
Debugging threads with HPWilde Beest
Debugger

HP Part Number: 5992-4663
Published: September 2008
Edition: 1.0

© Copyright 2008 Hewlett-Packard Development Company, L.P

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.Hewlett-Packard shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be
obtained from your local Sales and Service Office.

U.S. Government License Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice Copyright © 2008 Hewlett-Packard Development Company, L.P.Reproduction, adaptation, or translation of
this document without prior written permission is prohibited, except as allowed under the copyright laws.

Trademark Notices

UNIX is a registered trademark of The Open Group.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Table of Contents

About This Document...7
Intended Audience...7
Typographic Conventions..7
Related Information..8
End of Reading...9
What are threads?...11
Understanding complexity in thread programming..11

Common conditions or events in thread programming...12
Introducing the HP WDB Debugger..12
Thread Debugging Support in HP WDB..13

Support for enabling and disabling specific threads..13
Back trace support for thread debugging...13

Debugging programs with multiple threads..14
Advanced Thread Debugging Support..17

Enabling and Disabling Advanced Thread Debugging Features.................................17
Prerequisites for Advanced thread debugging feature in HP WDB.............................17

Modes of Thread debugging in HP WDB..18
Thread-debugging in Interactive mode..18

Using thread-debugging feature in HP WDB..18
The thread-check command...19
Debugging common thread-programming problems...19

Problem: The thread attempts to acquire a non-recursive mutex that it currently has
control..19
Problem: The thread attempts to unlock a mutex or a read-write lock that it does not
control..22
Problem: The Thread waits on a mutex or a read-write lock that is held by a thread
with a different scheduling policy...24
Problem: Different threads non-concurrently wait on the same condition variable,
but with different associated mutexes..26
Problem: The thread terminates execution without unlocking the associated mutexes
or read-write locks...29
Problem: The thread waits on a condition variable for which the associated mutex is
not locked..31
Problem: The thread terminates execution, and the resources associated with the thread
continue to exist in the application because the thread has not been joined or
detached..33
Problem: The thread uses more than the specified percentage of the stack allocated to
the thread..35
Problem: The number of threads waiting on any pthread object exceeds the specified
threshold number...37

Table of Contents 3

Thread-debugging in Batch mode...37
Pre-requisites for Batch Mode of Thread Debugging..38
Steps to debug threads in Batch Mode..38
Limitations in Batch Mode of Thread Debugging...40
Known issues with thread debugging for interactive and batch mode..................40

Thread- debugging in Attach Mode..41
Thread Debugging in +check Mode..43

Miscellaneous notes on Advanced thread debugging feature in HP WDB.......................44
Best Practices in Thread programming ...44
Appendix..45
Thread Debugging commands at a glance...46

4 Table of Contents

List of Tables
1 Documentation for HP WDB..8
2 Thread Debugging Commands...46

5

6

About This Document
This whitepaper describes the various commands and options available in HP
Wilde-Beest Debugger (WDB) to debug threads in programs. In addition, this paper
addresses the most common thread programming issues along with the various
thread-debugging commands in HP WDB.

Intended Audience
This document targets the developerswhowant to useHPWDB to debug their threaded
applications developed inC andC++. The document also intends to be a useful reference
for readers who want to know about the various thread-debugging features available
in HP WDB.

Typographic Conventions
This document uses the following typographical conventions:
%, $, or # A percent sign represents the C shell system prompt.

A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells. A number sign
represents the superuser prompt.

audit(5) A manpage. The manpage name is audit, and it is
located in Section 5.

Command A command name or qualified command phrase.
Computer output Text displayed by the computer.
Ctrl+x A key sequence. A sequence such as Ctrl+x indicates

that you must hold down the key labeled Ctrl while
you press another key or mouse button.

ENVIRONMENT VARIABLE The name of an environment variable, for example,
PATH.

[ERROR NAME] The name of an error, usually returned in the errno
variable.

Key The name of a keyboard key. Return and Enter both
refer to the same key.

Term The defined use of an important word or phrase.
User input Commands and other text that you type.
Variable The name of a placeholder in a command, function, or

other syntax display that you replace with an actual
value.

[] The contents are optional in syntax. If the contents are
a list separated by |, youmust choose one of the items.

Intended Audience 7

{} The contents are required in syntax. If the contents are
a list separated by |, youmust choose one of the items.

... The preceding element can be repeated an arbitrary
number of times.

� Indicates the continuation of a code example.
| Separates items in a list of choices.
WARNING Awarning calls attention to important information that

if not understood or followed will result in personal
injury or nonrecoverable system problems.

CAUTION A caution calls attention to important information that
if not understood or followed will result in data loss,
data corruption, or damage to hardware or software.

IMPORTANT This alert provides essential information to explain a
concept or to complete a task

NOTE A note contains additional information to emphasize
or supplement important points of the main text.

TIP A tip contains information that is a helpful hint to
solving an issue or a problem.

Related Information
The HP WDB documentation is available at the following location:
/opt/langtools/wdb/doc/

Table 1 lists the documentation available for WDB.

Table 1 Documentation for HP WDB

LocationDocument

/opt/langtools/wdb/doc/gdb.pdfDebugging with GDB

/opt/langtools/wdb/doc/refcard_a4.pdf

/opt/langtools/wdb/doc/refcard_a3.df

/opt/langtools/wdb/doc/refcard.pdf
(Letter Format)

GDB Quick Reference Card

/opt/langtools/wdb/doc/html/wdb/C/GDBtutorial.htmlGetting Started with WDB

/opt/langtools/wdb/doc/index.htmlWDB Online Help

/opt/langtools/wdb/doc/html/wdbgui/C/HPWDB GUI Documentation

gdb(1)GDB manpage

For the most current WDB documentation, see the HPWDB technical resourceswebsite
at:

8

http://www.hp.com/go/wdb

End of Reading
At the end of reading, the reader gains a fair understanding of the following:
• Quick overview on thread programming
• Basics of advanced thread-debugging using HP WDB
• Various modes of advanced thread debugging
• Brief description of thread-related conditions
• Commands available to debug common thread-related conditions
• Best practices to avoid thread-related issues

End of Reading 9

http://www.hp.com/go/wdb

10

What are threads?
Threads are subsets of ‘Process’, which aid in accelerating the execution of any task.
The usage of threads increases efficiency that results from the intended concurrency
in the threaded-programming practice. Threads share the same resources as Process
and hence do not have resource overheads. This property of threads is importantwhen
processing speed becomes a criterion to measure efficiency and if programmers use
more than one thread to complete a single process.
Today’s hardware comes with multiple processors to support enhanced speed in
processing. Multi-threaded programs which execute on multi-processor systems and
multi-core systems make the best use of Parallelism that the hardware offers.

Understanding complexity in thread programming
The concurrency of threads and the parallelism of the hardware jointly contribute to
the processing speed of programming applications. With threaded programs, ever on
an increase in the industry, it becomes essential to understand the underlying complexity
in implementing the concept. In addition, this understanding helps you interpret the
results of debugging threaded programs.
The following are the most important concepts that attribute to the complexity in
threaded programming:
• Deadlock
• Race condition
• Priority inversion
Mutual exclusion (mutex) is a method which ensures that the threads share program
resources systematically, thereby avoid unintended modification of the data in shared
variables. Program segments attach locks to shared resources. This ensures mutual
exclusion. Improper mutex lock-unlock in threaded applications could result in a
deadlock condition which stops the program execution completely.
Race condition arises when shared data or resources are not accessed in any particular
order thus resulting in inconsistent data in some instances. This possibility occurswhen
you write code segments without ensuring serial access to shared resources. Such
threaded programswith inconsistent and random access to shared variables contribute
to the complexity involved in debugging threads.
In addition, when a high-priority thread waits for a lock which a low-priority thread
holds, the priority inversion here results in lesser execution efficiency.
Thread programs, prone to such complexities, are subject to conditions or events that
reduce efficiency or increase the potential for errors.

