
HP C/HP-UX Release Notes for HP-UX 11.01

HP 9000 Computers

HP C/HP-UX Version B.11.01.20

5969-4407

June 2000

2

Legal Notice
Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Hewlett-Packard shall not be liable for errors contained
herein or direct, indirect, special, incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Copyright © 2000 Hewlett-Packard Company.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission
is prohibited, except as allowed under the copyright laws.

Corporate Offices:

Hewlett-Packard Co.
3000 Hanover St.
Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of Defense is
subject to restrictions as set forth in paragraph (b)(3)(ii) of the Rights in Technical
Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s), compact disc(s), or tape cartridge(s)
supplied for this pack is restricted to this product only. Additional copies of the
programs may be made for security and back-up purposes only. Resale of the
programs in their present form or with alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard product
and replacement parts can be obtained from your local Sales and Service Office.

PostScript is a trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of The Open Group.

Contents

iii

1. New and Changed Features

C9X standard macros .2

Predefined identifier__func__ .4

Syntax .4

Example .4

+ESconstlit and +ESnolit compiler options. .5

-Bextern compiler option .5

-fast compiler option .6

Declarations within code .7

Example .7

WDB “fix and continue” .8

Shared library performance improvements .9

How to use libcres.a .11

C HTML Online Help .12

2. Installation Information

Beginning Installation .14

HP C Developer’s Bundle Contents .15

Installed Compiler Paths .16

Transition Links .17

3. Documentation Overview

C Compiler Documentation .20

HP C/HP-UX Release Notes .20

Printed Documentation. .20

HP C Online Help. .21

Before you begin. .21

iv

Contents

Accessing HP C Online Help . 22

X-Motif CDE Help is obsolete . 22

Related Documentation . 23

4. Problem Descriptions and Fixes

Defect fixes . 26

Workarounds . 27

Chapter 1 1

New and Changed Features

1 New and Changed Features

This version of HP C/ANSI C for HP-UX 11.x includes support for the
following new features:

• Implementation of C9X standard macros. Macros may now be
defined to have a variable number of arguments.

• Predefined identifier__func__, a C9x standard, which provides
assistance in debugging code.

• Expansion of the +ESlit compiler option to include the
+ESconstlit and +ESnolit compiler options, which cause the HP C
compiler to no longer store literals in read-only memory.

• -Bextern compiler option, which allows you to specify a separate
load module containing symbols, so that you do not need to specify
them from the command line.

• -fast compiler option, which provides a macro of compiler
optimization options to ensure faster compiler speed and build times.

• Declarations within code, functionality similar to the C++
programming semantics of declaring variables anywhere in a block of
code.

• WDB “fix and continue”, which allows users to modify a function in a
file, and continue debugging with the modified function.

• Shared library performance improvements improvements.

• C HTML Online Help.

2 Chapter 1

New and Changed Features
C9X standard macros

C9X standard macros
The C9X standard-compliant version of "variadic" or variable argument
(varargs) macro notation has been added to the HP ANSI C compiler.
The notation for C9X standard and for the popular GNU version of
varargs is very similar.

If you have coded your macros to the GNU standards, you can expect
GNU-style behavior using the HP ANSI C compiler. If you have coded
your macros to C9X standards, you can expect C9X-style behavior.

IMPORTANT Differences in HP C implementations of GNU and C9X macros are noted
in Chapter 4, “Problem Descriptions and Fixes,” on page 25.

Usage differences
In the HP ANSI C compiler, if there is an ellipsis (...) in the macro
definition’s argument list, then the trailing arguments (including any
separating comma and preprocessing tokens) are merged to form a single
item: these are variable arguments. The trailing arguments (including
separating commas) are combined and considered as a single argument
so that the number of arguments is more than the number of parameters
in the macro definition, excluding the ellipsis (...).

There are minor usage differences between how C9X and GNU specify
variable argument macros are defined:

• In the GNU style, the name of the variable parameter s precedes the
ellipsis in the parameter list.

