Using the X Window System

HEWLETT
(ép] PACKARD
HP Part No. B1171-90076

Printed in U.S.A. January 1995

Edition 7
DRAFT 4/7/98 12:45

Notice

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY

KIND WITH REGARD TO THIS MANUAL, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this
material.

Warranty

A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained
from your local Sales and Service Office.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

Courier, Helvetica, and Times (© 1984, 1987 Adobe Systems, Inc.
Portions (© 1988 Digital Equipment Corporation.

Univers and Helvetica are registered trademarks of Linotype AG
and/or its subsidiaries.

Intellifont is a registered trademark of Agfa Corporation. CG
Century Schoolbook and CG Times, based on Times New Roman
under license from The Monotype Corporation plc, are products of
Miles Incorporated, AGFA Division.

OSF/Motif and Motif are trademarks of the Open Software
Foundation, Inc. in the USA and other countries.

(© 1995 Hewlett-Packard

Warranty

Printing History The manual printing date and part number indicate its current
edition. The printing date will change when a new edition is printed.
Minor changes may be made at reprint without changing the printing
date. The manual part number will change when extensive changes
are made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive these updates
or new editions, you should subscribe to the appropriate product
support service. See your HP sales representative for details.

December 1988 Edition 2
September 1989 Edition 3
February 1991 Edition 4
November 1991 Edition 5
August 1992 Edition 6
January 1995 Edition 7

Hewlett-Packard Company
Workstation Systems Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330

iv DRAFT
4/7/98 12:45

Contents

1. Introduction

Who Should Read this Manual 1-1
How This Manual Is Organized 1-2
Conventions . . . e e e e e e 1-3
For More Informatlon e e e e e e e 1-5

2. What is the X Window System?

Basic Concepts . . . Ce e 2-1
The Server-Client Interactlon Model Ce e 2-1
Multi-Tasking 2-2
Local and Remote Access 2-2

The Parts of a Typical X11 System 2-2
Hardware . . . C e e e 2-3

System Processmg Umt (SPU) e 2-3
The Hard Disk 2-3
Keyboard C e e e 2-3
Mouse and Other Pomtmg Dev1ces e 2-4
Display e e e 2-4
Local Area Network (LAN) C e e e 2-4
Software . . . C e e e e e 2-4
The Operatmg System C e e e e e 2-5
The X Server 2-5
The Font Server 2-5
The Window Manager 2-5
X Clientso 2-6
Non-Client Programs 2-6
3. Preliminary Configuration

Do You Need to Read This Chapter? 3-1
Finding Your System Directory 3-2
Setting the DISPLAY Variable 3-2
Making an X0.hosts File 3-3
X0.hosts and XO0screens Relation 3-3
Using an /etc/hosts File 3-4

Software Configuration Files 3-5

Using Custom Screen Configurations 3-6
Creating a Custom ‘X*screens’ File 3-6
XO0screens Format . . Ce e 3-6

Operating Modes (Vlsual Layers) e e 3-7

Image Mode 3-8

Overlay Mode 3-8

Combined Mode 3-8

DRAFT Contents-1

4/7/98 12:45

Double Buffering 3-8

Screen Depth 3-9
Mouse Tracking with Multrple Screen Devrces .. 3-9
Converting Old X*screens Files 3-10
Making a Device Driver File 3-10
Using Special Input Devices . . . 3-11
How the Server Chooses the Default Keyboard and
Pointer o000 o000 3-11
XO0devices File Coe e 3-11
Explicitly Specifying Input Devrce Use Coe e 3-12
Explicitly specifying RS-232 Input Device Use . . 3-12
Specifying HP-HIL Input Device Use by Device Type
and Position . . . Coe e 3-13
Selecting Values for ‘X*devrces Frles Ce e 3-14
Examples . . . 3-15
Specifying HP-HIL Input Devrce Use by Devrce Flle
Name . . Ce e e 3-15
Redefining the HP HIL Search Path .o .. 3-16
Customizing for Native Language Support (NLS) . 3-16
Setting the LANG Environment Variable 3-16
Other NLS Environment Variables 3-17
Message Catalogs—The NLSPATH Envrronment
Variableo 3-17
Setting the XUSERFILESEARCHPATH
Environment Variable 3-17
Setting the KBD_LANG Envrronment Varrable 3-17
Language-Dependent Bitmaps—the
XBMLANGPATH Variable 3-18
Other Language-Dependent Resource Files 3-18
Native Language Fonts 3-18
4. Using the X Window System
Starting the X Window System 4-2
Starting X at Login . . . Ce e 4-2
Starting X from the Command Lme Ce e 4-2
Command-Line Options for x11start 4-2
Starting X on an HP-UX Multi-Display System . 4-3
What to Expect When X Starts 4-4
The Server Creates the Root Window . . . 4-4
A Terminal Window Appears on the Root Wmdow 4-4
What to Do If X11 Doesn’t Start 4-6
Exiting From the X Window System 4-7
Stopping Application Programs . . . 4-8
Following the Program’s Normal Exit Procedure 4-8
Closing the Window . . . e 4-8
Stopping the X Window System C e e e 4-8
Contents-2 DRAFT

4/7/98 12:45

5. Application Resources

How Applications Obtain Attributes 5-1
Ways to Change Resources 5-2
Setting Resources with .Xdefaults 5-3
Changing the RESOURCE_MANAGER Property Wlth
xrdb” .. L L. e e e 5-3
Syntax of Resource Spe(:lﬁcatlons e e e 5-5
Scope of Resource . . . e e e e e 5-6
Names and Classes of Chents e e e 5-6
Naming a Client 5-6
Names and Classes of Resources 5-6
Name/Class Precedence 5-7
Wildcards and Exact Paths 5-7
Color Resources 5-8
Geometry Resources 5-8
Font Resources 5-10

6. Using Fonts

Customizing the Font Search Path with ‘xset’ . . . 6-2
Listing Available Fonts with ‘xlsfonts” 6-3
Using the X11R5 Font Server . . . Coe 6-4
Managing the Font Server’s Conﬁguratlon Coe 6-6
Starting the Font Server at Boot Time 6-7
XLFD Syntaxo L. 6-8
FontNameRegistry 6-8
Foundry o000 6-8
FamilyName . . . e e e e e 6-8
WelghtName[extenszons] C e 6-8
Slant/extensions/ 6-9
SetwidthName . . . e e 6-9
AddStyleName[ea@tenszons] Ce e 6-10
PixelSize [Extensions}y 6-10
PointSizefextensions] 6-11
ResolutionX, ResolutionY 6-11
Spacing oL oo 6-12
AverageWidtho L. 6-12
CharSetRegistry . . . e e 6-12
CharSetEncodmg[ea@tenszons] Ce e e 6-12
Using the XLFD Font Name 6-13
The fonts.dir Fileo L. 6-13
The fonts.alias File 6-14
Using Alias Names 6-15
Errors . . . e 6-16
Bitmapped Font Admlmstratlon .o Coe e 6-16
Adding and Deleting Bitmapped Fonts Ce e 6-16
Creating a fonts.dir file with ‘mkfontdir’ . . 6-17
Compiling BDF Fonts to PCF Fonts with ‘bdftopcf’ 6-17
Scalable Typeface Administration 6-18
Overview . . R 6-18
Installing and Llcensmg Scalable Typefaces R 6-19
Loading Scalable Typefaces with ‘stload” . . . 6-20
DRAFT Contents-3

4/7/98 12:45

Creating *.dir Files with ‘stmkdirs” 6-22

Adding and Removing Licenses with sthcense . 6-22
Adding and Removing Character Sets 6-24
Administering Character Sets for Intellifont
Fonts . . . 6-24
Administering Character Sets for Type 1 Fonts 6-25
Example: Installing and Licensing 6-25
Scalable Typefaces File Structure 6-27
Scalable Font Directories 6-27
Licenses Subdirectory 6-27
Metrics Subdirectory 6-27
Products Subdirectory 6-27
Typefaces Subdirectory 6-27
Administrative Directories 6-27
Using ‘stmkfont” and ‘stconv’ . . 6-28
Making Bitmapped Fonts from Scalable Typefaces
with ‘stmkfont” Ce e 6-28
Converting Map Formats Wlth stconv Ce 6-29

7. The Window Manager

Starting and Stopping the Window Manager 7-1
Declaring Resources 7-2
Frames . . . e e 7-5
Parts of a Wmdow Frame e e e 7-5
Customizing the Window Frames 7-5
Coloring Window Frame Elements 7-6
Tiling Window Frames With Pixmaps 7-7
Matting Clients Ce 7-9
Frame Resources For Monochrome Dlsplays . 7-10
Controlling Window Size and Placement 7-11
Controlling Focus Policies 7-14
Specifying a Different Font for the Wmdow Manager 7-16
Displaying Titles in Local Languages 7-16
Working with Icons . . . e e e 7-16
Controlling Icon Placement Coe Ce 7-17
Controlling Icon Appearance and Behav1or .o 7-18
Selecting Icon Decoration 7-18
Sizing Ieons o000 7-18
Using Custom Pixmaps 7-19
Coloring and Tiling Icons 7-20
Using the Icon Box to Hold Icons 7-20
Specifying the Icon Boxo 7-21
Controlling the Appearance of Icon Boxes .o 7-22
The Icon Box Window Menu 7-23
Controlling Icons in the Icon Box 7-23
Managing Window Manager Menus 7-25
Default Menus . . . e e e 7-25
Default Window Menu e e e 7-25
Default Root Menu 7-26
Modifying Menus 7-26
Menu Syntax Lo L. 7-26
Contents-4 DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Function Names, Contexts, and Devices . . 7-27

Changing the Menu Associated with the Window
Menu Button . 7-30
Mouse Button Bindings . 7-31
Default Button Bindings 7-31
Modifying Button Bindings and Theu’ Functlons 7-32
Button Binding Syntax 7-32
Modifying Button Bindings 7-33
Modifying Button Click Timing 7-33
Keyboard Bindings 7-33
Default Key Bindings . . 7-33
Modifying Keyboard Bindings and Theu’ Functlons 7-35
Keyboard Binding Syntax . .. 7-35
Modifying Keyboard Bindings .. 7-36
Switching Between Default and Custom Behavior . 7-36
Using the Window Manager with Multiple Screens 7-36
Using Resources to Manage Multiple Screens . 7-37
Specifying Multiple Screens from the Command Line 7-37

Using the X Clients

Starting Clients and Non-clients 8-1
Command-Line Options . 8-2
Specifying the Display and Screen 8-2
Starting Remote Programs . 8-4
Running Programs Using ‘rlogin’ 8-4
Using ‘remsh’ to Start Programs 8-4
Starting Clients Remotely . 8-4
Starting a Remote Non-Client 8-5
Stopping Programs . 8-5
The X Clients 8-6
Clients Using Local Language 8-9
Terminal Emulation Clients 8-9
The ‘xclock’ Client 8-10
The ‘xload’ Client 8-10
Customizing the Root Wmdow Wlth Xsetroot’ 8-12
Changing Display Preferences with ‘xset’ 8-13
Creating a Custom Color Database with ‘rgb’ 8-15
Initializing the Colormap with ‘xinitcolormap’ 8-17
Adding and Deleting Hosts with ‘xhost’ . 8-18
Resetting Environment Variables with ‘resize’ 8-19
Getting Window Information with ‘xwininfo’ . 8-20
Contents-5

Contents-6

9. Customizing the Mouse and Keyboard
Changing Mouse Button Actions
Going Mouseless with the X*pomterkeys Flle
Configuring ‘X*devices’ for Mouseless Operation
The Default Values for the ‘X*pointerkeys’ File
Creating a Custom ‘X*pointerkeys’ File .
Syntax

Assigning Mouse Functlons to Keyboard Keys

Modifier Keys .
Specifying Pointer Keys .
Examples

Customizing Keyboard Input

Modifying Modifier Key Bindings Wlth Xmodmap

Specifying Key Remappmg Expressions
Examples
Printing a Key Map

10. Printing and Sereen Dumps
Making and Displaying Screen Dumps
Making a Screen Dump with ‘xwd’
Displaying a Stored Screen Dump with qud7
Printing Screen Dumps .
Printing Screen Dumps with ‘xpr’ .
Moving and Resizing the Image on the Paper
Sizing Options
Location Options .
Orientation Options
Printing Multiple Images on One Page
Printing Color Images .

11. Using Graphics With X Windows
Window-Smart and Window-Naive Programs

Is My Application Window-Smart or Window- Na1ve7

Running Window-Smart Programs

Running Window-Naive Programs

Creating a Window with ‘xwcreate’

Destroying a Window with ‘xwdestroy’

Destroying a Window with ‘gwindstop’
Using Transparent Windows .

Creating a Transparent Window Wlth Xseethru

Creating a Transparent Window with ‘xsetroot’
Creating a Transparent Background Color .

4/7/98

9-1
9-4
9-4
9-4
9-5
9-5
9-5
9-9
9-10
9-10
9-12
9-12
9-13
9-14
9-14

10-2
10-2
10-3
10-5
10-5
10-7
10-7
10-7
10-7
10-8
10-8

11-1
11-1
11-1
11-2
11-2
11-3
11-4
11-4
11-4
11-5
11-5

DRAFT
12:45

DRAFT
4/7/98

12:45

Using the Keyboards
Understanding the Keyboards
Default Keyboard Mapping
Equivalent Keys ..
Changing Key Mapping .
C1429 Keyboard
46021 Keyboard

Comparing the Keyboards .

Glossary

Index

A-1
A-2
A-2
A-3
A-3
A-3
A-3

Contents-7

Introduction

Welcome to the X Window System version 11 (X11 or X). The X
Window System is a network transparent window system.

The HP Visual User Environment (HP VUE) is a graphical user
interface that is based on the X Window System. The X Window
System can be run alone, or as part of HP VUE. This manual covers
what is needed to run the X Window System by itself, although there
is a lot of valuable information for the HP VUE user as well.

Hewlett Packard’s X Window System also supports HP graphics
application (such as Starbase) in the X Window environment. This
manual includes information about this capability.

In this chapter you’ll find out how this manual is organized and some
of the conventions it uses.

Who Should Read The primary audience for this manual is system administrators for

this Manual systems running the X Window System but not HP VUE. However,
HP VUE users who want information on the font server should read
chapter 6, “Using Fonts.”

Since HP VUE provides other mechanisms for performing some of the
actions covered in this manual, HP VUE users should first look in the
HP Visual User Environment User’s Manual.

Users running graphics applications in the X Window environment
will find useful information in this manual.

DRAFT Introduction 1-1
4/7/98 12:45

Warranty

i Chapter 1 Introduction. Gives some tips, and describes other
How This Manual Is p ps,
Organized documentation available to you.

Chapter 2 Hardware and software that are part of a typical X11
system and explains general concepts.

Chapter 3 Configuration information for default file, multiple
screens, remote operation, special input devices, and
Native Language support.

Chapter 4 Starting, using, and stopping X.

Chapter 5 How applications obtain resources.

Chapter 6 How and where to use different fonts.
Chapter 7 Motif Window Manager.

Chapter 8 X11 clients.

Chapter 9 Special mouse and keyboard configurations.

Chapter 10 Printing and screen dumps.
Chapter 11 X Windows and graphics applications.
Appendix A Using the Keyboards.

Glossary Special terms.

1-2 Introduction DRAFT
4/7/98 12:45

Warranty

Conventions As you read this manual, notice the following typographical
conventions:

Typographical Conventions

If you see ... It means ...

computer | This text is displayed by the computer or text that you
text type exactly as shown. For example,

login:

is a login prompt displayed by the computer.

italic text | A book title, emphasized text, or text that you supply. For
example,

hpterm -fg color

means you type “hpterm -fg” followed by a color you
choose.

QO You press the corresponding key on the keyboard. For
example,

(CTRL) (Left Shift) (Reset)

means you hold down the (CTRL) key, the key,
and the all at the same time.

L 1] An optional parameter that can be left off if you don’t need
that functionality. For example,

xload [-rv] &

means that you must type “xload” but don’t have to type

“-I’V” .

{ A list containing mutually exclusive optional parameters.
For example,

on
xset r
{ off }

means that option r can be set to either on or off, but not

both.

bold text The definition of this term follows. Often the term 1s also
defined in the glossary.

Also, you can use the X Window System with either a two- or a
three-button mouse by observing the following conventions. These
are the default mouse button settings and can be changed as
described in chapter 9.

DRAFT Introduction 1-3
4/7/98 12:45

Warranty

1-4

Introduction

Mouse Buttons and Their Locations

If you see ... On a 2-button mouse On a 3-button mouse
press ... press ...
Button 1 The left button. The left button.
Button 2 Both buttons simultaneously The middle button.
Button 3 The right button. The right button.

Be careful of your spelling;:

m Watch uppercase and lowercase letters. A file named .xdefaults
is not the same file as .Xdefaults. Use uppercase letters where
indicated and only where indicated.

m Don’t confuse the number 1 (one) with the letter “I” (el).

m Don’t confuse the “0” (zero) with the upper case “O” (oh).

m White space (extra spaces or tabs) at the end of a command line
in a text file sometimes alters the meaning of the command. Files
such as .rhosts are especially vulnerable. After modifying a file,
check for unwanted white space.

DRAFT
4/7/98 12:45

Warranty

For More Read these books to find out more about X Windows and HP-UX.

Information m Using Your HP Workstation (B2615-90003)
m HP Visual User Environment User’s Guide (B1171-90079)

m Introduction to the X Window System by Oliver Jones. Prentice
Hall, Englewood Cliffs, NJ:1989.

m The Definitive Guides to the X Window System Volume Three: X
Window System User’s Guide for Version 11 Release 5 by Tim
O’Reilly and Valerie Quercia. O’Reilly and Associates, Petaluma,
CA:1992.

DRAFT Introduction 1-5

4/7/98 12:45

What is the X Window System?

This chapter describes:
m Basic concepts.
m The hardware and software of a typical system.

m Distributed computing.

Basic Concepts

The Server-Client
Interaction Model

DRAFT
4/7/98 12:45

This section introduces several fundamental concepts:
m The role of the X server.
m Multi-tasking environments.

m Remote access.

The X server usually starts during system boot before the login
screen is displayed. The display server controls all access to input
devices (typically the mouse and keyboard) and all access to display
devices. You can think of it as standing between the programs
running on your system and your system’s input and display devices.

Terminal-based

LAM Clients Applications
Window
@ Manager
Display HF VUE
Client

@ ® Server ® Client

Keyboard
Graphical Terminal-based
Front End Fragram
Terminal Terminal-based
Emulator Fragram
Mouse

The Server Controls Display Access.

What is the X Window System? 2-1

Warranty

Multi-Tasking

Local and Remote
Access

A client is any program written to run with the server. Clients
know about windows and workspaces and how to make use of them.
Non-clients are programs that don’t know how to make use of
windows.

Multi-tasking is the computer’s ability to execute several programs
simultaneously. Each program is a separate task (process). Each
process usually runs in a separate window, and processes running in
separate windows do not interfere with one another. For example,
you can have the system recalculate a large spreadsheet in one
window while you shift your attention between editing a monthly
report in a second window and answering your electronic mail in

a third. Fach program normally has a main window for visual
interaction, and each window has its own input and output.

Only one window at a time receives user input. That window is
called the active window. While you focus on one window, other
windows continue running unattended or wait for your input.

Networked computing environments provide the ability to run
programs on computers other than the one you are sitting in front of.
For example, you can run a program locally and display the output
on the screen of a remote system. Conversely, you can run a program
remotely and display the output in a window on your screen. You
can also run a program remotely and have it display on yet another
remote screen.

The Parts of a
Typical X11 System

All X11 systems have the following features in common:
m Computer hardware.
m The operating system.

m An X server program to control communication between the
display and client programs.

m Client programs, including;:
0 A window manager to control the display’s window environment.
0 Application programs to provide useful services.
2-2 What is the X Window System? DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Hardware

Warranty
The hardware system consists of several components:

System Processing Unit (SPU)

The SPU contains the logic circuitry that performs all the processing
that takes place. The SPU runs the server, takes care of foreground
and background processing, and controls local and remote accessing
of your system’s resources.

The Hard Disk

The hard disk stores programs and data files. Some configurations
are called diskless clusters because groups of users share the same

hard disk.

Keyboard

The keyboard is an input device used to type information into the
computer. Although the keyboard is frequently used in conjunction
with a mouse, it does not need to be. You can configure X11 so that
you can use the keyboard for both text entry (its usual purpose) and
for pointing and selecting (the mouse’s usual purpose). Mouseless
operation may be beneficial in situations where desk space is at a
premium.

What is the X Window System? 2-3

Warranty

%

Note

Software

There are now two keyboards available for Hewlett-Packard
workstations, the 46021 keyboard, and the C1429 keyboard. See
appendix B, Using the Keyboards, for more information on using
these keyboards and the differences between them.

Mouse and Other Pointing Devices

A pointing device lets you point to a specific area on the screen and
select it. A mouse is the most common pointing device. Mouse
movements and button presses can be associated with keyboard key
presses for mouseless operation.

The server also supports other pointing devices—for example a
digitizer tablet or track ball. References to mouse actions apply also
to corresponding actions with other devices.

Display

The display is the principal output device. A typical display consists
of one physical screen per mouse and keyboard. However, a display
can include as many as four physical screens, all using the same
mouse and keyboard.

The screen becomes the root window when you boot X11. The root
window contains all the windows, menus, and icons that comprise the
visual elements of your X11 environment.

Technically, the screen is known as a bitmapped device because the
graphical elements (windows and icons) that it displays are stored
by the computer as a bitmap, a pattern of bits (dots) that can be
readily displayed as graphical images.

Local Area Network (LAN)

The LAN is composed of hardware and software. The hardware
connects the computer system physically to a network that includes
other computer systems at your site and could connect to other
networks at different locations. The LAN enables you to take
advantage of remote processing capabilities of X11.

There are several types of software that comprise the X Window
System.

To an end-user, the layers blend together into a single working
environment. However, from a system administration point of view,
it is important to know how the layers work together.

2-4 What is the X Window System? DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The Operating System

The operating system is the software that controls the operation
of the computer system. The X Window System runs on the
Hewlett-Packard HP-UX operating system. This is a multi-user,
multi-tasking environment. A multi-user environment means
more than one user can be on the system at the same time. A
multi-tasking environment means that each of those users can run
more than one program at a time.

The X Server

The central part of the X Window System is the server, also
called the X server or display server. The server is the program
that controls the screen, keyboard, and mouse, and processes
communication requests. The server updates the windows on
the screen as a client generates new information or as you

enter information through an input device. All client programs
communicate through the server.

The Font Server

The font server allows a font administrator to distribute fonts to all
X servers in a networked environment from a central point. The font
server is covered in chapter 6.

The Window Manager

The window manager is your main means of dynamically controlling
the size, shape, state (icon or normal), and location of the windows
on your screen. It also supplies the frames and menus for the
windows.

The window manager is the first client started during a session after
the X server has started. All other clients with their own windows
must be able to interact with the window manager.

This manual covers the OSF/Motif Window Manager (mwm). Using
the window manager is covered in chapter 4. Configuring the window
manager is covered in chapter 7.

What is the X Window System? 2-5

Warranty

L editor
Dear Al:

Juzt got the latest report on your last quarter’s
activities, Sure looks good to me,

Congratulations,

Systen The Bosd

Root renu
Neu UWindouw

R T

Start Llock
Start Load

3 Shuffle Doun
Shuetle Up
Refresh

Hentary

epacsahpe

Windows, Clients, Menus, and Icons

X Clients
Clients are programs designed to run under the X Window System.

There are a number of clients that are included with the X Window
System. For example, the xrdb client provides the ability to view
and modify current resources.

Some clients (for example, xwininfo and xmodmap) do not create
windows. They use an existing terminal emulation window to display
their output.

Clients are discussed in chapter 8.

Non-Client Programs

Non-client programs are designed to run alone on display screens or
“terminals” and are therefore referred to as terminal-based programs.
Terminal-based programs must have terminal emulator windows
created for them so that they can run in a window environment.

2-6 What is the X Window System? DRAFT

4/7/98 12:45

3

Preliminary Configuration

Do You Need to
Read This Chapter?

DRAFT
4/7/98

12:45

This chapter covers some of the preliminary configuration you may
need to do before starting the X server. It includes:

m Setting the DISPLAY environment variable.

m Using hardware and software configuration files.
m Using custom screen configurations.

m Configuring the system for special input devices.
m Distributed processing.

m Using Native Language Support.

There are other chapters that deal with initial configuration for
special situations:

m Chapter 4 covers starting and running X.
m Chapter 6 covers configuring and running the font server.
m Chapter 7 covers configuring the window manager.

m Chapter 11 covers configuration for running the X Window System
with graphics programs, such as Starbase.

All users should check:
m the DISPLAY variable.
m the X0.hosts file.

m the /etc/hosts file if your system is not configured to query a
nameserver.

The rest of this chapter covers optional configuration. The following
table shows the assumed configuration, and what you should read if
you want to change it.

Preliminary Configuration 3-1

Warranty

Finding Your System
Directory

Setting the DISPLAY
Variable

3-2 Preliminary Configuration

Default X Configuration

Expected configuration

If you want to change it, read ...

1 display “Using Custom Screen
Configurations”

1 mouse “Using Special Input Devices”

1 keyboard “Using Special Input Devices”

American English language

“Customizing for Native Language
Support”

X starts the hpterm and mwm clients
as part of its own start-up
procedures.

“Software Configuration Files”
chapter 4

Default mum colors, window
decorations, and menus.

“Software Configuration Files”
chapter b
chapter 7

Font server not started

“Using the X11Rb5 Font Server”
chapter 6

The directory containing most of the X Window System
configuration files is called the system directory. It is /usr/1ib/X11

The DISPLAY environment variable establishes the host, display
number, and screen number to which a system sends bitmapped

output.

You can check the current setting of your system’s DISPLAY variable

by typing this command:

env

A list similar to the following is displayed:

DISPLAY=hpaaaaa:0.0
HOME=/home/ellen
TZ=PST8PDT

The DISPLAY variable has the syntax:

hostname
local
unix
shmlink

display[.screen]

The default is hostname:0.0, which is display 0, screen 0 of the

display running the X server.

To reset the DISPLAY environment variable type the appropriate

command shown below, or put it into the configuration file used by
your system if you want it to be in effect every time you log in.

DRAFT

4/7/98 12:45

Making an X0.hosts File

Warranty

Setting Environment Variables

Shell Command Configuration File
sh DISPLAY=host:display.screen “/.profile
export DISPLAY
csh setenv DISPLAY host:display.screen “/.login
Aegis DISPLAY := host:display.screen “/user_data/startup_dm. zzz or
export DISPLAY /sys/dm/startup_login.zzz
ksh DISPLAY=host:display.screen “/.profile
export DISPLAY

X0.hosts and X0screens

DRAFT
4/7/98

12:45

Relation

The /etc/X0.hosts file is an ASCII text file containing the
hostnames of each remote host permitted to access your local server.

m [f you are running as a stand-alone system, you must have your
system’s name in this file.

m If you are part of a network, the other system names must be
included.

The syntax is as follows:

host
host
host

For example, if you are hpaaaaa, and regularly ran clients on
hpcccce, and hpddddd, you would want the following lines.

hpaaaaa
hpccccce
hpddddd

Note that aliases work as well as hostnames, provided they are valid,
that is, commonly known across the network.

The default screen configuration file XOscreens uses the default X11
remote host file X0.hosts.

Each custom X#screens file is associated with a special X*.hosts
file. The number represented by the * causes the correct screen and
host files to be used together. For example, X3screens takes an
X3.hosts file. Both are referenced by the server when it is started
with a /usr/bin/X11/X :3 command.

If you use a special X*screens file, you need to set your DISPLAY
variable appropriately. For the previous example, it would be set to
hostname:3.0.

Preliminary Configuration 3-3

Warranty

Using an /etc/hosts File

3-4 Preliminary Configuration

This file need not be present if your system is configured to query a
nameserver.

The /etc/hosts file is an ASCII text file containing a list of all the
host names and internet addresses known to your system, including
your own system.

If your system is not connected to a network, use the loopback
address (127.0.0.1) and the hostname unknown.

127.0.0.1 unknown
For a local system to access a remote host:

m The address and hostname of the remote host must be listed in the
local system’s /etc/hosts file.

m The user must have a valid login (username and password) and
home directory on the remote host.

DRAFT
4/7/98 12:45

Warranty

Software The X Window System uses four configuration files:
Configuration Files .Xdefaults Specified default appearance and behavior

characteristics for clients. The contents of
this file are covered in more detail in chapter

5.

.xllstart Specifies the clients that start when the X
Window System starts. This file is covered in
more detail in chapter 4.

LMW C Specifies the menus, menu selections, button
bindings, and keyboard bindings that control
the OSF/Motif Window Manager (mwm). The
contents of this file are discussed in chapters
5 and 7

app-defaults/x* Optional configuration for specific clients.
The contents of this file are discussed in
chapter 5.

If your home directory does not contain these files, the X Window
System uses the system-wide versions of these files in /usr/1ib/X11.

sys.xllstart
system.mwmrc

If you want to customize your X environment, copy these files from
the /usr/1ib/X11 to your home directory (noting the name change),
and make your modifications. For example:

cp /usr/1lib/X11/system.mumrc $HOME/.mwmrc
cp /usr/1ib/X11/sys.Xdefaults $HOME/.Xdefaults

The X server looks first in your home directory for these files. If they
are not there, it uses the system-wide files.

DRAFT Preliminary Configuration 3-5
4/7/98 12:45

Warranty

Using Custom
Screen
Configurations

Creating a Custom
‘X*screens’ File

X0screens Format

3-6 Preliminary Configuration

The default screen configuration is specified in the XOscreens file in
/etc/X11. It assumes:

m There is one display—display 0.
m There is one screen—screen 0.

m The screen uses Image mode (for older displays) or Combined
mode (for newer displays)

m The screen is at the address node specified by /dev/crt.

