
1

HP-UX MultiProcessing

White Paper

Version 1.3

2

5965-4643

Last modified April 7, 1997

© Copyright 1997, Hewlett-Packard Company

3

Legal Notices
The information contained within this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained
herein nor for incidental consequential damages in
connection with the furnishing, performance, or use of
this material.

Warranty. A copy of the specific warranty terms
applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales
and Service Office.

Restricted Rights Legend. Use, duplication, or
disclosure by the U.S. Government Department is subject
to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DOD agencies,
and subparagraphs (c) (1) and (c) (2) of the Commercial
Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Copyright Notices. (C)copyright 1983-97 Hewlett-Packard
Company, all rights reserved.

This documentation contains information that is
protected by copyright. All rights are reserved.
Reproduction, adaptation, or translation without written
permission is prohibited except as allowed under the
copyright laws.

(C)Copyright 1981, 1984, 1986 UNIX System Laboratories,
Inc.

(C)copyright 1986-1992 Sun Microsystems, Inc.
(C)copyright 1985-86, 1988 Massachusetts Institute of
Technology.

4

(C)copyright 1989-93 The Open Software Foundation, Inc.
(C)copyright 1986 Digital Equipment Corporation.
(C)copyright 1990 Motorola, Inc.
(C)copyright 1990, 1991, 1992 Cornell University
(C)copyright 1989-1991 The University of Maryland.
(C)copyright 1988 Carnegie Mellon University.

Trademark Notices. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open
Company Limited.

NFS is a trademark of Sun Microsystems, Inc.

OSF and OSF/1 are trademarks of the Open Software Foundation, Inc. in
the U.S. and other countries.

First Edition: April 1997 (HP-UX Release 10.30)

1

MultiProcessing 5

Objectives 6
MP Overview 7
Monarch Selection during Multiprocessor Startup 9
MP Data Structures 11
Per-Processor Counters and Statistics 14

Mutual Exclusion for Critical Sections of Code 16
Locking Strategies 18
Attributes of Spinlocks and Semaphores 19

Spinlocks 20
Spinlock Rules 21
Spinlock Inlining 23
Spinlock Data Structures 23
Spinlock Data Structure (lock_t) 24
Hashed Spinlocks 24
Spinlock Arbitration 26

Semaphores 27
Mutual-Exclusion Semaphores 27
Synchronization Semaphores 28
Comparison of Blocking vs Synchronization Semaphore 28

Sample Semaphores 29
Empire Semaphores 30
MP Safety 30

Alpha Semaphore Structures 31
Alpha Semaphore Services 33
Acquire and Release an Alpha Semaphore 34
Bind and Unbind a Semaphore to a Kernel Thread 35
Test for Ownership of Semaphore 35
Wait for an Alpha Semaphore 36

Beta Semaphores 37
Beta Semaphore Structures 38
Beta Semaphore Type Definition 39

2

Beta Semaphore Hash Table 40
Performance Considerations and Locking 41
Deadlocks 41
Ordering Strategy for Deadlock Avoidance 42

Processor Scheduling 43

5

1 MultiProcessing

6 Chapter 1

MultiProcessing
Objectives

Objectives
• Grasp the basic concepts of a multiprocessor (MP) system.

• Gain familiarity with MP data structures.

• Understand locking strategies (spinlocks and semaphores) available
in kernel for MP.

• Introduce the kernel interface to control MP events.

• Learn about process scheduling and load balancing in an MP
environment.

NOTE A full study of MP internals is beyond the scope of this text, which does
not deal with related issues of interest such as interrupt and powerfail
handling, and tuning of other subsystems for a multi-processing
environment. Instead, this study introduces multiprocessor data
structures and the locking strategies that guarantee consistency across
parallel processors.

Throughout this text, multiprocessor systems are referrred to as MP
systems. Individual processors will be referred to as both “processors”
and SPUs (system processing unit).

Chapter 1 7

MultiProcessing
MP Overview

MP Overview
A multiprocessor is a system with two or more processing units that act
in a controlled and parallel manner to carry out system activity. The
figure shows the basic hardware diagram of multiprocessor system with
two processors.

Figure 1-1 A sample MP system showing three processors

HP-UX multiprocessing has the following characteristics:

• Two or more processors

 The HP-UX MP implementation supports up to sixteen processors.

• Symmetry

HP-UX is implemented as a symmetrical multiprocessor operating
system. This means that each processor has equal capability to
enable any kernel task to execute on any processor in the system. In
fact, a thread will often execute on more than one processor during its
lifetime. Threads are scheduled in a parallel fashion but this aspect is
transparent to users.

• Tight coupling

PROCESSOR A

TLB

 BUS

CACHE

Coproc
CPU

PROCESSOR B

TLBCACHE

Coproc
CPU

Input/Output Memory(I/O)TLBCACHE

Coproc
CPU

PROCESSOR C

8 Chapter 1

MultiProcessing
MP Overview

All processors have uniform access to all of main memory and any I/O
device in a shared fashion. This characteristic classifies HP-UX MP
as tightly coupled. (By contrast, an implementation where each
processor has its own private memory and I/O is known as loosely
coupled.)

• Single Integrated Operating System

A single kernel controls all hardware and software in the HP-UX MP
implementation. Locking and synchronization strategies provide the
kernel the means of controlling MP events.

• Each processor has its own data structures, including run queues,
counters, time-of-day inforamtion, notion of current process and
priority.

• Global data structures are protected by semaphores and spinlocks.

• Each processor has its own cache, TLB, registers, interrupts.