• In the C9X standard, the identifier __VA_ARGS__ refers to the
variable arguments.

Table 1-1 How C9X and GNU define a variable argument macro

C9X GNU

#define foo(f, ...) printf
 (f, __VA_ARGS__)

#define foo(f, s...)
printf (f, s)

Chapter 1 3

New and Changed Features
C9X standard macros

• The identifier __VA_ARGS__ can only occur only in the
replacement-list of a function-like macro that uses the ellipsis
notation in the arguments.

Variable names
Variable names are also handled slightly different by C9X and GNU.

For example:

• __VA_ARGS__ in the replacement text indicates a variable name in
the following C9X-style code:

printf(f, __VA_ARGS__)

• s in the replacement text indicates a variable name in the following
GNU-style code:

printf(f, s)

Table 1-2 How C9X and GNU refer to varargs in macro replacement text

C9X GNU

Specified by the identifier
__VA_ARGS__.

Name appears in the replacement text.

4 Chapter 1

New and Changed Features
Predefined identifier__func__

Predefined identifier__func__
The HP ANSI C compiler now defines the predefined
identifier__func__ , as specified in the C9X Standard. It has been
added to HP C to provide you with additional means of debugging your
code.

Syntax
The __func__ identifier is implicitly declared by the compiler in the
following manner:

static const char __func__[] = "<function-name>";

The above declaration is implicitly added immediately after the opening
brace of a function which uses the variable __func__ . The value
<function-name> is the name of hte lexically-enclosing function. This
name is the unadorned name of the function.

Example
The following code example fragment illustrates the use of predefined
identifier__func__ .

#include <stdio.h>
void varfunc(void)
{
 printf("%s\n", __func__);
 /* ... */
}

Each time the varfunc function is called, it prints to the standard output
stream:

varfunc

Chapter 1 5

New and Changed Features
+ESconstlit and +ESnolit compiler options

+ESconstlit and +ESnolit compiler options
The +ESconstlit and +ESnolit compiler options have been added to
HP C. These options, grouped with +ESlit , control HP C's storage
mechanism for strings in read-only memory.

• +ESconstlit introduces a new default behavior, in which the HP C
compiler stores constant-qualified (const) objects and literals in
read-only memory.

• +ESnolit compiler option disables the default behavior, and causes
the HP C compiler to no longer store literals in read-only memory.
This restores the compiler's traditional behavior prior to this release.

• Use of the +ESlit option places all string literals in read-only
memory

Storing const-qualified string literals in read-only memory can cause a
program which violates the semantics of const to abnormally terminate
with a bus error and core dump. This is because literals, which have
been placed in read-only memory may not be modified at runtime.
Specifying +ESnolit will allow you to specify that literals not be placed
in read-only memory.

-Bextern compiler option
The -Bextern compiler performs the same operation as the existing
+Oextern =sym1,sym2,sym3... option. Unlike +Oextern , however, it
does not require you to manually specify extern symbols locally on the
command line.

Syntax -Bextern :filename

When used, -Bextern tells the compiler that the symbols reside in a
separate load module. -Bextern :filename fetches the list of symbols
from a text file instead of locally. Symbols referenced in the file must be
white-space separated within the file.

6 Chapter 1

New and Changed Features
-fast compiler option

-fast compiler option
The HP C/ANSI C -fast compiler option is a macro command that
expands into an existing set of compiler options which, used together,
result in optimum speed and build-times. This option is also provided for
compatibility in porting other applications to HP-UX.

Do not use this option for programs that depend on IEEE standard
floating-point denormalized numbers. Otherwise, different numericaL
results may occur.

The -fast option expands to the following HP C/ANSI C options:

• +O3 +nolooptransforms +Olibcalls +FPD +Oentrysched
+Ofastaccess

• +O3 optimizations include all +O2 optimizations as well as all
subprograms within a single file. It also inlines certain subprograms
within the input file.

• +Onolooptransform disables transformation of eligible loops for
improved cache performance.