If you use some configuration other than the default, you must edit
the default screen file or add additional screen configuration files.

There should be a separate X*screens file for each display, where * is
a number that matches the display number used when starting the X
server. For example, XOscreens is used for hostname:0, X1screens
is used for hostname:1, and so on.

X*screens allows you to specify:

device independent server options.
screen device files.

default visuals.

monitor size.

monitor power-saving level.

device dependent screen options.

There are two ways to create a custom screen configuration for a
display:

m You can modify XOscreens so that it contains device information
for all the screen configurations you may want to use. This is
generally the preferred way. Only one configuration is used at a
time; the others are commented out. To switch from one screen
configuration to another, you uncomment some lines and comment
others. For multiple displays, you would have a separate file for
each display—for example, X1screens for display 1.

m You can have a separate X+screens file for each screen
configuration on a particular display. Switching between them
involves modifying the command that starts the X server.

Entries in the XOscreens file and any X*screens files are in the
form:

[ServerOptions
server_option

server_option]
Screen device_name
[DefaultVisual
[Class wvisual_class]

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

[Depth depth]
[Layer layer]
[Transparent]]
[MonitorSize diagonal_length units]
[ScreenOptions
screen_options

screen_options]

where:

ServerOptions defines a block of options specific to a server

server_option are X server options allowing the server to
make the best use of your display.

Screen defines a block of options specific to a screen.

device_name is the name of the device file.

visual_class describes the kind of grayscale or color to use
as the visual.

depth the number of planes (image mode only)

layer the operating mode: image or overlay

Transparent allow transparent windows (overlay mode
only)

MonitorSize use only if you have a non-standard monitor

ScreenOptions defines a block of options specific to certain
hardware.

screen_options are options specific to different screens.

The Screen device_name line is the only required entry. If no other
options are specified, the server will use the default options for that
device.

The correct entries for your hardware are provided in the
/usr/1lib/X11/Xserver/info/screens/hp file (for HP-UX 10.0 and
later systems).

The XOscreens file, located in the /etc/X11/ directory provides
detailed information about how to create your own X*screens file.

Operating Modes (Visual Layers)

Display hardware can have two kinds of display planes, image and
overlay.

There are three possible server operating modes using these display
planes. Different display hardware allows different modes, so all
modes might not be available to you. In general, older devices can
use all three modes, while newer ones use Combined.

Preliminary Configuration 3-7

Warranty

Double Buffering

3-8 Preliminary Configuration

On HP-UX 10.0 (and later) systems, for information about

what modes your display hardware supports, read the
/usr/1lib/X11/Xserver/info/screen/hp file (HP-UX 10.0 and later
systems).

The three screen modes are image, overlay, and combined:

Image Mode. The default screen mode using multiple image planes
for a single screen. The number of planes (“depth”) determines the
variety of colors available to the screen.

An example of specifying image mode is:

Screen /dev/crt
ScreenOptions
Layer Image

Overlay Mode. An alternate screen mode using overlay planes for a
single screen. You can see what is in the image planes only if you
open a “transparent” window in the overlay planes and move the
window over what you want to see. Typically, overlay planes are used
in conjunction with image planes in combined mode.

An example of specifying overlay mode is:

Screen /dev/crt
ScreenOptions
Layer Overlay

Combined Mode. A combination of image and overlay planes in
which a single display has a single screen that is a combination of the
image and overlay planes.

The X*screens entry for this modes is more complicated. A primary
and secondary device are specified, each with their own mode.

An example, with /dev/ocrt as the primary device (running in
overlay mode) and /dev/crt as the secondary device (running in
image mode):

Screen /dev/ocrt
ScreenOptions
VRXSecondaryDevice /dev/crt

This feature applies to image planes only. Double

buffering is not available on all displays. Refer to
/usr/1ib/X11/Xserver/info/screen/hp for information about your
display.

Double buffering means that half of the color planes of your displays
are used to display to the screen, and the other half are used to
compute and draw the next screen display. This provides smooth
motion for animation, and it is also faster. However, double buffering
ususally reduces the number of colors available for displaying on

the screen at one time. Some applications require double buffering.

DRAFT
4/7/98 12:45

Mouse Tracking with
Multiple Screen Devices

DRAFT
4/7/98

Screen Depth

12:45

Note

%

Warranty

If you run a double-buffered application in single buffer mode, the
display will flash or flicker rapidly.

If you are using a recent display device, double-buffering required by
applications will occur automatically.

You can specify a screen depth for image planes in the X*screens
file. Valid depths for regular (single buffer) mode are 8, 12, and 24.
Valid depths for double buffered mode are 8, 16, and 24. The depth
of overlay planes is determined by the /dev entry in X*screens.

For information about what depth your display hardware supports,
read the /usr/1ib/X11/Xserver/info/screen/hp file (HP-UX 10.0
and later systems only).

More planes means more colors can be displayed simultaneously. For
computer-generated graphics to look as realistic as photographs,
thousands of colors must be shown at the same time. 8 planes means
that 2% (256) colors can be shown, while 24 planes means that 224 (16
million) colors can be shown. Note that depth is specified only when
you have more than one depth available.

If you use a multi-screen configuration, the mouse pointer can move
from one screen to another. You can arrange the screens in a vertical,
horizontal, or matrix orientation by adding the appropriate lines to
the X*pointerkeys configuration file described in chapter 9. The
sample X*pointerkeys file in /usr/1ib/X11 contains examples that
show how to specify the orientation of multiple screens.

The sample X*pointerkeys file is placed in /etc/X11 at install
time. If you subsequently update your system, the X*pointerkeys
file in /etc/X11 is not overwritten, and the sample file is placed in
/usr/newconfig.

Moving the mouse pointer off one edge of a screen causes the pointer
to move to another screen, depending on the screen orientation

you have specified. In the configuration files, the order of entry
determines the tracking order of the mouse pointer. The first line in
the file is the device on which the pointer appears when you start
X11.

Other lines correspond to the screens that appear when the mouse

is moved to the right or left side of the current screen. Moving off
the right side goes to the next display listed, the left side the to
previous display in the list. If you are on the first display listed and
move right, you move to the last display listed. If you are on the last
display and move left, you move to the first display.

Preliminary Configuration 3-9

Warranty

Converting old The format of X*screens has changed at HPUX 10.0. Use the
X*screens Files convertscr utility to convert an old X*screens file to the new
format. Type:

/usr/bin/X11/convertscr -h

to learn how to use this utility.

Making a Device Driver Devices specified in screen configuration files must correspond to
File device files. If you don’t have the appropriate device file, you must
create it using the mknod command. For information on mknod see
the system administration manual for your operating system.

3-10 Preliminary Configuration DRAFT
4/7/98 12:45

Using Special Input
Devices

DRAFT
4/7/98

How the Server
Chooses the Default
Keyboard and Pointer

X0devices File

12:45

Note

%

Warranty

Input devices are connected to Hewlett-Packard computers through
several different hardware interfaces. Among the interfaces supported
are the Hewlett-Packard Human Interface Link (HP-HIL) and the
industry standard RS-232C (serial) and DIN interfaces. Some
Hewlett-Packard computers do not support all of these interfaces.

The X server can access input devices through any of the above
interfaces. Devices that use the HP-HIL interface and devices that
use the DIN interface and that are compatible with the HP DIN
keyboard and mouse can be used by simply plugging them into

the computer. Devices that use the RS-232C interface require the
installation of input device driver software before they can be used.

If no explicit input device configuration is done, the X server chooses
the X keyboard device and X pointer device from the input devices
that are connected to the computer (in most cases, the keyboard

and a mouse). On computers that support both HP-HIL and DIN
interfaces, the DIN input devices are used if both types of devices are
connected.

HP-HIL input devices can plug into other HP-HIL devices, with up
to seven input devices connected together. If there are no DIN input
devices connected, and there are multile HP-HIL input devices, the
following algorithm is used to choose an X keyboard and pointer
device.

1. If no explicit specification is made through the X*devices file, the
last mouse (the one farthest from the computer on the HP-HIL
line) is used as the X pointer and the last keyboard is used as the
X keyboard.

2. If no mouse is available, the last pointing device (such as a dial
box, graphics tablet, or trackball) is used as the X pointer. If no
keyboard is available, the last key device (such as a buttonbox or
barcode reader) is used as the X keyboard.

3. If no pointing device is available, the last keyboard is used as the
X pointer as well as the X keyboard.

4. If no pointer and keyboard are available, the X server won’t run
unless explicitly configured to run with no input devices.

The X server reads an input device file, X0devices in /etc/X11, to
find out what input devices it should open and attach to the display.

The sample X0devices file is loaded into /etc/X11
unless one already exists. In that case, it is loaded into
/usr/newconfig/etc/X11.

The default X0devices file contains lines of text, but does not
specify any input configuration. Rather, it assumes the default input
configuration of one keyboard and one pointer.

Preliminary Configuration 3-11

Warranty

Explicitly Specifying
Input Device Use

Explicitly specifying
RS-232 Input Device
Use

3-12 Preliminary Configuration

If this is your configuration, you may not want to change the
contents of the file for three reasons:

m Clients can request and receive the services of an input
device regardless of whether the device is specified in a device
configuration file. Thus, you need not change the X0devices file,
or create a custom file, even though you have a custom input
configuration.

m Even if you have other screen configurations, you can rely on the
default input device configuration without having to create an
X*devices file to match every X*screens file. For example, if you
had a custom X*screens file, you would not necessarily need an
X+devices file.

A custom X*devices file is required only when you want to tell the
X server about a custom input device configuration.

The X server can be explicitly configured to use a specific input
device as the X pointer or X keyboard, or merge the data from

an input device with that from the X pointer or keyboard. This
configuration is done by adding information to the X+*devices file.
There is one syntax to use for HP-HIL devices, and another syntax
for devices that require a device driver to be loaded by the X server
(such as RS-232 devices).

HP-HIL devices can be specified in either of two ways:
m Device type and position.

m Device file name.

Some RS-232C input devices can be used with the X server. A device
driver must exist for the desired serial input device, and it must
reside in the /usr/1ib/X11/extensions directory. Input device
drivers are usually supplied by the input device vendor along with
the input device. Sample input device drivers and documentation
describing how to write an input device driver may be found in the
/usr/contrib/X1ldrivers/input directory.

To use an RS-232 input device, you must modify the X*xdevices file
to inform the X server which input device driver is to be loaded, the
serial port to which it is connected, and how it is to be used. This is
done by adding an entry to the X*devices file of the following form:

Begin_Device_Description

Name device_driver_name
Path device_file_path
Use device_use

End_Device_Description
where:

device_driver_name Specifies the name of the input device driver
shared library.

DRAFT
4/7/98 12:45

Specifying HP-HIL Input

Device Use by Device

DRAFT
4/7/98

Type and Position

12:45

Warranty

device_file_path Specifies the name of the device file for the
serial port being used.

device_use Specifies the desired use of the input device,
such as “keyboard”, “pointer”, “other”, or
“extension”.

The following example specifies a Spatial System Spaceball ®
connected to the serial port associated with device file /dev/tty00 as
the X pointer:

Begin_Device_Description

Name spaceball.sl
Path /dev/tty00
Use pointer

End_Device_Description

More examples of input device specifications for RS-232 input devices
are in the /usr/newconfig/etc/X11/X0devices file.

The device can be specified using its device type and position by
adding an entry to the X*devices file with the following form:

relative_position device_type use #Hcomments
where:
relative_position Specifies the position of the device on the

HP-HIL relative to the other devices on the
HP-HIL, for example, “first”, “second”, and

SO on.

device_type Specifies the type of input device, such as
“keyboard”, “mouse”, or “tablet”.

use Is “keyboard”, “mouse”, or “other”.

#comments Describes device. Comments are optional, but

must start with a “#”.

Valid positions, types, and uses are in “Selecting Values for
‘X*devices’ Files”, along with examples.

Separate the parts of your entry with tabs or spaces.

The position of an input device on the HP-HIL is relative to other
devices of the same type. For example if you have two keyboards, a
graphics tablet, and a mouse connected, they are referred to as “first
keyboard”, “second keyboard”, “first tablet”, and “first mouse”.

This syntax is useful for computers on which a single X server is
running, and on which no other programs directly access input
devices. With this syntax, if you add a new input device to the
HP-HIL, you don’t have to edit the X*devices file unless the device
is of the same type as one already named in the file and you add the
device ahead of the existing device.

Preliminary Configuration 3-13

Warranty

3-14 Preliminary Configuration

This syntax should not be used if more than one X server will be

run on the same computer, or if non-X programs will be directly
accessing input devices. The X server interprets “first” to mean “first
accessible”, so you may not always get the first on the HP-HIL, just
the first one not already in use.

Selecting Values for ‘X*devices’ Files

X+devices files use the following special names for positions, devices,
and uses:

Values for ‘X*devices’ Files.

Positions | Device Type (Device Class) | Uses

first keyboard (keyboard) keyboard
second | mouse (pointer) pointer
third tablet (pointer) other

fourth buttonbox (keyboard)
fifth barcode (keyboard) **
sixth one_knob (pointer)
seventh |nine_knob (pointer) *
quadrature (pointer)
touchscreen (pointer)

trackball (pointer) ***

null

* The nine-knob box appears to the X server as three separate input
devices. Each row of knobs is a separate device with the first device
being the bottom row.

** Note also that the HP barcode reader has two modes: keyboard
and ASCII. The modes are set via switches on the reader. If you set
the barcode reader to ASCII transmission mode, it appears to the
server as a barcode reader and the device name is therefore barcode.
However, if you set the barcode reader to emulate a keyboard, the
barcode reader appears as a keyboard and the device name should
therefore be keyboard. What distinguishes a barcode reader set to
keyboard mode from a real keyboard is the relative position or the
device file name, depending on which syntax you use.

*** Similar to the barcode reader, the trackball appears to the
server, not as a trackball, but as a mouse. Therefore, to specify a
trackball, use the mouse device name. Again, what specifies the
trackball instead of the real mouse is the relative position or the
device filename, depending on which syntax you use.

DRAFT
4/7/98 12:45

Specifying HP-HIL Input
Device Use by Device

DRAFT
4/7/98

12:45

File Name

Warranty

Examples

You can create a system on which the X server runs, but which does

not have any input devices. In this case, clients could be run from a

remote terminal, or from a remote host, and their output directed to
the X server. To create a system with no input, include the following
lines in the XOdevices file:

first null keyboard
first null pointer

If you had a more complicated configuration, such as two graphics
tablets, two keyboards, and a barcode reader, your X+*devices file

could look like this:

first tablet pointer The pointer.

second tablet other Merged with the pointer.
first keyboard other Merged with the keyboard.
second keyboard keyboard The keyboard.

first barcode other Merged with the keyboard.

In this example, the first tablet acts as the pointer, the second
keyboard acts as the keyboard, input from the second tablet is
treated as if it came from the X pointer, and input from the first
keyboard and the barcode reader is treated as if it came from the X
keyboard.

Note that the barcode reader is in ASCII mode in this example.
If the barcode reader were in keyboard mode, the last line of the
example would read as follows:

third keyboard other

More examples can be found in the XOdevices file in
/usr/newconfig/etc/X11.

The device can be specified using the name of the device to which it
is attached. This can be done by adding an entry to the X+*devices
file with the form:

/ path/ device_file use #Hcomments
where:

path/device_file Specifies the name of the device file associated with
the input device.

use is “keyboard”, “pointer”, or “other”.

#comments Describes the device. Comments are optional, but
must be preceded with a “#”.

This syntax should be used if more than one X server will be running
on the computer, or if non-X programs will be accessing the input
devices. It refers to a specific position on the HP-HIL.

Preliminary Configuration 3-15

Warranty

Redefining the HP-HIL
Search Path

The X*devices file can be used to redefine the path searched for
HP-HIL devices. By default, the path searched is /dev/hil. The
device files are named by appending the numbers “1” through “7” to
the path.

The path is redefined by adding an entry to the X+*devices file with
the following form:

path hil_path #comment
where:
path Specifies the path to be searched for the HP-HIL

input devices.

#comments Describes the path. Comments are optional, but
must be preceeded by a “#7/

The X server appends the numbers “1” through “7” to the specified
path. For example, specifying;:

/tmp/foo hil_path

results in the device names /tmp/fool, /tmp/foo2, and so on.

Customizing for
Native Language
Support (NLS)

Setting the LANG
Environment Variable

3-16 Preliminary Configuration

This section covers:

m How X uses the LANG environment variable and other environment
variables.

m Accessing language-dependent message catalogs and resource files.

m Remote execution in NLS systems.

The LANG environment variable must be set in order to use
native language support. Setting LANG causes X to use the
language-sensitive routines for character handling.

You can set LANG to any locale that your system supports.
To find out what locales are available to your system, type
locale -a
To find your current language settings, type
locale
To set the LANG variable:

LANG=language
export LANG

(This shows the ksh commands. If you are using another shell, use
the appropriate command for setting environment variables in that

shell).

DRAFT
4/7/98 12:45

Other NLS Environment

DRAFT
4/7/98

12:45

Variables

Warranty

This example sets the LANG variable to Spanish:

LANG=es_ES.roman8
export LANG

This section covers other NLS environment variables. It provides an
overview only. For detailed information, refer to X Toolkit Intrinsics
Programming Manual.

Message Catalogs—The NLSPATH Environment Variable

The NLSPATH environment variable determines the paths applications
search for NLS message catalogs. X clients place NLS message
catalogs in client-specific locations, allowing translated catalogs to be
shared. For example, HP VUE’s Vuepad places its catalog in the
/usr/1ib/nls/msg/$LANG directories.

It shouldn’t be necessary to set NLSPATH unless the message catalogs
are installed in non-standard locations.

The proper value of NLSPATH depends on whether message catalogs
exist for the current value of LANG.

Setting the XUSERFILESEARCHPATH Environment Variable

The XUSERFILESEARCHPATH environment variable controls where X
applications look for their app-defaults resource files. The default
app-default location is :

/usr/1ib/X11/%L/WT/WN4S : /usr/1ib/X11 /%1 /UT/40%S : /usr/1ib/X11/%T/%U%S

If your app-defaults is in any other location, you need to set the
XUSERFILESEARCHPATH, XAPPLRESDIR, or XFILESEARCHPATH variables
described later in this section.

For example, to use Japanese app-defaults you would set
XUSERFILESEARCHPATH to /usr/1ib/X11/ja_JP.eucJP/app-
defaults. Or, you could set XAPPLRESDIR to
/usr/1ib/X11/%L/app-defaults and LANG to “ja_JP.eucJP”. If
LANG is not set, 4L defaults to null.

If you set XUSERFILESEARCHPATH in $HOME/.profile, the value
applies to all X clients you run. Non-clients will not find their
resource files unless you link or copy them into the directory specified
by XUSERFILESEARCHPATH.

Setting the KBD_LANG Environment Variable

X allows you to override the physical keyboard attached to the
HP-HIL.

Some applications use the environment variable KBD_LANG allowing
you to change the keyboard mapping to that of another national
language keyboard.

Preliminary Configuration 3-17

Warranty

%

Note

Other
Language-Dependent
Resource Files

Native Language Fonts

3-18 Preliminary Configuration

Due to changing keyboard standards and the need for interoperability
with non-Hewlett Packard system, this capability is being phased
out. Do not depend on the KBD_LANG variable, since it may not be
available in future releases.

This variable can be set after the server has started. The NLIO
processes for Asian users start only when either the physical
keyboard is Asian or KBD_LANG is set to an Asian language.
Language-Dependent Bitmaps—the XBMLANGPATH Variable

The XBMLANGPATH variable specifies the search path for
language-dependent bitmaps. It lists the paths for bitmaps in this
order:

1. User-specific bitmaps.
2. System bitmaps listed in the XmGetPixmap(3x) man page.
3. Append:

/usr/1ib/X11/bitmaps/%N/7%B

This ensures that you will get the non-localized bitmaps, where
necessary.

When LANG is set, mwm uses the following language-dependent default
resource file:

/usr/1ib/X11/}L/system.mumrc

For information about using non-English fonts, refer to “Using Native
Language Input/Output” in chapter 6.

DRAFT
4/7/98 12:45

Using the X Window System

This chapter covers:

m Starting the X Window System.

m Stopping X clients.

m Ixiting the X Window System.

The following chapters contain related information:

m Chapter 3 explains configuration files used by the X Window
System.

m Chapter 7 explains the window manager (mwm) in more detail.

DRAFT Using the X Window System 4-1
4/7/98 12:45

Warranty

Starting the X
Window System

Starting X at Login

Starting X from the
Command Line

Command-Line Options
for x11start

Before you start the X Window System, you must be logged in to
your computer system. Log in using your normal procedure.

You should start the X Window System just once. With X11
running, you should not execute the x11start command again.
Starting X11 and then starting it again while it is still running may
cause undesirable results.

Note, however, that you can restart the window manager and refresh
the screen at any time.

X will use the default .x11istart, .Xdefaults, and .mwmrc files,
unless told otherwise in the command line options.

Your system may be configured to start X11 as part of the login
procedure. If so, skip the rest of this section and the next and start
reading at “What to Expect When X Starts”

If your system is not configured to start X11 at login, log into the
system in the usual way and type the following command at the
command prompt:

xlistart Return)

In most cases, you will find it convenient to establish environment
options in configuration files in your home directory. However, if you
don’t start X11 automatically at login, you can include environment
options on the command line after the x11start command. The
syntax for this is:

xllstart [-clientoptz'ons] -- [{path}/server] [:display]
[-optz'ons]

Client options pass from the x11start command line to all clients in

the .x11start file that have a $@ parameter. The options replace the
parameter. This method is most often used to specify a display other
than the usual one on which to display the client. You can, however,

use the command-line option to specify a non-default parameter, such
as a different background color.

The default .x11istart file starts the following clients:
m A terminal emulation client, such as hpterm.
m mwm.

Server options are preceded with a double hyphen (——). If the
option following the double hyphen begins with a slash (/) or a path
and a slash, it starts a server other than the default server. If the
option begins with a colon followed by a digit (:#), it specifies the
display number (0 is the default display number). Additional options
specified after the server or display refer to the specified server or

4-2 Using the X Window System DRAFT

4/7/98 12:45

Warranty

display. Refer to the Xserver man page for more information on
server options.

The examples below illustrate starting the X Window System in
different ways.

xllstart The usual way to start X.

xllstart -bg Blue Gives clients followed by $@ a blue back‘gmund.l

xllstart —— /X2 Starts server X2 rather than the default
server.

Starting X on an HP-UX A multi-seat system (a system with more than one display, keyboard,
Multi-Display System and mouse) requires modification of two X11 configuration files,

to allow for more than one display seat. These files, X*screens
and Xxdevices (where * is the number of the display), are located
in /usr/1ib/X11. FEach seat must have its own X*screens and
X*devices files. If you have a multi-seat system but have not
configured it, see your system installation or configuration manual for
more information.

Seat 0 uses the XOscreens and XOdevices files to configure its
output and input devices. These files are supplied with the system,
but you must still match them to your hardware configuration. To
start X11 on seat 0 (display 0) of a multi-seat system, log in as usual
and type:

xlistart Return)

To start X11 on seat 1 (display 1) of a multi-seat system, log in as
usual and type:

xlistart —— :1 Return)

Here the —— signifies starting the default server while the :1
specifies sending the output to seat 1. Seat 1 uses the X1screens
and X1devices files to configure its output and input devices. If
your system has a multi-seat configuration, you must create these
configuration files using the X0screens and XOdevices files as
models.

DRAFT Using the X Window System 4-3
4/7/98 12:45

Warranty

What to Expect
When X Starts

The Server Creates the
Root Window

A Terminal Window
Appears on the Root

Whether you start the X Window System from the command line or
automatically from a login file, x11start always executes the same
sequence of steps.

1. If necessary, it adds the system directory, /usr/1ib/X11, to your
PATH variable.

2. It looks in your home directory for a .x11start command
file to read. If it doesn’t find one, it reads sys.x11start in
/usr/1ib/X11 instead.

3. It starts xinit, which starts the server and any clients specified in
the .xl1start command file.

4. It looks in your home directory for a .Xdefaults configuration
file to read. If it doesn’t find one, it reads sys.Xdefaults in
/usr/1ib/X11 instead.

5. It reads the configuration file named by the $ENVIRONMENT
variable, .Xdefaults-hostname if the variable doesn’t exist.

You won’t notice any effect from issuing the command until the X
display server starts.

When x1istart starts the server (the program that controls the
operation of your keyboard, mouse, and display), your screen will
turn gray. This means that the screen has now become the root
window, the backdrop or “desktop” on which the windows and icons
of your environment appear. Although you can completely cover the
root window with clients, you can never cover a client with the root
window. The root window is always the backdrop of your window
environment; nothing gets behind it.

In the center of the root window is an hourglass. This is the pointer
and marks the current screen location of the mouse.

A short time later the pointer changes to an X, and a terminal
window appears at the top of your display (if you're using the default

Window -xtistart file). This window is under the control of a window
manager. If you use the OSF/Motif Window Manager (mwm), your
window has a three-dimensional frame. This frame contains window
manager controls.

4-4 Using the X Window System DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

e St o
o Terninal Epulator s

k|

The Default X Environment: ‘mwm’ and One Window

The window contains a command-line prompt and behaves exactly
like the screen of a terminal. You can think of this window as “a
terminal in a window.” There are several terminal emulation clients:
inclusing hpterm, dtterm, and xterm. The examples in this book
use hpterm. Refer to the man page for your terminal emulator for

specific details about it.

Move the mouse. The pointer moves on the screen. When the
pointer is in the root window, it has an X shape. However, when you
move the pointer to a terminal window, the pointer changes to an
arrowhead (when on the window frame) or an I (when in the interior
of the window).

With the OSF/Motif Window Manager (operating in “explicit focus”
mode), when you press and release button 1 while the pointer is in

a terminal window, the window becomes the active window. When

a window is active, its frame changes color. You’ll discover that you
can’t type in a terminal window unless the window is active.

The active window is the terminal window where what you type on
the keyboard appears. Your input always goes to the active window.

If there is no active window, what you type is lost.

The program running in the active window decides what to do with
your typed input. Frequently the program will use a text cursor to
show where your typed input will be displayed.

Using the X Window System 4-5

Warranty

What to Do If X11
Doesn’t Start

Possible X Window System Start Problems

If this happens . ..

You should do this . ..

The message command not found
appears.

Check your spelling and reenter the
start command.

The root window displays for a
moment, but then goes blank.

Press the (Return) key to bring back
your original command-line prompt
and see the text following this table.

The root window displays, but no
pointer appears.

Press (CTRL) (Left Shift) (Reset) all at

the same time. ((CTRL)
on PC-style keyboards.) This

brings your original command-line
prompt back. Read the text
following this table.

The root window and pointer
display, but no terminal window
appears.

Press and hold button 3. If a menu
appears, open a window. Otherwise,
press (CTRL) (Left Shift) (Reset) ((CTRL)
on PC-style
keyboards.) Try restarting X, then
read the text following this table if
there’s still a problem.

The terminal window displays, but
what you type doesn’t appear after
the window’s command prompt.

Move the pointer into the window
and click (press and release) button
1, then type.

4-6 Using the X Window System

DRAFT

4/7/98 12:45

Exiting From the X
Window System

DRAFT
4/7/98

Caution #

12:45

Warranty

If you encounter problems starting X11 for the first time, check the
following areas:

m Check the X11 start log in your home directory for clues by typing
more .xllstartlog (Return)

m Check that the correct directory is in your PATH statement. If
you do not have an entry for the system directory, /usr/1ib/X11,
then x11start will add that entry to the path. You can be sure
that the entry is always there by adding it to the path yourself. To
check the PATH variable, type

env Return)

m Check that the DISPLAY environment variable is set correctly. If
you do not already have an entry for either local:0.0 or host:0.0
(where host is the hostname of your system), X11 will add it for
you when X11 starts. You can add the entry yourself. To check the
DISPLAY environment variable, type:

env Return)

m Check that you have the correct permissions for the .x11start file
in your home directory. Type:

11 .xlistart Return)

The resulting permission should be at least:

m Check the .x11start file in your home directory for errors.
Compare it with the sys.x11start file in /usr/1ib/X11.

If none of the above seems to help, or you’re not sure how to proceed,
see your system administrator.

Exiting from the X Window System means stopping the X11 display
server. Leaving X places you back at the command prompt you had
immediately before starting the X11 display server.

Before stopping the X Window System, you must first stop any

X clients you may have running. This ensures that you do not
unknowingly leave any orphaned processes executing. It also ensures
that all open files are properly closed to prevent loss of data.

Stop all X clients and any non-clients running in terminal emulator
windows before stopping the window system. If you don’t do this,
any open files may not be updated properly. This could result in the
loss of valuable data.

Using the X Window System 4-7

Warranty

Stopping Application You can stop a program and remove its window in three ways.

Programs
Following the Program’s Normal Exit Procedure

The best way to exit a program is to use the program’s usual “exit”
procedure. This should always be your preferred method for stopping
the program. Many programs have commands or keystrokes that stop
them.

If the program is a client and created its own window, the window

is removed when the client stops. If the program is a non-client in a
terminal window, the window remains, and you can stop it when you
stop the display server.

Closing the Window

You can also stop most applications by closing the window in which
the application is running. To close a window:

1. Position the pointer on the window menu button.
2. Press and hold button 1.

3. Drag the pointer to Close.

4. Release button 1.

Stopping the X Window After stopping all application programs, stop the window system

System by holding down the (CTRL) and (Lefe shift) keys, and then pressing
the key. This stops the display server, and with it the window

system. (If you have a PC-style keyboard, press (Shift) (Control) (Pause)
instead.)

