCES
Environment Variables

CC Specifies a substitute character for a prototype command character. See cmdch in the "Miscel-
laneous" subsection of the "Insert/Delete Line" section.

HP-UX Release 11.0: October 1997 − 32 − Section 4−−337

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

terminfo(4) terminfo(4)
(ENHANCED CURSES)

COLUMNSSpecifies column information that can override the column information in terminfo . See the
"Selecting a Terminal" section.

LINES Specifies lines information that can override the lines information in terminfo . See the
"Selecting a Terminal" section.

TERM Specifies the name of the current terminal. See the "Selecting a Terminal" section.

TERMINFO
Specifies an alternate location for a local terminal definition. If the value in TERMis not found
in $TERMINFO/?/* or if TERMINFO is not set, the value is sought in the default location,
/usr/lib/terminfo/?/* . See the "Selecting a Terminal" section.

SEE ALSO
tic(1), untic(1), curses(3X), tgetent(3X), tigetflag(3X), term(4), term(5).

ANSI Standard X3.64-1979.

X/Open System Interface Definitions, Issue 4, Version 2.

Section 4−−338 − 33 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

ttys(4) ttys(4)

NAME
ttys - terminal control database file, for trusted systems

SYNOPSIS
/tcb/files/ttys

DESCRIPTION
The system supports a single terminal control database containing entries for each terminal that can log
into the system. Authentication programs use information contained in the terminal control database to
determine if login to the terminal is permitted. Additional fields are maintained for informational purposes.

The format of the terminal control database file is identical to other system authentication database files.
For more information on the file format, see authcap(4). The file consists of keyword field identifiers and
values for those fields. The keyword identifiers supported and their use include:

t_devname This field defines the terminal device name for the entry. The terminal device is
expected to be contained in the /dev directory, therefore this prefix should not be
specified. If the terminal entry describes the /dev/tty1 device, the t_devname
field should contain tty1 .

t_uid This field contains the user id of the last user to successfully login using the terminal
device.

t_logtime This time_t field records the last successful login time to the terminal device.

t_unsuctime This time_t field records the last unsuccessful login time to the terminal device.

t_failures This field records the number of consecutive unsuccessful login attempts to the terminal
device.

t_maxtries This field specifies the maximum number of consecutive unsuccessful login attempts per-
mitted using the terminal before the terminal is locked. Once the terminal is locked, it
must be unlocked by an authorized administrator.

t_lock This flag field indicates whether the terminal device has been administratively locked or
not. This field is manipulated by authorized administrators only.

EXAMPLES
The following is an example of a terminal control database entry:

console:t_devname=console:\
:t_uid=reese:t_logtime#675430072:\
:t_unsuctime#673610809:\
:t_maxtries#777:\
:chkent:

This entry is for the system console device, /dev/console . The most recent successful login session was
for the user reese . The entry records the system time for the current successful login and the time of the
most recent unsuccessful login attempt.

AUTHOR
SecureWare Inc.

FILES
/tcb/files/ttys Terminal control database file

SEE ALSO
login(1), getprtcent(3), authcap(4), default(4)

HP-UX Release 11.0: October 1997 − 1 − Section 4−−339

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

ttytype(4) ttytype(4)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
ttytype is a database that identifies the kind of terminal that is attached to each tty port on the system.
The file contains one line per port, and each line contains the terminal type (as a name listed in ter-
minfo(4)), a space, and the name of the tty device file, less the initial /dev/ . For example, for an HP 2622
terminal on tty02:

2622 tty02

This information is read by tset and by login (for remote logins) to initialize the TERMvariable at
login time (see tset(1) and login(1)).

AUTHOR
ttytype was developed by the University of California, Berkeley.

SEE ALSO
login(1), tset(1).

WARNINGS
Some lines are identified simply as dialup or plugboard .

Section 4−−340 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

tun(4) tun(4)

NAME
tun - IP network tunnel driver

SYNOPSIS
#include <net/tun.h>

open("/dev/tun n", mode);

DESCRIPTION
When IP packets are written to /dev/tun n or /dev/tun n+M, they will be received by the kernel’s IP
layer on the network interface dun. When the kernel’s IP layer sends packets to the IP interface dun,
they will be available for reading on /dev/tun n or /dev/tun n+M.

