
1

HP-UX Process Management

White Paper

Version 1.3



2

5965-4642

Last modified April 7, 1997

© Copyright 1997,  Hewlett-Packard Company



3

Legal Notices
The information contained within this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained
herein nor for incidental consequential damages in
connection with the furnishing, performance, or use of
this material.

Warranty.  A copy of the specific warranty terms
applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales
and Service Office.

Restricted Rights Legend.  Use, duplication, or
disclosure by the U.S. Government Department is subject
to restrictions as set forth in subparagraph (c) (1)
(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DOD agencies,
and subparagraphs (c) (1) and (c) (2) of the Commercial
Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Copyright Notices. (C)copyright 1983-97 Hewlett-Packard
Company, all rights reserved.

This documentation contains information that is
protected by copyright. All rights are reserved.
Reproduction, adaptation, or translation without written
permission is prohibited except as allowed under the
copyright laws.

(C)Copyright 1981, 1984, 1986 UNIX System Laboratories,
Inc.

(C)copyright 1986-1992 Sun Microsystems, Inc.
(C)copyright 1985-86, 1988 Massachusetts Institute of
Technology.



4

(C)copyright 1989-93 The Open Software Foundation, Inc.
(C)copyright 1986 Digital Equipment Corporation.
(C)copyright 1990 Motorola, Inc.
(C)copyright 1990, 1991, 1992 Cornell University
(C)copyright 1989-1991 The University of Maryland.
(C)copyright 1988 Carnegie Mellon University.

Trademark Notices. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open
Company Limited.

NFS is a trademark of Sun Microsystems, Inc.

OSF and OSF/1 are trademarks of the Open Software Foundation, Inc. in
the U.S. and other countries.

First Edition: April 1997 (HP-UX Release 10.30)



1

Process Management 3

Objectives 4
What is a process? 5
Process Relationships 6
Process and Parent Process IDs 6
User and Group IDs (Real and Effective) 6

Process Context 7
Space apportioned to a Process 10
Handling maxdsiz with EXEC_MAGIC 12
Impact and Performance 14

Process  States and transitions 15
What are Kernel Threads? 18
Comparison of Threads and Processes 19
User and Kernel Mode 21

Thread’s Life Cycle 21
Multi-Threading 24
Thread Models 25
User-Space Threads (M x 1) 25
Kernel-Space Threads (1 x 1) 26
User-Space and Kernel-Space Threads (M x N) 26
POSIX Threads (pthreads) 27

Process creation 29
Thefork1()  Routine 31
Thenewproc()  Routine 34
newproc(FORK_VFORK) 34
newproc(FORK_PROCESS) 35

The procdup() Routine 35
vfork  State information instruct vforkinfo 36

Process Execution 38
The Routines ofexec 38
A Closer Look atgetxfile 41
If getxfile is Called by a vfork’d Process 43
vfork  in a Multiprocessor Environment 45



2

Thesleep*()  Routines 45
wakeup() 47
force_run() 48

Process Termination 49
The exit  System Call 49
wait System Call 51

wait1()  subroutine 53
freeproc() , freethread() , andkissofdeath()  Routines 54

Basic Threads Management 58
Thread Creation Overview 59
Thread Termination Overview 60
HP-UX Threads Extensions 60
Thread Synchronization 61
mutex  Locks 62
Lock Order 63
Condition Variables 63
Semaphores 64
Read/Write Locks 64

Signal Handling 65
Thesigwait()  function 66

Thread Cancellation 66
Process Management Structures 68
proc Table 70
Kernel Thread Structure 72
vas  structure 76
Pregion Structure 78
Traversingpregion  Skip List 80
User Structures (uarea ) 81
Process Control Block (pcb ) 82

Process Scheduling 85
Scheduling Policies 85
Hierarchy of Priorities (overview) 87

Schedulers 87
RTSCHED (POSIX) Scheduler 87
SCHED_RTPRIO Scheduler 88



3

SCHED_HPUX Scheduler 89
Process Resource Manager 89

Scheduling Priorities 90
Internal vs. External Priority Values 90
rtsched_numpr i Parameter 91
Schedulers and Priority Values 91

RTSCHED Priorities 93
Run Queues 95
Run Queue Initialization 96
RTSCHED Run Queue 98
The CombinedSCHED_RTPRIO andSCHED_TIMESHARE Run Queue 100
RTPRIO Run Queue 101
SCHED_TIMESHARE Run Queue 102

Thread Scheduling 104
Timeline 105
Thread Scheduling Routines 107
Adjusting a Thread Priority 110

Context Switching 112
Theswtch()  Routine 112
Process and Processor Interval Timing 116
State Transitions 117



3

1 Process Management



4 Chapter 1

Process Management
Objectives

Objectives
Understanding how HP-UX manages processes will help you better
interpret how your system carries out its computations.  This white
paper/chapter discusses:

• What a process is.

• What kernel threads are.

• Process creation, execution, and termination.

• Process-management structures for process scheduling, run queues,
scheduling, context switching.
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What is a process?
A process is a running program, managed by such system components as
the scheduler and the memory management subsystem. Described most
simply, a process is a container for a set of instructions that carry out the
overall task of a program.

A process consists of text (the code that the process runs), data (used by
the code), and stack (temporary data storage for when the process is
running). These and other elements are known as the process context.

NOTE HP-UX is now a threads-based operating system.  This affects how we
view processes.

Every process has at least one thread.  Think of a process as a container
for groups of threads.  A process holds  the address space and shared
resources for all the threads in a program in one place.  When you
manipulate the elements of a program (things you schedule, context
switches, and so forth), you always manipulate threads.

Two stacks are associated with a process, kernel stack and user stack.
The process uses the user stack when in user space and the kernel stack
when in kernel space.

Although processes appear to the user to run simultaneously, in fact a
single processor is executing only one process at any given instant.

A process’s proc  structure includes:

• The program’s kernel data structures (variables, arrays, records) .

• Process ID, parent process ID, process group ID.

• Process user and group IDs (both real and effective IDs).

• Group access list.

• Information on the process’s open files.

• Process’s current working directory.

• Audit ID (on trusted systems only).
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Process Relationships
Processes maintain hierarchical, parent-child relationships.  Every
process has one parent, but a parent process can have many child
processes.  Processes can create processes, which in turn, can create
more processes.

A child process inherits its parent’s environment (including environment
variables, current working directory, open files).  Also, all processes
except system processes (such as init , pagedaemon , and sched  (the
“swapper”)) belong to process groups, which are explained shortly.

Process and Parent Process IDs
When a process is created, HP-UX assigns the process a unique integer
number known as a process ID (PID).  The HP-UX kernel identifies each
process by its process ID when executing commands and system calls.

A process also has a parent process ID (PPID), which is the PID of the
parent process.  You can see the PIDs and PPIDs of processes currently
running on your system by using the ps command.

User and Group IDs (Real and Effective)
In addition to the process ID, a process has other identification numbers:

• real user ID

• real group ID

• effective user ID

• effective group ID.

Real user ID is an integer value that identifies the owner of the process --
that is, the user ID of the user who invoked the process.  Real group ID is
an integer value that identifies the group to which the user belongs.  The
real group ID is shared by all users who belong to the group.  It allows
members of the same group to share files, and to disallow access to users
who do not belong to the group.

The id command displays both integers and names associated with real
user ID and real group ID.  The /etc/passwd  file assigns the real user
ID and real group ID to the user at login.

The effective user ID and effective group ID allow a process running a
program to act as the program’s owner while the program executes.  The
effective IDs are usually identical to the user’s real IDs.  However, the



Chapter 1 7

Process Management
What is a process?

effective user ID and group ID can be set (setuid  and setgid )
individually to allow limited superuser capability, by making the
effective IDs of the program’s processes equal to the real IDs of the
program’s owner. The classic example is passwd , which allows limited
ability to change /etc/passwd .

The effective IDs are used to allow a user to access or modify a data file
or to execute a program in a limited manner.  When the effective user ID
is zero, the user is allowed to execute system calls as superuser.

The effective user and group IDs remain set until:

• The process terminates.

• The effective IDs are reset by an overlaying process, if the setuid  or
setgid  bit is set (see exec(2) ).

• The effective, real, and saved IDs are reset by the system calls
setuid , setgid , setresuid , or setresgid .

In a trusted system, each user has an audit ID that does not change,
even when the user executes programs using a different effective user
ID.

Process Context
The context of a process includes its component parts and kernel
resources, as detailed in the following table.   Note, however, that some of
these elements are now defined in terms of threads.

Table 1-1 Context of a process

Type Purpose

text Machine/program code that is executed. Maximum
size of text is limited by the maxtsiz  configurable
parameter.

Data Initialized data that accompanies the text.  Contains
the global variables used by the program.  Maximum
size of data is limited by the maxdsiz  configurable
parameter.

bss Uninitialized data
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heap space Undefined space available to the process as by a call
to malloc(3)  function.

private
memory
mapped files
(mmap)

mmap files allow applications to map file data into a
process’s virtual address space.

user  and
kernel stacks

User stack is used while a thread is executing in
user mode to store variables, subroutines; used for
function calls in the user program.

Maximum size of the process’s user stack is limited
by maxssiz  configurable parameter.

The kernel stack is used for function calls when the
process executes system calls, etc.

user
structure
(uarea )

Per-process information needed when the process is
running (and thus can be paged out).  Points to
process register state, open file descriptors, open
devices, system call arguments and return values.

Since HP-UX is a threads-based kernel, it has one
user structure for each thread structure; each kernel
thread has its own uarea .

shared
libraries

Used by processes to reduce the amount of memory
consumed. Shared library functions are mapped into
processes.

shared
memory

Available range of addresses that are allocated using
the shared memory interfaces and that enable
processes to share address space. Useful for
communicating between processes.

Type Purpose
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process
structure

Remains memory resident.  Contains per-process
information needed to schedule threads. Includes
process ID, scheduling priority, run state, signal
mask.

register
context

Register values and program counter. When a
process is running, reg. context is loaded in CPU
registers; when not running, register context is
stored in the process control block (pcb ). Register
context is now thread context.

virtual
address space

A four-gigabyte (32-bit) range of addresses into
which the context of a process is logically mapped.

Type Purpose
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Space apportioned to a Process
Every process has 4 gigabytes of virtual address space available to it.
The four-gigabyte space is subdivided into four one-gigabyte quadrants,
each with a different usage.  A process keeps track of its quadrants
through space registers, which provide provide quadrant locations.

Table 1-2 Quadrants of virtual address space

The current 32-bit address space layout can be depicted by comparing
how that virtual address space is used in kernel mode and user mode.

Quadrant Address Range and Purpose

1  0x00000000 - 0x3FFFFFFF

Contains process code (and EXEC_MAGIC
data)

2 0x40000000 - 0x7FFFFFFF

Contains process data.

3  0x80000000 - 0xBFFFFFFF

Contains shared memory, shared memory
mapped files, and shared library text.

4  0xC0000000 - 0xFFFFFFFF

Same usage as quadrant 3. Bottom of
quadrant 3 contains the gateway page.

Address range 0xF0000000 to 0xFFFFFFFF
is reserved for I/O address space.
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Figure 1-1 32-bit address space layout on PA1.x

The next figure shows that the various quadrants of a process might be
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be in space ID 2 of quadrant 1, the shared libraries might be in space ID
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Figure 1-2 Process structure layout, showing context and space use.

Handling maxdsiz with EXEC_MAGIC

Figure 1-3 Process address space in EXEC_MAGIC format
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By default, a process’s four GB address space is divided into four equal
quadrants of one GB each. Each quadrant has a specific purpose (text,
data, etc) and this accounts for the limitation on maxdsiz  of ~960 MB.

An EXEC_MAGIC user executable (a.out ) format allows data to start
immediately after the code area in the first quadrant, instead of at the
beginning of the second quadrant, and grow to the beginning of the user
stack. Executables created with this format can handle more than 1 GB
of data.

Data space starts in the first quadrant right after the process text and
runs through the second quadrant. The data space uses up to
approximately 1.9 gigabytes. For EXEC_MAGIC executables, the ~1.9GB
limit represents the area from 0x00000000 to 0x7b03a000. The
remainder is used for the stacks and uarea. For SHARED_MAGIC, data
begins at 0x40000000. Everything else remains at the same location; the
maximum stack size (maxssiz)  remains 80MB.

NOTE To create an executable in EXEC_MAGIC format, link the executable with
the -N  option. (See ld(1)  man page for details.)

EXEC_MAGICexecutables can access more than .9GB of process private
data because data is allowed to immediately follow text in quadrant one.
For text and data to occupy the same quadrant, they must have the same
space, yet process private data must have a  unique space ID.  Therefore,
in the previous implementation of EXEC_MAGIC,  text was actually
viewed as a part of the data. Because HP-UX currently supports only one
virtual translation per physical page (that is, one <space,offset>
pair) , EXEC_MAGIC text cannot be shared between multiple processes. To
overcome this limitation, the EXEC_MAGIC implementation allows
read-only aliasing; multiple addresses can map the same physical page.

