
Sendmail 8.13.3 Programmer’s Guide

HP-UX 11i v1 and HP-UX 11i v2
Manufacturing Part Number: 5991-0705

February 2005

United States

© Copyright 2005 Hewlett-Packard Development Company L.P.

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government License

Proprietary computer software. Valid license from HP required for
possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation,
and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notice

Copyright 2005 Hewlett-Packard Development Company L.P.
Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.

Trademark Notices

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through The Open Group.
ii

Contents
About This Document

1. Introduction
Milter Overview . 3
Milter-Related Files . 5

Header Files . 5
Library . 5

Implementing Filtering Policies . 6
Communication Between an MTA and Milter . 7
Before You Begin . 8

2. Milter APIs
Library Control APIs . 11

The smfi_register() API . 11
The smfi_setconn() API. 13
The smfi_settimeout() API . 14
The smfi_main() API. 15
The smfi_opensocket() API . 15
The smfi_setdbg() API . 16
The smfi_stop() API . 17

Data Access APIs . 18
The smfi_getsymval() API . 18
The smfi_getpriv() API . 19
The smfi_setpriv() API . 20
The smfi_setreply() API . 21
The smfi_setmlreply() API . 22

Message Modification APIs . 25
The smfi_addheader() API . 25
The smfi_chgheader() API . 27
The smfi_insheader() API. 29
The smfi_addrcpt() API. 31
The smfi_delrcpt() API . 31
The smfi_replacebody() API . 32

Other Message Handling APIs . 34
The smfi_progress() API . 34
iii

Contents
The smfi_quarantine() API. 35
Callbacks . 36

The xxfi_connect() Callback . 36
The xxfi_helo() Callback . 37
The xxfi_envfrom() Callback . 38
The xxfi_envrcpt() Callback . 39
The xxfi_header() Callback. 40
The xxfi_eoh() Callback . 40
The xxfi_body() Callback . 41
The xxfi_eom() Callback . 42
The xxfi_abort() Callback . 42
The xxfi_close() Callback . 43

3. Control Flow of Milter APIs
Call Order Sequence . 47
Initialization Parameters for Filter Applications. 49
Sample Filter Pseudocode . 50
Multithreading . 52
Resource Management. 53
Signal Handling . 54

4. Configuring and Compiling Milter APIs
Compiling and Installing Your Filter . 57
Configuring Milter in Sendmail . 58

5. Sample Program
Milter Sample Program . 64
iv

Contents
v

Contents
vi

Contents
vii

Contents
viii

About This Document
This document describes how to use Milter APIs with Sendmail 8.13.3 on
your HP-UX 11i v1 and HP-UX 11i v2 operating systems.

It is assumed that the HP-UX 11i v1 or the HP-UX 11i v2 operating
system software and the appropriate files, scripts, and subsets are
installed on your system.

Intended Audience
This manual is intended for application developers who are responsible
for developing filter applications using the Milter APIs. Developers are
expected to have knowledge of operating system concepts, library
functions, and C coding. They should also have knowledge of
Transmission Control Protocol/Internet Protocol (TCP/IP) networking
concepts, network configuration, and Sendmail basics. This manual is
not a C, Sendmail, or TCP/IP tutorial.

What Is in This Document
Sendmail 8.13.3 Programmer’s Guide is divided into several chapters,
each of which contains information about Milter APIs.

Table 1 briefly describes each chapter.

Table 1 Document Contents

Chapter Description

Introduction Presents an overview of the Milter
functionality and lists the components
that the Sendmail 8.13.3 software
contains.

Control Flow of Milter APIs Describes the call order sequence of
different Milter APIs. It also discusses
multithreading, resource handling,
and signal handling in Milter.

Configuring and Compiling
Milter APIs

Discusses how to configure and
compile Sendmail with a Milter
application.
ix

Related Documents
For more information on Sendmail 8.13.3, see the following documents:

• HP-UX Mailing Services Administrator’s Guide at
http://www.docs.hp.com/hpux/netcom/index.html#Internet%2
0Services.

• Request for Comments (RFC)

Many sections of this manual refer to RFCs for more information
about networking topics. These documents publicize Internet
standards, new research concepts, and status memos about the
Internet. You can access the full range of RFC documents and more
information about the Internet Engineering Task Force (IETF) at the
following URL:

http://www.ietf.org/rfc.html

HP Encourages Your Comments
HP encourages any comments and suggestions you have on this
document.

You can send your comments in the following ways:

• Internet electronic mail: netinfo_feedback@cup.hp.com

• A feedback form located at the following URL:

http://docs.hp.com/assistance/feedback.html

Please include the following information when sending your feedback to
us:

• The full title of the manual and the part number. (The part number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

Milter APIs Describes all Milter APIs.

Sample Program Includes a sample filter program.

Table 1 Document Contents (Continued)

Chapter Description
x

http://www.ietf.org/rfc.html
http://docs.hp.com/assistance/feedback.html
http://docs.hp.com/assistance/feedback.html
mailto:netinfo_feedback@cup.hp.com
http://www.ietf.org/rfc.html

• The version of HP-UX you are using.

Please note that the HP-UX networking communications publications
group does not provide technical support for HP products. If your inquiry
concerns technical support for an HP product, please use the Assistance
directory page located at: http://www.hp.com/ghp/assist/directory.html or
call HP support at (208) 323-2551.

Typographic Conventions
This document uses the following typographic conventions:

$ A dollar sign represents the system prompt for the C
and POSIX shells.

A number sign represents the superuser prompt.

file Italic (slanted) type indicates document and book
names.

daemon Courier font type indicates daemons, files, commands,
manual reference pages, and option names.

{|} In syntax definitions, brackets indicate items that are
optional and braces indicate items that are required.

(Ctrl+A) This symbol indicates that you hold down the first
named key while pressing the key or mouse button that
follows the plus.

Parameter Italic courier font type indicates input parameters for a
function or API.

Return Value Courier font type indicates values that a function
returns.
xi

http://docs.hp.com/assistance/feedback.html
http://docs.hp.com/assistance/feedback.html

xii

1 Introduction

This chapter provides an overview of the Milter functionality introduced
in Sendmail 8.13.3. In addition, the chapter briefly describes of the
Milter architecture.
Chapter 1 1

Introduction
This chapter discusses the following topics:

• “Milter Overview” on page 3

• “Milter-Related Files” on page 5

• “Implementing Filtering Policies” on page 6

• “Communication Between an MTA and Milter” on page 7

• “Before You Begin” on page 8

NOTE All occurrences of Sendmail in this document refer to Sendmail 8.13.3.
Chapter 12

Introduction
Milter Overview
Milter Overview
Sendmail 8.13.3 contains an advanced and effective mail filtering facility
called Milter, which stands for Mail Filter. Milter is both a protocol and a
library. Milter APIs provide an interface for third-party software to
validate and modify messages as they pass through the mail transport
system. Milter APIs enable filters to “listen in” to the SMTP conversation
and modify Simple Mail Transfer Protocol (SMTP) responses.

To modify aspects of the message, you can call the Milter library
functions that send special messages to Sendmail. The Milter library is
multi-threaded and a given Sendmail installation can have multiple mail
filters. Sendmail is single threaded but it forks into multiple processes.
Sendmail uses mail filters to filter incoming SMTP messages.

Milter APIs provide the following benefits:

• Safety and security – You do not need root user privileges to run the
filter processes. This feature simplifies coding and limits the impact
of security flaws in the filter program.

• Reliability – Any failure in the Milter program does not affect
Sendmail. When the Milter program fails, Sendmail either considers
that the Milter program does not exist or considers that the required
resource is unavailable.

• Simplicity – You can use Milter APIs to easily implement filters in
Sendmail. To make the implementation easy, you can use threads by
defining thread-clean interfaces that include local data hooks.

• Performance – A simple Milter program does not degrade the
performance of Sendmail.

Following lists the types of Milter APIs:

• Library control functions

• Data access functions

• Message modification functions

• Other message handling functions

• Callbacks

Milter APIs operate in the following phases:
Chapter 1 3

Introduction
Milter Overview
• At various stages of the SMTP conversation, Sendmail sends a
message over the socket to the Milter program.

• The Milter library invokes a callback into your code and sends a
reply message to Sendmail containing the return value from your
callback.
Chapter 14

Introduction
Milter-Related Files
Milter-Related Files
The Sendmail 8.13.3 depot contains C header files, libraries, and
example programs. You can download the Sendmail 8.13 software depot,
supported on HP-UX 11i v1 and HP-UX 11i v2, from the following URL:

http://www.software.hp.com

When you install the depot on your system, the depot installs the
milter-related libraries and header files on your system. The
milter-related library and header files supplied with Sendmail 8.13.3 are
detailed in the following sections:

• “Header Files” on page 5

• “Library” on page 5

Header Files

Table 1-1 lists the milter-related header files included in the Sendmail
8.13.3 depot.

Library

Sendmail 8.13.3 includes the 32-bit Milter library, libmilter.a. You can
use this library to build filter applications.

Table 1-1 Milter-Related Header Files

Header File Description

/usr/include/libmilter/mtapi.h Contains global definitions for mail
filter library and mail filters.

/usr/include/libmilter/mfdef.h Contains global definitions for mail
filter and Sendmail.
Chapter 1 5

http://www.software.hp.com

Introduction
Implementing Filtering Policies
Implementing Filtering Policies
Milter enables a system administrator to combine third-party filters with
Sendmail to implement a desired mail filtering policy. For example, if a
system administrator wants to perform the following tasks:

• Scan incoming mail for viruses on different platforms.

• Eliminate unsolicited commercial mail message.

• Append a mandatory footer to selected incoming messages

The system administrator can configure the Mail Transport Agent
(MTA) to filter messages first through a server-based anti-virus engine,
then through a large scale antispam service, and finally append the
desired footer if the message still meets the requisite criteria. System
administrators can add or change any filter independently.

You cannot control the overall mail filtering environment but system
administrators can control the mail filtering environment. Particularly,
the system administrator must decide which filters are run, in what
order they are run, and how they communicate with Sendmail. You can
select these parameters, as well as the actions to be taken when a filter
becomes unavailable during Sendmail configuration.
Chapter 16

Introduction
Communication Between an MTA and Milter
Communication Between an MTA and Milter
Filter applications run as separate processes outside the Sendmail
address space. The benefits of filter applications running as separate
processes are as follows:

• Filter applications do not need to run with "root" permissions,
thereby, avoiding a large family of potential security problems.