The sequence of keys that stops the display server can be customized
in the X*pointerkeys file. Refer to chapter 9 or the XOpointerkeys
file in /usr/1ib/X11.

4-8 Using the X Window System DRAFT
4/7/98 12:45

<

Application Resources

How Applications
Obtain Attributes

DRAFT
4/7/98

12:45

Resources are data used by applications to set their appearance and
behavior.

This chapter covers:
m The various ways to change resource settings.

m The scope of resources— how specifically or generally a resource is
applied.

m The syntax for specifying color and geometry resources.

An application can get attributes from several different places:

m Resources directly loaded into an application’s resource database:
0 Command-line options.
0 .Xdefaults file.
0 Resources loaded into the RESOURCE_MANAGER property.

o Application resource files (for example, app-defaults files or

.rc files).
m Other sources:
0 Defaults built into the client.
0 Environment variables.
O Inter-client communications.

The following list shows how applications obtain resources. A
resource at the top of the list overrides the same resource found
further down the list. For instance, a resource in .Xdefaults
overrides the same resource in the app-defaults directory.

m Command-line options. These options are good for only that
one instance of the application. A command-line option is the
equivalent of a client.resource statement in a resource file.

m A host environment:

o If an XENVIRONMENT variable exists, it may contain the name of a
file that specifies application attributes.

Application Resources 5-1

Warranty

Ways to Change
Resources

5-2 Application Resources

0 A $HOME/ .Xdefaults-host file may contain resources to be used
for a specific remote host. It is read only if no XENVIRONMENT
variable exists.

m Personal resources:

0 Loaded into the RESOURCE_MANAGER property.
0 .Xdefaults (or sys.Xdefaults) file.
m User-specific files for particular classes of applications:

o If an XUSERFILESEARCHPATH variable exists, it may specify a
directory of files containing application class defaults for the
specific user.

o If XUSERFILESEARCHPATH variable does not exist, and if an
XAPPLRESDIR variable exists, it may specify a directory of files
containing user-specific application class defaults.

0 $HOME/ app-class files may contain application resources. These
files are read only if XUSERFILESEARCHPATH and XAPPLRESDIR do
not exist.

For information about these variables, refer to Programming with
the Xt Intrinsics.

m Application-specific configuration files in the app-defaults
subdirectory of /usr/1ib/X11. Each file specifies attributes
for a particular class of application. An app-defaults file
is the equivalent of a Class*resource statement in a resource
file. (The environment variable XFILESEARCHPATH may define a
language-dependent location of app-defaults.)

m Internal defaults built into the application.

There are several ways to change a resource. The way you choose
depends on:

m The nature of the resource.

m When you want the change to take effect—immediately or at the
beginning of the next session.

Resources can be changed by:

m Loading the new resources into the server’s

RESOURCE_MANAGER property using the X client
xrdb.

m Hand editing a resource file, such as .Xdefaults.

m Using command-line options.

DRAFT
4/7/98 12:45

Warranty

Setting Resources
with .Xdefaults

The .Xdefaults file contains default resources you want to apply
each time a client is started.

If you do nothing, the system uses the the sys.Xdefaults file in
/usr/1lib/X11. If you want your own defaults to be used instead,
copy this file into .Xdefaults in your home directory and make
modifications there. For example:

cp /usr/1ib/X11/sys.Xdefaults $HOME/.Xdefaults

The syntax for describing resources is explained later in this chapter.

Changing the RE-
SOURCE_MANAGER
Property with ‘xrdb’

DRAFT
4/7/98 12:45

The RESOURCE_MANAGER property is a property on the root
window that is treated the same way as a resource file by the
resource manager.

During a session, the RESOURCE_MANAGER property may be
modified by the the xrdb client.

You can use xrdb to load resources into the server’s

RESOURCE_MANAGER property.
The syntax for xrdb is:
xrdb options [filename]
Where options are:
-help Displays a list of options for xrdb.

-display host:display Specifies the host and display of the server to
be loaded with the configuration information.

-query Displays the current contents of the server’s

RESOURCE_MANAGER property.

-load path/filename Specifies that xrdb should load the file
named on the command line into the
RESOURCE_MANAGER property,
overwriting the current resources listed there.
This is the default action.

-merge path/filename Specifies that xrdb should load the file
named on the command line into the
RESOURCE_MANAGER property, merging
the new resources with the current resources
instead of overwriting them.

-remove Removes the current configuration file from

the RESOURCE_MANAGER property.

-edit path/filename Places the contents of the
RESOURCE_MANAGER property into the

Application Resources 5-3

Warranty

5-4 Application Resources

-backup string

-cpp path/filename

-nocpp path/filename

-symbols

-Dname[=value]

-Uname

-Ipath/directory

named file, overwriting resources specified
there.

Specifies a suflix to be appended to the
filename used in the -edit option to create a
backup file.

Specifies the path and filename of the

C preprocessor to use when loading a
configuration file containing #ifdef or
#include ents. xrdb works with CPP and
other preprocessors as long as they accept the
-D, -U, and -I options.

Specifies that xrdb should not use a
preprocessor before loading the configuration
file (the file contains no statements that need
preprocessing).

Displays the symbols currently defined for the
preprocessor.

Defines a symbol for use with conditional
statements in the configuration file used by

the RESOURCE_MANAGER property.

Removes a defined symbol from the

RESOURCE_MANAGER property.

Specifies the search path and
directory of #include files used in the

RESOURCE_MANAGER.

To add resources interactively:

1. Execute:

xrdb -merge -nocpp

in a local terminal emulation window.

2. Type in the resource specifications. Each resource must be on a

separate line.

3. When you've typed all the resources, press (CTRL) (d) to merge the
resources and restore the shell prompt.

To add resources by typing the resources into a file that is then
merged into the database:

1. Create a file containing the resources you want to add.

2. Execute:

xrdb -merge -nocpp filename

DRAFT
4/7/98 12:45

Syntax of Resource
Specifications

DRAFT
4/7/98 12:45

Warranty

Resource files are text files. They must obey the following syntax
rules:

m Fach resource specification must be on a separate line. If the last
character on a line is a backslash (\), the new-line following the
backslash is ignored and the resource specification is assumed to
continue on the next line.

m To add comments to resource files:

0 Use the exclamation (!) character. Anything to the right of the
! is interpreted as a comment. This is the preferred way of
commenting all or portions of lines.

o You can place a pound (#) character in column 1. This makes
the entire line a comment. Keep in mind that you must use the
xrdb option -nocpp when loading a commented resource to avoid
it being interpreted as a preprocessor directive.

m The resource name is separated from the value by a colon (:) and
optional spaces or tabs.

The general syntax for specifying a resource for a client is:

} * resource: value
client_class

[{ client_name
For example:
hpterm*background: skyblue
sets the background color of the hpterm window to skyblue.

Trailing blanks in a resource value are parsed and therefore can cause
errors to occur. For example, if you inadvertently included a blank
after “skyblue” in the example above, several warning messages
appear when the program using the resource definition is run:

Warning: Color name 'skyblue " is not defined
Warning: Cannot parse default background color spec

Certain clients allow you to set resources for particular parts of the
client. For example,

hpterm*scrollBar*background: mediumblue

sets the scrollbar on hpterm windows to mediumblue.

Application Resources 5-5

Warranty

Scope of Resource You can specify how generally or specifically a resource is applied.

For example, you can specify that all clients have a background color
of black (very general). At the other extreme, you can say that you
want the softkeys of one particular hpterm window to be red.

Scope of customization is determined by:
m Using names or classes of clients.
m Using names or classes of resources.

m Specifying particular areas of clients (for example, softkeys and
scrollbars).

m Using wildcards in the resource string.

Names and Classes of Every client has both a name and a class. The name defines the
Clients specific client, while the class categorizes the client. Thus, the class is
more general than the name.

Frequently, the two identifiers are very similar, and often differ only
in capitalization. For example, the client named xclock belongs to
class Xclock.

Resources specified by client name take precedence over resources
specified by client class.

Naming a Client You can assign a name to a particular instance of a client. This
allows you to allocate resources to that client by class, by client, and
by name.

For example, the following command line starts an instance of
hpterm named localTerminal.

hpterm -name localTerminal
If the following resource exists in the resource database:

HPterm.name: localTerminal
localTerminal*background white

then the localTerminal window will be white, overriding the colors
used by the current palette.

Names and Classes of Like clients, resources have both a name and a class.

Resources A, jydividual resource begins with a lowercase letter. For example,

foreground refers to the foreground resource. A class resource,
however, begins with an upper-case letter. For example, Foreground
refers to the entire class of foreground resources.

Thus, if no other specifications overruled, the line *foreground:
blue in your resource file would make all foregrounds blue. However,
the line *Foreground: blue would make all resources that belonged
to the Foreground class blue. This would include such resources as

5-6 Application Resources DRAFT
4/7/98 12:45

Warranty

foreground, cursorColor, pointerColor, bottomShadowColor for
softkeys, frames, icons, and mattes.

Name/Class Specific resource specifications always have precedence over general
Precedence specifications. For example, suppose a resource file contains:

*Foreground: red
HPterm*Foreground: DarkSlateGray
HPterm*xforeground: coral
HPterm*cursorColor: green

The first line makes all resources of the class Foreground red.

The second line overrules the first line, but only in the case of
clients of class HPterm (of which there is only one—the hpterm
client itself). Line two makes the Foreground class resources

of all hpterm clients DarkSlateGray. Lines three and four give
hpterm clients coral foregrounds and green cursors, while the other
resources of class Foreground (pointerColor, cursorColor, softkey
foreground and bottomShadowColor, and scrollbar foreground and
bottomShadowColor) remain DarkSlateGray for hpterm clients.

Similarly, if a resource file contains:

hpterm.name: local
HPterm*softkey*background: wheat
HPterm¥background: pink
local*background: white

then all softkey backgrounds will be wheat. For the rest of the
hpterm window, the backgrounds will vary. Windows named local
will be white, other windows will be pink.

Wildcards and Exact The * character in a resource string is a wildcard that provides
Paths resource generality. For example, the following list of resources shows
increasing specificity.

*foreground: white
hpterm*foreground: yellow
hpterm*softkey*foreground: red

The resource *foreground refers to all foregrounds. The more
specific resources override it. All the hpterm foregrounds will be
yellow except for the foreground of the softkeys.

DRAFT Application Resources 5-7
4/7/98 12:45

Warranty

Color Resources

Geometry
Resources

5-8 Application Resources

You can specify color resources in either of two ways:
m By color name.

The rgb.txt file in /usr/1ib/X11 lists all the named colors. Refer
to “Creating a Custom Color Database with ‘rgb’ in Chapter 8 for
information about how to add colors to this file.

m By a number specifying the amount of red, green, and blue the
color contains.

The rgb numbers have the syntax:

RedGreenBlue

where Red, Green, and Blue are hexadecimal numbers containing
1,2, 3, or 4 digits for each primary color indicating the amount of
that color used. There must be the same number of digits for each
of the primary colors. Thus, valid color values consist of 3, 6, 9, or
12 hexadecimal digits.

For example, white can be specified by any of these rgb values: #fff,
RESELLE, #TELLELEEE, or #ELELLLELLLEE. Red can be specified by
#£00, #££0000, #£££000000, or #££££00000000.

The following line specifies the background color of hpterm icons by
color name:

Mwmxhpterm*iconImageBackground: DarkSlateGrey
The same color could be specified by rgb value:
Mwmxhpterm*iconImageBackground: #2f2f4f4f414f

Refer to the man page for a specific client to see if there are special
elements for that client that can be colored. For example, xclock
allows you to color the hands and tic marks in addition to the
background, foreground, and window frame colors.

The geometry of a window is its size and location. The syntax for
geometry resources is:

Widthx Height
+ columntrow
Widthx Heightt column+trow

Use a lower-case x for the times sign.

Width The width in characters (for terminal windows) or
pixels (for other clients). For widths in characters,
the window size depends on the font size.

DRAFT
4/7/98 12:45

Warranty

Height The height of the window in lines (for terminal
windows) or pixels (for other clients). The height of
a terminal window depends on the font.
column The column location of the window in pixels.
Plus (4) The location of the left side of the
values window relative to the left side of the
workspace.
Minus (—) The location of the right side of the
values window relative to the right side of
the workspace.
row The row location of the window given in pixels:
Plus (4) The location of the top of the
values window relative to the top of the
workspace.
Minus (—) The location of the bottom of the
values window relative to the bottom of the
workspace.
Example Locations for an 80x24 Terminal Window.
To position a window here . .. Use this location . . .
The upper left corner of the workspace. +1+1
The lower left corner of the workspace. +1-1
The upper right corner of the workspace. —141
The lower right corner of the workspace. —1-1

For example, the following line specifies that all hpterm windows be
created 80 characters wide and 24 characters high, and that they are
initially placed in the upper right corner of the display.

hpterm*geometry:

80x24-1+1

Application Resources 5-9

Warranty

Font Resources There are four general font resources that are commonly used.

General Font Resources

Resource Description
Font General user font
FontList Displayed in system areas of clients

created using the OSF/Motif toolkit.

XmText*FontList Displayed in text entry boxes of
XmTextField*FontList clients created using the OSF/Motif
toolkit.

Use the following syntax to specify font resources:

{ client_class client_name }*fontresource: fontname
where:

client_class The class of the client for which you specify the font.

client_name The name of the client for which you specify the
font.

fontresource The name of the font resource.

fontname The name, alias, or xIfd name of the font. Refer to
chapter 8 for information about how to specify font
names.

For example,
hpterm*Font: fontname

Font resources and names are covered in more detail in chapter 6.

5-10 Application Resources DRAFT
4/7/98 12:45

Using Fonts

This chapter covers:

Displaying samples of bitmapped fonts and scalable typefaces.

Setting font resources.
Using the X11R5 font server.

m Understanding and using the XLFD (X Logical Font Description)
font name for bitmapped fonts and scalable typefaces.

m Administering bitmapped fonts and scalable typefaces.
Chapters containing related information are:

m Chapter 5 covers where and when to set resources.

m Chapter 7 covers running clients from the command line.

A font is a type style in which text characters are printed. The X
Window System includes a variety of fonts.

Bitmapped fonts are made from a matrix of dots. The font is
completely contained in one file. Many files are needed to have a
complete range of sizes, slants, and weights. Bitmapped font files can
be read by the X server or the font server.

Scalable typefaces are each defined by a file containing a
mathematical outline used by the system to create a bitmapped font
for a particular size, slant, or weight. Scalable typefaces are readable
by the font server. An X server wishing to use them must obtain
them from a font server. See the sections entitled “Scalable Typeface
Administration” and “Scalable Typefaces File Structure” in this
chapter for more information.

Hewlett-Packard’s X11R5 release of the font server supports two
scalable font technologies: Agfa’s Intellifont and Adobe’s Type 1.
Scalable outlines bundled with your operating system include Agfa’s
“CG Times,” “Univers,” and “Courier,” and Adobe’s “Utopia” and

“Courier.”

In addition to the scalable font technology available with the X11R5
font server, both the X server and the font server are now capable of
rescaling bitmapped fonts to any size. This is not a recommended
method of creating new fonts from existing ones — the results are
often unsightly or even unreadable — but it is occasionally useful.
The discussion of scaled fonts below also applies to scaled bitmaps,
except where indicated.

DRAFT Using Fonts 6-1
4/7/98 12:45

Warranty

The Intellifont Scalable Typeface Library available from Agfa
includes hundreds of different designs. Please call Agfa directly
at 1-800-424-TYPE (8973) for more information about Intellifont
typeface products.

Customizing the
Font Search Path
with ‘xset’

6-2 Using Fonts

The X server must know where to find the fonts you want to

use. The font path is a list of font sources accessible to the X
Window System. A font source can be either a directory containing
bitmapped fonts, or a font server accepting connections at some TCP
address.

The xset command allows you to tell the X server which font

sources to use. You specify directories containing bitmapped fonts
by the complete path name. You specify font servers by the string
“tcp/<hostname>:portnumber.” To examine the font path, type:

xset q Return)

To add or remove sources from the path:

xset options
where the options are:

-fp sourcef,source...] fp- sourcef,source...] Remove the directories
from the head (-fp) or
tail (fp-) of the font
path.

+fp sourcef,source...] fp+ sourcef,source...] Adds the sources to
the head (+fp) or tail
(fp+) of the font path.

fp= source/,source...| Specifies the complete
font path. The “=” is
optional.

fp default Resets the default font
path.

fp rehash Causes the server

to reread the font
databases for all
directories (but not
font servers) in the font
path. This should be
done after making any
changes to directories
that are in the font
path, especially if

you run mkfontdir,
or if you change

DRAFT
4/7/98 12:45

Listing Available
Fonts with ‘xIlsfonts’

DRAFT
4/7/98

12:45

Warranty

fonts.alias in any of
these directories.

Here are some examples that show you various ways to use xset.
xset fp tcp/:7000

Tells the X server to get all fonts from a font server running at TCP
address 7000 on the local host.

xset fp+ tcp/fontmaster:7000

Tells the X server to add a font server running on host fontmaster
at TCP address 7000, to the end of the font path.

xset +fp /usr/lib/X11/fonts/misc

Tells the X server to add the directory /usr/lib/X11/fonts/misc,
which contains bitmapped fonts, to the beginning of the font path.

More information about xset is presented in chapter 8.

The x1lsfonts client lists fonts available to you. It uses the
fonts.dir and any fonts.alias files in the font search path to find
the fonts. The XLFD name or the alias name is listed. Refer to
xxx<xref XLFD>: undefined*** for information about the XLFD
name, and to “The fonts.alias File” for information about alias
names.

The x1sfonts client has the following syntax:

xlsfonts [-optz'ons]
where options are:

-display host:display The X server whose fonts you wish to list.
The default is the requesting display.

-1 Generate a medium listing.
-11 Generate a long listing.
-111 Generate a very long listing, showing

individual character metrics.

-m Long listings should show minimum and
maximum bounds of each font.

-C Multiple column listings. Same as -n 0.

-1 Single column listings. Same as -n 1.

-w width Width in characters of each column. Default
is 79.

-n columns Number of columns for listings.

-u Output is unsorted.

Using Fonts 6-3

Warranty

Using the X11R5
Font Server

6-4 Using Fonts

-o Use OpenFont and QueryFont rather than
ListFonts.
-fn pattern x1lsfonts will find all fonts that match this

pattern. Wild cards may be used. If this
option is not included x1lsfonts lists all
available fonts.

An example listing looks like this:

-adobe-courier-bold-o-normal--10-100-75-75-m-60-hp-roman8
-adobe-courier-bold-o-normal--12-120-75-75-m-70-hp-roman8

courbil0
courbil2

The first two lines show the fonts’ XLFD names, and the second two
lines show the file name aliases for those fonts.

If you have many fonts on your system, x1sfonts can produce a long
list. If you want to check for a specific font, use the pattern matching
capability of x1sfonts. Use wild cards to replace the parts you are
not trying to match. For instance, to see what scalable typefaces you
have, type:

xlsfonts -fn "*-0-0-0-0-*" (Return)

The Networked font server provides font services to one or more

X display servers in a networked environment. It allows a font
administrator to distribute fonts to all X servers from a central
administration point. The font server also provides increased font
capabilities over those built into the HP X display server — unlike
the X display server, the font server understands scalable fonts as
well as bitmapped fonts.

In an environment without a font server, the X server is able to load
bitmapped fonts from directories in its font path:

* Server

fusr/lib/Hl1l/fonts/misc fusr/lib/H1l/fonts/hp_romand/75dpi

An Environment Without a Font Server

In an environment with a font server, the X server can also load fonts
from a font server:

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

* Server

Jusr/lib/H11l/fonts/misc Faont Zerver

An Environment With a Font Server

The font server itself obtains fonts from directories or from other font
servers. Unlike the X server, the font server can read scalable fonts as
well as bitmapped fonts:

* Server

Jusr/lib/H11l/fonts/misc Faont Zerver

fusr/lib/H1l/fonts/hp_romand/75dpi fusr/1ib/ K11/ fonts/ifo. st

Font Server Reads Scalable and Bitmapped Fonts

The connection between the X server and a font server is over a TCP
network connection: the font server can be running on the same
machine as is the X server, or on a remote machine that is acting as
a font source for multiple X servers.

A font server is shipped with Hewlett-Packard’s X11R5 distribution.
If the system has not been configured to start the font server
automatically (refer to “Starting the Font Server at Boot Time”),
then the font server can be started automatically with the command:

/usr/bin/X11/fs -daemon

This starts a font server in its default configuration at its default
TCP port of 7000. Any X server started on the same system after
the font server is started will automatically gain access to the

fonts provided by that font server, including the licensed scalable
Intellifont and Type 1 fonts in the /usr/1ib/X11/fonts/ifo.st and
/usr/1ib/X11/fonts/typel.st directories.

Using Fonts 6-5

Warranty

Managing the Font
Server’s Configuration

6-6 Using Fonts

By default, a font server accepts connections from font clients (such
as X servers) at TCP address 7000, and configures itself according to
information in the file /fetc/X11/fs/config. Both of these defaults
can be overridden with command-line options. See the fs(1) man
page for more information.

Like the X server, a font server has a font path, a list of sources from
which it can get fonts. There are three major differences between the
font server’s font path and the X server’s font path:

m The font server font path is specified in the configuration file, and
cannot be changed by a protocol request from a font client. For
example, an X server can add or remove font servers to or from its
font path, but it cannot tell a font server to change its own font
path.

m The font server font path can be changed by modifying the
configuration file and sending a signal SIGUSR1 to the font server.

m The font server font path can include directories containing
scalable fonts, such as /usr/lib/X11/fonts/ifo.st and
/usr/1ib/X11/fonts/typel.st.

Like an X server, a font server can have font servers in its path.
That is, font servers can be “chained.” Font server chaining can be
used to implement powerful and flexible networks of font sources.
For example, figure 6-4 shows a company-wide font server with
department-specific font servers.

| * Server | | * Server | | * Server | | * Server | | * Server |

| Department A Faont Seruerl | Department B Font Seruerl

| Company Font Server I

Chaining Font Servers

All users in Department A and Department B add their respective
department’s font server to their font path. The font administrator
on each machine serving fonts then decides how to configure that font
server for use by that department. In this case, he adds the company
font server to the font path.

You can modify this path, as well as other configuration parameters,
by editing the configuration file. See the fs(1) man page for
information about all of the options in the configuration file.

DRAFT
4/7/98 12:45

Starting the Font Server

DRAFT
4/7/98

12:45

at Boot Time

Warranty

The behavior of the font server at system boot time is determined
by system configuration files. Be default, the font server does not
automatically start at boot time. You can change this behavior with
the mk_fnt_srvr command.

If boot-time startup of the font server is enabled, the resulting font
server will run at the default font server TCP address of 7000, and
use the default configuration file /usr/1ib/X11/fs/config.

Refer to the mk_fnt_srvr(1M) man page for more details.

The standard X interface provides a detailed description of the font
by means of the X logical font description (XLFD) name. The XLFD
name is a string of characters that describes properties of the font
you want.

In X11R5, the XLFD standard supports both bitmapped and
scalable fonts. In addition, HP has extended the standard to
provide more capabilities with scalable fonts — that is, the ability
to generate more variations on scalable fonts. These extensions are
described in the following sections.

The form of the XLFD is 15 fields separated by dashes. These fields
are explained later in this section.

" FontNameRegistry- Foundry- FamilyName- Weight Name- Slant

- SetwidthName- AddStyle Name- PizelSize- PointSize- Resolution X
- Resolution Y- Spacing- Average Width- CharSet Registry

- CharSetCoding"

For example,

-adobe-courier-bold-o-normal--10-100-75-75-m-60-hp-roman8
specifies a courier, bold, oblique bitmapped font created by Adobe.
The font is 10 pixels tall, 100 tenths of a point tall on a 75dpix 75dpi

display. Characters are monospaced, and are an average of 60 tenths
of a pixel wide. Fonts codes are based on the HP Roman8 encoding.

What is actually in the XLFD name differs depending on where in
the font-request process the string is being used:

reference XLFD This is the XLFD name shown by fonts.dir
and the xlsfonts client.

Scalable typefaces have the PixelSize and
PointSize fields set to zero.

request XLFD This is the XLFD name you use to request a
font. It is also the XLFD name you use in a
fonts.alias file.

Any field in the list can be replaced by the
“x” wild card. Any character in the list can
be replaced by the “?” wild card.

resolved XLFD This is the XLFD name that the server
returns when it has filled your font request.

Using Fonts 6-7

Warranty

XLFD Syntax

Note

6-8 Using Fonts

%

All the fields are filled in with the correct
values for that font. However, they may not
be the same values as in the request XLFD.

This section explains the meaning of the fields in the XLFD name.
Examples of the use of these fields are in a later section.

The XLFD name is long, so you can assign a shorter nickname, or
alias, for the font, which you then use in place of the long string.
Aliases are discussed in “The fonts.alias File” later in this chapter.

You may use either upper-case or lower-case letters when you specify
a characteristic. Reference XLFD names are all lower-case.

The text “[extensions/” means that there are optional extensions to
the standard XLFD fields that are used to generate additional font
variations. Notice that the underscore (_) character is used in some
extensions to avoid confusion with the dash (-).

These HP extensions may be superceded in later releases the X
Windows System, as the industry-standard XLFD is expanded to
include the functions that are now available only through these
extensions.

FontNameRedgistry
The authority that registered the font. Usually left blank. If there is

a value in the field, it is of the form +wversion, where version is the
version of some future XLFD specification.

Foundry
The name of the digital type foundry that digitized the font data.

FamilyName

The trademarked commercial name of the font. If the FamilyName
contains spaces, do one of the following for a request XLFD name:

m Enclose the entire XLFD name in double quotes ("). For example,
this fonts.alias file line.

italic "-agfa-cg century schoolbook italic-normal-i-*-*--240---p-150-*-roman8"

m Use wild cards for part of the field.

italic -agfa-*schoolbook*italic-normal-i-*-*--240---p-150-*-romand

WeightName [eztensions]
The relative weight of the font, such as bold.

For scalable typefaces, the user may specify that the font be darker
(bolder) or lighter than the normal for that font. The syntax for this
optional extension is:

DRAFT
4/7/98 12:45

Warranty

[+horiz_value]

[Tvert_ value]

horiz_value, The increase (+) or decrease (_) in boldness. A value
vert_value of 4000 for a normal font simulated the bold version
of that font.

If only one delta and value are specified, they apply to both
directions. Emboldening and lightening are currently supported only
for Intellifont scalable typefaces.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The Same Font at Increasing Weights

Slant/extensions/

A code indicating the direction of the slant for the font.

r Roman (no slant)
i Italic (slant left)
Oblique (slant left)
ri Reverse italic (slant right)
ro Reverse oblique (slant right)

For scalable typefaces, the user can request additional slanting from
the normal. The syntax for this optional extension is:

+ovalue
+ovalue The angle in 1/64 degree ranging from 0° to 75°
(0-4800). (0.5° = 32, 1° = 64, etc) Values outside
of that range will be truncated to £75°. Use + for
counterclockwise angles, _ for clockwise angles.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFCH IS LANOPORST VWYY
AL LS AL BN T F T

The Same Font with Different Slants

SetwidthName

The width-per-unit of the font, such as compressed or expanded.

DRAFT Using Fonts 6-9
4/7/98 12:45

Warranty

6-10 Using Fonts

AddStyleName/extensions/

A description of anything else needed to uniquely identify the font,
such as serif or cursive.

For scalable typefaces, users can specify that the font be mirrored or
rotated. The syntax for the optional extension is:

[+MX] [:I:angle]

+My

+Mx, Mx mirrors the font horizontally, and My mirrors the font
+My vertically.

angle £ the amount of rotation from normal in 1/64th degree
increments. Use + for counterclockwise angles; use _ for
clockwise angles.

VPR DR LD Ch L EDERI TN
o ckrpRrRPRBRELPRFEKE ofRRRRRRBPRFFEERE
ShaplaRARPMA N [| Muo eNRBlcpPErleBlh K[Wwro
alols [T aNWENEN L Lo LR DL
P ol R W R B wmwe LR s NBNE N pplo
R A O L O O e (- O I 5 PRM b b e P] K 8

ANBEBREARRP P IS)Ox NNEERLALLLLEFBRR
TR PR MEL R EPERAR LRl mpl FeREREN
shbhaphphplslompl bl skl hpbblophklp
A e@bijo»hi OFERE RO NE LR PN QRER RO
AAp @ L[0O00 2] B[k NNEDPOANLNQOORRRERER
Al P Pl b s e PN RN P F

Font Mirrored Horizontally and Vertically

Don’t confuse “slant” with “rotation”. A character that has been
slanted has its base in the normal position and the top pushed to one
side. A character that has been rotated has been moved around some
central pivot point.

PixelSize [Extensions}

An integer describing the height of an EM square in pixels.

For scalable typefaces, you can increase or decrease the horizontal
size to make a font wider or narrower than normal for that font. The
syntax for this optional extension is

[+piwelwidth]

pizelwidth The horizontal size in pixels. If this field is not
specified, it is assumed to be the same as PixelSize.

For example, 20410 requests a font 20 pixels high and 10 pixels wide
(or, more accurately, a 20-pixel font whose width is half its normal

width).

The PixelSize and PointSize fields are related through the
ResolutionY field in the XLFD name (see below). You should specify

DRAFT
4/7/98 12:45

Warranty

a font by using either PixelSize or PointSize, but not both. An error
occurs if you specify both and they conflict.

PointSize /extensions/

An integer giving the KM square size in decipoints. For example 140
is 14 points.

