
HP Xlib Extensions

ABCDE

HP Part No. B1171-90078

Printed in U.S.A. January 1995

Edition 2

DRAFT 4/7/98 12:51

Notice The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MANUAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this
material.

Warranty

A copy of the speci�c warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained
from your local Sales and Service O�ce.

UNIX is a registered trademark of UNIX Software Laboratories, Inc.
in the USA and other countries.

Intellifont is a registered trademark of Agfa Corporation. CG
Century Schoolbook and CG Times, based on Times New Roman
under license from The Monotype Corporation plc, are products of
the Agfa Corporation.

c 1995 Hewlett-Packard

Warranty

Printing History The manual printing date and part number indicate its current
edition. The printing date will change when a new edition is printed.
Minor changes may be made at reprint without changing the printing
date. The manual part number will change when extensive changes
are made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive these updates
or new editions, you should subscribe to the appropriate product
support service. See your HP sales representative for details.

July 1992 Edition 1

January 1995 Edition 2

Hewlett-Packard Company
Workstation Systems Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330

iv DRAFT

4/7/98 12:51

Contents

1. Introduction to Xlib HP Extensions

What This Manual Covers 1-2
Conventions Used in This Manual 1-3

2. Font Extensions

Changing Font Boldness 2-1
Changing Font Slant 2-2
Mirroring or Rotating 2-2
Changing Horizontal Size 2-2
Specifying a Character Subset 2-3

3. Support for Multiple Error Handlers

4. Locking an X Display

Disabling the Reset Key Sequence 4-1
Enabling the Reset Key Sequence 4-1

5. X Input Device Extension Functions

Listing Available Input Devices 5-1
Listing Input Devices 5-2
Freeing the List of Input Devices 5-5

Enabling and Disabling Input Devices 5-5
Opening Extended Input Devices 5-5
Closing Input Devices 5-6

Selecting Input from Extension Input Devices . . . 5-7
Selecting Extension Events 5-7
Getting the List of Currently Selected Extension

Events 5-8
Sending Extension Events 5-9
Getting the dont-propagate-list 5-10
Changing the dont-propagate-list 5-11
Getting Extended Device Motion History 5-12
Freeing the Device Motion Array 5-13

Grabbing and Ungrabbing Extension Input Devices . 5-13
Grabbing Extended Input Devices 5-13
Ungrabbing Extended Input Devices 5-15
Grabbing Extended Input Device Buttons 5-16
Ungrabbing Extended Input Device Buttons . . . 5-18
Grabbing Extended Input Device Keys 5-18
Ungrabbing Extended Input Device Keys 5-20
Releasing Queued Events 5-21

Focusing Extension Input Devices 5-23

DRAFT

4/7/98 12:51

Contents-1

Getting Extended Input Device Focus 5-23
Setting Extended Input Device Focus 5-24

Controlling Device Encodings 5-25
Getting the Key Mapping of Extended Input Devices 5-25
Changing the Key Mapping of Extended Input

Devices 5-26
Getting the Modi�er Mapping of Extended Input

Devices 5-28
Setting the Modi�er Mapping of Extended Input

Devices 5-28
Querying the Device Button Mapping 5-29
Changing the Device Button Mapping 5-30

Changing the Core X Devices 5-30
Changing the X Keyboard Device 5-30
Changing the X Pointer Device 5-31

Feedback Control 5-32
Querying Input Device Feedbacks 5-36
Changing Input Device Feedbacks 5-37

Miscellaneous Functions 5-38
Changing the Mode of an Input Device 5-38
Checking the State of an Extension Input Device . 5-38
Finding the Extension Version 5-39
Ringing a Bell on an Extension Input Device . . . 5-40
Initializing Valuators on an Input Device 5-40
Getting Input Device Controls 5-41
Changing Input Device Controls 5-42

Sample X Input Device Extension Program 5-44

6. HP Input Device Extension Functions

Listing Available Input Devices 6-2
Freeing the DeviceList 6-3
Enabling Extended Input Devices 6-4
Getting the Event Select Mask and Event Type . . 6-4
Selecting Input From Extended Input Devices . . . 6-6
Grabbing Extended Input Devices 6-7
Ungrabbing Extended Input Devices 6-8
Grabbing Extended Input Device Buttons 6-8
Ungrabbing Extended Input Device Buttons 6-10
Grabbing Extended Input Device Keys 6-11
Ungrabbing Extended Input Device Keys 6-12
Getting Extended Input Device Focus 6-13
Setting Extended Input Device Focus 6-13
Getting Current Extended Input Event Selection Masks 6-15
Getting Extended Device Motion History 6-15
Enabling Auto-Repeat for Extended Input Devices . 6-16
Disabling Auto-Repeat for Extended Input Devices . 6-17
Sending a Prompt to Extended Input Devices . . . 6-17
Sending an Acknowledge to Extended Input Devices 6-18
Getting Control Attributes of Extended Input Devices 6-18
Setting Control Attributes of Extended Input Devices 6-19
Getting the Key Mapping of Extended Input Devices 6-21

Contents-2 DRAFT

4/7/98 12:51

Changing the Key Mapping of Extended Input Devices 6-22
Setting the Modi�er Mapping of Extended Input

Devices 6-23
Getting the Modi�er Mapping of Extended Input

Devices 6-24
Getting the Server Mode 6-25
Sample Use of HP Input Extensions 6-26

7. Internationalization Support

Controlling Keyboard Input Using HP's X Window
System 7-2
Mapping keyboard for both Extend-char and Meta 7-2
Dead Key Compose processing 7-3
Multi-key Compose processing 7-4

Input Method Support 7-5
Use of Asian Input Method Servers 7-6
Internationalized Output 7-7
Associate Font Support 7-7
Getting the Associate Font 7-8
Checking for 16-bit Characters 7-9
Conversions Between X11 Keysyms and HP Roman 8

Codes 7-9

Index

DRAFT

4/7/98 12:51

Contents-3

1

Introduction to Xlib HP Extensions

To provide better integration with existing products and peripherals
available with HP 9000 computers, a number of extensions have been
added to Hewlett-Packard's Xlib software. These extensions add to
the existing X standard, creating a superset of functionality:

The XLFD syntax has been extended to allow speci�cations for
increasing or decreasing boldness, changing the slant, mirroring,
rotating, and increasing the horizontal size. These extensions apply
to scalable typefaces as well as to bitmap fonts. Refer to chapter 2.

Multiple error-handling routines for a single process are allowed.
Refer to chapter 3.

Client programs can disable or enable the key sequence used to
reset the X server. Refer to chapter 4.

Two sets of input extensions are included: the \standard"
input extensions and HP input extensions. The standard input
extensions should be used if possible. Refer to chapter 5 for the
standard input device extensions and chapter 6 for the HP input
device extensions.

HP support of internationalized text is described in chapter 7.

Man pages for the standard extensions and the HP proprietary
extensions provide more information about these extensions.

Note There is some overlap in functionality between the HP proprietory
extension protocol requests and the X standard (X11 R5) input
extension protocol requests. This is because Hewlett-Packard
introduced some capabilities before a standard existed.
Hewlett-Packard continues to provide the proprietary extensions
for backward compatibility. If either meets your needs, use the X
standard capabilities, not the HP extensions. Hewlett-Packard
may at some time in future releases discontinue the proprietary
extensions.

The HP extensions will work among all networked HP 9000
computers, but may not work with other systems on the same
network that are from other vendors or are running earlier versions of
X11.

DRAFT

4/7/98 12:51

Introduction to Xlib HP Extensions 1-1

Warranty

What This Manual
Covers

This manual covers the extensions to Xlib (Release 5, Version 11)
that were created by Hewlett-Packard. Also covered are the X
standard extended input functions that supersede the HP extended
input functions.

Note This manual does not document X standard Xlib, which is covered
by the Xlib Reference Manual .

The Multi-Bu�ered Extension (MBX) is covered in PEXLIB
Programming Guide by O'Reilly & Associates, Inc (HP Part Number
B3176-90003).

1-2 Introduction to Xlib HP Extensions DRAFT

4/7/98 12:51

Warranty

Conventions Used in
This Manual

This document uses the following conventions:

Global symbols in this manual are printed in this special font.
These can be either function names, symbols de�ned in include
�les, or structure names. Arguments are printed in italics .

Each function is introduced by a general discussion that
distinguishes it from other functions. The function declaration
itself follows, and each argument is speci�cally explained. General
discussion of the function, if any is required, follows the arguments.
Where applicable, the last paragraph of the explanation lists the
possible Xlib error codes that the function can generate.

To eliminate any ambiguity between those arguments that you pass
and those that a function returns to you, the explanations for all
arguments that you pass start with the word speci�es or, in the
case of multiple arguments, the word specify . The explanations
for all arguments that are returned to you start with the word
returns or, in the case of multiple arguments, the word return. The
explanations for all arguments that you can pass and are returned
start with the words speci�es and returns .

Any pointer to a structure that is used to return a value is
designated as such by the return su�x as part of its name. All
other pointers passed to these functions are used for reading only.

Xlib de�nes the Boolean values of True and False.

DRAFT

4/7/98 12:51

Introduction to Xlib HP Extensions 1-3

2

Font Extensions

X11 supports scalable typefaces in addition to bitmapped fonts. The
use of the XLFD (X Logical Font Description) for specifying either
kind is covered in \Using Fonts" in the Using the X Window System
manual.

Hewlett-Packard has extended the XLFD conventions to provide for
additional font capabilities. This chapter discusses how the XLFD
name can be used to modify boldness, slant, and width, for either
bitmapped fonts or scalable typefaces using the HP extensions.

Changing Font
Boldness

The user can specify that the font be bolder (darker) or less bold
(lighter) than the normal for that typeface. The syntax for this
extension is:

Weight_Name�horiz value�vert value

where:

horiz value The increase(+) or decrease() in boldness in the
horizontal direction, speci�ed in 1

100
of a percent.

vert value The increase(+) or decrease() in boldness in the
vertical direction, speci�ed in 1

100
of a percent.

If only one delta and value are supplied, they apply to both
directions.

The ability to change font boldness is currently supported only for
Agfa Intellifont scalable fonts. This enhancement is ignored for Type
1 fonts and scaled bitmaps.

DRAFT

4/7/98 12:51

Font Extensions 2-1

Warranty

Changing Font Slant The user can increase or decrease the slant of the font. The syntax
for this extension is:

Slant�value

where:

value The angle in 1

64
degree. Counterclockwise angles

are indicated by +, clockwise angles by . The
maximum slant is �75�.

Mirroring or Rotating The user can specify that the font be rotated or mirrored. The
syntax for this extension is:

AddStyleName+Mx+My�angle

where:

+Mx Mirrors the font horizontally.

+My Mirrors the font vertically.

angle Rotates the font from normal. The angle is measured
in 1

64
degree. Counterclockwise angles are indicated

by +, clockwise angles by .

Changing Horizontal
Size

The horizontal size of a font can be changed to make it wider or
narrower than normal for that font. Either PixelSize or PointSize can
be used for this purpose. But using both PixelSize and PointSize
is likely to result in an error because of a conict between the two
speci�cations.

The user can expand the horizontal size (pixel width) to make a font
wider or narrower than normal for that font. The syntax for this
extension is:

PixelSize+pixelwidth

where

pixelwidth The design width of the font, in pixels. If pixelwidth
is not speci�ed, the design width is assumed to be
the same as PixelSize.

The user can expand the horizontal size (set size) to make a font
wider or narrower than normal for that font. The syntax for this
extension is:

PointSize+setsize

where:

2-2 Font Extensions DRAFT

4/7/98 12:51

Warranty

setsize The set size in decipoints. If setsize is not speci�ed,
the set size is assumed to be the same as PointSize.

If neither PixelSize nor PointSize is speci�ed, 12-point is used. If
both are speci�ed and they conict, an error is returned. Use either
PixelSize or PointSize, but not both.

Specifying a
Character Subset

The user can specify that only certain characters from the character
set be used in creating a font from the scalable typeface. The syntax
for this extension is:

CharSetEncoding=value,value...

where:

value The character number, or range of character
numbers, to be included in the font. A range of
numbers is indicated by two numbers separated by a
colon(:).

If an application requests a character not in the subset, then:

A space will be substituted for that character if space is in the
subset.

The �rst character of the subset will be substituted if space is not
in the subset.

Note Subsetting will not work when specifying a Motif fontlist via
resources.

DRAFT

4/7/98 12:51

Font Extensions 2-3

3

Support for Multiple Error Handlers

To establish multiple error handling routines for a single
process (up to one routine per connection to the server), use
XHPSetErrorHandler as follows:

#include <X11/XHPlib.h>

typedef int (*PFI) ();

PFI XHPSetErrorHandler(display, routine)

Display *display;

int (*routine) ();

int routine(display, error)

Display *display;

XErrorEvent *error;

This function registers with Xlib the address of a routine to handle
X errors. It is intended to be used by libraries and drivers that wish
to establish an error handing routine without interfering with any
error handling routine that may have been established by the client
program.

XHPSetErrorHandler records one error handling routine per
connection to the server. Therefore, for a library or driver to set up
its own error handling routine without a�ecting that of the client, the
library or driver must �rst have established its own connection to the
server via XOpenDisplay.

When an XErrorEvent is received by the client, which error handling
routine is invoked is determined by the display associated with the
error. If the display matches that associated with a driver error
handling routine, that error handling routine is invoked. If it does
not match any driver routine, the error handling routine established
by the client, if any exists, is invoked. Otherwise, the default Xlib
error handler is invoked.

XHPSetErrorHandler returns the address of the previously
established error handler. If that error handler was the default error
handler, NULL is returned.

A driver or library may remove its error handler by invoking
XHPSetErrorHandler with a NULL error handling routine.

DRAFT

4/7/98 12:51

Support for Multiple Error Handlers 3-1

4

Locking an X Display

To provide better security for workstations and allow client programs
to disable the key sequence used to reset the X server, the following
functions may be used.

Disabling the Reset
Key Sequence

The X server may be terminated by pressing a particular set of keys.
By default, that set is �left Shift�, �CTRL�, and �Reset�.

To disable the reset key sequence, use XHPDisableReset.

XHPDisableReset(display)

Display display;

display speci�es the display.

This function is intended for use by client programs such as xsecure
that provide security to systems running the X Window System.
If a client program disables the reset sequence and exits without
reenabling it, the reset sequence is automatically enabled by the
server.

XHPDisableReset will fail with a BadAccess error if another client
has already disabled the reset key sequence.

Enabling the Reset
Key Sequence

To enable the reset key sequence, use XHPEnableReset.

XHPEnableReset(display)

Display display;

display speci�es the display.

XHPEnableReset enables the key sequence that is pressed to reset the
X server. This function will fail with a BadAccess error if this client
did not previously disable the key sequence with XHPDisableReset.

DRAFT

4/7/98 12:51

Locking an X Display 4-1

5

X Input Device Extension Functions

The functions described in this chapter allow client programs to
access input devices other than the X keyboard and the X pointer.

Note The functions described in this chapter supersede many of the HP
extension functions described in Chapter 6. You should use the
functions described in this chapter unless you require functionality
that is only supported through the HP extension functions.

Do not mix functions of the two types. If you need to use input
device extension functions, select either the X standard functions or
the HP functions.

None of these features are required in order for the X server or X
clients to operate correctly if the X keyboard and X pointer are the
only input devices.

These input device extension functions are accessible through the
library libXi.a. De�ned constants and structures needed by clients
that use these functions are found in the �les XI.h and XInput.h.

X include �les are installed in a subdirectory of /usr/include. For
example, if the HP-UX Developer's Toolkit 1.0 product is installed,
the X include �les are installed in /usr/include/X11R5/X11.

Refer to the sample program at the end of this chapter for more
information about using the functions described below.

Listing Available
Input Devices

Clients that wish to access input devices through the input extension
typically perform the following steps:

Determine which input devices are available via
XListInputDevices.

Open the desired devices via XOpenDevice, specifying device ids
obtained via XListInputDevices.

Determine the eventclass to be used in selecting each desired input
extension event, and the event type that the event will have. This
is done using macros provided by the input extension and the
XDevice structure returned by XOpenDevice.

Select the desired events via the XSelectExtension request,
passing the eventclasses obtained above.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-1

Warranty

Receive the desired events via XNextEvent.

Listing Input Devices To obtain a list of available input devices, use XListInputDevices.

XDeviceInfo *XListInputDevices(display, ndevices return)

Display *display;

int *ndevices return;

display Speci�es the connection to the X server.

ndevices return Speci�es a pointer to a variable where the
number of available devices can be returned.

The XListInputDevices function lists the available input devices.
This list includes the X pointer, the X keyboard, and any other input
devices that are currently accessible through the X server.

Input devices are not opened until requested by some client. After an
input device has been listed, it is possible for some non-X process to
open that device. In this case, an X request to open a device can fail
because the device is no longer available, even though it was available
when listed.

For each input device available to the server, the XListInputDevices
request returns an XDeviceInfo structure. The inputclassinfo �eld
of that structure contains a pointer to a list of variable-length
structures, each of which contains information about one class of
input supported by the device.

The XDeviceInfo structure is de�ned as follows:

typedef struct _XDeviceInfo {

XID id;

Atom type;

char *name;

int num classes;

int use;

XAnyClassPtr inputclassinfo;

} XDeviceInfo;

The id is a number in the range 0-128 that uniquely identi�es the
device. It is assigned to the device when it is initialized by the server.

The type �eld is of type Atom and indicates the nature of the device.

The name �eld contains a pointer to a null-terminated string that
corresponds to one of the de�ned device types. The following
constants identify standard device names: XI_MOUSE, XI_TABLET,
XI_KEYBOARD, XI_TOUCHSCREEN, XI_TOUCHPAD, XI_BUTTONBOX,
XI_BARCODE, XI_TRACKBALL, XI_QUADRATURE, XI_ID_MODULE,
XI_ONE_KNOB, and XI_NINE_KNOB.