• Failures in a particular filter do not affect Sendmail or other filters.

• Filter applications can have high performance because of the
parallelism inherent in multiple processes.

Each filter can communicate with multiple MTAs at the same time over
local or remote connections, using multiple threads of execution.
Figure 1-1 illustrates a network of communication channels between the
filters, its MTAs, and other MTAs on the network.

Figure 1-1 Communication Channel Between MTAs and Filters

The Milter library (libmilter.a) implements the communication
protocol. It accepts connections from various MTAs and passes the
relevant data to the filter through callbacks.

MTA

MTA

MTA

Filter 1

Filter 2

Filter 3

Internet
Chapter 1 7

Introduction
Before You Begin
Before You Begin
Ensure that you have installed the Sendmail 8.13.3 depot from
http://www.software.hp.com on your system. The Sendmail 8.13.3
depot contains the Milter archive library, libmilter.a, which you can
use to build filter applications.

For more information on configuring and building filter applications, see
“Configuring and Compiling Milter APIs” on page 55.
Chapter 18

http://www.software.hp.com
http://www.software.hp.com

2 Milter APIs

This chapter discusses the different Milter APIs that Sendmail 8.13.3
includes.

It discusses the following topics:
Chapter 2 9

Milter APIs
• “Library Control APIs” on page 11

• “Data Access APIs” on page 18

• “Message Modification APIs” on page 25

• “Other Message Handling APIs” on page 34

• “Callbacks” on page 36
Chapter 210

Milter APIs
Library Control APIs
Library Control APIs
This section describes the library control APIs that Sendmail 8.13.3
includes.

Filter applications use the library control APIs to provide the required
information to Sendmail. Each of the library control APIs returns either
MI_SUCCESS or MI_FAILURE to indicate the status of the operation. The
library control APIs do not directly communicate with Sendmail, but
they alter the state of the library.

Before handing control to libmilter (by calling smfi_main()), a filter
application can call the following library control APIs to set the
libmilter parameters:

• smfi_register()

• smfi_opensocket()

• smfi_setconn()

• settimeout()

• smfi_setbacklog()

• smfi_setdbg()

• smfi_stop()

• smfi_main()

The following sections discuss the library control APIs in detail.

The smfi_register() API

You can use the smfi_register()API to register a set of filter callbacks.
You must call smfi_register() before calling the smfi_main() API.
The smfi_register() API creates a filter using the information
supplied by the smfiDesc argument. Do not call smfi_register()
multiple times within a single process.

The declaration of smfi_register() is as follows:

#include <libmilter/mfapi.h>
int smfi_register(

smfiDesc descr
);
Chapter 2 11

Milter APIs
Library Control APIs
Arguments

You must call smfi_register() with the following argument:

descr Specifies a filter descriptor of type smfiDesc, which
describes the functions of the filter. The smfiDesc
contains the following members:

struct smfiDesc
{

char*xxfi_name; /* filter name */
intxxfi_version;/* version code -- do not change */
unsigned longxxfi_flags;/* flags */

/* connection info filter */
sfsistat(*xxfi_connect)(SMFICTX *, char *, _SOCK_ADDR *);
/* SMTP HELO command filter */
sfsistat(*xxfi_helo)(SMFICTX *, char *);
/* envelope sender filter */
sfsistat(*xxfi_envfrom)(SMFICTX *, char **);
/* envelope recipient filter */
sfsistat(*xxfi_envrcpt)(SMFICTX *, char **);
/* header filter */
sfsistat(*xxfi_header)(SMFICTX *, char *, char *);
/* end of header */
sfsistat(*xxfi_eoh)(SMFICTX *);
/* body block */
sfsistat(*xxfi_body)(SMFICTX *, unsigned char *, size_t);
/* end of message */
sfsistat(*xxfi_eom)(SMFICTX *);
/* message aborted */
sfsistat(*xxfi_abort)(SMFICTX *);
/* connection cleanup */
sfsistat(*xxfi_close)(SMFICTX *);

};

A NULL value for any callback indicates that the filter does not want to
process the given type of information and the callback returns only
SMFIS_CONTINUE.

For more information on callbacks, see “Callbacks” on page 36.
Chapter 212

Milter APIs
Library Control APIs
Table 2-1 describes the bitwise OR of zero or more values, which the
xxfi_flags field can contain. The table also describes the possible
actions of the filter.

Return Values

The smfi_register() API returns MI_FAILURE because of the following
reasons:

• Memory allocation failure

• Incompatible version or illegal value of flags

The smfi_setconn() API

You can use the smfi_setconn() API to set the socket through which a
filter must communicate with Sendmail. You must call setconn() before
calling the smfi_main() API.

The declaration of smfi_setconn() is as follows:

#include <libmilter/mfapi.h>
int smfi_setconn{

char *oconn;
};

Do not run filters as a root user when communicating over UNIX or
local domain sockets.

Table 2-1 The xxfi_flags Field Values

Flag Description

SMFIF_ADDHDRS Adds headers.

SMFIF_CHGHDRS Changes and deletes headers.

SMFIF_CHGBODY Replaces the body of the messageduring
filtering. This can have significant
performance impact if other filters filter the
body after this filter.

SMFIF_ADDRCPT Adds recipients to the message.

SMFIF_DELRCPT Removes recipients from the message.
Chapter 2 13

Milter APIs
Library Control APIs
If you use the Sendmail RunAsUser option, you must set the permissions
for UNIX or local sockets to 0600 (read/write permission only for the
owner of the socket) or 0660 (read/write permission for the owner and
group of the socket). To determine the permission for a UNIX or local
domain socket, you can use the umask command and set umask to 007 or
077.

Arguments

You must call smfi_setconn() with the following argument:

oconn Specifies the address of the desired communication
socket. The address must be a NULL-terminated string
in the following proto:address format:

• {unix|local}:/path/to/file – Specifies a
named pipe.

• inet:port@{hostname|ip-address} – Specifies
an IPV4 socket.

• inet6:port@{hostname|ip-address} – Specifies
an IPV6 socket.

Return Value

The smfi_setconn()API does not fail on an invalid address. The failure
is only detected in the smfi_main() API.

The smfi_settimeout() API

You can use the smfi_settimeout() API to set the connection timeout
value of the filter. The connection timeout value specifies the number of
seconds the libmilter library must wait for an MTA connection before
timing out a socket. If the filter application does not call
smfi_settimout(), the filter application uses a default timeout value of
7210 seconds.

The declaration of smfi_settimout() is as follows:

#include <libmilter/mfapi.h>
int smfi_settimeout(

int otimeout
);

Arguments

You must call smfi_settimeout() with the following argument:
Chapter 214

Milter APIs
Library Control APIs
otimeout Specifies the timeout value in seconds. You must
specify a timeout value greater than 0 (zero). A value of
0 signifies that a filter does not to wait and, it does not
signify that a filter must wait forever.

Return Value

The smfi_settimeout() API always returns MI_SUCCESS to the filter
program.

The smfi_main() API

You can use the smfi_main() API to transfer control to the libmilter
event loop. You must call smfi_main() after initializing a filter.

The declaration of smfi_main() is as follows:

#include <libmilter/mfapi.h>
int smfi_main(
);

The smfi_main() API does not contain any arguments.

Return Value

When smfi_main() fails to establish a connection, it returns
MI_FAILURE to the filter application. The failure can occur because of
many reasons, such as invalid address passed to smfi_setconn(). The
reason for the failure is logged in the syslog file.

The smfi_main() API returns MI_SUCCESS on success.

The smfi_opensocket() API

You can use the smfi_opensocket() API to create the interface socket
that MTAs use to connect to the filter.

You can call smfi_opensocket() only from the program mainline, before
calling smfi_main(). You can use smfi_opensocket() to create the
socket previously specified by a call to the smfi_setconn()API, which is
the interface between MTAs and the filter. This allows the calling
application to ensure that the socket can be created.

If you do not call smfi_opensocket(), smfi_main() will do so implicitly.

The declaration for smfi_opensocket() is as follows:
Chapter 2 15

Milter APIs
Library Control APIs
#include <libmilter/mfapi.h>
int smfi_opensocket(
bool rmsocket
);

Arguments

You must call smfi_opensocket() with the following argument

smfi_opensocket Specifies the flag that indicates whether the library
must try to remove any existing UNIX domain
socket before trying to create a new one.

Return Value

smfi_opensocket() fails and returns MI_FAILURE because of the
following reasons:

• The interface socket is not created.

• rmsocket is true and either the socket is not examined or exists, and
is not removed.

• smfi_setconn() is not called.

smfi_opensocket() returns MI_SUCCESS on success.

The smfi_setdbg() API

You can use smfi_setdbg() to set the internal debugging or tracing level
of the milter library to a new level to track the code details. You can use
the smfi_setdbg() API to set the debugging or tracing level for the
milter library. A level of 0 (zero) turns off debugging. If you increase the
debugging level (more positive number), the details included in
debugging also increases. A debugging value of 6 is the current, highest
and useful debugging value.

The declaration of smfi_setdbg() is as follows:

#include <libmilter/mfapi.h>
int smfi_setdbg(
int level;
);

Argument

You must call smfi_setdbg() with the argument level, which specifies
a new debugging level.

Return Value
Chapter 216

Milter APIs
Library Control APIs
By default, smfi_setdbg() returns MI_SUCCESS to the filter application.

The smfi_stop() API

You can use the smfi_stop() API to start an orderly shutdown of the
Milter program. You can call smfi_stop() from any of the callbacks or
any of the error-handling routines at any time. smfi_stop() causes each
thread to finish its current connection and then exit the connection.
When all the threads have exited, the call to the smfi_main() API
returns to the calling program, which may then exit or warm restart the
function (?). A filter application does not accept any new connection after
calling smfi_stop().

The declaration of smfi_stop() is as follows:

#include <libmilter/mfapi.h>
int smfi_stop(void);

Argument

You must call smfi_stop()with the argument void, which specifies that
smfi_stop() does not accept any argument.