• +Olibcalls increases the runtime performance of code which calls
the standard library routines.

• +FPDenables a fast underflow mode on PA-7100 architectures or later
where denormalized floating-point operands are flushed to zero.

• +Oentrysched optimizes instruction scheduling on a procedure’s
entry and exit sequences.

• +Ofastaccess optimizes code for fast access to global data items.

You can override any of the options in -fast by specifying a subsequent
option after it.

Chapter 1 7

New and Changed Features
Declarations within code

Declarations within code
HP C has added the C9x feature which allows you to declare variables
and types inside a block of statements. This also allows declaration of
new variables or types, such as expr_1 , as shown in the for statement
below:

for(expr_1;expr_2;expr_3) statement_1

This new variable or type declared in expr_1 can be used in expr_2,
expr_3 and statement_1.

The HP C/ANSI C compiler implementation of declarations within code
is similar to, but not identical to, the C++ implementation of declarations
within code See Chapter 4, “Problem Descriptions and Fixes,” on page
25 for a description of how HP C uses declarations within code
differently than the HP aC++ compiler.

Example
int main()
{
 int i=5,j;

 j=i*i;
 printf(*"%d\n",j);

 int k=j;
 /*This is accepted in the new release of HP C*/

for(struct aa {int a;int b}
AA={10,50};AA.a<=AA.b;AA.a++){
 /*This is accepted by the new feature */
 printf("%d\n",AA.a);}
}

8 Chapter 1

New and Changed Features
WDB “fix and continue”

WDB “fix and continue”
HP’s WDB debugger has implemented a new “fix and continue” feature.
This feature allows you to modify a function inside of a file being
debugged. Once you modify the function, you can continue debugging the
file, which now has a modified function. You are not required to recompile
or reload the function: WDB does this in the background.

For more information on fix and continue, see the WDB Release Notes.

Chapter 1 9

New and Changed Features
Shared library performance improvements

Shared library performance
improvements
Beginning with HP-UX 11.0, users were not allowed to mix shared and
archive libraries. This resulted in a slight increase in function overhead,
particularly when routine system function calls were required. The
libcres.a archive library has been added to the HP C runtime compiler to
reduce this overhead.

Libcres.a is a small archive library that contains standard C routines
such as string, memory, and other key functions (described in Table 1-3
below). The intent of this library is to provide performance-critical
applications with the benefit of static linkage to commonly used libc
functions. Libcres.a is built using a high level of optimization (+O3) with
the HP C optimizing compiler.

NOTE There is no functionality impact on applications that use libcres.a.

Libcres.a contains only "leaf functions", i.e., functions that do not call
any other functions. Any performance improvement is highly dependent
on the application's use of these included functions.

The following symbols are contained in libcres.a:

Table 1-3 libcres.a symbols

libc symbols in
libcres.a

Description

abs() return integer absolute value

bsearch() binary search a sorted table

div() integer division and remainder

ffs() find first set bit (BSD)

insque() insert an element in a queue

labs() return long integer absolute value

10 Chapter 1

New and Changed Features
Shared library performance improvements

ldiv() long integer division and remainder

memchr() find first occurrence of byte in memory region

memcmp() compare contents of two memory regions

memcpy() copy memory region to a non-overlapping region

memmove() copy memory region to a possibly overlapping region

memset() fill a memory region with a specified byte

qsort() execute quicker sort

strcat() append string number 2 to string number 1

strchr() get pointer to character in string

strcmp() compare two strings

strcpy() copy string number 2 to string number 1

strcspn() find length of matching substrings

strlen() determine length of string

strncat() append string number 2 to string number 1 (up to a given
maximum length)

strncmp() compare two strings (up to a given maximum length)

strncpy() copy string number 2 to string number 1 (up to a given
maximum length)

strrchr() get pointer to character in string

strspn() find length of matching substring

strstr() finds a substring in a string

swab() swap bytes

Table 1-3 libcres.a symbols

libc symbols in
libcres.a

Description

Chapter 1 11

New and Changed Features
Shared library performance improvements

How to use libcres.a
In order to make use of libcres.a, existing makefiles must be modified to
include it when linking. Existing applications must also be re-linked in
order to make use of libcres.a. The modules of this library are compiled
with the HP-UX C compiler using the +O3 optimization flag.