For scalable typefaces, you can expand the horizontal size (set size)
to make a font wider or narrower than normal for that font. The
syntax for this optional extension is:

[+setsz'ze]

+setsize The horizontal size in decipoints. If this field is not
specified, it is assumed to be the same as PointSize.

For example, “1404240” requests a font 14 points high, and 24 points
wide (or, more accurately, a 14-point font whose width is that of a
24-point font).

If neither PixelSize or PointSize are specified, the assumption is
12-point. If both are specified and they conflict, an error is returned.
Use either PixelSize or PointSize, but not both.

ABRCDEFGHIJELMNOPQRST UVWX Yabedefghi jkhnnopgrstovaxy
ABCDEFGHIJELMNOPQRSTUVWXY abedefghl jklnmopgrstuvixy
ABCDEFGHIJKLMNOPQRSTUVWYX Yabedefghi jklmnoprstuywsy
ABCDEFGHIJKLMNOPQRSTUVWXYabcdefghi jldmnopgrstuvwxy
ABCDEFGHLIKLMNOPQRSTUVWXYabcdefghi jklmnopqrstuvwxy
ABCDEFGHIJKLMNOPQRSTUVWXYabedefghi jklmnopgrstuvwxy

ABCDEFGHIJKLMNOPQRSTUVWXYabcdefghi jkimnopqrstuvwxy
The Same Font in Different Sizes

ResolutionX, ResolutionY

The horizontal (X) and vertical (Y) resolution of the device that the
font was designed for, measured in pixels-per-inch. If the resolution is
not specified in a request XLFD name, the X server defaults to the
resolution of the display for which the font is requested.

DRAFT Using Fonts 6-11
4/7/98 12:45

Warranty
Spacing
A code indicating the spacing between units in the font.

M Monospaced (fixed pitch)

P Proportional spaced (variable pitch)

C Character cell. The glyphs of the font can be thought of as
“boxes” of the same width and height that are stacked side
by side or top to bottom.

AverageWidth

An integer string giving the average, unweighted width of all the
glyphs in the font, measured in 1/10th device-dependent pixels.
CharSetRegistry

The registration authority that registered the specified
CharSetEncoding. The XLFD conventions expect organizations that
control characters to register with the X Consortium and be given a
unique name to use in this field.

CharSetEncoding/eztensions]

The character set from which the characters in the font are drawn.

For scalable typefaces, this field can be used to specify subsets of any
of the character sets. This is a performance hint that the X or font
server uses to determine which characters need to be realized. The
syntax for this optional extension is:

=value,value...

value A character or range of characters to be included in
the font, specified as decimal or hex number[s]. A
range is two numbers separated by a colon (:). For
example,

=65,0x45,80:85

specifies the characters “A,” “E.)” and “P” through
“U‘”

If an application requests a character not in the subset, then:

m If the font’s usual default character (typically space) is in the
subset, that character will be substituted.

m Otherwise, the result is font-dependent.

6-12 Using Fonts DRAFT
4/7/98 12:45

Using the XLFD Font
Name

Warranty

You use the XLFD name or alias whenever you need to specify a
font. Some locations are:
m Application default or resource files, for example:

hpterm*Font: foniname
m Command line to start clients or applications, for example:

xclock -digital -fn fontname
m The fonts.dir file. Refer to “The fonts.dir File”.
m The fonts.alias file. Refer to “The fonts.alias File”.

The fonts.dir File

DRAFT
4/7/98 12:45

In directories containing scalable and/or bitmapped fonts, the

X and font servers associate each font file name with the XLFD

font name by means of the fonts.dir file. This file is created

by the installation process, or by executing the mkfontdir (for
directories that contain only bitmapped fonts), or stmkdirs (for
directories that contain bitmapped and/or scalable fonts) utility. The
stmkdirs utility is described in more detail in the section on font
administration.

You should run mkfontdir or stmkdirs after you add or delete fonts
from a directory, so that the change is reflected in fonts.dir. You
can view the list of fonts in a font directory, and their XLFD names,
by examining the fonts.dir file in that directory.

Scalable typefaces listed in fonts.dir have some values set to zero.

A fonts.dir file looks similar to this:

7

he lv008.pcT.Z -adobe-helvetica-medium-o-normal--8-80-75-75-P-47-hp-roman8

he |vB0O8.pcf.Z -adobe-helvetica-bold-o-normal--8-80-75-75-P-48-hp-romans

he I[vRO8.pcTf.Z -adobe-helvetica-medium-r-normal--8-80-75-75-P-46-hp-roman8

ant_oliv.ifo -agfa-antique olive bold-bold-r-normal-91118-0-0-0-0-p-0-hp-td00000000
ant_oliv.ifo -agfa-antique olive compact-normal-r-compact-91120-0-0-0-0-p-0-hp-td00000000
ant_oliv.ifo -agfa-antique olive italic-normal-i-normal-91846-0-0-0-0-p-0-hp-td00000000
ant_oliv.ifo -agfa-antique olive-normal-r-normal-91119-0-0-0-0-p-0-hp-td00000000

In this example:

m The first line lists how many bitmapped fonts and scalable
typefaces are described by the file, in this case 7.

m The rest of the lines give the file name and XLFD name that
describes the file.

0 The 3 lines starting with helv ... are 3 different bitmapped
fonts. They are different versions of the “Helvetica” style made
by Adobe. They are all 8-points in size, but differ in the slant
and boldness.

0 The last 4 lines are 4 scalable typefaces. Several fields in the
reference XLFD name are set to zero. In the request XLFD

Using Fonts 6-13

Warranty

The fonts.alias File

6-14 Using Fonts

name you use to request one of these fonts, you supply values for
either the PointSize or the PixelSize.

The X server tries to match your request with the bitmapped fonts
and scalable typefaces listed in the fonts.dir file as follows: The
server looks in the directories in your font path in the order shown by
xset q.

m Bitmap fonts.

The server uses the first font that it finds that meets all the criteria
you specified in the XLFD name. If you specified everything, it will
try to find the exact match. If you used the wild cards (* or 7), it
will use the first font that matches the parts you did specify.

m Scalable typefaces.

The PixelSize, PointSize, ResolutionX, and ResolutionY fields
in the reference XLFD name are zero. Your request XLFD
name should specify either the PixelSize or PointSize (but not
both). The server returns a font made from the outline with the
specifications you requested.

If none of the above results in a font being returned, the X server
returns an error message.

A font can be referred to by an alias. The alias is shorter and easier
to remember (and type) than the complete font description. Aliases
are found in the fonts.alias file. The fonts.alias file need not be
in each font directory, but the directory containing it must be in the
font path.

A simple fonts.alias file is created as part of installing the font.
The fonts.alias file is in this format:

"FILE_NAME_ALIASES"
alias-name zlfd-name

where:
alias-name is the nickname for the font.
zlfd-name is the XLFD name that specifies the font. If the

family name contains spaces, enclose the whole
XLFD name in quotation marks(").

The fonts.alias file provides for two types of alias names:
m The font’s file name.

If the string "FILE_NAMES_ALTIASES" occurs in the fonts.alias
file, then a font can be referred to by its file name alone, without
the path name or extensions. The X server will look in all the
directories in your font path.

m A name you select.

DRAFT
4/7/98 12:45

Warranty

You can specify what alias to use for referring to a font.

Any fonts not in the fonts.alias file must be referred to by the
XLFD name.

When you edit a fonts.alias file, any X or font servers using that
directory must be informed that they need to reread the file. To force
an X server to read its font.alias files, run

xset fp rehash
To force a font server to read its fonts.alias files, run
kill -USR1 pid

where pid is the process 1D of the font server.

Using Alias Names For example, with this fonts.alias file and the
fonts/hp_roman8/75dpi subdirectory of the system
directory in the font search path:

"FILE_NAMES_ALIASES"
ellen *-adobe-courier-bold-r-normal-*-8-80-75-75-m-50-hp-roman8

then you can use any of the following commands to start a digital
clock using this font:

m The “FILE_NAMES_ALIASES” entry lets you use just the file
name, without the path or extension.

xclock -digital -fn CourB0O8
m The alias name you specified.
xclock -digital -fn ellen

m You can always specify the XLFD name, whether or not you have a
fonts.alias file.

xclock -digital -fn *-adobe-courier-bold-r-normal-*-8-80-75-75-m-50-hp-roman8

m You can specify enough of the XLFD fields to identify the font
characteristics you want, and represent the rest with wildcards,
with 14 dashes separating the fields. The X server selects the first
font in its search path that matches the specification.

xclock -digital -fn *-*-courier-bold-r-normal-*-8-*-*-*-*-*-hp-roman8
This is useful for vendor independence—you can have the same

programs and default files on different vendors’ computers, and
customize by making the appropriate entry in the fonts.alias file.

DRAFT Using Fonts 6-15
4/7/98 12:45

Warranty

Errors

If you get a default font or an error message (such as “can’t make
font ... 7) when you request a font:

m Check the XLFD name for spelling.

m Check the XLFD name for inconsistencies. For instance, you
should not specify both the PixelSize and PointSize for scalable
typefaces. If you think there might be a conflict, set one of the
parameters to an asterisk (*) and try again.

m Run x1sfonts to see if the font you requested is available to you.

m Run xset q to see if the directory containing the font you
requested is in your font search path.

m Run xset fp rehash to be sure the X server is using the latest
aliases and font paths.

Bitmapped Font
Administration

Adding and Deleting
Bitmapped Fonts

6-16 Using Fonts

Bitmapped fonts are included with the X Window System. They
are located in the fonts subdirectories of /usr/1ib/X11. You may
use them as described in the following chapters without special
installation or licensing steps.

To add a bitmapped font:

1. If the font is not already in .pcf format, put it into the .pcf
format using bdftopct.

Compress the .pcf file using compress.
Copy the file into the desired directory.
Run mkfontdir to update the fonts.dir file for that directory.

[A \]

If the directory is providing fonts to the X server, run xset -fp
rehash to notify the X server of the changes. If the directory is
providing fonts to a font server, run kill -USR1 pid, to notify the
font server of the changes.

To delete a bitmapped font:
1. Delete the font file.
2. Run mkfontdir to update the fonts.dir file for that directory.

3. If the directory is providing fonts to the X server, run xset -fp
rehash to notify the X server of the changes. If the directory is
providing fonts to a font server, run kill -USR1 pid, to notify the
font server of the changes.

DRAFT
4/7/98 12:45

Creating a fonts.dir file
with ‘mkfontdir’

Compiling BDF Fonts to
PCF Fonts with
‘bdftopcf’

DRAFT
4/7/98 12:45

Warranty
The mkfontdir utility creates the fonts.dir file within a font
directory.

The syntax for mkfontdir is:

mkfontdir directory,directory,...
where:

directory is a font directory. If no directory is given, the
current directory is assumed.

X bitmapped fonts can be represented in several formats. A font’s
format is signified by the extension that appears after the font’s file
name:

.pcf Portable binary font description file.

.pef.”Z Compressed .pcf file.

.bdf Plain text font description file.

.bdf.7 Compressed .bdf file.

.bef Compressed .bdf file.

.snf (Prior to X11R5) Non-portable binary font
description file.

snf.Z (Prior to X11R5) Compressed .snf file.

scf (Prior to X11R5) Compressed .snf file.

Although all of these formats can be read by the X and font servers,
the preferred representation for font storage are the .pcf and .pcf.Z
formats. All bitmapped fonts shipped with HP-UX are shipped in
the .pcf or .pcf.Z format.

The font compiler bdftopct converts a font in bitmap distribution
format (.bdf) into the .pcf format.

The syntax for bdftosnf is:
bdftopct [options] filename
where options are:

-pnumber Specifies that font characters should be padded on
the right with zeros to the boundary of word number
where number is 1, 2, 4, or 8.

-unumber Force the scanline unit padding to 1, 2, 4, or 8.

-1 Specifies the output of bdftopct to be least
significant byte first.

-L Specifies the output of bdftopct to be least
significant bit first.

-m Specifies the output of bdftopct to be most
significant byte first.

-M Specifies the output of bdftopct to be most
significant bit first.

Using Fonts 6-17

Warranty

-t Expand glyphs in “terminal emulator” fonts to fill
the bounding box.

-i Don’t compute ink metrics for “terminal emulator”
fonts.

-o pcf_file Specifies the name of the output .pcf file. If not

specified, bdftopct sends its output to stdout.

filename Specifies the name of the .bdf font to be converted
into portable compiled format.

The following example takes a bitmap distribution bitmap font
file named tmrm12b.bdf and converts it to a compressed portable
compiled format file:

bdftopcf tmrmi2b.bdf | compress >timrmi2b.pcf.Z

Scalable Typeface
Administration

Overview

6-18 Using Fonts

A font administrator is anyone who has purchased a font and wants
to use it on a system. Scalable typefaces, unlike the X bitmap fonts,
are licensed. Read your license carefully. The font administrator is
responsible for ensuring that the font is used in a legal manner. The
permissions for files and directories that relate to scalable typefaces
have been carefully chosen to allow you to fulfill your responsibilities.

The font administrator has three main tasks:

m Install and delete scalable typefaces.

m License and unlicense devices to use typefaces.
m Add and delete character sets.

Each system is shipped with a core set of scalable typefaces installed
in two different directories. Intellifont scalable typefaces from Agfa
are installed in the directory /usr/lib/X11/fonts/ifo.st, and
Type 1 scalable typefaces from Adobe are installed in the directory
/usr/1ib/X11/fonts/typel.st. You can list them by typing ...

xlsfonts -fn "*-0-0-0-0-*"

. as described earlier in this chapter.

There are four steps a font administrator must perform to make a
scalable typeface ready for use. These steps are covered in more
detail in the following sections.

1. Load the typeface into a directory on the target system
(“Installing and Licensing Scalable Typefaces”).

2. Load the character set if it is not already on the system (“Adding
and Removing Character Sets”). Character sets are used by
several different typefaces.

DRAFT
4/7/98 12:45

Installing and Licensing
Scalable Typefaces

DRAFT
4/7/98

Caution #

12:45

Warranty

3. Run stmkdirs for that directory to notify the X server of the
addition. (“Creating *.dir Files with ‘stmkdirs™)

4. Add the license to that typeface for the system (“Adding and
Removing Licenses with ‘stlicense™).

An example of installation and removal of a typeface and its license
is presented later in this chapter.

When you install a new scalable typeface, any running font servers
that are using that directory need to be told to read the directory for
the new font or fonts. You can do this by entering kill -USR1 pid,
where pid is the process ID of the font server. See the section on
using the font server for more detailed information on font server
configuration.

To install a scalable typeface onto a system:

1. Decide what directory will contain the new typefaces.

If you use the fonts/ifo.st/ or fonts/typel.st subdirectories
of /usr/1ib/X11, you will have your fonts in centralized
locations, but you need superuser capability to write in either of
these directories.

If you create your own directory, you do not need superuser
capability. If you create a new directory, be sure to:

O give it the extension .st.
0 make it readable for the group bin.

o configure the font server to include it in its font path.

2. Create a “typefaces” subdirectory to the .st directory, if one does
not already exist. Install new fonts into this directory.

For Intellifont format fonts:

a. Copy the files containing the typeface into an empty temporary

directory on the target file system.

. If your typefaces are contained on several flexible discs,

load the entire contents of each disc into its own temporary
directory or do these steps for each individual disc. Copy the
entire contents of the disc, even if you want only one typeface
from it.

If you copy all the discs into one directory, some files will be
overwritten.

m For HP-UX media, copy the files directly to the temporary
directory.

m For MS-DOS media, use the doscp utility to copy the files
from a flexible disc drive to the temporary directory.

Using Fonts 6-19

Warranty

Note

6-20 Using Fonts

m [f a PC is networked into your system, refer to the network
documentation about how to copy files from the PC to the
HP-UX system.

c. Run the stload utility on each temporary directory to convert
the files into the proper format and place the typeface in the
permanent directory you established in step 1.

d. If you loaded more typefaces than you wanted, remove the
file(s) and run stmkdirs for that directory.

e. Delete the temporary directories used in step 2b.

For Type-1 format fonts:

The font server can handle IBM-format Type 1 fonts, but it cannot
read the Macintosh format.

a. Copy the desired scalable font files (extensions .pfa and .pfb)
from the distribution media into the typefaces subdirectory.
The suffixes must be lower case; the system does not recognize
.PFA or .PFB.

b. Run stmkdirs for the typefaces subdirectory to add the new
fonts to the database.

Once the file is loaded, typefaces can be made available to users
through licensing. Refer to “Adding and Removing Licenses with

‘stlicense™.

To delete a typeface from a system:

1. Remove all licenses for the product, using stlicense. For
example

stlicense -pr foo -fp /home/ellen/ifo.st "*"
removes all licenses to product “foo” in the specified directory.

2. Remove the typeface files that are no longer being used
(extensions .ifo, .pfa, and .pfb) from the typefaces
subdirectory.

3. Run stmkdirs in the typefaces subdirectory to update the
fonts.dir file.

4. Remove the product file from the products subdirectory.

Loading Scalable Typefaces with ‘stload’

Use the stload utility to load into the system Agfa fonts that have
been distributed in Agfa’s FAIS distribution format.

The syntax for the stload utility is:

stload [optz'ons] [dz'rectory\ﬁlespec]

where:

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

directory\ filespec

-o path

-fp path

-p product-number

-list

-link

—sym
—id[,-id ...]

-tfm

-dos

-d mapdir

-to format

-f libname

-u
-v
-h

For example:

Warranty

Required parameter specifying the name of
the directory or filespec of the data to be
loaded.

The name of the directory to which the

the typeface outlines should be written.

If this is omitted, the default is to the
/usr/1ib/X11/fonts/ifo.st/typefaces file.

The name of the base directory under
which typefaces, metrics, and products
directories should be used.

Associates a product number with the
newly-loaded typeface. Although this could
be anything, it should reflect the product
number on the package and media. The
stlicense utility requires this product
number.

Prints a list of the data located in directory.

Make links to the original directory, rather
than copies.

Make symbolic links to the original directory.

Identifies one or more specific typefaces to be

loaded.
Updates .tfm files in the output directory.

Specifies that the typeface file is in DOS
format. Normally, stload generates a

typeface file in a format installed for use on
HP-UX, and not available on DOS.

Specifies the directory containing the symbol
list map required by the -to option.

Specifies the symbol list that should be used
for assigning character ID codes when loading

FAIS data.

Specifies the name of the library into which
FAIS data should be loaded.

Specifies that the .dir files not be updated.
Specifies verbose mode.

Requests help.

stload -fp new.st -p C2054#ABA -tfm -dos -v tempdir

Using Fonts 6-21

Warranty

6-22 Using Fonts

Creating *.dir Files with ‘stmkdirs’

Use the stmkdirs utility to create and maintain various configuration
files that support the scalable typeface technology, including
fonts.dir files, directories of character sets, and directories of
metrics files.

This section describes how to use stmkdirs to maintain font
directories. stmkdirs works much like mkfontdir, in that it creates
the fonts.dir file containing a list of fonts in the current directory.
But, stmkdirs recognizes Intellifont and Type 1 scalable fonts, while
mkfontdir recognizes only bitmapped fonts. Therefore, you should
use stmkdirs to build the fonts.dir file in any font directory that
contains scalable fonts.

stmkdirs creates the fonts.dir file from the directory of font files.

stmkdirs [Optz'ons] dz'rectory[s dz'rectory,...]
where the options are:

-tfm For any Intellifont files in the target directories, build
a TFM (Tagged Font Metrics) file in the specified
destination directory.

+m Requests that fonts.dir be generated including (+)
or excluding (-) bitmap fonts.

+o fonts.dir is generated including (+) or excluding
(-) scalable fonts.

+f fonts.dir is generated (+) including excluding (-)
both scalable fonts and bitmap libraries, or not
generated (-).

tc Requests that charsets.dir be generated (+) or not
generated (-).

-b Suppresses creation of backup files.
-h Prints help information on stout.
directory is one or more directory names containing fonts.

For each directory listed, stmkdirs reads all the font files in that
directory, putting file names and XLFD name into the fonts.dir
file. Without a fonts.dir file, the the X and font servers cannot
access font files in the directory.

Run stmkdirs after any fonts or charsets are added or deleted.

Adding and Removing Licenses with ‘stlicense’

When you purchase a scalable typeface product, you receive a license
agreement, outlining by who and how the typefaces in the product
may be used. For instance, the terms may be that only one printer
and one display may use the typefaces.

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The stlicense utility helps administer the licenses. Fonts are
available only to licensed devices.

The syntax for the stlicense utility is:

. -fn ¢ .
stlicense [-fp dzrectory]{ n lypeface } [:l:devzce]

where

_fp

-fn

-pr

+device

nothing

-pr product

The path of directories to search for the specified
product or typeface. The default is /fonts/ifo.st/
in fusr/1lib/X11.

The typeface being licensed. The typeface is specified
as an XLFD name. You need not use the whole
XLFD name, just enough to uniquely identify the
typeface. A product is identified by its name or
product number.

The product being licensed.

The device is specified in the form: host:device.
The given typeface is added to or removed from the
list of typefaces licensed for this device.

The host name STSYSTEM refers to all hosts served by
this typeface directory.

The device name DISPLAYS refers to all displays
running on the host.

The device name PRINTERS refers to all printers
connected to the host.

If the machine is not specified, the default is the
machine on which stlicense is running, and the
device defaults to DISPLAYS.

If no devices are given, a list of devices that have
licenses for the typeface is printed on the standard
output. The list is grouped by system and individual
device licenses.

The built-in typefaces are licensed at installation time to all displays
and printers attached to the system (STSYSTEM:DISPLAYS and
STSYSTEM:PRINTERS). For example,

stlicense -pr C2054#ABA +1j3

licenses the printer named [j3 to use the typeface product
C2054#ABA. Since the machine is not specified, stlicense assumes
the machine to be the one on which it is running.

stlicense C2054#ABA -pr -laserjp +laserkb

Using Fonts 6-23

Warranty

6-24 Using Fonts

Adding and Removing Character Sets

Many Intellifont and Type 1 scalable fonts contain many characters,
and can be used to create more than one character set. For example,
both Intellifont and Type 1 scalable fonts can be used to build fonts
using either ISO8859 encoding or HP roman-8 encoding. This section
describes the management of character sets for scalable fonts.

Administering Character Sets for Intellifont Fonts. Character

set definitions are stored in the fonts/stadmin/ifo/charsets
subdirectory of fusr/1ib/X11. as ASCII files with the extension
.sym. The charsets directory is shipped from the factory with two
popular character sets definitions:

m [P Roman 8
m I1SO 8859-1 (also known as ECMA Latin 1)
These character sets are the only ones many applications need.

The archive subdirectory contains definitions for a number of
additional character sets. These include character sets popular for

PCs.

To enable one of the character sets in “archive”:

1. Copy the desired character set (.sym) file from the archive
subdirectory into the charsets directory. For example,

cp /usr/1lib/X11/fonts/stadmin/charsets/archive/pc8.sym ..
2. Run stmkdirs in the charsets directory to update the
charsets.dir file. For example,

stmkdirs /usr/lib/X11/fonts/stadmin/charsets
3. Run the following to notify the font server of the changes:

kill -USR1 pid
where pid is the process 1D of the font server.

To install a character set from the Type Director/DOS product, first
run stconv on the .sym file to put it into a format that can be used
on your workstation.

To delete a character set:

1. Remove the character set (.sym) file from the charsets directory.
(It is still in the archive subdirectory if you need it later.)

2. Run stmkdirs with the +c option in the charsets directory to
update the charsets.dir file.

3. Run the following to notify the font server of the changes:

kill -USR1 pid

where pid is the process 1D of the font server.

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

Administering Character Sets for Type 1 Fonts. Character

set definitions for Type 1 fonts are stored in
/usr/1ib/X11/fonts/stadmin/typel/charsets. Files in

this directory named cp. character_set define the character mapping
for the desired character set. The two files shipped in this directory,
cp.1s08859 and cp.hp-roman8, define the character set mappings for
[SO8859.1 and Roman-8 encoding.

To add or delete character set mappings for Type 1 fonts, you need
to add or delete mapping files to this directory. The file names must
be of the form cp.character_set, where character_set is the charset
definition, containing one hyphen, to be used at the end of the font’s
XLFD name.

When a font server starts up or rereads its font directories in
response to a signal, it uses the character sets defined in this
directory to build its list of available font names.

Example: Installing and Licensing

This example shows installing and licensing an Intellifont typeface
product called “COOOO#AAA”. Path names are shown in full for
clarity, you may not need to specify them in that detail. Assume that
you have named a flexible disk drive device location /dev/rdsk/2s1.

“COOOO0O#AAA” is the product number on the box of the product.

It comes on two flexible discs.

A new scalable typeface directory is to be created. It is owned by the
font administrator, /home/ellen. A flexible disc drive is attached to
the system at device location /dev/rdsk/2s1.

1. Copy each of the two discs into its own temporary directory.

mkdir /tmp/discl

insert flexible disc 1 into the drive.
doscp /dev/rdsk/2s1/* /tmp/discl
mkdir /tmp/disc2

insert flexible disc 2 into the drive.
doscp /dev/rdsk/2s1/* /tmp/disc2

2. Create a new directory for the scalable typeface and make it
readable by the bin group. All other groups should have no access
to the .ifo files.

mkdir /home/ellen/new.st

chacl "} .bin+r" /home/ellen/new.st

mkdir /home/ellen/new.st/typefaces

chacl "} .bin+r" /home/ellen/new.st/typefaces

3. Load the typefaces into the new directory. Note that this example
includes the creation of .tfm files. If you have applications that
utilize AutoFont Support, you will need them. Otherwise, save
installation time and disc space by not requesting them.

stload -p COO00#AAA -dos -v -fp /home/ellen/mew.st —tfm /tmp/discl

Using Fonts 6-25

Warranty

6-26

Using Fonts

stload -p COO00#AAA -dos -v -fp /home/ellen/mew.st —tfm /tmp/disc2

. Make the new files readable by the bin group.

chacl ", .bin+r" /home/ellen/new.st/typefaces/*"

. Clean up the temporary directories.

rmdir /tmp/discl
rmdir /tmp/disc?2

. To make the fonts available to a font server, edit the font server’s

config file to add the new font path. For example, you can
append:

,/home/ellen/new.st
to the “catalogue =" entry in the config file. Then force the font
server to reread its config file by typing:

kill -USR1 pid

where pid is the font server’s process id.

. Before this product can be used, it must be licensed. For this

example, the license in the product stipulates that the typefaces
can be used for up to three printers and any number of displays
connected to the system.

stlicense -fp /home/ellen/new.st -pr COO00#AAA +STSYSTEM:DISPLAYS \
+mysystem:laserl +mysystem:laser2 +mysystem:laser3

Notice that although the printers are listed individually, the
displays are grouped by the shortcut STSYSTEM:DISPLAYS.
mysystem is one of the hosts covered by STSYSTEM.

If you now wanted mysystem:laser4 to be licensed, you have to
remove the license for one of the other printers, since you are only
allowed up to three printers.

stlicense —-fp /home/ellen/new.st -pr COO00#AAA -mysystem:laser3 \
+mysystem:laser4

When the product is no longer needed, remove it from the system.

1. Remove all licenses to the product.

stlicense -fp /home/ellen/new.st -pr COOOO#AAA "-x"

2. Remove the typeface files (.ifo). The list of files to be removed is

in /home/ellen/new.st/products/CO000#AAA.

rm /home/ellen/new.st/typefaces/12345678.ifo
rm /home/ellen/new.st/typefaces/22345678.ifo

3. Update the fonts.dir in the typefaces subdirectory.

stmkdirs /home/ellen/new.st/typefaces

DRAFT
4/7/98 12:45

Scalable Typefaces File

DRAFT
4/7/98

12:45

Structure

Warranty

This section describes the default scalable font directories (font
catalogs). There can be other font catalogs, but each must have the
.8t extension and structure described here. In addition, each must
be on the font path.

The directories described here are subdirectories of /usr/1ib/X11.

Scalable Font Directories

The fonts/ifo.st and fonts/typel.st are the default font
catalogs. They contain typeface files, licensing, and metrics
information.

Licenses Subdirectory. The 1licenses subdirectory contains files with
licensing information for each host, display, and system.

It contains a hosts.dir file, which is a cross-reference between the
actual host name and the directory containing license information
about that host. One host subdirectory is STSYSTEM, which is for
system-wide licenses. There are separate subdirectories for each host
on the system.

Within each host subdirectory, there are subdirectories for each
device (DISPLAYS is always one). Within these directories there are
fonts.dir and fonts.alias files as described elsewhere in this
manual.

Metrics Subdirectory. The fonts/ifo.st/metrics directory contains
metrics for the fonts and scalable typefaces that are not loaded on
the system. This is the recommended location for the .tfm files for
Intellifont fonts, and for .afm files for Type 1 fonts.

Products Subdirectory. Each product that has been installed has a
file cross-referencing the font file name and the XLFD name used to
refer to it. The core fonts are in the builtin file.

Typefaces Subdirectory. The typefaces subdirectory contains the
typeface files. The Intellifont files have a .ifo extension. Type 1
typeface files have a .pfa or .pfb extension. In addition, there is a
fonts.dir file for each typeface directory.

Administrative Directories

The fonts/stadmin/ifo directory contains typefaces.dir, which
provides a cross-reference between the typeface ID and the XLFD
name for Intellifont fonts.

The fonts/stadmin/ifo/charsets subdirectory contains valid
character sets for Intellifont fonts. These files have a .sym extension
and are in the same format at those for TypeDirector/DOS 3.0. A
charsets.dir file provides a cross-reference between the file name
and the character set name. Non-active character sets are contained
in the subdirectory archive, with its own charsets.dir file. To
make an inactive character set active, copy it from the archive

Using Fonts 6-27

Warranty

subdirectory, and update the charsets.dir file by running stmkdirs
on that directory.