Return Values

smfi_stop() always returns SMFI_CONTINUE to the Milter program.

Following are additional points regarding smfi_stop():

• Another internal routine may have already requested the Milter
program to abort.

• Another routine may already have requested the Milter program to
stop.

• You cannot cancel the stop process when it has begun.
Chapter 2 17

Milter APIs
Data Access APIs
Data Access APIs
You can call the data access APIs from within the filter-defined callbacks
to access information about the current connection or message.

Following are the data access APIs:

• smfi_getsymval()

• smfi_getpriv()

• smfi_setpriv()

• smfi_setreply()

• smfi_setmlreply()

The following sections discuss the data access functions in detail.

The smfi_getsymval() API

You can use the smfi_getsymval() API to get the value of a Sendmail
macro. The macros that are defined depend on when smfi_getsymval()
is called. You can call smfi_getsymval() from any of the xxfi_*
callbacks.

The declaration of smfi_getsymval() is as follows:

#include <libmilter/mfapi.h>
char* smfi_getsymval(

SMFICTX *ctx,
char *symname

);

Table 2-1 lists the Sendmail macros that you can use with the xxfi_*
callbacks.

Table 2-2 Sendmail Macros

xxfi_*
Callbacks Sendmail Macros

xxfi_connect() daemon_name, if_name, if_addr, j, _

xxfi_helo() tls_version, cipher, cipher_bits,
cert_subject, cert_issuer
Chapter 218

Milter APIs
Data Access APIs
All macros specified with the xxfi_connect() and xxfi_helo()
callbacks are active from the point they are received until the end of the
connection. All macros specified with the callback xxfi_envfrom() are
active from the point they are received until the end of the message. All
macros specified with the callbacks xxfi_envrcpt() are active for each
recipient.

You can use the confMILTER_MACROS_* options in the Sendmail .mc file
to change the macro list. Depending on when Sendmail sets the macros,
you can determine the scope of these macros.

Arguments

You must call smfi_getsymval() with the following argument:

ctx Specifies a opaque context structure.

symname Denotes the name of a Sendmail macro. You can
optionally enclose single letter macros and long macro
names in braces (“{“ and “}”), similar to the macros in
the sendmail.cf file.

Return Value

smfi_getsymval() returns the value of the given macro as a
null-terminated string or a NULL value if the macro is not defined.

The smfi_getpriv() API

You can use the smfi_getpriv() API to get the connection-specific data
pointer for a connection. You can call smfi_getpriv() in any of the
xxfi_* callbacks.

The declaration of smfi_getpriv() is as follows:

xxfi_envfrom() i, auth_type, auth_authen, auth_ssf,
auth_author, mail_mailer, mail_host,
mail_addr

xxfi_envrcpt() rcpt_mailer, rcpt_host, rcpt_addr

Table 2-2 Sendmail Macros (Continued)

xxfi_*
Callbacks Sendmail Macros
Chapter 2 19

Milter APIs
Data Access APIs
#include <libmilter/mfapi.h>
void* smfi_getpriv(

SMFICTX *ctx
);

Argument

You must call smfi_getpriv() with the argument ctx, which specifies
an opaque context structure.

Return Value

smfi_getpriv() returns the private data pointer stored by an earlier
call to the smfi_setpriv() API, or NULL if none has been set.

The smfi_setpriv() API

You can use smfi_setpriv() to set the private data pointer for a
connection. You can call smfi_setpriv() in any of the xxfi_* callbacks.

The declaration of smfi_setpriv() is as follows:

#include <libmilter/mfapi.h>
int smfi_setpriv(

SMFICTX *ctx,
void *privatedata

);

Only one private data pointer is available per connection; multiple calls
to smfi_setpriv() with different values result in loss of previous
values. Before a filter terminates, it must release the private data and
set the pointer to NULL.

Arguments

You must call smfi_setpriv() with the following arguments:

ctx Specifies the opaque context structure.

privatedata Denotes a pointer to private data. This value is
returned by subsequent calls to the smfi_getpriv()
API using ctx.

Return Values

smfi_setpriv() returns MI_FAILURE if ctx is an invalid context
structure. smfi_setpriv() returns MI_SUCCESS on success.
Chapter 220

Milter APIs
Data Access APIs
The smfi_setreply() API

You can use the smfi_setreply() API to set the default SMTP error
reply code. Only 4xx and 5xx replies are accepted. You can call
smfi_setreply() from any of the xxfi_* callbacks other than the
xxfi_connect() callback. smfi_setreply() directly sets the SMTP
error reply code for a connection. If subsequent error occurs because of
an action taken by the filter, analyze the error code to identify the
problem.

The declaration of smfi_setreply() is as follows:

#include <libmilter/mfapi.h>
int smfi_setreply(

SMFICTX *ctx,
char *rcode,
char *xcode,
char *message

);

Following are some points to consider regarding smfi_setreply():

• Values passed to smfi_setreply() are not checked for standards
compliance.

• The message parameter must contain only printable characters;
other characters can result in undefined behavior. For example, CR
or LR causes the call to fail, a single % (percentage) character causes
the text to be ignored (if a % is required in a string, use %% similar to
the usage in printf (3)).

• If the reply code (rcode) is 4XX but SMFI-REJECT is used for the
message, the custom reply is not used.

Similarly, if the reply code (rcode) is 5XX code but SMFI_TEMPFAIL is
used for the message, the custom reply is not used.

NOTE An error is not returned to the Milter program in neither of the
previous two instances; libmilter silently ignores the reply code.

For details on reply codes and their meanings, see RFC 821 (SIMPLE
MAIL TRANSFER PROTOCOL) or 2821 (Simple Mail Transfer
Protocol) and RFC 1893 (Enhanced Mail System Status Codes) or
2034 (SMTP Service Extension for Returning Enhanced Error Codes).
Chapter 2 21

Milter APIs
Data Access APIs
• If the Milter program returns SMFI_TEMPFAIL and sets the reply code
to 421, the SMTP server terminates the SMTP session with a 421
error code.

Arguments

You must call smfi_setreply() with the following arguments:

ctx Specifies an opaque context structure.

rcode Specifies a 3-digit (RFC 821 or RFC 2821) SMTP reply
code as a null terminated string. You must not assign
rcode to NULL, and rcodemust be a valid 4XX or 5XX
reply code.

xcode Specifies an extended (RFC 1893 or RFC 2034) reply
code. If xcode is NULL, the extended code is not used.
xcode must conform to RFC 1893 or RFC 2034.

message Specifies the text part of the SMTP reply. If the
message is NULL, an empty message is used.

Return Value

smfi_setreply() fails because of the following reasons and returns
MI_FAILURE:

• The rcode argument or xcode argument is invalid.

• A memory-allocation failure occurs.

smfi_setreply() returns MI_SUCCESS on success.

The smfi_setmlreply() API

You can use the smfi_setmlreply() API to set the default SMTP error
reply code to a multi-line response. You can set only 4xx and 5xx reply
codes.

You can call smfi_setmlreply() from any of the xxfi_* callbacks
except the xxfi_connect() callback. smfi_setmlreply() directly sets
the SMTP error reply code for a connection to the given lines after xcode.
You must terminate the list of arguments that you pass to
smfi_setmlreply() with a NULL value. The error code is used on
subsequent error replies resulting from actions taken by the filter
program.

The declaration of smfi_setmlreply() is as follows:
Chapter 222

Milter APIs
Data Access APIs
#include <libmilter/mfapi.h>
int smfi_setmlreply(

SMFICTX *ctx,
char *rcode,
char *xcode,
...

);

Following are some points to consider regarding smfi_setmlreply():

• Values passed to smfi_setmlreply() are not checked for standards
compliance.

• The message parameter must contain only printable characters;
other characters can result in a undefined behavior. For example, CR
or LR causes the call to fail, a single % (percentage) character causes
the text to be ignored (if a % is required in a string, use %% similar to
the usage in printf (3)).

• If the reply code (rcode) is 4XX but SMFI-REJECT is used for the
message, the custom reply is not used.

Similarly, if the reply code (rcode) is 5XX code but SMFI_TEMPFAIL is
used for the message, the custom reply is not used.

NOTE An error is not returned to the Milter program in neither of the
previous two cases; libmilter silently ignores the reply code.

For details about reply codes and their meanings, see RFC 821 or
2821, and RFC 1893 or RFC 2034.

• If the Milter program returns SMFI_TEMPFAIL and sets the reply code
to 421, the SMTP server terminates the SMTP session with a 421
error code.

Arguments

You must call smfi_setmlreply() with the following argument:

ctx Specifies an opaque context structure.

rcode Specifies the 3-digit SMTP reply code as specified in
RFC 821 (Simple Mail Transfer Protocol) or 2821
(Simple Mail Transfer Protocol). rcode is a
null-terminated string and must be a valid 4XX or 5XX
reply code. You must not set rcode to a NULL value.
Chapter 2 23

Milter APIs
Data Access APIs
xcode Specifies the extended reply code as specified in RFC
1893 (Enhanced Mail System Status Codes) or 2034
(SMTP Service Extension for Returning Enhanced
Error Codes). If xcode is NULL, an extended code is
not used; otherwise, xcode must conform to RFC 1893
or RFC 2034.

... Specifies the remaining arguments, that are single
lines of text (upto 32 arguments), which is used as the
text part of the SMTP reply. The list must be NULL
terminated.

Return Values

smfi_setmlreply() fails because of the following reasons and returns
MI_FAILURE:

• The rcode or xcode argument is invalid.

• A memory-allocation failure occurs.

• A text line contains a carriage return (CR) or line feed (LF).

• The length of any text is more than the MAXREPLYLEN (980) value.

• The reply contains more than 32 lines of text.

smfi_setmlreply() returns MI_SUCCESS on success.
Chapter 224

Milter APIs
Message Modification APIs
Message Modification APIs
The message modification APIs change the contents and attributes of a
message. These APIs include additional communication with the MTA
and return either MI_SUCCESS or MI_FAILURE to indicate the status of
the operation. You can call these APIs only in the xxfi_eom() callback.