The functions in this library can not be overridden with a user-defined
function of the same name, as is the case today with other libc function
names.

NOTE If you use libcres.a , your other libraries must not contain functions of
the same name. Otherwise, unexpected results may occur.

12 Chapter 1

New and Changed Features
C HTML Online Help

C HTML Online Help
The HP C/ANSI C compiler now includes html online help, which you can
invoke using the +help option from the command line. See “HP C
Online Help” on page 21for a description of how to access this new
addition to the HP C/ANSI C compiler.

Chapter 2 13

Installation Information

2 Installation Information

This chapter describes the contents of HP C/ANSI C Developer’s Bundle
for HP-UX. This includes the following topics:

• Beginning Installation

• HP C Developer’s Bundle Contents

• Installed Compiler Paths

• Transition Links

14 Chapter2

Installation Information

Beginning Installation

Beginning Installation
After loading HP-UX 11.x, you can install your HP C/ANSI C Developer's
Bundle. In addition to the C compiler, it contains the HP-UX Developer’s
Toolkit. To install your software, run the SD-UX swinstall command (see
swinstall(1M)). It will invoke a user interface that will lead you through
the installation.

NOTE After installing the HP C/ANSI C Developer’s Bundle, install the latest
linker patch (PHSS_16841) or its successor. This patch is required by the
+objdebug option. Without this patch, the option is ignored.

For more information about installation procedures and related issues,
refer to Managing HP-UX Software with SD-UX and other README,
installation, and upgrade documentation provided or described in your
HP-UX operating system package. Most of this information is also
available on the web at http://docs.hp.com.

Chapter 2 15

Installation Information

HP C Developer’s Bundle Contents

HP C Developer’s Bundle Contents
The following are the individual components of the HP C Developer’s
Bundle:

• Auxiliary-Opt—Auxiliary Optimizer for HP Languages (22,465 Kb)

• C-ANSI-C—HP C/ANSI C Compiler (13,604 Kb)

• C-Analysis-Tools —C Language Analysis Tools (339 Kb)

• C-Dev-Tools—C Language Development Tools (1,382 Kb)

• DDE—Distributed Debugging Environment (27,737 Kb)

• DebugPrg—Debugging Support Tools (341 Kb)

• WDB—HP WDB Debugger (14,217 Kb)

• AudioDevKit—HP Audio Developer Kit (479 Kb)

• CDEDevKit—CDE Developer Kit (10,769 Kb)

• ImagingDevKit—HP-UX Developer’s Toolkit - Imaging (2,216 Kb)

• X11MotifDevKit—HP-UX Developer’s Tool465kit - X11, Motif, and
Imake (25,629 Kb)

NOTE Be aware that, if you install all the packages, they occupy approximately
126 megabytes of disk space.

16 Chapter2

Installation Information

Installed Compiler Paths

Installed Compiler Paths
Most files related to the HP C compiler are installed in the directories
/opt/ansic and /opt/langtools. The installation scripts add the following
paths during the installation process:

• /opt/ansic/bin and /opt/langtools/bin to the login file /etc/PATH.

• /opt/ansic/share/man/%L:/opt/ansic/share/man and
/opt/langtools/share/man/%L:/opt/langtools/share/man to the login file
/etc/MANPATH.

%L is replaced by the value of the LC_MESSAGES environment
variable when the man command is executed. It determines the
language used for manpage searches. If LC_MESSAGES is not set, %L
defaults to null. See environ(5).)

Chapter 2 17

Installation Information

Transition Links

Transition Links
The HP C/ANSI C compiler installation package provides the capability
to create and remove transition links from previous HP-UX release
locations to HP-UX release 11.x locations. The HP C/ANSI C product
installs the ISU transition link table specification files on the system.