Additional input devices may be supported in future releases.

These names may be directly compared with the name �eld of the
XDeviceInfo structure, or used in an XInternAtom request to

5-2 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

return an atom that can be compared with the type �eld of the
XDeviceInfo structure.

The num classes �eld is a number in the range 0-255 that speci�es
the number of input classes supported by the device for which
information is returned by ListInputDevices. Some input classes,
such as class Focus and class Proximity, do not have any information
to be returned by ListInputDevices.

The use �eld speci�es how the device is currently being used. If the
value is IsXKeyboard, the device is currently being used as the X
keyboard. If the value is IsXPointer, the device is currently being
used as the X pointer. If the value is IsXExtensionDevice, the
device is available for use as an extension device.

Any client may change the use of an input device via the
XChangeKeyboardDevice or XChangePointerDevice requests.

The inputclassinfo �eld contains a pointer to the �rst input-class
speci�c data. The �rst two �elds are common to all classes. The
list of classes supported by each device is a linked list. Refer to the
sample program at the end of this chapter for information about
traversing that list.

The class �eld is a number in the range 0-255. It uniquely identi�es
the class of input for which information is returned. Currently
de�ned classes are KeyClass, ButtonClass, and ValuatorClass.

The length �eld is a number in the range 0-255. It speci�es the
number of bytes of data that are contained in this input class. The
length includes the class and length �elds.

The XKeyInfo structure describes the characteristics of the keys on
the device. It is de�ned as follows:

typedef struct _XKeyInfo {

XID class;

int length;

unsigned short min keycode;

unsigned short max keycode;

unsigned short num keys;

} XKeyInfo;

The min keycode �eld speci�es the minimum keycode that the device
will report. The minimum keycode will not be smaller than 8.

The max keycode �eld speci�es the maximum keycode that the
device will report. The maximum keycode will not be larger than
255.

The num keys �eld speci�es the number of keys that the device has.

The XButtonInfo structure describes the characteristics of the
buttons on the device. It is de�ned as follows:

typedef struct _XButtonInfo {

XID class;

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-3

Warranty

int length;

short num buttons;

} XButtonInfo

The num buttons �eld speci�es the number of buttons that the
device has.

The XValuatorInfo structure describes the characteristics of the
valuators on the device. It is de�ned as follows:

typedef struct _XValuatorInfo {

XID class;

int length;

unsigned char num axes;

unsigned char mode;

unsigned long motion bu�er;

XAxisInfoPtr axes;

} XValuatorInfo;

The num axes �eld contains the number of axes the device supports.

The mode �eld is a constant that has one of the following values:
Absolute or Relative. Some devices allow the mode to be changed
dynamically via the SetDeviceMode request.

The motion bu�er size �eld speci�es the number of elements that
can be contained in the motion history bu�er for the device.

The axes �eld contains a pointer to an XAxisInfo structure.

The XAxisInfo structure describes the characteristics of a single
valuator on the device. It is de�ned as follows:

typedef struct _XAxisInfo {

int resolution;

int min value;

int max value;

} XAxisInfo;

The resolution �eld contains a number in counts/meter.

The min value �eld contains a number that speci�es the minimum
value the device reports for this axis. For devices whose mode is
Relative, the min val �eld will contain 0.

The max value �eld contains a number that speci�es the maximum
value the device reports for this axis. For devices whose mode is
Relative, the max val �eld will contain 0.

5-4 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Freeing the List of Input
Devices

To free the XDeviceInfo array created by XListInputDevices, use
XFreeDeviceList.

XFreeDeviceList(list)

XDeviceInfo *list;

list Speci�es a pointer to the list of XDeviceInfo
structures to be freed.

The XFreeDeviceList function frees the list of available extension
input devices.

Enabling and
Disabling Input
Devices

Opening Extended
Input Devices

In order to access input devices through the input extension,
clients must request that the server open those devices. To open an
extended input device, use XOpenDevice.

XDevice *XOpenDevice(display, device id)

Display *display;

XID device id;

display Speci�es the connection to the X server.

device id Speci�es the id of the device to be opened. This id is
obtained via the XListInputDevices request.

The XOpenDevice function makes an input device accessible to a
client through input extension protocol requests. If successful, it
returns a pointer to an XDevice structure.

XOpenDevice can generate a BadDevice error.

The XDevice structure contains:

typedef struct {

XID device id;

int num classes;

XInputClassInfo *classes;

} XDevice;

The classes �eld is a pointer to an array of XInputClassInfo
structures. Each element of this array contains an event type base for
a class of input supported by this device.

The num classes �eld indicates the number of elements in the classes
array.

The XInputClassInfo structure contains:

typedef struct {

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-5

Warranty

unsigned char input class;

unsigned char event type base;

} XInputClassInfo;

The input class �eld identi�es one class of input supported
by the device. De�ned types include KeyClass, ButtonClass,
ValuatorClass, ProximityClass, FeedbackClass, FocusClass, and
OtherClass. The event type base identi�es the event type of the
�rst event in that class.

The information contained in the XInputClassInfo structure
is used by macros to obtain the event classes that clients
use in making XSelectExtensionEvent requests. Currently
de�ned macros include DeviceKeyPress, DeviceKeyRelease,
DeviceButtonPress, DeviceButtonRelese, DeviceMotionNotify,
DeviceFocusIn, DeviceFocusOut, ProximityIn, ProximityOut,
DeviceStateNotify, DeviceMappingNotify, ChangeDeviceNotify,
DevicePointerMotionHint, DeviceButton1Motion,
DeviceButton2Motion, DeviceButton3Motion,
DeviceButton4Motion, DeviceButton5Motion,
DeviceButtonMotion, DeviceOwnerGrabButton,
DeviceButtonPressGrab, and NoExtensionEvent.

To obtain the proper event class for a particular device, one of the
above macros is invoked using the XDevice structure for that device.
For example,

DeviceKeyPress (*device, type, eventclass);

returns the DeviceKeyPress event type and the eventclass for
DeviceKeyPress events from the speci�ed device. This eventclass
can then be used in an XSelectExtensionEvent request to ask the
server to send DeviceKeyPress events from this device. When one
of these events is received via XNextEvent, the type can be used for
comparison with the type of the event.

Closing Input Devices Before terminating, clients that have opened input devices through
the input extension should close them. To close an extension input
device, use XCloseDevice.

XCloseDevice(display, device)

Display *display;

XDevice *device;

display Speci�es the connection to the X server.

device Speci�es the device to be closed.

The XCloseDevice function makes an input device inaccessible to a
client through input extension protocol requests. Any active grabs
that the client has on the device are released. Any event selections
that the client has are deleted, as well as any passive grabs. If the
requesting client is the last client accessing the device, the server will
disable all access by X to the device.

5-6 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

XCloseDevice can generate a BadDevice error.

Selecting Input from
Extension Input
Devices

Selecting Extension
Events

To select input from an extended input device, use
XSelectExtensionEvent

int XSelectExtensionEvent(display, w, event list, event count)

Display *display;

Window w;

XEventClass *event list;

int event count;

display Speci�es the connection to the X server.

w Speci�es the window whose events you are interested
in.

event list Speci�es the list of event classes that describe the
events you are interested in.

event count Speci�es the count of event classes in the event list.

The XSelectExtensionEvent function requests that the X server
report the events associated with the speci�ed list of event classes.
Initially, X will not report any of these events. Events are reported
relative to a window. If a window is not interested in a device event,
it usually propagates to the closest ancestor that is interested, unless
the do not propagate mask prohibits it.

Multiple clients can select for the same events on the same window
with the following restrictions:

Multiple clients can select events on the same window because their
event masks are disjoint. When the X server generates an event, it
reports it to all interested clients.

Only one client at a time can select a DeviceButtonPress event
with automatic passive grabbing enabled, which is associated
with the event class DeviceButtonPressGrab. To receive
DeviceButtonPress events without automatic passive grabbing,
use event class DeviceButtonPress, but do not specify event
class DeviceButtonPressGrab. To receive these events with
automatic passive grabbing, specify both DeviceButtonPress and
DeviceButtonPressGrab.

The server reports the event to all interested clients.

Information contained in the XDevice structure returned by
XOpenDevice is used by macros to obtain the event classes that

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-7

Warranty

clients use in making XSelectExtensionEvent requests. Currently
de�ned macros include DeviceKeyPress, DeviceKeyRelease,
DeviceButtonPress, DeviceButtonRelese, DeviceMotionNotify,
DeviceFocusIn, DeviceFocusOut, ProximityIn, ProximityOut,
DeviceStateNotify, DeviceMappingNotify, ChangeDeviceNotify,
DevicePointerMotionHint, DeviceButton1Motion,
DeviceButton2Motion, DeviceButton3Motion,
DeviceButton4Motion, DeviceButton5Motion,
DeviceButtonMotion, DeviceOwnerGrabButton,
DeviceButtonPressGrab, and NoExtensionEvent.

To obtain the proper event class for a particular device, one of the
above macros is invoked using the XDevice structure for that device.
For example,

DeviceKeyPress (*device, type, eventclass);

returns the DeviceKeyPress event type and the eventclass for
DeviceKeyPress events from the speci�ed device. DeviceKeyPress
from other devices will have a di�erent event class since the event
class identi�es both the event and the device.

XSelectExtensionEvent can generate a BadWindow or BadClass
error.

Getting the List of
Currently Selected
Extension Events

To get the list of currently selected extension events, use
XGetSelectedExtensionEvents.

int XGetSelectedExtensionEvents(display, w,

this client event count return, this client event list return,

all clients event count return, all clients event list return)

Display *display;

Window w;

int *this client event count return;

XEventClass **this client event list return;

int *all clients event count return;

XEventClass **all clients event list return;

display Speci�es the connection to the X
server.

w Speci�es the window whose events
you are interested in.

this client event count return Returns the count of event classes
selected by this client.

this client event list return Returns a pointer to the list of
event classes selected by this
client.

all clients event count return Returns the count of event classes
selected by all clients.

5-8 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

all clients event list return Returns a pointer to the list
of event classes selected by all
clients.

The XGetSelectedExtensionEvents function reports the extension
events selected by this client and all clients for the speci�ed window.

This function returns pointers to two event class arrays. One lists
the input extension events selected by this client from the speci�ed
window. The other lists the event classes selected by all clients from
the speci�ed window. You should use XFree to free these two arrays.

XGetSelectedExtensionEvents can generate a BadWindow error.

Sending Extension
Events

To send input extension events to a client, use
XSendExtensionEvent.

Status XSendExtensionEvent(display, device, destination,

propagate, event count, event list, event send)

Display *display;

XDevice *device;

Window destination;

Bool propagate;

int event count;

XEventClass *event list;

XEvent *event send;

display Speci�es the connection to the X server.

device Speci�es the device from which the events are to be
sent.

destination Speci�es the window the event is to be sent to.
You can pass a window id, PointerWindow, or
InputFocus.

propagate Speci�es a Boolean value that is either True or
False.

event count Speci�es the count of XEventClasses in event list.

event list Speci�es the list of event selections to be used.

event send Speci�es a pointer to the event that is to be sent.

The XSendExtensionEvent function identi�es the destination
window, determines which clients should receive the speci�ed events,
and ignores any active grabs. This function requires you to pass an
event class list. For a discussion of the valid event class names, see
XOpenDevice(3X11). This function uses the destination argument to
identify the destination window as follows:

If destination is PointerWindow, the destination window is the
window that contains the pointer.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-9

Warranty

If destination is InputFocus and if the focus window contains the
pointer, the destination window is the window that contains the
pointer; otherwise, the destination window is the focus window.

To determine which clients should receive the speci�ed events,
XSendExtensionEvent uses the propagate argument as follows:

If event count is zero, the event is sent to the client that created
the destination window. If that client no longer exists, no event is
sent.

If propagate is False, the event is sent to every client selecting on
destination any of the event types in the event list array.

If propagate is True and no clients have selected from the
destination window any of the events in the event list array, the
destination is replaced with the closest ancestor of destination
for which some client has selected one of the speci�ed events,
and for which no intervening window has that type in its
do-not-propagate-mask . If no such window exists or if the window
is an ancestor of the focus window and InputFocus was originally
speci�ed as the destination, the event is not sent to any clients.
Otherwise, the event is reported to every client selecting on the
�nal destination any of the events speci�ed in event list .

The event in the XEvent structure must be one of the events de�ned
by the input extension (or a BadValue error results) so that the
X server can correctly byte-swap the contents as necessary. The
contents of the event are otherwise unaltered and unchecked by the X
server except to force send event to True in the forwarded event and
to set the serial number in the event correctly.

XSendExtensionEvent returns zero if the conversion to wire protocol
format failed and returns nonzero otherwise. XSendExtensionEvent
can generate BadDevice, BadValue, BadClass, and BadWindow errors.

Getting the
dont-propagate-list

Input extension events are propagated to ancestor windows unless
some client speci�es otherwise.

Grabs of extension input devices may alter the set of windows that
receive a particular input extension event.

To determine which events will not be propagated from a given
window, use XGetDeviceDontPropagateList.

XEventClass *XGetDeviceDontPropagateList(display, window,

count return)

Display *display;

Window window;

int *count return;

display Speci�es the connection to the X server.

window Speci�es the window whose dont-propagate-list is to
be queried.

5-10 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

count return Returns the number of event classes in the list
returned by this request.

The XGetDeviceDontPropagateList function returns a list of input
extension events that will not be propagated to ancestors of the event
window. An array of event classes is returned that identi�es which
events will not be propagated.

XGetDeviceDontPropagateList can generate a BadClass or
BadWindow error.

You should use XFree to free the data returned by this function.

Changing the
dont-propagate-list

Suppression of event propagation is not allowed for all input
extension events. If a speci�ed event class is one that cannot be
suppressed, a BadClass error will result. Events whose propagation
can be suppressed include: DeviceKeyPress, DeviceKeyRelease,
DeviceButtonPress, DeviceButtonRelease, DeviceMotionNotify,
ProximityIn, and ProximityOut.

To change which events will not be propagated from a given window,
use XChangeDeviceDontPropagateList.

int XChangeDeviceDontPropagateList(display, window,

count, event list, mode)

Display *display;

Window window;

int count;

XEventClass *event list;

int mode;

display Speci�es the connection to the X server.

window Speci�es the window whose dont-propagate-list is to
be modi�ed.

count Speci�es the number of event classes in the list.

event list Speci�es a pointer to a list of event classes.

mode Speci�es the mode. You can pass AddToList, or
DeleteFromList.

The XChangeDeviceDontPropagateList function modi�es the list of
input extension events that should not be propagated to ancestors of
the event window. This function allows extension events to be added
to or deleted from that list. By default, all events are propagated to
ancestor windows. Once modi�ed, the list remains modi�ed for the
life of the window. Events are not removed from the list because the
client that added them has terminated.

XChangeDeviceDontPropagateList can generate a BadDevice,
BadClass, or BadValue error.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-11

Warranty

Getting Extended
Device Motion History

To get the device motion history, use XGetDeviceMotionEvents.

XDeviceTimeCoord *XGetDeviceMotionEvents(display, device,

start, stop, nevents return, mode return, axis count return)

Display *display;

XDevice *device;

Time start, stop;

int *nevents return;

int *mode return;

int *axis count return;

display Speci�es the connection to the X server.

device Speci�es the device whose motion history is
to be queried.

start
stop

Specify the time interval in which the events
are returned from the motion history bu�er.
You can pass a timestamp or CurrentTime.

nevents return Returns the number of events from the
motion history bu�er.

mode return Returns the mode of the device (Absolute or
Relative).

axis count return Returns the count of axes being reported.

The server may retain the recent history of the device motion and do
so to a �ner granularity than is reported by DeviceMotionNotify

events. The XGetDeviceMotionEvents function makes this history
available.

The XGetDeviceMotionEvents function returns all events in the
motion history bu�er that fall between the speci�ed start and stop
times, inclusive. If the start time is later than the stop time or if the
start time is in the future, no events are returned. If the stop time is
in the future, it is equivalent to specifying CurrentTime.

The mode indicates whether the device is reporting absolute
positional data (mode=Absolute) or relative motion data
(mode=Relative). These constants are de�ned in the �le XI.h. The
axis count returns the number of axes or valuators being reported by
the device.

XGetDeviceMotionEvents can generate a BadDevice, BadMatch or
BadWindow error.

The XDeviceTimeCoord structure contains:

typedef struct {

Time time;

int *data;

} XDeviceTimeCoord

5-12 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

The time member is set to the time, in milliseconds. The data
member is a pointer to an array of integers. These integers are set to
the values of each valuator or axis reported by the device.

There is one element in the array per axis of motion reported by the
device. The value of the array elements depends on the mode of
the device. If the mode is Absolute, the values are the raw values
generated by the device. These may be scaled by client programs
using the maximum values that the device can generate. The
maximum value for each axis of the device is reported in the max val
�eld of the XAxisInfo structure returned by the XListInputDevices
function. If the mode is Relative, the data values are the relative
values generated by the device.

You should use XFreeDeviceMotionEvents to free the data returned
by this function.

XGetDeviceMotionEvents can generate a BadDevice or BadMatch
error.

Freeing the Device
Motion Array

To free the device motion array, use XFreeDeviceMotionEvents.

XFreeDeviceMotionEvents(events)

XDeviceTimeCoord *events;

events Speci�es the pointer to the XDeviceTimeCoord
array returned by a previous call to
XGetDeviceMotionEvents.

This function frees the array of motion information.