Because only one process actually owns a page translation, true
copy-on-write is not currently implemented on HP-UX. When a second
process attempts to read or write a shared page, the second process
receives its own private copy of the page.  With read-only aliasing,
processes share a text page with different virtual addresses if they are
only reading the page.  A process will receive its own private copy of the
page only when a write is performed.

Because EXEC_MAGIC text segments were considered part of the data
segment, the text segment was writable. Because HP-UX guarantees
swap space be available whenever a process requires, swap space was
reserved for the entire text segment at exec() time.  Because most users
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do not write to their text segment, the swap space reserved for the
process is never used. To make more efficient use of swap space, a lazy
swap reservation policy is implemented for EXEC_MAGICtext.  Swap
space is only reserved for pages being written to.

EXEC_MAGIC text is entirely loaded in at exec()  time to protect against
a.out  modifications while the application is being run. EXEC_MAGIC
guards against this problem by marking the EXEC_MAGIC executable
VTEXT.  This allows the text to be demand loaded, instead of being loaded
entirely at exec()  time.

Null reference semantics are supported on EXEC_MAGIC executables.

NOTE If you have an existing program that you have no source for or do not
wish to recompile/link as EXEC_MAGIC, the process will retain a limit of
~960 MB for its data size.

Impact and Performance

• More memory and swap space is available when running multiple
copies of the same EXEC_MAGIC executable because unmodified text
pages are now shared.

• EXEC_MAGIC executables start up more quickly because text is now
demand paged instead of being entirely loaded at exec() time.

• EXEC_MAGIC executables execute more quickly because pages are
copied on write instead of being copied on any access.

• EXEC_MAGIC application failure is visible while running, if swap
space is unavailable when the procress attempts to write to a page of
text. This failure is not visible if self-modifying code is not used.

• Demand paging and copy-on-write features improve performance of
EXEC_MAGIC.  Performance on SHARED_MAGIC executables remain
unaffected.

CAUTION An EXEC_MAGIC application is subject to fail if insufficient swap space is
available when the application attempts to write to a page of text. You
must use self-modifying code to see this failure.
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Process  States and transitions
Through the course of its lifetime, a process transits through several
states.  Queues in main memory keep track of the process by its process
ID.  A process resides on a queue according to its state; process states are
defined in the proc.h header file.  Events such as receipt of a signal cause
the process to transit from one state to another.

Table 1-3 Process states

The following figure demonstrates something of the transitions between
process states.

State What Takes Place

idle (SIDL) Process is created by a call to fork , vfork,  or
exec ; can be scheduled to run.

run (SRUN) Process is on a run queue, available to execute in
either kernel or user mode.

stopped (SSTOP) Executing process is stopped by a signal or
parent process

sleep (SSLEEP) Process is not executing; may be waiting for
resources

zombie (SZOMB) Having exited, the process no longer exists, but
leaves behind for the parent process some record
of its execution.
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Figure 1-4 Process states and transitions
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getting the resource, at which time the process wakes up and is put on a
run queue (in-core, runnable).  A sleeping process might also be swapped
out, in which case, when it receives its resource (or wakeup signal) the
process might be made runnable, but remain swapped out.  The process
is swapped in and is put on a run queue.  Once a process ends, it exits
into a zombie state.
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What are Kernel Threads?
A process is a representation of an entire running program. By
comparison, a kernel thread is a fraction of that program. Like a process,
a thread is a sequence of instructions being executed in a program.
Kernel threads exist within the context of a process and provide the
operating system the means to address and execute smaller segments of
the process. It also enables programs to take advantage of capabilities
provided by the hardware for concurrent and parallel processing.

The concept of threads is interpreted numerous ways, but to quote a
definitive source on the HP-UX implementation (S.J. Norton and M.D.
DiPasquale, ‘ThreadTime: Multithreaded Programming Guide, (Upper
Saddle River, NJ: Prentice Hall PTR, Hewlett-Packard Professional
Books), 1997, p.2):

A thread is “an independent flow of control within the process”,
composed of a [process’s register] context, program counter, and a
sequence of instructions to execute. An independent flow of control
is an execution path through the program code in a process.   The
register context and program counter contain values that indicate
the current state of program execution.  The sequence of
instructions to execute is the actual program code.

Further, threads are

• A programming paradigm and associated set of interfaces allowing
applications to be broken up into logically distinct tasks that when
supported by hardware, can be run in parallel.

• Multiple, independent, executable entities within a process, all
sharing the process’ address space, yet owning unique resources
within the process.

Each thread can be scheduled, synchronized, prioritized, and can send
and receive signals. Threads share many of the resources of a process,
eliminating much of the overhead involved during creation, termination,
and synchronization.

A thread’s “management facilities” (register context et al) are used to
maintain the thread’s “state” information throughout its lifetime. State
information monitors the condition of an entity (like a thread or process);
it provides a snap-shot of an entity’s current condition. For example,
when a thread context switch takes place, the newly scheduled thread’s
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register information tells the processor where the thread left off in its
execution. More specifically, a thread’s program counter would contain
the current instruction to be executed upon start up.

As of release 10.30, HP-UX has kernel threads, which change the role of
processes. A process is now just a logical container used to group related
threads of an application. Each process contains at least one thread. This
single (initial) thread is created automatically by the system when the
process starts up. An application must explicitly create the additional
threads.

A process with only one thread is a “single-threaded process.” A process
with more than one thread is a “multi-threaded process.” Currently, the
HP-UX kernel manages single-threaded processes as executable entities
that can be scheduled to run on a processor (that is, each process
contains only one thread.) Development of HP-UX is moving toward an
operating system that supports multi-threaded processes.

Comparison of Threads and Processes
The following lists process resources shared by all threads within a
process:

• File descriptors, file creation mask

• User and group IDs, tty

• Root working directory, current working directory

• semaphores, memory, program global variables

• signal actions, message queues, timers

The following lists thread resources private to each thread within a
process:

• User registers

• Error number (errno)

• Scheduling policy and priority

• Processor affinity

• Signal mask

• Stack

• Thread-specific data
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• Kernel uarea

Like the context of a process, the context of a thread consists of
instructions, attributes, user structure with register context, private
storage, thread structure, and thread stack.

Two kernel data structures -- proc and user  -- represent every process
in a process-based kernel.  (The proc  structure is non-swappable and
user is swappable.)  In addition, each process has a kernel stack
allocated with the user structure in the uarea .

A threads-based kernel also uses a proc and a user structure.  Like the
proc structure of the process-based kernel, the threads-based proc
structure remains memory resident and contains per-process data
shared by all the kernel threads within the process.

Each thread shares its host process’ address space for access to resources
owned or used by the process (such as a process’ pointers into the file
descriptor table). Head and tail pointers to a process’ thread list are
included in the proc structure.

Each thread manages its own kernel resources with private data
structures to maintain state information and a unique counter.  A thread
is represented by a kthread structure (always memory resident), a user
structure (swappable), and a separate kernel stack for each kernel
thread.

Every kthread structure contains a pointer to its associated proc
structure, a pointer to the next thread within the same process.  All the
active threads in the system are linked together on the active threads
list.

Like a process, a thread has a kind of life cycle based on the execution of
a program or script.  Through the course of time, threads like processes
are created, run, sleep, are terminated.
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Figure 1-5 Typical thread state sequence

User and Kernel Mode
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Figure 1-6 Thread life cycle

1. Process is created via a call to fork() or vfork() ; the fork1()
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hardclock()  every click tick (10ms) to charge the currently running
thread with cpu usage.  After 4 clock ticks (40ms), hardclock()  calls
setpri()  to adjust the thread’s user priority.  The thread is given
this value on the next context switch.  After 10 click tics (100ms), a
context switch occurs. The next thread to run will be the threadwith
the highest priority in a state of TSRUN.  For the remaining threads in
TSRUN state, schedcpu()  is called after 100 clock tics (1 second).
schedcpu()  adjusts all thread priorities at this time.

5. Once a thread acquires the requested resource, it calls the wakeup()
routine and again changes states from TSLEEP to TSRUN.  This makes
the thread eligible to run again.

6. On the next context switch the thread is allowed to run, provided it is
the next eligible candidate.  When allowed to run, the thread state
changes again to TSRUNPROC.

7. Once the thread completes its task it calls exit() . It releases all
resources and transfers to the TSZOMB state.  Once all resources are
released, the thread and the process entries are released.

8. If the thread is being traced, it enters the TSSTOP state.

9. Once the thread is resumed, it transfers from TSSTOP to TSRUN.
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Multi-Threading
When a task has two or more semi-independent subtasks, multiple
threading can increase throughput, give better response time, speed
operations, improve program structure, use fewer system resources, and
make more efficient use of multiprocessors. With multi-threading, a
process has many threads of control. Note, order of execution is still
important!

The following terminology will be useful to understand multi-threading:

User threads Handled in user space and controlled using the threads
APIs provided in the threads library. Also referred to as
user-level or application-level threads.

Kernel threads Handled in kernel space and created by the thread
functions in the threads library. Kernel threads are
kernel schedulable entities visible to the operating
system.

Lightweight
processes (LWPs)

Threads in the kernel that execute kernel code and
system calls.

Bound threads Threads that are permanently bound to LWPs. A bound
thread is a user thread bound directly to a kernel
thread. Both a user thread and a kernel-scheduled
entity are created when a bound thread is created.

Unbound
threads Threads that attach and detach from among the LWP

pool. An unbound thread is a user thread that can
execute on top of any available LWP. Bother bound and
unbound threads have their advantages and
disadvantages, depending entirely on the application
that uses them.

Concurrency At least two threads are in progress at the same time

Parallelism At least two threads are executing simultaneously.
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Thread Models
Industrywide, threads are implemented according to four distinct
models:

• User-space threads (“many [threads] to one [process]” (M x 1))

• Kernel-space threads (“one to one” (1 x 1))

• user-space and kernel-space threads (“many to many” (M x N))

• POSIX threads (pthreads ), which can be used with any other model

User-Space Threads (M x 1)
User-space threads (M x 1, based on POSIX draft 4 threads) are created,
terminated, synchronized, scheduled, and so forth using interfaces
provided by a threads library. Creation, termination, and
synchronization operations can be performed extremely fast using
user-space threads.

Because user-space threads are not directly visible to the kernel (which
is aware only of the overriding process containing the user-space
threads), user-space threads (M x 1) require no kernel support. As shown
in the following figure, all thread management is done in user space, so
there is no overhead associated with crossing the kernel boundary.

Figure 1-7 User-space (M x 1) threads for an application (process)

If one thread blocks, the entire process blocks. When this happens, the
benefit of threads parallelism is lost. Wrappers around various system
calls can reduce some of the blocking, but at a cost to performance.

user space

kernel space

T1 T2 T3 Tn. . .

P1

user
space
scheduler

user-space
threads

process
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User-space threads have been on HP-UX since release 9.0 with DCE and
on all 10.0 systems.

Kernel-Space Threads (1 x 1)
With kernel threads (1 thread to one process, or 1 x 1), each user thread
has a corresponding kernel thread. Thus, there is full kernel support for
threads.

Each thread is independently schedulable by the kernel, so if one thread
blocks, others can still run.

Creation, termination, and synchronization can be slower with kernel
threads than user threads, since the kernel must be involved in all
thread management. Overhead may be greater, but more concurrency is
possible using kernel threads, even with a uniprocessor system. As a
result, total application performance with kernel-space threads
surpasses that of user-space threads.

Note, however, that developers must be more careful when creating large
amounts of threads, as each thread adds more weight to the process and
more overhead to the system

Figure 1-8 Kernel-space (1 x 1) threads for an application (process)

User-Space and Kernel-Space Threads (M x N)
The model of maximal flexibility in the number of threads to processes
(M x N) provides the developer with both user-space and kernel-space
threads.

user space

T1 T2 T3 Tn. . .

KT1 KT2 KT3 KTn. . .
kernel-space
scheduler

user-space
threads

kernel-space
threads

kernel space
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The M x N model allows threads to be bound or unbound from kernel
threads. Users can use unbound user space threads to take advantage of
thread management occurring in user space. Bound threads enable use
of the independent kernel scheduling provided for by kernel threads, as
well as the true parallelism capabilities (both logical and physical) of an
MP machine.

Figure 1-9 User-space and kernel-space (M x N) threads for an application
(process)

The combination of user-space and kernel-space threads allow for
extremely fast and efficient thread creation, termination,
synchronization, and context switching, and thus, better performance
and more system throughput than either 1 x 1 or M x 1 model.
Developers need not worry about additional threads adding weight to the
process or overhead to the system, as in the user-space threads (1 x 1)
model. Further, blocking does not require the kernel to context switch to
another process; another thread in the process will execute next.

Because the M x N model is the most powerful and flexible for
programmers, it is also the most complex. Debugging can be difficult.

POSIX Threads (pthreads)
HP-UX release 10.30 implements the 1 x 1 (kernel-space threads)
version of IEEE Portable Operating System Interface standard threads,
(POSIX 1003.1c, based on final draft 10). Pthreads includes functions
and application programming interfaces (APIs) to support multiple flows
of control (threads) within a process. Using pthreads enables developers
to create source-code portable applications.

user space
kernel space

T1 T2 T3 Tn. . .