What are threads? 11

Common conditions or events in thread programming
The following are the most common conditions or events in thread programming that
could lead to errors:
1. The thread attempts to acquire a non-recursive mutex that it currently holds.
2. The thread attempts to unlock amutex or a read-write lock that it has not acquired.
3. The thread waits on a mutex or a read-write lock that is held by a thread with a

different scheduling policy.
4. Different threads non-concurrently wait on the same condition variable, but with

different associated mutexes.
5. The thread terminates execution without unlocking the associated mutexes or

read-write locks.
6. The thread waits on a condition variable for which the associated mutex is not

locked.
7. The thread terminates execution, and the resources associated with the thread

continue to exist in the application because the thread has not been joined or
detached.

8. The thread uses more than the specified percentage of the stack allocated to the
thread.

9. The number of threads waiting on any pthread object exceeds the specified
threshold number.

HPWildebeest Debugger (WDB) offers advanced thread debugging features to support
debugging of threaded applications and detection of these conditions.

Introducing the HP WDB Debugger
HPWildebeest Debugger (WDB) is an HP-supported implementation of the open
source debugger GDB.
HP WDB enables you to debug threaded programs written in HP C and HP aC++ on
Itanium®-based systems runningHP-UX 11i v2 orHP-UX 11i v3, andHP 9000 systems
running HP-UX 11i v2, or HP-UX 11i v3 operating systems.
The main features related to thread-debugging in HP WDB are as follows:
• Enable and disable a thread
• Enable and disable advanced thread-debugging feature
• Display the stack trace of the current thread
• View information on the state of pthread primitives such as mutexes, read-write

locks, and conditional variables
• Detectmost thread-related conditions that are potential causes for errors in thread

programming, through advanced thread-debugging feature
• Debug threads interactively after you attach GDB to a process

12

Thread Debugging Support in HP WDB
HPWDB provides thread-debugging support for kernel, user, and MxN threads. You
can exclusively disable or enable specific thread execution. Advanced thread debugging
support in HPWDB enables you to view information on pthread primitives and detect
certain thread-related conditions.

NOTE: WDBsupports pthreadParallelism, but it does not support compiler-generated
parallelism like parallelism with Directives.

Support for enabling and disabling specific threads
If you suspect that a specific thread causes problemswhen you debug amulti-threaded
application, HP WDB allows you to suspend the execution of all other threads in the
application and debug this thread exclusively.
thread disable <thread-no>

The thread disable <thread-no> command prevents the specified threads from
running until they are enabled again using the thread enable <thread-no>
command.
thread enable <thread-no>

The thread enable <thread-no> command enables the specified thread to run
when you enter the continue or step command. All threads are in the enabled state
by default.
To disable a thread, execute the following command:
(gdb) thread disable 1
warning: ATTENTION!! Disabling threads may result in
deadlocks in the program. Disabling thread 1

To enable a thread, execute the following command:
(gdb) thread enable 1
Enabling thread 1

Back trace support for thread debugging
The following commands are available as backtrace support for thread debugging:
bt

The btcommand provides the stack trace of the current thread in execution or the
thread that accepts the signal in core files.
thread apply all bt

The thread apply all bt command enables you to display the backtrace of all
threads. The bt command provides the stack trace of only the current thread under
execution.
backtrace_other_thread

Thread Debugging Support in HP WDB 13

The backtrace_other_thread command prints the backtrace of all stack frames
for a thread with stack pointer SP, program counter PCand address of gr32 in the
backing storeBSP. This command enables you to view the stack trace when the stack
is corrupted. When using this command, you must ensure that the SP,PC , and BSP
values are valid.
The syntax for the backtrace_other_thread command is as follows:
backtrace_other_thread SP PC BSP

For PA RISC systems, the command is as follows:
backtrace_other_thread SP PC

This command prints backtrace of all stack frames for a thread with stack pointer SP
and program counter PC.

Debugging programs with multiple threads
In some operating systems, such as HP-UX, a single programmay have more than one
thread of execution. The precise semantics of threads differ from one operating system
to another, but in general, the threads of a single program are akin tomultiple processes
- except that they share one address space (that is, they can all examine and modify
the same variables). On the other hand, each thread has its own registers and execution
stack, and private memory.
GDB provides these facilities for debugging multi-thread programs:
• Automatic notification of new threads
• Thread-specific breakpoints

WARNING! These facilities are not yet available on every GDB configuration where
the operating system supports threads. If your GDB does not support threads, these
commands have no effect. For example, a system without thread support shows no
output from `info threads', and always rejects the thread command, like this:
((gdb)) info threads

((gdb)) thread 1

Thread ID 1 not known. Use the "info threads" command to

see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your
program runs - but whenever GDB takes control, one thread in particular is always the
focus of debugging. This thread is called the current thread. Debugging commands
show program information from the perspective of the current thread.
Whenever GDB detects a new thread in your program, it displays the target system's
identification for the thread with a message in the form [New systag]. systag is a
thread identifier whose form varies depending on the particular system.

14

For debugging purposes, GDB associates its own thread number - always a single
integer - with each thread in your program.
Following commands are used to debug multi-threaded programs:
• thread threadno, a command to switch among threads
• info threads, a command to inquire about existing threads
• thread apply [threadno] [all] args, a command to apply a command

to a list of threads
info threads

Display a summary of all threads currently in your program. GDB displays for each
thread (in this order) :
1. the thread number assigned by GDB
2. the target system's thread identifier (systag)
3. the current stack frame summary for that thread
An asterisk * to the left of the GDB thread number indicates the current thread.
For example,
((gdb)) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

On HP-UX systems:
For debugging purposes, GDB associates its own thread number - a small integer as -
signed in thread-creation order - with each thread in your program.
Whenever GDB detects a new thread in your program, it displays both GDB's thread
number and the target system's identification for the threadwith amessage in the form
[New systag]- systag is a thread identifier whose form varies depending on the
particular system. For example, on HP-UX, you see
[New thread 2 (system thread 26594)]

when GDB notices a new thread.
thread threadno

Make threadnumberthreadno the current thread. The commandargumentthreadno
is the internal GDB thread number, as shown in the first field of the info threads
display. GDB responds by displaying the system identifier of the thread you selected,
and its current stack frame summary:
((gdb)) thread 2
[Switching to thread 2 (system thread 26594)]
0x34e5 in sigpause ()

As with the [New...] message, the form of the text after Switching to depends on
your system's conventions for identifying threads.

Debugging programs with multiple threads 15

thread apply [threadno] [all] args

The thread apply command allows you to apply a command to one or more threads.
Specify the numbers of the threads that youwant affectedwith the command argument
threadno. The threadno is the internal GDB thread number, as shown in the first
field of the info threads display. To apply a command to all threads, use thread
apply all args.
Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the
context switch with a message of the form [Switching to systag] to identify the
thread.

NOTE: On HP-UX 11.x, debugging a multi-thread process can cause a deadlock if
the process is waiting for anNFS-server response. A thread can be stoppedwhile asleep
in this state, and NFS holds a lock on the rnodewhile asleep.

To prevent the thread from being interrupted while holding the rnodelock, make the
NFS mount non-interruptible with the nointr flag. See mount(1).
OnHP-UX systems, you can control the display of thread creationmessages. Following
commands are used to control the display of thread creation:
set threadverbose on

Enable the output of informational messages regarding thread creation. The default
setting is on. You can set it to off to stop the display of messages.
set threadverbose off

Disable the output of informational messages regarding thread creation. The default
setting is on. You can set it to on to display messages.
show threadverbose

Display whether set threadverbose is on or off.
When your program has multiple threads, you can choose whether to set breakpoints
on all threads, or on a particular thread.
break linespec thread threadno
break linespec thread threadno if ...

linespec specifies source lines; there are several ways of writing them, but the effect
is always to specify some source line.
Use the qualifier thread threadnowith a breakpoint command to specify that you
only want GDB to stop the program when a particular thread reaches this breakpoint.
threadno is one of the numeric thread identifiers assigned by GDB, shown in the first
column of the info threads display.
If you do not specify thread threadnowhen you set a breakpoint, the breakpoint
applies to all threads of your program.

16

You can use the thread qualifier on conditional breakpoints as well; in this case, place
thread threadno before the breakpoint condition, like this:
 ((gdb)) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop,
not just the current thread. This allows you to examine the overall state of the program,
including switching between threads.
Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next.
Moreover, in general other threads stop in the middle of a statement, rather than at a
clean statement boundary, when the program stops.
Youmight even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a
signal, or an exception before the first thread completes the action you requested.