Instead of having hardware and an associated kernel interface that support network functions, the tun
driver allows a network interface to be implemented as a user-space process. While talking to the same set
of tunnel drivers on the same system, different network interface processes can implement different IP
encapsulation methods, such as RFC 877 for use over CCITT X.25-based public data networks, or RFC 1055
SLIP or RFC 1548/1332 PPP for use over dedicated lines and dialup modems.

The tun driver provides support for a pair of devices collectively known as an IP tunnel. The two devices
comprising a tunnel are known as the inbound and outbound sides, similar to the pairing between
/dev/tty n (the inbound terminal) and /dev/cu n (the outbound ‘auto-call unit’ available on many sys-
tems). The outbound side’s minor device number is that of the inbound side plus M, though they together
appear to IP as one interface. If both the inbound and outbound sides of a tunnel device are open, packets
received from IP are delivered to only the inbound side. On HP-UX systems, M is 64.

If a TCP packet received from IP is part of a telnet, rlogin, or FTP command stream, it will be put in a fast
queue. All packets in the fast queue are delivered to the user before any packets in the normal queue.

Config
pseudo-device tun[n]

Ioctls
A few special ioctl s are provided for use on the /dev/tun* devices to supply the functionality needed
by applications programs to emulate real hardware interfaces. The complete list of supported ioctl s is:

TUIOSPTPT Set or clear the IFF_POINTOPOINT in the associated network interface.

TUIOSADRMD Set or clear ‘address mode’, in which packets read are prefaced with four octets contain-
ing the destination IP address in network byte order. The third argument is a pointer
to an integer containing either a zero or a one, indicating whether ‘address mode’ should
be cleared or set, respectively. If both ‘address mode’ and ‘packed buffer mode’ are set,
each packet’s length will come first, followed by the packet’s destination address, fol-
lowed by the packet itself.

TUIOGADRMD Get the current status of ‘address mode’.

TUIOSPKBMD Set or clear ‘packed buffer mode’ where multiple packets are encoded in single
read/write buffers. The third argument is a pointer to an integer containing either a
zero or a one, indicating whether ‘packed buffer mode’ should be cleared or set, respec-
tively. If set (1), each packet is preceded by four octets representing the next packet’s
length in octets. The following packet will then be aligned to the next multiple of four
octets. If cleared (0), packets will be delivered one per read(3) from the tunnel device.
If both ‘address mode’ and ‘packed buffer mode’ are set, each packet’s length will come
first, followed by the packet’s address, followed by the packet itself.

TUIOGPKBMD Get the current status of ‘packed buffer mode’.

TUIOSPKMAX Set the max number of IP frames to send back in a packet buffer read.

TUIOGPKMAX Get the PKMAXvalue.

TUIOSPKPAD Set the number of long word zeroes to put on the front of each packet read in packed
buffer mode.

TUIOGPKPAD Get the number of pad words.

TUIOSNAME Set the interface name (may only be invoked by the superuser).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−341

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

tun(4) tun(4)

TUIOGNAME Get the interface name.

FIONBIO Set or clear non-blocking mode for I/O operations.

EXAMPLES
#include <net/tun.h>
int tun_fd = -1, len;
char *packet;

tun_fd = open("/dev/tun0", O_RDWR);
ioctl(tun_fd, TUIOSNAME, "du");
len = read(tun_fd, packet, size);
write(tun_fd, packet, len);

ERRORS
If a packet is delivered to the interface for an address family other than AF_INET , EAFNOSUPPORTwill
be returned.

FILES
/dev/tun0 through /dev/tun M-1 ‘inbound’ tunnel devices
/dev/tun M through /dev/tun 2*M-1 ‘outbound’ tunnel devices

AUTHOR
tun was developed by the Progressive Systems.