KT1 KTn kernel-space
scheduler

KT2 KT3 ...
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scheduler

user-space
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For details on pthread  functions, attributes, stack information, and so
forth, consult the pthread.h  file.

NOTE The HP-UX DCE version of threads (M x 1, or user-space threads)
complies with POSIX draft 4. However, neither 1 x 1 nor M x N model
implementations will be binary or source compatible. In addition, HP
also provides extensions to the POSIX.1c threads programming
environment to equip the programmer with additional control and
powerful features previously unavailable. These extensions, however, are
not portable on different platforms. Do not rely on them for writing
portable applications!
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Process creation
Process 0 is created and initialized at system boot time but all other
processes are created by a fork()  or vfork()  system call.

• The fork()  system call causes the creation of a new process. The
new (child) process is an exact copy of the calling (parent) process.

• vfork()  differs from fork()  only in that the child process can share
code and data with the calling process (parent process). This speeds
cloning activity significantly at a risk to the integrity of the parent
process if vfork()  is misused.

NOTE The use of vfork()  for any purpose except as a prelude to an immediate
exec()  or exit()  is not supported. Any program that relies upon the
differences between fork()  and vfork( ) is not portable across HP-UX
systems.

Table 1-4 Comparison of fork() and vfork()

NOTE At user (application) level, processes or threads can create new processes
via fork() or vfork() .

fork() vfork()

Sets context to point to parent.

Child process is an exact copy of
the  parent process.  (See
fork(2)  manpage for inherited
attributes.)

Can share parent’s data and code.
vfork()  returns 0 in the child’s
context and (later) the pid of the
child in the parent’s context.

Copy on access Child borrows the parent’s
memory and thread of control
until a call to exec()  or exit() .

Parent must sleep while the child
is using its resources, since child
shares stack and uarea

Must reserve swap No reservation of swap
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At kernel level, only threads can fork new processes.

Figure 1-10 Comparing fork()  and vfork() at process creation

When fork ’d, the child process inherits the following attributes from the
parent process:

• Real, effective, and saved user IDs.

• Real, effective, and saved group IDs.

• List of supplementary group IDs (see getgroups(2) ).

• Process group ID.

• File descriptors.

• Close-on-exec flags (see exec(2) ).

• Signal handling settings (SIG_DFL, SIG_IGN , address).

• Signal mask (see sigvector(2) ).

• Profiling on/off status (see profil(2) ).

• Command name in the accounting record (see acct(4) ).

• Nice value (see nice(2) ).

• All attached shared memory segments (see shmop(2) ).

• Current working directory

• Root directory (see chroot(2) ).

• File mode creation mask (see umask(2) ).

forktype = FORK_PROCESS forktype = FORK_VFORK

user level
kernel level

fork1(forktype)

    vfork(libc call)fork(libc call) < or >

newproc()

procdup()
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• File size limit (see ulimit(2) ).

• Real-time priority (see rtprio(2) ).

Each child file descriptor shares a common open file description with the
corresponding parent  file descriptor. Thus, changes to the file offset, file
access mode, and file status flags of file descriptors in the parent also
affect those in the child, and vice-versa.

The child process differs from the parent process in the following ways:

• The child process has a unique process ID.

• The child process has a different parent process ID (which is the
process ID of the parent process).

•  The set of signals pending for the child process is initialized to the
empty set.

•  The trace flag (see the ptrace(2) PT_SETTRC  request is cleared in
the child process.

• The AFORK flag in the ac_flags component of the accounting record is
set in the child process.

•  Process locks, text locks, and data locks are not inherited by the child
(see plock(2) ).

•  All semadj  values are cleared (see semop(2) ).

•  The child process’s values for tms_utime, tms_stime,
tms_cutime, and tms_cstime are set to zero..

•  The time left until an alarm clock signal is reset to 0 (clearing any
pending alarm), and all interval timers are set to 0 (disabled).

The fork1()  Routine
Both fork()  and vfork()  call the fork1()  routine to create a new
process, specifying as forktype :

• FORK_PROCESS when the fork()  system call is used

• FORK_VFORK when the vfork()  system call is used

The next table itemizes the subroutines performed by fork1() .
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Table 1-5 fork1(forktype)

Subroutine Purpose

getnewpid( ) Set up unique process ID.  The
following PIDs are reserved for the
system:

• 0 -- PID_SWAPPER

• 1 -- PID_PAGEOUT

• 2 -- PID_INIT

• 3 -- PID_STAT

• 4 -- PID_UNHASH

• 5 -- PID_NETISR

• 6 -- PID_SOCKREGD

• 7 -- PID_MAXSYS

getnewtid() Set up unique thread ID for the
main thread of the new process.
The following TIDs are reserved for
the system:

• 0 -- TID_SWAPPER

• 1 -- TID_INIT

• 2 -- TID_PAGEOUT

• 3 -- TID_STAT

• 4 -- TID_UNHASH

• 5 -- TID_NETISR

• 6 -- TID_SOCKREGD

• 7 -- TID_MAXSYS

proc_count() Verify that a user process does not
exceed nproc  (maximum number of
proc  table entries)
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If fork1()  is called with a forktype of FORK_VFORK, memory is
allocated and initialized for a vforkinfo() structure, which is
referenced through the proc  structures of the parent/child vfork()
pair.  The vforkinfo  structure holds state information about the
vfork()  and a copy of the parent stack.  The vforkinfo()  structure is
used throughout process creation  while the child decides to exit()  or
exec() . struct vforkinfo  is found in proc_private.h .

fork1()  switches to newproc() , giving it forktype , proc table slot,
and thread with which to create the new process.

allocproc() Allocate space for the proc
structure entry and clear it.
Allocate memory required for the
process by a call to kmalloc .
Remove the allocated process table
slot from the free list.
Mark the entry “process creation in
progress”, corresponding to a
p_flag  definition of SIDL  (process
creation state).

allocthread() Allocate space for the thread
structure and add it to the active
thread list.Initialize the entry to a
kthread flag state of TSIDL  (thread
creation state)

link_thread_to_proc() Link the child thread structure to
its proc  structure

thread_hash(),
proc_hash()

Hash the child thread structure for
its TID and the proc structure for
its UID and PID.

link_thread_to_active()

link_proc_to_active()

Link the child thread structure to
the active threads list and the child
process to the active process list

Subroutine Purpose
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The newproc()  Routine
When fork1  calls newproc() , things proceed differently depending on
whether forktype  is FORK_VFORK or FORK_PROCESS.

newproc(FORK_VFORK)

newproc()  gets a pointer to the parent process and ascertains that no
other fork s or exit s are occurring at the same time.

• newproc()   verifies the kt_stat  (thread state) is TSIDL ; if not it
panics.

• newproc()  gets a pointer to the parent process and thread.

• When called by vfork , newproc()  allocates the vforkinfo  buffer,
by calling vfork_buffer_init()

• vfork_buffer_init()  determines the kernel stack size, uarea
size, and room for growth, allocates memory, fills in vforkbuf
information, saves frame_size , pointer to parent’s uarea , and
pointer to last buffer.

• newproc()  computes the size of the fork , then acquires the
sched_lock.  While holding the lock, newproc()  updates process
statistics.

• By calling fork_inherit , newproc() performs all direct
assignments from the parent to the child proc structure.

NOTE POSIX mandates that the child process and thread inherit the
scheduling policy and priority from the parent process that forked them.

• newproc()  calls dbfork()  subroutine to set up the child’s flags to
adhere to locking rules (documented in proc_private.h ). The child
process p_flag  is set to SLOAD and the child thread kt_flag  is set to
TSFIRSTTHREAD.

• newproc()  calls reload_ticksleft()  to update the child thread
(ct) and mark the parent proc pointer (pp)  unswappable by
calling make_unswappable() .   This is to prevent to parent from
being swapped while the environment is copied for the child.
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• newproc()  releases the spinlock, determines whether the parent is a
graphics process (if so, sets up the child save state), simulates the
environment of the new process, prevents the parent from being
swapped, then switches to procdup() , providing it forktype  and
addresses of parent and child process and thread.

newproc(FORK_PROCESS)

If newproc()  is called by fork1(FORK_PROCESS) , newproc()  creates
the new child process by calling makechild() .

• newproc()  calls make_unswappable()  to prevent the parent from
being swapped.

• newproc()  switches to procdup() , passing it forktype  and
addresses of parent and child process and thread.

Figure 1-11 Kernel-level view of the newproc()  routine

The procdup() Routine
newproc() calls procdup() when most of the child’s structure has been
created, passing to it the forktype, parent’s proc pointer (pp), child’s proc
pointer (cp), parent’s thread (pt), and child’s thread (ct).

As it executes, procdup()  does the following:

procdup

newproc

forktype Proc Table Slot # Thread Table Slot #

Inherit parent process and statistic
Get parent pointer ( pp and pt)
Set up flags for the child
Call reload_ticksleft()
Update child thread
Mark parent process unswappable

kt_stat = TSIDL? panic!
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• Builds a uarea  and address space for the child.

• Duplicates the parent’s virtual address space.

• Creates a new region for the child’s uarea .

• Attaches the region: PF_NOPAGE keeps vhand  from paging the
uarea .

• Marks the pregion to be owned by new child process.  The address
space is owned by the process.

• Places the child thread on the run queue by calling setrq() .  The
child thread is  marked SET_RUNRUN and the thread is unlocked.

Figure 1-12 Kernel-level view of procdup() routine

vfork  State information in struct vforkinfo

To prepare a vfork ’d process to run, the vfork_state  is maintained in
struct vforkinfo . Five states are defined:

• VFORK_INIT

• VFORK_PARENT

• VFORK_CHILDRUN

• VFORK_CHILDEXIT

• VFORK_BAD

During the fork1()  routine, vfork_buffer_init  sets the
vfork_state  in vforkinfo  to VFORK_INIT .  When procdup()  places
the child thread on the run queue by calling setrq() , it also sets the

procdup

Allocate child Uarea

Duplicate parent vas

Create a new region for child Uarea

forktype
parent proc pointer (pp) child proc pointer (cp)

parent thread (pt) child thread (ct)

Place child thread in run queue via setrq()
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vfork_state  to VFORK_PARENT.  The parent sleeps and is not
awakened until the child exit s or exec s. At this point the parent and
child share the same uarea  and stack.

If the process was initiated with fork()  rather than vfork() , the
spinlock is unlocked and the process is made swappable.

The child process runs using the parent’s stack until it does an exec()
or exit() .
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Process Execution
Once a process is created with fork()  and vfork() , the process calls
exec()  (found in kern_exec.c )  to begin executing program code. For
example, a user might run the command /usr/bin/ll  from the shell
and to execute the command, a call is made to exec() .

exec() , in all its forms,  loads a program from an ordinary, executable
file onto the current process, replacing the existing process’s text with a
new copy of an executable file.

An executable object file consists of a header (see a.out(4) ), text
segment, and data segment. The data segment contains an initialized
portion and an uninitialized portion (bss ).  The path or file argument
refers to either an executable object file or a script file of data for an
interpreter. The entire user context (text, data, bss , heap, and user
stack) is replaced. Only the arguments passed to exec()  are passed
from the old address space to the new address space. A successful call to
exec()  does not return because the new program overwrites the calling
program.

The Routines of exec

The exec()  system call consists of numerous routines and subroutines
that prepare the environment to execute the command in an orderly
fashion.  The table that follows describes them.
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Table 1-6 Major routines and subroutines of exec()

Routine Purpose

exec Called from user space with arguments of
filename, argv  array, and environment array.

Calls execv() , which calls execve()
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execve Determines characteristics of the executable:

• Gets the complete file path name, its vnode
and attributes.

• Makes calls to the vnode -specific routines to
extract information about the uid  and gid  of
the executable.

• Ascertains whether the executable is a script,
and if so, gets its “interpreter” name,
arguments, vnode   pointer, object file, and
relevant kernel information; then sets up the
arguments to enable the shell script to run.

• Sets up the structure to enable copying in from
user space to kernel space.

• Copies the filename, argument, and
environment pointers.

• Gets the new executable by calling the
subroutine getxfile() .

getxfile Sets up structures:

• Sets up memory and reads in the executed file
according to the executable’s magic number.

• Sets up kernel stack by moving stack pointers
from user stack to make room for argument,
environment pointers and strings.

• Copies the buffer containing the name of the
executable and arguments into a per-process
record (pstat_cmd ).

• Saves argc  and argv  values in the
save_state  structure.

exec_cleanup Copies arguments onto the user stack.

If cannot load a.out , clean up memory
allocations.

Release any buffers held and file vnode .

Routine Purpose
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A Closer Look at getxfile

The execve()  function calls getxfile()  to map out the memory that
will be used by executed file. When called, getxfile() is passed in:

vp Pointer to a vnode  representing the file to be executed

argc A count of argments

uid, gid User and group IDs

ap Header file information

vattr vnode  attributes

Figure 1-13 kernel view of getxfile

getxfile()  performs the following:

getxfile()

File open
for write?