The fonts/stadmin/typel/charsets subdirectory contains
valid character sets for Type 1 fonts. These files are all named
cp. character_set, and are used to provide a mapping between
internal Type 1 character names and standard encodings such as
1S08859.1 and Roman-8.

Using ‘stmkfont’ and Two additional support utilities are provided for use with Intellifont
‘stcony’ outline fonts. The next two sections describe stmkfont, a utility for
generating a variety of bitmap formats from Intellifont outlines, and

stconv, a utility for manipulating Intellifont symbol set files.

Making Bitmapped Fonts from Scalable Typefaces with ‘stmkfont’

The stmkfont utility produces bitmapped fonts in a variety of
formats from an outline specified by an XLFD name. stmkfont can
create bitmap fonts in the following formats:

bdf
PCL

PCLEO

IFO
TFM

Bitmap Distribution Format

Printer Command Language (for HP LaserJet
printers)

Printer Command Language Encapsulated Outlines
(for HP LaserJet III printers).

Intellifont outline.

HP Tagged Font Metric for metrics pertaining to HP
LaserJet printer scalable typefaces.

The syntax for stmkfont is:

stmkfont [Optz'ons] zlfdname

where the options are:

-d1ipath

-d2 path

-dv device
-cp path
-ct file

-nf file
-ns file
-nt file

-nv name

-o outfile

6-28 Using Fonts

Specifies the primary database tree path (default is
fonts/ifo.st).

Specifies the secondary database tree path (default is
fonts/stadmin).

Specifies the device for which the font is to be made.
Specifies the charset path (default is charsets).

Specifies the charset file (default is to derive it from
the XLFD name.

Specify a new name for fonts.dir.
Specify a new name for charsets.dir.
Specify a new name for typefaces.dir.

Specify an environment variable to use instead of

STPATH.
Specifies output file (default is stdout)

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

stmkfont

Warranty

-f format Specifies the output format (BDF (default), PCL, or
PCLEO).

-1 Send completion status information to stderr.

-P Send 1% progress dots to stderr.

-C Send catalog of XLFD/symbol set combinations to
stderr.

-T Bypass intermediate tempfile, write to output
directly.

-V Send fully qualified XLFD name to stderr, then quit.

-v Send fully qualified XLFD name to stderr, then
continue.

-w Suppress bitmaps, restrict output to header and

trailer only.
-q Suppress error messages (quiet mode).

zlfdname This parameter is required. Since both the XLFD
name and parameters start with a dash (=), then
stmkfont assumes the last arguments is the XLFD
name.

The XLFD name must not contain any blanks. If it does, enclose the
entire string in quotes ("). Empty fields and wildcards are permitted.

For example,
-o myfont "-agfa-cg century schoolbook-normal-r-normal-*--240---p-150-*-roman8"

Converting Map Formats with ‘stconv’

The stconv utility converts symbol set maps (.sym files) from one
symbol set to another. Output is always to stdout.

The syntax for stconv is:

stconv infile [-hmq] [—d mapdz'r] [—to format]

where:

infile Name of the .sym file to be converted.

-d mapdir Specifies the name of the directory containing
the symbol conversion list. This directory should
contain the file acg.hpmsl and any optional
additional symbol set maps. The default is
fonts/stadmin/ifo/charsets in /usr/lib/X11.

-to format Specifies the new symbol list format. The default is
hpmsl. To generate a symbol set for Agfa’s character
codes, specify -to ACG.

-m Lists the conversion map.

-q Run quietly.

Using Fonts 6-29

Warranty

-h Requests help.
For example,
stconv -to ACG roman8.sym

reads the HPMSL symbol map roman8.sym, and writes the ACG
version to stdout.

6-30 Using Fonts DRAFT
4/7/98 12:45

The Window Manager

Starting and
Stopping the
Window Manager

DRAFT
4/7/98

12:45

The OSF/Motif Window Manager (mwm) is an X11 client that
manages the appearance and behavior of objects on the root window.
You control mwm and its management functions using a mouse,
keyboard, and a functional window frame. Additionally, mwm has a
root menu to assist you in the control of the root window.

Chapter 4 explains how to use windows. This chapter explains how
to customize them.

This chapter organizes window manager resources and functions into
the following task-oriented topics:

m Starting and stopping mwm.

m Setting mwm resources using .mwmrc

m Managing the general appearance of window frames.
m Working with icons.

m Managing window manager menus.

m Using the mouse.

m Using the keyboard.

m Controlling window size and placement.

m Controlling focus policies.

The OSF/Motif Window Manager (mwm) is an X11 client that
manages the appearance and behavior of objects on the root window.
You control mwm and its management operations using a mouse, a
keyboard, and a functional window frame. Additionally, mwm has a
root menu to assist you in the general control of the root window.

The OSF/Motif Window Manager is the default window manager
for your X Window System. It is started from $HOME/.x11lstart
when you start X11. If that file doesn’t exist, mwm is started from
sys.xllstart in /usr/1ib/X11.

The syntax for mwm is as follows:
mwm [options]
where options are:

-display host:display.screen Specifies the screen to use.

The Window Manager 7-1

Warranty

Declaring Resources

7-2 The Window Manager

-XTm resourcestring Specifies using the named resource on
starting.
-multiscreen Causes mwm to manage all screens on a

display. The default is to manage only
a single screen.

~“name name Uses name to retrieve resources.

-screens name [name ...J Gives the resource names for the
screens managed by mwm. The names
are separated by spaces.

The following line in .x11start in your home directory starts mwm.
mwvm $Q &

The $@ passes the window manager options specified on the
x1llstart command line.

The mwm client receives configuration information from three resource

files:

m sys.Xdefaults in /usr/lib/X11 or .Xdefaults in your home
directory.

Contains X resources.

m system.mwmrc in /usr/1ib/X11 or .mwmrc in your home directory.
Menus, key bindings, and button bindings.

m app-defaults/Mwm in /usr/1ib/X11.
X resources for mwm only.

This file cannot be changed. However, you can copy information
from that file, modify it, and then add it to your personal resource.

If you modify these files, you can use either method of specifying
personal resources: changing the RESOURCE_MANAGER property
or modifying the .Xdefaults file. Both methods are covered in
chapter 5.

The syntax you use differs depending on whether you want the
resource to control an element or that element for a particular object.

The syntax for mwm resources is:

N [{ clientname clientclass
Wi

xresource: value
defaults }]

Use nothing between “Mwm” and the resource name if you want the
resource applied to all clients for which you don’t otherwise specify a
value. Some resources make sense only at this level, such as the focus
policy ones. Use clientclass to apply the resource to a specific class
of clients. Use clientname to apply the resource only to a specific

DRAFT
4/7/98 12:45

Warranty

instance of a client named using the client’s name resource. Use
defaults when you want the default value used.

DRAFT The Window Manager 7-3
4/7/98 12:45

Warranty

For example, if you want the general appearance of the clients in
your environment to be SteelBlue and VioletRed, but want your
menus to be different, you could use the following lines in your
personal resources.

Mwm*background: SteelBlue
Mwm*foreground: VioletRed
Mwm*activeBackground: VioletRed
Mwm*activeForeground: SteelBlue

Mwm*menu*background: SkyBlue
Mwm*menu*foreground: White

Or, if you want to use your own happyface bitmap for hpterm
windows and see a complete label whenever any icon is active, you
would have the following lines in your personal resources:

Mwm*HPterm*iconImage: /home/yourusername/Bitmaps/face.bits
Mwm*iconDecoration: label activelabel

7-4 The Window Manager DRAFT
4/7/98 12:45

Warranty

Frames You can control the general appearance of the window frames in your

DRAFT
4/7/98

environment with your personal resources specifications.

Parts of a Window Three aspects of the general appearance of window frames are under

Frame your control.

Color The color of foreground, background; and top,
bottom, and side shadows.

Tile The mixture of foreground and background color
that composes the pattern of the frame surface.

Font The style (including size) of the text characters in
the title bar, menus, and icon labels.

Additionally, you can control what parts of the frame are displayed.

Hindow Menu Minimize
Title Bar Maximize
o [
= Terminal Hindow s |

Frompt ——z Curser

Painter

Resize
Border

Frame Elements

Customizing the You can specify what frame components you want to appear on
Window Frames windows:

m The clientDecoration resource enables you to choose just how
much or how little “decoration” you want to put around each
client.

m The transientDecoration resource enables you to choose just
how much or how little decoration you want to put around each
transient window. A transient window is a relatively short-lived
window, for example, a dialog box.

You can still access the functionality of any decoration you remove by
binding its functions to mouse buttons or to key presses, as explained
in “Mouse Button Bindings” later in this chapter.

The Window Manager 7-5
12:45

Warranty

Valid Window Frame Elements

Frame Element Description

all Include all frame elements (default value).
none Include no window frame elements.
+border Window border.

F+maximize Maximize button (includes title bar).
Fminimize Minimize button (includes title bar).
+none Include no window frame elements.
+resizeh Resize border handles (includes border).
F+menu Window menu button (includes title bar).
+title Title bar.

You specify the clientDecoration and transientDecoration
resources as a list of the frame elements. If the first element in the
list is preceded by a plus (+) sign or has no sign preceding it, the
window manager starts with no frame and assumes that the list
contains those elements you want added. If the list begins with a
minus (—) sign, the window manager starts with a complete frame
and assumes that the list contains elements you want removed from
the frame.

For example, you may want a border with only a title bar and
window menu button around a particular hpterm window started as
hpterm -name hp850.

Mwm*hp850*clientDecoration: +menu

Or you could remove the title bar from all transient windows by
adding the following line in your personal resources specification:

Mwm*transientDecoration: —title

Coloring Window Frame You can use any of the standard X11 colors listed in the rgb.txt
Elements file in /usr/1ib/X11. to color frame elements. In addition, you
can create your own colors using hexadecimal values (see “Color
Resources” in chapter 5).

The following table lists the individual elements of inactive and
active window frames, and the resources that control their color, for
mwm.

The default settings provide a 3-D visual effect without you having to
specify the exact colors for every frame element.

7-6 The Window Manager DRAFT
4/7/98 12:45

Tiling Window Frames

DRAFT
4/7/98

With Pixmaps

12:45

Warranty

Window Frames Resources for a Color Display

To color this . ..

Use this resource . ..

The default value
1s ...

Background of background LightGrey
inactive frames.

Left and upper topShadowColor Lightened

bevel of inactive background color
frames.

Right and lower bottomShadowColor Darkened

bevel of inactive background color
frames.

Foreground (title foreground Darkened bot-
bar text) of inactive tomShadowColor
frames.

Background of the |activeBackground CadetBlue

active frame.

Left and upper activeTopShadowColor Lightened

bevel of the active activeBackground
frame. color

Right and lower activeBottomShadowColor Darkened

bevel of the active activeBackground
frame. color

Foreground (title activeForeground Darkened

bar text) of the activeBot-
active frame. tomShadowColor

For example, the following lines in the .Xdefaults file in your home

directory give the window manager frame a maroon foreground and a
gray background. The background color is used to generate colors for
the top and bottom shadow elements so that a 3-D effect is achieved.

Mwm*foreground: Maroon
Mwm*background: Gray

A pixmap can be used to create shades of colors. Fach pixmap
is composed of tiles. A tile is a rectangle that provides a surface
pattern or a visual texture by “mixing” the foreground and
background colors into a color pattern.

The Window Manager 7-7

Warranty

7-8 The Window Manager

Tiling Window Frames with Window Manager Resources

To tile this . .. Use this resource . .. The default for
color displays is . ..
Background of backgroundPixmap NULL
inactive frames.
Right and lower bottomShadowPixmap NULL
bevels of inactive
frames.
Left and upper topShadowPixmap NULL
bevels of inactive
frames.
Background of the |activeBackgroundPixmap NULL
active frame.
Right and lower activeBottomShadowPixmap NULL
bevels of the active
frame.
Left and upper activeTopShadowPixmap NULL
bevels of the active
frame.
DRAFT

4/7/98 12:45

Warranty

The following table lists the acceptable values for pixmap resources:

The Values to Use for Tiling Window Frames

To tile an element this color . .. Use this
value . ..
The foreground color. foreground
The background color. background
A mix of 25% foreground to 75% background. 25_foreground
A mix of 50% foreground to 50% background. 50_foreground
A mix of 75% foreground to 25% background. 75_foreground

In horizontal lines alternating between the foreground and | horizontal tile
background color.

In vertical lines alternating between the foreground and vertical tile
background color.

In diagonal lines slanting to the right alternating between slant_right
the foreground and background color.

In diagonal lines slanting to the left alternating between slant_left
the foreground and background color.

The following figure illustrates the valid tile values:

| foreground | | background | | 25_foreground
| G58_foreground | | 75 _foreground | |_horizontal tile |
| wertical tile | I slant_right I I slant_left I

Matting Clients A matte is a 3-D border just inside the window between client area
and window frame.

Valid Tile Values

The following table lists matte elements and the resources that
control their color.

DRAFT The Window Manager 7-9
4/7/98 12:45

Warranty

Frame Resources For
Monochrome Displays

7-10 The Window Manager

Coloring Window Frames with Window Manager

Resources

To color this . ..

Use this resource . ..

The default value
1s ...

Width of matte matteWidth 0 (no matte)

Matte background. |matteBackground mwm background

Left and upper matteTopShadowColor Lightened

bevel of matte. matteBackground
color.

Right and lower matteBottomShadowColor Darkened

bevel of matte. matteBackground
color.

Matte foreground. |matteForeground Darkened
matteBottonShad-
owColor.

Matte right and
lower bevels.

matteBottomShadowPixmap

client bottom
shadow color

Matte left and

upper bevels.

matteTopShadowPixmap

client top shadow
color

The values to use for tiling mattes are shown in “Tiling Window
Frames With Pixmaps”.

For example, you could place a different matte around all instances of
hpterm and xterm windows by including the following lines in your
personal resources specifications:

Mum+HPterm*matteWidth: 10
Mwm+HPterm*matteBackground: SkyBlue
Mum*XTerm*matteWidth: 10
Mwm*XTerm*matteBackground: Tan

If mwm determines that the monitor is monochrome, and no color
resources are specified for frame elements, mwm uses defaults
appropriate for monochrome displays. Mum*background and
Mwm*activeBackground are set to White. The following table
lists the frame elements, resources, and defaults for monochrome

monitors.

DRAFT

4/7/98 12:45

Controlling Window
Size and Placement

DRAFT
4/7/98

12:45

Warranty

Window Frame Resource Values for Monochrome

Monitors
The background For this resource . .. The default value
is ... is ...

White topShadowColor White

White bottomShadowColor Black

White foreground Black

White topShadowPixmap foreground

White activeBackgroundPixmap foreground

White activeTopShowdowPixmap 50_foreground

The sys.Xdefaults file contains a set of entries that provides a more
attractive window shading for monochrome displays. These entries
start with mwm_bw, and require that you start mwm with the name
mwm_bw. To do this, edit the following line in .x11start:

mwm & #Starts the mwm window manager
to read:

mwm -name mwm_bw & #Starts the mwm window manager
You must restart X11 in order for this change to take effect.

When you start the window manager with a new name, it will no
longer see resources of the form mwm*resource. It will see the class
resources Mwm*resource.

The following table lists window manager resources enabling you to
refine your control over the size and placement of windows.

The Window Manager 7-11

Warranty

Refining Your Control with Window Manager Resources

To control this . .. Use this resource ... The default is . ..

Initial placement of new interactivePlacement False
windows on the screen.

The ability to enlarge windows |limitResize False
beyond the size specified in

maximumClientSize.

The maximum size of a client |maximumMaximumSize 2xscreen

window set by user or client.

The sensitivity of dragging moveThreshold 4 pixels
operations.
Exact positioning of window positionIsFrame True

and window frame.

Clipping of new windows by positionOnScreen True
screen edges.

The width of the resize border |resizeBorderWidth 10 pixels
of the window frame.

Displaying the resize cursors resizeCursors True
when the pointer is in the
resize border.

The maximum size of a maximumClientSize screen size
maximized client.

The interactivePlacement resource has the following values:

True The pointer changes shape (to an upper left corner
bracket) before a new window displays, so you can
choose a position for the window.

False The pointer doesn’t change shape. A new window
displays according to the placement values specified
in the X configuration files.

The 1imitResize resource has the following values:

True A window cannot be resized to greater than the
maximum size specified by the maximumClientSize
resource or the WI_NORMAL_HINTS window property.

False A window can be resized to any size.

The value of the maximumMaximumSize resource is the width X height
of the screen being used. The dimensions are given in pixels. For
example, for an SRX display, maximumMaximumSize would have a
value of 1280x1024.

The value of the moveThreshold resource is the number of pixels
that the pointer must be moved with a button pressed before a move
operation is initiated. You can use this resource to prevent window

7-12 The Window Manager DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

or icon movement when you unintentionally move the pointer during
a click or double-click.

The positionIsFrame resource has the following values:

True The position information (from WM_NORMAL_HINTS
and configuration files) refers to the position of the
window frame.

False The position information refers to the position of the
window itself.

The positionOnScreen resource has the following values:

True If possible, a window is placed so that it is not
clipped. If not possible, a window is placed so that
at least the upper left corner of the window is on the
screen.

False A window is placed at the requested position even if
it is totally off the screen.

The value of the resizeBorderWidth resource is the width of the
resize border, the outermost portion of the window frame. The width
is measured in pixels.

The resizeCursors resource has the following values:

True The appropriate resize cursor displays when the
pointer enters a resize border area of the window
frame.

False The resize cursors are not displayed.

The value of the maximumClientSize resource is the width x height
(in pixels) of the maximum size of a maximized client. If this
resource isn’t specified, the maximum size is taken from the
WM_NORMAL_HINTS window property, or the default size (the size of
the screen) is used.

For example, you might decide that xload clients should be
maximized to no more than an eighth of the size of your 1024 x 768
display.

Mwm*XLoad .maximumClientSize: 128X96

The Window Manager 7-13

Warranty

Contro"ing Focus The focus policies determine what happens when a window becomes

Policies the active window. The active window is the window that has the
focus of the keyboard and any extended input devices. When a
window is active, the following are true:

m What you type appears in that window.

m The color of the window frame changes to indicate the active focus.
m Input from extended input devices goes to that window.

Each focus policy is controlled by a specific focus policy resource.

The focus policy resources are as follows:

Controlling Focus Policies with Window Manager

Resources
To control this . .. Use this resource ... | The default value is ...
Which client window colormapFocusPolicy keyboard
has the colormap focus.
Which client window keyboardFocusPolicy explicit
has the keyboard and
mouse focus.
7-14 The Window Manager DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The following focus policies are valid for the colormapFocusPolicy
resource:

keyboard The window manager tracks keyboard input and
installs a client’s colormap when the client window
gets the keyboard input focus.

pointer The window manager tracks the pointer and installs
a client’s colormap when the pointer moves into the
client window or the window frame around the client.

explicit The window manager tracks a specific focus-selection
operation and installs a client’s color map when
the focus-selection operation is done in the client
window.

The following focus policies are valid for the keyboardFocusPolicy
resource:

pointer The window manager tracks the pointer and sets the
keyboard focus to a client window when the pointer
moves into that window or the window frame around
the client.

explicit The window manager tracks a specific focus-selection
operation and sets the keyboard focus to a client
window when the focus-selection operation is done in
that client window.

When the keyboard focus policy is explicit, you can use the
passSelectButton resource to specify the consequence of the
focus-selection operation. If you give passSelectButton a value of
“True” (the default value), the focus-selection operation is passed to
the client or used by the window manager to perform some action.

If you give passSelectButton a value of “False,” the focus-selection
operation will be used only to select the focus and will not be passed.

For example, you could change the keyboard focus policy so that
moving the pointer into a window moved the focus there by adding
the following line in your .Xdefaults file:

Mwm*keyboardFocusPolicy: pointer

The Window Manager 7-15

Warranty

Specifying a
Different Font for
the Window
Manager

The default font for the text of the OSF/Motif Window Manager

is the fixed font. However, you can use the fontList resource to
specify a different font if you desire. The fontList resource can use
any valid X11 font name as its value. For more information about
fonts, see chapter 6.

Displaying Titles in
Local Languages

If you want to display titles and icon names in languages other

than English, you must set the LANG environment variable to the
apporpriate language, and ensure that a font set appropriate to that
language is set in the mwm fontList resource before the window
manager is started.

Working with Icons

7-16 The Window Manager

Icons provide a handy way to straighten up a cluttered workspace.

i nd o
Manager
Frame

Image

Label

The Parts of an Icon

DRAFT
4/7/98 12:45

Warranty

An icon image (a bitmap) is the actual graphic illustration of the
icon. An image can come from any one of the following three sources,
listed in order of precedence:

user You can specify an icon image using the iconImage
resource.
client A client can use the WM_HINTS window property to

specify either an icon window or a bitmap for the
window manager to use as the icon image.

default The window manager will use its own built-in default
icon image if an image is not specified elsewhere.

The window manager searches for an icon image in the order shown
above. It stops searching when it finds the first image that meets the
selection criteria.

The resource useClientIcon lets you interchange the precedence
of user-supplied icon images and client-supplied icon images. The
default value is “False.” When the resource is set to “True,”
client-specified icon images have precedence over user-supplied icon
images.

Controlling Ilcon By default, the window manager places icons in the lower left corner
Placement of the root window. Successive icons are placed in a row proceeding
toward the right. Icons are prevented from overlapping. An icon
will be placed in the position it last occupied if no icon is already
there. If that place is taken, the icon will be placed at the next free
location.

The following three resources enable you to control the placement of

icons:

Controlling Icon Placement with Window Manager

Resources
To specify this . .. Use this resource ... | The default value is . ..

A placement scheme for | iconPlacement left bottom
icons.
The distance between | iconPlacementMargin |the default space
screen edge and icons. between icons
Automatic icon iconAutoPlace True
placement by the
window manager.

The following table lists the icon placement schemes available to you:

DRAFT The Window Manager 7-17
4/7/98 12:45

Warranty

Controlling Icon
Appearance and
Behavior

7-18 The Window Manager

Schemes for Automatic Placement of Icons

If you want this icon placement . .. Choose this
scheme . ..

From left to right across the top of the screen. left top
From right to left across the top of the screen. right top
From left to right across the bottom of the screen. left bottom
From right to left across the bottom of the screen. right bottom
From bottom to top along the left of the screen. bottom left
From bottom to top along the right of the screen. bottom right
From top to bottom along the left of the screen. top left
From top to bottom along the right of the screen. top right

For example, if you want automatic placement of icons starting at
the top of the screen and proceeding down the right side, you would
have the following lines in your personal resource specifications:

Mwm*iconPlacement: top right Specifies the placement scheme.l
Mwm*iconAutoPlace: True Specifies automatic placement.

mwm offers you a number of resources to control the specific
appearance and behavior of icons.

Selecting Icon Decoration

Using the iconDecoration resource, you can select exactly what
parts of an icon you want to display:

The Values That Control the Appearance of Icons

If you want an icon that looks like Use this value . ..
this ...
Just the label. label
Just the image. image
Both label and image. label image
The label of an active icon isn’t label activelabel
truncated.
Sizing Icons

Each icon image has a maximum and minimum size. mwm has both
default sizes as well as maximum and minimum allowable sizes.

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The Maximum and Minimum Sizes for Icon Images

Maximum Size | Minimum Size

Default 50x50 pixels | 32x32 pixels

Allowable | 128 x 128 pixels | 16 x 16 pixels

How the window manager treats an icon depends on the size of the
image in relation to the maximum and minimum sizes.

Image Size Affects Icon Treatment

If an icon image is . ..

The window manager will . ..

Smaller than the minimum size.

Act as if you specified no image.

Within maximum and minimum
limits.

Center the image within the
maximuim area.

Larger than the maximum size.

Clip the right side and bottom of
the image to fit the maximum size.

You can use the following two resources to control icon image size:

Controlling Icon Image Size

To specify this . ..

Use this resource . ..

Maximum size of an icon image.

iconImageMaximum

Minimum size of an icon image.

iconImageMinimum

Bear in mind that the overall width of an icon is the image width
plus border padding and the image height is the icon height plus

border padding.

Using Custom Pixmaps

When you iconify a client, either the client supplies its own icon
image, the window manager supplies a default image, or you supply

an image of your own.

There are two resources that tell the window manager where custom

icons are located:

m The iconImage resource specifies the bitmap for a particular icon
image. Its value is the path to the file containing the bitmap. If
this resource is specified, it overrides any client-specified images.

m The bitmapDirectory resource causes the window manager to
search a specified directory for bitmaps. The bitmapDirectory
resource causes the window manager to search the specified

The Window Manager 7-19

Warranty

directory whenever a bitmap is named with no complete path. The
default value for bitmapDirectory is /usr/include/X11/bitmaps.

Coloring and Tiling A number of resources enable you to specify the colors of icon
Icons elements.

Coloring and Tiling Icon Resources

To color this . .. Use this resource . ..

Icon image background. iconImageBackground

Left and upper bevel of icon image. |iconImageTopShadowColor

Right and lower bevel of icon image. | iconImageBottomShadowColor

Icon image foreground. iconImageForeground

Right and lower bevels of an icon iconImageBottomShadowPixmap
image.

Left and upper bevels of an icon iconImageTopShadowPixmap
image.

Default values for these resources are the icon’s bottom and top
shadow pixmaps specified using the bottomShadowPixmap and
topShandowPixmap resources set by the entries Mum*icon*resource or
Mwm* resource.

Using the Icon Box to The icon box allows you to use an icon box to contain icons, rather
Hold Icons than having stand-alone icons on the workspace.

Location cursor
Icon for normalized window

"Tonl Box!

xload w11lock

Icon for iconified window
Icon Box

The icon box is a scrollable window that displays icons in a grid
(rows and columns). Icons in the icon box do not overlap. If there
are icons that cannot be displayed in the visible part of the icon box,

7-20 The Window Manager DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

you can scroll to see the icons. The sliders within the scroll bars
show the extent of the icon grid that is visible.

The icon box can be minimized (iconified) just like any other
window. If the icon box is minimized, it is placed into the icon grid
on the workspace.

Specifying the Icon Box

Several resources specify whether an icon box is used, define
its geometry and location, and specify its name (for looking up
resources) and title.

m The uselconBox resource specifies whether or not an icon box is
used. A value of of “True” places icons in an icon box. The default
value of “False” places icons on the root window.

m The iconBoxGeometry resource sets the initial size and placement
of the icon box. If the iconBoxGeometry resource is used, the
largest dimension of the size determines if the icons are placed in
a row or a column. The default policy is to place icons in a row
going from left to right, top to bottom.

The Window Manager 7-21

Warranty

The value of the iconBoxGeometry resource is a standard window
geometry string with the following syntax:

- Width X Height [+ z + y]
If 2 and y are not provided, the icon box is placed at +0—0.

The actual size of the icon box window depends on the
iconImageMaximum (size) and iconDecoration resources. The
default value for size is (6 * iconWidth + padding) wide by (1 *
iconHeight + padding) high.

m The iconBoxName resource specifies the name that is used to look
up icon box resources. The default name is “iconbox.”

m The iconBoxTitle resource specifies the name that is used in the
title area of the icon box frame. The default name is “Icons.”

For example, the following line specifies that icons will be placed in
an icon box:

Mwm*useIconBox: True

Controlling the Appearance of Icon Boxes

The icon box is displayed in a standard window management client
frame. Client-specific resources for the icon box can be specified
using “iconbox” as the client name.

Mwm*iconbox*resource: value

Resources that can be used with the icon box to change its
appearance are:

m iconDecoration.

m The mwm resources dealing with mattes and icon appearance. (The
icon appearance resources affect the icon displayed when the icon
box is minimized.)

7-22 The Window Manager DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The Icon Box Window Menu

The window menu for the icon box differs from the standard window
menu in that it does not contain the “Close” selection. In its place is
the “Packlcons” selection, which shifts icons to fill empty spaces in
the icon placement grid so that the icons appear in neat, complete
TOWS.

Controlling Icons in the Icon Box

Every client window that can be iconified has an icon in the icon box,
even when the window is in the normal state. The icon for a client

is put into the icon box when the client becomes managed by the
window manager, and is removed from the icon box when the client
stops.

Icons for windows in the normal (open) state are visually distinct
from icons for windows that are iconified. Icons for windows that
are iconified look like stand-alone icons. Icons for windows that are
in the normal state appear flat and are optionally grayed-out. The
value of “True” for the fadeNormalIcon resource grays out icons for
normalized windows. The default value is “False.”

The text and image attributes of icons in icon boxes are determined
in the same way as for stand-alone icons, using the iconDecoration
resource.

A standard “control” location cursor is used to indicate the
particular icon in the icon box to which keyboard actions apply. The
location cursor is an unfilled rectangle that surrounds the icon.

Icons contained in the icon box can be manipulated with the mouse
and from the keyboard. Mouse button actions apply whenever the
pointer is on any part of the icon.

Controlling Icons in the Icon Box With a Mouse

If you want to ... Do this . ..
Select an icon. Press button 1.
Normalize (open) an iconified Double-click mouse button 1.
window.
Raise a normalized window to the Double-click mouse button 1.
top of the stack.
Move an icon within the icon box. Drag button 1.

To manipulate an icon from the keyboard, make the icon box the
active window and use the arrow keys to traverse the icons in the
icon box. Pressing (Return) does the default action for the selected
icon: for an icon of a normalized window, the window is raised; for
an icon of an iconified window, the window is normalized. The arrow
keys move the focus around the icons that are visible. The (Tab) key

The Window Manager 7-23

Warranty

moves the keyboard input focus around the box in this order: icons,
horizontal scroll bar, vertical scroll bar, icons. (Shift) (Tab) moves the
focus in the opposite direction.