A filter program must set the appropriate flag in the description passed
to the smfi_register() API to call any message modification function.
The MTA treats a call to the function as a failure of the filter program
and terminates its connection when a filter program does not set the
appropriate flag.

The status returned indicates only whether the message of the filter was
successfully sent to the MTA and does not indicate whether the MTA has
performed the requested operation. For example, when the
smfi_addheader() API is called with an illegal header name,
smfi_addheader() returns MI_SUCCESS even though the MTA can later
refuse to add the illegal header.

Following are the message modification APIs:

• smfi_addheader()

• smfi_chgheader()

• smfi_insheader()

• smfi_addrcpt()

• smfi_delrcpt()

• smfi_replacebody()

• Other message modification APIs

The following sections discuss the message modification APIs in detail.

The smfi_addheader() API

You can use the smfi_addheader() API to add a header to the current
message. You can call smfi_addheader() only from the xxfi_eom()
callback.

The declaration for smfi_addheader() is as follows:

#include <libmilter/mfapi.h>
Chapter 2 25

Milter APIs
Message Modification APIs
int smfi_addheader(

SMFICTX *ctx,

char *headerf,

char *headerv

);

Following are some points to consider regarding smfi_addheader():

• smfi_addheader() does not change existing headers of a message.
To change the current value of a header, use smfi_chgheader().

• A filter which calls smfi_addheader() must set the SMFIF_ADDHDRS
flag in the smfiDesc_str passed to the smfi_register() API.

• For smfi_addheader(), the order of the filter program is important.
Later filters will observe the header changes made by earlier filters.

• The filter program does not check the name and the value of the
header for standards compliance. However, each line of the header
must be less than 2048 characters. If you require longer headers, use
multiline headers. To make a multiline header, insert a LF (ASCII
0x0 character or \n in C language) followed by at least a white space
character, such as a space (ASCII 9x20) or a tab (ASCII 0x09 or \t in
C language) character.

You must not precede the LF with a CR (ASCII 0x0d character)
because the MTA adds the CR automatically. You must ensure that
you do not violate any standards.

Arguments

You must call smfi_addheader() with the following arguments:

ctx Specifies an opaque context structure.

headerf Specifies the header name, which is a non-NULL
string.

headerv Specifies the header value. headerv is a non-NULL,
null-terminated string. headerv can also be an empty
string.

Return Values

smfi_addheader() fails because of the following reasons and returns
MI_FAILURE:
Chapter 226

Milter APIs
Message Modification APIs
• headerf or headerv value is NULL.

• Adding headers in the current connection state is invalid.

• Memory allocation fails.

• Network error occurs.

• SMFIF_ADDHDRS is not set when the smfi_register() API is called.

smfi_addheader() returns MI_SUCCESS on success.

Example

Following is an example for smfi_addheader():

int ret;
SMFICTX *ctx;

...

ret = smfi_addheader(ctx, "Content-Type",
"multipart/mixed;\n\tboundary='foobar'");

The smfi_chgheader() API

You can use the smfi_chgheader() API to change or delete a message
header. You can call smfi_chgheader() only from the xxfi_eom()
callback.

The declaration of smfi_chgheader() is as follows:

#include <libmilter/mfapi.h>
int smfi_chgheader(

SMFICTX *ctx,
char *headerf,
mi_int32 hdridx,
char *headerv

);

Following are some points to consider regarding smfi_chgheader():

• While you can use smfi_chgheader() to add new headers, it is
efficient to use the smfi_addheader() API.

• A filter program that calls the smfi_chgheader() API must set the
SMFIF_CHGHDRS flag in the smfiDesc_str passed to the
smfi_register() API.
Chapter 2 27

Milter APIs
Message Modification APIs
• The filter order is important for the smfi_chgheader() API. A filter
application placed later in the sequence observes the changes
already done by earlier filters.

• The filter program does not check the name and the value of the
header for standards compliance. However, each line of the header
must be less than 2048 characters. If you require longer headers, use
multiline headers. To make a multiline header, insert a LF (ASCII
0x0 character or \n in C language) followed by at least a white space
character, such as a space (ASCII 9x20) or a tab (ASCII 0x09 or \t in
C language) character.

You must precede the LF with a CR (ASCII 0x0d character) because
the MTA adds the CR automatically. You must ensure that you do
not violate any standards.

Arguments

You must call smfi_chgheader() with the following arguments:

ctx Specifies an opaque context structure.

headerf Specifies the header name, which is a a non-NULL,
null-terminated string.

hdridx Specifies the header index value (1-based). A hdridx
value of 1 modifies the first occurrence of a header
named headerf. If hdridx is greater than the number
of occurrences of headerf, a new copy of headerf is
added.

headerv Specifies the new value of the given header. A value of
NULL to headerv implies that you must delete the
header.

Return Values

smfi_chgheader() fails because of the following reasons and returns
MI_FAILURE:

• headerf is NULL.

• Modifying headers in the current connection state is invalid.

• Memory allocation failure.

• Network error occurs.

• SMFIF_CHGHDRS is not set when smfi_register() is called.
Chapter 228

Milter APIs
Message Modification APIs
smfi_chgheader() returns MI_SUCCESS on success.

Example

Following is an example of smfi_chgheader():

int ret;
SMFICTX *ctx;

...

ret = smfi_chgheader(ctx, "Content-Type", 1,
"multipart/mixed;\n\tboundary='foobar'");

The smfi_insheader() API

You can use the smfi_insheader() API to prepend a header to the
current message. You can call smfi_insheader() only from the
xxfi_eom() callback.

The declaration of smfi_insheader() is as follows:

#include <libmilter/mfapi.h>
int smfi_insheader(

SMFICTX *ctx,
int hdridx,
char *headerf,
char *headerv

);

Following are some points to consider regarding smfi_insheader():

• smfi_insheader() does not change the existing headers of a
message. To change the current value of a header, use the
smfi_chgheader() API.

• A filter application that calls the smfi_insheader() API must set
the SMFIF_ADDHDRS flag in smfiDesc_str passed to the
smfi_register() API.

• For smfi_insheader(), the order in which you place filter
applications is important. Filter applications placed later in the
sequence observe changes already done by earlier filter applications.
If the value of hdridx is larger than the number of headers in the
message, the header is simply appended. The filter application does
not check the name and the value of the header for standards
compliance. However, each line of the header must be less than 2048
Chapter 2 29

Milter APIs
Message Modification APIs
characters. If you need longer headers, use a multiline header. To
make a multiline header, insert a LF (an ASCII 0x0a character, or \n
in C) followed by at least one white space character, such as, a space
(an ASCII 0x20 character) or tab (an ASCII 0x09 character, or \n in
C).

You must precede the LF with a CR (an ASCII 0x0d character)
because the MTA adds this automatically. You must ensure that you
do not violate any standards.

Arguments

You must call smfi_insheader() with the following arguments:

ctx Specifies an opaque context structure.

hdridx Specifies the location in the internal header list where
you must insert this header. If the value is set to 0,
hdridx is the first header.

headerf Specifies the header name, which is a non-NULL,
null-terminated string.

headerv Specifies the header value, which is a non-NULL,
null-terminated string. You can set headerv to an
empty argument.

Return Values

smfi_insheader() fails because of the following reasons and returns
MI_FAILURE:

• The headerf value or headerv value is NULL.

• Adding headers in the current connection state is invalid.

• Memory allocation fails.

• Network error occurs.

• SMFIF_ADDHDRS is not set when the smfi_register() is called.

smfi_insheader() returns MI_SUCCESS on success.

Example

Following is an example of smfi_insheader():

int ret;
SMFICTX *ctx;
Chapter 230

Milter APIs
Message Modification APIs
...

ret = smfi_insheader(ctx, 0, "First", "See me?");

The smfi_addrcpt() API

You can use the smfi_addrcpt() API to add a recipient for the current
message. You can call smfi_addrcpt() only from the xxfi_eom()
callback.

The declaration for smfi_addrcpt() is as follows:

#include <libmilter/mfapi.h>
int smfi_addrcpt(

SMFICTX *ctx,
char *rcpt

);

A filter program that calls smfi_addrcpt()must set the SMFIF_ADDRCPT
flag in the smfiDesc_str structure passed to smfi_register().

Arguments

You must call smfi_addrcpt() with the following arguments:

ctx Specifies an opaque context structure.

rcpt Specifies the new address of the recipient.

Return Values

smfi_addrcpt() fails because of the following reasons and returns
MI_FAILURE:

• The rcpt value is NULL.

• Adding recipients in the current connection state is invalid.

• Network error occurs.

• The SMFIF_ADDRCPT flag is not set when the smfi_register()
routine is called.

The smfi_delrcpt() API

You can use the smfi_delrctp() API to delete a recipient from the
envelope of the current message. You can call smfi_delrcpt() only from
the xxfi_eom() callback.
Chapter 2 31

Milter APIs
Message Modification APIs
The declaration for smfi_delrctp() is as follows:

#include <libmilter/mfapi.h>
int smfi_delrcpt(

SMFICTX *ctx;
char *rcpt;

);

The address is not deleted if an address and its expanded form do not
match.

Arguments

You must call smfi_delrcpt() with the following arguments:

ctx Specifies an opaque context structure.

rcpt Specifies the recipient address to be removed. The
recipient address is a non-NULL, null-terminated
string.

Return Values

smfi_delrcpt() fails because of the following reasons and returns
MI_FAILURE:

• The rcpt variable is NULL.

• Deleting recipients in the current connection state is invalid.

• Invalid error occurs.

• The SMFIF_DELRCPT is not set when the smfi_register() routine is
called.

smfi_delrcpt() returns MI_SUCCESS on success.

The smfi_replacebody() API

You can use the smfi_replacebody() API to replace the data in the
message body. Use smfi_replacebody() only from the xxfi_eom()
callback.

You must not call smfi_replacebody() more than once. If you call
smfi_replacebody() more than once, the subsequent
smfi_replacebody() calls append data to the new body of the message.

The declaration of smfi_replacebody() is as follows:
Chapter 232

Milter APIs
Message Modification APIs
#include <libmilter/mfapi.h>
int smfi_replacebody(

SMFICTX *ctx,
unsigned char *bodyp,
int bodylen

);

Following are some points to consider regarding smfi_replacebody():

• As the message body can be very large, setting SMFIF_CHGBODY can
significantly affect the performance of the filter program.