Bad
executable

file?

return ETXTBSY

return EFAULT

Y

N

Y

N

1

2

3

Switch based
on magic number.

vnode pointer and attributes, uid,
gid, kernel data and load information

Set up a.out
values.

Verify viability of the
the a.out file.

dispreg()

mapvnode()

add_text
add_data()
add_bss()
add_stack()
return()

6

vnodemapped?

9

  4

create new uarea
for the child, restore
the parent uarea.

5

6

vfork_createU()

New Image

Load in new address space,
copy new proc runtime environment.
Build set of pregions & regions for
each magic number.

7

Call routines to reduce
instruction TLB misses on large
marked executables.

8
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1. Verifies that no other program is currently writing to the file.

2. Sets up a.out -dependent values needed to load the file into memory.

3. Checks page alignment.

4. Switches with the magic number appropriate to the executable’s
a.out . Three types are defined for the case statement:

Calls the function create_execmagic()  for the case of
EXEC_MAGIC to place the entire executable (text and data) into one
region.

Checks the sizes and alignments of the a.out .

5. Determines whether the process will execself() .  If execself() ,
calls dispreg()  to dispose of old pregions .  From this point on, the
process is committed to the new image. Releases virtual memory
resources of the old process and initializes the virtual memory of the
new process.

6. Creates new uarea  for the child and restore the parent’s uarea.  At
this point, if the process was vfork ’d, call vfork_createU() .

7. Having destroyed the old address space of the process, load the
executable into the new address space.  Determine whether
executable is using static branch prediction and whether text should
be locked down using superpages.  Build set of pregions  and regions
for each magic number.

8. Depending on the file size and offset and given the implementation of
memory-mapped files, determine how much of the file should be
mapped.  Call mapvnode to provide the flexibility. Call add_text()
and add_data() .

9. For programs with large marked executables, execute code to reduce
ITLB misses.  Call add_text() .

EXEC_MAGIC 407 Creates only a data object

SHARE_MAGIC 410 Creates text and data, but
does not assume file
alignment

DEMAND_MAGIC 413 Assumes both memory and
file are aligned
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10.After the switch has completed, set up the bss , by calling
add_bss() , and the stack, by calling add_stack() .

If getxfile is Called by a vfork’d Process
The child process runs using the parent’s stack until the process does an
exec() or exit(). In the case of exec(), the routine vfork_createU() is called
to create a new vas and Uarea for the child (it copies the current ones
into these). We then call vfork_switchU()  to activate the newly
created uarea  and to set up the space and pid  registers for the child.
The state is then set to VFORK_CHILDEXIT. On an exec() , we call
vfork_transfer()  directly from vfork_createU()  to restore the
parent’s stack. The parent is then awakened.

Figure 1-14 Runnable vfork ’d child calls exec()

user level
kernel level

Create a new vas and Uarea

Activate the newly created Uarea.
Set the state to VFORK_CHILDEXIT.

Restore the parent stack and
wake up the parent.

vfork_createU()

vfork_switchU()

vfork_transfer()

getxfile()

exec()exec() is called by vfork child.

getxfile() is called from exec().

Parent is sleeping.
  Child shares parent uarea and stack.

for the child.
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Table 1-7 vfork  subroutines called by getxfile

Subroutine Purpose

vfork_createU Called when child does a vfork() followed by an
exec() .

Sets up a new vas  and dups the stack/uarea
from the parent (which it has been using until
now).

Switches the child to use the created
stack/uarea .

vfork_switchU Switches the current process to a new
uarea /stack.

vfork_transfer The code that implements vfork . When a
process does a vfork , a vforkinfo struct  is
allocated, shared, and pointed to by the vfork’d
parent & child process.  The vfork_state  is
set to VFORK_INIT  until the child is made
runnable in procdup() , when the state is set to
VFORK_PARENTand the parent is put to sleep.
At this point the child runs in the parent’s vas
using the parent’s uarea  and stack.

The vfork ’d process calls vfork_transfer
from within the VFORK_PARENT state. The
schedlock  is held to prevent any process from
running during the save() .  The sizes of the
stack and uarea are calculated and copied into
the vforkinfo u_and_stack_buf  area to
enable the parent to be restored when the child
does an exec or exit. Then the state of the
process is set to VFORK_CHILDRUN and
returned.

If the child exits, it changes its state to
VFORK_CHILDEXIT, calls swtch()  and
awakens the parent, which calls resume()  to
restore its stack.  The parent cleans up the
vforkinfo  structure.
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vfork  in a Multiprocessor Environment
In a multiprocessor environment, if vfork()  is called, the child must not
be picked up by another processor before the parent is fully switched out.
To prevent this from occurring the TSRUNPROC bit is left on. The code
that picks up a process to run (find_process_my_spu() )  ignores
TSRUNPROC processes. When the parent has switched out completely, it
will clear the TSRUNPROC bit for the child.

The sleep*()  Routines
Unless a thread is running with real-time priority, it will exhaust its
time slice and be put to sleep. sleep()  causes the calling thread (not the
process) to suspend execution for the required time period. A sleeping
thread gives up the processor until a wakeup()  occurs on the channel on
which the thread is placed. True? During sleep() the thread enters the
scheduling queue at priority (pri ).

• When pri <= PZERO , a signal cannot disturb the sleep

• If pri > PZERO  the signal request will be processed.

• In the case of RTPRIO scheduling, a signal can be disturbed only if
SSIGABL is set. Setting SSIGABL is dependent on the value of pri.

NOTE The sleep.h  header file has parameter and sleep hash queue
definitions for use by the sleep routines. The ksleep.h  header file has
structure definitions for the channel queues to which the kernel thread is
linked when asleep.
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Figure 1-15 sleep()  routine

• sleep() is  passed the following parameters:

• Address of the channel on which to sleep.

• Priority at which to sleep and sleep flags.

• Address of thread that called sleep().

• The priority of the sleeping thread is determined.

• If the thread is scheduled real-time, sleep()  makes its priority
the stronger of the requested value and kt_pri .

• Otherwise, sleep()  uses the requested priority.

• The thread is placed on the appropriate sleep queue and the
sleep-queue lock is unlocked.

• If sleeping at an interruptable priority, the thread is marked
SSIGABL and handle any signals received.

• If sleeping at an uninterruptable priority, the thread is marked
!TSSIGABL  and will not handle any signals.

• The thread’s voluntary context switches are increased and swtch()
is called to block the thread.

sleep()
Determine sleep queue to use

Release semaphores held.

Real-time priority?

Acquire thread lock.

from sleep type.

Set thread wakeup channel.
Determine priority.

Use requested priority.

Strengthen priority.

Sleep priority
interruptable?

Place thread
on appropriate
sleep queue.

Check for signal.

Call swtch().

Y

N

N

Y Reacquire
semaphores.
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• Once time passes and the thread awakens, it checks to determine if a
signal was received, and if so, handles it.

• Semaphores previously set aside are now called again.

wakeup()

The wakeup()  routine is the counterpart to the sleep()  routine. If a
thread is put to sleep with a call to sleep() , it must be awakened by
calling wakeup().

When wakeup()  is called, all threads sleeping on the wakeup channel
are awakened.  The actual work of awakening a thread is accomplished
by the real_wakeup()  routine, called by wakeup()  with the type set to
ST_WAKEUP_ALL.  When real_wakeup()  is passed the channel being
aroused, it takes the following actions:

• Determines appropriate sleep queue (slpque ) data structure, based
on the type of wakeup passed in.

• Acquires the sleep queue lock if needed in the multiprocessing (MP)
case; goes to spl6  in the uniprocessing (UP) case.

• Acquires the thread lock for all threads on the appropriate sleep
queue.

• If the kt_wchan  matches the argument chan , removes them from
the sleep queue and updates the sleep tail array, if needed.

• Clears kt_wchan  and its sleeping time.

• If threads were TSSLEEP and not for a beta semaphore,
real_wakeup()  assumes they were not on a run queue and calls
force_run()  to force the thread into a TSRUN state.

• Otherwise, if threads were swapped out (TSRUN && !SLOAD) ,
real_wakeup() takes steps to get them swapped in.

• If the thread is on the ICS, attributes this time to the thread being
awakened. Starts a new timing interval attributing the previous
one to the thread being awakened.

• Restores the spl level, in the UP case; releases the sleep queue lock
as needed in the MP case.
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force_run()

The force_run  subroutine marks a thread TSRUN, asserts that the
thread is in memory (SLOAD), and puts the thread on a run queue with
setrq() .  If its priority is stronger than the one running, force a context
switch.  Set the processor’s wakeup flag and notify the thread’s processor
(kt_spu ) with the mpsched_set()  routine.  Otherwise, force_run()
improves the the swapper’s priority if needed, sets wantin , and wakes
up the swapper.
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Process Termination
When a process finishes executing, HP-UX terminates it using the exit
system call.

Circumstances might require a process to synchronize its execution with
a child process. This is done with the wait system call, which has several
related routines.

During the exit  system call, a process enters the zombie state and must
dispose of child processes.  Releasing process and thread structures no
longer needed by the exiting process or thread is handled by three
routines -- freeproc() , freethread() , and kissofdeath() .

This section will describe each process-termination routine in turn.

The exit  System Call
exit() may be called by a process upon completion, or the kernel may
have made the call on behalf of the process due to a problem.

If the parent process of the calling process is executing a wait() ,
wait3() , or waitpid() , it is notified of the calling process’s
termination. If the parent of the calling process is not executing a
wait() , wait3() , or waitpid() , and does not have SIGCLD ( death of a
child) signal set to SIG_IGN  (ignore signal), the calling process is
transformed into a zombie process.  The parent process ID is set to 1 for
all of the calling process’s existing child processes and zombie processes.
This means the process 1 (init ) inherits each of the child processes.
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Figure 1-16 Summary of the exit system call

exit()  passes status to the system and terminates the calling process in
the following manner:

• Clear the process’ STRC (process being traced) flag by calling
STRC_EXIT(p,kt) .

• Issue a process-wide directive to reduce an exiting multi-threaded
process to a single  thread of execution.  Clear the multi-threaded flag
for non-vfork  processes.

• Set the process p_flag  to SWEXIT to indicate it is exiting.

• Set process to ignore signal information.

• Make sure the “no swap” counter is balanced.

• Determine whether the exiting process is a controlling process.  If it
has a controlling tty , send SIGHUP  and free tty  for another
session.

• Release memory-mapped semaphores.

• Disarm all timers and clear any related pending siginfos .

• Do exit processing for graphics and iomap driver, if needed.

• If the process was created via vfork()  release the virtual memory
and return resources to the parent.

user level
kernel level

All system resources are released, except proc and
thread structure, vas, pregion, region, and user structure.
All file descriptors open are closed.

If the parent of the calling process executed wait(),
the parent process is notified of the termination.

If the parent of the calling process did not exec a wait(),
the calling process is set to SZOMB state.

Before exit() completes, it calls swtch() to take
a thread off the run queue, and start a new thread.

rexit()

exit()

exit() system call
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• Cancel all the process’s pending asynchronous I/O requests and sleep
until all are completed.

• Free up space taken by the table of pointers to file-descriptor chunks.

• Release MQ resources, NFS lock manager resources,  audit-control
structures, and process-wide and thread copies of credentials.

• Do exit processing for semaphores.

• Destroy any adopted processes.

• Search all processes for zombies whose p_dptr  field is not set; send
SIGCLD to the parent and wake it up, if parent has called wait() .

• Signal the process group that exit is causing it to become an orphan
with stopped processes.  Deal with orphaned process group and any
children.

• Notify init  that zombies are waiting.

• Unlink from active list of processes.

• Unlink current thread from active list of threads and set the thread
state.

• Process enters SZOMB state, and thread enters TSZOMB state.

• Choose which process to send SIGCLD.  If exiting process is a daemon,
make it a child of init.

• Awaken init  to start the cleanup process.

• If vfork() created the process, reset vfork_state  to
VFORK_CHILDEXIT, to allow resume()  to restore the parent.

• Verify that the thread state is set to TSSLEEP.

• Retain the “thread lock” across the context switch path. Both signal
path and init process must wait until the last thread is
non-TSRUNPROC.

• Call swtch()  to release the process lock.

wait System Call
From the user perspective, the wait system call is actually four different
interfaces used to synchronize a child to parent process. All four versions
call the wait1() routine, which does the actual work./
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Figure 1-17 Process termination -- wait()

The following table summarizes the basic differences among the wait()
functions.  For further information, consult kern_exit.c,  wait(2)
manpage, and wait.h  header file.

wait() wait3()waitpid()

freeproc()

wait1()

freethread()

user level
kernel level

wait system call

 waitid()

wait3)waitid,waitpid,(wait,
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Table 1-8 User interfaces to the wait  system call

wait1()  subroutine
wait1()  searches for a terminated (zombie) child, to gather its status
information and remove it. wait1()  also looks for stopped (traced) and
continued children, and passes back status from them to their parents.