Grabbing and
Ungrabbing
Extension Input
Devices

Grabbing Extended
Input Devices

To grab a speci�ed extension device, use XGrabDevice.

int XGrabDevice(display, device, grab window,

owner events, event count, event list, this device mode,

other devices mode, time)

Display *display;

XDevice *device;

Window grab window;

Bool owner events;

int event count;

XEventClass *event list;

int this device mode, other devices mode;

Time time;

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-13

Warranty

display Speci�es the connection to the X server.

device Speci�es the device to be grabbed.

grab window Speci�es the id of a window to be
associated with the device.

owner events Speci�es a Boolean value that indicates
whether the events from the device are to
be reported as usual or reported with
respect to the grab window if the events
are selected by the event list.

event count Speci�es the number of elements in the
event list array.

event list Speci�es a pointer to a list of event
classes that indicates which events the
client wishes to receive. These event
classes must have been obtained by
specifying the device being grabbed.

this device mode Speci�es further processing of events from
this device. You can pass GrabModeSync
or GrabModeAsync.

other devices mode Speci�es further processing of events
from other devices. You can pass
GrabModeSync or GrabModeAsync.

time Speci�es the time. You can pass either a
timestamp or CurrentTime.

The XGrabDevice function actively grabs control of the device and
generates DeviceFocusIn and DeviceFocusOut events. Further
device events are reported only to the grabbing client. XGrabDevice
overrides any active device grab by this client. The event list
argument is a pointer to a list of event classes. This list indicates
which events the client wishes to receive while the grab is active. If
owner events is False, all generated device events are reported with
respect to grab window if selected. If owner events is True and if a
generated device event would normally be reported to this client, it is
reported normally; otherwise, the event is reported with respect to
the grab window , and is only reported if speci�ed in the event list .

The this device mode parameter controls further processing of events
from this device and the other device mode parameter controls the
further processing of events from all other devices.

If this device mode is GrabModeAsync, device event processing
continues as usual. If the device is currently frozen by this client,
then processing of device events is resumed. If this device mode is
GrabModeSync, the state of the device (as seen by client applications)
appears to freeze, and the X server generates no further device events
until the grabbing client issues a releasing XAllowDeviceEvents call
or until the device grab is released. Actual device changes are not

5-14 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

lost while the device is frozen; they are simply queued in the server
for later processing.

If other devices mode is GrabModeAsync, processing of events
from other devices is una�ected by activation of the grab. If
other devices mode is GrabModeSync, the state of all devices except
the grabbed device (as seen by client applications) appears to freeze,
and the X server generates no further events from those devices until
the grabbing client issues a releasing XAllowDeviceEvents call or
until the device grab is released. Actual events are not lost while
the devices are frozen; they are simply queued in the server for later
processing.

If the device is actively grabbed by some other client, XGrabDevice
fails and returns AlreadyGrabbed. If grab window is not viewable,
it fails and returns GrabNotViewable. If the device is frozen by an
active grab of another client, it fails and returns GrabFrozen. If the
speci�ed time is earlier than the last-device-grab time or later than
the current X server time, it fails and returns GrabInvalidTime.
Otherwise, the last-device-grab time is set to the speci�ed time
(CurrentTime is replaced by the current X server time).

If a grabbed device is closed by a client while an active grab by that
client is in e�ect, the active grab is released. If the device is frozen
only by an active grab of the requesting client, it is thawed.

XGrabDevice can generate BadClass, BadDevice, BadValue, and
BadWindow errors.

Ungrabbing Extended
Input Devices

To ungrab a speci�ed extension device, use XUngrabDevice.

int XUngrabDevice(display, device, time)

Display *display;

XDevice *device;

Time time;

display Speci�es the connection to the X server.

device Speci�es the device to be released.

time Speci�es the time. You can pass either a timestamp
or CurrentTime.

The XUngrabDevice function releases the device and any queued
events if this client has it actively grabbed from XGrabDevice,
XGrabDeviceButton, or XGrabDeviceKey. If other devices are frozen
by the grab, XUngrabDevice thaws them. XUngrabDevice does not
release the device and any queued events if the speci�ed time is
earlier than the last-device-grab time or is later than the current X
server time. It also generates DeviceFocusIn and DeviceFocusOut

events. The X server automatically performs an UngrabDevice

request if the event window for an active device grab becomes not
viewable.

XUngrabDevice can generate a BadDevice error.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-15

Warranty

Grabbing Extended
Input Device Buttons

To grab extension input device buttons, use XGrabDeviceButton.

int XGrabDeviceButton(display, device, button,

modi�ers, modi�er device, grab window,

owner events, event count, event list,

this device mode, other devices mode)

Display *display;

XDevice *device;

unsigned int button;

unsigned int modi�ers;

XDevice *modi�er device;

Window grab window;

Bool owner events;

unsigned int event count;

XEventClass *event list;

int this device mode, other devices mode;

display Speci�es the connection to the X server.

device Speci�es the device that is to be grabbed.

button Speci�es the device button that is to be
grabbed or AnyButton.

modi�ers Speci�es the set of keymasks or AnyModifier.
The mask is the bitwise inclusive OR of
the valid keymask bits. Valid bits are:
ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask,
Mod5Mask.

modi�er device Speci�es the device whose modi�ers are to be
used. If NULL is speci�ed, the X keyboard will
be used as the modi�er device.

grab window Speci�es the grab window.

owner events Speci�es a Boolean value that indicates
whether the device events are to be reported
as usual or reported with respect to the grab
window if selected by the event list.

event count Speci�es the number of event classes in the
event list.

event list Speci�es which events are reported to the
client.

this device mode Speci�es further processing of events from
this device. You can pass GrabModeSync or
GrabModeAsync.

other devices mode Speci�es further processing of events from all
other devices. You can pass GrabModeSync or
GrabModeAsync.

5-16 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

The XGrabDeviceButton function establishes a passive grab. When
the speci�ed button is pressed, the device is actively grabbed (as
for XGrabDevice), the last-grab time is set to the time at which
the button was pressed (as transmitted in the DeviceButtonPress
event), and the DeviceButtonPress event is reported if all the
following conditions are true:

The device is not grabbed, and the speci�ed button is logically
pressed when the speci�ed modi�er keys are logically down on the
speci�ed modi�er device, and no other buttons or modi�er keys are
logically down.

Either the grab window is an ancestor of (or is) the focus window,
or the grab window is a descendent of the focus window and
contains the device.

A passive grab on the same button modi�er combination does not
exist on any ancestor of grab window .

The interpretation of the remaining arguments is as for XGrabDevice.
The active grab is terminated automatically when the logical state of
the device has all buttons released (independent of the logical state of
the modi�er keys).

Note that the logical state of a device (as seen by client applications)
may lag the physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on
the same button modi�er combinations on the same window. A
modi�ers of AnyModifier is equivalent to issuing the grab request
for all possible modi�er combinations (including the combination
of no modi�ers). It is not required that all modi�ers speci�ed have
currently assigned KeyCodes. A button of AnyButton is equivalent
to issuing the request for all possible buttons. Otherwise, it is not
required that the speci�ed button currently be assigned to a physical
button.

If some other client has already issued a XGrabDeviceButton

with the same button modi�er combination on the same window,
a BadAccess error results. If AnyModifier was speci�ed for
the modi�ers argument or AnyButton for the key argument, the
request fails completely, and a BadAccess error results (no grabs
are established), if there is a conicting grab for any combination.
XGrabDeviceButton has no e�ect on an active grab.

XGrabDeviceButton can generate BadClass, BadDevice, BadMatch,
BadValue, and BadWindow errors.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-17

Warranty

Ungrabbing Extended
Input Device Buttons

To ungrab an extended input device button, use
XUngrabDeviceButton.

int XUngrabDeviceButton(display, device, button,

modi�ers, modi�er device, grab window)

Display *display;

XDevice *device;

unsigned int button;

unsigned int modi�ers;

XDevice *modi�er device;

Window grab window;

display Speci�es the connection to the X server.

device Speci�es the device that is to be released.

button Speci�es the device button that is to be
released or AnyButton.

modi�ers Speci�es the set of keymasks or AnyModifier.
The mask is the bitwise inclusive OR of
the valid keymask bits. Valid bits are:
ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask,
and Mod5Mask.

modi�er device Speci�es the device whose modi�ers are to be
used. If NULL is speci�ed, the X keyboard will
be used as the modi�er device.

grab window Speci�es the grab window.

The XUngrabDeviceButton function releases the passive grab for
a button modi�er combination on the speci�ed window if it was
grabbed by this client. A modi�ers of AnyModifier is equivalent to
issuing the ungrab request for all possible modi�er combinations,
including the combination of no modi�ers. A button of AnyButton
is equivalent to issuing the request for all possible buttons.
XUngrabDeviceButton has no e�ect on an active grab.

XUngrabDeviceButton can generate BadDevice, BadMatch,
BadValue, and BadWindow errors.

Grabbing Extended
Input Device Keys

To grab an extension input device key, use XGrabDeviceKey.

XGrabDeviceKey(display, device, key, modi�ers,

modi�er device, grab window, owner events, event count,

event list, this device mode, other devices mode)

Display *display;

XDevice *device;

unsigned int key;

unsigned int modi�ers;

XDevice *modi�er device;

Window grab window;

5-18 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Bool owner events;

unsigned int event count;

XEventClass event list;

int this device mode, other devices mode;

display Speci�es the connection to the X server.

device Speci�es the device that is to be grabbed.

key Speci�es the device key that is to be grabbed
or AnyKey.

modi�ers Speci�es the set of keymasks or AnyModifier.
The mask is the bitwise inclusive OR of the
valid keymask bits.

modi�er device Speci�es the device whose modi�ers are to be
used. If NULL is speci�ed, the X keyboard will
be used as the modi�er device.

grab window Speci�es the grab window.

owner events Speci�es a Boolean value that indicates
whether the device events are to be reported
as usual or reported with respect to the grab
window if selected by the event list.

event count Speci�es the number of event classes in the
event list.

event list Speci�es which device events are reported to
the client.

this device mode Speci�es further processing of events from
this device. You can pass GrabModeSync or
GrabModeAsync.

other devices mode Speci�es further processing of events from
other devices. You can pass GrabModeSync or
GrabModeAsync.

The XGrabDeviceKey function establishes a passive grab. In the
future, the device is actively grabbed (as for XGrabDevice), the
last-device-grab time is set to the time at which the Key was
pressed (as transmitted in the DeviceKeyPress event), and the
DeviceKeyPress event is reported if all the following conditions are
true:

The device is not grabbed, and the speci�ed key is logically pressed
when the speci�ed modi�er keys are logically down, and no other
keys or modi�er keys are logically down.

The grab window is an ancestor of (or is) the focus window, or the
grab window is a descendent of the focus window and contains the
device.

A passive grab on the same key/modi�er combination does not
exist on any ancestor of grab window .

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-19

Warranty

The interpretation of the remaining arguments is as for XGrabDevice.
The active grab is terminated automatically when the logical state of
the device has the speci�ed keys released.

Note that the logical state of a device (as seen by means of the X
protocol) may lag the physical state if device event processing is
frozen.

If the key is not AnyKey, it must be in the range speci�ed
by min keycode and max keycode as returned by the
XListInputDevices function. Otherwise, a BadValue error will
result.

This request overrides all previous grabs by the same client on the
same key modi�er combinations on the same window. A modi�ers of
AnyModifier is equivalent to issuing the grab request for all possible
modi�er combinations (including the combination of no modi�ers).
It is not required that all modi�ers speci�ed have currently assigned
KeyCodes. A key of AnyKey is equivalent to issuing the request for
all possible keys. Otherwise, it is not required that the speci�ed key
currently be assigned to a physical key.

If some other client has already issued a XGrabDeviceKey with the
same key modi�er combination on the same window, a BadAccess

error results. When using AnyModifier or AnyKey, the request fails
completely, and a BadAccess error results (no grabs are established)
if there is a conicting grab for any combination. XGrabDeviceKey
has no e�ect on an active grab.

XGrabDeviceKey can generate BadAccess, BadClass, BadDevice,
BadMatch, BadValue, and BadWindow errors. It returns Success on
successful completion of the request.

Ungrabbing Extended
Input Device Keys

To ungrab an extended input device key, use XUngrabDeviceKey.

XUngrabDeviceKey(display, device, key, modi�ers,

modi�er device, grab window)

Display *display;

XDevice *device;

unsigned int key;

unsigned int modi�ers;

XDevice *modi�er device;

Window grab window;

display Speci�es the connection to the X server.

device Speci�es the device that is to be released.

key Speci�es the device key that is to be released
or AnyKey.

modi�ers Speci�es the set of keymasks or AnyModifier.
The mask is the bitwise inclusive OR of
the valid keymask bits. Valid bits are:
ShiftMask, LockMask, ControlMask,

5-20 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask,
Mod5Mask.

modi�er device Speci�es the device whose modi�ers are to be
used. If NULL is speci�ed, the X keyboard will
be used as the modi�er device.

grab window Speci�es the grab window.

The XUngrabDeviceKey function releases the passive key/modi�er
combination on the speci�ed window if it was grabbed by this
client. A modi�er of AnyModifier is equivalent to issuing the
ungrab request for all possible modi�er combinations, including the
combination of no modi�ers. A key of AnyKey is equivalent to issuing
the request for all possible keys. XUngrabDeviceKey has no e�ect on
an active grab.

XUngrabDeviceKey can generate BadDevice, BadMatch, BadValue,
and BadWindow errors.

Releasing Queued
Events

To release queued events, use XAllowDeviceEvents.

int XAllowDeviceEvents(display, device, event mode, time)

Display *display;

XDevice *device;

int event mode;

Time time;

display Speci�es the connection to the X server.

device Speci�es the device from which events are to be
allowed.

event mode Speci�es the event mode. You can pass
AsyncThisDevice, SyncThisDevice,
ReplayThisDevice, AsyncOtherDevices,
SyncAllDevices, or AsyncAllDevices.

time Speci�es the time. You can pass either a timestamp
or CurrentTime.

The XAllowDeviceEvents function releases some queued events if the
client has caused a device to freeze. It has no e�ect if the speci�ed
time is earlier than the last-grab time of the most recent active grab
for the client and device, or if the speci�ed time is later than the
current X server time.

The event modes are de�ned as follows:

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-21

Warranty

AsyncThisDevice If the speci�ed device is frozen by the client,
event processing for that device continues
as usual. If the device is frozen multiple
times by the client on behalf of multiple
separate grabs, AsyncThisDevice thaws for
all. AsyncThisDevice has no e�ect if the
speci�ed device is not frozen by the client.

SyncThisDevice If the speci�ed device is frozen and actively
grabbed by the client, event processing for
that device continues normally until the next
key or button event is reported to the client.
Then the speci�ed device appears to freeze
unless the reported event causes the grab to
be released. SyncThisDevice has no e�ect if
the speci�ed device is not frozen or grabbed
by the client.

ReplayThisDevice If the speci�ed device is actively grabbed
by the client and is frozen as the result of
an event having been sent to the client, the
grab is released and that event is completely
reprocessed. This time, however, the request
ignores any passive grabs at or above the
grab-window of the grab just released. The
request has no e�ect if the speci�ed device is
not grabbed by the client or if it is not frozen
as a result of an event.

AsyncOtherDevices If the remaining devices are frozen by the
client, event processing for them continues as
usual. If the other devices are frozen multiple
times by the client of behalf of multiple
separate grabs, AsyncOtherDevices thaws for
all. AsyncOtherDevices has no e�ect if the
devices are not frozen by the client.

SyncAllDevices If all the devices are frozen by the client,
event processing for all the devices continues
normally until the next button or key event is
reported to the client for a grabbed device.
Then the devices appear to freeze unless
the reported event causes the grab to be
released. If any device is still grabbed, then
a subsequent event for it will still cause all
the devices to freeze. SyncAllDevices has
no e�ect unless all the devices are frozen
by the client. If any device is frozen twice
by the client on behalf of two separate
grabs, SyncAllDevices thaws for both. A
subsequent freeze for SyncAllDevices will
only freeze each device once.

5-22 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

AsyncAllDevices If all devices are frozen by the client, event
processing for all devices continues normally.
If any device is frozen multiple times by
the client on behalf of multiple separate
grabs, AsyncAllDevices thaws for all.
AsyncAllDevices has no e�ect unless all
devices are frozen by the client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have
no e�ect on the processing of events from the remaining devices.
AsyncOtherDevices has no e�ect on the processing of events from
the speci�ed device. When the event mode is SyncAllDevices or
AsyncAllDevices, the device parameter is ignored.

It is possible for several grabs of di�erent devices by the same or
di�erent clients to be active simultaneously. If a device is frozen on
behalf of any grab, no event processing is performed for that device.
It is possible for a single device to be frozen because of several grabs.
In that case, the freeze must be released on behalf or each grab
before events can again be processed.

XAllowDeviceEvents can generate a BadDevice or BadValue error.

Focusing Extension
Input Devices

Getting Extended Input
Device Focus

To get the focus for an extended input device, use XGetDeviceFocus.

XGetDeviceFocus(display, device, focus return,

revert to return, time return)

Display *display;

Display *device;

Window *focus return;

int *revert to return;

int *time return;

display Speci�es the connection to the X server.

device Speci�es the device whose focus is to be queried.

focus return Returns the focus window, PointerRoot,
FollowKeyboard, or None.

revert to return Returns the current focus state
RevertToParent, RevertToPointerRoot,
RevertToFollowKeyboard, or RevertToNone.

time return Returns the last-focus-time for the device.

The XGetDeviceFocus function returns the focus window and
the current focus state. Not all input extensions can be focused.
Attempting to query the focus state of a device that can't be focused

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-23

Warranty

results in a BadMatch error. A device that can be focused returns
information for input class Focus when an XOpenDevice request is
made.

XGetDeviceFocus can generate BadDevice and BadMatch errors.

Setting Extended Input
Device Focus

To set the focus for an extended input device, use XSetDeviceFocus.

int XSetDeviceFocus(display, device, focus, revert to, time)

Display *display;

Display *device;

Window focus;

int revert to;

Time time;

display Speci�es the connection to the X server.

device Speci�es the device whose focus is to be changed.

focus Speci�es the window, PointerRoot,
FollowKeyboard, or None.

revert to Speci�es where the input focus reverts to if
the window becomes not viewable. You can
pass RevertToParent, RevertToPointerRoot,
RevertToFollowKeyboard, or RevertToNone.

time Speci�es the time. You can pass either a timestamp
or CurrentTime.