SEE ALSO
ppp.Auth(4), ppp.Devices(4), ppp.Dialers(4), ppp.Filter(4), ppp.Keys(4), ppp.Systems(4), pppd(1), RFC 1548,
RFC 1332, RFC 1144, RFC 1055, RFC 877, and (for philosophical comparison only) RFC 1241.

Section 4−−342 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

tztab(4) tztab(4)

NAME
tztab - time zone adjustment table for date(1) and ctime(3C)

DESCRIPTION
The tztab file describes the differences between Coordinated Universal Time (UTC) and local time.
Several local areas can be represented simultaneously with historical detail.

The file tztab consists of one or more time zone adjustment entries. The first line of the entry contains a
unique string that may match the value of the TZ string in the user’s environment. The format is
tzname diffdstzname where tzname is the time zone name or abbreviation, diff is the difference in
hours from UTC, and dstzname is the name or abbreviation of the "Daylight Savings" time zone. Frac-
tional values of diff are expressed in minutes preceded by a colon. Each such string will start with an
alphabetic character.

The second and subsequent lines of each entry details the time zone adjustments for that time zone. The
lines contain seven fields each. The first six fields specify the first minute in which the time zone adjust-
ment, specified in the seventh field, applies. The fields are separated by spaces or tabs. The first six are
integer patterns that specify the minute (0-59), hour (0-23), day of the month (1-31), month of the year (1-
12), year (1970-2038), and day of the week (0-6, with 0=Sunday). The minute, hour, and month of the year
must contain a number in the (respective) range indicated above. The day of the month, year, and day of
the week can contain a number as above or two numbers separated by a minus (indicating an inclusive
range). Either the day of the month or the day of the week field must be a range, the other must be simple
number.

The seventh field is a string that describes the time zone adjustment in its simplest form: tzname diff
where tzname is an alphabetic string giving the time zone name or abbreviation, and diff is the difference
in hours from UTC. tzname must match either the tzname field or the dstzname field in the first
line of the time zone adjustment entry. Any fractional diff is shown in minutes.

Comments begin with a # in the first column, and include all characters up to a new-line. Comments are
ignored.

If the value of the TZ string does not match any line in the table, it is interpreted according to the current
U.S. pattern.

EXTERNAL INFLUENCES
International Code Set Support

Single-byte character code sets are supported.

EXAMPLES
The time zone adjustment table for the Eastern Time Zone in the United States is:

EST5EDT
0 3 6 1 1974 0-6 EDT4
0 3 22-28 2 1975 0 EDT4
0 3 24-30 4 1976-1986 0 EDT4
0 3 1-7 4 1987-2038 0 EDT4
0 1 24-30 11 1974 0 EST5
0 1 25-31 10 1975-2038 0 EST5

Normally (as indicated in the first line) Eastern Standard Time is five hours earlier than UTC. During Day-
light Savings time, it changes to a 4 hour difference. The first time Daylight Savings Time took effect
(second line) was on January 6, 1974 at 3:00 a.m., EDT. Note that the minute before was 1:59 a.m., EST.
The change back to standard time took effect (sixth line) on the last Sunday in November of the same year.
At that point, the time went from 1:59 a.m. EDT to 1:00 a.m. EST. The transition to Daylight Savings Time
since then has gone from the last Sunday in February (third line) to the last Sunday in April (fourth line) to
the first Sunday in April (fifth line). The return to standard time for the same period has remained at the
last Sunday in October (seventh line).

AUTHOR
tztab was developed by HP.

FILES
/usr/lib/tztab

HP-UX Release 11.0: October 1997 − 1 − Section 4−−343

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

t

tztab(4) tztab(4)

SEE ALSO
date(1), ctime(3C), environ(5).

Section 4−−344 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

u

ups_conf(4) ups_conf(4)
(Series 800 Only)

NAME
ups_conf - HP PowerTrust Uninterruptible Power System (UPS) monitor configuration file

DESCRIPTION
The default configuration file for the HP PowerTrust UPS monitor daemon (ups_mond). Another file can
be used as long as it complies with the specified format, and the monitor daemon is configured to use the
alternate file (see the description of the -f option in ups_mond(1M)).