Interface Purpose

wait() Calls wait1()  to determine if any zombie process
are present; if not, wait1() sleeps. wait()
determines which process is of interest based on the
pid argument and passes it on to wait1() :

 -1, all processes

>0, processes with process ID == pid
0, processes in same process group as caller

<-1, processes with process group ID == -pid
Once wait1()  returns, wait() passes the exit
status of the terminated child back to the calling
process.

waitpid() POSIX version of the wait()  system call.  It  allows
the caller to also wait on processes with the same
group ID and translate information for wait1() .

waitid() Suspends the calling process until one of its
children changes state. It records the current state
of a child in infop (passes signal information
between threads). The id_type , which contains
the set of processes that should receive the signal,
can be one of the following:
P_PID, process id
P_PGID, process group id
P_ALL all processes

wait3() Almost identical to wait() ; however, wait3() can
be passed a WNOHANG flag through the argument
options. If the child has not exited, the WNOHANG
flag will not block if no one is waiting.
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wait1()  determines which process is interesting based on the pid
argument passed.  The following are some of the steps performed by
wait1() :

• Hold the pm_sema to ensure that a process already checked does not
become a zombie while other processes are being checked, thus
resulting in a lost wakeup.

• Find and count the step-children who do not belong to the parent
process being waited on. If zombies, undebug them and signal their
parents. If stopped, signal the step-parent.

• Search all processes. This is mainly due to the fact SZOMB processes
are no longer on the active process list.

• While under the protection of an MP_PROCESS_LOCK, make sure that
p_zombies_exist = 0 .

• If an SZOMB process is found, the entry is removed from any proc
hash table (proc_unhash() ) and the thread is deallocated
(thread_deallocate() ).

• Call freeproc()  to release the process structures SZOMB.

freeproc() , freethread() , and kissofdeath()
Routines
The freeproc() , freethread(),  and kissofdeath()  routines
complete the clean-up effort on behalf of wait1()  for a terminating
process
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Figure 1-18 Process termination

freeproc()

freethread()

kissofdeath()

user level
kernel level

wait1()

POOF!
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Table 1-9 Final process termination routines
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Routine Purpose

freeproc() Called from wait1()  to release process structures
that zombie processes are no longer using.
freeproc()  performs the following steps:

• Under the protection of an MP_PROCESS_LOCK,
clear p_pl_flags.all , set p_stat  to
SUNUSED, and verify that p_sigwaiters  is set
to NULL.

• Decrement the number of active proc  table
entries.

• Add the child’s rusage  (sum of stats of the
reaped child) structure to the parent..

• Release the rusage  data sturcture, process
timers data, msginfo, and any queued.signals
pending against the process.

• Release the virtual address space.

• Return the proc  entry to the free list

freethread() Called from wait1()  to release the thread
structure. freethread()  performs the following
steps:

• Under the protection of an MP_PROCESS_LOCK,
clear kt_cntxt_flags  and set kt_stat  to
TSUNUSED.

• Decrement the number of active thread table
entries.

• Clear the thread fields.  If a thread was not
cached, dismantle its uarea by calling
kissofdeath() .

• Release the thread entry by calling
link_thread_to_free-list() .

kissofdeath() Called from freethread()  and freeproc() to
clear the kernel stack and uarea  of a named
process.
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Basic Threads Management

NOTE Detailed coverage of threads management is beyond the scope of this
white paper. For detailed information, consult ThreadTime: The
Multithreaded Programming Guide, by Scott Norton and Mark
DiPasquale, published by Prentice Hall under their Hewlett-Packard
Professional Books imprint.

The life cycle of a thread is analogous to that of a process. When you
fork()  a process, an initial thread is created. To take advantage of the
kernel’s ability to run flows of execution either concurrently or (on
multiprocessor systems) in parallel, you will want to create additional
threads. The following chart pairs the process-oriented function with its
threads-oriented API function. In all cases, pthread  functions are
prefaced “pthread_ ”; in several cases, threads routines have no process
equivalent.

For complete specification, consult the manpages for pthread  API
functions in section three of the online reference.

Table 1-10 Comparison of thread API and process functions

Thread API function Process function

pthread_create() fork(), exec()

pthread_detach() <none>

pthread_join() wait()

pthread_exit() exit()

pthread_self() getpid()

pthread_equal() pid1 == pid2

pthread_kill() kill()

pthread_sigmask() sigprocmask()

pthread_suspend() <none>

pthread_resume() <none>
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Pthread APIs consist of the following:

• 33 thread management functions

• 46 thread synchronization functions

• 15 thread scheduling functions

The following header files have definitions pertinent to threads:

• pthread.h

• sched.h

• signal.h

Pthread API functions operate by the following rules:

• There is no parent/child relationship between threads.

• Any thread can make an independent system call or library call.

• pthread_*() functions return 0 on success.

• pthread_*()  functions return an error number on failure. errno  is
not set.

• You must use -D_REENTRANT when compiling a multi-threaded
program:
.% cc -D_REENTRANT abc.c -lpthread

Thread Creation Overview
Thread creation resembles process creation. The new thread starts
execution at start_routine with arg as its sole parameter. The new
thread’s ID is returned to the creator of the thread.

pthread_setschedparam() sched_setscheduler()
sched_setparam()

pthread_getschedparam() sched_getscheduler()
sched_getparam()

sched_yield() sched_yield()

Thread API function Process function
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A thread has attributes that can be initialized prior to its creation. These
include stack size, scheduling policy, and priority. For the newly created
thread to have non-default attributes, you must pass a threads attribute
object to pthread_create() . You can use the same threads attribute
object to create multiple threads.

NOTE After the thread is created, it is recommended that you destroy the
attribute object to save memory.

To create a new thread, the user or threads library must allocate the
user stack. The kernel does not allocate stacks for threads, other than
the initial thread.

Thread Termination Overview
After a thread executes, it has two options:

• Return from its start_routine . An implicit call to
pthread_exit()  is made with the function’s return value. (Note, the
initial thread should not do this. An implicit call to exit()  is made
by the initial thread on return.)

• Call pthread_exit()  to explicitly self-terminate.

HP-UX Threads Extensions
In addition to the POSIX threads functions, HP-UX provides the
extensions shown in the following table. These non-standardized
interfaces are subject to change; efforts are being made to standardize
them through X/Open.
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Table 1-11 Additional HP threads routines

Thread Synchronization
POSIX provides four sets of synchronization primitives from which all
other synchronization types can be built:

• mutual exclusion locks (mutex )

• condition variables

• semaphores

• read/write locks

All synchronization is “advisory,” meaning that the programmer has the
ultimate responsibility for making it work.

HP threads Extension Purpose

pthread_suspend() Suspends a thread and blocks
until the target thread has
been suspended. Each time a
thread is suspended, its
suspension count is
incremented.

pthread_continue Resumes execution of a
suspended thread.

pthread_resume_np() An HP-only function that
provides control over how a
thread is resumed by a flags
field.

pthread_num_processors_np() Returns number of processors
installed on the system.

pthread_processor_bind_np() Binds thread to processor.

pthread_processor_id_np() Identifies a specific processor
on the system.
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Synchronization objects can be process-local (used to synchronize
threads within a process) or system visible (used by threads within
different processes, such as by using shared memory or memory mapped
files).

Synchronization operations perform as follows:

• The init  function initializes, but does not allocate, except “internal”
resources.

• The destroy  function destroys all but the “internal” resources.

• The lock  function acquires an object, or if the object is unavailable,
waits.

• The try function returns EBUSY if the resource is being used or 0 if the
resource is acquired.

• The timed function awaits a synchronization signal for an absolute
time or returns ETIMEDOUT if absolute time elapses.

• The unlock  function releases an acquired resource.

The simplest mechanism for synchronizing threads is to use
pthread_join() , which waits fora thread to terminate. However, this
function is insufficient for multithreaded cases in which threads must
synchronize access to shared resources and data structures.

mutex  Locks
Mutual exclusion (mutex ) locks allow threads to synchronize access to
process resources and shared objects, such as global data. Threads
wishing to access an object locked by a mutex will block until the thread
holding the object releases it.

mutex lock s have attributes objects that can be set, based on the
following characteristics:

pshared Indicates if the mutex  is shared by multiple processes
or is local to the calling process. Valid values are
PTHREAD_PROCESS_PRIVATE (default) and
PTHREAD_PROCESS_SHARED.

how Tells how a locking thread should block if it cannot
acquire the mutex . Valid values govern whether or not
the pthread  should block and/or spin in a loop while
attempting to acquire the mutex . Default behavior,
governed by PTHREAD_LIMITED_SPIN_NP, asserts
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that the thread spin in a loop attempting to acquire the
mutex; if not acquired after some determined number
of iterations, block until the mutex can be acquired.

kind Type of mutex . By default
(PTHREAD_MUTEX_FAST_NP), the mutex  is locked and
unlocked in the fastest possible manner and no owner
is maintained. Note, however, this can result in
deadlock. Other valid values handle the mutex  as
recursive or nonrecursive and set rules for ownership
and relocking.

Lock Order
When more than one synchronization variable is required by the same
thread at the same time, lock order or hierarchy is vital to prevent
deadlock. It is the programmer’s responsibility to define the order of lock
acquisition.

Condition Variables
Using a synchronization type called a condition variable, a thread can
wait until or indicate that a predicate becomes true. A condition variable
requires a mutex to protect the data associated with the predicate.

A condition wait has two forms:

• absolute wait, until the condition occurs

• timed wait, until the condition occurs or the absolute wait time has
elapsed.

The condition wait operation releases the mutex , blocks waiting for the
condition to signaled, at which time it reacquires the mutex .

A condition signal operation has two forms:

• Signal a single waiter to wake up

• Broadcast to all waiter to wake up

NOTE Be cautious about doing a broadcast wake-up, as all threads awakened
must reacquire the associated mutex. This can degrade performance.
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Condition variables have only one attribute -- pshared . This indicates
whether the condition variable is local to the calling process (the default,
PTHREAD_PROCESS_PRIVATE) or shared by multiple processes. If
shared, the caller must allocate the condition variable in shared memory.

Semaphores
POSIX.1b named and unnamed semaphores have been “tuned”
specifically for threads.

The semaphore is initialized to a certain value and decremented.
Threads may wait to acquire a semaphore.

• If the current value of the semaphore is grater than 0, it is
decremented and the wait call returnes.

• If the value is 0 or less, the thread blocks until the semaphore is
available.

NOTE The POSIX.1b semaphores (both named and unnamed) were
standardized before the POSIX threads standard. Consequently, they
return errors in traditional UNIX fashion (0 == success, -1 with errno
== failure). These semantic apply to all types of semaphores supported
by HP-UX.

Read/Write Locks
These locks, a variant of the mutex  lock, are useful when you have
protected data that is read often but only occasionally written.
Performance is slower than for a mutex.

Read/write locks allow for any number of concurrent readers and no
writers or a single write and no readers. Once a writer has access,
readers are blocked from access until the writer releases the lock. If both
readers and writers are waiting for a lock, the released lock is given to a
writer.

Read/write locks have two initializable attributes:

pshared Indicates if the read/write lock is shared by multiple
processes or is local to the calling process. Valid values
are PTHREAD_PROCESS_PRIVATE (default) and
PTHREAD_PROCESS_SHARED.



Chapter 1 65

Process Management
Basic Threads Management

how Tells how a locking thread should block if it cannot
acquire the read/write lock. Valid values govern
whether or not the pthread should block and/or spin in
a loop while attempting to acquire the mutex . Default
behavior, governed by PTHREAD_LIMITED_SPIN_NP,
asserts that the thread spin in a loop attempting to
acquire the read/write lock; if not acquired after some
determined number of iterations, block until the
read/write lock can be acquired.

Signal Handling
There are two types of signals:

• Synchronous signals, which are generated as a result of some action
taken by a thread at a given instant, such as an illegal instruction or
dividing by zero.

Synchronous signals are sent directly to the thread that caused the
signal to be generated.

• Asynchronous signals, which are generated due to an external event,
such as kill()  or timer expirations.

Asynchronous signals are sent to the process. A single thread within
the process that does not have the signal blocked will handle the
signal.

Each thread has a signal mask used to block signals from being delivered
to the thread. To examine or change the current thread’s signal mask,
use pthread_sigmask() , a function that behaves just like
sigprocmask() in the process model. Do not use sigprocmask() to
change the signal mask of a thread.

Each process contains a signal vector that describes what to do for each
signal (for example, ignore, default, or execute a handler). This signal
vector is shared by all threads in the process. There may be only one
signal handler for any given signal. This handler is used by all threads in
the process.

Each signal sent to a process is delivered once and only once to one
thread within the process. Signals cannot be “broadcast” to all threads in
a process.
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The sigwait()  function
A POSIX function, sigwait() , allows a thread to wait for a signal to be
delivered in a multi-threaded application. This is easier than installing
signal handlers to handle the signal when it arrives and dealing with
interrupted system calls.

To wait for a signal, use

int sigwait(sigset_t *set, int *signal);

set  is the set of signals being waited for, which must be blocked before
calling sigwait. When a signal in set  is delivered, this function returns
and the signal being delivered is returned in signal .