The XSetDeviceFocus function changes the focus of the speci�ed
device and its last-focus-change time. It has no e�ect if the speci�ed
time is earlier than the current last-focus-change time or is later than
the current X server time. Otherwise, the last-focus-change time is
set to the speci�ed time (CurrentTime is replaced by the current
X server time). XSetDeviceFocus causes the X server to generate
DeviceFocusIn and DeviceFocusOut events.

Depending on the focus argument, the following occurs:

If focus is None, all device events are discarded until a new focus
window is set, and the revert to argument is ignored.

If focus is a window, it becomes the device's focus window. If a
generated device event would normally be reported to this window
or one of its inferiors, the event is reported as usual. Otherwise,
the event is reported relative to the focus window.

If focus is PointerRoot, the focus window is dynamically taken
to be the root window of whatever screen the pointer is on at
each event from the speci�ed device. In this case, the revert to
argument is ignored.

If focus is FollowKeyboard, the focus window is dynamically taken
to be the window to which the X keyboard focus is set at each
input event.

5-24 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

The speci�ed focus window must be viewable at the time
XSetDeviceFocus is called, or a BadMatch error results. If the focus
window later becomes not viewable, the X server evaluates the
revert to argument to determine the new focus window as follows:

If revert to is RevertToParent, the focus reverts to the parent (or
the closest viewable ancestor), and the new revert to value is taken
to be RevertToNone.

If revert to is RevertToPointerRoot, RevertToFollowKeyboard,
or RevertToNone, the focus reverts to PointerRoot,
FollowKeyboard, or None, respectively.

When the focus reverts, the X server generates DeviceFocusIn
and DeviceFocusOut events, but the last-focus-change time is not
a�ected.

Input extension devices are not required to support the ability to
be focused. Attempting to set the focus of a device that does not
support this request will result in a BadMatch error. Whether or
not the speci�ed device can support this request can be determined
by the information returned by XOpenDevice. For those devices
that support focus, XOpenDevice will return an XInputClassInfo

structure with the input class �eld equal to the constant FocusClass
(de�ned in the �le XI.h).

XSetDeviceFocus can generate BadDevice, BadMatch, BadValue, and
BadWindow errors.

Controlling Device
Encodings

Getting the Key
Mapping of Extended

Input Devices

To get the key mapping of an extended input device, use
XGetDeviceKeyMapping.

KeySym *XGetDeviceKeyMapping(display, device, �rst keycode,

keycode count, keysyms per keycode return)

Display *display;

XDevice *device;

KeyCode �rst keycode;

int keycode count;

int *keysyms per keycode return;

display Speci�es the connection to the X
server.

device Speci�es the device whose key
mapping is to be queried.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-25

Warranty

�rst keycode Speci�es the �rst KeyCode to be
returned.

keycode count Speci�es the number of KeyCodes
to be returned.

keysyms per keycode return Returns the number of KeySyms
per KeyCode.

For the speci�ed device, the XGetDeviceKeyMapping function returns
the symbols for the speci�ed number of KeyCodes starting with
�rst keycode. The value speci�ed in �rst keycode must be greater
than or equal to min keycode as returned by XListInputDevices,
or a BadValue error results. In addition, the following expression
must be less than or equal to max keycode as returned by
XListInputDevices :

first keycode+ keycode count� 1

If this is not the case, a BadValue error results. The number of
elements in the KeySyms list is:

keycode count � keysyms per keycode return

KeySym number N, counting from zero, for KeyCode K has the
following index in the list, counting from zero:

(K � first code) � keysyms per code return +N

The X server arbitrarily chooses the keysyms per keycode return
value to be large enough to report all requested symbols. A
special KeySym value of NoSymbol is used to �ll in unused
elements for individual KeyCodes. To free the storage returned by
XGetDeviceKeyMapping, use XFree.

If the speci�ed device does not support input class keys, a BadMatch
error results.

XGetDeviceKeyMapping can generate a BadDevice, BadMatch, or
BadValue error.

Changing the Key
Mapping of Extended

Input Devices

To change the key mapping of an extended input device, use
XChangeDeviceKeyMapping.

int XChangeDeviceKeyMapping(display, device, �rst keycode,

keysyms per keycode, keysyms, keycode count)

Display *display;

XDevice *device;

int �rst keycode;

int keysyms per keycode;

KeySym *keysyms;

int keycode count;

display Speci�es the connection to the X server.

5-26 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

device Speci�es the device whose key mapping is to
be modi�ed.

�rst keycode Speci�es the �rst KeyCode to be changed.

keysyms per keycode Speci�es the number of KeySyms per
KeyCode.

keysyms Speci�es the address of an array of KeySyms.

keycode count Speci�es the number of KeyCodes to be
modi�ed.

For the speci�ed device, the XChangeDeviceKeyMapping function
de�nes the symbols for the speci�ed number of KeyCodes starting
with �rst keycode. The symbols for KeyCodes outside this range
remain unchanged. The number of elements in keysyms must be:

num codes � keysyms per keycode

The speci�ed �rst keycode must be greater than or equal to
min keycode returned by XListInputDevices, or a BadValue error
results. In addition, the following expression must be less than or
equal to max keycode as returned by XListInputDevices, or a
BadValue error results:

first keycode+ num codes� 1

KeySym number N, counting from zero, for KeyCode K has the
following index in keysyms, counting from zero:

(K � first keycode) � keysyms per keycode+N

The speci�ed keysyms per keycode can be chosen arbitrarily
by the client to be large enough to hold all desired symbols. A
special KeySym value of NoSymbol should be used to �ll in unused
elements for individual KeyCodes. It is legal for NoSymbol to
appear in nontrailing positions of the e�ective list for a KeyCode.
XChangeDeviceKeyMapping generates a DeviceMappingNotify event
that is sent to all clients that have selected that type of event.

There is no requirement that the X server interpret this mapping. It
is merely stored for reading and writing by clients.

If the speci�ed device does not support input class keys, a BadMatch

error results.

XChangeDeviceKeyMapping can generate a BadDevice, BadMatch,
BadAlloc, or BadValue error.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-27

Warranty

Getting the Modifier
Mapping of Extended

Input Devices

To get the modi�er mapping of an extended input device, use
XGetDeviceModifierMapping.

XModifierKeymap *XGetDeviceModifierMapping(display, device)

Display *display;

XDevice *device;

display Speci�es the connection to the X server.

device Speci�es the device whose modi�er mapping is to be
queried.

The XGetDeviceModifierMapping function returns a pointer to a
newly created XModifierKeymap structure that contains the keys
being used as modi�ers. The structure should be freed after use by
calling XFreeModifierMapping. If only zero values appear in the set
for any modi�er, that modi�er is disabled.

XGetDeviceModifierMapping can generate BadDevice and BadMatch

errors.

Setting the Modifier
Mapping of Extended

Input Devices

To change the modi�er mapping of an extended input device, use
XSetDeviceModifierMapping.

int XSetDeviceModifierMapping(display, device, modmap)

Display *display;

XDevice *device;

XModifierKeymap *modmap;

display Speci�es the connection to the X server.

device Speci�es the device whose modi�er mapping is to be
modi�ed.

modmap Speci�es a pointer to the XModifierKeymap
structure.

The XSetDeviceModifierMapping function speci�es the KeyCodes
of the keys (if any) that are to be used as modi�ers for the speci�ed
device. If it succeeds, the X server generates a DeviceMappingNotify

event, and XSetDeviceModifierMapping returns MappingSuccess. X
permits at most eight modi�er keys. If more than eight are speci�ed
in the XModifierKeymap structure, a BadLength error results.

The modmap member of the XModifierKeymap structure contains
eight sets of max keypermod KeyCodes, one for each modi�er in the
order Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only
nonzero KeyCodes have meaning in each set, and zero KeyCodes
are ignored. In addition, all of the nonzero KeyCodes must be in
the range speci�ed by min keycode and max keycode as returned by
XListInputDevices, or a BadValue error results. No KeyCode may
appear twice in the entire map, or a BadValue error results.

An X server can impose restrictions on how modi�ers can be
changed. Such restrictions are needed, for example, if certain keys

5-28 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

do not generate up transitions in hardware, if auto-repeat cannot
be disabled on certain keys, or if multiple modi�er keys are not
supported. If such a restriction is violated, the status reply is
MappingFailed, and none of the modi�ers are changed. If the new
KeyCodes speci�ed for a modi�er di�er from those currently de�ned
and any (current or new) keys for that modi�er are in the logically
down state, XSetDeviceModifierMapping returns MappingBusy, and
none of the modi�ers are changed.

XSetDeviceModifierMapping can generate BadLength, BadDevice,
BadMatch, BadAlloc, and BadValue errors.

The XModifierKeymap structure contains:

typedef struct {

int max keypermod;

KeyCode *modi�ermap;

} XModifierKeymap;

Querying the Device
Button Mapping

To check the device button mapping, use XGetDeviceButtonMapping.

int XGetDeviceButtonMapping(display, device, map return,

nmap)

Display *display;

XDevice *device;

unsigned char map return[];

int nmap;

display Speci�es the connection to the X server.

device Speci�es the device whose button mapping is to be
queried.

map return Returns the mapping list.

nmap Speci�es the number of items in the mapping list.

The XGetDeviceButtonMapping function returns the current
mapping of the speci�ed device. Buttons are numbered starting from
one. XGetDeviceButtonMapping returns the number of physical
buttons actually on the device. The nominal mapping for a device
is map[i]=i+1. The nmap argument speci�es the length of the array
where the device mapping is returned, and only the �rst nmap
elements are returned in map return.

XGetDeviceButtonMapping can generate BadDevice and BadMatch

errors.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-29

Warranty

Changing the Device
Button Mapping

To change the device button mapping, use
XSetDeviceButtonMapping.

int XSetDeviceButtonMapping(display, device, map, nmap)

Display *display;

XDevice *device;

unsigned char map[];

int nmap;

display Speci�es the connection to the X server.

device Speci�es the device whose button mapping is to be
changed.

map Speci�es the mapping list.

nmap Speci�es the number of items in the mapping list.

The XSetDeviceButtonMapping function sets the mapping of
the speci�ed device. If it succeeds, the X server generates a
DeviceMappingNotify event, and XSetDeviceButtonMapping

returns MappingSuccess. Element map[i] de�nes the logical button
number for the physical button i+1. The length of the list must be
the same as XGetDeviceButtonMapping would return, or a BadValue

error results. A zero element disables a button, and elements are not
restricted in value by the number of physical buttons. However, no
two elements can have the same nonzero value, or a BadValue error
results. If any of the buttons to be altered are logically in the down
state, XSetDeviceButtonMapping returns MappingBusy, and the
mapping is not changed.

XSetDeviceButtonMapping can generate BadDevice, BadMatch, and
BadValue errors.

Changing the Core X
Devices

Changing the X
Keyboard Device

To change the X keyboard device, use XChangeKeyboardDevice.

Status XChangeKeyboardDevice(display, device)

Display *display;

XDevice *device;

display Speci�es the connection to the X server.

device Speci�es the device to be used as the X keyboard.

The XChangeKeyboardDevice function causes the server to use the
speci�ed device as the X keyboard. The server implementation
must support focusing of the new device, or a BadDevice error
will be returned. Whether or not a given device can be focused
can be determined by examining the information returned by

5-30 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

the XOpenDevice request. For those devices that can be focused,
XOpenDevice will return an XInputClassInfo structure with the
input class �eld equal to the constant FocusClass (de�ned in the �le
XI.h).

If the speci�ed device is grabbed by another client, AlreadyGrabbed
is returned. If the speci�ed device is frozen by a grab on another
device, GrabFrozen is returned. If the request is successful, Success
is returned.

A ChangeDeviceNotify event is sent to all clients that have
selected that event. A MappingNotify event with request =
MappingKeyboard is sent to all clients. The speci�ed device becomes
the X keyboard and the old X keyboard becomes accessible through
the input extension protocol requests.

XChangeKeyboardDevice can generate a BadDevice or a BadMatch

error.

Changing the X Pointer
Device

To change the X pointer device, use XChangePointerDevice.

Status XChangePointerDevice(display, device, xaxis, yaxis)

Display *display;

XDevice *device;

int xaxis;

int yaxis;

display Speci�es the connection to the X server.

device Speci�es the device to be used as the X pointer.

xaxis Speci�es the axis of the device to be used as the X
pointer x-axis.

yaxis Speci�es the axis of the device to be used as the X
pointer y-axis.

The XChangePointerDevice function causes the server to use the
speci�ed device as the X pointer.

If the speci�ed device is grabbed by another client, AlreadyGrabbed
is returned. If the speci�ed device is frozen by a grab on another
device, GrabFrozen is returned. If the request is successful, Success
is returned.

A ChangeDeviceNotify event is sent to all clients that have selected
that event. A MappingNotify event with request = MappingPointer

is sent to all clients. The speci�ed device becomes the X pointer, and
the old X pointer becomes accessible through the input extension
protocol requests.

XChangePointerDevice can generate BadDevice and BadMatch
errors.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-31

Warranty

Feedback Control These functions are provided to manipulate input devices that
support feedbacks. A BadMatch error will be generated if the
requested device does not support feedbacks. Whether or not a
given device supports feedbacks can be determined by examining
the information returned by the XOpenDevice request. For those
devices that support feedbacks, XOpenDevice will return an
XInputClassInfo structure with the input class �eld equal to the
constant FeedbackClass (de�ned in the �le XI.h).

Each class of feedback is described by a structure speci�c to
that class. These structures are de�ned in the �le XInput.h.
XFeedbackState and XFeedbackControl are generic structures
that contain three �elds that are at the beginning of each class of
feedback:

typedef struct {

XID class;

int length;

XID id;

} XFeedbackState, XFeedbackControl;

The XKbdFeedbackState structure de�nes the attributes that are
returned for feedbacks equivalent to those on the X keyboard.

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led mask;

int global auto repeat;

char auto repeats[32];

} XKbdFeedbackState;

The click �eld speci�es the key-click volume, with values in the range
of 0 (o�) to 100 (loud). The percent �eld speci�es the bell volume,
with a range of 0 (o�) to 100 (loud). The pitch �eld speci�es the bell
pitch in Hz. The range of the value is implementation-dependent.
The duration �eld speci�es the duration in milliseconds of the
bell. The led mask �eld is a bit mask that describes the current
state of up to 32 LEDs. A value of 1 in a bit indicates that the
corresponding LED is on. The global auto repeat �eld has a value of
AutoRepeatModeOn or AutoRepeatModeOff. The auto repeats �eld
is a bit vector. Each bit set to 1 indicates that the auto-repeat is
enabled for the corresponding key.

The XPtrFeedbackState structure de�nes the attributes that are
returned for feedbacks equivalent to those on the X pointer.

5-32 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

typedef struct {

XID class;

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackState;

The accelNum �eld returns the numerator for the acceleration
multiplier. The accelDenom �eld returns the denominator for the
acceleration multiplier. The threshold �eld returns the threshold for
the acceleration.

The XIntegerFeedbackState structure de�nes the attributes that
are returned for integer feedbacks.

typedef struct {

XID class;

int length;

XID id;

int resolution;

int minVal;

int maxVal;

} XIntegerFeedbackState;

The resolution �eld speci�es the number of digits that the feedback
can display. The minVal �eld speci�es the minimum value that the
feedback can display. The maxVal �eld speci�es the maximum value
that the feedback can display.

The XStringFeedbackState structure de�nes the attributes that are
returned for string feedbacks.

typedef struct {

XID class;

int length;

XID id;

int max symbols;

int num syms supported;

KeySym *syms supported;

} XStringFeedbackState;

The max symbols �eld speci�es the maximum number of symbols
that can be displayed. The syms supported �eld is a pointer to the
list of supported symbols. The num syms supported �eld speci�es
the length of the list of supported symbols.

The XBellFeedbackState structure de�nes the attributes that are
returned for Bell feedbacks.

typedef struct {

XID class;

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-33

Warranty

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackState;

Bell feedbacks are those that can generate a sound. Some
implementations may support a bell as part of a KbdFeedback

feedback. Class BellFeedback is provided for implementations
that do not choose to do so, and for devices that support multiple
feedbacks that can produce sound. The meaning of the �elds is the
same as that of the corresponding �elds in the XKbdFeedbackState
structure.

The XLedFeedbackState structure de�nes the attributes that are
returned for Led feedbacks.

typedef struct {

XID class;

int length;

XID id;

int led values;

int led mask;

} XLedFeedbackState;

LED feedbacks are those that can generate a light. Up to 32 lights
per feedback are supported. Each bit in led mask corresponds to one
light, and the corresponding bit in led values indicates whether that
light should be on or o�. Some implementations may support LEDs
as part of a KbdFeedback feedback. Class LedFeedback is provided
for implementations that do not choose to do so, and for devices that
support multiple LED feedbacks. The meaning of the led values �eld
is the same as that in the XKbdFeedbackState structure.

The XPtrFeedbackControl structure de�nes the attributes that can
be controlled for feedbacks equivalent to those on the X pointer.

#define DvAccelnum (1L<<0)

#define DvAccelDenom (1L<<1)

#define DvThreshold (1L<<2)

typedef struct {

XID class;

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackControl;

The acceleration, expressed as a fraction, is a multiplier for
movement. For example, specifying 3/1 means that the device

5-34 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

moves three times as fast as normal. The fraction may be rounded
arbitrarily by the X server. Accelerations only takes e�ect if the
device moves more that the threshold pixels at once and only applies
to the amount beyond the value in the threshold argument. Setting
a value to -1 restores the default. The values of the accelNum and
threshold �elds must be nonzero for the pointer values to be set.
Otherwise, the parameter will be unchanged.