• If a filter program sets SMFIF_CHGBODY but does not call
smfi_replacebody(), the original body remains unchanged.

• The filter order is important for smfi_replacebody(). Filters placed
later in the sequence observe the changes created by earlier filters.

Arguments

You can call smfi_replacebody() with the following arguments:

ctx Specifies an opaque context structure.

bodyp Denotes a pointer to the start of the new body data,
which need not be null-terminated. If you set bodyp to
NULL, the length of the body is considered to be 0
(zero). The body data must be in CR or LF form.

bodylen Specifies the number of data bytes pointed by bodyp.

Return Values

smfi_replacebody() fails because of the following reasons and returns
MI_FAILURE:

• The value of bodyp is equal to NULL and the value of bodylen is
greater than 0.

• Changing the body in the current connection state is invalid.

• Network error occurs.

• The SMFIF_CHGBODY is not set when the smfi_register() routine is
called.
Chapter 2 33

Milter APIs
Other Message Handling APIs
Other Message Handling APIs
The following APIs provide special case handling instructions for the
Milter API or the MTA, without altering the content or status of the
message:

• smfi_progress()

• smfi_quarantine()

You can call these APIs only in the xxfi_eom() callback. These APIs can
invoke additional communication with the MTA. They return either
MI_SUCCESS or MI_FAILURE to indicate the status of the operation.

The status returned by these functions indicate whether the message of
the filter was successfully sent to the MTA and does not indicate whether
the MTA performed the requested operation.

The smfi_progress() API

You can use the smfi_progress() API to notify an MTA that an
operation is still working on a message causing the MTA to restart its
timeout values. You can call smfi_progress() from the xxfi_eom()
callback.

The declaration of smfi_progress() is as follows:

#include <libmilter/mfapi.h>
int smfi_progress(

SMFICTX *ctx;
);

Argument

You must call smfi_progress() with the ctx argument, which specifies
an opaque context structure.

Return Values

smfi_progress() returns MI_FAILURE on failure if a network failure
occurs. smfi_progress() returns MI_SUCCESS on success.
Chapter 234

Milter APIs
Other Message Handling APIs
The smfi_quarantine() API

You can use the smfi_quarantine() API to quarantine the message
using the specific reason. You can call smfi_quarantine() only from the
xxfi_eom() callback.

The declaration of smfi_quarantine() is as follows:

#include <libmilter/mfapi.h>
int smfi_quarantine(

SMFICTX *ctx;
char *reason;

);

Arguments

You must call smfi_quarantine() with the following arguments:

ctx Specifies an opaque context structure.

reason Specifies the quarantine reason, which is a non-NULL
and non-empty null-terminated string.

Return Values

smfi_quarantine() returns MI_FAILURE on failure because of the
following reasons:

• The reason argument is NULL or empty.

• Network error occurs.

• The SMFIF_QUARANTINE value is not set when the smfi_register()
routine is called.

smfi_quarantine() returns MI_SUCCESS on success.
Chapter 2 35

Milter APIs
Callbacks
Callbacks
A filter application must implement one or more of the following
callbacks, which are registered through the smfi_register() API:

• xxfi_connect()

• xxfi_helo()

• xxfi_envfrom()

• xxfi_envrcpt()

• xxfi_header()

• xxfi_eoh()

• xxfi_body()

• xxfi_eom()

• xxfi_abort()

• xxfi_close()

NOTE You can replace the xx portion in the callback name with the name of
your Milter program.

The following sections discuss these callbacks in detail.

The xxfi_connect() Callback

The xxfi_connect() callback returns the SMFIS_CONTINUE value to the
calling filter application. xxfi_connect() is called once during the start
of each SMTP connection.

The declaration of xxfi_connect() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_connect)(

SMFICTX *ctx,
char *hostname,
_SOCK_ADDR *hostaddr);
Chapter 236

Milter APIs
Callbacks
If an earlier filter application rejects a connection in its xxfi_connect()
callback, the current filter does not call xxfi_connect().

Arguments

You must call xxfi_connect() with the following arguments:

ctx Specifies an opaque context structure.

hostname Specifies the host name of the message sender, as
determined by a reverse lookup on the host address. If
the reverse lookup fails, hostname contains the IP
address of the message sender enclosed in square
brackets. For example, [a.b.c.d], where a.b.c.d
denotes the IP address.

hostaddr Specifies the host address, as determined by a
getpeername() call on the SMTP socket. The value of
hostaddr is NULL if the type is not supported in the
current version or if the SMTP connection is made
through stdin.

The xxfi_helo() Callback

The xxfi_helo() callback handles the HELO and EHLO commands.
xxfi_helo() returns the SMFIS_CONTINUE value to the calling filter
application. xxfi_helo() is called when the client sends a HELO or EHLO
command. You can therefore call xxfi_helo()multiple times or you can
also refrain from calling this callback.

The declaration of xxfi_helo() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_helo)(

SMFICTX * ctx,
char * helohost

);

Arguments

You must call xxfi_helo() with the following arguments:

ctx Specifies an opaque context structure.

helohost Specifies the value that is passed to HELO or EHLO,
which must be the domain name of the sending host.
Chapter 2 37

Milter APIs
Callbacks
The xxfi_envfrom() Callback

The xxfi_envfrom() callback handles the envelope FROM command.
xxfi_envfrom() returns the SMFIS_CONTINUE value to the calling filter
application. xxfi_envfrom() is called once during the beginning of each
message and before calling the xxfi_envrcpt() callback.

The declaration of xxfi_envfrom() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_envfrom)(

SMFICTX * ctx,
char **argv

);

Arguments

You must call xxfi_envfrom() with the following arguments:

ctx Specifies an opaque context structure.

argv Specifies null-terminated SMTP command arguments.
argv[0] denotes the address of the sender. Later
arguments, such as argv[1], argv[2], denote ESMTP
arguments.

For more information on ESTMP responses, see RFC
1869 (SMTP Service Extensions).

Return Values

xxfi_envfrom() returns the following values:

SMFIS_TEMPFAIL Rejects the sender and message with a temporary
error. The filter application does not call the
xxfi_abort() callback to abort the message and
you can specify a subsequent new message.

SMFIS_REJECT Rejects the sender and message. The filter
application does not call the xxfi_abort()
callback to abort the message and you can specify
a subsequent new message.

SMFIS_DISCARD Accepts and silently discards a message. The filter
application does not call the xxfi_abort()
callback to abort the message.
Chapter 238

Milter APIs
Callbacks
SMFIF_ACCEPT Accepts the message. The filter application does
not call the xxfi_abort() callback to abort the
message.

The xxfi_envrcpt() Callback

The xxfi_envrcpt() API handles the envelope RCTP command.
xxfi_envrcpt() returns SMFIS_CONTINUE to the calling filter
application. You can call xxfi_envrcpt() once for every recipient. If a
message contains multiple recipients, you can call xxfi_envrcpt()
multiple times, immediately after the xxfi_envfrom() callback.

The declaration of xxfi_envrcpt() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_envrcpt)(

SMFICTX * ctx,
char ** argv

);

Arguments

You must call xxfi_envrcpt() with the following arguments:

ctx Specifies an opaque context structure.

argv Specifies null-terminated SMTP command arguments.
argv[0] denotes the address of the recipient. Later
arguments, such as argv[1], argv[2], denote ESMTP
arguments.

For more information on ESTMP responses, see RFC
1869 (SMTP Service Extensions).

Return Values

xxfi_envrcpt() returns the following values:

SMFIS_TEMPFAIL Fails temporarily for a recipient but the filter
application processes further recipients because
the filter application does not call the
xxfi_abort() callback to abort the message.

SMFIS_REJECTS Rejects a recipient but the filter application
processes further recipients because the filter
application does not call the xxfi_abort()
callback to abort the message.
Chapter 2 39

Milter APIs
Callbacks
SMFIS_DISCARD Accepts and discards the message. The filter
application does not call the xxfi_abort()
callback to abort the message.

SMFIS_ACCEPT Accepts the recipient. The filter application does
not call the xxfi_abort() callback to abort the
message.

The xxfi_header() Callback

The xxfi_header() handles the message header and returns the
SMFIS_CONTINUE value to the calling filter application. You can call
xxfi_header() multiple times after calling the xxfi_envrcpt()
callback and before calling the xxfi_eoh() callback, and once for each
message header. Later filter applications can observe the header changes
or additions made by earlier filter applications.

The declaration of xxfi_header() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_header)(

SMFICTX * ctx,
char * headerf,
char * headerv

);

Arguments

You must call xxfi_header() with the following arguments:

ctx Specifies an opaque context structure.

headerf Specifies the header field name.

headerv Specifies the header field value. The header content
can include folded white space, that is, multiple lines
followed by a white space. The filter application
removes the trailing line terminator (CR or LF).

The xxfi_eoh() Callback

The xxfi_eoh() callback handles the end of message headers and
returns SMFIS_CONTINUE to the calling filter application. You must call
xxfi_eoh() only once after all the headers are sent and processed.

Argument
Chapter 240

Milter APIs
Callbacks
You must call xxfi_eoh() with the ctx argument, which specifies an
opaque context structure.

The xxfi_body() Callback

The xxfi_body() callback handles a portion of message body and
returns the SMFIS_CONTINUE value to the calling filter application. The
filter application calls xxfi_body() multiple times after calling the
xxfi_eoh() callback and before calling the xxfi_eom() callback.

The declaration of xxfi_body() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_body)(

SMFICTX * ctx,
unsigned char * bodyp,
size_t len

);

Following are some points to consider regarding xxfi_body():

• The bodyp argument points to a sequence of bytes and it is not a C
string that is a sequence of characters terminated by a null character
(\0). You must not use the normal C string functions, such as
strlen() to modify the block of data. The byte sequence in the block
can also contain \0 characters. If you add a trailing \0 character, C
string functions can still fail to work in the block.

• Because message bodies can be large, defining xxfi_body()
significantly impacts the filter performance.

• The filter application represents end-of-lines as received from the
SMTP transaction (normally as CR or LF).

• Later filter applications observe body changes made by earlier filter
applications.