Advanced Thread Debugging Support
Advanced thread debugging support is available for multi-threaded applications
running on HP-UX 11iv2, or HP-UX 11iv3.
HPWDB5.5 and later versions provide advanced threaddebugging features to display
extended information on the state of pthread primitives such as mutexes, read-write
locks and conditional variables.

Enabling and Disabling Advanced Thread Debugging Features
The Advanced Thread Debugging features are available as options to the set
thread-check command. The syntax for the set thread-check command is as follows:
set thread check

The set thread-check command enables or disables advanced thread de-bugging.
This feature is off by default. The set thread-check command must be enabled
prior to running the application under the debugger, to force the underlying runtime
system to collect information on pthread primitives.
The advanced thread debugging features are available only if the set thread-check
command is set to on.

Prerequisites for Advanced thread debugging feature in HP WDB
• HP-UX 11i v2 and later versions of OS on both PA-RISC and Integrity systems

support the advanced thread debugging features.
• The thread debugging feature depends on the availability of the dynamic linker

B.11.19 and later versions.
• The advanced thread debugging commands work only if thread-check is set

to on.

Advanced Thread Debugging Support 17

• Advanced thread-debugging requires the pthread tracing library. The pthread
tracer library is available by default in systems running on HP-UX 11i v2 or later.
HP WDB 5.5 and later versions support enhanced thread debugging. The
installation scripts forHPWDB5.5 and later versions of the debugger automatically
add links at/opt/langtools/lib/ to replace the standardlibpthread library
with libpthread tracer library at run time.

• HP WDB uses librtc.sl to enable thread debugging support. If the debugger
is available in a directory other than the default /opt/langtools/bin directory,
use the environment variable, LIBRTC_SERVER, to export the path of the
appropriate version of librtc.sl.

• For PA-RISC 32 bit applications, enable the dynamic path look-up for advanced
thread debugging.

• The chatr +rtc feature requires linker version B.11.66 and later on HP 9000
systems, and linker version B.12.51 and later on Integrity systems.

NOTE: To enable dynamic library path look-up for advanced thread debugging, enter
the following command at HP-UX prompt:
chatr +s enable <PA32-bitApp>

This command automatically enables dynamic library path look-up.

Modes of Thread debugging in HP WDB
HPWDB offers three modes of Thread debugging:
• Interactive Mode
• Batch Mode
• Attach Mode
• The +check Mode

Thread-debugging in Interactive mode
Interactive mode of thread debugging is available for multi-threaded applications
running on HP-UX 11iv2, or HP-UX 11iv3.

Using thread-debugging feature in HP WDB

Complete the following steps to use the thread-debugging feature in interactive mode:
1. Compile the program with –mt option to include threads in compilation:

$ cc –mt –o a.out filename.c

2. Navigate to the path where gdb is available.
3. Enter the following command to invoke gdb:

$./gdb

18

4. Invoke the executable that you want to debug:
(gdb) file <Complete path of the executable or name of the executable>

5. Enable thread check along with the specific option as required.
(gdb) set thread-check [option][on|off]

6. Execute the file with the following command:
(gdb) run <Name of the executable>

The thread-check command

The advanced thread debugging features can be enabled only if the set
thread-check[on] command is enabled. The following advanced thread debugging
options are available for the set thread-check command:
• recursive-relock [on|off]

• unlock-not-own [on|off]

• mixed-sched-policy [on|off]

• cv-multiple-mxs [on|off]

• cv-wait-no-mx [on|off]

• thread-exit-own-mutex [on|off]

• thread-exit-no-join-detach [on|off]

• stack-util [num]

• num-waiters [num]

NOTE: By default all these options are turned on if you set the command set
thread-check on.

Debugging common thread-programming problems

Problem: The thread attempts to acquire a non-recursive mutex that it currently has control.

Consider the following scenario:
Function 1 locks a non-recursive mutex and calls Function 2 without releasing the lock
object. If Function 2 also attempts to acquire the same non-recursivemutex, the scenario
results in a deadlock. In effect, the program does not proceed with the execution.
Consider the following example enh_thr_mx_relock.c
#include pthread.h
#include string.h
#include stdio.h
#include errno.h

pthread_mutex_t r_mtx; /* recursive mutex */
pthread_mutex_t n_mtx; /* normal mutex */
extern void fatal_error(int err, char *func);

Modes of Thread debugging in HP WDB 19

/* Print error information, exit with -1 status. */
void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

#define check_error(return_val, msg) { \
 if (return_val != 0) \
 fatal_error(return_val, msg); \
}

main()
{
 pthread_mutexattr_t mtx_attr;
 pthread_t tid1;
 extern void start_routine(int num);
 int ret_val;

 alarm (20);

 /* Initialize the mutex attributes */
 ret_val = pthread_mutexattr_init(&mtx_attr);
 check_error(ret_val, "mutexattr_init failed");

 /* Set the type attribute to recursive */
 ret_val = pthread_mutexattr_settype(&mtx_attr,
 PTHREAD_MUTEX_RECURSIVE);
 check_error(ret_val, "mutexattr_settype failed");

 /* Initialize the recursive mutex */
 ret_val = pthread_mutex_init(&r_mtx, &mtx_attr);
 check_error(ret_val, "mutex_init failed");

 /* Set the type attribute to normal */
 ret_val = pthread_mutexattr_settype(&mtx_attr,
 PTHREAD_MUTEX_NORMAL);
 check_error(ret_val, "mutexattr_settype failed");

 /* Initialize the normal mutex */
 ret_val = pthread_mutex_init(&n_mtx, &mtx_attr);
 check_error(ret_val, "mutex_init failed");

 /* Destroy the attributes object */
 ret_val = pthread_mutexattr_destroy(&mtx_attr);
 check_error(ret_val, "mutexattr_destroy failed");

20

 /* Rest of application code here */

 /*
 * Create a thread
 */
 ret_val = pthread_create(&tid1, (pthread_attr_t *)NULL,
 (void *(*)())start_routine, (void *)1);
 check_error(ret_val, "pthread_create 1 failed");

 /*
 * Wait for the threads to finish
 */
 ret_val = pthread_join(tid1, (void **)NULL);
 check_error(ret_val, "pthread_join: tid1");
}

void
start_routine(int thread_num)
{
 int ret_val;

 sched_yield();

 /* Lock the recursive lock recursively. */
 ret_val = pthread_mutex_lock(&r_mtx);
 check_error(ret_val, "mutex_lock r_mtx");
 printf("Thread %d - got r_mtx\n", thread_num);

 ret_val = pthread_mutex_lock(&r_mtx);
 check_error(ret_val, "mutex_lock r_mtx");
 printf("Thread %d - got r_mtx\n", thread_num);
 ret_val = pthread_mutex_unlock(&r_mtx);
 check_error(ret_val, "mutex_unlock r_mtx");
 printf("Thread %d - released r_mtx\n", thread_num);

 ret_val = pthread_mutex_unlock(&r_mtx);
 check_error(ret_val, "mutex_unlock r_mtx");
 printf("Thread %d - released r_mtx\n", thread_num);

 /* Try locking the non-recursive lock recursively */
 ret_val = pthread_mutex_lock(&n_mtx);
 check_error(ret_val, "mutex_lock n_mtx");
 printf("Thread %d - got n_mtx\n", thread_num);

 ret_val = pthread_mutex_lock(&n_mtx);
 check_error(ret_val, "mutex_lock n_mtx");
 printf("Thread %d - got n_mtx\n", thread_num);

 ret_val = pthread_mutex_unlock(&n_mtx);
 check_error(ret_val, "mutex_unlock n_mtx");
 printf("Thread %d - released n_mtx\n", thread_num);

Modes of Thread debugging in HP WDB 21

 ret_val = pthread_mutex_unlock(&n_mtx);
 check_error(ret_val, "mutex_unlock n_mtx");
 printf("Thread %d - released n_mtx\n", thread_num);
}

At run-time, the debugger keeps track of each mutex in the application and the thread
that currently holds each mutex. When a thread attempts to acquire a lock on a
non-recursive mutex, the debugger checks if the thread currently holds the lock object
for the mutex.
(gdb) set thread-check recursive-relock on

The debugger transfers the execution control to the user and prints a warningmessage
when this condition is detected.
The following is a segment of the HP WDB output:
Starting program: /home/gdb/enh_thr_mx_relock
Thread 1 - got r_mtx
Thread 1 - got r_mtx
Thread 1 - released r_mtx
Thread 1 - released r_mtx
Thread 1 - got n_mtx
[Switching to thread 2 (system thread 39774)]
warning: Attempt to recursively acquire non-recursive mutex 2 from thread 2.