The XKbdFeedbackControl structure de�nes the attributes that can
be controlled for feedbacks equivalent to those on the X keyboard.

#define DvKeyClickPercent (1L<<0)

#define DvPercent (1L<<1)

#define DvPitch (1L<<2)

#define DvDuration (1L<<3)

#define DvLed (1L<<4)

#define DvLedMode (1L<<5)

#define DvKey (1L<<6)

#define DvAutoRepeatMode (1L<<7)

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led mask;

int led value;

int key;

int auto repeat mode;

} XKbdFeedbackControl;

The XStringFeedbackControl structure de�nes the attributes that
can be controlled for String feedbacks.

#define DvString (1L<<0)

typedef struct {

XID class;

int length;

XID id;

int num keysyms;

KeySym *syms to display;

} XStringFeedbackControl;

The XIntegerFeedbackControl structure de�nes the attributes that
can be controlled for integer feedbacks.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-35

Warranty

#define DvInteger (1L<<0)

typedef struct {

XID class;

int length;

XID id;

int int to display;

} XIntegerFeedbackControl;

The XBellFeedbackControl structure de�nes the attributes that can
be controlled for Bell feedbacks.

#define DvPercent (1L<<1)

#define DvPitch (1L<<2)

#define DvDuration (1L<<3)

typedef struct {

XID class;

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackControl;

The XLedFeedbackControl structure de�nes the attributes that can
be controlled for Led feedbacks.

#define DvLed (1L<<4)

#define DvLedMode (1L<<5)

typedef struct {

XID class;

int length;

XID id;

int led mask;

int led values;

} XLedFeedbackControl;

Querying Input Device
Feedbacks

To query input device feedbacks, use XGetFeedbackControl.

XFeedbackState *XGetFeedbackControl(display, device,

num feedbacks)

Display *display;

XDevice *device;

int *num feedbacks;

display Speci�es the connection to the X server.

device Speci�es the device whose feedbacks are to be
queried.

num feedbacks Speci�es an address into which the number of
feedbacks supported by the device is to be returned.

5-36 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

The XGetFeedbackControl function returns a pointer to a list of
XFeedbackState structures. Each item in this list describes one of
the feedbacks supported by the device. The items are variable length,
so each contains its length to allow traversal to the next item in the
list.

The feedback classes that are currently de�ned are:
KbdFeedbackClass, PtrFeedbackClass, StringFeedbackClass,
IntegerFeedbackClass, LedFeedbackClass, and
BellFeedbackClass. These constants are de�ned in the �le XI.h.
An input device may support zero or more classes of feedback, and
may support multiple feedbacks of the same class. Each feedback
contains a class identi�er and an id that is unique within that class
for that input device. The id is used to identify the feedback when
making an XChangeFeedbackControl request.

XGetFeedbackControl can generate a BadDevice or BadMatch error.

Changing Input Device
Feedbacks

To change input device feedbacks, use XChangeFeedbackControl.

int XChangeFeedbackControl(display, device, mask, control)

Display *display;

XDevice *device;

Mask mask;

XFeedbackControl *control;

display Speci�es the connection to the X server.

device Speci�es the device whose feedbacks are to be
modi�ed.

mask Speci�es a mask speci�c to each type of feedback
that describes how the feedback is modi�ed.

control Speci�es the address of an XFeedbackControl

structure that contains the new values for the
feedback.

The XChangeFeedbackControl function modi�es the values of one
feedback on the speci�ed device. The feedback is identi�ed by the
id �eld of the XFeedbackControl structure that is passed with
the request. The �elds of the feedback that are to be modi�ed are
identi�ed by the bits of the mask that is passed with the request.

XChangeFeedbackControl can generate a BadDevice, BadMatch, or
BadValue error.

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-37

Warranty

Miscellaneous
Functions

Changing the Mode of
an Input Device

To change the mode of a device, use XSetDeviceMode.

int XSetDeviceMode(display, device, mode)

Display *display;

XDevice *device;

int mode;

display Speci�es the connection to the X server.

device Speci�es the device whose mode is to be changed.

mode Speci�es the mode. You can pass Absolute or
Relative.

The XSetDeviceMode function changes the mode of an input device
that is capable of reporting either absolute positional information
or relative motion information. Not all input devices are capable of
reporting motion data, and not all are capable of changing modes
from Absolute to Relative.

XSetDeviceMode can generate a BadDevice or BadMode error.

Checking the State of
an Extension Input

Device

To query the state of the keys, buttons, and valuators of an extension
input device, use XQueryDeviceState.

XDeviceState *XQueryDeviceState(display, device)

Display *display;

XDevice *device;

display Speci�es the connection to the X server.

device Speci�es the device whose state is to be queried.

The XQueryDeviceState function queries the state of an input
device. The current state of keys and buttons (up or down), and
valuators (current value) on the device is reported by this request.
Each key or button is represented by a bit in the XKeyState or
XButtonState structure that is returned. Valuators on the device
report 0 if they are reporting relative information, or the current
value if they are reporting absolute information.

XQueryDeviceState can generate a BadDevice error.

The XDeviceState structure contains:

typedef struct {

XID device id;

int num classes;

XInputClass *data;

} XDeviceState;

The XValuatorState structure contains:

5-38 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num valuators;

unsigned char mode;

int *valuators;

} XValuatorState;

The XKeyState structure contains:

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num keys;

char keys[32];

} XKeyState;

The XButtonState structure contains:

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num buttons;

char buttons[32];

} XButtonState;

Finding the Extension
Version

To �nd the version of the input extension, use
XGetExtensionVersion.

XExtensionVersion *XGetExtensionVersion(display, name)

Display *display;

char *name;

display Speci�es the connection to the X server.

name Speci�es the extension to be queried.

The XGetExtensionVersion function queries the version of the input
extension, and returns an XExtensionVersion structure. You should
use XFree to free the XExtensionVersion structure.

This function returns an XExtensionVersion structure.

typedef struct {

int present;

short major version;

short minor version;

} XExtensionVersion;

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-39

Warranty

Ringing a Bell on an
Extension Input Device

To ring a bell on a extension input device, use XDeviceBell.

void XDeviceBell (display, device, feedbackclass, feedbackid,

percent)

Display *display;

XDevice *device;

XID feedbackclass, feedbackid;

int percent;

display Speci�es the connection to the X server.

device Speci�es the desired device.

feedbackclass Speci�es the feedbackclass. Valid values are
KbdFeedbackClass and BellFeedbackClass.

feedbackid Speci�es the id of the feedback that has the bell.

percent Speci�es the volume in the range -100 (quiet) to 100
percent (loud).

This function is analogous to the core XBell function. It rings
the speci�ed bell on the speci�ed input device feedback using the
speci�ed volume.

The speci�ed volume is relative to the base volume for the feedback.
If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results.

The volume at which the bell rings when the percent argument is
nonnegative is:

base�
base � percent

100
+ percent

The volume at which the bell rings when the percent argument is
negative is:

base+
base � percent

100

To change the base volume of the bell, use ChangeFeedbackControl.

XDeviceBell can generate BadDevice and BadValue errors.

Initializing Valuators on
an Input Device

Some devices that report absolute positional data can be initialized
to a starting value. Devices that are capable of reporting relative
motion or absolute positional data may require that their valuators
be initialized to a starting value after the mode of the device is
changed to Absolute. To initialize the valuators on such a device,
use the SetDeviceValuators function.

Status XSetDeviceValuators (display, device, valuators,

�rst valuator, num valuators)

Display *display;

XDevice *device;

int *valuators, �rst valuator, num valuators;

5-40 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

display Speci�es the connection to the X server.

device Speci�es the device whose valuators are to be
initialized.

valuators Speci�es the values to which each valuator is to be
set.

�rst valuator Speci�es the �rst valuator to be set.

num valuators Speci�es the number of valuators to be set.

This function initializes the speci�ed valuators on the speci�ed
extension input device. Valuators are numbered beginning with
zero. Only the valuators in the range speci�ed by �rst valuator and
num valuators are set. If the number of valuators supported by the
device is less than the expression first valuator + num valuators, a
BadValue error will result.

If the request succeeds, Success is returned. If the speci�ed device
is grabbed by some other client, the request will fail and a status of
AlreadyGrabbed will be returned.

XSetDeviceValuators can generate BadLength, BadDevice,
BadMatch, and BadValue errors.

Getting Input Device
Controls

Some input devices support various con�guration controls that can
be queried or changed by clients. The set of supported controls will
vary from one input device to another. Requests to manipulate these
controls will fail if either the target X server or the target input
device does not support the requested device control.

Each device control has a unique identi�er. Information passed with
each device control varies in length and is mapped by data structures
unique to that device control.

To query a device control, use the XGetDeviceControl function.

XDeviceControl *XGetDeviceControl (display, device, control)

Display *display;

XDevice *device;

int control;

display Speci�es the connection to the X server.

device Speci�es the device whose con�guration control
status is to be returned.

control Identi�es the speci�c device control to be queried.

This request returns the current state of the speci�ed device control.
If the target X server does not support that device control, a
BadValue error is returned. If the speci�ed device does not support
that device control, a BadMatch error is returned.

If the request is successful, a pointer to a generic XDeviceState
structure is returned. The information returned varies according to

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-41

Warranty

the speci�ed control and is mapped by a structure appropriate for
that control. The �rst two �elds are common to all device controls:

typedef struct {

XID control;

int length;

} XDeviceState;

The control may be compared to constants de�ned in the �le XI.h.
Currently de�ned device controls include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is
de�ned in the following XDeviceResolutionState structure:

typedef struct {

XID control;

int length;

int num valuators;

int *resolutions;

int *min resolutions;

int *max resolutions;

} XDeviceResolutionState;

This device control returns a list of valuators and the range of valid
resolutions allowed for each. Valuators are numbered beginning with
0. Resolutions for all valuators on the device are returned. For each
valuator i on the device, resolutions[i] returns the current setting of
the resolution, min resolutions[i] returns the minimum valid setting,
and max resolutions[i] returns the maximum valid setting.

When this control is speci�ed for a device that has no valuators,
XGetDeviceControl will fail with a BadMatch error.

XGetDeviceControl can generate BadMatch and BadValue errors.

Changing Input Device
Controls

Some input devices support various con�guration controls that can
be changed by clients. Typically, this is done to initialize the device
to a known state or con�guration. The set of supported controls
varies from one input device to another. Requests to manipulate
these controls fail if either the target X server or the target input
device does not support the requested device control. Setting the
device control also fails if the target input device is grabbed by
another client, or has been opened by another client and has been set
to a conicting state.

Each device control has a unique identi�er. Information passed with
each device control varies in length and is mapped by data structures
unique to that device control.

To change a device control use XChangeDeviceControl.

5-42 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Status XChangeDeviceControl (display, device, control, value)

Display *display;

XDevice *device;

XID control;

XDeviceControl *value;

display Speci�es the connection to the X server.

device Speci�es the device whose con�guration control
status is to be modi�ed.

control Identi�es the speci�c device control to be changed.

value Speci�es a pointer to an XDeviceControl structure
that describes which control is to be changed, and
how it is to be changed.

This request changes the current state of the speci�ed device control.
If the target X server does not support that device control, a
BadValue error is returned. If the speci�ed device does not support
that device control, a BadMatch error is returned. If another client
has the target device grabbed, a status of AlreadyGrabbed will be
returned. If another client has the device open and has set it to a
conicting state, a status of DeviceBusy is returned.

If the request fails for any reason, the device control will not be
changed.

If the request is successful, the device control will be changed and a
status of Success will be returned. The information passed varies
according to the speci�ed control and is mapped by a structure
appropriate for that control. The �rst two �elds are common to all
device controls:

typedef struct {

XID control;

int length;

} XDeviceControl;

The control may be set using constants de�ned in the �le XI.h.
Currently de�ned device controls include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION
control is de�ned in the following XDeviceResolutionControl

structure:

typedef struct {

XID control;

int length;

int �rst valuator;

int num valuators;

int *resolutions;

} XDeviceResolutionControl;

This device control changes the resolution of the speci�ed valuators
on the speci�ed extension input device. Valuators are numbered

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-43

Warranty

beginning with zero. Only the valuators in the range speci�ed
by �rst valuator and num valuators are set. A value of -1 in the
resolutions list indicates that the resolution for this valuator is not
to be changed. The num valuators �eld speci�es the number of
valuators in the resolutions list.

When this control is speci�ed, XChangeDeviceControl fails with
a BadMatch error if the speci�ed device has no valuators. If a
resolution is speci�ed that is not within the range of valid values
(as returned by XGetDeviceControl) the request will fail with a
BadValue error. If the number of valuators supported by the device
is less than the expression first valuator + num valuators, a
BadValue error will result.

Sample X Input
Device Extension
Program

The following sample program, which creates a window and selects
input from it, uses the X Input device extension functions to access
input devices other than the X pointer and keyboard.

/**

*

* File: xinput.c

*

* Sample program to access input devices other than the X pointer and

* keyboard using the Input Device extension to X.

* This program creates a window and selects input from it.

* To terminate this program, press button 1 on any device being accessed

* through the extension when the X pointer is in the test window.

*

* To compile this program, use

* "cc xinput.c -I/usr/include/X11R5 -L/usr/lib/X11R5 -lXi -lXext -lX11 -o xinput

*/

#include <X11/Xlib.h>

#include <X11/XInput.h>

#include "stdio.h"

main()

{

int i, j, count, ndevices, devcnt=0, devkeyp, devbutp;

Display *display;

Window my;

XEvent event;

XDeviceInfoPtr list, slist;

XInputClassInfo *ip;

XDeviceButtonEvent *b;

XEventClass class[128];

XDevice *dev, *opendevs[9];

XAnyClassPtr any;

XKeyInfoPtr K;

if ((display = XOpenDisplay ("")) == NULL)

{

printf ("No connection to server - Terminating.\n");

exit(1);

}

my = XCreateSimpleWindow (display, RootWindow(display,0), 100, 100,

5-44 X Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

100, 100, 1, BlackPixel(display,0), WhitePixel(display,0));

XMapWindow (display, my);

XSync(display,0);

slist=list=(XDeviceInfoPtr) XListInputDevices (display, &ndevices);

for (i=0; i<ndevices; i++, list++)

{

any = (XAnyClassPtr) (list->inputclassinfo);

for (j=0; j<list->num_classes; j++)

{

if (any->class == KeyClass)

{

K = (XKeyInfoPtr) any;

printf ("device %s:\n",list->name);

printf ("num_keys=%d min_keycode=%d max_keycode=%d\n\n",

K->num_keys,K->min_keycode,K->max_keycode);

}

else if (any->class == ButtonClass)

printf ("device %s num_buttons=%d\n\n",list->name,

((XButtonInfoPtr) any)->num_buttons);

/*

* Increment 'any' to point to the next item in the linked

* list. The length is in bytes, so 'any' must be cast to

* a character pointer before being incremented.

*/

any = (XAnyClassPtr) ((char *) any + any->length);

}

if (list->use != IsXKeyboard && list->use != IsXPointer)

{

dev = XOpenDevice (display, list->id);

for (ip= dev->classes, j=0; j<dev->num_classes; j++, ip++)

if (ip->input_class == KeyClass)

{

/* This is a macro, the braces are necessary */

DeviceKeyPress (dev, devkeyp, class[count++]);

}

else if (ip->input_class == ButtonClass)

{

DeviceButtonPress (dev, devbutp,class[count++]);

}

opendevs[devcnt++]=dev;

}

}

XSelectExtensionEvent (display, my, class, count);

for (;;)

{

XNextEvent (display, &event);

if (event.type == devkeyp)

printf ("Device key press event device=%d\n",

((XDeviceKeyEvent *) &event)->deviceid);

else if (event.type == devbutp)

{

b = (XDeviceButtonEvent *) &event;

printf ("Device button press event device=%d button=%d\n",

b->deviceid, b->button);

if (b->button==1)

break;

}

}

for (i=0; i<devcnt; i++)

XCloseDevice (display, opendevs[i]);

XFreeDeviceList (slist);

}

Sample X Input Device Extension Program

DRAFT

4/7/98 12:51

X Input Device Extension Functions 5-45

Warranty

5-46 X Input Device Extension Functions DRAFT

4/7/98 12:51

6

HP Input Device Extension Functions

Prior to the addition of the X input device extension functions
described in Chapter 5, the standard model for the X Window
System consisted of a keyboard and a mouse. Although this met
the needs of most users, it did not provide a way to easily use
multiple input devices at the same time, and it did not accommodate
applications in which a mouse was not the most appropriate input
device. To provide better integration with products and peripherals
available with HP 9000 computers, including HP-HIL input devices,
the extensions described in this chapter were added to the X Window
System. Later the X Window System standard was extended to
include functions similar to the ones described in this chapter.

Note These functions are maintained for backwards compatibility only.
They will be removed at the next major release of HP-UX.

Most of the functionality described in this chapter has been
superseded by equivalent functionality in X input device extension
functions which are now a part of standard Xlib. Those overlapping
functions are described in Chapter 5. Unless your application
requires the use of a function described in this chapter, use those X
input device extension functions instead.

These input extension functions are accessible through the library
libXhp11.a. They will work among all networked HP 9000
computers, but may not work with other vendor's systems on the
same network.

Refer to the sample program at the end of this chapter for more
information about using the functions described below.

The following functions allow client programs to determine what
input devices are available, determine information about each device,
and access individual devices.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-1

Warranty

Listing Available
Input Devices

To obtain a list of available input devices, use
XHPListInputDevices.

XHPDeviceList *XHPListInputDevices(display, ndevices)

Display *display;

int *ndevices; /* RETURN */

display Speci�es the connection to the X server.

ndevices Speci�es as a return value the number of devices
available.