Lines in the configuration file can contain a maximum of 256 characters, and the full pathname of a UPS-
tty device file can contain a maximum of 100 characters.

Only one entry per line is allowed in the configuration file. Each line begins with a keyword. All fields in
configuration file entries are delimited by colons (:). Entries in the configuration file end with the first space
encountered (as specified by the library function, isspace() ; see isspace(3C)). Characters beyond the
first space on each line are treated as comments.

The shutdown delay and timeout values should be the first lines in the file.

Entries in this file begin with keywords that must appear exactly as shown below. The terminating colon
separates the keyword from the value of its parameter. ups_mond recognizes the following keywords:

shutdown_delay_mins
The number of minutes following notification by the first upstty that its corresponding
UPS is operating on internal (battery) power, before ups_mond initiates shutdown -h .
The default is one minute. This value should be set to account for transient power interrup-
tions, if they are common to the site.

shutdown_timeout_mins
The number of minutes to monitor the shutdown -h operation before initiating reboot
with the halt option (RB_HALT; see reboot(2)). The default is five minutes. This value
should be longer than the longest time the system requires to execute shutdown(1M). Note
that after the value of shutdown_timeout_mins has elapsed, a UPS lacking AC line
voltage will power off. When AC line voltage is restored, the UPS will restore power to its
output. This timeout value should not be so much longer than shutdown that an observer
may become impatient. It is important to note that this value is the period for which the
UPS will delay its power-cycling, even if AC power is restored sooner.

upstty The full pathname of the tty device special file through which the UPS is configured.
Include one entry for each UPS. upstty entries are handled in the order they appear in
/etc/ups_conf . Therefore, it is important to list your uninterruptible power systems
in order of priority (for example, UPS protecting the SPU listed first).

upstty entries can contain following optional parameters, which can appear in any order
following the upstty device special file name:

MSG_ONLY This upstty will not cause shutdown or reboot to be initiated.

SOLA The type of uninterruptible power supply. It defaults to SOLA .

EXAMPLES
The following is a sample /etc/ups_conf file:

shutdown_delay_mins:1
shutdown_timeout_mins:5
upstty:/dev/tty0p1
upstty:/dev/tty0p2:MSG_ONLY
upstty:/dev/tty0p3:SOLA:MSG_ONLY
upstty:/dev/tty0p5:SOLA

FILES
/dev/tty*
/etc/ups_conf

SEE ALSO
ups_mond(1M)

HP-UX Release 11.0: October 1997 − 1 − Section 4−−345

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

u

utmp(4) utmp(4)

NAME
utmp, wtmp, btmp - utmp, wtmp, btmp entry format

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands as last , who, write , and
login (see last(1), who(1), write(1), and login(1)), have the following structure as defined by <utmp.h >:

#define UTMP_FILE "/etc/utmp"
#define WTMP_FILE "/var/adm/wtmp"
#define BTMP_FILE "/var/adm/btmp"
#define ut_name ut_user

struct utmp {
char ut_user[8]; /* User login name */
char ut_id[4]; /* /etc/inittab id(usually line#)*/
char ut_line[12] /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status

short e_termination; /* Process termination status*/
short e_exit; /* Process exit status*/
} ut_exit; /* The exit status of a process*/

/* marked as DEAD_PROCESS.*/
unsigned short ut_reserved1; /* Reserved for future use*/
time_t ut_time; /* time entry was made*/
char ut_host[16]; /* host name,if remote*/
unsigned long ut_addr; /* host Internet addr, if remote*/

};

/* Definitions for ut_type */
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* getty process awaiting login */
#define USER_PROCESS 7 /* A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /* Max. legal value of ut_type */

/* Special strings or formats used in the "ut_line" field */
/* when accounting for something other than a process */
/* No string for the ut_line field can be more than */
/* 11 chars + a NULL in length */
#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"

File utmp contains a record of all users logged onto the system. File btmp contains bad login entries for
each invalid logon attempt. File wtmp contains a record of all logins and logouts.