TIP: Release the lock on a non-recursive mutex before attempting to acquire lock on
the same object again, to avoid this situation.

Problem: The thread attempts to unlock a mutex or a read-write lock that it does not control.

Consider the following scenario: Thread 1 locks mutex A. Thread 2 unlocks mutex A.
This is clearly an attempt from Thread 2 to release the lock on mutex A which was
previously locked by Thread 1.
Consider the following example enh_thr_unlock_not_own.c:
#include pthread.h
#include string.h
#include stdio.h
#include errno.h
pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

/* Print error information, exit with -1 status. */
void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

22

#define check_error(return_val, msg) { \
 if (return_val != 0) \
 fatal_error(return_val, msg); \
}

main()
{
 pthread_t tid1;
 extern void start_routine(int num);
 int ret_val;

 /*
 * Create a thread
 */
 ret_val = pthread_create(&tid1, (pthread_attr_t *)NULL,
 (void *(*)())start_routine, (void *)1);
 check_error(ret_val, "pthread_create 1 failed");

 /*
 * Wait for the threads to finish
 */
 ret_val = pthread_join(tid1, (void **)NULL);
 check_error(ret_val, "pthread_join: tid1");
}

void
start_routine(int thread_num)
{
 int ret_val;
 ret_val = pthread_mutex_unlock(&mtx);
 check_error(ret_val, "mutex_unlock mtx");
}

This usually is indicative of error in the program logic. Typically, applications are coded
to lock and unlock objects on a one-one basis.
The following command enables you to detect this condition in a threaded application.
(gdb) set thread-check unlock_not_own on

The debugger transfers the execution control to the user and prints a warningmessage
when this condition is detected.
The following is a segment of the HP WDB output:
Starting program: /home/gdb/enh_thr_unlock_not_own
[Switching to thread 2 (system thread 39941)]
warning: Attempt to unlock mutex 1 not owned by thread 2.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

Modes of Thread debugging in HP WDB 23

NOTE: In some rare predictable situations the thread might attempt to unlock an
object that it has no control over. For example, an applicationwhich instructs the thread
to unlock a mutex when it encounters a C++ destructor, irrespective of the history of
the processing of the C++ constructor.

Problem: The Thread waits on a mutex or a read-write lock that is held by a thread with a different
scheduling policy

Consider the following scenario:
Thread 1 is scheduled using Policy1, SP1. Thread 2 is scheduled using Policy2, SP2.
Thread 1 waits for a read-write lock object which is held by Thread 2. Since the
scheduling policy of the threads is not the same, there are chances of delay in Thread
2 releasing the lock for the read-write object.
Consider the following example enh_thr_mixed_sched.c:
#include pthread.h
#include errno.h
#include sched.h
#include stdio.h

extern void *thread1_func(), *thread2_func();
extern void fatal_error(int err_num, char *func);

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

/* Print error information, exit with -1 status. */
void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

#define check_error(return_val, msg) { \
 if (return_val != 0) \
 fatal_error(return_val, msg); \
 }

void *
thread1_func()
{
 int ret_val;

 ret_val = pthread_mutex_lock(&mtx);
 check_error(ret_val, "mutex_lock mtx");
 printf("In thread1_func()\n");
 sleep(5);
 ret_val = pthread_mutex_unlock(&mtx);
 check_error(ret_val, "mutex_unlock mtx");

24

 return((void *)NULL);
}

void *
thread2_func()
{
 int ret_val;

 ret_val = pthread_mutex_lock(&mtx);
 check_error(ret_val, "mutex_lock mtx");
 printf("In thread2_func()\n");
 sleep(5);
 ret_val = pthread_mutex_unlock(&mtx);
 check_error(ret_val, "mutex_unlock mtx");

 return((void *)NULL);
}

main()
{
 pthread_t pth_id[2];
 int ret_val, scope;
 int old_policy;
 pthread_attr_t attr;
 struct sched_param param, old_param;

 /* Initialize the threads attributes object */
 ret_val = pthread_attr_init(&attr);
 check_error(ret_val, "attr_init()");

 /* We want bound threads if they are available. */
 ret_val = pthread_attr_getscope(&attr, &scope);
 check_error(ret_val, "attr_getscope()");
 if (scope != PTHREAD_SCOPE_SYSTEM) {
 scope = PTHREAD_SCOPE_SYSTEM;
 ret_val = pthread_attr_setscope(&attr, scope);
 if ((ret_val != 0) && (ret_val != ENOTSUP))
 fatal_error(ret_val, "attr_setscope()");
 }

 /* Thread 1 is a high priority SCHED_FIFO thread.*/
 ret_val = pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
 check_error(ret_val, "attr_setschedpolicy() 1");

 param.sched_priority = sched_get_priority_max(SCHED_FIFO);
 ret_val = pthread_attr_setschedparam(&attr, ¶m);
 check_error(ret_val, "attr_setschedparam() 1");

 ret_val = pthread_create(&pth_id[0], &attr, thread1_func, NULL);
 check_error(ret_val, "pthread_create() 1");

 /* Thread 2 is a low priority SCHED_RR thread. */
 ret_val = pthread_attr_setschedpolicy(&attr, SCHED_RR);
 check_error(ret_val, "attr_setschedpolicy() 2");

 param.sched_priority = sched_get_priority_min(SCHED_RR);

Modes of Thread debugging in HP WDB 25

 ret_val = pthread_attr_setschedparam(&attr, ¶m);
 check_error(ret_val, "attr_setschedparam() 2");

 ret_val = pthread_create(&pth_id[1], &attr, thread2_func, NULL);
 check_error(ret_val, "pthread_create() 2");

 /* Destroy the thread attributes object */
 ret_val = pthread_attr_destroy(&attr);
 check_error(ret_val, "attr_destroy()");

 /* wait for the threads to finish */
 ret_val = pthread_join(pth_id[0], (void **)NULL);
 check_error(ret_val, "pthread_join() 1");

 ret_val = pthread_join(pth_id[1], (void **)NULL);
 check_error(ret_val, "pthread_join() 2");
}

Such a situation does not necessarily result in a deadlock or application errors. However,
theremight be instances of performance lag issues resulting from themixed scheduling
policies.
The following command enables you to check this condition in a threaded application.
set thread-check mixed-sched-policy[on|off]

The following is a segment of the HP WDB output:
Starting program: /home/gdb/enh_thr_mixed_sched
In thread1_func()
[Switching to thread 3 (system thread 39724)]
warning: Attempt to synchronize threads 3 and 2 with different scheduling policies.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

TIP: Consider changing the application such that the threadswith the same scheduling
policy share the mutex.

Problem: Different threads non-concurrently wait on the same condition variable, but with different
associated mutexes.