NOTE The hardware maintains cache coherency between all processors.

Chapter 1 9

MultiProcessing
Monarch Selection during Multiprocessor Startup

Monarch Selection during
Multiprocessor Startup
When the system is powered on, after the CPU-level selftests complete,
the processor-dependent code (PDC) selects a monarch processor.

As sovereign, the monarch is responsible for all the initial system loader
activity; it is the only processor allowed to launch (boot) and enter into
the operating system.

The selection of the monarch processor is based on the physical slot
location and boot ID. Typically, the processor with the lowest hardware
path address (hpa) becomes monarch, although each system has its own
arbitration scheme. Later in the initialization process, only the monarch
processor walks the bus to determine what other processors are
configured and then launches them one at a time to create a
multi-processor system.

Figure 1-2, “PDC code selects monarch processor,” shows the module
layout of a system with four processors, all attached to a central bus. The
processor with the highest BOOT_ID value is selected; however as
shown, processor BOOT_ID is set to a default value of two by the factory.
If more than one processor has the same high BOOT_ID, the processor
with the lowest slot number on the bus is selected to be Monarch. In this
case, the PDC code is likely to select the processor in slot 0 as the
monarch.

Figure 1-2 PDC code selects monarch processor

Monarch selection can be altered by several criteria:

PDC CODE

SELFTEST

slot 0 slot 1 slot 2 slot 3

SPU SPU SPU SPU
boot ID
 2

boot ID
 2

boot ID
 2 2

boot ID

10 Chapter 1

MultiProcessing
Monarch Selection during Multiprocessor Startup

• The PDC routine PDC_CONFIGcan configure and deconfigure a given
processor based on self-test results. If the processor does not complete
self-test, PDC_CONFIG removes it from consideration as potential
monarch.

• A user can select a monarch processor using the Boot Console
Handler (BCH) code’s user interface.

• The Monarch processor takes charge and initializes the bus by
sending a CMD.RESET.ST call to each module, thereby excluding the
remaining processors.

Once the controlling processor is selected, it invokes its own processor
dependent code (PDC) to perform the following:

• Initialize all other I/O modules.

• Set up and initialize physical memory for Page 0 of physical memory.

• Load the contents from the PDC ROM to Page 0.

• Use the Boot Console Handler (BCH) to select and initialize the
console and boot device.

When the monarch processor is selected, the remaining (“serf”)
processors go into the “rendezvous code” where all interrupts are cleared.
The serf processors wait for a rendezvous interrupt, which happens after
the monarch is done with its boot time initialization. If the monarch fails,
the serfs can usurp its power (deconfigure the monarch) and force a
system reboot, whereupon the arbitration process is repeated and a new
monarch selected.

Chapter 1 11

MultiProcessing
MP Data Structures

MP Data Structures
The kernel maintains an MP data structure (typedef struct mpinfo)
that is an array containing system-global per-processor information
indexed by SPU number (the hard physical address (HPA) of each
processor). The structure and its components are documented in the
mp.h header file. The kernel variable mpproc_info points to the start
of the structure. The kernel variable mpproc_info[nmpinfo] points
to the end of the array.

Figure 1-3 Scope of information in MP data structures

The general content of each mpinfo entry is shown in the table that
follows.

mpproc_info
(one entry

per processor) system-global
per-processor
information

Spinlock information
interval timer information
counters and statistics
coprocessor information

model information
time of day information

Hard physical
address (HPA)

CPU state
save state pointer
run queue information
powerfail information

threads information

of each processor

12 Chapter 1

MultiProcessing
MP Data Structures

Table 1-1 MP information accessed through mpinfo_t

MP information Purpose

spinlock information Number of spinlocks held, spl level at
first spinlock taken, pointer to list of
spinlocks currently held, current critical
spinlock, data on time spent spinning.

Interrupt vector data Pointer to interrupt vector address (IVA),
locations of base and top of interrupt
stack, pointer to interrupt status word,
deferred interrupts.

per-processor counters
and statistics

struct mpcntrs

Array containing:

• Numbers of actual reads and writes to
file-system blocks, NFS reads and
writes, bytes read via NFS, physical
reads and writes issued.

• Number of times run queue was
occupied since bootup; numbers of
exec s, read/readv() ,
write/writev() , filename lookups,
inode fetches, select() calls,
System V semaphore and message
operations, mux I/O transfers, raw
characters read, characters output
since bootup.

• Numbers of active process, thread,
inode , and file entries allocated by
the SPU.

coprocessor information

struct coproc_info

Two 8-bit masks, positioned 0-7; bit 7
corresponds to GR 31. Both elements are
0xC0 if floating point coprocessor is
present.

• ccr_present -to indicate the
presence of coprocessor(s).

• ccr_enable - indicates
coprocessor(s) has passed self-test.

Chapter 1 13

MultiProcessing
MP Data Structures

Threads information Current process priority, indication of
whether thread is on the processor,
pointer to active thread structure, space
ID of thread’s uarea , setting for thread /
SPU preemption.

Model information

struct model_info

Hardware version (CPU type and speed)
and ID, software version, ID, and
capability, boot ID, architectural revision,
potential and current keys.

architecture revision (arch_rev)
identifies PA-RISC level of the CPU:

• 0 - PA-RISC 1.0

• 4 - PA-RISC 1.1

• 8 - PA-RISC 2.0

Time of day information

struct tod_info

Values for normalization and
synchronization of interval timer.