• You can send message bodies in multiple portions with one call to
xxfi_body() per portion.

Arguments

You must call xxfi_body() with the following arguments:

ctx Specifies an opaque context structure.
Chapter 2 41

Milter APIs
Callbacks
bodyp Specifies a pointer to the beginning of a block of body
data. bodyp is not valid outside a call to the
xxfi_body() callback.

len Specifies the amount of data pointed by bodyp.

The xxfi_eom() Callback

The xxfi_eom() callback denotes the end of a message and returns the
SMFIS_CONTINUE value to the calling filter application. xxfi_eom() is
called once after all calls to the xxfi_body() callback for a given
message.

The declaration of xxfi_eom() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_eom)(

SMFICTX * ctx
);

A filter application must make all its modifications to the message
headers, body, and envelope in xxfi_eom() callback. These modifications
are made through the smfi_* APIs.

Argument

You must call xxfi_eom() API with the ctx argument, which specifies
an opaque context structure.

The xxfi_abort() Callback

The xxfi_abort() callback handles the messages that are aborted.
xxfi_abort() returns the SMFIS_CONTINUE value to the calling filter
application. You can call xxfi_abort() any time while processing the
message, that is between a message-oriented API and the xxfi_eom()
callback.

The declaration of xxfi_abort() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_abort)(

SMFICTX * ctx
);

Following are some points to consider regarding xxfi_abort():
Chapter 242

Milter APIs
Callbacks
• xxfi_abort()must reclaim any resource allocated on a per-message
basis and must be tolerant of being called between any two
message-oriented callbacks.

• Calls to xxfi_abort() and xxfi_eom() are mutually exclusive.

• xxfi_abort() is not responsible for reclaiming connection-specific
data because xxfi_close() is always called when a connection is
closed.

• Because xxfi_abort() aborts the message, the filter application
ignores the return value of xxfi_abort().

• xxfi_abort() is called only if the message is aborted outside the
control of the filter application and if the filter application has not
completed its message-oriented processing. For example, if a filter
has already returned the values SMFIS_ACCEPT, SMFIS_REJECT, or
SMFIS_DISCARD from a message-oriented routine, xxfi_abort() is
not called even if the message is aborted later outside its control.

Argument

You must call xxfi_abort() with the ctx argument, which specifies an
opaque context structure.

The xxfi_close() Callback

The xxfi_close() callback denotes that the current connection is
closed. It returns the SMFIS_CONTINUE value to the calling filter
application. The filter application always calls xxfi_close() once at the
end of each connection.

The declaration of xxfi_close() is as follows:

#include <libmilter/mfapi.h>
sfsistat (*xxfi_close)(

SMFICTX * ctx
);

Following are some points to consider regarding xxfi_close():

• You can call xxfi_close() in any order, that is, you can call
xxfi_close() even before calling xxfi_connect(). After
establishing a connection with the filter application, if Sendmail
decides to discard the traffic of a connection, Sendmail does not pass
Chapter 2 43

Milter APIs
Callbacks
data to the filter application until the client closes down the
connection. This is this time when xxfi_close() is called to close
the connection.

• xxfi_close() is called on close even if the previous mail transaction
was aborted.

• xxfi_close() is responsible for freeing any resource allocated on a
per-connection basis.

• The filter application ignores the return value of xxfi_close()
because after the connection is closed, the return value does not hold
any importance.

Argument

You must call xxfi_close() with the ctx argument, which specifies an
opaque context structure.
Chapter 244

3 Control Flow of Milter APIs

This chapter discusses the call order sequence and resource management
techniques for Milter APIs. It also discusses the control flow, and
performance enhancement of Milter APIs.
Chapter 3 45

Control Flow of Milter APIs
It discusses the following topics:

• “Call Order Sequence” on page 47

• “Initialization Parameters for Filter Applications” on page 49

• “Sample Filter Pseudocode” on page 50

• “Multithreading” on page 52

• “Resource Management” on page 53

• “Signal Handling” on page 54
Chapter 346

Control Flow of Milter APIs
Call Order Sequence
Call Order Sequence
Figure 3-1 illustrates the sequence in which the filter applications are
called in a Milter program.

Figure 3-1 Milter Call Order Sequence
Chapter 3 47

Control Flow of Milter APIs
Call Order Sequence
A filter application cannot process any message untill it registers its
callbacks with Sendmail.

A filter application initiates a filter session using the smfi_setconn()
API. The filter application initiates the session once and before calling
the smfi_main() API.

The smfi_setconn() API sets the socket through which the filter
application communicates with Sendmail. The filter application can
optionally call the smfi_opensocket() API, which attempts to open the
specified socket and ensures that the interface works properly. The filter
application can also make optional calls to smfi_settimeout(),
smfi_setbacklog(), and smfi_setdbg() before passing control to the
smfi_main() API. After initiating the session and calling the optional
APIs, the filter application must register with Sendmail, using the
smfi_register() API, which informs Sendmail about the filter
callbacks and the actual information the filter application requires. The
filter application then passes control to the smfi_main() API.

The smfi_main() API starts the listener for the filter application and
seeks for messages from Sendmail. The smfi_main() API makes
respective calls to the callback functions before validating the message.
For example, during a HELO message, smfi_main() invokes the filter
callback xxfi_helo().
Chapter 348

Control Flow of Milter APIs
Initialization Parameters for Filter Applications
Initialization Parameters for Filter
Applications
In addition to initializing libmilter, a filter application must initialize
the following parameters before calling the smfi_main() API:

• The callbacks the filter program requires to call and the types of
message modification you intend to perform. You must initializing
these parameters. For more information, see “The smfi_register()
API” on page 11.

• The socket address to be used when communicating with an MTA.
You must initialize these parameters. For more information, see “The
smfi_setconn() API” on page 13.

• The number of seconds the filter application must wait for MTA
connections before timing out. You can optionally initialize this
parameter. For more information, see “The smfi_settimeout() API” on
page 14.

A subsequent call to the smfi_main() API fails if the filter application
fails to initialize libmilter and if one or more parameters passed by the
filter application are invalid.
Chapter 3 49

Control Flow of Milter APIs
Sample Filter Pseudocode
Sample Filter Pseudocode
The following pseudocode describes the filtering process from the
perspective of a set of N MTAS, each corresponding to an SMTP
connection.

For each of N connections
{

For each filter
process connection/helo (xxfi_connect, xxfi_helo)

MESSAGE:For each message in this connection (sequentially)
{

For each filter
process sender (xxfi_envfrom)

For each recipient
{

For each filter
process recipient (xxfi_envrcpt)

}
For each filter
{

For each header
process header (xxfi_header)

process end of headers (xxfi_eoh)
For each body block

process this body block (xxfi_body)
process end of message (xxfi_eom)

}
}
For each filter

process end of connection (xxfi_close)
}

The callbacks within parenthesis are placed beside the processing stages
in which they are called. If a callbacks is not defined for a particular
stage, the filter application can bypass that stage. The filter application
can abort processing at any time during a message, in which case the
xxfi_abort() callback is invoked and the control returns to MESSAGE.

Sendmail contacts the filter applications in the order defined in the
Sendmail configuration file.
Chapter 350

Control Flow of Milter APIs
Sample Filter Pseudocode
To write a filter application, you must invoke different callbacks to
process relevant parts of a message transaction. The Milter library then
controls all sequencing, threading, and protocol exchange with Sendmail.

 Table 3-1 outlines the control flow for a filter process and denotes
different callbacks invoked during an SMTP transaction.

Although Table 3-1 denotes only a single message, multiple messages
can be sent in a single connection. The remote host or Sendmail can
abort a message and connection anytime during the SMTP transaction.
If the abort occurs during a message processing (that is, between the
MAIL command and the final . command), the filter application calls the
xxfi_abort() API. The filter application calls xxfi_close() any time
when the connection closes.

Table 3-1 Milter Callbacks Related to an SMTP Transaction

SMTP Commands Milter Callbacks

(open SMTP connection) xxfi_connect()

HELO ... xxfi_helo()

MAIL From: ... xxfi_envfrom()

RCPT To: ... xxfi_envrcpt()

[more RCPTs] [xxfi_envrcpt()]

DATA

Header: ... xxfi_header()

[more headers] [xxfi_header()]

xxfi_eoh()

body... xxfi_body()

[more body...] [xxfi_body()]

. xxfi_eom()

QUIT xxfi_close()

(close SMTP connection)
Chapter 3 51

Control Flow of Milter APIs
Multithreading
Multithreading
A single filter process can handle any number of connections
simultaneously. All the filtering callbacks must therefore be reentrant
and they must use appropriate external synchronization methods to
access global data. Because a one-to-one correspondence between the
threads and connections (N connections mapped on to M threads, where
M is less than or equal to N) does not exist, you must access
connection-specific data through the handles provided by the Milter
library. You must not rely on the thread-specific data blocks supplied by
the library to store data blocks (for example, pthread_getspecific())
to store connection-specific data.

For more information on setting and getting connection-specific pointers,
see “The smfi_setpriv() API” on page 20 and “The smfi_getpriv() API” on
page 19, respectively.
Chapter 352

Control Flow of Milter APIs
Resource Management
Resource Management
You must deallocate per-connection resources because filter applications
exist for a long time and they handle many connections. The lifetime of a
connection depends on calls to the callbacks xxfi_connect() and
xxfi_close(). For more information on message-oriented and
connection-oriented APIs, see “Message Modification APIs” on page 25
and “Data Access APIs” on page 18, respectively. Only one
connection-specific data pointer is available for each connection.

Each message is marked by calls to the xxfi_envfrom() and
xxfi_eom() callbacks (or the xxfi_abort() callback), which implies
that message-specific resources are allocated and reclaimed from these
routines. Only one active message is available because the messages in a
connection are processed sequentially by each filter, and it is associated
with a given connection and filter (and connection-private data block).
The filter application must access these resources through the
smfi_getpriv() and smfi_setpriv() APIs and must reclaim the
resources using the xxfi_abort() API.
Chapter 3 53

Control Flow of Milter APIs
Signal Handling
Signal Handling
The Milter library, libmilter.a, manages signal handling, and the
signals do not directly influence filter applications.