Consider the following scenario:
Thread 1 with mutex A waiting on conditional variable CV1.
Thread 2 with mutex B waiting on conditional variable CV1.
Consider the following example enh_thr_cv_multiple_mxs.c
#include pthread.h
#include stdlib.h
#include errno.h
pthread_mutex_t job_lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t job_lock2 = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t job_cv = PTHREAD_COND_INITIALIZER;
extern void fatal_error(int err, char *f);

void

26

producer_thread(pthread_mutex_t* job_lock)
{
 int ret_val;

 /* Acquire the associated mutex lock */
 if ((ret_val = pthread_mutex_lock(job_lock)) != 0)
 fatal_error(ret_val, "p mtx_lock failed");

 /* Signal the condvar to wakeup one thread */
 if ((ret_val = pthread_cond_signal(&job_cv)) != 0)
 fatal_error(ret_val, "cond_signal failed");

 /* Release the associated mutex */
 if ((ret_val = pthread_mutex_unlock(job_lock)) != 0)
 fatal_error(ret_val, "mtx_unlock failed");
}

void
consumer_thread(pthread_mutex_t* job_lock)
{
 int ret_val;

 /* Acquire the condvar's associated mutex lock */
 if ((ret_val = pthread_mutex_lock(job_lock)) != 0)
 fatal_error(ret_val, "c mtx_lock failed");

 pthread_cond_wait(&job_cv, job_lock);

 /* Release the associated mutex */
 if ((ret_val = pthread_mutex_unlock(job_lock)) != 0)
 fatal_error(ret_val, "mtx_unlock failed");

}

#define check_error(return_val, msg) { \
 if (return_val != 0) \
 fatal_error(return_val, msg); \
 }

int main(int argc, char* argv[])
{
 pthread_t tid1, tid2, tid3, tid4;
 pthread_mutex_t *l1, *l2;
 int ret_val;

 if (argc == 1) {
 fprintf(stderr, "error: no arguments\n");
 exit (1);
 }
 else if (strcmp(argv[1], "bad") == 0) {

Modes of Thread debugging in HP WDB 27

 l1 = &job_lock1
 l2 = &job_lock2
 }
 else {
 l1 = l2 = &job_lock1
 }

 alarm(20);

 /* Create two threads to do the work */
 ret_val = pthread_create(&tid1, (pthread_attr_t *)NULL,
 (void *(*)())consumer_thread, (void *) l1);
 check_error(ret_val, "pthread_create 1 failed");

 ret_val = pthread_create(&tid2, (pthread_attr_t *)NULL,
 (void *(*)())producer_thread, (void *) l1);
 check_error(ret_val, "pthread_create 2 failed");

 if (l1 != l2) {
 ret_val = pthread_create(&tid3, (pthread_attr_t *)NULL,
 (void *(*)())consumer_thread, (void *) l2);
 check_error(ret_val, "pthread_create 1 failed");

 ret_val = pthread_create(&tid4, (pthread_attr_t *)NULL,
 (void *(*)())producer_thread, (void *) l2);
 check_error(ret_val, "pthread_create 2 failed");
 }
 /* Wait for the threads to finish */
 ret_val = pthread_join(tid1, (void **)NULL);
 check_error(ret_val, "pthread_join: tid1");

 ret_val = pthread_join(tid2, (void **)NULL);
 check_error(ret_val, "pthread_join: tid2");

 if (l1 != l2) {
 ret_val = pthread_join(tid3, (void **)NULL);
 check_error(ret_val, "pthread_join: tid3");

 ret_val = pthread_join(tid4, (void **)NULL);
 check_error(ret_val, "pthread_join: tid4");
 }

 exit(0);
}

void
fatal_error(int err_num, char *function)
{
 char *err_string;
 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);

28

}

The following command enables you to check this condition in a threaded application.
(gdb) set thread-check cv-multiple-mxs[on|off]

The debugger transfers the execution control to the user and prints a warningmessage
when this condition is detected.
The following is a segment of the HP WDB output:
Starting program: /home/gdb/enh_thr_cv_multiple_mxs bad
[Switching to thread 4 (system thread 39531)]
warning: Attempt to associate condition variable 0 with mutexes 1 and 2.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

According to pthread implementation, the threads that concurrently wait on a single
conditional variable need to specify the same associated mutex.

TIP: The solution is to correct the application source code in such a way that the
condition variable which violates the rule uses the same mutex.

Problem: The thread terminates execution without unlocking the associated mutexes or read-write
locks.

Consider the following scenario:
Thread A holds mutex MX. This thread terminates without unlocking the mutex MX.
There are other threads in the program that wait to gain control on MX.
The termination of thread A with the locked mutex MXcauses the other threads to be
in an endless wait to gain control on MX. This situation is an example of a deadlock
where the program execution is dependent on the locked mutex and hence is unable
to proceed.
Consider the following example enh_thr_exit_own_mx.c
#include pthread.h
#include stdlib.h
#include errno.h
pthread_mutex_t job_lock1 = PTHREAD_MUTEX_INITIALIZER;
extern void fatal_error(int err, char *f);

void
producer_thread(pthread_mutex_t* job_lock)
{
 int ret_val;

 /* Acquire the associated mutex lock */
 if ((ret_val = pthread_mutex_lock(job_lock)) != 0)
 fatal_error(ret_val, "p mtx_lock failed");
}

#define check_error(return_val, msg) { \

Modes of Thread debugging in HP WDB 29

 if (return_val != 0) \
 fatal_error(return_val, msg); \
 }

main()
{
 pthread_t tid;
 int ret_val;

 /* Create two threads to do the work */
 ret_val = pthread_create(&tid, (pthread_attr_t *)NULL,
 (void *(*)())producer_thread, (void *) &job_lock1);
 check_error(ret_val, "pthread_create 2 failed");

 /* Wait for the threads to finish */
 ret_val = pthread_join(tid, (void **)NULL);
 check_error(ret_val, "pthread_join: tid");

 exit(0);
}

void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

The following command enables you to check this condition in a threaded application:
set thread-check thread-exit-own-mutex [on|off]

In such a scenario, the debugger transfers the execution control to the user and displays
a warning message.
The following is a segment of the HP WDB output:
Starting program: /home/gdb/enh_thr_exit_own_mx
[Switching to thread 2 (system thread 39677)]
warning: Attempt to exit thread 2 while holding a mutex 1.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

30

TIP:
• If the remaining segments of the application require access to the locked mutex,

modify the code segment of the terminating thread to unlock the mutex before it
terminates.

• If the termination is the result of an exception, then consider using a condition
handler (in C++) or POSIX Threads library TRY/FINALLY blocks.

Problem: The thread waits on a condition variable for which the associated mutex is not locked.

Consider the following scenario:
A function has a thread which is associated to the mutex MX. The function calls the
POSIX Thread Library routine pthread_cond_wait() beforeMX is locked.
Consider the following example enh_thr_cv_wait_no_mx.c:
#include pthread.h
#include stdlib.h
#include errno.h

pthread_mutex_t job_lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t job_lock2 = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t job_cv = PTHREAD_COND_INITIALIZER;
extern void fatal_error(int err, char *f);

void
producer_thread(pthread_mutex_t* job_lock)
{
 int ret_val;

 /* Acquire the associated mutex lock */
 if ((ret_val = pthread_mutex_lock(job_lock)) != 0)
 fatal_error(ret_val, "p mtx_lock failed");

 /* Signal the condvar to wakeup one thread */
 if ((ret_val = pthread_cond_signal(&job_cv)) != 0)
 fatal_error(ret_val, "cond_signal failed");

 /* Release the associated mutex */
 if ((ret_val = pthread_mutex_unlock(job_lock)) != 0)
 fatal_error(ret_val, "mtx_unlock failed");
}

void
consumer_thread(pthread_mutex_t* job_lock)
{
 int ret_val;
 pthread_cond_wait(&job_cv, job_lock);
}

Modes of Thread debugging in HP WDB 31

#define check_error(return_val, msg) { \
 if (return_val != 0) \
 fatal_error(return_val, msg); \
 }

main()
{
 pthread_t tid1, tid2;
 int ret_val;

 alarm (20);

 /* Create two threads to do the work */
 ret_val = pthread_create(&tid1, (pthread_attr_t *)NULL,
 (void *(*)())consumer_thread, (void *) &job_lock1);
 check_error(ret_val, "pthread_create 1 failed");

 ret_val = pthread_create(&tid2, (pthread_attr_t *)NULL,
 (void *(*)())producer_thread, (void *) &job_lock1);
 check_error(ret_val, "pthread_create 2 failed");

 /* Wait for the threads to finish */
 ret_val = pthread_join(tid1, (void **)NULL);
 check_error(ret_val, "pthread_join: tid1");

 ret_val = pthread_join(tid2, (void **)NULL);
 check_error(ret_val, "pthread_join: tid2");

 exit(0);
}

void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

This scenario, where a thread waits on a conditional variable before the associated
mutex is locked, is a potential cause of unpredictable results in POSIXlibrary.
The following command in HPWDB enables you to check this condition in a threaded
application:
set thread-check cv-wait-no-mx[on|off]

In such a scenario, the debugger transfers the execution control to the user and displays
a warning message.
The following is a segment of the HP WDB output:

32

Starting program: /home/gdb/enh_thr_cv_wait_no_mx
[Switching to thread 2 (system thread 39559)]
warning: Attempt by thread 2 to wait on condition variable 0 without locking the associated mutex
1.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

NOTE: This is an additional check that HP WDB provides and is not a POSIX.1
standard requirement for the pthread_cond_wait() routine.