MP information Purpose

14 Chapter 1

MultiProcessing
MP Data Structures

Per-Processor Counters and Statistics
The statistics tracked through the mpcntrs structure can be beneficial
in comparing the activities of different processors. From this you may be
able to determine which processor is handling the majority of NFS traffic
or other specific filesystem type activity.

Perhaps the most interesting counters in this structure are the counts
for active processes, threads, inodes , and files.

Powerfail information

struct pf_info

Powerfail state, interval timer ticks
remaining, and exit state

Run queue information

struct mp_rq

Includes index into an array of run queue
pointers (bestq), average run-queue
length (neavg_on_rq) for load
balancing, active locked and unlocked
run queues by SPU and type of lock,
interval timing and run-queue spinlock
pointers.

CPU status The current state of a processor handling
a process is represented by one of the
following values:

• MPBLOCK -- waiting on kernel spinlock

• MPIDLE-- idle

• MPUSER -- executing in user mode

• MPSYS -- executing in system mode

• MPSWAIT -- waiting on a kernel
semaphore

MP information Purpose

Chapter 1 15

MultiProcessing
MP Data Structures

Table 1-2 Counters tracked in struct mpcntrs

These counters track the number of active (in-use) entries for each of the
respective kernel tables. These counters must be summed across all
running processors to obtain the total number of active entries for each
table. The decision as to which processor’s mpinfo structure to
increment or decrement is based on identification of the current
processor. If a process is created on SPU A but later terminates while
running on SPU B, the activeprocs counter will be incremented on
SPU A but decremented on SPU B.

Counter Purpose

activeprocs Count of the number of processes created by
the SPU (number of proc table entries). This
count in incremented in allocproc() and
decremented in freeproc() .

activethreads Count of number of threads created by the
SPU (number of thread table entries). This
count is incremented in allocthread() and
decremented in freethread() .

activeinodes Count of how many inode s have been
allocated by the SPU (number of inode table
entries). The count is incremented whenever
an inode is removed from the free list by
routines such as ieget() , and
vx_inoalloc().

activefiles Count of the number of file table entries
allocated by the SPU. The count is
incremented in falloc() and decrement
whenever a filetable entry is freed by a call to
FPENTRYFREE().

16 Chapter 1

MultiProcessing
Mutual Exclusion for Critical Sections of Code

Mutual Exclusion for Critical Sections
of Code
A principle of synchronization regulates the orderly flow of data into and
out of structures and prevents resource contention. Thus, in an MP
system, thread A executing on Processor 1 must not contend with thread
B executing on Processor 2.

Figure 1-4 Synchronization

Three kinds of critical sections within the kernel require mutual
exclusion: [is it the transition or segue from one to the next or competition
of one to the other?]

• Between two interrupt service routines.

• Between an interrupt service routine and a thread of control.

• Between two threads of control.

In a uniprocessor environment these contentions were easily dealt with:
Mutual exclusion was implemented for two interrupt service routines or
an interrupt service routine and a thread of control by raising spl levels
to the highest priority interrupt service routine. To ensure mutual
exclusion between threads of control, no thread could be preempted
while running in kernel mode.

These protection mechanisms are inadequate for an MP environment.
The spl routines were local in nature and affected only the interrupt
protection level of the calling CPU. Waiting for the current process to
reach a safe point, sleep, or exit the kernel failed to give the desired
parallelism and made for long, non-preemptable critical durations.

In HP-UX, kernel data structures are protected with software
semaphores, locks, and synchronization primitives. Kernel data
structures are then divided into sets, with a semaphore or lock guarding

Processor 1 Processor 2

thread A thread B

o o oKernel Data Structures

Chapter 1 17

MultiProcessing
Mutual Exclusion for Critical Sections of Code

each set. The granularity of the semaphores and locks are empirically
determined to minimize blocking of threads of control on the
semaphores.

18 Chapter 1

MultiProcessing
Locking Strategies

Locking Strategies
Any MP system needs a mechanism for protecting global data structures
while allowing multiple processors to execute code concurrently in the
system. HP-UX provides for this concurrency through the locking
strategies of spinlocks and semaphores.

• Locks provide mutual exclusion in critical sections. Data structures
manipulated in these sections are protected by these locks, to prevent
errors from occurring if multiple threads of control operate on the
data at the same time.

A lock permits only one thread of control at a time to operate on
critical data.

NOTE Every shared kernel data structure is protected by either a spinlock or a
semaphore.

• Spinlocks implement a “busy wait condition” for a resource. If a
processor attempts to obtain a spinlock being held by another
processor, it will wait until the lock is released.

Spinlocks can be acquired on an interrupt stack. A deadlock can arise,
however, if a processor takes an interrupt while holding a spinlock
and the interrupt code tries to acquire the same spinlock. To prevent
this from occurring, HP-UX requires the spl level to be raised
whenever a spinlock is acquired. When the spinlock is released, the
prior spl level is reverted to. Once a spinlock is acquired, the spl level
should not be lowered within the spinlocked critical section.

Spinlocks are used to synchronize access to data between multiple
processors, and as such, have little value in a uniprocessor system.
Within the kernel the MP_SPINLOCK() macro checks the
uniprocessor flag and returns if not an MP system.

• Kernel semaphores control access through blocking strategies. With
blocking semaphores, a processor attempting to acquire a semaphore
already held by another processor will put its current thread to sleep
and context switch to another task.

Semaphores are used to provide mutual exclusion or to synchronize
access between multiple processes or threads, regardless of how many
processors there are.

Chapter 1 19

MultiProcessing
Locking Strategies

NOTE Kernel semaphores differ from IPC SystemV semaphores.