The Software Distribution update tool tlinstall uses these files to install
transition links from previous HP-UX file and directory names to the
corresponding HP-UX 11.x file and directory names. To remove these
transition links, use the update tool tlremove. For more detail, read the
update tools manpages. These tools are installed in /opt/upgrade/bin.

18 Chapter2

Installation Information

Transition Links

Chapter 3 19

Documentation Overview

3 Documentation Overview

The HP C/ANSI C compiler and related documentation is available for
users of the HP C Developer’s Bundle. This documentation is available
both online, and in printed copy. Online documentation is located at
http://docs.hp.com, and is viewable using your favorite web browser.

The HP C documentation consists of:

• HP C/HP-UX Release Notes

• HP C/HP-UX Programmer’s Guide

• HP C/HP-UX Reference Manual

• HP-UX Floating Point Guide

• HP C/HP-UX Online Help

20 Chapter3

Documentation Overview

C Compiler Documentation

C Compiler Documentation

HP C/HP-UX Release Notes
The HP C/HP-UX Release Notes provides release-specific information
such as new feature summaries, installation instructions, and known
defects. In addition, the Release Notes contains this documentation
overview to help you orient yourself regarding available documentation.
The release notes are also available online in the text file
/opt/ansic/newconfig/RelNotes/ansic.11.11beta.

Printed Documentation
Printed versions of Hewlett-Packard documents are available for
ordering. Use the ‘man manuals’ command for details on the
documents available for ordering. See also the HP documentation web
site http://docs.hp.com and the HP C/HP-UX web site at
http://www.hp.com/go/C. Listed below are the documents most closely
related to use of the ANSI C Compiler.

• HP C/HP-UX Reference Manual (B3901-90003)

Provides reference material for HP C as implemented on HP 9000
systems. This document is based on the ANSI C standard 9899-1990,
and it discusses the implementations and extensions unique to HP C
on HP-UX. It does not replicate the ANSI C standard and you are
referred to the standard, for any fine points not covered.

• HP C/HP-UX Programmer’s Guide (B3901-90002)

Contains a detailed discussion about selected C topics for HP 9000
systems. Included are discussions of data type sizes and alignment
modes, comparisons between HP C and other languages, and
information on 64-bit programming, optimization, threads, and
parallel processing.

• HP-UX Floating-Point Guide (B3906-90006)

Describes how floating-point arithmetic is implemented on HP 9000
systems and discusses how floating-point behavior affects the
programmer. It also provides reference information about the C and
Fortran math libraries.

Chapter 3 21

Documentation Overview

C Compiler Documentation

HP C Online Help
The C compiler online help is a series of html files containing a
combination of reference and how-to information, including the
following:

• Organizing your C programs

• Compiling and running HP C programs

• Data types and declarations

• Expressions and operators

• Statements

• Preprocessing directives

• HP C optimization options

• Calling other languages

• Portable programming

• HP C parallel processing

• Porting non-HP C programs to HP-UX

• Error message descriptions

Before you begin
Before you can begin, you must set the DISPLAY environment variable
to a (graphical mode) value that can accommodate the display of an
HTML browser.

You can set the BROWSER environment variable to point to the location
of your HTML browser. If you do not set the BROWSER environment
variable, the compiler will automatically run the browser located in
/opt/ns-navgold/bin/netscape or
/opt/ns-communicator/netscape .

You may set the CROOTDIR environment variable to set the root
directory of the online help source. If CROOTDIR is not set, the URL of
the online help will be
file:/opt/ansic/html/guide/${LOCALE}/c_index.html ; this is
assuming that compiler binaries are located in /opt/ansic/bin.

22 Chapter3

Documentation Overview

C Compiler Documentation

Accessing HP C Online Help
To access the online help, on a system where the HP C compiler is installed, enter
the following:

/opt/ansic/bin/cc +help

This command will launch a web browser, displaying the index file for
the HP C online help system. The actual file location of the html help is
file:/${CROOTDIR}/html/guide/${LOCALE}/c_index.html .