You can determine the function which attempts to wait on the condition, by looking
at the batcktrace(bt) of the thread that is reported above.

TIP: Modify the code segment of the function so it acquires control over the mutex
associated to the conditional variable before it calls the routine,
pthread_cond_wait().

Problem: The thread terminates execution, and the resources associated with the thread continue
to exist in the application because the thread has not been joined or detached.

Consider the following scenario:
Thread A in an application terminates execution successfully or as a result of an
exception/cancel. The resources associatedwith the thread exist in the application until
the thread is joined or detached.
Consider the following example enh_thr_exit_no_join_detach.c:
#include pthread.h
#include stdlib.h
#include errno.h

pthread_mutex_t job_lock1 = PTHREAD_MUTEX_INITIALIZER;
extern void fatal_error(int err, char *f);

void
my_thread(void* num)
{
 int ret_val;

 /* Acquire the associated mutex lock */
 if ((ret_val = pthread_mutex_lock(&job_lock1)) != 0)
 fatal_error(ret_val, "p mtx_lock failed");

 printf ("In thread %d\n", (int) num);

 /* Release the associated mutex */
 if ((ret_val = pthread_mutex_unlock(&job_lock1)) != 0)
 fatal_error(ret_val, "mtx_unlock failed");
}

#define check_error(return_val, msg) { \
 if (return_val != 0) \

Modes of Thread debugging in HP WDB 33

 fatal_error(return_val, msg); \
 }

main()
{
 pthread_t tid1, tid2, tid3;
 int ret_val;

 /* Create two threads to do the work */
 ret_val = pthread_create(&tid1, (pthread_attr_t *)NULL,
 (void *(*)())my_thread, (void *)1);
 check_error(ret_val, "pthread_create 1 failed");

 ret_val = pthread_create(&tid2, (pthread_attr_t *)NULL,
 (void *(*)())my_thread, (void *)2);
 check_error(ret_val, "pthread_create 2 failed");

 ret_val = pthread_create(&tid3, (pthread_attr_t *)NULL,
 (void *(*)())my_thread, (void *)3);
 check_error(ret_val, "pthread_create 3 failed");
 /* Detach thread 1 */
 ret_val = pthread_detach(tid1);
 check_error(ret_val, "pthread_join: tid");

 sleep(5);

 /* Wait for the thread 2 to finishes */
 ret_val = pthread_join(tid2, (void **)NULL);
 check_error(ret_val, "pthread_join: tid");

 exit(0);
}

void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

If an application repeatedly created threads without the join or detach operation, it
will leak resources that might eventually cause the application to fail.
The following command enables you to check this condition in a threaded application:
set thread-check thread-exit-no-join-detach[on|off]

In such a scenario, the debugger transfers the execution control to the user and displays
a warning message.
The following is a segment of the HP WDB output:

34

Starting program: /home/gdb/enh_thr_exit_no_join_detach
In thread 1
In thread 2
In thread 3
warning: Attempt to exit thread 4 which has neither been joined nor detached.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

NOTE: Aviolation of this condition implies outstanding resources that are not released.
If the number of violations is small, or if they occur on an error path that causes abrupt
termination of the application, you can disable this check on threads.

TIP:
• You can modify the application so that the thread is joined or detached.
• If a thread is never cancelled, joined, or otherwise passed to threads API, it needs

to be detached. The thread can be explicitly joined or detached or created with the
detach attribute.

• If the thread is to be manipulated by a threads API, or the return value of threads
is to be considered, then the join operation should be performed to obtain the value
and destroy the thread.

Problem: The thread uses more than the specified percentage of the stack allocated to the thread.

Each thread is assigned a specific percentage of the stack when it is created. If the stack
allocation is not specified for a thread, the default value is used. The stack allocation
cannot be modified after a thread is created.
The application must ensure that the thread stack size is sufficient for all operations of
the thread. If a thread attempts to use more space than the allocated stack space, it
results in a stack overflow.
Consider the following example:
#include pthread.h
#include stdlib.h
#include stdio.h
#include errno.h
pthread_mutex_t job_lock = PTHREAD_MUTEX_INITIALIZER;
extern void fatal_error(int err, char *f);

void
my_thread()
{
 int ret_val;
 int more_stack[100];
 static int count = 0;

 sched_yield();

 /* Acquire the associated mutex lock */

Modes of Thread debugging in HP WDB 35

 if ((ret_val = pthread_mutex_lock(&job_lock)) != 0)
 fatal_error(ret_val, "p mtx_lock failed");

 for (int i = 0; i < 100; i++)
 more_stack[i] = i;
 for (int i = 0; i < 1000; i++);

 /* Release the associated mutex */
 if ((ret_val = pthread_mutex_unlock(&job_lock)) != 0)
 fatal_error(ret_val, "mtx_unlock failed");

 my_thread();
}

#define check_error(return_val, msg) { \
 if (return_val != 0) \
 fatal_error(return_val, msg); \
 }

main()
{
 pthread_t tid;
 int ret_val;

 /* Create two threads to do the work */
 ret_val = pthread_create(&tid, (pthread_attr_t *)NULL,
 (void *(*)())my_thread, (void *) NULL);
 check_error(ret_val, "pthread_create 2 failed");

 /* Wait for the threads to finish */
 ret_val = pthread_join(tid, (void **)NULL);
 check_error(ret_val, "pthread_join: tid");

 exit(0);
}

void
fatal_error(int err_num, char *function)
{
 char *err_string;

 err_string = strerror(err_num);
 fprintf(stderr, "%s error: %s\n", function, err_string);
 exit(-1);
}

The set thread-check stack-util[num] command checks if any thread has
used more than the specified percentage[num] of the stack allocation.
The debugger transfers the execution control to the user anddisplays awarningmessage
when this condition is detected.

36

The following is a segment of the HP WDB output:
(gdb) set thread-check stack-util 101
Invalid value: stack utilization must be between 0 and 100.
(gdb) set thread-check stack-util 80
(gdb) run
Starting program: /home/gdb/enh_thr_stack_util
[Switching to thread 2 (system thread 39877)]
warning: Thread 2 exceeded stack utilization threshold of 80%.
0x800003ffeffcc608 in __rtc_pthread_dummy+0 () from ../librtc64.sl

This warning indicates that the thread attempts to exceed its stack utilization limit.
This may cause memory access violations, bus errors, or segmentation faults, if the
stack utilization reaches 100%.

TIP:
• Increase the stack allocation available to the thread when you create it
• Change the code running in the thread to reduce its use of stack space

Problem: The number of threads waiting on any pthread object exceeds the specified threshold
number.

This check identifies contention that results from too many threads attempting to
acquire the same lock object.
The set thread-check num-waiters [num] command checks if the number of
threads waiting on any pthread object exceeds the specified threshold number [num].
The debugger transfers the execution control to the user anddisplays awarningmessage
when this condition is detected.
A relatively large number of threads waiting on pthread synchronization object can
indicate a performance constraint on the application.

TIP: To avoid this condition:
• Check if any of the data object shared among the application threads can be accessed

using its own synchronization object.
• Check if the program has toomany threadswhose activity depends on concurrent

access to the contended mutex.

Thread-debugging in Batch mode
HPWDB 5.8 supports batch mode of debugging threads for HP-UX 11iv2 and later,
on Integrity systems and on HP-UX 11i v3 in PA-RISC systems for 64 bit applications.
The debugger provides a log file with the list of thread-related errors that occur in the
application.

Modes of Thread debugging in HP WDB 37

In batch mode, the debugger detects the all the thread-conditions that are detected
during an interactive debugging session.
The debugger reports extended information such as variable address, name, id and
other specifications related to the involved pthread objects. In addition, it displays
the stack trace of the executing thread at the point of error.