In an MP system the decision to use spinlocks or blocking semaphores
comes down to a performance issue based on the expected time to busy
wait versus the overhead of a process context switch. Additionally, if the
lock must be taken while on the Interrrupt Control Stack(ICS), then the
process cannot block and must use spinlock. Spinlocks require less
overhead than semaphore operations.

Attributes of Spinlocks and Semaphores
The set of data structures protected by a single semaphore or spinlock is
defined as a “protection class.”

NOTE Every shared kernel data structure is a member of one protection class.

Semaphores have “priority” and “order.”

• In this context, priority refers to the scheduling priority to which a
process or thread of control is promoted while possessing the
semaphore.

• Order refers to a sequential (numeric) arrangement used in detecting
and resolving deadlocks.

Alpha semaphores (discussed shortly) have an associated lock order
(sa_order) to prevent a deadlock situation, which can happen if threads
on two processors are performing similar operations. The semaphore
with the lowest lock order is always locked first. This guarantees that
multiple semaphores are locked in the same order by all threads, thus
reducing the opportunity for deadlock.

The kernel has assertions to enforce this lock ordering in a debug kernel.
Definitions and values of protection class, priority, and order are
maintained in the semglobal.h header file.

20 Chapter 1

MultiProcessing
Spinlocks

Spinlocks
Spinlocks are at the heart of controlling concurrency within an MP
system. Their chief purpose is to protect global data structures by
controlling access to critical data. When entering an area of code that
modifies a global data structure, the kernel acquires an associated
spinlock and then releases it when leaving the affected area of code.

Figure 1-5 Conceptual view of a spinlock

Spinlocks are a more fundamental way of protecting critical sections
than semaphores, in that they are used in the construction of the
semaphore services; semaphore implementations themselves are critical
sections.

spinlock (lock);
 [critical section]
spinunlock (lock);

The spinlock routines operate on a binary flag of type lock_t , to
guarantee mutual exclusion of threads of control. The functionality of
spinlock/spinunlock to raise the spl priority to mask out external
interrupts and prevent preemption:

spinlock (lock)

Block interrupts. Acquire lock?

Do bookkeeping

spinunlock (lock)

Do bookkeeping.
Free lock.
Restore interrupts.

Yes

No

Chapter 1 21

MultiProcessing
Spinlocks

old_priority = raise_priority (HIGHEST_PRIORITY);
 while (test_and_clear (lock) == 0);
 ...U: lock = 1;
restore_priority (old_priority);

To avert deadlocks, spinlock acquisition enforces a simple ordering
constraint: Do not attempt to lock a lower or equal-order spinlock to one
already held.

Spinlock Rules
The following rules govern use of spinlocks:

• Spinlocks must be held for as short a time as possible (preferably less
than the time it takes to make one context switch).

• Spinlocks are a non-blocking primitive. Code protected by spinlocks
must not generate traps that can block. (Thus, you may not hold a
spinlock across an operation that might take a page fault.)

• Code protected by spinlocks must not cause a context switch.
Resources that are never held longer than the time it takes to
perform a context switch should be protected with spinlocks. This
prevents useless preemption.

• Spinlocks are used to guarantee access to global data structures by a
single thread of execution. Thus, they must be acquired prior to the
section of code that accesses the global data structures.

• When a lock is unavailable, the spinlock waits until the busy lock is
free

• Resources manipulated by an interrupt service routine (ISR) should
be protected with a spinlock. ISRs may not block. This applies also to
kernel routines that might potentially be called from an ISR .

• Under spinlocks, interrupts are disabled and the thead of control is
not allowed to sleep.

• Spinlocks can be acquired on the ICS . It is necessary to prevent
interrupts when the top half acquires a spinlock, so that an interrupt
does not occur and spin for the same spinlock, thus causing a
deadlock.

22 Chapter 1

MultiProcessing
Spinlocks

NOTE MP_SPINLOCK is a macro that checks to see if the code is being executed
on an MP system and call spinlock() if it is. On a uniprocessor
system, there is no need to lock the spinlock since only one thread can
execute at a time and it will not sleep until it leaves kernel mode.

Numerous spinlocks are created at the time of kernel initialization with
a call to alloc_spinlock(), which primarily allocates memory for the
spinlock data structure and initializes its fields. The kernel creates
these spinlocks from init_spinlocks() and by calls to
vm_initlock() for the VM spinlocks. The table below lists some of the
spinlocks allocated at the time of kernel initialization. Other spinlocks
are created and destroyed during runtime.

Table 1-3 Spinlocks allocated when kernel is initialized

Type of Spinlock Names

Process

Management

sched_lock, activeproc_lock,
activethread_lock, rpregs_lock,
callout_lock, cred_lock

File System file_table_lock, devvp_lock,
dnlc_lock, biodone_lock, bbusy_lock,
v_count_lock, unrm_table_lock,
inode_lock, inode_move_lock,
rootvfs_lock, kmio_lock,
sysV_msgque_lock, sysV_msghdr_lock,
sysV_msgmap_lock, reboot_lock,
devices_lock, audit_spinlock

Chapter 1 23

MultiProcessing
Spinlocks

Spinlock Inlining
To improve the performance of the spinlock code, HP-UX implements a
technique called “dynamic inlining.”

A macro is used for select performance-sensitive spinlocks that reserves
space for inlining the spinlock instead of simply calling the spinlock
function. This is done at compile time. At execution time, if the system
has more than one processor, the macro is replaced with inline spinlock
code.

For systems with more than one processor, the mutual exclusion
algorithm now uses an LDCW instruction, which reduces the pathlength
of the spinlock routines.