Thread Cancellation
Threads may cancel or terminate other threads within their process.

Threads targetted for cancellation may hold cancellation requests
pending, similar to how signals are blocked and held pending.

A thread’s cancellation “state” determines whether cancellation is
enabled or disabled (the latter blocks all requests). Valid states are
PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.

A thread’s cancellation type  determines when a cancellation request is
acted upon (that is, when the thread is terminated). A value of
PTHREAD_CANCEL_DEFERRED (default) holds cancellation requests
pending until the thread enters a function that is a cancellation point. If
set to PTHREAD_CANCEL_ASYNCHRONOUS, the thread can be cancelled at
any moment.

NOTE When a thread is cancelled, any mutexes, attribute objects, or other
resources it is consuming are not released. This can cause application
deadlock later! To remedy this, a thread may install cancellation cleanup
handlers to release resources in the event it is cancelled.

Thread cancellation cleanup handlers resemble signal handlers.
However, a thread may have multiple handlers installed As a thread
leaves a non-cancel-safe section, the cancellation cleanup handlers are
removed. Any installed cancellation cleanup handlers are executed when

• The thread is cancelled.

• The thread self-terminates (with pthread_exit() ).
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• The handler is removed (if you specify execute).

A function safe from cancellation is one that does not contain a
cancellation point nor call a function that is a cancellation point.

NOTE Library routines must assume the application to which it is linked uses
thread cancellation and protect itself.

Use the following thread cancellation cleanup handlers in your code:

pthread_cleanup_push() Use for a thread before it enters a
section of code that can be canceled.

pthread_cleanup_pop() Remove the handler when the thread
is finished executing the code that
can be cancelled.

pthread_cancel() Cancel a thread or request that it
terminate itself. This function does
not wait for the thread to terminate.

pthread_testcancel() Use to test for a cancellation request
and act upon it before performing
time-consuming “critical” action. A
thread can create a cancellation
point. This function returns if no
cancellation requests are pending;
otherwise it does not return and the
thread terminates.

pthread_setcancelstate() Use to change a thread’s state of
cancellation.

pthread_setcanceltype() Use to change a thread’s type of
cancellation. These latter two
functions can be very handy when
entering a section of code that cannot
tolerate being interrupted or
terminated.



68 Chapter 1

Process Management
Process Management Structures

Process Management Structures
The process management system contains the kernel’s scheduling
subsystem and  interprocess communication (IPC) subsystem.

The process management system interacts with the memory
management system to make use of virtual memory space.  The process
control system interacts with the file system when reading files into
memory before executing them.

Processes communicate with other processes via shared memory or
system calls.  Communication between processes (IPC) includes
asynchronous signaling of events and synchronous transmission of
messages between processes.  System calls are requests by a process for
some service from the kernel, such as I/O, process coordination, system
status, and data exchange.

The effort of coordinating the aspects of a process in and out of execution
is handled by a complex of process management structures in the kernel.
Every process has an entry in a kernel process table and a uarea
structure, which contains private data such as control and status
information.  The context of a process is defined by all the unique
elements identifying it -- the contents of its user and kernel stacks,
values of its registers, data structures, and variables -- and is tracked in
the process management structures.

Process management code is divided into external interface and internal
implementation parts.  The proc_iface.h  defines the interface,
contains the utility and access functions, external interface types, utility
macros.  The proc_private.h  defines the implementation, contains
internal functions, types, and macros.

Kernel threads code is similarly organized into kthread_iface.h and
kthread_private.h.

The next figure shows process management structures.  In the table that
follows, the structures are identified and summarized.  In the sections
that follow, we will examine the most important characteristics of each
structure
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Figure 1-19 Process structure, virtual layout overview

Table 1-12 Principal structures of process management

Structure Purpose

proc  table Allocated at boot time; remains resident in
memory (non-swappable).

For every process contains an entry of the
process’s status, signal, and size information,
as well as per-process data that is shared by
the kernel thread

kthread  structure One of two structures representing the kernel
thread (the other is the user structure).
Contains the scheduling, priority, state, CPU
usage information of a kernel thread.
Remains resident in memory.

VAS

Pregion Pregion Pregion Pregion

Kernel Threads

kthread

user kernel
stack

Proc Table

proc [n]

Uarea
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proc Table
The proc  table is comprised of identifying and functional information
about every individual process.   Each active process has  a proc table
entry, which includes information on process identification, process
threads, process state, process priority and process signal handling.   The
table resides in memory and may not be swapped, as it must be
accessable by the kernel at all times.

Definitions for the proc table are found in the proc_private.h  header
file.

Figure 1-20 The proc  Table

vas The vas structure contains all the
information about a process’s virtual space. It
is dynamically allocated as needed and is
memory resident.

pregion Contains process and thread information
about use of virtual address space for text,
data, stack, and shared memory, including
page count, protections, and starting
addresses of each.

uarea User structure contains the per-thread data
that is swappable.

Structure Purpose

Process identification

Process signaling

Process information

proc [n+1]

procNPROC

nproc

*proc

Threads

Process state

proc table

proc[n]
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Table 1-13 Principal fields in the proc  structure

Type of Field Name and Purpose

Process
identification

Process ID (p_pid )

Parent process ID (p_ppid )

Read user ID (p_uid ) used to direct tty signals

process group ID (p_pgrp )

Pointer to the pgroup structure (*p_pgrp_p )

Maximum number of open files allowed (p_max)

Pointer to the region containing the uarea
(p_upreg )

threads Values for first and subsequent threads
(p_created_threads )

Pointer to first and last thread in the process
(p_firstthreadp, p_lastthreadp )
Number of live threads in the process, excluding
zombies (p_livethreads )

List of cached threads (*p_cached_threads )

process state current process state (p_stat )

priority (p_pri )

per-process flags (p_flag )

process
signaling

signals pending on the process (p_sig )

active list of pending signals (*p_ksiactive )

signals being ignored (p_sigignore )

signals being caught by user (p_sigcatch )

Number of signals recognized by process (p_nsig )

Locking
information

thread lock for all threads (*thread_lock )

per-process lock(*p_lock )
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Kernel Thread Structure

Figure 1-21 Kernel threads

Each process has an entry in the proc  table; this information  is shared
by all kernel threads within the process.

One kernel thread structure (kthread ) is allocated per active thread.
The kthread  structure is not swappable.  It contains all thread-specific
data needed while the thread is swapped out, including process ID,
pointer to the process address space, file descriptors, current directory,
UID, and GID. Other per-thread data  (in user.h ) is swapped with the
thread.

Information shared by all threads within a process is stored in the proc
structure, rather than the kthread structure.  The kthread  structure
contains a pointer to its associated proc structure. (In a multi-threads
environment the kthread  would point to other threads that make up
the process and controlled by a threads listing maintained in the proc
table.)

Proc Table

proc [n]

kthreads

proc[n+1]

p_firstthreadp

p_lastthreadp

kt_procp

Threads general information

Threads scheduling information

Threads state information

Process run-queue information

Process sleep-queue information

Threads signaling
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In a threads-based kernel, the run and sleep queues consist of kthread s
instead of processes. Each kthread contains forward and backward
pointers for traversing these queues. All schedule-related attributes,
such as priority and states, are kept at the threads level.

Definitions for the kernel threads structure are found in the
kthread_private.h  header file include general information,
scheduling information, CPU affinity information, state and flag
information, and signal information.

Table 1-14 Principal entries in kernel thread structure

Entry in struct
kthread Purpose

*kt_link,
*kt_rlink

pointers to forward run/sleep queue link
and backward run queue link

*kt_procp Pointer to proc  structure

kt_fandx, kt_pandx Free active and kthread  structure indices

kt_nextp, kt_prevp Other threads in the same process

kt_flag, kt_flag2 Per-thread flags

kt_cntxt_flags thread context flags

kt_fractioncpu fraction of cpu  during recent p_deactime

kt_wchan Event thread is sleeping on

*kt_upreg pointer to the pregion containing the uarea

kt_deactime seconds since last deact or react

kt_sleeptime seconds since last sleep or wakeup

kt_usrpri User priority (based on kt_cpu  and
p_nice )

kt_pri priority (lower numbers are stronger)

kt_cpu decaying cpu  usage for scheduling

kt_stat Current thead state

kt_cursig number of current pending signal, if any
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kt_spu SPU number to which thread is assigned

kt_spu_wanted preference to desired SPU

kt_spu_group SPU group to which thread is associated

kt_spu_mandatory;
kt_sleep_type

Assignment as to whether SPU is
mandatory or advisory; directive to wake
up all or one SPU

kt_sync_flag Reader synchronization flags

kt_interruptible Is the thread interruptible?

kt_wake_suspend Is a resource waiting for the thread to
suspend?

kt_active Is the thread alive?

kt_halted Is the thread halted cleanly?

kt_tid unique thread ID

kt_user_suspcnt,
kt_user_stopcnt

user-initiated suspend and job-control stop
counts

kt_suspendcnt Suspend count

*kt_krusagep Pointer to kernel resource usages

kt_usertime;
kt_systemtime;

kt_interrupttime

Machine cycles spent in user-mode, system
mode and handling interrupts.

kt_sig signals pending to the thread

kt_sigmask Current signal mask

kt_schedpolicy scheduling policy for the thread

kt_ticksleft Round-robin clock ticks left

*kt_timers Pointer to thread’s timer structures

Entry in struct
kthread Purpose
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a. UID, GID, and other credentials are pointed to as a snapshot
of the process-wide cred structures when the thread enters
the kernel.  These are only valid when a thread operates in
kernel mode.  Permanent changes to the cred  structure (e.g.,
setuid() ) should be made to the cred  structure pointed to
by the proc  structure element p_cred .

*kt_slink Pointer to linked list of sleeping threads

*kt_sema Head of per-thread alpha semaphore list

*kt_msem_info Pointer to msemaphore  info structure

*kt_chanq_infop Pointer to channel queue info structure

kt_dil_signal Signal to use for DIL interrupts

*kt_cred Pointer to user credentialsa

*kt_cdir, *kt_rdir Curent and root directories of current
thread, as shown in struct vnode

*kt_fp Current file pointer to struct file.

*kt_link,
*kt_rlink

pointers to forward run/sleep queue link
and backward run queue link

Entry in struct
kthread Purpose
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vas  structure

Figure 1-22 Role of the vas  structure

Every process has a proc entry containing a pointer (p_vas ) to the
process’s virtual address space. The vas  maintains a doubly linked list of
pregions  that belong to a given process and thread. The va s is always
memory resident and provides information based on the process’s virtual
address space.

NOTE Do not confuse the vas  structure with virtual address space (VAS) in
memory. The vas structure is a few bytes; VAS is 4 gigabytes.

The following table (derived from vas.h ) shows the principal entries in
struct vas .

Table 1-15 Entries in vas structure

Proc Table

proc [n + 1]

Process vas informationp_vas

Pregion Pregion Pregion

proc[n]

Entry in
struct vas

Purpose

va_ll Doubly linked list of pregion s

va_refcnt Number of pointers to the vas

va_rss,
va_prss,
va_dprss

Cached approximation of shared and private
resident set size, and private RSS in memory and
on swap

*va_proc Pointer to existing process in struct proc

va_flags Various flags (itemized after this table)
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The following definitions correspond to va_flags :

VA_HOLES vas might have holes within pregions

VA_IOMAP IOMAP pregion  within the vas

VA_WRTEXT writable text

VA_PSEUDO pseudo vas , not a process vas

VA_MULTITHEADED vas conected to a multithreaded
process

VA_MCL_FUTURE new pages that must be mlock ed

VA_Q2SHARED quadrant 2 used for shared data

va_wcount number of writable memory-mapped files sharing
pseudo-va s

va_vaslock field in struct rw_lock  that controls access to
vas

*va_cred Pointer to process credentials in struct ucred

va_hdl vas  hardware-dependent information

va_ki_vss Total virtual memory

va_ki_flag Indication of whether vss  has changed

va_ucount Total virtual memory of user space.

Entry in
struct vas

Purpose
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Pregion Structure

Figure 1-23 pregion  in context

The pregion  represents an active part of the process’s Virtual Address
Space (VAS). This may consist of the text, data, stack, and shared
memory. A pregion is memory resident and dynamically allocated as
needed. Each process has a number of pregions  that describe the
regions attached to the process. In this module we will only discuss to the
pregion level. The HP-UX Memory Management white paper provides
more information about regions.

Table 1-16 pregion types

vas

proc [n]

proc [n + 1]

Flags and Type Information

Scheduling Information

Threads Information

Pregion Pregion Pregion

proc table

Type Definition

PT_UNUSED unused pregion

PT_UAREA User area

PT_TEXT Text region

PT_DATA Data region

PT_STACK Stack region

PT_SHMEM Shared memory region
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These pregion  types are defined based on the value of p_type  within
the pregion  structure and can be useful to determine characteristics of
a given process. This may be accessed via the kt_upreg  pointer in the
thread table. A process has a minimum of four defined pregions , under
normal conditions. The total number of pregion  types defined may be
identified with the definition PT_NTYPES.