Pre-requisites for Batch Mode of Thread Debugging

The various prerequisites for Batch mode of Thread Debugging are as follows:
• The thread-debugging feature in HP WDB is dependent on the availability of the

dynamic linker B.11.19 or later versions.
• Advanced thread-debugging feature requires the pthread tracer library which is

available by default on systems running HP-UX 11i v2 or later.

Steps to debug threads in Batch Mode

1. Compile the source files.
Set theLD_LIBRARY_PATH environment variable, based on the platformas follows:
• For IPF 32 bit applications, set

export LD_LIBRARY_PATH=/opt/langtools/wdb/lib/hpux32

• For IPF 64 bit applications, set
export LD_LIBRARY_PATH=/opt/langtools/wdb/lib/hpux64

• For PA 64 bit applications, set
export LD_LIBRARY_PATH=/opt/langtools/wdb/lib/pa20_64

2. Map the share libraries as private for HP 9000 systems using the following
command:
$ chatr +dbg enable ./executable

NOTE: This step is not applicable for Integrity systems.

3. Create a configuration file, rtcconfig to specify the various thread conditions
that you want the debugger to detect.

38

NOTE: The configuration file contains lines of the following form:
set thread-check [on|off] | [option] [on|off] | [option] [num]

And/Or
set frame-count [num]

And/Or
files = <name of the executable on which the thread checking is to be done>

4. Set the environment variable BATCH_RTC to on as export set BATCH_RTC=on
5. Complete one of the following steps to preload the librtc runtime library:

• Set the target application to preload librtc by using the +rtc option for the
chatr command. In addition to automatically loading the librtc library,
the +rtc option for the chatr command also maps the shared libraries as
private. To enable or disable the target application to preload the librtc
runtime library, enter the following command at the HP-UX prompt:
$ chatr +rtc <enable|disable> <executable>

NOTE: The chatr +rtc option preloads the librtc runtime library from
the following default paths:
— For 32 bit IPF applications,

/opt/langtools/lib/hpux32/librtc.so

— For 64 bit IPF applications,
/opt/langtools/lib/hpux64/librtc.so

— For 64-bit PA applications,
/opt/langtools/lib/pa20_64/librtc.sl

To preload the librtc runtime library from a path that is different from the
default paths, you must use the LD_PRELOAD environment variable.

• Instead of automatically preloadinglibrtc andmapping the shared libraries,
you can explicitly preload the required librtc library after mapping the
shared libraries private.
In the case of HP 9000 systems, you must explicitly map the share libraries as
private by using the +dbg enable option for the chatr command, as follows:
$ chatr +dbg enable ./<executable>

(This step is not required on Integrity systems.)

Modes of Thread debugging in HP WDB 39

To explicitly preload the librtc runtime library and start the target
application, enter one of the following commands:
— For 32 bit IPF applications,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so
<executable>

— For 64 bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so
<executable>

— For 64-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl
<executable>

If LD_PRELOAD and chatr +rtc are used to preload the librtc runtime
library, the librtc runtime library is loaded from the path specified by
LD_PRELOAD.

If HPWDB detects any thread error condition during the application run, the error log
is output to a file in the current working directory.
The output file has the following naming convention:
<executablename>.<pid>.threads

where pid is the process id.

Limitations in Batch Mode of Thread Debugging

The feature does not obtain the thread-error information in batch mode for forked
process in a multiprocessing application. However, if the librtc.sl library is
preloaded, the debugger obtains the thread-error information in the batch mode for
exec-ed application.
You cannot specify an alternate output directory for the thread-error log. The
thread-error log file is output into the current working directory only.
HP WDB cannot execute both batch mode thread check and batch mode heap check
together. If the rtcconfig file has both entries, then batch heap check overrides the batch
thread check.

Known issues with thread debugging for interactive and batch mode

Issue 1:
During the execution of advanced thread checking for applications that fork, in the
interactive mode, the following message appears if the GDB follows the child:
Pthread analysis file missing!

40

This errormessage appears because the thread-error information for the forked process
is not available.
However, if the forked process exec()s another binary, the thread-error information
is available for the exec -ed binary.
Issue 2:
In both interactive and batch modes, if the applications exceed their thread stack
utilization, the following error message appears:
Error accessing memory address

This occurswhenGDB attempts a command line call on an already overflowing thread
stack.

Thread- debugging in Attach Mode
HPWDB provides support to attach a running process to the debugger. To use thread
debugging commands after attachingGDB to a running process, complete the following
steps:
1. Set LD_LIBRARY_PATH to include the appropriate directory, by entering one of

the following commands:
• For 32 bit IPF applications,

export LD_LIBRARY_PATH=/opt/langtools/wdb/lib/hpux32

• For 64 bit IPF applications,
export LD_LIBRARY_PATH=/opt/langtools/wdb/lib/hpux64

• For 32 bit PA applications,
export LD_LIBRARY_PATH=/opt/langtools/wdb/lib

• For 64-bit PA applications,
export LD_LIBRARY_PATH=/opt/langtools/wdb/lib/pa20_64

2. Complete one of the following steps to preload the librtc runtime library:
• Set the target application to preload librtc by using the +rtc option for the

chatr command. In addition to automatically loading the librtc library,
the +rtc option for the chatr command also maps the shared libraries as
private.
To enable or disable the target application to preload the librtc runtime
library, enter the following command at the HP-UX prompt:
$ chatr +rtc <enable|disable> <executable>

Modes of Thread debugging in HP WDB 41

NOTE: The chatr +rtc option preloads the librtc runtime library from
the following default paths:
— For 32-bit IPF applications,

/opt/langtools/lib/hpux32/librtc.so

— For 64-bit IPF applications,
/opt/langtools/lib/hpux64/librtc.so

— For 32-bit PA applications,
opt/langtools/lib/librtc.sl

— For 64-bit PA applications,
/opt/langtools/lib/pa20_64/librtc.sl

To preload the librtc runtime library from a path that is different from the
default paths, you must use the LD_PRELOAD environment variable.

• Instead of automatically preloadinglibrtc andmapping the shared libraries,
you can explicitly preload the required librtc library after mapping the
shared libraries private.
In the case of HP 9000 systems, you must explicitly map the share libraries as
private by using the +dbg enable option for the chatr command, as follows:
$ chatr +dbg enable ./<executable>

(This step is not required on Integrity systems.)
To explicitly preload the librtc runtime library and start the target
application, enter one of the following commands:
— For 32-bit IPF applications,

LD_PRELOAD=/opt/langtools/lib/hpux32/librtc.so
<executable>

— For 64-bit IPF applications,
LD_PRELOAD=/opt/langtools/lib/hpux64/librtc.so
<executable>

— For 32-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/librtc.sl <executable>

— For 64-bit PA applications,
LD_PRELOAD=/opt/langtools/lib/pa20_64/librtc.sl
<executable>

42

IfLD_PRELOAD andchatr +rtc are used to preload thelibrtc runtime library,
the librtc runtime library is loaded from the path specified by LD_PRELOAD.

3. Complete one of the following steps:
• Attach the debugger to the required process and enable thread debugging,

as follows:
gdb -thread -p <pid>

or
gdb -thread <executable> <pid>

• Alternately, you can attach the process to the debugger and consequently
invoke thread debugging, as follows:
$ gdb <executable> <pid>
...
(gdb)set thread-check on

Thread Debugging in +check Mode
The +check=thread compiler option enables batch mode thread debugging features
of HP WDB.

NOTE: This feature is available only for compiler versions A.06.20 and later.