7-24 The Window Manager DRAFT
4/7/98 12:45

Warranty

Managing Window
Manager Menus

DRAFT
4/7/98

Default Menus

12:45

The OSF/Motif Window Manager menus are defined by a text file
in /usr/1ib/X11 called system.mwmrc, unless you have a file in your
home directory called .mwmrc. You can add or delete menus and
menu selections by copying system.mwmrc to your home directory as
.mwmrc and modifying it to suit your needs.

The OSF/Motif Window Manager comes with two default menus:

Default Window Menu

The default window menu is built into mwm. For reference, a copy of
its contents are placed in .mwmrc.

Menu DefaultWindowMenu

{
"Restore" _R Al1t<Key>F5 f .normalize
"Move" _M Al1t<Key>F7 f .move
"Size" S Al1t<Key>F8 f.resize
"Minimize" _n Al1t<Key>F9 f.minimize
"Maximize" _x Al1t<Key>F10 f.maximize
"Lower" _L Al1t<Key>F3 f.lower
no-label f.separator
"Close" _C Alt<Key>F4 f.kill

b

By default, the window menu displays when you do the following
operations:

m Press button 1 on a window frame’s window menu button.
m Press button 3 anywhere on a window frame.

m Press (shift) (Esc) with the keyboard focus set to a window.

The windowMenu resource must be set in order to replace the
DefaultWindowMenu with a different menu.

The Window Manager 7-25

Warranty

Modifying Menus

7-26 The Window Manager

Default Root Menu

The default root menu is specified in the same files by the following
lines:

Menu RootMenu

{

"Root Menu" f.title
"New Window" f.exec "hpterm &"
"Start Clock" f.exec "xclock -geometry 100x90-1+1 &"
"Start Load" f.exec "xload -geometry 150x920-130+1 &"
"Shuffle Up" f.circle_up
"Shuffle Down" f.circle_down
"Refresh" f.refresh
no-label f.separator
"Restart..." f.restart
b

By default, the root menu displays when you press button 3 on the
root window.

You can modify either menu to suit the specific needs of your
application; however, for the sake of the consistency of window
operation, it’s usually better to modify the root menu and keep the
window menu the same.

All window manager menus, regardless of the mechanism that calls
them to the screen, have the same syntax.

Menu Syntax

Menu MenuName

{
selectionl [mnemonic] Laccelerator] function [argument]
selection2 [mnemonic]l Laccelerator] function Largument]
selectiond [mnemonic]l Laccelerator] function Largument]
selection® [mnemonic] [accelerator] function [argument]
}

Each line identifies a selection name followed by the function to be
done if that selection is chosen. The order of the selections is the
order of their appearance when you display the menu. A selection
name may be either a character string or a bitmap.

The £.title function creates a menu title, and automatically places
a separator above and below the title.

Selections Any character string containing a space must
be enclosed in double quotes (“”); single-word
strings don’t have to be enclosed, but it’s
probably a good idea for the sake of consistency.
An alternate method of dealing with two-word

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Mnemonics and
Accelerators

Functions

Warranty

selection names is to use an underbar (_) in place
of the space.

You have the option of using a mnemonic and
accelerator with a menu selection. A mnemonic is
specified using the syntax:

mnemonic = _chamcter

An accelerator is specified using keyboard binding
syntax described later in this chapter (see
“Keyboard Binding Syntax”).

Each function operates in one or more of these
contexts:

root Operates the function when the root
window is selected.

icon Operates the function when an icon is
selected.
window Operates the function when a client

window is selected.

Each function is triggered by one or more of these
devices:

Button Button binding (mouse).
Key Key binding.

Menu Window manager menu.

Most contexts and devices are valid for most functions. Occasionally,
a context or device doesn’t make sense for a particular function.

Any selection that uses an invalid context, an invalid function, or a
function that doesn’t apply to the current context is grayed out.

Function Names, Contexts, and Devices

The following table lists the valid functions, contexts, and devices.

The Window Manager 7-27

Warranty

Valid Window Manager Functions

Functions Contexts Devices
Name Description Root | Icon | Window | Button | Key | Menu

f.beep Causes a beep to X X X X X X
sound.

f.circle_down Puts window on X X X X X X
bottom of stack.

f.circle_up Puts window on top of | X X X X X X
stack.

f.exec Uses /usr/bin/sh to X X X X X X

execute a command.

f.focus_color Sets colormap focus X X X X X X
when colormap focus
policy 1s explicit.

f.focus_key Sets keyboard input X X X X X X
focus when keyboard
focus policy is explicit.

fkill Terminates a client’s X X X X X
connection to server.

f.lower Lowers a window to X X X X X
bottom of stack.

f.maximize Enlarges a window to X X X X X
1ts maximum size.

f.menu Assoclates a menu with | X X X X X X
a selection or binding.

f.minimize Changes a window into X X X X
an lcon.

f.move Enables the interactive X X X X X

moving of a window.

7-28 The Window Manager DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

Valid Window Manager Functions (continued)

Functions

Contexts

Devices

Name

Description

Root

Icon

Window | Button | Key

Menu

fnext_cmap

Installs the next
colormap in the
window with the
colormap focus.

X

X X X

X

fnext_key

Sets keyboard focus
policy to the next
window /icon in the
stack.

fnop

Does no function.

f.normalize

Displays a window in
normal size.

f.pack_icons

Packs icons rows in the
root window or icon
box.

f.pass_keys

Toggles between
enabling and disabling
processing of key
bindings.

f.post_wmenu

Posts the window
menu

f.prev_cmap

Installs the previous
color map in the
window with the
colormap focus.

f.prev_key

Sets the keyboard
input focus to the next
window /icon in the
stack.

The Window Manager

7-29

Warranty

Changing the Menu
Associated with the
Window Menu Button

Valid Window Manager Functions (continued)

Functions

Contexts

Devices

Name

Description

Root

Icon

Window

Button

Key

Menu

f.quit_mwm

Terminates OSF/Motif
Window Manager, but
not X.

X

X

X

f.raise

Lifts a window to the
top of the window
stack.

f.raise_lower

Raises a partially
concealed window;
lowers an unconcealed
window.

f.refresh

Redraws all windows.

frefresh_win

Redraws a client
window.

f.resize

Enables you to
interactively resize a
window.

f.restart

Restarts the
OSF /Motif Window

Manager.

f.send_msg

Sends a client message.

f.separator

Draws a line between
menu selections.

f.set_behavior

Restarts mwm with CXI
or custom behavior.

f.title

Inserts a title into a
menu at the specified
position.

The windowMenu resource lets you change the menu displayed when
you press button 1 on the window menu button.

For example, you would place the following line in your personal

resource specifications to associate a menu named EditMenu with an
hpterm window started as hpterm -name hp850.

Mwm*hp850*windowMenu:

7-30 The Window Manager

EditMenu

DRAFT

4/7/98

12:45

Mouse Button
Bindings

Default Button Bindings

DRAFT
4/7/98 12:45

Warranty

The window manager recognizes the following button operations:
Press Holding down a mouse button.
Click Pressing and releasing a mouse button.

Double-click Pressing and releasing a mouse button twice in rapid
succession.

Drag Pressing a mouse button and moving the pointer
(and mouse device).

You associate a button operation with a window management
function using a button binding. A button binding is a command line
you put in the .mwmrc file that associates a button operation with a
window manager function.

The OSF/Motif Window Manager comes with the following built-in
button bindings.

Built-In Button Bindings

Location of Pointer Behavior

Window menu button | Pressing button 1 displays the window menu.
This behavior can be modified by the
wMenuButtonClick resource.

Window menu button | Double-clicking button 1 closes the window. This
behavior can be modified by the
wMenuButtonClick2 resource.

Minimize button Clicking button 1 minimizes the window.

Maximize button Clicking button 1 maximizes the window.

Title bar Dragging button 1 moves the window.

Window or icon Pressing button 1 gives it keyboard focus.

Resize border Dragging button 1 resizes the window.

Tcon Clicking button 1 displays the icon window
menu. This behavior can be modified by the
iconClick resource.

Icon Double-clicking button 1 normalizes the window.

Icon Pressing button 1 moves the icon.

These bindings are fixed—they cannot be replaced by other bindings.
However, you can add to some of them (see “Modifying Button
Bindings and Their Functions.”) For example, you can specify an
additional function for double-clicking button 1 in an icon, but the
double click will also normalize the window.

The Window Manager 7-31

Warranty

Mwm provides an additional default binding that can be deleted or

replaced:
Additional Button Bindings
Locaton of Pointer Behavior
Icon or Frame Pressing button 1 raises the window or icon.

This binding is listed in the following section of the .mumrc file.

Buttons DefaultButtonBindings
{

<BtnlDown> icon|frame f.raise

¥

The binding can be removed or altered by deleting or editing
the line that begins with <BtniDown>. (In order for the editing
to have an effect, the buttonBindings resource must be set to
DefaultButtonBindings, and you must restart the window
manager.)

Modifying Button You can modify the button bindings section of your .mwmrc file to
Bindings and Their suit your individual needs.

Functions
Button Binding Syntax
The syntax for button bindings is as follows:
Buttons ButtonBindingSetName
{
button context| context function [argument]
button context| context function [argument]
button context| context function [argument]
}
The following button binding contexts are recognized by the window
manager:
root Operates the function when the button is activated
in the root window.
window Operates the function when the button is activated
in a client window or window frame.
frame Operates the function when the button is activated
on a window frame.
icon Operates the function when the button is activated
on an icon.
title Operates the function when the button is activated
on a title bar.
7-32 The Window Manager DRAFT

4/7/98 12:45

Warranty

app Operates the function when the button is activated
in a client window (excludes window frames).

Modifying Button Bindings

Button bindings can be modified by:

m [iditing the DefaultButtonBindings section of .mwmrc.
m Making a new button binding set.

To create a new button binding set:

1. Edit the .mwmrc file to include a new key binding set with a
unique name.

2. Set the buttonBindings resource in your .Xdefaults file to the
new name.

Modifying Button Click Timing

The OSF/Motif Window Manager has another resource for
controlling button behavior. This resource, doubleClickTime, sets
the maximum time (in milliseconds) that can elapse between button
clicks before a double-click becomes just “two clicks in a row.” In
other words, if two clicks occur in less than the maximum time, they
are assumed to be a double-click; if two clicks occur in a time greater
than the maximum time, they are assumed to be two single clicks.
The default is 500 (milliseconds).

Keyboard Bindings

Default Key Bindings

DRAFT
4/7/98 12:45

Similar to mouse button bindings, you can bind (associate) window
manager functions to “special” keys on the keyboard using keyboard
bindings. The window manager recognizes the following special keys:

Shift.

Fiscape.

Alt (Meta or Extend Char).
Tab.

Ctrl.

Lock.

The OSF/Motif Window Manager comes with the following default
key bindings.

The Window Manager 7-33

Warranty

7-34 The Window Manager

OSF/Motif Window Manager Default Keyboard Bindings

When the
keyboard

focus 1s:

Press:

What this does is:

Window or icon

G

Displays window menu.

Window or icon

) Gozee)

Displays window menu.

Window, icon, or
none

D @)

Switches keyboard focus to the next
window or icon.

Window, icon, or
none

D G (@)

Switches keyboard focus to the
previous window or icon.

Window, icon, or
none

]e=D)

Switches keyboard focus to the next
window or icon.

Window, icon, or
none

(Alt) (Shift)

Switches keyboard focus to the
previous window or icon.

Window

@ @@

Switches keyboard focus to the next
window or icon, including transient
windows.

Window, icon, or
none

() (C) Gair)
0)

Restart mwm with default or custom
behavior.

DRAFT

4/7/98 12:45

Warranty

These keyboard bindings are listed in the following lines in
system.mwmrc and .mwmrc.

Keys DefaultKeyBindings

{
Shift<Key>Escape window f.post_wmenu
Al1t<Key>space window|icon f.post_wmenu
Alt<Key>Tab root|icon|window f.next_key
Alt Shift<Key>Tab root|icon|window f.prev_key
Alt<Key>Escape root|icon|window f.next_key
Alt Shift<Key>Escape root|icon|window f.prev.key
A1t<Key>F6 window f.next_key transient
Alt Ctrl Shift<Key>exclam root|icon|window f.set_behavior

}

You can modify or delete any of these bindings, except “Alt Ctrl
Shift<Key>exclam”, by editing or deleting the line. (In order

for the editing to have an effect, the keyBindings resource in the
.Xdefaults file must be set to DefaultKeyBindings.)

Modifying Keyboard You can modify the keyboard bindings section of your .mwmrc file if
Bindings and Their your situation requires it.

Functions
Keyboard Binding Syntax
The syntax for keyboard bindings is as follows:
Keys KeyBindingSetName
{
key context| context function Largument]
key context| context function Largument]
key context| context function Largument]
}
DRAFT The Window Manager 7-35

4/7/98 12:45

Warranty

Switching Between
Default and Custom
Behavior

The following keyboard binding contexts are recognized by the
window manager:

root Operates the function when the key is pressed while
the root window has keyboard focus.

window Operates the function when the key is pressed while
a client window has keyboard focus.

icon Operates the function when the key is pressed while
an icon has keyboard focus.

Modifying Keyboard Bindings

Key bindings can be modified by:

m Iiditing the DefaultKeyBindings section in .mwmrc.

m Making a new key binding set.

To create a new keyboard binding set:

1. Edit .mwmrc to include the new key binding set with a unique
name.

2. Set the keyBindings resource in your .Xdefaults file to the new
name.

The window manager has a built-in key binding that allows you to
switch back and forth between customized mwm behavior and default

behavior. The key presses for doing this are (alt) (Shift) (Cet) ().

The following client-specific resources are affected by this function:

clientDecoration clientFunctions focusAutoRaise windowMenu

Using the Window
Manager with
Multiple Screens

7-36 The Window Manager

By default, the mwm manages one screen. Managing multiple screens
can be specified in two ways:

m Using resources.

m Editing the startup command for mwm.

DRAFT
4/7/98 12:45

Using Resources to
Manage Multiple
Screens

Specifying Multiple
Screens from the
Command Line

DRAFT
4/7/98 12:45

Warranty
The following resources configure the window manager to manage
multiple screens:
m To specify that mwm manage multiple screens, use the resource:
Mwm*multiScreen: True
This tells mwm to try to manage all screens that the server manages.

m To define the screen names, use the resource screenList. For
example, the following resource names two screens zero and one.

Mwm*screenlList: zero one

You can use command-line options to start mwm so that it manages
multiple screens.

m The -display option specifies the display. It has the syntax:
-display hostname: display. screen

m The -multiscreen option causes mwm to manage all the screens on
the specified display.

m The -screens option specifies the screen names used to obtain
screen-specific resources.

For example,
mwm -display local:0.1 -multiscreen -screens zero one

causes mwm to manage all the screens on display 0. Screen 0 is named
zero, and screen 1 is named one.

The Window Manager 7-37

Using the X Clients

Programs running in the X environment can be divided into two

groups:

X clients “Window-smart” programs written for the X
Window System.

non-clients Programs written for terminals. Non-clients are run

in terminal emulation windows.

Related chapter:

m Chapter 5 covers setting client, the display, and geometry
resources.

i i Programs can run as either background or foreground processes.
artung clients an A g g p
Non-clients In any X11 terminal window, you can run only one program as a
foreground process, but you can run many programs as background
processes. To run a program as a background process, add an
ampersand (&) to the end of the command line that starts the
program.

The general syntax for the command line that starts a client is:

client [-optz'ons] [&]

An & at the end of the command line causes the client to start as a
background process.

DRAFT Using the X Clients 8-1
4/7/98 12:45

Warranty

Command-Line Options

Specifying the Display
and Screen

8-2 Using the X Clients

Programs can be started:
m From the command line.

The client name and options are typed after the command line
prompt.

m From menus.
Refer to chapter 7 for details of how to create your own menus.
m As part of the X startup.

Refer to chapter 4 for information about the .x11start file.

Command-line options override all default files. If no options are
specified, the client is started using resource values from the resource
database, the client’s app-defaults, or from defaults built into the
client.

Some toolkit options are common to most clients:

-fn font Specifies the font to use for
the client.

-bg color Specifies the background color.

-fg color Specifies the foreground color.

-display host:display.screen Specifies the host where the

client will display its output.

-geometry widthX height Specifies the size of the
window and its location.

-help Displays an explanation of the
options available for the client.

For a specific client’s options, refer to the client’s man page.

Options have the syntax:

-option argument

For example, the following command line starts an hpterm window
with a black background and white foreground:

hpterm -bg Black -fg White &

The default display on which a client is displayed is obtained from
the DISPLAY environment variable of the system on which the client
starts. It sets the host, display number, and screen number to which
the client directs its output. This is typically display 0, screen 0.

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

Most clients have a —display option that lets you set the host,
display number, and screen on which the client will display its
output. The -display option has the syntax:

—display [host:display.screen]

host The hostname of a valid system on the network.

display The number of the display on the system on which
you want the output to appear. A display can
include more than one screen.

screen The number of the screen where the output is to
appear. The default is 0.

For example, executing the command:
hpterm —display hpxhere:0.1 &

starts an hpterm process on the local system and displays the
window on display 0, screen 1 of the hpxhere system. The window
has the default size, location, and color.

Using the X Clients 8-3

Warranty

Starting Remote
Programs

Running Programs
Using ‘rlogin’

Using ‘remsh’ to Start
Programs

8-4 Using the X Clients

A remote client is a client that runs on a computer other than the
computer running the X server. In other words, a remote client runs
on one computer while its output is displayed on another.

There are several ways to run programs on a remote host from a
command line:

m Use rlogin to log into the remote host.
m Use remsh to start a client remotely without formally logging in.

If the client produces output on a display, you must specify the
display and screen on which you want the output to appear.

You can use an existing terminal emulator window to log into a
remote host. Once the window is acting as a terminal off the remote
host, you can run clients there and direct the output to any display.

For example, the following commands log into and start xload
on remote host hpthere and display the output on local system
hpxhere.

rlogin hpthere
xload -display hpxhere:0.0 &

The benefit of using remsh instead of rlogin is that the the local
system starts only one process (the client) with a remote shell; with
the remote login, the local system starts both the remote login and
the client.

Starting Clients Remotely

The following syntax starts a remote shell on a remote host, redirects

remsh input, starts a client, and directs output to the local display.
remsh remote -n client -display local: display. screen &

remote The remote host name.

client Absolute path of the executable client file (remsh
does not allow the PATH variable).

local Local host name.

For example, the following command runs xload on remote host
hpthere and directs output to the display of system hpxhere.

remsh hpthere -n /usr/bin/X11/xload -display hpxhere:0.0 &

Generally, remsh is preferred to rlogin for starting a remote
program from a menu. For example, the following line added to the
workspace menu starts a remote hpterm window on remote host
hpthere:

"Doc files" f.exec "remsh hpthere -n /usr/bin/X11/hpterm -display hpxhere:0.0 &"

DRAFT
4/7/98 12:45

Stopping Programs

DRAFT
4/7/98

12:45

Warranty

Starting a Remote Non-Client

At the command-line prompt of an existing window, you could
execute:

hpterm -display hpxhere:0.0 -e remsh hpthere -n 11 &

This example starts a new hpterm client and directs its output to
the local display (-display hpxhere). The -e option executes a
remote shell on hpthere that connects the window to the remote
host hpthere and lists the files in your home directory there. When
the 11 command finishes executing, the window created for it to run
in will disappear. Thus, this method of starting remote non-clients is
usually not desirable.

If a program has data you want to save, you must save the data
before you stop it.

If a terminal window is running a non-client containing data, you
must stop the non-client in the approved manner before you stop
the window. Generally, a non-client has a “stop” provision, or stops
when it has finished executing.

After you have saved any data and exited any non-clients (in the
case of terminal windows), stop the client by choosing the “Close”
selection from the client’s window menu.

Note that if you started a non-client as an option of creating a
window, when you stop the non-client, the window will stop.

Using the X Clients 8-5

Warranty

If you are unable to stop a program in the normal manner, you
should “kill” the program before you log out.

To kill a program, first try these keystrokes:

m Press (CTRL) ().

m Press (cTRL) (4).

m Press (q)

m Press (Esc), then (-}, then (g).

If these don’t work, use the HP-UX kill command to stop the
program’s execution environment or “process.” To use the kill
command:

1. Save any data that needs saving.
2. Find the PID (process ID) by executing:
ps -fu login_name
3. To kill the program, execute:
kill -2 pid
where pid is the PID number. This is equivalent to (CTRL) (c)-
4. If this doesn’t work, execute:
kill -3 pid
5. If this still doesn’t work, execute:
kill -9 pid

Certain programs are cached during a session; that is, once they are
started, closing them unmaps the window but does not stop the
process. If you need to halt one of these processes during a session,
use the kill command.

The X Clients The following tables list the X clients described in this manual.

8-6 Using the X Clients DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Initialization and Configuration Clients.

Warranty

Client Description Covered in
Chapter ...
xmodmap Alters the modifier-key mappings of 9
a keyboard.
xset Adjusts display preference options 8
for a session.
xinitcolormap |Initializes a new colormap for an X 8
environment.
rgh Creates a color database for X. 8
xhost Adds a new remote host to your 8
system.
xrdb Loads a window manager’s resource 5
configuration into the server.
xinit Starts the X server and selected 4
clients.
xlistart Starts the X11 Window System 4
using xinit.
Window Management Clients.
Client Description Covered in
Chapter ...
resize Sets the environment to reflect the 8
correct window size.
xwininfo Displays information about 8
windows.

Using the X Clients 8-7

Warranty

Graphics Functions Clients.

Client Description Covered in
Chapter ...
xseethru Opens a window into the graphics 11
workstation image planes when the
X Window System is running in the
overlay planes.
xwd Makes a pixmap screen dump in xwd 10
format.
Xpr Prints a screen dump. 10
gwind Creates a window for applications. 11
gwindstop Stops multiple X windows. 11
Xwcreate Creates a new X window. 11
xwdestroy Destroys an X window. 11
xwud Displays a previously made screen 10
dump.
Viewable Services Clients.
Client Description Covered in
Chapter ...
xterm Terminal emulator for a DEC or 8
Tektronix terminal.
hpterm Terminal emulator for HP Term0 8
terminals.
dtterm EUC 4-byte capable DEC and 8
Tektronix terminal emulator.
xclock Displays an analog or digital clock. 8
xload Displays the system load average. 8
xsetroot Sets the color and appearance of the 8
root window.
8-8 Using the X Clients DRAFT

4/7/98 12:45

Warranty

Font Management Clients

Client Description Covered in
Chapter ...
bdftopct Compiles a BDF-formatted font into 6
an X server format.
mkfontdir Creates a fonts.dir file. 6
xlsfonts Lists the fonts that match a given 6
pattern.

The following clients do not require X to be running: rgb, xpr,
xwd2sb, sb2xwd, and mkfontdir.

Clients Using Local
Language

If you want a client to operate in a local language, be sure that
the LANG environment variable is set and that the client’s font is
specified correctly.

Motif clients must have a font set specified in their fontList
resource. dtterm and hpterm also require a fontList resource.

Terminal Emulation
Clients

DRAFT
4/7/98 12:45

The X Window System has three terminal emulation clients, hpterm,
dtterm, and xterm. The default for HP-UX is hpterm.

dtterm provides an EUC 4-byte capable terminal emulator.
It emulates the DEC VT2200 terminal.

hpterm emulates an HP Term0 terminal.
Xterm emulates DEC VT102 and Tektronix 4014 terminals.
To start a terminal emulator, type:

emulator [-options] [&]

There are too many options to cover here. Refer to the man page for
the terminal emulators for all the options available.

The following example starts an hpterm emulator with scrollbars.
hpterm -sb

The following example starts a dtterm emulator with the title “my
terminal” and display it initially as an icon:

dtterm -title '"my terminal' -iconic

Using the X Clients 8-9

Warranty

The ‘xclock’ Client

The ‘xload’ Client

8-10 Using the X Clients

The xclock client displays an analog or digital clock. The digital
clock also displays the day, date, time, and year; the format
automatically varies for local language custom based on the value of
the LANG environment variable.

Digital and Analog Clocks

The syntax for the xclock client is:

xclock [—optz'ons] [&]
For a complete list of xclock options, refer to the xclock man page.

The following example creates a digital clock that updates every 10
seconds.

xclock -digital -update 10 &

The next example creates an analog clock that chimes every 30
minutes, updates every 5 seconds, and has yellow hands (all the other
colors are the default ones).

xclock -analog -chime -update 5 -hd yellow &

The xload client displays a periodically updated histogram of the
system load.

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The ‘xload’ Client

The syntax for the xload client is:

xload [—optz'ons]
where:
-hl color

-jumpscroll number

-label sitring

-nolabel

scale integer

update seconds

The color of the scale lines.

The number of pixels to shift the graph to
the left when the graph reaches the right edge
of the window. The default is half the width
of the current window.

The string to put into the label above the
histogram.

No label is displayed above the histogram.

The number of tic marks in the histogram.
The default is 1.

The frequency at which the histogram is
updated.

Using the X Clients 8-11

Warranty

xload also accepts the toolkit command line options.

Customizing the
Root Window with
‘xsetroot’

8-12 Using the X Clients

The xsetroot client lets you:

m Customize the appearance of the root window.

m Change the bitmap used for the root window cursor.

The xsetroot client has the syntax:

xsetroot [options]

where options are:

-help
-def

-cursor path/cursor
path/mask

-bitmap path/bitmap

-mod z ¥y

-gray

-fg color

-bg color
-rv

-solid color

-display host:display.screen

Prints a summary of the command
usage.

Resets unspecified root window
attributes to their default values.

Specifies the cursor bitmap and mask
bitmap to use for the root window
cursor.

Specifies a bitmap file with which to
tile the root window.

Specifies a modular grid of dimensions
z by y in the foreground color,
making a plaid pattern.

Specifies gray (or grey) for the color of
the root window.

Specifies color as the foreground color.

Specifies color as the background
color.

Swaps foreground and background
colors.

Specifies the root window should be
colored a solid color.

Specifies the host, display number,
and screen number of the root window
to change.

For example, the following command changes the workspace cursor
using two custom bitmaps located in directory $HOME/bits.

xsetroot -cursor “/bits/shuttle.bm ~“/bits/mask.bm

DRAFT
4/7/98 12:45

Changing Display
Preferences with

‘xset’

DRAFT
4/7/98

12:45

Warranty

The xset client allows you to change certain user preference options
of the display. Note that hardware limitations and implementation
differences may affect the results of the xset client.

xset provides a way to set:

m Bell volume, pitch, and duration.

m Keyboard click volume and autorepeat.

m Mouse acceleration and threshold.

m Font paths.

m Screen saver time.

The syntax for xset is:
xset options

where options are:

-b

b on/off

b volume [, pitch,
[, duration]]

-c
c on/off
c 0-100

-fp/fp- pathl,path...]
+fp/fp+ pathl, path...]
fp default

fp pathl,path...]

fp= path
fp rehash

Turns the bell off.
Turns the bell on or off.

Specifies the bell volume, pitch, and
duration. Volume is a percentage
between 0 and 100 and can be
specified without specifying pitch
and duration. Pitch is in hertz and
is specified together with a volume.
Duration is in milliseconds and is
specified with both volume and
pitch. If only one parameter is given,
it is taken as the volume. If two
parameters are given, they are taken
as volume and pitch.

Turns the key click off.
Turns the key click on or off.

Specifies the key click volume as a
percentage between 0 and 100.

Removes the specified directories from
the font path.

Prefixes or appends the specified
directories to the font path
(depending on the position of the +).

Restores the default font path.
Specifies the font path, absolutely.
Sets the font path.

Causes the server to reread the
fonts.dir file and the fonts.alias

Using the X Clients 8-13

Warranty

8-14 Using the X Clients

m acceleration threshold

m default

p puzel color

pm default

pm number

-r

r on/off

[©2]

length period

s blank

s noblank

S eXxpose

S noexpose

files in each path of the server’s font
path.

Specifies the acceleration and
threshold of the mouse. Acceleration
indicates the change in mouse speed
(for example: 2=double, 3=triple).
Threshold indicates the number of
pixels of movement required before
acceleration takes place. If only one
number is given, it is taken as the
acceleration.

Resets the mouse acceleration and
threshold to their default values.

Controls color on a per pixel basis.
Pizel is an integer representing

a specific pixel in the X server’s
colormap. The exact number of pixels
in the colormap depends on your
hardware. Color specifies the color
that pixel should be.

Restores the default font button codes
to the pointer map.

Specifies the button codes for pointer
map entries.

Turns autorepeat off.
Turns autorepeat on or off

Sets the screen saver option on.
Length is the number of seconds that
the server must be inactive before
the screen is blanked. Period is

the number of seconds a particular
background pattern will be displayed
before changing it.

Specifies that the screen saver should
blank the video, if permitted by your
hardware, rather than display the
background pattern.

Specifies that the screen saver should
display the background pattern rather
than blank the video.

Specifies that the server should
discard window contents.

Specifies that the server should not
enable the screen saver unless it saves
window contents.

DRAFT
4/7/98 12:45

Creating a Custom
Color Database with

irgb!

DRAFT
4/7/98

12:45

Warranty
s default Sets the system to its default screen
saver characteristics.
s on/off Sets the screen saver feature on or off.
q Displays the current settings.

-display host:display.screen Specifies the host, display number,
and screen to be reset with xset.

The rgb.txt, rgb.pag, and rgb.dir files in /etc/X11 make up

the color data base for the X Window System. It contains all the
named colors and the amount of red, green, and blue needed to make
the color. The following lines are from rgb.txt. Note that the red,
green, and blue values are given as the decimal equivalents of their
hexadecimal values.

Some Lines from ‘rgb.txt’.