Figure 1-24 Example of four possible pregions

PT_NULLDREF Null pointer dereference

PT_SIGSTACK Signal stack

PT_IO I/O region

Type Definition

VAS

Pregion Pregion Pregion Pregion

PT_TEXT PT_DATA PT_STACK PT_UAREA
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Table 1-17 Entries comprising a pregion

Traversing pregion  Skip List
Pregion linked lists can get quite large if a process is using many discrete
memory-mapped pregions.  When this happens, the kernel spends a lot of
time walking the pregion list.  To avoid the list being walked linearly, we
use skip lists,1 which enable HP-UX to use four forward links instead of
one.  These are found in the beginning of the vas and pregion structures,
in the p_ll element.

1. Skip lists were developed by William Pugh of the University of
Maryland.  An article he wrote for CACM can be found at
ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.ps.Z .

Type Purpose

Structure
information

Pointers to next and previous pregions
Pointer and offset into the region

virtual space and offset for region

number of pages mapped by the pregion
Pointer to the VAS

Flags and type Referenced by p_flags  and p_type

Scheduling
information

Remaining pages to age (p_ageremain )

Indices of next scans for vhand ’s age and
steal hands (p_agescan, p_steadscan )

Best nice value for all processes sharing
the region used by the pregion
(p_bestnice )

sleep address for deactivation
(p_deactsleep )

Thread information Value to identify thread, for uarea pregion
(p_tid )
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User Structures (uarea )
The user area is a per-process structure containing data not needed in
core when a process is swapped out.

The threads of a process point to the pregion containing the process’s
user structure, which consists of the uarea  and kernel stack.  The user
structure contains the information necessary to the execution of a system
call by a thread. The kernel thread’s uarea  is special in that it resides in
the same address space as the process data, heap, private MMFs, and
user stack. In a multi-threaded environment, each kernel thread is given
a separate space for its uarea.

Each thread has a separate kernel stack.

Addressing the uarea is analogous to the prior process-based kernel
structure. A kernel thread references its own uarea through struct user.
However, you cannot index directly into the user structure as is possible
into the proc  table. The only way into the uarea  is through the
kt_upreg  pointer in the thread table.

Figure 1-25 User area (uarea) in a thread-structured system

vas

kthread

Proc Table

proc [n]

proc [n + 1]

u_procp

Pregion Pregion Pregion

kt_upreg

uarea and kernel stack
user structure pointers
processes and protection
system call fields
signal management

u_kthreadp
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Table 1-18 Principal entries in the uarea  (struct user )

The user credentials pointer (for uid , gid , etc) has been moved from the
uarea  and is now accessed through the p_cred()  accessor for the proc
structure and the kt_cred() accessor for the kthread  structure. See
comments under the kt_cred()  field in kthread.h  for details
governing usage.

Process Control Block (pcb )

NOTE HP-UX now handles context switching on a per-thread basis.

A process control block (pcb ) is maintained in the user structure of each
kernel thread as a repository for thread scheduling information.  The
pcb  contains all the register states of a kernel thread that are saved or
restored during a context switch from one threads environment to
another.

The context of a current running thread is saved in its associated uarea
pcb  when a call to swtch()  is made. The save()  routine saves the
current thread state in the pcb on the switch out. The resume()
routine maps the user-area of the newly selected thread and restores the

Type Purpose

user structure pointers Pointers to proc  and thread structures
(u_procp , u_kthreadp )

pointers to saved state and most recent
savestate (u_sstatep,u_pfaultssp )

system call fields arguments to current system call
(u_arg[] )

pointer to the arglist (u_ap)
Return error code (u_error )

system call return values (r_val(n) )

signal management signals to take on sigstack
(u_sigonstack )

saved mask from before sigpause
(u_oldmask )

code to trap (u_code )
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process registers from the pcb . When we return from resume() , the
selected thread becomes the currently running thread and its uarea  is
automatically mapped into the virtual memory address of the system’s
global uarea .

The register’s context includes:

• General-purpose Registers

• Space registers

• Control registers

• Instruction Address Queues (Program Counter)

• Processor Status Word (PSW)

• Floating point register

Table 1-19 Contents of theProcess Control Block (pcb )

Context element Purpose

General registers

pcb_r1 --> pcb_r31

[GR0 - GR31]

Thirty two general registers that
provide the central resource for all
computation.  These are available for
programs at all privilege levels.

Space registers

pcb_sr0 --> pcb_sr7

[SR0 - SR7]

Eight space ID registers for virtual
addressing.

Control registers
pcb_cr0 --> pcb_cr31
[CR0,CR8 - CR31]

Twenty-five control registers that
contain system state information.
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Program counters

( pcb_pc)

Two registers that hold the virtual
address of the current and next
instruction to be executed.

• The Instruction Address Offset
Queue (IAOQ) is 32 bits long.  The
upper 30 bits contain the work offset
of the instruction and the lower 2
bits maintain the privilege level of
the corresponding instruction.

•  The Instruction Address Space
Queue(IASQ) is 32 bits long in a
PA-RISC 2.0 (64-bit) system or 16
bits a PA-RISC 1.x (32-bit) system.
Contains the Space ID for
instructions

Processor Status Word
(pcb_psw )

Contains the machine level status that
relates to a process as it does operations
and computations.

Floating point registers
pcb_fr1 --> pcb_fr32

Maintains the floating point status for
the process.

Context element Purpose
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Process Scheduling
To understand how threads of a process run, we have to understand how
they are scheduled.  Although processes appear to the user to run
simultaneously, in fact a single processor is executing only one thread of
execution at any given moment.

Several factors contribute to process scheduling:

• Kind of scheduling policy required -- timeshare or real-time.
Scheduling policy governs how the process (or thread of execution)
interacts with other processes (or threads of execution) at the same
priority.

• Choice of scheduler. Four schedulers are available: HP-UX timeshare
scheduler (SCHED_HPUX), HP Process Resource Manager (a
timeshare scheduler), HP-UX real-time scheduler (HPUX_RTPRIO),
and the POSIX-compliant real-time scheduler.

• Priority of the process. Priority denotes the relative importance of the
process or thread of execution.

• Run queues from which the process is scheduled.

• Kernel routines that schedule the process.

Scheduling Policies
HP-UX scheduling is governed by policy that connotes the urgency for
which the CPU is needed, as either timeshare or real-time. The following
table compares the two policies in very general terms.
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Table 1-20 Comparison of Timeshare vs Real-time scheduling

The principle behind the distribution of CPU time is called a timeslice. A
timeslice is the amount of time a process can run before the kernel
checks  to see if there is an equal or stronger priority process ready to
run.

• If a timeshare policy is implemented, a  process might begin to run
and then relinquish the CPU to a process with a stronger priority.

• Real-time processes running round-robin typically run until they are
blocked or relinquish CPU after a certain timeslice has occurred.

Real-time processes running FIFO run until completion, without
being preempted.

Scheduling policies act upon sets of thread lists, one thread list for each
priority. Any runnable thread may be in any thread list. Multiple
scheduling policies are provided. Each nonempty list is ordered, and
contains a head (th_link ) as one end of its order and a tail (th_rlink )
as the other. The purpose of a scheduling policy is to define the allowable
operations on this set of lists (for example, moving threads between and
within lists).

Timeshare Real-Time

Typically implemented
round-robin.

Implemented as either round-robin
or first-in-first-out (FIFO),
depending on scheduler.

Kernel lowers priority when
process is running; that is,
timeshare priorities decay. As
you use CPU, your priority
becomes weaker. As you become
starved for CPU, your priority
becomes stronger. Scheduler
tends to regress toward the
mean.

Priority not adjusted by kernel;
that is, real-time priorities are
non-decaying. If a real-time
priority is set at 50 and another
real-time priority is set at 40
(where 40 is stronger than 50), the
process or thread of priority 40 will
always be more important than the
process or thread of priority 50.

Runs in timeslices that can be
preempted by process running
at higher priority.

Runs until exits or is blocked.
Always runs at higher priority
than timeshare.
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Each thread is controlled by an associated scheduling policy and priority.
Applications can specify these parameters by explicitly executing the
sched_setscheduler()  or sched_setparam()  functions.

Hierarchy of Priorities (overview)
All POSIX real-time priority threads have greater scheduling importance
than threads with HP-UX real-time or HP-UX timeshare priority. By
comparison, all HP-UX real-time priority threads are of greater
scheduling importance than HP-UX timeshare priority threads, but are
of lesser importance than POSIX real-time threads. Neither POSIX nor
HP-UX real-time threads are subject to degradation.

This will be demonstrated in detail shortly.

Schedulers
As of release 10.0, HP-UX implements four schedulers, two time-share
and two real-time.

To choose a scheduler, you can use the user command, rtsched(1 ),
which executes processes with your choice of scheduler and enables you
to change the real-time priority of currently executing process ID.

rtsched -s scheduler -p priority command [arguments]
rtsched [ -s scheduler ] -p priority -P pid

Likewise, the system call rtsched(2)  provides programmatic access to
POSIX real-time scheduling operations.

RTSCHED (POSIX) Scheduler
The RTSCHED POSIX-compliant real-time deterministic scheduler
provides three scheduling policies, whose characteristics are compared in
the following table.
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Table 1-21 RTSCHED policies

SCHED_RTPRIO Scheduler
Realtime scheduling policy with nondecaying priorities (like
SCHED_FIFO and SCHED_RR) with a priority range between the POSIX
real-time policies and the HP-UX policies.

For threads executing under this policy, the implementation must use
only priorities within the range returned by the functions
sched_get_priority_max()  and sched_get_priority_min()
when SCHED_RTPRIO is provided as the parameter.

Scheduling
Policy How it works

SCHED_FIFO Strict first in-first out (FIFO) scheduling policy. This
policy contains a range of at least 32 priorities.
Threads scheduled under this policy are chosen
from a thread list ordered according to the time its
threads have been in the list without being
executed. The head of the list is the thread that has
been in the list the longest time; the tail is the
thread that has been in the list the shortest time.

SCHED_RR Round-robin scheduling policy with a per-system
time slice (time quantum). This policy contains a
range of at least 32 priorities and is identical to the
SCHED_FIFO policy with an additional condition:
when the implementation detects that a running
process has been executing as a running thread for
a time period of length returned by the function
sched_rr_get_interval() , or longer, the thread
becomes the tail of its thread list, and the head of
that thread list is removed and made a running
thread.

SCHED_RR2 Round-robin scheduling policy, with a per-priority
time slice (time quantum). The priority range for
this policy contains at least 32 priorities. This policy
is identical to the SCHED_RR policy except that the
round-robin time slice interval returned by
sched_rr_get_interval() depends upon the
priority of the specified thread.



Chapter 1 89

Process Management
Process Scheduling

NOTE In the SCHED_RTPRIO scheduling policy, smaller numbers represent
higher (stronger) priorities, which is the opposite of the POSIX
scheduling policies. This is done to provide continuing support for
existing applications that depend on this priority ordering.

The strongest priority in the priority range for SCHED_RTPRIO is weaker
than the weakest priority in the priority ranges for any of the POSIX
policies, SCHED_FIFO, SCHED_RR, and SCHED_RR2.

SCHED_HPUX Scheduler
The SCHED_OTHER policy, also known as SCHED_HPUX and
SCHED_TIMESHARE, provides a way for applications to indicate, in a
portable way, that they no longer need a real-time scheduling policy.

For threads executing under this policy, the implementation can use only
priorities within the range returned by the functions
sched_get_priority_max()  and sched_get_priority_min()
when SCHED_OTHER is provided as the parameter. Note that for the
SCHED_OTHER scheduling policy, like SCHED_RTPRIO, smaller numbers
represent higher (stronger) priorities, which is the opposite of the POSIX
scheduling policies. This is done to provide continuing support for
existing applications that depend on this priority ordering. However, it is
guaranteed that the priority range for the SCHED_OTHER scheduling
policy is properly disjoint from the priority ranges of all of the other
scheduling policies described and the strongest priority in the priority
range for SCHED_OTHER is weaker than the weakest priority in the
priority ranges for any of the other policies, SCHED_FIFO, SCHED_RR,
and SCHED_RR2.

Process Resource Manager
The Process Resource Manager (PRM) is an optional HP-UX product
coded into the kernel as fss , or Fair Share Scheduler. This time-share
scheduler operates on timeshare processes. Real-time processes (RTPRIO
and POSIX real-time) are not affected by the fss , but they do affect it,
because the fss  allocates portions of the CPU to different groups of
processes. Unlike the default SCHED_HPUX scheduler, the Process
Resource Manager allows the system administrator to budget CPU time
to groups of processes with a high degree of specificity.

The remainder of this section will not be dealing with the ramifications
of the PRM.
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Scheduling Priorities
All processes have a priority, set when the process is invoked and based
on factors such as whether the process is running on behalf of user or
system and whether the process is created in a time-share or real-time
environment.

Associated with each policy is a priority range. The priority ranges
foreach policy can (but need not) overlap the priority ranges of other
policies.

Two separate ranges of priorities exist: a range of POSIX standard
priorities and a range of other HP-UX priorities. The POSIX standard
priorities are always higher than all other HP-UX priorities.