Note that wtmp and btmp tend to grow without bound, and should be checked regularly. Information
that is no longer useful should be removed periodically to prevent it from becoming too large. Also note
that wtmp and btmp are not created by the programs that maintain them. Thus, if these files are
removed, record-keeping is turned off.

Section 4−−346 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

u

utmp(4) utmp(4)

FILES
/etc/utmp
/var/adm/wtmp
/var/adm/btmp

AUTHOR
utmp , wtmp, and btmp were developed by HP and the University of California, Berkeley.

SEE ALSO
last(1), login(1), who(1), write(1), acctcon(1M), fwtmp(1M), getut(3C).

STANDARDS CONFORMANCE
<utmp.h >: XPG2

HP-UX Release 11.0: October 1997 − 2 − Section 4−−347

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

u

utmpx(4) utmpx(4)

NAME
utmpx - utmpx database storage file

SYNOPSIS
#include <sys/types.h>
#include <utmpx.h>

DESCRIPTION
File utmpx contains user accounting information for all users logged onto the system. This file will be
used instead of the utmp file, which is being depreciated. The following information is stored in the
utmpx file:

- User login name (up to 24 characters)
- /etc/lines id
- device name (console, lnxx)
- process id
- type of entry
- exit status of a process marked as DEAD_PROCESS
- the time the entry was made
- Internet address of host, if remote

The current version of HP-UX updates both utmp and utmpx files and formats. Direct use of utmpx file
is not recommended, because utmp and utmpx files must be updated simultaneously. This functionality
is provided by libc APIs pututline and pututxline

FILES
/etc/utmpx

AUTHOR
utmpx was developed by HP and the University of California, Berkeley.

SEE ALSO
last(1), login(1), who(1), write(1), acctcon(1M), fwtmp(1M), utmp(4), getut(3C).

STANDARDS CONFORMANCE
<utmp.h >: X/OPEN 4.2

Section 4−−348 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

u

uuencode(4) uuencode(4)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode consist of a header line followed by a number of body lines, and a trailer line.
The uudecode command ignores any lines preceding the header or following the trailer (see uuen-
code(1)). Lines preceding a header must not look like a header.

The header line consists of the word begin followed by a space, a mode (in octal), another space, and a
string which specifies the name of the remote file.

The body consists of a number of lines, each containing 62 or fewer characters (including trailing new-line).
These lines consist of a character count, followed by encoded characters, followed by a newline.

The character count is a single printing character, which represents an integer. This integer is the number
of bytes in the rest of the line, and always ranges from 0 to 63. The byte count can be determined by sub-
tracting the equivalent octal value of an ASCII space character (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to make the
characters printable. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of
3, this fact can be determined by the value of the count on the last line. Extra meaningless data will be
included, if necessary, to make the character count a multiple of 4. The body is terminated by a line with a
count of zero. This line consists of one ASCII space.

The trailer line consists of the word end on a line by itself.

SEE ALSO
mail(1), uuencode(1), uucp(1).

HP-UX Release 11.0: October 1997 − 1 − Section 4−−349

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

v

vhe_list(4) vhe_list(4)

NAME
vhe_list - information file for the Virtual Home Environment

DESCRIPTION
/etc/vhe_list is an ASCII file that contains the information needed to configure a group of machines
together with the Virtual Home Environment (VHE). These machines are connected using the Network
File System (NFS). The information from vhe_list is used by the script vhe_mounter .

An entry in vhe_list contains the following information:

• Host name of a machine exporting a file system.
• Name of the file system to be mounted by NFS.
• Name of the directory that acts as the mount point.
• Mount options for the NFS mount (this is optional).

For every file system that is to be available (exported) for NFS mounting for VHE, there is an entry in the
vhe_list file. Blank lines, lines of white spaces, or lines beginning with the # character are ignored.

EXAMPLES
Consider two machines named high and low , each to be connected with VHE. Machine high is export-
ing the file system / to be mounted on directory /vhe/high . Machine low is exporting the file system /
to be mounted on directory /vhe/low and the file system /home to be mounted on directory
/vhe/low/home using the NFS mount options of timeo=10,wsize=4096 . For this situation, the
contents of the vhe_list file would resemble the following:

high / /vhe/high
low / /vhe/low timeo=10,wsize=4096
low /home /vhe/low/home timeo=10,wsize=4096
A comment line

Mount options must be separated by commas, and must contain no spaces. Mount options are the same as
those used in the mount command (see mount(1M)).