XHPListInputDevices returns information about the input devices
that are available to the X server, including the standard X keyboard
and pointer devices. Each time it is called it returns a pointer to an
array of XHPDeviceList structures that contains information about
each device. The ndevices value returned speci�es the number of
XHPDeviceList structures in the array. In
< X11/XHPlib.h >, the XHPDeviceList structure is de�ned as
follows:

typedef struct

{

unsigned int resolution; /* resolution in counts/meter */

unsigned short min val; /* min value this axis returns*/

unsigned short max val; /* max value this axis returns*/

} XHPaxis_info;

typedef struct

{

XID x id; /* device X identifier */

char *name; /* device name */

XHPaxis_info *axes; /* pointer to axes array */

unsigned short type; /* device type */

unsigned short min keycode; /* min X keycode from this dev*/

unsigned short max keycode; /* max X keycode from this dev*/

unsigned char hil id; /* device HIL identifier */

unsigned char mode; /* ABSOLUTE or RELATIVE */

unsigned char num axes; /* # axes this device has */

unsigned char num buttons; /* # buttons on this device */

unsigned char num keys; /* # keys on this device */

unsigned char io byte; /* I/O descriptor byte for dev*/

unsigned short detailed id; /* kbd interface + type */

unsigned char pad[6]; /* reserved for future use */

} XHPDeviceList;

The axes �eld of the HPDeviceList structure contains the address
of an array of XHPaxis_info structures. The num axes �eld
contains the number of elements in this array. If the num axes
�eld contains 0 (zero), the contents of the axes �eld will be NULL.
In the XHPaxis_info structure the resolution �eld contains the
resolution of the device in counts per meter. If the mode �eld of the
XHPDeviceList structure is ABSOLUTE, then the min val and max val
�elds contain the minimum and maximum values the device can
report. For relative pointing devices, these �elds contain 0 (zero).

The X pointer device is always the �rst device listed and has an
x id �eld equal to the constant XPOINTER. The X keyboard device

6-2 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

is always listed second and has an x id �eld equal to the constant
XKEYBOARD. In general, attempting to access the X keyboard or
pointer devices using the HP extension functions generates a
BadDevice error.

A variety of device types are de�ned in < X11/XHPlib.h >.

Device Type Names

Name Device Type

MOUSE HP-HIL mouse

TABLET HP-HIL graphics tablet

KEYBOARD HP-HIL keyboard

TOUCHSCREEN HP-HIL touchscreen

TOUCHPAD HP-HIL touchpad

BUTTONBOX HP-HIL buttonbox

BARCODE HP-HIL barcode reader

ONE KNOB HP-HIL single knob box

NINE KNOB HP-HIL nine knob box

TRACKBALL HP-HIL trackball

QUADRATURE HP-HIL quadrature

XHPDeviceList returns NULL if there are no input devices to list.

Freeing the
DeviceList

To free an XHPDeviceList array created by XHPListInputDevices,
use XHPFreeDeviceList.

void XHPFreeDeviceList(list)

XHPDeviceList *list;

list Speci�es the XHPDeviceList to free.

When XHPListInputDevices is called, it allocates memory in which
to place the XHPDeviceList array. To free this allocated memory,
call XHPFreeDeviceList with the XHPDeviceList list pointer as an
argument.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-3

Warranty

Enabling Extended
Input Devices

To enable an extended input device, use XHPSetInputDevice.

int XHPSetInputDevice(display,deviceid,mode)

Display *display;

XID deviceid;

int mode;

display Speci�es the connection to the X server.

deviceid Speci�es the device to open or close. This is a
deviceid listed in the XHPDeviceList structure.

mode Controls the mode to which the device is set. Valid
values are ON|SYSTEM_EVENTS, ON|DEVICE_EVENTS,
and OFF.

XHPSetInputDevice allows a client program to request the server
to open a device or to close a device when it is no longer needed.
The client may cause input from the device to be merged with
input from the X keyboard or X pointer by using the mode
SYSTEM_EVENTS, or as an individually-selectable device by using the
mode DEVICE_EVENTS.

Most clients need to use the DEVICE_EVENTS mode so that the events
generated by an extended input device can be distinguished from
those generated by the X keyboard and pointer devices.

XHPSetInputDevice can generate BadDevice and BadMode errors. A
BadMode error is generated if another client has opened the device
with a conicting mode.

Getting the Event
Select Mask and
Event Type

Event masks and event types for the events returned by extended
input devices are not constants. Instead, they are allocated by the
X server during its initialization. Therefore, client programs must
request from the server the event masks to be used to select extended
input and the event types to be compared with an event when it is
received.

To obtain an event mask and event type for a speci�c extended input
event, use XHPGetExtEventMask.

int XHPGetExtEventMask(display, event constant, eventtype,

mask)

Display *display;

long event constant;

int *eventtype; /* RETURN */

long *mask; /* RETURN */

display Speci�es the connection to the X server.

event constant Speci�es the constant corresponding to the extended
event you wish to receive.

6-4 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

eventtype Address of a variable into which the server can
return the event type for the extended input event.

mask Address of a variable into which the server can
return the event mask to use in selecting that event.

The client program must request the event mask and event type to
be used in selecting the events returned by devices. It does this by
calling the server with a constant that corresponds to the desired
event. The server returns the event mask and event type for the
desired event. Valid constants that may be used by the client to
request corresponding event masks and types are shown in the
following table:

Event Select Masks

Mask Request Description

HPDeviceKeyPressreq Request HPDeviceKeyPress event mask
and event type for an extended device.

HPDeviceKeyReleasereq Request HPDeviceKeyRelease event mask
and event type for an extended device.

HPDeviceButtonPressreq Request HPDeviceButtonPress event mask
and event type for an extended device.

HPDeviceButtonReleasereq Request HPDeviceButtonRelease event
mask and event type for an extended
device.

HPDeviceMotionNotifyreq Request HPDeviceMotionNotify event
mask and event type for an extended
device.

HPDeviceFocusInreq Request HPDeviceFocusIn event mask and
event type for an extended device.

HPDeviceFocusOutreq Request HPDeviceFocusOut event mask
and event type for an extended device.

HPProximityInreq Request HPProximityIn event mask and
event type for an extended device.

HPProximityOutreq Request HPProximityOut event mask and
event type for an extended device.

HPDeviceKeymapNotifyreq Request HPDeviceKeymapNotify event
mask and event type for an extended
device.

HPDeviceMappingNotifyreq Request HPDeviceMapping event type for
an extended device. (There is no event
mask for this event.)

XHPGetExtMask may return a BadType error.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-5

Warranty

Selecting Input
From Extended
Input Devices

To select input from an extended input device, use
XHPSelectExtensionEvent.

XHPSelectExtensionEvent(display, window, deviceid,

mask)

Display *display;

Window window;

XID deviceid;

Mask mask;

display Speci�es the connection to the X server.

window Speci�es the window ID. Client applications
interested in an event for a particular window pass
that window's ID.

deviceid Speci�es the device from which input is desired.

mask Speci�es the mask of input events.

The XHPSelectExtensionEvent function is provided to support the
use of input devices other than the X keyboard and X pointer device.
It allows input from extended input devices, selected independently
of those events generated by the X pointer and keyboard.

XHPSelectExtensionEvent requests that the server send an extended
event that matches the speci�ed event mask and is issued from
the speci�ed device and window. To use this function, the client
program must �rst determine the appropriate deviceid by using
the XHPListInputDevices function, and the appropriate event
mask by using the XHPGetExtEventMask function. Multiple event
masks returned by XHPGetExtEventMask may be ORed together and
speci�ed in a single request to XHPSelectExtensionEvent.

XHPSelectExtensionEvent cannot be used to select any of the core
X events, or to receive input from the X pointer or keyboard devices.
Use the XSelectInput function for that purpose.

XHPSelectExtensionEvent can generate BadDevice and BadWindow

errors.

6-6 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Grabbing Extended
Input Devices

To actively grab an extended input device, use XHPGrabDevice.

int XHPGrabDevice(display, deviceid, grab window, owner events,

pointer mode, device mode, time)

Display *display;

XID deviceid;

Window grab window;

Bool owner events;

int pointer mode;

int device mode;

Time time;

display Speci�es the connection to the X server.

device id Speci�es the ID of the device to grab.

grab window Speci�es the window ID of the window associated
with the extended input device being grabbed.

owner events Speci�es a boolean value of True or False.

pointer mode Speci�es the pointer mode. Only the constant
GrabModeAsync is currently supported.

device mode Speci�es the device mode. Only the constant
GrabModeAsync is currently supported.

time Speci�es the time. You can pass either a timestamp,
expressed in milliseconds, or CurrentTime.

The XHPGrabDevice function actively grabs control of the device
and generates HPDeviceFocusIn and HPDeviceFocusOut events.
Further device events are reported only to the grabbing client.
This function overrides any active input device grab by this client.
If owner events is False, all generated key events are reported
with respect to grab window . If owner events is True, then if a
generated device event would normally be reported to this client, it
is reported normally; otherwise the event is reported with respect to
the grab window . Regardless of any event selection by the client,
both HPDeviceKeyPress and HPDeviceKeyRelease events are always
reported.

XHPGrabDevice cannot be used to grab the X pointer device or the X
keyboard device. The standard XGrabKeyboard and XGrabPointer

functions should be used for that purpose.

XHPGrabDevice can generate BadValue and BadWindow errors.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-7

Warranty

Ungrabbing
Extended Input
Devices

To release a previously grabbed extended input device, use
XHPUngrabDevice.

int XHPUngrabDevice(display, deviceid, time)

Display *display;

XID deviceid;

Time time;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device to grab.

time Speci�es the time. You can pass either a timestamp,
expressed in milliseconds, or CurrentTime.

The XHPUngrabDevice function releases the input device. The
function does not release the device and any queued events if the
speci�ed time is earlier than the last-grab time or is later than the
current X server time. It also generates HPDeviceFocusIn and
HPDeviceFocusOut events. If the event window for an active device
grab becomes unviewable, the X server automatically performs an
XHPUngrabDevice request.

XHPUngrabDevice can generate a BadDevice error.

Grabbing Extended
Input Device
Buttons

To passively grab a particular button on an extended input device,
use XHPGrabDeviceButton.

XHPGrabDeviceButton(display, deviceid, button, modi�ers,

grab window, owner events, event mask, pointer mode,

device mode)

Display *display;

XID deviceid;

unsigned int button;

unsigned int modi�ers;

Window grab window;

Bool owner events;

unsigned int event mask;

int pointer mode, device mode;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

button Speci�es the code of the button to be grabbed. You
can pass either the button or AnyButton.

modi�ers Speci�es the set of keymasks. This mask is
the bitwise inclusive OR of these keymask bits:
ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

6-8 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

You can also pass AnyModifier, which is equivalent
to issuing the grab request for all possible modi�er
combinations (including the combination of no
modi�ers).

grab window Speci�es the ID of a window associated with the
device speci�ed above.

owner events Speci�es a boolean value of either True or False.

event mask Speci�es which device events are to be reported to
the client. They can be the bitwise inclusive OR of
these device mask bits: HPDeviceButtonPressMask,
HPDeviceButtonReleaseMask,
HPDevicePointerMotionMask, and

HPDeviceKeymapStateMask.

pointer mode Only the constant GrabModeAsync is currently
supported.

device mode Only the constant GrabModeAsync is currently
supported.

XHPGrabDeviceButton is provided to support the use of input
devices other than the X keyboard and the X pointer device. It
allows a client to establish passive grab on a button on an extended
input device. That device must have previously been opened (turned
on) using XHPSetInputDevice.

XHPGrabDeviceButton produces a BadAccess error if some other
client has issued a XHPGrabDeviceButton with the same device and
button combination on the same window. When using AnyModifier

or AnyButton, if there is a conicting grab for any combination, the
request fails completely and the X server generates a BadAccess error
and no grabs are established.

This function cannot be used to grab a button on the X pointer
device. The core XGrabButton function should be used for that
purpose.

XHPGrabDeviceButton can generate BadDevice, BadAccess,
BadWindow, and BadValue errors.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-9

Warranty

Ungrabbing
Extended Input
Device Buttons

To release previously grabbed extended input device buttons, use
XHPUngrabDeviceButton.

int XHPUngrabDeviceButton(display, deviceid, button,

modi�ers, ungrab window)

Display *display;

XID deviceid;

unsigned int button;

unsigned int modi�ers;

Window ungrab window;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

button Speci�es the code of the button that is to be
ungrabbed. You can pass either the button or
AnyButton.

modi�ers Speci�es the set of keymasks. This mask is the
bitwise inclusive OR of these keymask bits:
ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.
You can also pass AnyModifier, which is
equivalent to issuing the ungrab request for all
possible modi�er combinations (including the
combination of no modi�ers).

ungrab window Speci�es the ID of a window associated with the
device speci�ed above.

XHPUngrabDeviceButton is provided to support the use of input
devices other than the X keyboard and the X pointer device. It
allows a client to remove a grab on a button on an extended input
device. That device must have previously been opened (turned on)
using XHPSetInputDevice.

XHPUngrabDeviceButton cannot be used to ungrab a button on the
X pointer device. Use the core XUngrabButton function for that
purpose.

XHPUngrabDeviceButton can generate BadDevice and BadWindow

errors.

6-10 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Grabbing Extended
Input Device Keys

To passively grab a particular key on an extended input device, use
XHPGrabDeviceButton.

int XHPGrabDeviceKey(display, deviceid, keycode, modi�ers,

grab window, owner events, pointer mode, device mode)

Display *display;

XID deviceid;

unsigned int keycode;

unsigned int modi�ers;

Window grab window;

Bool owner events;

int pointer mode, device mode;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

keycode Speci�es the code of the key that is to be grabbed.
You can pass either the button or AnyKey.

modi�ers Speci�es the set of keymasks. This mask is
the bitwise inclusive OR of these keymask bits:
ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.
You can also pass AnyModifier, which is equivalent
to issuing the grab request for all possible modi�er
combinations (including the combination of no
modi�ers).

grab window Speci�es the ID of a window associated with the
device speci�ed above.

owner events Speci�es a boolean value of either True or False.

pointer mode Only the constant GrabModeAsync is currently
supported.

device mode Only the constant GrabModeAsync is currently
supported.

XHPGrabDeviceKey is provided to support the use of input devices
other than the X keyboard and the X pointer device. It allows a
client to establish passive grab on a button on an extended input
device. That device must have previously been opened (turned on)
using XHPSetInputDevice.

XHPGrabDeviceKey produces a BadAccess error if some other client
has issued a XHPGrabDeviceKey with the same device and button
combination on the same window. When using AnyModifier or
AnyKey, the request fails completely and the X server generates a
BadAccess error and no grabs are established if there is a conicting
grab for any combination.

This function cannot be used to grab a key on the X keyboard
device. The core XGrabKey function should be used for that purpose.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-11

Warranty

XHPGrabDeviceKey can generate BadDevice, BadAccess, BadWindow,
and BadValue errors.

Ungrabbing
Extended Input
Device Keys

To release previously grabbed extended input device keys on an
extended input device, use XHPUngrabDeviceKey.

int XHPUngrabDeviceKey(display, deviceid, keycode,

modi�ers, ungrab window)

Display *display;

XID deviceid;

unsigned int keycode;

unsigned int modi�ers;

Window ungrab window;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

keycode Speci�es the code of the key that is to be
ungrabbed. You can pass either the key or
AnyKey.

modi�ers Speci�es the set of keymasks. This mask is the
bitwise inclusive OR of these keymask bits:
ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.
You can also pass AnyModifier, which is
equivalent to issuing the ungrab request for all
possible modi�er combinations (including the
combination of no modi�ers).

ungrab window Speci�es the ID of a window associated with the
device speci�ed above.

XHPUngrabDeviceKey is provided to support the use of input devices
other than the X keyboard and the X pointer device. It allows
a client to remove a grab on a key on an extended input device.
That device must have previously been opened (turned on) using
XHPSetInputDevice.

XHPUngrabDeviceKey can generate BadDevice and BadWindow errors.

6-12 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Getting Extended
Input Device Focus

To obtain the focus window id and current focus state of an extended
input device, use XHPGetDeviceFocus.

int XHPGetDeviceFocus(display, deviceid, focus return, revert to return)

Display *display;

XID deviceid;

Window *focus return; /* RETURN */

int *revert to return; /* RETURN */

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device to examine.

focus return Returns the focus window ID, PointerRoot, or
None.

revert to return Returns the current focus state. The function can
return RevertToParent, RevertToPointerRoot,
or RevertToNone.

The XHPGetDeviceFocus function returns the focus window ID and
the current focus state of the speci�ed extended input device.

Setting Extended
Input Device Focus

To set the input focus of an extended input device, use
XHPSetDeviceFocus.

int XHPSetDeviceFocus(display, deviceid, focus, revert to, time)

Display *display;

XID deviceid;

Window focus;

int revert to;

Time time;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the extended device.

focus Speci�es the window ID. This is the window in which
you want to set the input focus. You can pass a
window ID, PointerRoot or None.

revert to Speci�es which window the input focus reverts
to if the window becomes not viewable. You can
pass RevertToParent, RevertToPointerRoot, or
RevertToNone.

time Speci�es the time. You can pass either a timestamp,
expressed in milliseconds, or CurrentTime.

The XHPSetDeviceFocus function changes the input focus and the
last-focus-change time. The function has no e�ect if the speci�ed
time is earlier than the current last-focus-change time or is later

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-13

Warranty

than the current X server time. Otherwise, the last-focus-change
time is set to the speci�ed time (CurrentTime is replaced by the
current X server time). This function causes the X server to generate
XHPDeviceFocusIn and XHPDeviceFocusOut events.

Depending on what value you assign to the focus argument,
XHPSetDeviceFocus executes as follows:

If you assign None to the to the focus argument, all device events
are discarded until a new focus window is set, and the revert to
argument is ignored.

If you assign a window ID to the focus argument, it becomes the
device's focus window. If a generated device event would normally
be reported to this window or one of its inferiors, the event is
reported normally. Otherwise, the event is reported relative to the
focus window.

If you assign PointerRoot to the focus argument, the focus
window is dynamically taken to be the root window of whatever
screen the pointer is on at each device event. In this case, the
revert to argument is ignored.