Red Green Blue Color Name
AT 47 100 MidnightBlue
35 35 117 navy blue

35 35 117 NavyBlue

35 35 117 navy

35 35 117 Navy

114 159 255 sky blue

114 159 255 SkyBlue

As the above lines illustrate, several lines are sometimes necessary to
account for alternative spellings of the same color.

Depending on your needs, you may want to make your own custom
color database modeled after the rgb.txt file.

Hewlett-Packard recommends that your custom color database have a
name other than rgb.txt. You can either copy rgb.txt and make
your changes, or start with an entirely new file. In either case, the
file entries are in the following format:

redvalue greenvalue bluevalue name
The fields are separated by either tabs or spaces.

The rgb.txt file is the source file used by the rgb client to make two
other files that are used by the server: rgb.dir and rgb.pag. If you
run rgb without any parameters, it will use rgb.txt. If you want to
use your custom database, use the following syntax:

rgb outfile <infile

Using the X Clients 8-15

Warranty

where infile is the name of your custom database, the text file you
created. The rgb client will create outfile.dir and outfile .pag.

To put your new color database into effect, you must add it to your
.x11start file. For example, if your new database is composed

of the files 2brite.txt, 2brite.dir, and 2brite.pag in the
/home/ellen directory, type the following command line to start
your X environment:

.x1l1start -- -co /home/ellen/2brite

The server assumes the color database is in the /etc/X11 directory
unless told otherwise.

Note that recent X11 releases from Hewlett-Packard may contain
more than one color database file, each customized for a particular
display type for color consistency across display types. To avoid
overwriting an existing rgb.txt file, the installation process for X11
does not automatically replace this file in /etc/X11, but installs
the new rgb.txt* file(s) in the directory /usr/newconfig or
/etc/newconfig/X11R*. You must manually process (using the
rgb utility) the desired rgb.txt* file in order to use one of the new
versions. You should copy the desired rgb.txt*, rgb.dir, and
rgb.pag files to the /etc/X11 directory. You may want to save the
existing version of each file in /etc/X11 before copying the new
version in.

8-16 Using the X Clients DRAFT
4/7/98 12:45

Warranty

|n|t|a||z|ng the The xinitcolormap client initializes the X colormap. Specific X
Colormap with colormap entries (pixel values) are made to correspond to specified

colors. An initialized colormap is required by applications that
assume a predefined colormap (for example, many applications that
use Starbase graphics).

‘xinitcolormap’

xinitcolormap has the following syntax:
xinitcolormap [options]
where the options are:
-f colormapfile Specifies a file containing a colormap.
-display display Specifies the server to connect to.

-c count Only the first count colors from the
colormap file will be used if this
parameter is specified.

-k or -kill Deallocate any colormap entries that
were allocated by a previous run of
xinitcolormap.

xinitcolormap choses a colormap file in the order shown below.
Once one is found, then the other sources aren’t searched.

1. The command line option [-f colormapfile].
2. .Colormap default value.

3. The xcolormap file in /usr/1ib/X11.

4

. If no colormap file is found, this default colormap specification
is assumed— black (colormap entry 0), white, red yellow, green,
cyan, blue, magenta (colormap entry 7).

xinitcolormap should be the first client program run at the start
of a session in order to assure that colormap entries have the color
associations specified in the colormap file. Sometimes you may
encounter this X toolkit warning:

X Toolkit Warning: cannot allocate colormap entry for 94c4d0

where “94¢4d0” is a color specified in the application running. If
this occurs, it means that you have probably reached the limit
of colors for your graphics card/display combination. Executing
xinitcolormap may solve the problem.

For more information about xinitcolormap, refer to its man page.

DRAFT Using the X Clients 8-17
4/7/98 12:45

Warranty

Adding and Deleting
Hosts with ‘xhost’

Note i

%

8-18 Using the X Clients

Using xhost, you can add or delete a remote host’s permission to
access the local display server.

Hosts entered by xhost have access only until the server recycles. A
server recycles when the last client attached to a server goes away.
For systems running many clients, this is usually at the end of a
session. For systems running a server but no clients, hosts entered by
xhost may be removed before you have a chance to use the remote

host.

To add hosts permanently, make an entry in the X0.hosts file.

The xhost command is in the form:

xhost [+-] [namel

where:

+name

-name

blank

Add the remote host named name to the list of
computers allowed to connect to the X server.

Remove name from the list of computers allowed to
connect to to the X server.

Allow access to everyone (access control disabled).

Allow access only to computers in the list (access
control enabled).

Display current status and list of computers allowed
to access the X server.

For example, the following command allows the remote computer
hpgggge to access your local display.

xhost +hpggggg

For more information, refer to the xhost man page.

DRAFT
4/7/98 12:45

Resetting

Environment
Variables with

‘resize’

DRAFT
4/7/98

12:45

Warranty

The resize client resets three environment variables: TERM,
LINES, and COLUMNS. This enables a shell to reflect the current
size of its window.

Don’t confuse resize, the client, with £.resize the window
manager function. The f.resize function changes the size of a
window, but does not reset any environment variables. The resize
client, on the other hand, does not change the size of a window, but
it does reset the environment variables. Resetting the environment
variables enables non-client programs to adjust their output to the
window’s new size.

Use resize whenever you resize a terminal emulator window
and want a non-client program running in that window to reflect
the window’s new size. The resize client is typically used as an
argument to the HP-UX eval command.

The syntax for resize is as follows:
resize [options]
where options are:
-c Resets the environment variables for csh shells.

-h Uses Hewlett-Packard terminal escape sequences to
determine new window size.

-s [row col] Uses Sun escape sequences to determine new window
size. New row and column sizes are specified with
row and col.

-u Resets the environment variables for sh and ksh
shells.
-X Uses VT'102 escape sequences to determine new

window size.

To see what the current COLUMN and LINES settings are, type the
following command:

resize (Return)

After you have resized a window either by dragging the window
frame or by choosing the “Size” selection from the window menu, you
can reset the LINES, and COLUMN environment variables to reflect
the new window size by issuing the following command:

eval ‘resize‘ (Return)

If you find yourself typing the above command too often, you can
make things a little easier on yourself. If you use csh, try using
an alias. The following line in your .cshrc file enables you to run
resize by typing xr.

alias xr ’set noglob; eval ‘resize‘’

If you use sh or ksh create an xr function like the following:

Using the X Clients 8-19

Warranty

xr() A{eval ‘resize‘;}

Getting Window
Information with
‘xwininfo’

8-20 Using the X Clients

The xwininfo client is a utility program that displays useful

information about windows.

The syntax for xwininfo is as follows:

xwininfo options
where options are:

-help

-id id

~“name name

-root

-int

-tree

-stats

-metric

-english

-bits

-events

-size

~wWm

-all

-display host:display.screen

Prints a summary of the command
usage.

Specifies the target window by
window id.

Specifies the target window by name.

Specifies the root window as the
target.

Displays window information,
normally shown as hexadecimal, as
decimal.

Displays ids and names of the root,
parent, and child windows.

Displays window id, location, size,
depth, and other information as
hexadecimal.

Displays height, width, x and y
information in millimeters.

Displays height, width, x and y
information in inches, feet, yards.

Displays information about bit and
storage attributes.

Displays event masks of the target
window.

Displays sizing information about the
target window.

Displays the window manager hints
for the target window.

Displays all available information
about a window.

Specifies the host, display, and screen
to target.

This example illustrates the result of issuing the following command:

DRAFT
4/7/98 12:45

Warranty

xwininfo -stats (Return)

Once you issue the command, select a window as the target of your
inquiry by moving the pointer into that window and clicking button

1.
xwininfo ==> Window id: 0x200013 (hpaaaaa)
==> Upper left X: 6
==> Upper left Y: 6
==> Width: 484
==> Height: 316
==> Depth: 8
==> Border width: 4
==> Window class: InputOutput
==> Colormap: 0x80065
==> Window Bit Gravity State: NorthWestGravity
==> Window Window Gravity State: NorthWestGravity
==> Window Backing Store State: NotUseful
==> Window Save Under State: no
==> Window Map State: IsViewable
==> Window Override Redirect State: no
==> Corners: +6+6 -782+6 -782-694 +6-694
-geometry =80x24+6+6
DRAFT Using the X Clients 8-21

4/7/98 12:45

Customizing the Mouse and Keyboard

This chapter describes the following customizations:

m Changing mouse button actions.

m The xmodmap client.

m Going mouseless.

m Customizing keyboard input.

Related information:

m Chapter 7 contains mwm mouse and keyboard bindings.

Changing Mouse
Button Actions

Normally, the mouse pointer buttons are mapped as follows:

Default Mouse Button Mapping.

Button
Number

Button on a 2-button
mouse

Button on a 3-button Mouse

Button 1

Left button

Left button

Button 2

Both buttons simultaneously

Middle button

Button 3

Right button

Right button

Button 4

Left and middle buttons
simultaneously

Button 5

Middle and right buttons
simultaneously

DRAFT

4/7/98 12:45

Customizing the Mouse and Keyboard 9-1

Warranty

However, you can change these mappings. To generate buttons 4
and 5 on a three-button mouse, you must enable button chording as
described later in this chapter.

Alternative Mouse Button Mappings.

To press Left Hand Mapping OSF /Motif Mapping
Button
2-button 3-button 2-button 3-button
mouse mouse mouse mouse
Button 1 Right button | Right button | Left button | Left button
Button 2 Both buttons | Middle Right button | Middle
simultane- button button
ously
Button 3 Left button | Left button | Both buttons | Right button
simultane-
ously
Button 4 Middle and Left and
right buttons middle
simultane- buttons si-
ously multaneously
Button 5 Middle and Right and
left buttons middle
simultane- buttons si-
ously multaneously
9-2 Customizing the Mouse and Keyboard DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

The xmodmap utility can be used to change mouse button mappings.
The syntax for changing mouse button mappings with xmodmap is:

, | pointer = default "

xmodmap pointer = number[number...]
PP

-e Specifies a remapping expression. Valid expressions
are covered in “Customizing Keyboard Input” later

in this chapter.
default Set mouse keys back to default bindings

number Specifies a list of button numbers to map the mouse
keys to. The order of the numbers refers to the

original button mapping.
PP Print the current pointer mapping.

For example, to reverse the positions of buttons 1 and 3 for
left-handed mapping;:

321" 2-button mouse
3215 4" S-button mouse

xmodmap -e 'pointer

xmodmap -e 'pointer
To establish OSF/Motif-standard button mapping;:

xmodmap -e "pointer = 1 3 2" 2-button mouse
xmodmap -e "pointer = 1 3 2 4 5" 3-button mouse

xmodmap is discussed in more detail in “Modifying Modifier Key

Bindings with ‘xmodmap’”.

Customizing the Mouse and Keyboard 9-3

Warranty

Going Mouseless
with the
‘X*pointerkeys’ File

Configuring ‘X*devices’
for Mouseless
Operation

The Default Values for
the ‘X*pointerkeys’ File

Your work situation may lack sufficient desk space to adequately use
a mouse pointer. You may, therefore, want to “go mouseless” by
naming the keyboard (or some other input device) as the pointer.

To go mouseless, you need to have the proper configuration specified
in the X+*devices file and to have a special configuration file named

X+pointerkeys. The default X*pointerkeys file is XOpointerkeys

in fusr/1lib/X11.

The X*pointerkeys file lets you specify:

m The keys that move the pointer.

m The keys that act as pointer buttons.

m The increments for movement of the pointer.
m The key sequence that resets X11.

m The pixel threshold that must be exceeded before the server
switches screens.

m That button chording is enabled or disabled.

m That button latching is enabled or disabled.

m Tablet subsetting.

m Screen switching behavior for multi-screen configurations.

If you modify a X*pointerkeys file, it does not take effect until you
restart the X Window System again.

If you have only one keyboard and no pointer device, and you want
the keyboard to serve as both keyboard and pointer, you don’t
have to change the default configuration of X0Odevices. The default
input device configuration automatically assigns the pointer to the
keyboard if a pointer can’t be opened by the server.

If you have two or more input devices, you may need to explicitly
specify which device should be the keyboard and which the pointer.

By default, when you configure your keyboard as the pointer,

the X server chooses certain number pad keys and assigns them
mouse operations. Some number pad keys are assigned to pointer
movement; other number pad keys are assigned to button operations.

If you don’t need to change the pointer keys from their default
specifications, you don’t need to do anything else to use your
keyboard as both keyboard and pointer. However, if you need to
change the default pointer keys, you must edit the XOpointerkeys
file or create a new X*pointerkeys file. The X*pointerkeys file is
the file that specifies which keys are used to move the pointer when
you use the keyboard as the pointer.

The default key assignments are listed in the tables in the following
section on customizing the X*pointerkeys file.

9-4 Customizing the Mouse and Keyboard DRAFT

4/7/98 12:45

Creating a Custom
‘X*pointerkeys’ File

DRAFT
4/7/98

12:45

Warranty
You need to modify the existing XOpointerkeys file only if one or
more of the following statements are true:
m You want to use the keyboard for a pointer.

m You want to change the pointer keys from their default
configuration.

m You use the XOscreens file to configure your display.

You need to create a custom X#pointerkeys file only if the following
statements are true:

m You want to use the keyboard for a pointer.

m You want to change the pointer keys from their default
configuration.

m You use a configuration file other than the XOscreens file to
configure your display.
Syntax

You assign a keyboard key to a mouse function (pointer movement
or button operation) by inserting a line in the X*pointerkeys file.
Lines in the X*pointerkeys file have the syntax:

function keyname [# comment]

Assigning Mouse Functions to Keyboard Keys

You can assign any mouse function, either a pointer movement or a
button operation, to any keyboard key. However, make sure that the
key you are assigning doesn’t already serve a vital function.

You can assign keyboard keys to pointer directions by specifying
options in an X*pointerkeys file. The following table lists the
pointer movement options, the X*pointerkeys functions that control
them, and their default values:

Customizing the Mouse and Keyboard 9-5

Warranty

Pointer Movement Functions.

Movement Option

Function

Default Key

Move the pointer to the left.
Move the pointer to the right.
Move the pointer up.

Move the pointer down.

Add a modifier key to the

pointer direction keys.

Add a second modifier key to
the pointer direction keys.

Add a third modifier key to the

pointer direction keys.

pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

pointer_key_modil

pointer_key_mod2

pointer_key_mod3

keypad_1
keypad_3
keypad_b
keypad_2

no default

no default

no default

Pointer Distance Functions.

Note that the pointer direction keys are the keypad number keys on
the right side of the keyboard, not the keyboard number keys above
the text character keys.

You can assign keyboard keys to pointer distances by specifying
options in a XOpointerkeys file. The following table lists the
options that determine the distance of pointer movements, the
X+pointerkeys functions that control them, and their default value:

Movement Function Default
Move the pointer a number of |pointer_move 10 pixels
pixels.
Move the pointer using a pointer_modi_amt 40 pixels
modifier key.
Move the pointer using a pointer_mod2_amt 1 pixel
modifier key.
Move the pointer using a pointer_mod3_amt 5 pixels
modifier key.
Add a modifier to the distance |pointer_amt_mod1 no default
keys.
Add a modifier to the distance |pointer_amt_mod2 no default
keys.
Add a modifier to the distance |pointer_amt_mod3 no default
keys.

DRAFT

9-6 Customizing the Mouse and Keyboard

4/7/98 12:45

Warranty

You can assign keyboard keys to mouse button operations by
specifying options in a X*pointerkeys file. The following table lists
the button operations, the X*pointerkeys functions that control
them, and their default values:

Button Operation Functions.

Button Operation Function Default Key
Perform button 1 operations. pointer_buttoni_key keypad_*
Perform button 2 operations. pointer_button2_key keypad_/

Perform button 3 operations. pointer_button3_key keypad_+

Perform button 4 operations. pointer_button4_key keypad_-

Perform button 5 operations. pointer_buttonb5_key keypad_7

You can change the mapping of buttons on the pointer by using
options in the X*xpointerkeys file. The following table lists the
X+pointerkeys functions that control button mapping and their
default values. Like xmodmap and xset, these functions affect only
the X pointer, not any extension input devices.

Button Mapping Functions.

Button Mapping Function Default Key
Set button 1 value button_1_value 1
Set button 2 value button_2_value 2
Set button 3 value button_3_value 3
Set button 4 value button_4_value 4
Set button 5 value button_5_value 5

You can change the key sequence that exits the X Window System.
Also, if you use both image and overlay planes, you can change the
distance you must move the pointer before you switch planes. The
following table lists these options, the X*pointerkeys functions that
control them, and their default values:

DRAFT Customizing the Mouse and Keyboard 9-7
4/7/98 12:45

Warranty

Reset and Threshold Functions.

Option

Function

Default Key

Exit the X Window System

Set the threshold for changing
between screens.

Add a modifier to the exit key.
Add a modifier to the exit key.
Add a modifier to the exit key.

reset
reset_modl
reset_mod2

reset_mod3

screen_change_

break
control
left _shift
no default

amt 30 pixels
0 if a graphics
tablet is used

screen_change_amt is used only if your system is configured

for more than one screen. (Refer to “Using Custom Screen
Configurations” in Chapter 3). screen_change_amt enables you

to avoid switching from one screen to another if you accidentally
run the pointer off the edge of the screen. screen_change_amt
establishes a “distance threshold” that the pointer must exceed
before the server switches screens. As the previous table shows, the
default width of the threshold is 30 pixels, but acceptable values

range from 0 to 255.

When a graphics tablet is used as the X pointer, the
screen_change_amt defines an area at the left and right edges of the
tablet surface that will be used to control screen changes. Moving the
puck or stylus into the left or right area will cause the X server to

switch to the previous

or next screen.

Button Chording

Option

Function

Default Action

Turn button chording off or on.

button_chording

ON for devices with 2 buttons,
OFF for devices with >2
buttons.

Button chording refers to the generation of a button by pressing

two other buttons. If you have a two-button mouse, you can
generate button 3 by pressing both buttons together. With a
three-button mouse, you can generate button 4 by pressing the left
and middle buttons together and button 5 by pressing the middle
and right buttons together. See the button chording examples in the

X+pointerkeys file.

You can also use the X+*pointerkeys file to configure pointer buttons
so they are latched. When this feature is enabled, a button you
press stays logically down until you press it again. See the example
X*pointerkeys file in /usr/1ib/X11 for information on configuring

this functionality.

9-8 Customizing the Mouse and Keyboard

DRAFT
4/7/98 12:45

DRAFT
4/7/98

12:45

Note

Note

%

ol

Warranty

The sample X*pointerkeys file is placed in /usr/1ib/X11 at install
time. If you subsequently update your system, the X*pointerkeys
file in /usr/1ib/X11 is not overwritten, and the sample file is placed
in /usr/newconfig.

Specifying a Portion of a Tablet

Option Function Default

Use a subset of the tablet tablet_subset_width disabled
surface as the X pointer device

tablet_subset_height

tablet_subset_xorigin

tablet_subset_yorigin

If a tablet is used as the X pointer device, it may be desirable to
use only a portion of the tablet surface. A rectangular subset of

the surface may be specified with these functions. The units are

in millimeters from the upper left corner of the tablet surface. For
example, if you want to use only an “A” size portion of a larger “B”
size tablet, the following lines could be added to the X*pointerkeys
file:

tablet_subset_xorigin 68
tablet_subset_yorigin 40
tablet_subset_width 296
tablet_subset_height 216

You can also use the X+*pointerkeys file to control screen
switching behavior in multi-screen configurations. See the example
X*pointerkeys file in /usr/1ib/X11 for an example of this
functionality.

The sample X*pointerkeys file is placed in /usr/1ib/X11 at install
time. If you subsequently update your system, the X*pointerkeys
file in /usr/1ib/X11 is not overwritten, and the sample file is placed
in /usr/newconfig.

Modifier Keys

You can select up to three keys from among the two (shift) keys,

the two keys, and the (cTRL) key and use them each as
modifier keys. A modifier key is a key that, when you hold it down

and press another key, changes the meaning of that other key.
Modifier keys in the X*pointerkeys file have three functions:

m They specify that a certain operation can’t take place until they
are pressed.

Customizing the Mouse and Keyboard 9-9

Warranty

m They enable you to adjust the distance covered by the pointer
during a movement operation.

m They enable you to change the key sequence that exits you from
X11.

For example, you can overcome the problem in the last example by
assigning the key as a modifier to the pointer direction keys.
Now, to move the hpterm cursor to the right, you press (») as usual.
To move the z server pointer to the right, you press (Left_shift) (»).

Specifying Pointer Keys

To find out what key names are valid for the keyboard you are using,
enter

xmodmap -pk

You may also use the default X Keysymbol names assigned to these
keys by the X Server.

Examples

If you only have one keyboard and no mouse, and you can live with
the default pointer key assignations, you don’t have to do anything
else to configure your system for mouseless operation. To move

the pointer to the left 10 pixels, you would press the (1) key on the
keypad. To press mouse button 1 you would press the (*) key on the
keypad.

However, suppose you wanted to move only one pixel to the left.
Although the default value of pointer_mod2_amt is one pixel, no key
is assigned to the modifier for that amount. Thus, you would need to
edit the XOpointerkeys file (or create an X*pointerkeys) to include
a line assigning one of the modifier keys to pointer_amt_mod?2.

The following line in XOpointerkeys assigns the key to

pointer_amt_mod2:

###pointerfunction key
pointer_amt_mod2 left_shift

Or suppose you wanted to set up your XOpointerkeys file so that
you could move 1, 10, 25, and 100 pixels. The following lines show
one way to specify this:

###pointer function key
pointer_amt_modl left_extend
pointer_amt_mod2 left_shift
pointer_amt_mod3 control
pointer_move 1_pixels
pointer_modl_amt 10_pixels
pointer_mod2_amt 25_pixels
pointer_mod3_amt 100_pixels

With these lines in effect, one press of the (1) key on the keypad
moves the pointer 1 pixel to the left. Pressing the left (Extend char)

9-10 Customizing the Mouse and Keyboard DRAFT

4/7/98 12:45

DRAFT
4/7/98

12:45

Warranty

and (1) moves the pointer 10 pixels to the left. Pressing (Left shift) (1)
moves the pointer 25 pixels to the left. And pressing (CTRL) (1) moves
the pointer 100 pixels to the left.

Or, take the case previously mentioned where you want to use the
arrow keys for both text cursor and mouse pointer. You could insert

the following lines in your XOpointerkeys file:

###pointer function
pointer_key_modl
pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

key
left_shift
cursor_left
cursor_right
cursor_up
cursor_down

The above lines enable you to use the arrow keys for cursor
movement, while using the shifted arrow keys for pointer movement.

Note that only the key (and not the (Right shift)) modifies the

press of an arrow key from cursor to pointer movement.

Now, suppose you want to use the arrow keys to operate the pointer,
and you also need the arrow keys to control the cursor in an hpterm
window. Furthermore, another application uses the shift-arrow key

sequence to control its cursor.

The easiest way to solve this dilemma is to call in another modifier.
The following lines illustrate this. Compare them to the previous

example.

###pointer function
pointer_key_modl
pointer_key_mod2
pointer_left_key
pointer_right_key
pointer_up_key
pointer_down_key

In this example,

key
left_shift
left_extend
cursor_left
cursor_right
cursor_up
cursor_down

m Pressing the (&) key moves the hpterm text cursor up.
m Pressing (o) moves the cursor up in the program you

frequently operate.

m Pressing (Left Shift) (Left Extend char) (A) moves the pointer up.

Using a similar technique, you can also reassign the (CTRL) (Left Shift)
(Reset) sequence that aborts a session. You can specify the press of a
single key or a combination of two, three, or four key presses. Just
make sure that the key sequence you select isn’t something you’re

going to type by accident.

Customizing the Mouse and Keyboard 9-11

Warranty

Customizing
Keyboard Input

Modifying Modifier Key
Bindings with
‘xmodmap’

Note i

%

Besides remapping the mouse’s pointer and buttons to your
keyboard, you can remap any key on the keyboard to any other key.

To change the meaning of a particular key for a particular X11
session, or to initialize the X server with a completely different set of
key mappings, use the xmodmap client.

There are now two keyboards available for Hewlett-Packard
workstations, the 46021 keyboard, and the C1429 keyboard. See
appendix B, Using the Keyboards, for more information on using
these keyboards and the differences between them.

The syntax for xmodmap is as follows:
xmodmap options [filename]
where options are:

-display host:display Specifies the host, display number,
and screen to use.

-help Displays a brief description of
xmodmap options.

-grammar Displays a brief description of the
syntax for modification expressions.

-verbose Prints log information as xmodmap
executes.

-quiet Turns off verbose logging. This is the
default.

-n Lists changes to key mappings
without actually making those
changes.

-e expression Specifies a remapping expression to be
executed.

-pm, -p Prints the current modifier map to the

standard output. This is the default.

-pk Prints the current keymap table to
the standard output.

-pp Print the current pointer map to the
standard output.

- Specifies that the standard input
should be used for the input file.

filename Specifies a particular key mapping file
to be used.

9-12 Customizing the Mouse and Keyboard DRAFT

4/7/98 12:45

Specifying Key

Remapping Expressions

DRAFT
4/7/98

12:45

Warranty

Whether you remap a single key “on the fly” with a command-line
entry or install an entire new keyboard map file, you must use valid
expressions in your specification, one expression for each remapping.

A valid expression is any one of the following:

Valid ‘xmodmap’ Expressions.

To do this . .. Use this expression . . .

Assign a key symbol to a keycode. keycode keycode = keysym

Replace a key symbol expression with another. |keysym keysym = keysym

Clear all keys associated with a modifier key. clear modifier

Add a key symbol to a modifier. add modifier = keysym
Remove a key symbol from a modifier. remove modifier = keysym
keycode Refers to the numerical value that uniquely identifies

each key on a keyboard. Values may be in decimal,
octal, or hexadecimal.

keysym Refers to the character symbol name associated with
a keycode, for example, KP_Add.

modifier Specifies one of the eight modifier names.

The following are the modifier names available for use in keyboard
customization:

Valid Modifier Names.

Modifier Names

Shift Control Mod2 Mod4
Lock Modl Mod3 Modb

On Hewlett-Packard keyboards, the lock modifier is set to the
key. However, any of the modifiers can be associated with any valid
key symbol. Additionally, you can associate more than one key
symbol with a modifier (such as Lock = Shift_R and Shift_L), and
you can associate more than one modifier with a key symbol (for
example, Control = Caps_Lock and Lock = Caps_Lock).

For example, on a PC-style keyboard, you can press (d) to print a

lower case “d”, (shift) (d) to print a capital “D”, (ait) (d) to print
something else, and (shift) (Alt) (d) to print still something else.

The xmodmap client gives you the power to change the meaning of any
key at any time or to install a whole new key map for your keyboard.

Customizing the Mouse and Keyboard 9-13

Warranty

Examples

Printing a Key Map

9-14 Customizing the Mouse and Keyboard

Suppose you frequently press the key at the most inopportune
moments. You could remove the (Caps) lock key from the lock
modifier, swap it for the (f1) key, then map the (1) key to the lock
modifier. Do this is by creating a little swapper file that contains the
following lines:

!This file swaps the [Caps] key with the [F1] key.

remove Lock = Caps_Lock
keysym Caps_Lock = F1
keysym F1 = Caps_Lock
add Lock = Caps_Lock

Note the use of the ! in the file to start a comment line. To put your
“swapper” file into effect, enter the following on the command line:

xmodmap swapper

If you use such a swapper file, you should probably have an
unswapper file. The following file enables you to swap back to the
original keyboard mapping without having to exit X11:

!This file unswaps the [F1] key with the [Caps] key.

remove Lock = Caps_Lock
keycode 88 = F1

keycode 55 = Caps_Lock
add Lock = Caps_Lock

Note the use of the hexadecimal values to reinitialize the keycodes to
the proper key symbols. You put your “unswapper” file into effect by
entering the following command line:

xmodmap unswapper

On a larger scale, you can change your current keyboard to a Dvorak
keyboard by creating a file with the appropriate keyboard mappings.

xmodmap .keymap

The -pk option prints a list of the key mappings for the current
keyboard.

xmodmap -pk

The list contains the keycode and up to four 2-part columns. The
first column contains unmodified key values, the second column
contains shifted key values, the third column contains meta

((Extend char)) key values, and the fourth column contains shifted meta
key values. Each column is in two parts: hexadecimal key symbol
value, and key symbol name.

DRAFT

4/7/98 12:45

10

Printing and Screen Dumps

The X Window System includes clients that enable you to do sereen
dumps. A screen dump is an operation that captures an image from
your screen and saves it in a bitmap file. You can then redisplay,
edit, or send the file to the printer for hardcopy reproduction.

Read this chapter if you need to “take a picture” of something on the
screen for future use or if you want to print what is on your screen.

This chapter discusses the following topics:
m Making a screen dump.

m Displaying a screen dump.

m Printing a screen dump.

SharedPrint/UX is available on HP-UX 10.0 systems. If you want to
use it instead of the printing techniques described in this chapter,
refer to SharedPrint/UX User and Administrator’s Guide.

DRAFT Printing and Screen Dumps 10-1
4/7/98 12:45

Warranty

Making and
Displaying Screen
Dumps

Making a Screen Dump

X11 windows can be dumped into files by using the xwd client. The
files can be redisplayed on the screen by using the xwud client.