It is a convenient way of launching the batch mode advanced thread checking features
without setting any other environment variables at runtime. In other words, batch
mode thread checking has twomodes of invocation. The first method is to use the run-
time environment variables LD_LIBRARY_PATH, LD_PRELOAD and BATCH_RTC on
existing precompiled applications. The second method is to use the +check=thread
option at the compile time.
+check=threadmust only be used with multithreaded programs. It is not enabled
by +check=all. This functionality requires HP WDB 5.9 or later.
The default configuration used by +check=thread option is as follows:
thread-check=1;recursive-relock=1;unlock-not-own=1;
mix-sched-policy=1;cv-multiple-mxs=1;cv-wait-no-mx=1;
thread-exit-own-mutex=1;thread-exit-no-join-detach=1;stack-util=80;
num-waiters=0;frame_count=4;output_dir=.;

Behavior of the +check=thread option can be changed by users by providing their
own rtcconfig file. The user specified rtcconfig file can be in the current directory
or in a directory specified by the GDBRTC CONFIG environment variable.
If any thread error condition is detected during the application run, the error log will
be output to a file in the current working directory. The output file will have the
following naming convention:
<executable name>.<pid>.threads,

Modes of Thread debugging in HP WDB 43

where, <pid> is the process identifier.

Miscellaneous notes on Advanced thread debugging feature in HP WDB
The following commands enable you to view extended information on threads,mutexes,
read-write locks and conditional variables in multi-threaded applications:
info thread [thread-id]

The info thread [thread-id] command displays a list of known threads. If you
provide a thread-id, the command displays extended information on the specified
thread.
Consider the following example:
(gdb) info thread
system thread 4189 0x7f666da8
in __pthread_create_system+0x3d8 () from /usr/lib/libpthread.1
2 system thread 4188 worker (wptr=0x40004640 ") at quicksort.c:135
1 system thread 4184 0x7f66f728 in _lwp_create+0x10 () from /usr/lib/libpthread.1

info mutex [mutex-id]

The info mutex [mutex-id] command displays a list of known mutexes. If a
mutex-id is provided, the command displays extended information on the specified
mutex.
info condvar [condvar-id]

The info condvar [condvar-id] command displays a list of known condition
variables. If condvar-id is provided, the command displays extended information
on the specified condition variable.
info rwlock [rwlock-id]

Theinfo rwlock [rwlock-id] commanddisplays a list of known read-write locks.
Ifrwlock-id is provided, the commanddisplays extended information on the specified
read-write lock.

Best Practices in Thread programming
The following are some of the best practices specific to Thread-programming:
• Ensure your program locks small segments or specific fields of a program segment

to increase concurrency in execution.
• Ensure that your locks always obtain synchronization control in an order that does

not cause race condition.
• Minimize locking instances so you can reduce the overhead thatmight result from

frequent synchronization efforts.
• Minimize critical sections that might result in longer waits for other threads.
• Reduce the number of nested function calls so you avoid errors resulting from

stack overflow.

44

• Considerwriting a recursive function in an iterative form, as sometimes an iterative
function demonstrates greater resource efficiency than a recursive function.

• Minimize the size and number of the stack local variables to reduce the stack usage
of a thread.

• Allocate large data items dynamically in a heap than in arrays to ensure that stack
utilization does not exceed the allocated or default percentage.

Appendix
Pertinent terms used throughout the white paper.
Backtrace Backtrace is a summary of proceeds of execution of the program which displays the

stack frame number and the function name output of the bt command.
Concurrency Concurrency is a concept where more than one thread performs different functions

simultaneously to complete the execution of the process at the earliest.
Core file Core file consists of information such as memory image of the address space of specific

processes, values of the process registers and the states of a specific program. This file
is the result of an abnormally terminated program.

Debugging Debugging is to understand, identify, and fix errors in a program.
Heap Heap is a large pool of memory from which dynamic memory allocations are done for

program elements such as large arrays, structures, or classes.
Multi-threaded application

Multi threaded applications consist of multiple threads sharing resources with each
other.

Parallelism Parallelism is a concept where more than one thread performs the same function
simultaneously to complete the execution of the process at the earliest.

Process Process is an instance of a program in execution. It provides an environment for the
execution of the threads within. The environment consists of details such as process
identification details, working directory, an address space and system resources such
as file descriptors, signal actions, shared libraries, and shared memory.

Pthreads POSIX is a standard that defines Application Programming Interface to create and
manipulate threads. POSIX Threads is a POSIX standard for Threads. Libraries that
implement POSIX threads are named Pthreads.

Segmentation
faults

When a program attempts to access a memory location in an improper way, the error
condition is called Segmentation fault. In addition, attempts to access amemory location
to which the access is denied also results in segmentation fault.

Shared
memory

Shared memory is the segment of memory that is accessed by multiple programs to
establish quick communication among them.

Stack Stack is an abstract data structure that stores temporary information in sequential set of
memory addresses.

Stack frames Stack frames aremachine dependent data structures in call stack that have data pertaining
to the execution state of a function.

Stack
overflows

Stack overflow is a condition where more than the determined amount of memory is
used on the call stack. This results in program crash.

Appendix 45

Stack trace Stack trace is a summary of the stack frames. These stack frames contain the function
calls which the program initiates during its execution.

Thread Debugging commands at a glance
Table 2 Thread Debugging Commands

DescriptionCommand

Enables or disables Advanced thread debugging
feature. The default setting is off.

set thread-check on/off

Displays a list of known threads.info-thread[thread-id]

Displays a list of known mutexes.info mutex[mutex-id]

Displays a list of known conditional variables.info condvar[condvar-id]

Displays a list of known read-write locks.info rwlock[rwlock-id]

Checks if a thread attempts to acquire a
non-recursive mutex that it currently holds.

set thread-check
recursive-relock[on|off]

Checks if any thread has used more than the
specified percentage [num] of the stack location.

set thread-check stack-util[num]

Checks if the number of threads waiting on any
pthread objects exceeds the specified threshold
number.

set thread-check num-waiters[num]

Checks if a thread has terminated executionwithout
joining or detaching the thread.

set thread-check
thread-exit-no-join-detach[on|off]

Checks if a thread has attempted to unlock amutex
or a read-write block that it has not acquired.

set thread-check
unlock-not-own[on|off]

Checks if a thread waits on a mutex or a read-write
lock that is held by a thread with a different
scheduling policy.

set thread-check
mixed-sched-policy[on|off]

Checks if an application uses the same condition
variable in multiple calls by different threads.

set thread-check
cv-multiple-mxs[on|off]

Checks if the associated mutex of a condition
variable is locked when the thread calls the
pthread_cond_wait() routine.

set thread-check cv-wait-no-mx[on|off]

46

	Debugging threads with HP Wilde Beest Debugger
	Table of Contents
	About This Document
	Intended Audience
	Typographic Conventions
	Related Information
	End of Reading

	What are threads?
	Understanding complexity in thread programming
	Common conditions or events in thread programming

	Introducing the HP WDB Debugger
	Thread Debugging Support in HP WDB
	Support for enabling and disabling specific threads
	Back trace support for thread debugging

	Debugging programs with multiple threads
	Advanced Thread Debugging Support
	Enabling and Disabling Advanced Thread Debugging Features
	Prerequisites for Advanced thread debugging feature in HP WDB

	Modes of Thread debugging in HP WDB
	Thread-debugging in Interactive mode
	Using thread-debugging feature in HP WDB
	The thread-check command
	Debugging common thread-programming problems
	Problem: The thread attempts to acquire a non-recursive mutex that it currently has control.
	Problem: The thread attempts to unlock a mutex or a read-write lock that it does not control.
	Problem: The Thread waits on a mutex or a read-write lock that is held by a thread with a different scheduling policy
	Problem: Different threads non-concurrently wait on the same condition variable, but with different associated mutexes.
	Problem: The thread terminates execution without unlocking the associated mutexes or read-write locks.
	Problem: The thread waits on a condition variable for which the associated mutex is not locked.
	Problem: The thread terminates execution, and the resources associated with the thread continue to exist in the application because the thread has not been joined or detached.
	Problem: The thread uses more than the specified percentage of the stack allocated to the thread.
	Problem: The number of threads waiting on any pthread object exceeds the specified threshold number.

	Thread-debugging in Batch mode
	Pre-requisites for Batch Mode of Thread Debugging
	Steps to debug threads in Batch Mode
	Limitations in Batch Mode of Thread Debugging
	Known issues with thread debugging for interactive and batch mode

	Thread- debugging in Attach Mode
	Thread Debugging in +check Mode

	Miscellaneous notes on Advanced thread debugging feature in HP WDB
	Best Practices in Thread programming
	Appendix
	Thread Debugging commands at a glance