Spinlock Data Structures
HP-UX uses two types of data structures for its spinlock implementation:

• The lock_t structure represents a single spinlock.

Networking netisr_lock, ntimo_lock,
bsdskts_lock, nm_lock

Virtual Memory

Management

(VM)

msem_list_lock, buf_hlist_lock,
swap_buf_list_lock, vaslst_lock,
text_hash, lost_page_locck,
rlistlock, rmap_lock, kmemlock,
pswap_lock, rswap_lock, pfdat_lock,
pfdat_hash, eq_lock, bcvirt_lock,
bcphys_lock, alias_lock,
psl_random_lock, mprot_list_lock

General semaphore_log_lock, ioserv_lock,
swtrig_lock, time_lock, vmsys_lock,
lpmc_log_lock, itmr_sync_lock,
itmr_state_lock, pdce_proc_lock,
pfail_cntr_lock, printf_lock,
io_tree_lock, dma_buflet_lock,
space_id_lock, lofs_lo_lock,
lofs_lfs_lock, lofs_li_lock

Type of Spinlock Names

24 Chapter 1

MultiProcessing
Spinlocks

• Hashed spinlocks are used for locating a spinlock within a pool.
(Hashed spinlocks will be explained shortly.)

Spinlock Data Structure (lock_t)
There is one lock_t data structure for every spinlock. The table that
follows describes the elements in the structure.

Table 1-4 Elements of the spinlock data structure lock_t

Hashed Spinlocks
A single spinlock works well for a single instance of a global data
structure or one that is accessed in synchronously. However, contention
occurs when using a single spinlock for a data structure with multiple
instances (such as a vnode structure). Conversely, using a single
spinlock for each vnode would be overcompensating.

To compromise, HP-UX allocates the capability to use a pool of “hashed
spinlocks” that are accessed by a hash function to deal with data
structures having multiple instances of individual entries or a group of
entries.

Element Purpose

sl_lock Used in the LDCW instruction to acquire the
lock. A nonzero value indicates the lock is
free.

sl_owner Pointer to the per-processor data area
(&mpinfo[cpunum]) for the processor
owning the lock. If the lock is not owned, the
value is 0.

sl_flag A flag that indicates another CPU might
want this lock.

sl_next_cpu The cpu number of the last CPU that
acquired the lock under arbitration

sl_pad Padding to bring lock_t to a reasonable
cache line size.

Chapter 1 25

MultiProcessing
Spinlocks

Figure 1-6 Hashed spinlocks point to singular spinlock data structures

When developing code, a programmer can choose to do a hash for a hash
pool covering any particular requirement (for example, one for vnodes ,
one for inodes , etc).

The routine alloc_h_spinlock_pool() is used to allocate a pool of
hashed spinlocks. From this routine, the kernel calls from
init_hashed_spinlocks() . A spinlock for a particular instance is
then accessed by hashing on the address or some other unique attribute
of that instance. You can see spinlocks obtained through this hash pool
by a call to MP_H_SPINLOCK() in the kernel. Some of the hashed pools
currently allocated by the kernel are

• vnl_h_sl_pool

• bio_h_sl_pool

• sysv_h_sl_pool

• reg_h_sl_pool

• io_ports_h_sl_pool

• ft_h_sl_pool

Table 1-5 Key elements in hash_sl_pool structure

hash_sl_pool

Hash Mask

Number of Spinlocks

Pointer to hash table

Hashed Spinlocks lock_t

Owner

Lock Bytes

16-Way Lock Bytes

Hash pool element Purpose

n_hash_spinlocks Contains pointers to lock_t structures

**hash_sl_table Points to an array of size
n_hash_spinlocks

26 Chapter 1

MultiProcessing
Spinlocks

The hash functions return an index into this array of pointers.

Regardless of whether the spinlock data structure is accessed directly or
through a hash table, the acquisition details to be discussed next are the
same.

Spinlock Arbitration
To ensure that no processor is kept waiting indefinitely for a spinlock,
round-robin arbitration using two modules takes place.

Table 1-6 Modules for spinlock arbitration

Module Purpose

wait_for_lock() Waits until a spinlock is acquired or a timeout
occurs.

Puts the lock address into a table indexed by
CPU number.

Sets a flag to indicate that there are CPUs
waiting for the lock.

su_waiters() Called from spinunlock when the sl_flag
is set. Either releases the lock or passes it to
another processor.

Chapter 1 27

MultiProcessing
Semaphores

Semaphores
Semaphores are routines that ensure orderly access to regions of code.
Like spinlocks, semaphores guard kernel data structures by controlling
access to regions of code associated with a set of data structures. Unlike
spinlocks, semaphores require the waiting thread to relinquish the CPU
while awaiting the lock. Semaphores are implemented using a swtch()
to allow another thread to run.

Figure 1-7 Conceptual view of a semaphore

Semaphores serve two functions -- mutual exclusion and
synchronization. Mutual-exclusion semaphores protect data and are
further classified by their degree of restrictiveness.

Mutual-Exclusion Semaphores
Mutual-exclusion semaphores provide mutually exclusive access to
regions of code that are associated with a set of data structures.

psema(sema)

spinlock() Acquire semaphore?

spinunlock()

vsema(sema)

spinlock()
Free semaphore.
spinunlock()

Yes

No
spinunlock()

sleep()
(another thread
can work)

28 Chapter 1

MultiProcessing
Semaphores

In a mutual-exclusion semaphore, a processor attempting to acquire a
semaphore already held by another processor puts its current thread of
control to sleep and switches to another. It is assumed that the expected
time duration the thread will wait while the lock is busy will be much
greater than the overhead of a process switch.