The xwd client allows you to take a “picture” of a window that is

with ‘xwd’ displayed on the screen and store it in a file. The filed picture can
then be printed, edited, or redisplayed. You select the window to
be dumped either by clicking the mouse on it or by specifying the
window name or id on the command line.
The resulting file is called an xwd-format bitmap file or an xwd screen
dump. All of the figures used in this manual are xwd screen dumps.
The syntax for xwd is as follows:
xwd [options]
where options are:
-help Provides a brief description of usage and syntax.
-id id Specifies the window to be dumped by its id rather
than using the mouse to select it.
-add Adds value to every pixel.
-name name Specifies the window to be dumped by its name
rather than using the mouse to select it.
-root Specifies that the window to be dumped is the root
window.
-add value Add wvalue to every pixel. value is signed.
-nobdrs Dumps the window without borders.
-out filename Specifies that the screen dump is to be stored in the
file filename.
> filename Specifies that the screen dump is to be stored in the
file filename.
-Xy Selects ‘XY’ format of storage instead of the default
‘7’ format.
-display Specifies the screen that contains the window to be
display dumped.
This first example stores a window in a file named savewindow, using
the pointer to determine which window you want.
1. Display an hpterm or xterm window.
2. Type:
xwd -out savewindow (Return)
The pointer changes shape, signifying you can select a window to
dump.
10-2 Printing and Screen Dumps DRAFT

4/7/98 12:45

Warranty

3. Move the pointer into the window you want to dump. Press and
release any pointer button. After the image is captured, the cursor
changes back to its normal shape and the window is stored in the
file savewindow.

If you know the name of the window you want to dump, you don’t
need to use the pointer at all. This example dumps the window
named “calendar” to a file named calendar.dump.

xwd -name calendar -out calendar.dump Return)

Displaying a Stored The xwud client allows you to display an xwd-format file on your
Screen Dump with monitor. You could have created the file earlier with xwd or

‘xwud’® translated it from another format into xwd format.
Note A The image to be restored has to match the depth of the display on
% which it is to be restored. For example, an image created and stored
using a depth of four cannot be restored on a display with a different
depth.
DRAFT Printing and Screen Dumps 10-3

4/7/98 12:45

Warranty
The syntax for xwud is as follows:
xwud [options]

where options are:

-help Displays a brief description of the
options.

-in filename Specifies the file containing the screen
dump.

-inverse Reverses black and white from the

original monochrome dump.

-display host:display.screen Specifies the screen on which to
display the dump.

This example displays the xwd-format file myfile.

xwud -in myfile (Return)

10-4 Printing and Screen Dumps DRAFT
4/7/98 12:45

Printing Screen
Dumps

Printing Screen Dumps

DRAFT
4/7/98

12:45

with ‘xpr’

Warranty

Before you can print the screen dump, you need to ensure that your
printer is connected and talking to your computer.

Refer to the system administrator manual(s) for your system if you
need to:

m Connect the printer to your computer.
m Create a device file for the printer on your computer.

m Run the print spooler.

xpr prints a screen dump that has been produced by xwd.
xpr Loptions] filename
where options are:

-scale scale Specifies a multiplier for pixel
expansion. The default is the largest
that will allow the entire image to fit

on the page.

-density dpi Specifies the dots per inch for the
printer.

-height inches Specifies the maximum height in

inches of the window on the page.

-width width Specifies the maximum width in
inches of the window on the page.

-left inches Specifies the left margin in inches.
The default is centered.

-top inches Specifies the top margin in inches.
The default is centered.

-header caption Specifies a caption to print above the
window.

-trailer caption Specifies a caption to print below the
window.

-landscape Prints the window in landscape mode.

The default prints the long side of the
window on the long side of the paper.

-portrait Prints the window in portrait mode.
The default prints the long side of the
window on the long side of the paper.

-rv Reverses black and white from the
original screen.

-compact Provides efficient printer directions for
a window with lots of white space
(PostScript printers only).

Printing and Screen Dumps 10-5

Warranty

-output filename Specifies a file to store the output in.

-append filename Adds the window to the end of an
existing file.

-noff Specifies that the window should
appear on the same page as the
previous window. Used with -append.

-split n Prints the window on n pages. Not
applicable to HP printers.

-device dev Specifies the printer to use.

ljet HP LaserJet series,
HP ThinkJet,
HP QuietJet,
Rugged Writer,
HP2560 series,
HP2930 series, other
PCL devices.

pjet HP PaintJet (color
mode).

pjetxl HP PaintJet XL.

1n03 DEC LNO03.

1a100 DEC LA100.

ps PostScript printers.

194 IBM PP3812.
-cutoff level Specifies intensity for converting color

to monochrome for printing on a HP
LaserJet printer.

-noposition Bypasses header positioning, trailer
positioning, and image positioning
commands for the HP LaserJet and
HP PaintJet printers.

filename Specifies the xwd file to print.

For example, suppose you want to print a xwd file named myfile that
you previously created with xwd. You want to print the file on a HP

LaserJet printer in portrait mode with black and white the reverse of
the original xwd file.

xpr -device ljet -portrait -rv myfile | lp -oraw (Return)

Reversing colors is often used when preparing illustrations for
documents. The original illustration can be done in white with a
black background, which is easy to see on computer displays, but
reversed to give a black drawing on a white background, which is
common in printed material.

10-6 Printing and Screen Dumps DRAFT
4/7/98 12:45

Warranty

Moving and Resizing You may not always want to have the image print exactly in the
the Image on the Paper same size or location as the default choices place it.

Sizing Options
The three sizing options for xpr are:

-scale Each bit of the image is translated into a grid of the
size you specify. For example, if you specify a scale
of 5, each bit in the image is translated into a 5 by 5
grid. This is an easy way to increase the size without
refiguring the height and width.

-height The maximum height in inches of the image on the
page.

-width The maximum width in inches of the image on the
page.

The actual printed size could be smaller than -height and -width if
other options, such as the orientation ones, conflict with them.
Location Options

The two location options for xpr are:

-left The left margin in inches.

-top The top margin in inches.

If -1left is not specified, the image is centered left-to-right. If -top is
not specified, the image is centered top-to-bottom.

Orientation Options

The two orientation options to xpr are:

-landscape The image is printed so that the top of the image is
on the long side of the paper.

-portrait The image is printed so that the top of the image is
on the short side of the paper.

If neither option is specified, xpr will position the image so that the
long side of the image is on the long side of the paper. However, you
can force it to print either in landscape mode or portrait mode by
using the appropriate option.

Unless told otherwise by the sizing options, xpr makes the image as
big as necessary to fit in the orientation specified.

DRAFT Printing and Screen Dumps 10-7
4/7/98 12:45

Warranty

Printing Multiple
Images on One Page

Printing Color Images

xpr normally prints each image on a separate page. The -noff
option is used to print more than one image on a page.

Use the device name pjet to direct output to a HP PaintJet printer.

For example, the following command prints a xwd file named myfile
on a HP PaintJet printer.

xpr -device pjet myfile (Return)

Color images printed on a HP LaserJet printer will be in black and
white instead of color.

xpr prints only in black and white, no shades of gray. If your original
color image contained many colors of the same intensity, the HP
LaserJet printer version may be all light or all dark. If that happens,
use the -cutoff option to change the mapping of color intensities.
Anything above the cutoff value is white and anything below is black.
Note that the default cutoff value is 50 percent.

If you want color images to print in shades of gray on your LaserJet,
use the Starbase utility pcltrans instead of xpr. Refer to the
Starbase documentation for information.

10-8 Printing and Screen Dumps DRAFT

4/7/98 12:45

11

Using Graphics With X Windows

This chapter covers the following topics:
m Window-smart and window-naive applications.
m Opening and destroying windows.

m Creating transparent windows.

Window-Smart and
Window-Naive
Programs

Is My Application
Window-Smart or
Window-Naive?

Running Window-Smart
Programs

DRAFT
4/7/98 12:45

Window-smart applications are able to create and destroy the
windows in which they operate.

Window-naive (sometimes called window-dumb) applications aren’t
able to create and destroy windows on their own. They need help
from the X Window System.

If you are using an existing application, the documentation that
comes with the application will tell you how to start it. You don’t
have to worry whether it is window-smart or window-naive, just
follow the directions.

If you are writing a new application using Starbase, use the xwcreate
and xwdestroy commands. Rather than typing the commands each
time you want to test the new program, put the commands in a

file, then execute the file to start the application. In this case, the
application is window-naive but the file is window-smart.

From an hpterm window, type the name of the program you want to
run.

For example, the following command will start a hypothetical
Starbase application named planetarium that displays a moving
view of the night sky. Assume that the program is in the
/home/ellen/funstuff directory on your computer.

/home/ellen/funstuff/planetarium (Return)

Using Graphics With X Windows 11-1

Warranty

Running Window-Naive
Programs

Creating a Window with
‘xwcreate’

Window-naive programs cannot open and close the window they
need to run in, so you must do it for them with clients (a terminal
emulator, for example). Some old programs that use the Starbase
graphics library are window-naive.

Most window-naive programs are able to run in the X Window
System environment using the sox11 device driver. The sox11
driver is described in the Starbase Device Drivers manual. But
window-naive clients still need help to create and destroy the
windows they display their output in.

To enable window-naive graphics programs to run within X, you need
four special helper clients to create and destroy the windows used by
the naive graphics programs. The clients are:

m gwind
m Xwcreate

m xwdestroy

gwindstop

gwind runs in the background and services requests from the other
three helper clients. When requested by xwcreate, gwind creates

a window in which an application can display its output; when
requested by xwdestroy, gwind destroys the window. You don’t need
to start the gwind program, xwcreate and xwdestroy start and stop
it for you.

The next sections cover:
m Creating a window

m Destroying a window

xwcreate requests gwind to create a window for a window-naive
graphics program to use for its output. The graphics program must
exist on the same computer that is running xwcreate. If gwind is
not already running when xwcreate is executed, xwcreate will
start gwind. Once xwcreate has created a window, you can use
the window to run your graphics program. When you finish that
application, you can use the same window to run another graphics
program if you wish.

Use xwcreate from the command line.
xwcreate [options]
where:

-display host:display.screen Specifies the screen the window will
appear on

-parent parent Names a window to be the parent of
the window being created.

11-2 Using Graphics With X Windows DRAFT

4/7/98 12:45

Destroying a Window

DRAFT
4/7/98

with ‘xwdestroy’

12:45

-geometry

widthx heightx coltrow
-r

-bg color

-bw pizels

-bd color

-depth depth

-visual wisualclass

-overlay

-wndir directory

-title name

Warranty

Specifies desired size and location of
window.

Specifies backing store. Default is no
backing store.

Specifies the background color. The
default is black.

Specifies the border width in pixels.
The default is 3 pixels wide.

Specifies the border color. The default
is white.

Specifies the depth of the window.
The default is the same depth as its
parent.

Specifies the visual class of the
window when multiple visual classes
are supported by the display at the
specified depth.

Specifies that an overlay plane visual

should be used.

Specifies the name of the directory
containing the pty file for the window.

Specifies the name the window will be

called.

The depth option is where you tell the window manager what set of
planes you want the window to be in. If you specify nothing, the
window is created with the same depth as its parent, or with the
same depth as the root if no parent is specified. If you specify a
depth, the window will be placed in the image plane with the depth
(number of color planes) you specify.

The following example creates a window named “foo”:

xwcreate -title foo (Return)

xwdestroy destroys the window created by xwcreate. If that window
is the only graphics window present at that time, gwind will also

terminate.

Use xwdestroy from the command line.

xwdestroy [-Wmdir path/dz'rectory]wz’ndow] window? ...

where:

-wmdir

window

Specifies the directory containing the pty file for the
window.

Specifies the window or windows to be destroyed.

Using Graphics With X Windows 11-3

Warranty

Destroying a Window
with ‘gwindstop’

Caution #

The following example will destroy a window named “foo”:

xwdestroy foo

gwindstop destroys all windows created by gwind in the specified
directory. If, however, you use xwdestroy to remove the last window
opened for graphics use, xwdestroy will terminate gwind. You do not
need to use gwindstop.

You must use xwdestroy or gwindstop to get rid of a window after
you have finished running your graphics application. Do not use
kill to remove the gwind process associated with the window.

If you should accidentally do so, you must type the command rm
$WMDIR/wm. Failure to do this will result in xwcreate not running the
next time you call it.

Use gwindstop from the command line.
gwindstop [directory] L[directory]

directory The directory containing the pty files for the
windows to be destroyed.

Using Transparent
Windows

Creating a Transparent
Window with ‘xseethru’

Transparent windows allow you to look through an overlay window
into the image planes.

xseethru is a transparent overlay-plane window used to see through
the overlay planes to the image planes.

Use xseethru from the command line.

-geometry widthX height+ coltrow

xseethru -display host:display.screen
where:
-geometry The geometry used to create the window.
-display The screen the window will appear on.

This example opens a transparent window 100-pixels by 100-pixels in
size and located 50 pixels from the left and 25 pixels from the top of
the screen.

xseethru -geometry 100x100+50+25 (Return)

11-4 Using Graphics With X Windows DRAFT

4/7/98 12:45

Creating a Transparent
Window with ‘xsetroot’

Creating a Transparent
Background Color

DRAFT
4/7/98

12:45

Warranty
xsetroot allows you to make the root window transparent when you
are running X in the overlay planes.

Use xsetroot from the command line.

xsetroot [—solid color]
where:
-solid Sets the window color to color.
This example turns the root window into a transparent window.

xsetroot -solid transparent Return)

Any window may have transparent as its background color.

This example opens an hpterm window with a transparent
background color.

hpterm -bg transparent Return)

Using Graphics With X Windows 11-5

Using the Keyboards

A

Understanding the
Keyboards

DRAFT
4/7/98

12:45

There are now two keyboards available for Hewlett-Packard
workstations. In addition to the 46021 keyboard, a personal

computer-style keyboard, C1429 is also available. This new keyboard

is also known as the “Enhanced Vectra” keyboard.

If an application is reading input directly from the keyboard, it

receives a keycode when a key is pressed. Equivalent keys on the two
keyboards are those that generate the same keycode. If an equivalent
key does not exist, there is no way to generate the corresponding

keycode.

In an X Window System environment, keycodes are mapped into key
symbols by the X library. The key symbols are stored in a keysym
table. Application programs then reference these key symbols when

accessing keys.

KEYCAP

KEYCODE

APPLICATION

4

Keycap, Keycode, and Keysym Relationships

Equivalent keys are those keys that are mapped to the same key
symbol. One advantage of this mapping is that if a key does not
physically exist on a keyboard, its equivalent key symbol can be
mapped to some other key through the corresponding keycode.

A

Using the Keyboards A-1

Warranty

Default Keyboard
Mapping

Equivalent Keys

A-2 Using the Keyboards

The default keyboard mapping supplied with the X Window
environment maps the C1429 keyboard to the same key symbols
that are used for the 46021 keyboard. This allows existing X client
programs that expect to receive input from a 46021 keyboard to be
used with either keyboard. However, the result is that some keys on
the C1429 keyboard are mapped to key symbols that do not match
the engravings on their keycaps.

Some applications may expect to use keys that exist on one of the
keyboards but not the other. In most cases, if a key does not exist
on the keyboard in use, it is still possible to use some other key that
is equivalent. To do this, it is necessary to know which keys are
equivalent on the two keyboards.

There are 14 keys on the C1429 keyboard that generate keycodes
equivalent to keys on the 46021 keyboard, but have different
engravings on the keycaps. Some have the same key symbol on
both keyboards, while others do not. These C1429 keys, their 46021
equivalents, and the corresponding symbol names are shown in the
following table.

C1429 Keycap

46021 Keycap

Default Key Symbol

XPCmodmap Symbol

blank1 F9 F9

blank2 F10 F10

F11 blank3 F11 F11

F12 blank4 F12 F12

(PrintScreen/sysRq) | (Menu) Menu Print

Cancel Scroll_Lock

(Pause/Break) (Break/Reset) Break /Reset Pause/Break

Prior Prior

System/User Num_Lock

End (Select) Select End

Next Next

(Return) Return Return

(left) | Meta_ L Alt_L

(right) | Meta_R Alt_R
DRAFT

4/7/98 12:45

Warranty

Changing Key
Mapping

DRAFT
4/7/98

C1429 Keyboard

46021 Keyboard

Comparing the

12:45

Keyboards

X provides the means to change the key mapping, if you so desire.
One way to accomplish this is by running the xmodmap client
program. Hewlett-Packard provides two files in the directory
/usr/1ib/X11 to use with xmodmap. One, XPCmodmap, causes
xmodmap to change the key mapping to match the keycap engravings
on the C1429 keyboard. The other, XHPmodmap, causes xmodmap to
change the key mapping to match the keycap engravings on the
46021 keyboard, which are the defaults. This allows either keyboard
to be used with applications that expect the other keyboard,
although only one mapping can be used at any given time. When
the mapping is changed, the X Server notifies all clients that are
executing at that time. Some clients may load the new mapping from
the server right away, but others may have to be restarted in order to
recognize the new mapping. For more information about using the
xmodmap client, see the xmodmap man page. Additional information
can be found in Chapter 9.

Execute the following command to change the mapping of the keys
shown above to match the engravings on the C1429 keycaps.

/usr/bin/X11/xmodmap /usr/lib/X11/XPCmodmap

Execute the following command to change the mapping to match the
46021 keyboard.

/usr/bin/X11/xmodmap /usr/lib/X11/XHPmodmap

The 46021 keyboard has 107 keys, while the C1429 keyboard has
101 keys. There are 7 keys on the 46021 keyboard whose keycodes
cannot be generated by any key on the C1429 keyboard, and whose
key symbols cannot be generated when using the default keymap for
the C1429 keyboard. The missing keys are:

" (G diay)
m (Insert line]

m () (on number pad)

m (Tab) (on number pad)

(J and (Tab) exist elsewhere on the C1429 keyboard, and the others
are not needed by most applications. Applications that do need one
or more of them must assign their key symbols to the keycodes of
existing keys. The xmodmap client can be used to determine the
keycode-to-key symbol mapping of existing keys, and it can also be
used to assign the key symbol to the desired keycode. These keys use

Using the Keyboards A-3

Warranty

HP specific key symbol names whose correct spelling can be found in
the file /usr/1ib/X11/XKeysymDB.

The key on the C1429 keyboard generates a keycode
that has no equivalent on the 46021 keyboard. This key has the same

effect as the (Left Control) key by default.

Keys not mentioned above exist on both keyboards, and have the
same key symbols.

A-4 Using the Keyboards DRAFT
4/7/98 12:45

Glossary

Accelerator
A key or sequence of keys (typically a modifier key and some
other key) that provides a “shortcut,” for accessing functionality.

active window
The terminal window where what you type appears. If there is no
active window, what you type is lost. Only one terminal window
can be active at a time.

application program
A computer program that performs some useful function, such as
word processing or data base management.

application server
A computer used solely to provide processing power for
application programs.

ampersand (&)
Placed at the end of a command to specify that the client started
by the command should be started as a background process.
The command can be typed after the command-line prompt or
included in a file such as .x11start or .hpwmrc.

background process
A process that doesn’t require the total attention of the computer
for operation. Background processing enables the operating
system to execute more than one program or command at a
time. As a general rule, all clients should be run as background
processes.

bitmap
Generally speaking, an array of data bits used for graphic images.
Strictly speaking, a pixmap of depth one (capable of 2-color
images).

bitmap device
An output device that displays bitmaps. The CRT monitor of
your system is a bitmap device.

bitmap font
A bitmap font is made from a matrix of dots.

DRAFT Glossary-1
4/7/98 12:45

Warranty

buffer

An area used for storage.

button
A button on a mouse pointing device. Mouse buttons can be
mapped to the keyboard.

button binding
Association of a mouse button operation with a window manager
function. For example, pressing button 3 on a window frame
displays the system menu.

button mapping
Association of a button number with a physical mouse button.

click
To press and release a mouse button. The term comes from the
fact that pressing and releasing the buttons of most mice makes a
clicking sound.

client
A program written specifically for the X Window System.
Some clients make their own windows. Other clients are utility
programs.

cluster
A network of computers in which only one computer has
file-system disk drives attached to it.

combined mode
A combination of image and overlay planes in which a single
display has a single screen that is a combination of the image and
overlay planes.

command-line prompt
A command-line prompt shows that the computer is ready to
accept your commands. Each terminal emulation window has
a command-line prompt that acts just like the command-line
prompt you see on the screen immediately after login. Usually
the command-line prompt is either a $ (for Bourne and Korn
shells) or a % (for C shells), but it can be modified. One popular
modification is to print the current working directory and
the history stack number before the $ or %. You can find the
command-line prompt by pressing (Return) several times. Every
time you press (Return), HP-UX prints the prompt.

cut buffer
A buffer (memory area) that holds text that has been deleted
from a file.
Glossary-2 DRAFT

4/7/98 12:45

Warranty
depth

The number of planes in a set of planes. For example, a set of 12
image planes would have a depth of 12.

diskless cluster
The networking of several systems (SPUs) together to share a
common hard disk for storage of data and programs.

display
Strictly speaking, the combination of a keyboard, mouse, and
one or more screens that provide input and output services to
a system. While “display” is sometimes used to mean just the
CRT screen, a display, as defined by the X Window System, can
actually include more than one physical screen.

display server
In the X Window System, the display server is the software that
controls the communication between client programs and the
display (keyboard, mouse, and screen combination).

double buffering
A term describing the method used by Starbase wherein half of
the color planes on a monitor are used to display to the screen
and the other half are used to compute and draw the next screen
display. This provides smooth motion for animation and it is
faster. However, it does reduce the number of colors that are
available for display on the screen at one time.

double-click

To press and release a mouse button twice in rapid succession.

drag
To press and hold down a mouse button while moving the mouse
on the desktop (and the pointer on the screen). Typically,
dragging is used with menu selecting, moving, and resizing
operations.

file server
A computer whose primary task is to control the storage and
retrieval of data from hard disks. Any number of other computers
can be linked to the file server in order to use it to access data.
This means that less storage space is required on the individual
computer.

fonts
A font is a style of printed text characters. Times Roman is the
font used for most newspaper text; Helvetica is the font used for
most newspaper headlines.

DRAFT Glossary-3
4/7/98 12:45

Warranty

Glossary-4

foreground process
A process that has the terminal window’s attention. When a
program is run in a window as a foreground process (as opposed
to a background process), the terminal window cannot be used for
other operations until the process is terminated.

graphical user interface
A form of communication between people and computers that
uses graphics-oriented software such as windows, menus, and
icons, to ease the burden of the interaction.

home directory
The directory in which you are placed after you log in. Typically,
this is /home/username, where username is your login name. The
home directory is where you keep all “your” files.

hotspot
The area of a graphical image used as a pointer or cursor that is
defined as the “point” of the pointer or cursor.

hpterm
A type of terminal window, sometimes called a “terminal
emulator program” that emulates HP2622 terminals, complete
with softkeys. The hpterm window is the default window for your
X environment.

icon
A small, graphic representation of an object on the root window
(typically a terminal window). Objects can be “iconified” (turned
into icons) to clear a cluttered workspace and “normalized”
(returned to their original appearance) as needed. Processes
executing in an object continue to execute when the object is
iconified.

iconify
The act of turning a window into an icon.

image mode
The default screen mode using multiple image planes for a single
screen. The number of image planes determines the variety of
colors that are available to the screen.

image planes
The primary display planes on a device that supports two sets of
planes. The other set of display planes is known as the overlay
planes.

input device
Any of several pieces of equipment used to give information to
the system. Examples are the keyboard, a mouse, or a digitizer
tablet.

DRAFT
4/7/98 12:45

Warranty

keyboard binding
Association of a special key press with a window manager
function. For example, pressing the special keys (shift) (Esc)
displays the system menu of the active window.

label

The text part of an icon.

local access
The ability to run a program on the computer you are currently
operating. This is different from remote access, where you run a
program on a computer that is physically removed from the one
you are operating.

local client
A local client is a program that is running on your local
computer, the same system that is running your X server.

mask
A graphical image used in conjunction with another graphical
element to hide unwanted graphical effects.

matte
A border located just inside the window between the client area
and the frame. It is used to create a three-dimensional effect for
the frame and window.

menu
A list of selections from which to make a choice. In a graphical
user interface such as the X Window System, menus enable you to
control the operation of the system.

minimize
To turn a window into an icon. The terms minimize and iconify
are interchangeable.

modifier key
A key that, when pressed and held along with another key,
changes the meaning of the other key. (CTRL), (Extend char), and
(shift) are examples of a modifier key.

mouseless operation
Although a mouse makes it easy to use the X Window System,
the mouse is not absolutely necessary. The system can be
configured to run from the keyboard alone.

multi-tasking
The ability to execute several programs (tasks) simultaneously on
the same computer.

Glossary-5

Warranty

Glossary-6

node
An address used by the system. For example, each device on the
system has its own node. The system looks there whenever it
needs to access the device. A node can also be an address on a
network, the location of a system.

non-client
A program that is written to run on a terminal and so must be
“fooled” by a terminal emulation window into running in the
window environment.

normalize
To change an icon back into its “normal” (original) appearance.
The opposite of iconify.

overlay planes
The secondary set of display planes on a device that supports two
sets of planes. The other set of display planes is known as the
image planes.

parent window
A window that causes another window to appear. A window that
“owns” other windows.

pixel
Short for “picture element.” The individual dots, or components,
of a screen. They are arranged in rows and columns and form the
images that are displayed on the screen.

pixmap
An array of data bits used for graphics images. Each pixel
(picture element) in the map can be several bits deep, resulting in
multi-color graphics images.

pointer
Sometimes called the “mouse cursor,” the pointer shows the
location of the mouse. The pointer’s shape depends on its
location. In the root window, the pointer is an X. On a window
frame, the pointer is an arrowhead. Inside the frame, the
pointer can be an arrowhead (as when it is inside a clock or load
histogram frame) or an I-beam (as when it is inside a terminal
window).

press
Strictly speaking, to hold down a mouse button or a key. Note
that to hold down a mouse button and move the mouse is called
“dragging.”

print server
A computer that controls spooling and other printer operations.
This permits a large number of individuals to efficiently share
printer resources.

DRAFT
4/7/98 12:45

Warranty

remote access
The ability to run a program on a computer that is physically
removed from the one you are currently operating. This is
different from local access, where you run a program on the
computer that you are operating.

remote client
An X program that is running on a remote system, but the
output of the program can be viewed on your terminal.

remote host
A computer physically removed from your own that you can log
in to. See chapter 4 for prerequisites for establishing a remote
host.

resource
That which controls an element of appearance or behavior.
Resources are usually named for the elements they control.

restoring
The act of changing an minimized (iconified) or maximized
window back to its regular size. The terms restoring and
normalizing are usually interchangeable.

root menu
The menu associated with the root window. The root menu
enables you to control the behavior of your environment.

root window
The root window is what the “screen” (the flat viewing surface
of the terminal) becomes when you start X. To a certain extent,
you can think of the root as the screen. The root window is the
backdrop of your X environment. Although you can hide the root
window under terminal windows or other graphic objects, you can
never position anything behind the root window. All windows
and graphic objects appear “stacked” on the root window.

scalable fonts
Scalable fonts are defined by a file containing a mathematical
outline used by the system to create a bitmapped font for a
particular size, slant, or weight.

sereen
The physical CRT (Cathode Ray Tube) that displays information
from the computer.

screen dump
An operation that captures an image from your screen, saves it in
a file, and enables you to send that file to a printer for hardcopy
reproduction.

DRAFT Glossary-7
4/7/98 12:45

Warranty

Glossary-8

server
A program that controls all access to input devices (typically a
mouse and a keyboard) and all access to output devices (typically
a display screen). It is an interface between application programs
you run on your system and the system input and output devices.

system menu
The menu that displays when you press the system menu button
on the HP Window Manager window frame. Every window has
a system menu that enables you to control the size, shape, and
position of the window.

Term0
An HP level 0 terminal. It is a reference standard that defines
basic terminal functions. For more information, see Term0
Reference or Terminal Control: User’s Guide.

terminal-based program
A program (non-client) written to be run on a terminal (not
in a window). Terminal-based programs must be “fooled” by
terminal-emulation clients to run on the X Window System.

terminal emulator
A client program that provides a window within which you can
run non-client programs. The non-client program runs just as
though it were running from a real terminal rather than a window
acting as a terminal.

terminal type
The type of terminal attached to your computer. HP-UX uses the
terminal type to set the TERM environment variable so that it can
communicate with the terminal correctly. The terminal type is
usually set at login, but can be set afterward.

terminal window
A terminal window is a window that emulates a complete
display terminal. Terminal windows are typically used to “fool”
non-client programs into believing they are running in their
favorite terminal—mnot a difficult task in most cases. When not
running programs or executing operating system commands,
terminal windows display the command-line prompt. Several
terminal emulators are supplied with X11—hpterm, which
emulates HP terminals, xterm, which emulates DEC and
Tektronix terminals, and dtterm, which emulates a DEC VT2200
terminal and has EUC 4-byte capability.

text cursor
The line-oriented cursor that appears in a terminal window after
the command prompt. The term is used to distinguish the cursor
used by a window from the cursor used by the mouse, the pointer.

DRAFT
4/7/98 12:45

Warranty

tile
A rectangular area used to cover a surface with a pattern or
visual texture. The HP Window Manager supports tiling,
enabling users with limited color availability to create new color
tiles blended from existing colors.

title bar
The title bar is the rectangular area between the top of the
window and the window frame. The title bar contains the title
of the window object, usually “Terminal Emulator” for hpterm
windows, “xclock” for clocks, and “xload” for load histograms.

transient window
A window of short duration such as a dialog box. The window is
only displayed for a short time, usually just long enough to get
some direction from the user.

window
A data structure that represents all or part of the CRT display
screen. It contains a two-dimensional array of 16-bit character
data words, a cursor, a set of current attributes, and several flags.
Visually, a window is represented as a rectangular subset of the
display screen.

window-based program
A client or program written for use with the X Window System.
The “opposite” of a window-based program is a terminal-based
program.

window decoration
The frame and window control buttons that surround windows
managed by the a window manager.

window manager
The window manager controls the size, placement, and operation
of windows on the root window. The window manager includes
the functional window frames that surround each window object
as well as a menu for the root window.

DRAFT Glossary-9
4/7/98 12:45