Sendmail 8.13.3 includes the following signal handlers:

• Stop – Specifies that new connections from the MTA are not accepted
but existing connections are allowed to continue.

• Abort – Specifies that all filter applications will be stopped after the
next communication with Sendmail happens.
Chapter 354

4 Configuring and Compiling
Milter APIs

This chapter discusses how to configure Milter APIs and to compile them
with Sendmail.
Chapter 4 55

Configuring and Compiling Milter APIs
This chapter discusses the following topics:

• “Compiling and Installing Your Filter” on page 57

• “Configuring Milter in Sendmail” on page 58
Chapter 456

Configuring and Compiling Milter APIs
Compiling and Installing Your Filter
Compiling and Installing Your Filter
To compile a filter, you must complete the following steps:

1. Insert the include and Sendmail directories in your include path.
For example, -I/path/to/include -I path/to/sendmail.

2. Ensure that the libmilter.a file is in your library path and link
your filter application with this file. For example, you can use the
-lmilter option to link your the filter application with this file.

3. Compile with pthreads either by using -pthread for gcc or by
linking with a pthreads support library (-lpthread).

Following is an example of a command to compile a filter application:

cc -I/path/to/include -I/path/to/sendmail -c myfile.c

where:

myfile.c specifies the name of the Milter program.

Following is an example of a command to link the filter application:

cc -o myfilter [object-files] -L[library-location]
-lmilter -pthread
Chapter 4 57

Configuring and Compiling Milter APIs
Configuring Milter in Sendmail
Configuring Milter in Sendmail
You must define a filter in your Sendmail configuration file and compile
Sendmail.

To define a filter application in your Sendmail configuratin file, complete
the following steps:

1. You must add filters to your
/usr/contrib/sendmail/etc/mail/cf/cf/generic-hpux-10.mc
file. You can use the following commands to configure filters in the
.mc file:

MAIL_FILTER (‘name’, ‘equates’)
INPUT_MAIL_FILTER(‘name’, ‘equates’)

The MAIL_FILTER()command defines a filter with the given name
and equates.

For example, MAIL_FILTER(‘archive’,
‘S=local:/var/run/archivesock, F=R’)

where:

S=local:/var/run/archivesock, F=R Specifies the equates.

archive Specifies name of the
filter application.

This command creates the following equivalent entry in the
sendmail.cf file:

Xarchive, S=local:/var/run/archivesock, F=R

The INPUT_MAIL_FILTER() command performs the same action as
the MAIL-FILTER command but INPUT_MAIL_FILTER also populates
the m4 variable confINPUT_MAIL_FILTERSwith the name of the filter
such that the filter application is actually called by Sendmail.

2. You can define the m4 variables or cf options to configure the
Sendmail macros that are accessible through the smfi_getsymval()
API.
Chapter 458

Configuring and Compiling Milter APIs
Configuring Milter in Sendmail
Table 4-1 lists the different mf variables and cf options.

Following are the equates that you can include in the .mc file:

• The required S= equate that specifies the socket where Sendmail
must look for the filter.

• The optional F= equate that specifies flags.

• The optional T= equate that specifies timeouts.

All the equate names field names, and flag values are case sensitive.

Table 4-2 lists and describes the flag values for the F= equate.

If a filter application is unavailable or unresponsive and you do not
specify any flag in the
/usr/contrib/sendmail/etc/mail/cf/cf/generic-hpux-10.mc file,

Table 4-1 The mf Variables and cf Options

The .mc File The .cf File Default Value

confMILTER_MACROS_CO
NNECT

Milter.macros
.connect

j, _, {daemon_name}, {if_name},
{if_addr}

confMILTER_MACROS_HE
LO

Milter.macros
.helo

{tls_version}, {cipher},
{cipher_bits}, {cert_subject},
{cert_issuer}

confMILTER_MACROS_EN
VFROM

Milter.macros
.envfrom

i, {auth_type}, {auth_authen},
{auth_ssf}, {auth_author},
{mail_mailer}, {mail_host},
{mail_addr}

confMILTER_MACROS_EN
VRCPT

Milter.macros
.envrcpt

{rcpt_mailer}, {rcpt_host},
{rcpt_addr}

Table 4-2 The F= Equate Values

Flag Description

R Rejects connection if the filter is not
available.

T Aborts connection temporarily if
the filter is not available.
Chapter 4 59

Configuring and Compiling Milter APIs
Configuring Milter in Sendmail
Sendmail 8.13.3 continues with the normal handling of the current
connection. For every new connection, Sendmail 8.13.3 attempts to
contact the filter application again.

Table 4-3 lists and describes the different fields in the T= equate.

A semicolon (;) separates each field because a comma (,) already
separates the equates.

The separator between each field is a semicolon (;) because a comma (,)
already separates the equates. The value of each field is a decimal
number followed by a single letter designating the units (s for seconds
and m for minutes).

Following is an example of a myconfig.mc file, which contains 3 filters,
namely filter1, filter2, and filter3:

INPUT_MAIL_FILTER(‘filter1’, ‘S=unix:/var/run/f1.sock, F=R’)
INPUT_MAIL_FILTER(‘filter2’, ‘S=unix:/var/run/f2.sock, F=T, T=S:1s;R:1s;E:5m’)
INPUT_MAIL_FILTER(‘filter3’, ‘S=inet:999@localhost, T=C:2m’)

define(‘confINPUT_MAIL_FILTERS’, ‘filter2,filter1,filter3’)

Table 4-3 The T= Equate Values

Flag Description

C Specifies the timeout value for connecting to a
filter application. If you set C to 0, the system
connect() timeout value is used. The default
timeout value for C is 5 minutes.

S Specifies the timeout value for sending
information from Sendmail to a filter
application. The default value for S is 10
seconds.

R Specifies the timeout value for reading reply
from the filter application. The default value
for R is 10 seconds.

E Specifies the overall timeout value between
sending the end-of-message to the filter and
waiting for the final acknowledgment. The
default value for E is 5 minutes.
Chapter 460

Configuring and Compiling Milter APIs
Configuring Milter in Sendmail
Run the following command to generate the configuration file,
myconfig.cf:

m4 ../m4/cf.m4 myconfig.mc > myconfig.cf

These macros add the following entries to your Sendmail configuration
file (sendmail.cf):

Xfilter1, S=unix:/var/run/f1.sock, F=R
Xfilter2, S=unix:/var/run/f2.sock, F=T, T=S:1s;R:1s;E:5m
Xfilter3, S=inet:999@localhost, T=C:2m

O InputMailFilters=filter2,filter1,filter3

By default, the filters run in the order defined in the .mc file. However,
because confINPUT_MAIL_FILTERS is defined, the filters are run in the
order “filter2, filter1, filter3”.

NOTE You can use the MAIL_FILTER() command, instead of the
INPUT_MAIL_FILTER() command, to define a filter without adding it to
the input filter list.
Chapter 4 61

Configuring and Compiling Milter APIs
Configuring Milter in Sendmail
Chapter 462

5 Sample Program

This chapter contains a sample C program for a filter application.
Chapter 5 63

Sample Program
Milter Sample Program
Milter Sample Program
Following is a sample filter program.

#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>

#include "libmilter/mfapi.h"

#ifndef bool
define boolint
define TRUE1
define FALSE0
#endif /* ! bool */

struct mlfiPriv
{

char*mlfi_fname;
char*mlfi_connectfrom;
char*mlfi_helofrom;
FILE*mlfi_fp;

};

#define MLFIPRIV((struct mlfiPriv *) smfi_getpriv(ctx))

extern sfsistatmlfi_cleanup(SMFICTX *, bool);

/* recipients to add and reject (set with -a and -r options) */
char *add = NULL;
char *reject = NULL;

sfsistat
mlfi_connect(ctx, hostname, hostaddr)

SMFICTX *ctx;
char *hostname;
_SOCK_ADDR *hostaddr;

{

Chapter 564

Sample Program
Milter Sample Program
struct mlfiPriv *priv;
char *ident;

/* allocate some private memory */
priv = malloc(sizeof *priv);
if (priv == NULL)
{

/* can’t accept this message right now */
return SMFIS_TEMPFAIL;

}
memset(priv, ’\0’, sizeof *priv);

/* save the private data */
smfi_setpriv(ctx, priv);

ident = smfi_getsymval(ctx, "_");
if (ident == NULL)

ident = "???";
if ((priv->mlfi_connectfrom = strdup(ident)) == NULL)
{

(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_helo(ctx, helohost)

SMFICTX *ctx;
char *helohost;

{
size_t len;
char *tls;
char *buf;
struct mlfiPriv *priv = MLFIPRIV;

tls = smfi_getsymval(ctx, "{tls_version}");
if (tls == NULL)

tls = "No TLS";
if (helohost == NULL)

helohost = "???";
len = strlen(tls) + strlen(helohost) + 3;
if ((buf = (char*) malloc(len)) == NULL)
{

Chapter 5 65

Sample Program
Milter Sample Program
(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}
snprintf(buf, len, "%s, %s", helohost, tls);
if (priv->mlfi_helofrom != NULL)

free(priv->mlfi_helofrom);
priv->mlfi_helofrom = buf;

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_envfrom(ctx, argv)

SMFICTX *ctx;
char **argv;

{
int fd = -1;
int argc = 0;
struct mlfiPriv *priv = MLFIPRIV;
char *mailaddr = smfi_getsymval(ctx, "{mail_addr}");

/* open a file to store this message */
if ((priv->mlfi_fname = strdup("/tmp/msg.XXXXXX")) == NULL)
{

(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

if ((fd = mkstemp(priv->mlfi_fname)) == -1)
{

(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

if ((priv->mlfi_fp = fdopen(fd, "w+")) == NULL)
{

(void) close(fd);
(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* count the arguments */
while (*argv++ != NULL)

++argc;
Chapter 566

Sample Program
Milter Sample Program
/* log the connection information we stored earlier: */
if (fprintf(priv->mlfi_fp, "Connect from %s (%s)\n\n",

priv->mlfi_helofrom, priv->mlfi_connectfrom) == EOF)
{

(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}
/* log the sender */
if (fprintf(priv->mlfi_fp, "FROM %s (%d argument%s)\n",

mailaddr ? mailaddr : "???", argc,
(argc == 1) ? "" : "s") == EOF)