The kernel makes available two types of mutual-exclusion semaphores:

• Alpha semaphores, which must be released when a thread of control
sleeps.

The alpha semaphore cannot be held during sleep because it is used
to protect data structures that must be consistent at the time of
context switch. This applies, for example, to the fields in structures
that describe the process state of a thread of control.

A broadly encompassing alpha semaphore, called an empire
semaphore, protects a collection of data structures.

• Beta semaphores, which a thread of control may hold while sleeping.

A beta semaphore can be held while sleeping because the protected
data structures need not be consistent at the time of context switch.
An example of this is the page frame lock during a page fault. The
resource must remain locked during the resolution of the fault but the
thread yields the processor while its page is brought in from memory.

Synchronization Semaphores
Synchronization semaphores signal events rather than block access to
data structures and are used when events are awaited. They
synchronize a thread with other threads and external events. The table
that follows describes some of these differences in practice.

Comparison of Blocking vs Synchronization
Semaphore
Data protection (blocking or mutual exclusion) semaphores and
synchronization semaphores differ in four ways.

• Locking and unlocking operations

• Signal handling

• Initialization

• Count

Chapter 1 29

MultiProcessing
Semaphores

Table 1-7 Differences between mutual-exclusion and synchronization
semaphores

Sample Semaphores
The table below shows some of the semaphores the kernel creates at
initialization time from init_semaphores() and realmain() . They
are listed only by type and name. You can look at the kernel source to
observe how each are used.

Mutual-Exclusion (Alpha/Beta) Synchronization

Lock and unlock operations are
always performed by the same
thread.

Lock and unlock operations
performed by different threads.

Synchronization is provided by
one thread doing a lock, which
causes it to block. While
blocked, the thread sleeps until
another thread does an unlock,
causing the locking thread to
awaken.

This mechanism enables you to
use semaphores to cause a
thread to wait on an event from
another thread

Thread blocked on semaphore
cannot be awakened by a signal.

Signals are deferred until the
thread acquires the semaphore, on
the assumption that semaphores
are not held for long durations.

Threads blocked on a
synchronization semaphore
have three options:

• Signals can be caught and
handled.

• Signals can be deferred
until the semaphore
operation is complete.

• Signals can be handled as
though the code were
unsemaphored.

30 Chapter 1

MultiProcessing
Semaphores

Table 1-8 A Sampling of semaphores

Empire Semaphores
Some alpha semaphores are classified as empire semaphores, because
they protect data structures for an entire subsystem. Empire
semaphores are locked when any of the structures within the set must be
modified. Because they control access to an entire subsystem, empire
semaphores are used to serialize operations within the subsystem. For
example, the filesystem empire (filesys_sema) is locked when calling
sync(), to prevent other threads from invalidating pages of data that
are being flushed from cache.

Empire semaphores are acquired and released with
pxsema()/vxsema() calls.

MP Safety
The up_io_sema empire semaphore provides “single threading” (access
control) for I/O drivers that are not MP safe. An MP-safe driver is one
that synchronizes multiple accesses to code and structures, so that more
than one instance of the driver may be active at any given time without
contention.

Type of semaphore Sample

Alpha Semaphores filesys_sema
pm_sema
up_io_sema
mdisc2_sema
vmsys_sema

Beta Semaphores msem_betasem
iomap_betasem

Synchronization Semaphores runin
runout

Chapter 1 31

MultiProcessing
Alpha Semaphore Structures

Alpha Semaphore Structures
Alpha semaphores are defined as type sema_t . The following figure
shows its principal elements and how it is implemented in relation with
other kernel structures.

Figure 1-8 Alpha semaphore vs-a-vs spinlock and kthreads

A spinlock is used to protect the data structures that implement the
semaphore.

Table 1-9 Principal elements of struct sema (sema_t)

*sa_lock

sa_count

*sa_owner

*sa_wait_list

*sa_prev

*sa_next

Owner
Lock Bytes

16-Way Lock Bytes

kt_sema

Spinlock (lock_t_)

...

kthreads

alpha semaphores (sema_t)
in per-kthread list of semaphores

Element Purpose

*sa_lock Pointer to spinlock protecting the semaphore.

sa_count Value of semaphore count, which indicates
whether the semaphore is available.

*sa_owner Pointer to kernel thread that owns a lock on
the semaphore.

*sa_wait_list Pointer to head of kthread waiting on the
semaphore.

32 Chapter 1

MultiProcessing
Alpha Semaphore Structures

Performance is a key consideration for use of alpha semaphores. To
prevent “starvation” of code, the following algorithm governs their use:

When a CPU misses on an alpha semaphore, the CPU’s number is put in
an array (sa_missers), indexed according to the priority of that
processor for the semaphore. The processor with the lowest entry in the
array is favored. This arrangement ensures fair access to the semaphore.

A value called asema_max_ignore limits the number of times a
semaphore is checked and found unavailable. Once this value is
exceeded, arbitration code (asema_available()) ensures that the CPU
does not get starved for a semaphore.

*sa_prev,
*sa_next

Previous and next semaphore in per-kthread
list; used to link semaphores owned by a given
thread together.

sa_order Deadlock protocol order for semaphore.

sa_priority Priority of a mutual exclusion semaphore.

sa_missers Array of processors used for semaphore
arbitration.

Element Purpose

Chapter 1 33

MultiProcessing
Alpha Semaphore Services

Alpha Semaphore Services
The kernel uses several different kinds of routines to manage alpha
semaphores:

• Initialize an alpha semaphore.