The speci�ed focus window must be viewable at the time
XHPSetDeviceFocus is called. Otherwise, a BadMatch error is
generated. If the focus window later becomes not viewable, the X
server evaluates the revert to argument to determine the new focus
window:

If you assign RevertToParent to the revert to argument, the focus
reverts to the parent (or the closest viewable ancestor), and the
new revert to value is taken to be RevertToNone.

If you assign RevertToPointerRoot or RevertToNone to the
revert to argument, the focus reverts to PointerRoot or None,
respectively. The X server generates HPDeviceFocusIn and
HPDeviceFocusOut events when the focus reverts, but the
last-focus-change time is not a�ected.

XHPSetDeviceFocus can generate BadMatch, BadValue, BadWindow,
and BadDevice errors.

6-14 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Getting Current
Extended Input
Event Selection
Masks

To obtain the current event selection mask for a speci�ed extended
input device and window, use XHPGetCurrentDeviceMask.

int XHPGetCurrentDeviceMask(display, window, deviceid,

mask return)

Display *display;

Window window;

XID deviceid;

Mask *mask return; /* RETURN */

display Speci�es the connection to the X server.

window Speci�es the window ID of the window to examine.

deviceid Speci�es the ID of the device to examine.

mask return Returns the current extended input event mask.

XHPGetCurrentDeviceMask returns the current event selection mask
for the speci�ed extended input device and the speci�ed window.
For standard input events, this information is returned by the
XGetWindowAttributes function.

XHPGetCurrentDeviceMask can generate BadWindow and BadDevice

errors.

Getting Extended
Device Motion
History

To get the motion history for a speci�ed extended device, window,
and time, use XHPGetDeviceMotionEvents.

This function is provided for client programs that need to receive
every motion event generated by the X server (such as graphics
programs that allow the user to paint on the screen). For most
other programs, selecting motion events is su�cient. The X server
compresses motion events for the X pointer device and extended
input devices.

XHPTimeCoord *XHPGetDeviceMotionEvents(display, deviceid,

w, start, stop, nevents return)

Display *display;

XID deviceid;

Window w;

Time start, stop;

int *nevents return; /* RETURN */

display Speci�es the connection to the X server.

deviceid Speci�es the extended input device.

w Speci�es the window ID. The only value currently
supported for this parameter is the constant:
ALLWINDOWS.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-15

Warranty

start
stop

Specify the time interval in which the events are
returned from the motion history bu�er. You can
pass a time stamp, expressed in milliseconds, or
CurrentTime. If the stop time is in the future, it is
equivalent to specifying CurrentTime.

nevents return Returns the number of events from the motion
history bu�er.

The XHPGetDeviceMotionEvents function returns all events in the
motion history bu�er that fall between the speci�ed start and stop
times, inclusive. If the start time is later than the stop time or if the
start time is in the future, no events are returned. The return type
for this function is a structure de�ned as follows:

typedef struct {

Time time;

short *data;

} XHPTimeCoord;

The time member is set to the time in milliseconds. The data
member is a pointer to an array of motion values. The number of
elements in this array is determined by the num axes �eld of the
XHPDeviceList structure associated with the device. You should use
XFree to free the data returned from this call.

XHPGetDeviceMotionEvents can generate BadWindow and BadDevice

errors.

Enabling
Auto-Repeat for
Extended Input
Devices

To enable auto-repeat for an extended input device, use
XHPDeviceAutoRepeatOn.

int XHPDeviceAutoRepeatOn(display, deviceid, mode)

Display *display;

XID deviceid;

unsigned int mode;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

mode Speci�es the auto-repeat rate. Valid values are
REPEAT_30, which causes repeats to take place every
1

30
of a second, and REPEAT_60, which causes repeats

to take place every 1

60
of a second.

XHPDeviceAutoRepeatOn is provided to support the use of input
devices other than the X keyboard and X pointer device. It cannot
be used to turn auto-repeat on for the X keyboard device. The core
XAutoRepeatOn function should be used for that purpose.

XHPDeviceAutoRepeatOn can generate BadDevice and BadValue

errors.

6-16 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Disabling
Auto-Repeat for
Extended Input
Devices

To disable auto-repeat for an extended input device, use
XHPDeviceAutoRepeatOff.

int XHPDeviceAutoRepeatOff(display, deviceid)

Display *display;

XID deviceid;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

XHPDeviceAutoRepeatOff is provided to support the use of input
devices other than the X keyboard and X pointer device. It cannot
be used to turn auto-repeat o� for the X keyboard device. The core
XAutoRepeatOff function should be used for that purpose.

XHPDeviceAutoRepeatOff can generate BadDevice and BadValue

errors.

Sending a Prompt to
Extended Input
Devices

To turn on a prompt on an extended input device, use XHPPrompt.

int XHPPrompt(display, deviceid, prompt)

Display *display;

XID deviceid;

unsigned int prompt;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

prompt Speci�es the prompt to be sent. Valid values are:
GENERAL_PROMPT, PROMPT_1, PROMPT_2, PROMPT_3,
PROMPT_4, PROMPT_5, PROMPT_6, and PROMPT_7.

XHPPrompt sends a prompt to an input device. For example, you can
use this function to turn on the LED on the HP 46086A 32-button
box.

The io byte �eld of the XHPDeviceList structure, which is returned
by the XHPListInputDevices function, reports which prompts and
acknowledges are supported by the device. Bit 7 of the io byte �eld
corresponds to GENERAL_PROMPT, while bits 6, 5, and 4 are taken as a
number between 1 and 7, meaning that prompts numbered 1 through
that number are supported.

XHPPrompt can generate BadDevice and BadValue errors.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-17

Warranty

Sending an
Acknowledge to
Extended Input
Devices

To send an acknowledge signal to an extended input device, use
XHPAcknowledge.

int XHPAcknowledge(display, deviceid, acknowledge)

Display *display;

XID deviceid;

unsigned int acknowledge;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the desired device.

acknowledge Speci�es the acknowledge to be sent. Valid values
are: GENERAL_ACKNOWLEDGE, ACKNOWLEDGE_1,
ACKNOWLEDGE_2, ACKNOWLEDGE_3, ACKNOWLEDGE_4,
ACKNOWLEDGE_5, ACKNOWLEDGE_6, and
ACKNOWLEDGE_7.

XHPAcknowledge sends an acknowledge to an input device. For
example, you can use this function to turn o� the LED on the HP
46086A 32-button box.

The io byte �eld of the XHPDeviceList structure (which is returned
by the XHPListInputDevices function) reports which prompts and
acknowledges are supported by the device. Bit 7 of the io byte �eld
corresponds to GENERAL_ACKNOWLEDGE, while bits 6, 5, and 4 are
taken as a number between 1 and 7, meaning that acknowledges
numbered 1 through that number are supported.

XHPAcknowledge can generate BadDevice and BadValue errors.

Getting Control
Attributes of
Extended Input
Devices

To get the control attributes of an extended input device, use
XHPGetDeviceControl.

int XHPGetDeviceControl(display, deviceid, values return)

Display *display;

XID deviceid;

XHPDeviceState *values return;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device whose attributes are to
be queried.

values return Speci�es a pointer to the XHPDeviceState structure
in which the device values will be returned.

XHPGetDeviceControl returns the control attributes of input
devices (other than the X keyboard and X pointer devices). The
speci�ed device must have previously been opened (turned on) with
XHPSetInputDevice.

6-18 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

XHPGetDeviceControl returns the control attributes of the device in
the XHPDeviceState structure, which is de�ned as follows:

typedef struct {

int key click percent;

int bell percent;

unsigned int bell pitch;

unsigned int bell duration;

unsigned long led mask;

int global auto repeat;

int accelNumerator;

int accelDenominator;

int threshold;

char auto repeats[32];

} XHPDeviceState;

For the LEDs, the least signi�cant bit of led mask corresponds to
LED one, and each bit set to 1 in led mask indicates an LED that
is lit. The auto repeats member is a bit vector. Each bit set to 1
indicates that auto repeat is enabled for the corresponding key.
The vector is represented as 32 bytes. Byte N (counting from zero)
contains the bits for keys 8N to 8N+7, with the least signi�cant bit
in the byte representing key 8N. The global auto repeat member can
be set to either AutoRepeatModeOn or AutoRepeatModeOff.

This function generates a BadValue error if the speci�ed device does
not exist, was not previously enabled with XHPSetInputDevice, or is
the X system pointer or X system keyboard.

Setting Control
Attributes of
Extended Input
Devices

To set control attributes of an extended input device, use
XHPChangeDeviceControl.

int XHPChangeDeviceControl(display, deviceid, value mask,

values)

Display *display;

XID deviceid;

unsigned long value mask;

XHPDeviceControl *values;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device whose attributes are to
be changed.

value mask Speci�es which attributes are to be changed. Each
bit in the mask speci�es one attribute of the speci�ed
device.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-19

Warranty

values Speci�es a pointer to the XHPDeviceControl
structure containing the values to be changed.

XHPChangeDeviceControl allows the control attributes of input
devices (other than the X keyboard and X pointer devices) to be
changed. The speci�ed device must have previously been opened
(turned on) with XHPSetInputDevice.

The attributes to be changed are speci�ed in the
XHPDeviceAttributes structure. They are not actually
changed unless the corresponding bit is set in the value mask
parameter. The following masks can be ORed into the value mask :

#define DVKeyClickPercent (1L<<0)

#define DVBellPercent (1L<<1)

#define DVBellPitch (1L<<2)

#define DVBellDuration (1L<<3)

#define DVLed (1L<<4)

#define DVLedMode (1L<<5)

#define DVKey (1L<<6)

#define DVAutoRepeatMode (1L<<7)

#define DVAccelNum (1L<<8)

#define DVAccelDenom (1L<<9)

#define DVThreshold (1L<<10)

The �elds of the XHPDeviceControl structure are de�ned as follows:

typedef struct {

int key click percent;

int bell percent;

int bell pitch;

int bell duration;

int led;

int led mode;

int key;

int auto repeat mode;

int accelNumerator;

int accelDenominator;

int threshold;

} XHPDeviceControl;

The key click percent and bell percent members set the volume for
key clicks or a bell. Allowed values are 0 (o�) through 100 (loud).
The bell pitch member sets the pitch (in Hz) of the bell, if possible.
The bell duration member sets the duration (in milliseconds) of the
bell, if possible. A value of -1 for any of these members restores
the respective default value. Any other negative value generates a
BadValue error.

If both the led and led mode members are speci�ed, the state of that
LED is changed, if possible. The led mode member can be set to
LedModeOn or LedModeOff. If only led mode is speci�ed, the state
of all LEDs are changed, if possible. At most, 32 LEDs (counting

6-20 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

from one) are supported. No standard interpretation of LEDs is
de�ned. If an led is speci�ed without an led mode, a BadMatch error
is generated.

If both the auto repeat mode and key members are speci�ed, the key
and auto repeat mode members are speci�ed, the auto repeat mode
of that key is changed according to AutoRepeatModeOn,
AutoRepeatModeOff, or AutoRepeatModeDefault, if possible. If only
auto repeat mode is speci�ed, the global auto repeat mode for the
entire device is changed and does not a�ect the per key settings. If
a key is speci�ed without an auto repeat mode, a BadMatch error is
generated.

Getting the Key
Mapping of
Extended Input
Devices

To get the key mapping of an extended input device, use
XHPGetDeviceKeyMapping.

KeySym *XHPGetDeviceKeyMapping(display, deviceid,

�rst keycode wanted, keycode count, keysyms per keycode return)

Display *display;

XID deviceid;

KeyCode �rst keycode wanted;

int keycode count;

int *keysyms per keycode return;

display Speci�es the connection to the X
server.

deviceid Speci�es the ID of the device whose
keymap is to be returned.

�rst keycode wanted Speci�es the �rst keycode to be
returned.

keycode count Speci�es the number of keycodes that
are to be returned.

keysyms per keycode return Speci�es the number of keysyms per
keycode.

XHPGetDeviceKeyMapping allows a client program to read and use
the key symbols for the keycodes generated by an extended input
device (other than the X keyboard and X pointer devices). The
speci�ed device must have previously been opened (turned on) with
XHPSetInputDevice.

Starting with �rst keycode wanted , XHPGetDeviceKeyMapping
returns the symbols for the speci�ed number of KeyCodes. The
speci�ed �rst keycode counted must be greater than or equal to
min keycode as reported by the XHPListInputDevices request. Also,

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-21

Warranty

max keycode must be greater than first keycode+keycode count�1.
If either of these conditions is not met, the function returns a
BadValue error. The number of elements in the KeySyms list is:
keycode count � keysyms per code+N .

KeySym number N (counting from zero) for
KeyCode K has the following index in keysyms:
(K � first keycode wanted) � keysyms per keycode return+N .

The speci�ed keysyms per keycode return can be chosen arbitrarily
by the client to be large enough to hold all desired symbols. Using
the special KeySym value of NoSymbol �lls in unused elements for
individual KeyCodes.

Use XFree to free the returned KeySym list when it is no longer
needed.

XHPGetDeviceKeyMapping can generate BadDevice and BadValue

errors.

Changing the Key
Mapping of
Extended Input
Devices

To change the key mapping of an extended input device, use
XHPChangeDeviceKeyMapping.

int XHPChangeDeviceKeyMapping(display, deviceid,

�rst keycode, keysyms per keycode, keysyms, num codes)

Display *display;

XID deviceid;

int �rst keycode;

int keysyms per keycode;

KeySyms *keysyms;

int num codes;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device whose key map
is to be changed.

�rst keycode Speci�es the �rst keycode that is to be
changed.

keysyms per keycode Speci�es the number of keysyms per keycode.

keysyms Speci�es a pointer to an array of keysyms
that are to be used.

num codes Speci�es the number of keycodes that are to
be changed. XHPDeviceState structure in
which the device values will be returned.

XHPChangeDeviceKeyMapping allows a client program to de�ne
the key symbols for the keycodes generated by an extended input
device (other than the X keyboard and X pointer devices). The

6-22 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

speci�ed device must have previously been opened (turned on) with
XHPSetInputDevice.

Starting with �rst keycode, XHPChangeDeviceKeyMapping de�nes
the symbols for the speci�ed number of keycodes. The symbols
for keycodes outside this range remain unchanged. The number of
elements must be: num codes � keysyms per keycode. (Otherwise, a
BadLength error is generated.)

The speci�ed �rst keycode must be greater than or equal
to min keycode as reported by the XHPListInputDevices
request. Also, max keycode must be greater than
first keycode+ (num codes=keysyms per keycode)� 1. If either of
these conditions is not met, the function returns a BadValue error.

KeySym number N (counting from zero) for KeyCode K has the
following index in keysyms:

(K � first keycode) � keysyms per keycode+N:

The speci�ed keysyms per keycode can be chosen arbitrarily
by the client to be large enough to hold all desired symbols.
A special KeySym value of NoSymbol should be used to �ll in
unused elements for individual KeyCodes. NoSymbol may appear
in nontrailing positions of the e�ective list for a KeyCode.
XHPChangeDeviceKeyMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It
is merely stored for reading and writing by clients.

Setting the Modifier
Mapping of
Extended Input
Devices

To change the modi�er mapping of an extended input device, use
XHPSetDeviceModifierMapping.

int XHPSetDeviceModifierMapping(display, deviceid,

modmap)

Display *display;

XID deviceid;

XModifierKeymap *modmap;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device whose whose keymap is
to be changed.

modmap Speci�es a pointer to an XModi�erKeymap structure.

XHPSetDeviceModifierMapping allows a client program to de�ne
the keycodes that are to be used as modi�ers for an extended input
device (other than the X keyboard and X pointer devices). The
speci�ed device must have previously been opened (turned on) with
XHPSetInputDevice.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-23

Warranty

XHPSetDeviceModifierMapping speci�es the KeyCodes of the keys,
if any, that are to be used as modi�ers for the speci�ed input device.
X permits up to eight modi�er keys. If more than eight are speci�ed
in the XModifierKeymap structure, a BadLength error is generated.

There are eight modi�ers, and the modi�ermap member of the
XModifierKeymap structure contains eight sets of max keypermod
KeyCodes, one for each modi�er in the order Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod 5. Only nonzero KeyCodes have
meaning in each set (zero KeyCodes are ignored). If a nonzero
KeyCode is given outside the range speci�ed by min keycode and
max keycode as returned by XHPListInputDevices, or a KeyCode
appears more than once in the entire map, a BadValue error is
generated.

An X server can impose restrictions on how modi�ers can
be changed (for example, if certain keys do not generate up
transitions in hardware or if multiple modi�er keys are not
supported). If such a restriction is violated, the status reply is
MappingFailed, and none of the modi�ers are changed. If the
new KeyCodes speci�ed for a modi�er di�er from those currently
de�ned and any (current or new) keys for that modi�er are in
the logically down state, the status reply is MappingBusy, and no
modi�er is changed. XHPSetDeviceModifierMapping generates a
HPDeviceMappingNotify event when it returns MappingSuccess.

XHPSetDeviceModifierMapping can generate BadDevice, BadLength,
and BadValue errors.

Getting the Modifier
Mapping of
Extended Input
Devices

To get the modi�er mapping of an extended input device, use
XHPGetDeviceModifierMapping.

XModifierKeymap *XHPGetDeviceModifierMapping(display,

deviceid)

Display *display;

XID deviceid;

display Speci�es the connection to the X server.

deviceid Speci�es the ID of the device whose modi�er map is
requested.

XHPGetDeviceModifierMapping allows a client program to read and
use the keys being used as modi�ers for an extended input device.

XHPGetDeviceModifierMapping returns a newly created
XModifierKeymap structure that contains the keys being used as
modi�ers for the speci�ed device. The structure should be freed after
use by calling XFreeModifiermap. If only zero values appear in the
set for any modi�er, that modi�er is disabled.