{
(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_envrcpt(ctx, argv)

SMFICTX *ctx;
char **argv;

{
struct mlfiPriv *priv = MLFIPRIV;
char *rcptaddr = smfi_getsymval(ctx, "{rcpt_addr}");
int argc = 0;

/* count the arguments */
while (*argv++ != NULL)

++argc;

/* log this recipient */
if (reject != NULL && rcptaddr != NULL &&

(strcasecmp(rcptaddr, reject) == 0))
{
if (fprintf(priv->mlfi_fp, "RCPT %s -- REJECTED\n",

rcptaddr) == EOF)
{

(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}
return SMFIS_REJECT;

}
if (fprintf(priv->mlfi_fp, "RCPT %s (%d argument%s)\n",
Chapter 5 67

Sample Program
Milter Sample Program
rcptaddr ? rcptaddr : "???", argc,
(argc == 1) ? "" : "s") == EOF)

{
(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_header(ctx, headerf, headerv)

SMFICTX *ctx;
char *headerf;
unsigned char *headerv;

{
/* write the header to the log file */

if (fprintf(MLFIPRIV->mlfi_fp, "%s: %s\n", headerf,\
headerv) == EOF)

{
(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_eoh(ctx)

SMFICTX *ctx;
{

/* output the blank line between the header and the body */
if (fprintf(MLFIPRIV->mlfi_fp, "\n") == EOF)
{

(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_body(ctx, bodyp, bodylen)
Chapter 568

Sample Program
Milter Sample Program
SMFICTX *ctx;
unsigned char *bodyp;
size_t bodylen;

{
struct mlfiPriv *priv = MLFIPRIV;

/* output body block to log file */
if (fwrite(bodyp, bodylen, 1, priv->mlfi_fp) != 1)
{

/* write failed */
fprintf(stderr, "Couldn’t write file %s: %s\n",

priv->mlfi_fname, strerror(errno));
(void) mlfi_cleanup(ctx, FALSE);
return SMFIS_TEMPFAIL;

}

/* continue processing */
return SMFIS_CONTINUE;

}

sfsistat
mlfi_eom(ctx)

SMFICTX *ctx;
{

bool ok = TRUE;

/* change recipients, if requested */
if (add != NULL)

ok = (smfi_addrcpt(ctx, add) == MI_SUCCESS);
return mlfi_cleanup(ctx, ok);

}

sfsistat
mlfi_abort(ctx)

SMFICTX *ctx;
{

return mlfi_cleanup(ctx, FALSE);
}

sfsistat
mlfi_cleanup(ctx, ok)

SMFICTX *ctx;
bool ok;

{
sfsistat rstat = SMFIS_CONTINUE;
struct mlfiPriv *priv = MLFIPRIV;
Chapter 5 69

Sample Program
Milter Sample Program
char *p;
char host[512];
char hbuf[1024];

if (priv == NULL)
return rstat;

/* close the archive file */
if (priv->mlfi_fp != NULL && fclose(priv->mlfi_fp) == EOF)
{
/* failed; we have to wait until later */
fprintf(stderr, "Couldn’t close archive file %s: %s\n",

priv->mlfi_fname, strerror(errno));
rstat = SMFIS_TEMPFAIL;
(void) unlink(priv->mlfi_fname);

}
else if (ok)
{
/* add a header to the message announcing our presence */
if (gethostname(host, sizeof host) < 0)

snprintf(host, sizeof host, "localhost");
p = strrchr(priv->mlfi_fname, ’/’);
if (p == NULL)

p = priv->mlfi_fname;
else

p++;
snprintf(hbuf, sizeof hbuf, "%s@%s", p, host);

if (smfi_addheader(ctx, "X-Archived", hbuf) != MI_SUCCESS)
{

/* failed; we have to wait until later */
fprintf(stderr, "Couldn’t add header: X-Archived:

%s\n", hbuf);
ok = FALSE;
rstat = SMFIS_TEMPFAIL;
(void) unlink(priv->mlfi_fname);

}

}
else
{

/* message was aborted -- delete the archive file */
fprintf(stderr, "Message aborted. Removing %s\n",

priv->mlfi_fname);
rstat = SMFIS_TEMPFAIL;
(void) unlink(priv->mlfi_fname);

}

Chapter 570

Sample Program
Milter Sample Program
/* release private memory */
if (priv->mlfi_fname != NULL)

free(priv->mlfi_fname);

/* return status */
return rstat;

}

sfsistat
mlfi_close(ctx)

SMFICTX *ctx;
{

struct mlfiPriv *priv = MLFIPRIV;

if (priv == NULL)
return SMFIS_CONTINUE;

if (priv->mlfi_connectfrom != NULL)
free(priv->mlfi_connectfrom);

if (priv->mlfi_helofrom != NULL)
free(priv->mlfi_helofrom);

free(priv);
smfi_setpriv(ctx, NULL);
return SMFIS_CONTINUE;

}

struct smfiDesc smfilter =
{

"SampleFilter",/* filter name */
SMFI_VERSION,/* version code -- do not change */
SMFIF_ADDHDRS|SMFIF_ADDRCPT,

/* flags */
mlfi_connect,/* connection info filter */
mlfi_helo,/* SMTP HELO command filter */
mlfi_envfrom,/* envelope sender filter */
mlfi_envrcpt,/* envelope recipient filter */
mlfi_header,/* header filter */
mlfi_eoh,/* end of header */
mlfi_body,/* body block filter */
mlfi_eom,/* end of message */
mlfi_abort,/* message aborted */
mlfi_close,/* connection cleanup */

};

static void
usage(prog)

char *prog;
Chapter 5 71

Sample Program
Milter Sample Program
{
fprintf(stderr,

"Usage: %s -p socket-addr [-t timeout] [-r
reject-addr] [-a add-addr]\n", prog);

}

int
main(argc, argv)

int argc;
char **argv;

{
bool setconn = FALSE;
int c;
const char *args = "p:t:r:a:h";
extern char *optarg;

/* Process command line options */
while ((c = getopt(argc, argv, args)) != -1)
{

switch (c)
{

case ’p’:
if (optarg == NULL || *optarg == ’\0’)
{

(void) fprintf(stderr, "Illegal
conn: %s\n", optarg);

exit(EX_USAGE);

if (smfi_setconn(optarg)==MI_FAILURE)
{

(void) fprintf(stderr,
"smfi_setconn failed\n");

exit(EX_SOFTWARE);
}

/*
** If we’re using a local socket, make sure it
** doesn’t already exist. Don’t ever run this
** code as root!!
*/

if (strncasecmp(optarg, "unix:", 5) == 0)
unlink(optarg + 5);

else if (strncasecmp(optarg, "local:", 6) == 0)
unlink(optarg + 6);

setconn = TRUE;
Chapter 572

Sample Program
Milter Sample Program
break;

case ’t’:
if (optarg == NULL || *optarg == ’\0’)
{

(void) fprintf(stderr, "Illegal
timeout: %s\n", optarg);

exit(EX_USAGE);
}
if (smfi_settimeout(atoi(optarg)) ==

MI_FAILURE)
{

(void) fprintf(stderr,
"smfi_settimeout failed\n");

exit(EX_SOFTWARE);
}
break;

case ’r’:
if (optarg == NULL)
{

(void) fprintf(stderr,
"Illegal reject rcpt: %s\n",optarg);
exit(EX_USAGE);

}
reject = optarg;
break;

case ’a’:
if (optarg == NULL)
{

(void) fprintf(stderr,
"Illegal add rcpt: %s\n", optarg);

exit(EX_USAGE);
}
add = optarg;
smfilter.xxfi_flags |= SMFIF_ADDRCPT;
break;

case ’h’:
default:

usage(argv[0]);
exit(EX_USAGE);

}
}
if (!setconn)
Chapter 5 73

Sample Program
Milter Sample Program
{
fprintf(stderr, "%s: Missing required -p

argument\n", argv[0]);
usage(argv[0]);
exit(EX_USAGE);

}
if (smfi_register(smfilter) == MI_FAILURE)
{

fprintf(stderr, "smfi_register failed\n");
exit(EX_UNAVAILABLE);

}
return smfi_main();

}

/* eof */

This sample program logs each message to a separate temporary file,
adds a recipient given with the -a flag, and rejects a disallowed recipient
address given with the -r flag. The sample program recognizes the
following options:

-p port Specifies the port through which Sendmail connects to
the filter.

-t sec Specifies the timeout value.

-r addr Specifies a recipient to reject.

-a addr Specifies a recipient to add.
Chapter 574

	1 Introduction
	Milter Overview
	Milter-Related Files
	Header Files
	Library

	Implementing Filtering Policies
	Communication Between an MTA and Milter
	Before You Begin

	2 Milter APIs
	Library Control APIs
	The smfi_register() API
	The smfi_setconn() API
	The smfi_settimeout() API
	The smfi_main() API
	The smfi_opensocket() API
	The smfi_setdbg() API
	The smfi_stop() API

	Data Access APIs
	The smfi_getsymval() API
	The smfi_getpriv() API
	The smfi_setpriv() API
	The smfi_setreply() API
	The smfi_setmlreply() API

	Message Modification APIs
	The smfi_addheader() API
	The smfi_chgheader() API
	The smfi_insheader() API
	The smfi_addrcpt() API
	The smfi_delrcpt() API
	The smfi_replacebody() API

	Other Message Handling APIs
	The smfi_progress() API
	The smfi_quarantine() API

	Callbacks
	The xxfi_connect() Callback
	The xxfi_helo() Callback
	The xxfi_envfrom() Callback
	The xxfi_envrcpt() Callback
	The xxfi_header() Callback
	The xxfi_eoh() Callback
	The xxfi_body() Callback
	The xxfi_eom() Callback
	The xxfi_abort() Callback
	The xxfi_close() Callback

	3 Control Flow of Milter APIs
	Call Order Sequence
	Initialization Parameters for Filter Applications
	Sample Filter Pseudocode
	Multithreading
	Resource Management
	Signal Handling

	4 Configuring and Compiling Milter APIs
	Compiling and Installing Your Filter
	Configuring Milter in Sendmail

	5 Sample Program
	Milter Sample Program