• Acquire/release a semphore while adjust priority.

• Acquire/release semaphore across empires.

• Bind/unbind semaphore to a kernel thread.

• Test for whether a kernel thread owns semaphores.

• Arbitrate for an alpha semaphore.

NOTE The services to acquire a semaphore begin with the letter P; those to
release a semaphore begin with the letter V. These derive from the
Dutch words Proberen, meaning “to test” and Verhogen, meaning “to
increment.”

34 Chapter 1

MultiProcessing
Alpha Semaphore Services

Acquire and Release an Alpha Semaphore
Table 1-10 Acquisition and release of an alpha semaphore

External Interface Purpose

initsema
(semaphore,value,priority,
order)

Initialize a mutual-exclusion
semaphore

• Must be called before a
semaphore is used.

• Must not be called when a
semaphore is actively being
used by the kernel.

psema(semaphore)
vsema(semaphore)

Acquire, release a mutual
exclusion semaphore.

• psema() acquires the
semaphore by decrementing
the semaphore count.

• If the count is
non-negative, the thread
acquires the semaphore.

• If the count is negative,
the priority of the calling
thread is raised and the
thread blocks until the
semaphore is available.

• vsema() releases the
semaphore; it does not
adjust the priority, but
delays this until the process
leaves the kernel.

pxsema(semphore, save)
vxsema(semaphore, save)

Acquire, release semaphores
when crossing into and out of
another empire.

Chapter 1 35

MultiProcessing
Alpha Semaphore Services

Bind and Unbind a Semaphore to a Kernel
Thread
These routines serve primarily to maintain the kt_sema field in the
kthread structure. This field keeps track of currently held alpha
semaphores.

As a thread acquires a semaphore, sema_add() links semaphores
together through these field. You can obtain all of the semaphores owned
by a thread by following kthread->kt_sema->sa_next .

Semaphores are bound to threads to maintain the list of semaphores
held when a thread goes to sleep. All bound semaphores are released at
that time and by following this list, they can be reaquired when
awakened.

Table 1-11 Bind and unbind an alpha semaphore

Test for Ownership of Semaphore
Table 1-12 Tests for ownership of an alpha semaphore

Internal function Purpose

sema_add
(kthread, semaphore)

Add a reference to a newly acquired
semaphore into the thread’s kthread
structure.

Update the kthread ’s priority.

sema_delete
(kthread, semaphore)

Remove a reference to a thread’s
kthread structure and recompute
the kthread ’s priority.

Function Purpose

owns_sema
(semaphore)

Returns true if the current thread owns the
semaphore. The routine compares
semaphore->sa_owner with
u.u_kthreadp .

kthread_owns_semas
(*kthread,sema)

Returns true if a kthread owns one or
more semaphores; otherwise returns false.

36 Chapter 1

MultiProcessing
Alpha Semaphore Services

Wait for an Alpha Semaphore
Numerous routines govern the kernel’s decision about whether to switch
to a thread of control that needs a semaphore.

Table 1-13 Tests for whether to switch thread of control

Function Purpose

asema_available
(semaphore)

Routine determines whether the kernel
should switch to a process that needs a
semaphore, based on performance and
priority.

asema_miss_ins
(semaphore,CPU)

Called after a psema miss to insert the
CPU number into the miss table.

asema_miss_del
(semaphore,CPU)

Remove the CPU entry from the miss
table, recompute priorities.

asema_miss_pri
(semaphore,CPU)

Find prority of CPU’s earliest miss.

psema_choose_turn
(semaphore)

Determine if CPU deserves to take its
turn.

psema_spin_[1|n]
(semaphore)

Wait on a locked semaphore.

The thread spins cycles depending on
whether it is the CPU’s turn.

psema_switch_[1|n]
(caller)

Spin for a semaphore without
arbitrating.

Chapter 1 37

MultiProcessing
Beta Semaphores

Beta Semaphores
In some instances the rules governing alpha semaphores are too strict to
meet the needs of the kernel. Another class of semaphores exist, known
as beta semaphores.

NOTE Unlike alpha semaphores, beta semaphores can be held while a process
sleeps.

Beta semaphores are created in the kernel by a call to b_initsema() .
Beta semaphores have services similar to alpha semaphore services. The
following table describes the principal kernel interface routines for beta
semaphore operations.

Table 1-14 Interface routines used for beta semaphore operations

Routine Purpose

b_initsema() Create a beta semaphore, add it to the
hash table, link it to the global list of
semaphores.

b_termsema() Unlink beta semaphore from hash
chain,

b_psema() Acquire the semaphore and possibly
sleep if not available. Operative
assertions: beta semaphore is valid, no
spinlocks are held, interrupts are
disabled, not in interrupt context.

38 Chapter 1

MultiProcessing
Beta Semaphores

Beta semaphores use a hash table to access the associated spinlock and
wait list information (linked list of kthreads).

A kthread at the head of a semaphore’s wait queue is allowed to be
awakened and yet miss the semaphore a maximum of
BETA_MISS_LIMIT times. Other executing code is allowed to acquire
the semaphore between the time the semaphore is unlocked by the V
operation and the time the awakened kthread can execute and lock it.
If the miss limit is reached, the semaphore is passed to the waiting
kthread .

The number of misses the kthread at the head of the semaphore’s wait
queue has taken is maintained in the kthread ’s proc structure. Each V
operation on the semaphore will awaken the kthread at the head of the
wait queue and unlock the semaphore if the miss limit has not been
reached. If the miss limit is reached, the V operation will awaken the
kthread at the end of the wait queue but will not unlock the semaphore,
preventing other code from acquiring the semaphore. The awaken
kthread notices that the semaphore ownership has been passed to it.
This is indicated by the miss count being equal to BETA_MISS_MAX.