If the environment variable CROOTDIR is not set, path will be formed
relative to the compiler’s root directory; this is usually /opt/ansic/ .
See the previous section “Before you begin” on page 21 for more
information on setting the CROOTDIR environment variable.

NOTE If the browser path set by the BROWSER environment variable does not
exist, or if the default browser paths
/opt/ns-navgold/bin/netscape or
/opt/ns-communicator/netscape do not exist, a message will be
displayed telling you that the BROWSER environment variable must be
set properly.

X-Motif CDE Help is obsolete
Previous versions of the HP C compiler, when installed on the X-Motif
CDE environment, included a CDE version of the online help. This and
the accompanying text-based ‘charhelp’ will no longer be updated with
the ANSI C compiler. If you want to view online help, please use the HP
C HTML Online Help.

Chapter 3 23

Documentation Overview

Related Documentation

Related Documentation
This documentation is available on the HP-UX 11.0 Instant Information
CD-ROM and on the web site http://docs.hp.com.

• Parallel Programming Guide for HP-UX Systems

Describes efficient parallel programming techniques available using
HP Fortran 90, HP C, and HP aC++ on HP-UX. This document is also
available online at http://docs.hp.com.

• HP-UX 64-bit Porting and Transition Guide

Describes the changes you need to make to compile, link, and run
programs in 64-bit mode. This document is also available online at
http://docs.hp.com and in the Postscript file
/opt/ansic/newconfig/RelNotes/64bitTrans.bk.ps .

• HP PA-RISC Compiler Optimization Technology White Paper

Describes the benefits of using optimization. This white paper is
available online in the PostScript file
/opt/langtools/newconfig/white_papers/optimize.ps.

• HP-UX Linker and Libraries Online User Guide

Replaces the manual Programming on HP-UX. To access the HP
Linker and Libraries Online User Guide, use the ld +help
command, or visit http://docs.hp.com.

• HP Assembler Reference Manual

Describes the use of the Precision Architecture RISC (PA-RISC)
Assembler on HP 9000 computers. Describes PA-RISC Assembler
directives, pseudo-operations, and how to run the Assembler on
HP-UX.

• HP-UX Reference Manual

The reference manual pages, or man pages, are available online (use
the command man man for more information), and are also available
on the CD-ROM. You may also access this manual online by visiting
http://docs.hp.com.

24 Chapter3

Documentation Overview

Related Documentation

• HP-UX Software Transition Kit (STK)

Enables the application developer to easily transition software from
HP-UX 10.x to either the 32-bit or the 64-bit version of HP-UX 11.0.
The kit is available free of charge on the HP-UX 11.0 Application
Release CD-ROM, or from the web at
http://www.software.hp.com/STK/index.html.

• HP WDB Debugger documentation

HP WDB is the HP-supported implementation of the GDB debugger.
Refer to the README file in the directory /opt/langtools/wdb/doc for
information on the documentation provided with the debugger. See
also the web site http://www.hp.com/go/debuggers.

Chapter 4 25

Problem Descriptions and Fixes

4 Problem Descriptions and Fixes

This section details known defect fixes, and workarounds for the BETA
version of the HP C/ANSI C compiler.

Problems corrected in the final release of the HP C/ANSI C compiler will
be referenced in the Software Status Bulletin.

Users with support contracts may access these bulletins and patch
information from the HP SupportLine database on the World Wide Web
located at one of the following URLs:

• http://us-support.external.hp.com/

• http://europe-support.external.hp.com/

26 Chapter4

Problem Descriptions and Fixes

Defect fixes

Defect fixes
The following defect fixes are included with the BETA version of the HP
C/ANSI C compiler:

• +Onoinline has been corrected so that, when specified, inlining does
not occur.

• When compiled with -O +DA1.0 +DS1.1, the compiler occasionally
terminated. This has been corrected.

• swverify is properly running for all directories installed with the
ANSI C Developer’s Bundle.