XHPGetDeviceModifierMapping can generate a BadDevice error.

6-24 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

Getting the Server
Mode

Some displays have both image and overlay planes. For such displays
there are four combinations of image and overlay planes in which the
server can run. To get the current mode of a speci�ed screen, use
XHPGetServerMode.

int XHPGetServerMode(display, screen)

Display *display;

int screen;

display Speci�es the connection to the X server.

screen Speci�es the number of the screen whose mode is
requested.

XHPGetServerMode allows a client program to determine the mode
of a particular screen. The mode returned is an integer that can be
compared against the following prede�ned modes:

Server Modes

Prede�ned Integer Name Mode Description

XHPOVERLAY_MODE The X server is running in the
overlay planes.

XHPIMAGE_MDOE The X server is running in the
image planes.

XHPSTACKED_SCREENS_MODE The X server is running with
the overlay and image planes
on di�erent screens.

XHPCOMBINED_MODE The X server is running in both
the overlay and image planes.

These constants can be obtained by including the �le
<X11/XHPproto.h>.

If an invalid screen number is used, a -1 is returned by this function.

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-25

Warranty

Sample Use of HP
Input Extensions

The following sample program, which creates a window and selects
input from it, uses the HP Input device extension functions to access
input devices other than the X pointer and keyboard.

Note The functions used in this example are supported for compatibility
with earlier versions of HP Xlib. Refer to the \Sample X Input
Device Extension Program" in Chapter 5 for a sample program that
uses the newer X standard input extension functions.

/**

*

* File: hpinput.c

*

* Sample program to access input devices other than the X pointer and

* keyboard using the HP extension to X.

* This program creates a window and selects input from it.

* To terminate this program, press button 1 on any device being accessed

* through the extension.

*

* To compile this program, use

* "cc hpinput.c I/usr/include/X11R5 -L/usr/lib/X11R5 -lXhp11 -lX11 -o hpinput

*/

#include <X11/Xlib.h>

#include <X11/XHPlib.h>

#include "stdio.h"

main()

{

Display *display;

XHPDeviceList *list, *slist;

int i, ndevices, devkeyp, devbutp;

Window my;

XEvent event;

Mask mask, tmask;

XHPDeviceButtonEvent *b;

if ((display = XOpenDisplay ("")) == NULL)

{

printf ("No connection to server - Terminating.\n");

exit(1);

}

my = XCreateSimpleWindow (display, RootWindow(display,0), 100, 100,

100, 100, 1, BlackPixel(display,0), WhitePixel(display,0));

XMapWindow (display, my);

XSync(display,0);

XHPGetExtEventMask (display, HPDeviceKeyPressreq, &devkeyp, &mask);

XHPGetExtEventMask (display,HPDeviceButtonPressreq,&devbutp,&tmask);

mask |= tmask;

slist = list = XHPListInputDevices (display, &ndevices);

for (i=0; i<ndevices; i++, list++)

{

printf ("\nDevice %s has %d keys and %d buttons\n",

list->name,list->num_keys,list->num_buttons);

if (list->x_id != XPOINTER && list->x_id != XKEYBOARD)

{

XHPSetInputDevice (display, list->x_id, (ON | DEVICE_EVENTS));

XHPSelectExtensionEvent (display, my, list->x_id, mask);

}

}

for (;;)

6-26 HP Input Device Extension Functions DRAFT

4/7/98 12:51

Warranty

{

XNextEvent (display,&event);

if (event.type == devkeyp)

printf ("Device key press event device=%d\n",

((XHPDeviceKeyEvent *) &event)->deviceid);

else if (event.type == devbutp)

{

b = (XHPDeviceButtonEvent *) &event;

printf ("Device button press event device=%d\n", b->deviceid);

if (b->ev.button==1)

{

for (i=0,list=slist; i<ndevices; i++,list++)

if (list->x_id != XPOINTER && list->x_id != XKEYBOARD)

XHPSetInputDevice (display, list->x_id, OFF);

break;

}

}

}

XHPFreeDeviceList (slist);

}

Sample HP Input Device Extension Program

DRAFT

4/7/98 12:51

HP Input Device Extension Functions 6-27

7

Internationalization Support

An internationalized application is adaptable to the requirements
of di�erent native languages, local customs, and character string
encodings. The process of adapting the operation to a particular
native language, local custom, or string encoding is called
localization. A goal of internationalization is to permit localization
without program source modi�cations or recompilation.

Release 5 of X11 Xlib provides support for standard routines for
the input and output of internationalized text. In all cases this
standard functionality should be used instead of the HP proprietary
mechanisms explained in this chapter. The functions described in
this chapter are provided for backwards compatibility and will be
deleted in a future release.

Internationalization in Xlib is based on the concept of a locale. A
locale de�nes the \localized" behavior of a program at run-time.
Locales a�ect Xlib in the following ways:

Encoding and processing of input method text.

Encoding of resource �les and values.

Encoding and imaging of text strings.

Encoding and decoding for inter-client text communication.

Xlib provides support for localized text imaging and text input. Sets
of functions are provided for multibyte (\char&*") text as well as
wide character (\wchar t") text in the form supported by the host C
language environment.

To get this functionality, it is necessary for the client to call either
setlocale() or XtSetLanguageProc() to initialize the clients locale
data base. If the client wishes to display localized title strings with
Motif's window manager (mwm), then XtSetLanguageProc() should
be used instead of setlocale().

DRAFT

4/7/98 12:51

Internationalization Support 7-1

Warranty

Controlling
Keyboard Input
Using HP's X
Window System

The X Window System uses the concept of keysyms to control the
mapping of keys into characters. The set of keysyms for a particular
keyboard is organized into a table called the keymap. To get
information about keyboard mapping or to set the keyboard mapping
use the xmodmap command.

Mapping keyboard for
both Extend-char and

Meta

A common problem reported by people using HP's X Window
System is the conict between the use of the \extend-char" key to
access the extended characters of \Roman8" or \Latin1" with HP's
keyboards and the use of the \extend-char" key as a Meta key.

The default mapping is that both keys serve both purposes.
However, since HP-UX 9.* it is possible to con�gure the keyboard so
that one key is used as the \extend-char" key and the other as the
Meta key.

The \xmodmap" command can be used to inquire and set the
mapping for keys on the keyboard. Run the following command.

xmodmap -pm

For a US or West European keyboard in the default state, this prints:

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_R (0xc), Shift_L (0xd)

lock Caps_Lock (0x37)

control Control_L (0xe)

mod1 Meta_R (0xa), Meta_L (0xb), Mode_switch (0x36)

mod2

mod3

mod4

mod5

The mod1 modi�er has entries for both Meta keysyms and for
Mode_switch as well; and this creates a problem. The solution is
to use mod2 for Mode switch and change the Meta_L key into the
Mode_switch key. To do this, use \xmodmap" and execute the
following command:

xmodmap mods

where mods contains the following four lines:

remove Mod1 = Meta_L Mode_switch

keysym Mode_switch = NoSymbol

keysym Meta_L = Mode_switch

add Mod2 = Mode_switch

The entries in the �le need to be in this order. Again, type:

xmodmap -pm

The results should be:

7-2 Internationalization Support DRAFT

4/7/98 12:51

Warranty

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_R (0xc), Shift_L (0xd)
lock Caps_Lock (0x37)

control Control_L (0xe)

mod1 Meta_R (0xa)

mod2 Mode_switch (0xb)

mod3

mod4

mod5

The keyboard then uses the left extend-char key for extended
characters and the right extend-char key for Meta. The client must
be linked against R4 or R5 Xlib for this to work.

Dead Key Compose
processing

HP's X Window System has supported dead key compose processing
for HP workstations for some time. This capability is now supported
for non-HP servers (workstations and X-terminals) connected to HP
systems.

In this form of compose processing a mute (or dead) key is struck
followed by a second key. The initial key is a diacritic and the second
key is the ASCII character to which the diacritic is to be applied.
The diacritic character must be a special muting keysym to initiate
the dead-key compose processing. The list of keysym names and the
diacritic character to which they apply follows.

DRAFT

4/7/98 12:51

Internationalization Support 7-3

Warranty

keysym name diacritic character

hpmute_acute
hpmute_grave

hpmute_asciicircum ^

hpmute_diaeresis

hpmute_asciitilde ~

acute

diaeresis

To �nd out which muting diacritics are supported by a keyboard
type:

xmodmap -pk

The entries in the third and fourth column of the keymap are the
extend and shift-extend characters.

To set the mute keysyms as they are for HP series 700 terminals
execute:

xmodmap mutes

where mutes is a �le containing the following �ve lines.

keysym r = r R hpmute_acute

keysym t = t T hpmute_grave

keysym y = y Y hpmute_asciicircum

keysym u = u U hpmute_diaeresis

keysym i = i I hpmute_asciitilde

This is the default condition for HP's ITF keyboards.

Multi-key Compose
processing

Since HP-UX 9.*, HP's X Window System supports a form of
compose processing that can be done using only ASCII characters.
To use this form of compose processing, set a keysym to the
Multi key keysym. For example the \Enter/Print" key on an ITF
keyboard could be used as the Multi key. To do this, execute the
following command:

xmodmap -e keysym Execute = Multi_key

Then, compose processing can be done by typing the Multi key
(\Print") followed by two other keys. One key should be the ASCII
key that corresponds to one of the diacritic symbols and the other
key should be the ASCII character to which the diacritic should
be applied. The two keys can be typed in any order. For example,
typing \Print ' e" generates a null character. The table of ASCII
characters and the diacritics they are used for follows

ASCII character diacritic character

'

`

^ ^

:

"

7-4 Internationalization Support DRAFT

4/7/98 12:51

Warranty

~ ~

Input Method
Support

The phrase input method is used in this chapter to describe whatever
mechanism is used to convert keystrokes into characters. Input
methods are described in the Xlib Reference Manual .

The input methods for most languages supported by HP are
simple input methods and require no additional support beyond
that provided by Xlib. However, the Asian languages which are
supported (Japanese, Korean, Simpli�ed Chinese and Traditional
Chinese) require an input server to fully support these languages.
Input servers for languages that require them are bundled with that
language's version of HP-UX.

X11 R5 provides two sample implementations of input method
support. These vary in the protocol used to communicate with
an input server. These are the Xsi implementation and the Ximp
implementation. HP 's R5 Xlib provides support for both of these
protocols as well as an HP-proprietary protocol. The details of these
protocols are only of interest to input server developers. Descriptions
of the �rst two protocols are available from the X Consortium.
For NLIO, descriptions and a library for input server developers is
available as part of the OpenNLIO product.

DRAFT

4/7/98 12:51

Internationalization Support 7-5

Warranty

Use of Asian Input
Method Servers

Users who wish to select from among multiple input servers available
on a system may set the input method modi�er. This can be set
using the XmNinputMethod resource for Motif 1.2 applications, or
the XMODIFIERS environment variable for non-Motif 1.2 applications.
If the value is HPNLIO, then use of an NLIO-style input method
is indicated. This is also the default if no value is speci�ed. If the
value of the input method modi�er is _XIM_INPUTMETHOD, then an
attempt is made to connect to a server using the Xsi input method
protocol. If the modi�er begins with _XIMP, then an attempt is
made to connect to the input method using the Ximp protocol string
for connecting to the input method. The following Ximp string is
used to determine language and codeset. If the character \#" is
encountered in the modi�er string, this is changed to \@" to allow
connection with input servers on remote machines. To �nd out what
input methods are available on your system, talk to your system
administrator.

In general, the capabilities provided by XOpenIM, XCreateIC,
XmbLookupString, etc. should replace the functionality provided
by XHPConvertLookup and its associated routines. Application
developers are encouraged to use these new routines. Support for
XHPConvertLookup etc. is provided to assure backward compatibility
for existing applications and will be removed from the library in the
next major release of HP-UX.

In addition to the IC values that are part of the X Windows System
standard, HP supports the following additional IC value:

XNHPNlioctl This value is a write-only IC value which performs
any of the operations supported as part of
XHPNlioctl. The argument passed to XSetICValues

is of type XhpNlioCmd. cmd is the element used as
the cmd argument for XHPNlioctl, arg is the arg
element, and ret is the return value. Setting this
IC value is equivalent to calling XHPNlioctl. It
should be used when the programmer is using IC's to
control input.

7-6 Internationalization Support DRAFT

4/7/98 12:51

Warranty

Internationalized
Output

X11 R5 provides support for internationalized output through the
use of font sets, which are accessed through XCreateFontSet and
its associated routines. That X standard capability should be used
instead of the associate font mechanism explained in this chapter.

The associate font mechanism explained here was provided by HP
to support internationalized text output before the X standard
supported this functionality. The HP associate font mechanism is
provided to maintain compatibility with software that still uses the
HP associate font mechanism for internationalized output. However,
this mechanism will be removed from the library at the next major
release of HP-UX.

Associate Font Support Xlib provides transparent text handling capability, including mixed
8-bit and 16-bit characters, for the following six Xlib functions:

XTextWidth

XTextExtents

XQueryTextExtents

XDrawText

XDrawString

XDrawImageString

In order to allow these functions to support mixed 8-bit and 16-bit
characters, the following functions will concurrently load and unload
separate 8-bit (font) and 16-bit (associate font) �les.

XLoadFont

XQueryFont

XLoadQueryFont

XFreeFont

XUnloadFont

If the following conditions are ful�lled when loading a font with
XLoadFont or XLoadQueryFont, an 8- and 16-bit mixed font will be
loaded by Xlib, until XFreeFont or XUnloadFont are called.

DRAFT

4/7/98 12:51

Internationalization Support 7-7

Warranty

1. There exists a language designation in the speci�ed font.

The XLoadFont and XLoadQueryFont functions look for the
language designation in the following order:

First examine the value of the font property LANGUAGE. This is
an 8-bit STRING type property.

Next examine the value of the environment variable LANG.
Currently, japanese, japanese.euc, korean, chinese-s, and
chinese-t are supported as valid LANGUAGE property or LANG
environment variable designations.

2. There exists the associate font designation in the speci�ed font.

XLoadFont and XLoadQueryFont look for the associate font in the
following order:

First examine the value of the font property ASSOCIATE_FONT.
This is an 8-bit STRING type property.

Next examine the value of the environment variable
XASSOCFONT.

In summary, XLoadFont and XLoadQueryFont look for the font
properties LANGUAGE and ASSOCIATE_FONT in the speci�ed font �rst.
If either or both are unde�ned, then the environment variables LANG
and XASSOCFONT are examined instead.

If the logically mixed font is implicitly speci�ed as the font argument
for XTextWidth, XTextExtents, XQueryTextExtents, XDrawText,
XDrawString, or XDrawImageString, then the string argument for
these functions may point to a string containing mixed 8- and 16-bit
characters encoded by HP-15 or EUC. Otherwise, all the characters
will be interpreted as 8-bit characters. This provides transparency
with standard X11 fonts.

Getting the Associate
Font

For a speci�ed font, which includes both the language and the
associate font designations, XQueryFont and XLoadQueryFont

return a pointer to the XFontStruct structure of the speci�ed
font. To obtain the XFontStruct of the associate font, use the
XHPGet16bitMixedFontStruct.

XFontStruct *XHPGet16bitMixedFontStruct(font)

Font font;

font Speci�es the font ID.

If the speci�ed font is a mixed 8- and 16-bit font,
XHPGet16bitMixedFontStruct returns a pointer to an XFontStruct

structure of the associated font. If the speci�ed font is not an 8- and
16-bit mixed font, then NULL is returned.

The XFontStruct structure returned by this function may not be
freed.

7-8 Internationalization Support DRAFT

4/7/98 12:51

Warranty

Checking for 16-bit
Characters

To determine if two bytes are de�ned as a 16-bit character for a
speci�ed font, use XHPIs16bitCharacter.

Bool XHPIs16bitCharacter(font, byte1, byte2)

Font font;

unsigned char byte1,

byte2;

font Speci�es the font to check for a 16-bit character.

byte1 Speci�es the �rst byte of a 16-bit character.

byte2 Speci�es the second byte of a 16-bit character.

XHPIs16bitCharacter returns True if byte1 and byte2 are de�ned as
the �rst and second bytes of a 16-bit character. In this function, the
16-bit character is based on HP-15 or EUC encoding determined by
the language designation included in the speci�ed font.

This function should not be called for EUC data in HP-UX 10.0 or
later releases, since EUC characters can then consist of 24-bit or
32-bit values. Results of this routine on such data is unde�ned.

Conversions Between
X11 Keysyms and HP

Roman 8 Codes

To convert an X11 Keysym into an HP Roman 8 character, use the
XHPKeysymToRoman8 function.

int XHPKeysymToRoman8(keysym, r8 return)

Keysym keysym;

char *r8 return; /* RETURN */

keysym Speci�es an X11 KeySym.

r8 return Speci�es a pointer to a location to receive the
converted Roman 8 character to keysym, if any.

XHPKeysymToRoman8 takes an X11 KeySym and converts it to an
HP Roman 8 character. The character is returned to the location
pointed to by r8 return. If no Roman 8 character for keysym exists,
then XHPKeysymToRoman8 returns 0 (zero) and *r8 return remains
unchanged.

Some Keysyms are unique to Hewlett-Packard equipment because
Roman 8 contains characters that were not encoded in the Keysyms
distributed by MIT.

To convert an HP Roman 8 character into an X11 KeySym, use
XHPRoman8ToKeysym.

Keysym XHPRoman8ToKeysym(r8 char)

char r8 char;

XHPRoman8ToKeysym takes an HP Roman 8 character and returns a
KeySym.

DRAFT

4/7/98 12:51

Internationalization Support 7-9

Warranty

Note Most of the KeySyms returned by XHPRoman8ToKeysym will be ISO
Latin-1 and various terminal functions. Two of the characters in the
Roman 8 set ('S' with caron and 's' with caron) convert to Keysyms
in the ISO Latin-2 set.

7-10 Internationalization Support DRAFT

4/7/98 12:51