Beta Semaphore Structures
The beta semaphore itself contains only the lock and owner information.
Both beta semaphore and its hash table are definedin sem_beta.h .

b_cpsema() Acquire semaphore and return 0 if
available. If not available fail and
return 1. Operative assertions: Beta
semaphore is valid, interrupts are
enabledwhen not on the boot path.

b_vsema() Release the semaphore. Operative
assertions: beta semaphore is valid,
interrupts are enabled, semaphore is
locked and allowed to unlock.

b_disowns_sema() Returns true if current kthread does
not own the specified beta semaphore.

Routine Purpose

Chapter 1 39

MultiProcessing
Beta Semaphores

Figure 1-9 Beta semaphore structures

Beta Semaphore Type Definition
The beta semaphore is defined as typedef b_sema_t (also defined as
vm_sema_t) and consists of the three fields.

Table 1-15 elements in struct b_sema

b_sema_t

b_lock

order

*owner

Kernel Threads (kthread)

*spinlock
Wait List

Hash link
Hash

b_sema

Owner
Lock Bytes

16-Way Lock Bytes

Spinlock (lock_t_)

Element Purpose

b_lock Lock state for the semaphore, which may have one
for the following values:

• 0 = Available

• 1 = SEM_LOCKED (Semaphore is locked)

• 2 = SEM_WANT (Semaphore is locked but a thread
is waiting on it).

b_order Indicator of what order the semaphore should be
locking in.

*b_owner Pointer to the kthread structure of the thread of
control claiming the semaphore. (This is the only
thread information in the beta semaphore
structure.)

40 Chapter 1

MultiProcessing
Beta Semaphores

Note, the b_lock field is not a spinlock. The spinlock guarding the beta
semaphore is in the hash table.

Beta Semaphore Hash Table
The address of the beta semaphore is indexed into the beta semaphore
hash table (bh_sema_t) to obtain the spinlock and waiter information.

Table 1-16 elements in struct bh_sema_t

Element Purpose

*beta_spinlock Pointer to the spinlock (type lock_t)

*fp, *bp Pointers to the struct kthread that
comprise a wait list for the beta semaphore.
The waiters are linked together using the
kthread.kt_wait_list and
kthread.kt_rwait_list fields in the thread
structure.

*link Pointer to the link list of beta semaphores.

Chapter 1 41

MultiProcessing
Performance Considerations and Locking

Performance Considerations and
Locking
Consider the following when designing your code to run on a
multiprocessing system:

• Spinlocks execute faster than semaphores when they do get the lock.

• Spinlocks waste CPU time by spinning if they cannot get the lock.

• There is a trade-off of efficiency when using semaphores, depending
on how long a lock is held before you get it:

• Semaphores might waste CPU time by switching to another
process if they cannot get the lock, because if the lock had been
free, the switch would have been unnecessary.

• Semaphores might save CPU time by switching to another process
if they cannot get the lock, because one process can do useful work
while the process is waiting for the lock.

If the lock will be held for a long time (compared to a context switch),
switching is preferable; but if held briefly, spinning might be better.

• Because spinlocks are busy waiting, they can immediately get the
lock when it comes free.

• With semaphores the waiting process must be context-switched in its
sleep state. This represents a high latency in getting the lock.

Deadlocks
Consider the following example:

Table 1-17 Sample deadlock situation

Processor 0 Processor 1

spinlock(lockA) spinlock(lockB)

spinlock(lockB) spinlock(lockA)

42 Chapter 1

MultiProcessing
Performance Considerations and Locking

Deadlocks occur when two processors (or processes or threads of control)
have locked resources in different orders, and each has something
needed by the other. As a result, they wait for each other to relinquish
what they need. There can be complex chains of these dependencies
amongs multiple processors and processes.

The sample code works most of the time. But when both processors fall
through their respective code at the same time, a problem occurs. When
machines execute 100 million instructions per second (or more), such
coincidences happen all too frequently, however.

Ordering Strategy for Deadlock Avoidance

• Locks are always locked in the same order.

• Each lock is given its own order (a positive integer).

• Instrumented kernels are run to ensure that locks are always taken
in the correct order.

Maintaining an ordering strategy guarantees that each locking sequence
is done in just one order, no matter where the code is executing.

[do work] [do work]

spinunlock(lockB); spinunlock(lockA);

spinunlock(lockA); spinunlock(lockB);

Processor 0 Processor 1

Chapter 1 43

MultiProcessing
Processor Scheduling

Processor Scheduling
One of the biggest challenges in a multiprocessing environment is to
distribute evenly the work across available processors. When a process
is created, it is set to run initially on the same SPU as the parent,
because a forked process is likely to use some of the same context as the
parent. By launching on the same processor, the system takes advantage
of previously cached data and avoids cache coherency performance
issues.

In a multiprocessor environment, each SPU has a separate run queue.
Once a thread is put on a run queue (with setrq()) for a certain
processor it remains there until removed with remrq() . When a process
is ready to run, the processor to which it is scheduled is based on the
kthread.kt_spu_wanted field.

Of major concern is to keep the relative load balanced among processors.
To do this, each iteration of schedcpu() calls the routine
mp_spu_balance() .

Additionally, any spu in an idle state may attempt to steal threads from
other processors. This is done by the kernel routine
find_thread_other_spu() .