AUTHOR
vhe_list was developed by HP.

FILES
/etc/vhe_list

SEE ALSO
vhe_altlog(1M), vhe_mounter(1M), vhe_u_mnt(1M).

Section 4−−350 − 1 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

y

ypfiles(4) ypfiles(4)

NAME
ypfiles - Network Information Service database and directory structure

DESCRIPTION
Remarks

The Network Information Service (NIS) was formerly known as Yellow Pages (yp). Although the
name has changed, the functionality of the service remains the same.

The Network Information Service (NIS) network lookup service uses databases in the directory hierarchy
under /var/yp . These databases exist only on machines that act as NIS servers. A database consists of
two files created by makedbm (see makedbm(1M)). One has the filename extension .pag and the other
has the filename extension .dir . For example, the database named netgroup is implemented by the
pair of files netgroup.pag and netgroup.dir . A database served by the NIS is called an NIS map.

An NIS domain is a named set of Network Information Service maps. Each NIS domain is implemented as
a subdirectory of /var/yp (whose name is the domain name) and contains the maps for that domain.
Any number of NIS domains can exist, and each can contain any number of maps.

Besides the databases contained in /var/yp/ domain, master NIS servers have files named
general_NIS_mapname.time that reside there, too. These files are merely empty files whose times of last
modification are compared with those of the ASCII files from which the maps are built. The ypmake script
performs these comparisons to determine whether the maps are current (see ypmake(1M)). The
general_NIS_mapname designation is described further in the FILES section below.

The NIS lookup service does not require maps, although maps may be required for the normal operation of
other parts of the system. The list of maps an NIS server provides access to is neither restricted nor must it
be all-inclusive. If a map exists in a given domain and a client asks about it, the NIS serves it. For a map
to be consistently accessible, it must exist on all NIS servers that serve the domain. To provide data unifor-
mity between the replicated maps, make an entry to run ypxfr periodically in root’s crontab file on
each server (see ypxfr(1M) and crontab(1M)). More information on this topic is in yppush(1M) and
ypxfr(1M).

NIS maps contain two special key-value pairs. The first key, NIS_LAST_MODIFIED, has a 10-character
(ASCII) order number as a value. The order number is the time() in seconds when the map was built
(see time(2)). The second key is NIS_MASTER_NAME, whose value is the host name of the map’s master NIS
server. The makedbm command generates both key-value pairs automatically. The ypxfr command
uses these values when it transfers a map from one NIS server to another.

Generate and modify NIS maps only on the master server. They are copied to the slaves using ypxfr to
avoid potential byte-ordering problems among NIS servers running on machines with different architec-
tures, and to minimize the disk space required for the databases (see ypxfr(1M)). NIS databases can be
created initially for both masters and slaves by using ypinit (see ypinit(1M)).

After servers’ databases are created, the contents of some maps will change. Generally, an ASCII source
version of each database exists on the master, and is changed with a text editor. The NIS map is rebuilt to
include the changes, and propagated from the master to the slaves by running the ypmake shell script
(see ypmake(1M)).

All standard NIS maps are built by commands contained in the ypmake script or the NIS Makefile. If
you add a non-standard NIS map, edit the ypmake script or Makefile to support the new map (stan-
dard NIS maps are discussed under FILES below). ypmake and Makefile use makedbm to generate
the NIS maps on the master and may run yppush to copy the rebuilt maps to the slaves (see yppush(1M)).
The yppush command reads the map named ypservers that contains the host names of all NIS
servers for the specific domain. For more information, see ypmake(1M), yppush(1M), and ypxfr(1M).

DEPENDENCIES
If /var/yp is in a file system that does not allow file names longer than 14 characters and you want to
create a new non-standard map for the Network Information Service, its name must not exceed 10 charac-
ters in length. This rule exists because makedbm adds the 4-character suffixes .dir and .pag to any
mapname.