• The compiler has been corrected so that it no longer terminates when
compiling a program with two or more functions at +O.

• Inlining previously dropped the register storage class of a variable.
This has been corrected.

• A previous release of the compiler filesets did not specify the
attributes architecture , machine_type , os_name , os_release ,
and os_version . This has been corrected.

• HP C implements enumeration types and bit fields as signed by
default, as specified by the ANSI C standard. As of HP-UX 11.0, HP
C/ANSI C in 64-bit mode only incorrectly implemented enumeration
types and bit fields as unsigned by default. This defect has been fixed
in version A.11.01.00 of HP C/ANSI C. That is, in 64-bit mode, HP
C/ANSI C now correctly implements enumeration types and bit fields
as signed by default.

Chapter 4 27

Problem Descriptions and Fixes

Workarounds

Workarounds
The following are workaround solutions to previous problems with the
HP C/ANSI C compiler:

• In the 64-bit environment, using the +ESlit option with the
+DA2.OW option results in an error message. The combination of
these options tells the code generator to locate the const data in the
readonly code segment so that it becomes an error in the 64-bit
environment. In the 32-bit environment, however, this error occurs
silently. The linker will only detect and display error information for
this inconsistency on 64-bit addressing.

• +Onomoveflops should always be used with the +FPZ and +FPI
floating point options. +Onomoveflops prevents floating point
instructions from being moved, and and replaces integer division by
floating point multiply by the inverse.

• If you intend to use GNU style variable argument macros in HP C,
note that you can make the concatenation operator '##' prevent
syntax errors from occurring when the variable argument comes in as
empty (the null string). However, you can also insert whitespace to
the left of the left operand of '##' to more accurately specify the
intended left operand.

For example, if you use

#define foo(f, s...) printf(f, s)

Then the macro "call"

foo("Hello world.\n");

 results in the expansion

printf("Hello world.\n",);

 (note the comma ",") causing a syntax error.

GNU provides the following workaround for this kind of a situation. If
you use:

#define foo(f, s...) printf(f, ## s)

28 Chapter4

Problem Descriptions and Fixes

Workarounds

If the variable parameter 's' is non-null, if for example, you use:

foo("%s %d\n", "Cycles", "1024");

the result is

printf("%s %d\n", "Cycles", "1024");

as the expansion as you would expect.

However, if 's' is null, this erases the comma to the left of the '##' in
the macro definition and resulting expansion is:

printf("Hello world.\n");

 Note that the comma is gone.

In order to get the same behavior in HP C, you must insert a space to the
left of the comma to make it clear to the preprocessor that the comma is
the left operand of the '##' operator. Thus your definition for the macro
'foo' is:

#define foo(f, s...) printf(f , ## s)

(Note the space to the left of the '##' operator in the macro definition.)

 If the space is not inserted, the left operand of the '##' operator is
understood to be:

printf(f,

Because there is no parameter by that name for 'foo', it is erased.

• When specifying declarations within code in the HP C/ANSI C
compiler, do not expect the same behavior in HP aC++. For the
example:

for(int i = 0; i < j; i ++) int i;

Note the lack of a new block opening for the "for" statement. The C++
compiler accepts this form, with warnings, but the C compiler does
not. The difference in the way the stack is handled causes the
difference in behavior.

Previously, the C compiler did not emit the source file information for
the global typedefs. To correct this, use -y option along with -g when
debug info is generated. You can generate debug information by
compiling with +Oobjdebug .

Chapter 4 29

Problem Descriptions and Fixes

Workarounds

• The +Olibcalls transformation in the HP C compiler has been
changed so that the following information in the HP C/HP-UX
Programmer's Guide is no longer valid:

“Calls to setjmp() and longjmp() may be replaced by their
equivalents _setjmp() and _longjmp() , which do not manipulate
the process's signal mask.”

Note that all other tranformations of +Olibcalls are unaffected by
this change.

30 Chapter4

Problem Descriptions and Fixes

Workarounds