The following table describes the translation of standard NIS mapnames to shorter names for storage on a
14-character filename file system. The standard mapnames should be used by NIS clients on HP machines
when making requests, regardless of which machine is the NIS server.

HP-UX Release 11.0: October 1997 − 1 − Section 4−−351

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

y

ypfiles(4) ypfiles(4)

Standard NIS Mapname Abbreviated Mapname___
mail.aliases mail.alias
mail.byaddr mail.byad
ethers.byaddr ether.byad
ethers.byname ether.byna
group.bygid group.bygi
group.byname group.byna

hosts.byaddr hosts.byad
hosts.byname hosts.byna
netgroup netgroup
netgroup.byhost netgr.byho
netgroup.byuser netgr.byus
netid.byname netid.byn
networks.byaddr netwk.byad
networks.byname netwk.byna
passwd.byname passw.byna
passwd.byuid passw.byui
protocols.byname proto.byna
protocols.bynumber proto.bynu
publickey.byname pbkey.byna
rpc.byname rpc.byna
rpc.bynumber rpc.bynu
services.byname servi.byna
vhe_list vhe_list
auto.master auto.mast
ypservers ypservers___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

AUTHOR
ypfiles was developed by Sun Microsystems, Inc.

FILES
The following table presents information about the standard Network Information Service maps.

The General NIS Mapname column lists names for sets of NIS maps; the sets include adjacent entries from
the Standard NIS Mapname column.

The ASCII Source column lists the ASCII files from which the maps are usually built on HP master NIS
servers. The ypmake script permits the source directory, or file in the case of the passwd maps, to vary.

The Standard NIS Mapname column lists names by which maps are stored on NIS servers and referred to
by NIS clients.

Section 4−−352 − 2 − HP-UX Release 11.0: October 1997

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

y

ypfiles(4) ypfiles(4)

General NIS Standard NIS
Mapname ASCII Source Mapname___
aliases /etc/mail/aliase mail.aliases

mail.byaddr
ethers ∗ ethers.byaddr

ethers.byname
group /etc/group group.byname

group.bygid
hosts /etc/hosts hosts.byname

hosts.byaddr
netgroup /etc/netgroup netgroup

netgroup.byhost
netgroup.byuser

netid /etc/netid netid.byname
networks /etc/networks network.byaddr

network.byname
passwd /etc/passwd passwd.byname

passwd.byuid
protocols /etc/protocols protocols.byname

protocols.bynumber
publickey /etc/publickey publickey.byname
rpc /etc/rpc rpc.byname

rcp.bynumber
services /etc/services servi.bynp

services.byname
automounter /etc/auto_master auto.master
vhe_list /etc/vhe_list vhe_list ∗∗
ypservers ∗∗∗ ypservers___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

∗ These databases are not built on HP master Network Information Service servers. However, if
an HP machine is a slave to a master NIS server that creates and distributes these databases, the
HP slave NIS server will store these databases. It is suggested that if you have a non-HP
machine that requires these maps, make that machine the master NIS server. By doing this, the
maps should be built as needed.

∗∗ The vhe_list map is a map generated only by HP master NIS servers.

∗∗∗ No ASCII source exists for the ypservers database. It is created from responses provided by
the user of ypinit on the master NIS server, and it has no matching ypservers.time file.

SEE ALSO
domainname(1M), makedbm(1M), rpcinfo(1M), vhe_altlog(1M), vhe_mounter(1M), vhe_u_mnt(1M),
ypinit(1M), ypmake(1M), yppoll(1M), yppush(1M), ypserv(1M), ypxfr(1M), vhe_list(4).

HP-UX Release 11.0: October 1997 − 3 − Section 4−−353

LL L

L

__
__STANDARD Printed by: Nora Chuang [nchuang] STANDARD

/disk2/ROSE/BRICK/Checkout/man4/!!!intro.4L__L

___ L L ___

y

(Notes) (Notes)

Section 4−−354 − 1 − HP-UX Release 11.0: October 1997

LL L

L