Processes are chosen by the scheduler to execute a time-slice based on
priority. Priorities range from highest priority to lowest priority and are
classified by need.  The thread selected to run is at the head of the
highest priority nonempty thread list.

Internal vs. External Priority Values
With the implementation of the POSIX rtsched , HP-UX priorities are
enumerated from two perspectives -- internal and external priority
values.

• The internal value represents the kernel’s view of the priority.

• The external value represents the user’s view of the priority, as is
visible using the ps(1)  command.

In addition, legacy HP-UX priority values are ranked in opposite
sequence from POSIX priority values:

• In the POSIX standard, the higher the priority number, the stronger
the priority.

• In legacy HP-UX implementation, the lower the priority number, the
stronger the priority.

The following macros are defined in pm_rtsched.h  to enable a program
to convert between POSIX and HP-UX priorities and internal to external
values:

• PRI_ExtPOSIXPri_To_IntHpuxPri
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To derive the HP-UX kernel (internal) value from the value passed by
a user invoking the rtsched  command (that is, using the POSIX
priority value).

• PRI_IntHpuxPri_To_ExtPOSIXPri()

To convert HP-UX (kernel) internal priority value to POSIX priority
value.

• PRI_IntHpuxPri_To_ExtHpuxPri

To convert HP-UX internal to HP-UX external priority values.

rtsched_numpr i Parameter
A configurable parameter, rtsched_numpri,  controls:

• The number of scheduling priorities supported by the POSIX rtsched
scheduler.

• The range of valid values is 32 to 512 (32 is default)

Increasing rtsched_numpri  provides more scheduling priorities at the
cost of increased context switch time, and to a minor degree, increased
memory consumption.

Schedulers and Priority Values
There are now four sets of thread priorities: (Internal to External View)

Table 1-22 Scheduler priority values

NOTE For the POSIX standard scheduler, the higher the number, the stronger
the priority.  For the RTPRIO scheduler, the lower the number, the
stronger the priority.

Type of Scheduler External Values Internal Values

POSIX Standard 512 to 480 0    to 31

Real-time 512 to 640 0    to 127

System, timeshare 640 to 689 128 to 177

User, timeshare 690 to 767 178 to 255
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The following figure demonstrates the relationship of the three
schedulers ranked by priority and strength.

Figure 1-26 Schedulers and Priority values

The following lists categories of priority, from highest to lowest:

• RTSCHED (POSIX standard) ranks as highest priority range, and is
separate from other HP-UX priorities.

RTSCHED priorities range between 32 and 512 (default 32) and can be
set by the tunable parameter rtsched_numpri.

• SCHED_RTPRIO (real-time priority) ranges from 0-127 and is reserved
for processes started with rtprio() system calls.

• Two priorities used in a timeshare environment:

• User priority (178-255), assigned to user processes in a time-share
environment.

• System priority (128-177), used by system processes in a
time-share environment.

The kernel can alter the priority of time-share priorities (128-255) but
not real-time priorities (0-127).
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The following priority values, internal to the kernel, are defined in
param.h :

PRTSCHEDBASE Smallest (strongest) RTSCHED
priority

MAX_RTSCHED_PRI Maximum number of RTSCHED
priorities

PRTBASE Smallest (strongest) RTPRIO priority.
Defined as PRTSCHED +
MAX_RTSCHED_PRI.

PTIMESHARE Smallest (strongest) timeshare
priority. Defined as PRTBASE + 128 .

PMAX_TIMESHARE Largest (weakest) timeshare priority.
Defined as 127 + PTIMESHARE .

Priorities stronger (smaller number) than or equal to PZERO cannot be
signaled. Priorities weaker (bigger number) than PZERO can be signaled.

RTSCHED Priorities
The following discussion illustrates  the HP-UX internal view, based on
how the user specifies a priority to the rtsched command. Each
available real-time scheduler policy has a range of priorities (default
values shown below).

The user may invoke the rtsched(1) command to assign a scheduler
policy and priority.  For example,

rtsched -s SCHED_RR -p 31 ls

Scheduler Policy highest priority lowest priority

SCHED_FIFO 31 0

SCHED_RR 31 0

SCHED_RR2 31 0

SCHED_RTPRIO 0 127
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Within kernel mode sched_setparam()  is called to set the scheduling
parameters of a process. It (along with sched_setscheduler( )) is the
mechanism by which a process changes its (or another process’)
scheduling parameters. Presently the only scheduling parameter is
priority, sched_priority .

The sched_setparam()  and sched_setscheduler( ) system calls look
up the process associated with the user argument pid , and call the
internal routine sched_setcommon() to complete the execution.

sched_setcommon()  is the common code for sched_setparam()  and
sched_setscheduler() .  It modifies the threads scheduling priority
and policy.  The scheduler information for a thread is kept in its thread
structure. It is used by the scheduling code, particularly setrq() , to
decide when the thread runs, with respect to the other threads in the
system. sched_setcommon()  is called with the sched_lock  held.

sched_setcommon()  calls the macro
PRI_ExtPOSIXPri_To_IntHpuxPri , defined in pm_rtsched.h .  The
priority requested is then converted. Since priorities in HP-UX are
stronger for smaller values, and the POSIX specification requires the
opposite behavior, we merge the two by running the rtsched  priorities
from ((MAX_RTSCHED_PRI-1) - rtsched_info.rts_numpri )
(strongest) to (MAX_RTSCHED_PRI-1) (weakest).

Based on the macro definition using the value passed by the user, the
internal value seen by the kernel is calculated as follows:

((MAX_RTSCHED_PRI - 1) - (ExtP_pri))

512 - 1  - 31   = 480

The kernel priority of the user’s process is 480.  The value of  480 is the
strongest priority available to the user.
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Run Queues
A process must be on a queue of runnable processes before the scheduler
can choose it to run.

Figure 1-27 Run queues of thread lists waiting to run

Processes get linked into the run queue based on the process’s priority,
set in the process table.  Run queues are link-listed in decreasing
priority.  The scheduler chooses the process with the highest priority to
run for a given time-slice.

Each process is represented by its header on the list of run queue
headers; each entry in the list of run queue headers points to the process
table entry for its respective process.

The kernel maintains separate queues for system-mode and user-mode
execution.  System-mode execution takes precedence for CPU time.
User-mode priorities can be preempted -- stopped and swapped out to
secondary storage; kernel-mode execution cannot.  Processes run until
they have to wait for a resource (such as data from a disk, for example),
until the kernel preempts them when their run time exceeds a time-slice
limit, until an interrupt occurs, or until they exit.  The scheduler then
chooses a new eligible highest-priority process to run; eventually, the
original process will run again when it has the highest priority of any
runnable process.

run queues
high

low

priority

schedulers

processors



96 Chapter 1

Process Management
Run Queues

When a timeshare process is not running, the kernel improves the
process’s priority (lowers its number).  When a process is running, its
priority worsens.  The kernel does not alter priorities on real-time
processes.  Timeshared processes (both system and user) lose priority as
they execute and regain priority when they do not execute

Figure 1-28 Run queue, showing priorities

Run Queue Initialization
Run queues are initialized by the routine rqinit() , which is called from
init_main.c after system monarch processor is established and before
final kernel initialization.

rqinit  examines all potential entries in the system global per-processor
information structure (struct mpinfo ), gets the run queue information
and pointers to the linked list of running threads. It then clears the run
queue data in bestq  (an index into the array of run queue points which
points to the highest priority non-empty queue), newavg_on_rq  (the run
queue average for the processor), nready_locked  and nready_free
(sums provided the total threads in the processor’s run queues). rqinit
then sets the current itimer value for all run queues, links the queue
header as the sole element, and sets up the queue.

Run queue headers

Real-time

System

User

timeshare
priorities

proc table
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Next, the RTSCHED-related global run data structures are initialized
with the global structure rtsched_info (defined in pm_rtsched.h ),
which describes the RTSCHED run queues.

Table 1-23 Entries in rtsched_info

The tunable parameter rtsched_numpri determines how many run
queues exist:

• The minimum value allowed is 32, imposed by the POSIX.4
specification and defined as RTSCHED_NUMPRI_FLOOR.

• The maximum supported value of 512 is a constant of the
implementation, defined as RTSCHED_NUMPRI_CEILING and set
equal to MAX_RTSCHED_PRI. If a higher maximum is required, the
latter definition must be changed.

malloc() is called to allocate space for RTSCHED run queues.
(rtsched_numpri * sizeof (struct mp_threadhd) ) bytes are
required.  The resulting pointer is stored in rtsched_info.rts_qp .

Timeslice is checked to ensure that it is set to a valid value, which may
be either -l  (meaning no timeslicing) or positive integers. If it is invalid,
it is set to the default, HZ/10. rtsched_info.rts_rr_timeslice  is
set to timeslice, which round-robins with that many clock ticks. For each
of the rtsched_numpri  run queues, the struct mp_threadhd  header
block is linked circularly to itself.    Finally, a spinlock is allocated to lock
the run queue.

Entry Purpose

rts_nready Total number of threads on queues

rts_bestq Hint of which queue to find threads

rts_numpri Number of RTSCHED priorities

rts_rr_timeslice Global timeslice for SCHED_RR threads

*rts_timeslicep Round-robin timeslices for each priority
(used by SCHED_RR2 threads)

*rts_qp Pointer to run queues

*rts_lock Spinlock for the run queues
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Figure 1-29 Run queue initialization

Note, there is one RTSCHED run queue systemwide, though separate
track is kept for each processor. The queue for given thread is based on
how the scheduling policy is defined. One global set of run queues is
maintained for RTSCHED (SCHED_FIFO, SCHED_RR, SCHED_RR2)
threads.  Run queues are maintained for each SPU for
SCHED_TIMESHARE and SCHED_RTPRIOthreads.

RTSCHED Run Queue
The following figure shows threads set to run at various RTSCHED
priorities.

The global RTSCHED run queues are searched for the strongest (most
deserving) thread to run; the best candidate is returned as a kthread_t.
Each priority has one thread list. Any runnable thread may be in any
thread list. Multiple scheduling policies are provided. Each nonempty
list is ordered, and contains a head (th_link) at one end of its order and a
tail (th_rlink ) at the other.

• rtsched_info.rts_qp  points to the strongest RTSCHED queue.

• rtsched_info.rts_bestq  points to the queue to begin the search.

The search (by the routine find_thread_rtsched() ) proceeds from
rts_bestq  downwards looking for non-empty run queues. When the
first non-empty queue is found, its index is noted in the local
first_busy q. All threads in that queue are checked to determine if they
are truly runnable or blocked on a semaphore.

SCHED_TIMESHARE
SCHED_RTPRIO

SCHED_TIMESHARE
SCHED_RTPRIO

         RTSCHED
cpu0

cpu1
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• If there is a runnable thread, the rts_bestq  value is updated to the
present queue and a pointer to the thread found is returned to the
caller.

• If no truly runnable thread is found, threads blocked on semaphores
are considered.

If first_busyq  is set, the rts_bestq  value is updated to it and the
thread at the head of that queue is returned to the caller. If
first_busyq  did not get set in the loop, the routine panics, because it
should be called only if rtsched_info.rts_nready  is non-zero.

Figure 1-30 RTSCHED run queue detail

Although the threads scheduler is set to a default value of 32
(RTSCHED_NUMPRI_FLOOR), it can be expanded to a system limit of
PRTSCHEDBASE (a value of 0).
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Figure 1-31 Threads scheduler

The Combined SCHED_RTPRIO and
SCHED_TIMESHARE Run Queue
As shown in the following figure, the SCHED_RTPRIO and
SCHED_TIMESHARE priorities use the same queue.

The SCHED_RTPRIO and SCHED_TIMESHARE queue is searched with the
same technique as the RTSCHED queue.  The most deserving thread is
found to run on the current processor. The search starts at bestq , which
is an index into the table of run queues. There is one thread list for each
priority. Any runable thread may be in any thread list. Multiple
scheduling policies are provided. Each nonempty list is ordered, and
contains a head (th_link ) as one end of its order and a tail (th_rlink )
as the other.

Priority 0
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Figure 1-32 SCHED_RTPRIO and SCHED_TIMESHARE queue

The mp_rq  structure constructs the run queues by linking threads
together. The structure qs  is an array of pointer pairs that act as a
doubly linked list of threads.  Each entry in qs[] represents a different
priority queue. sized by NQS, which is 160 .  The qs[].th_link  pointer
points to the first thread in the queue and the qs[].th_rlink pointer
points to the tail.

RTPRIO Run Queue

Figure 1-33 SCHED_RTPRIO (HP-UX REAL TIME) run queue
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Priorities 0 (highest realtime priority) through 127 (least realtime
priority) are reserved for real time threads. The real time priority thread
will run until it sleeps, exits, or is preempted by a higher priority real
time thread. Equal priority threads will be run in a round robin fashion.

The rtprio(1)  command may be used to give a thread a real time
priority. To use the rtprio(1)  command a user must belong in the
PRIV_RTPRIO privilege group or be superuser (root ). The priorities of
real time threads are never modified by the system unless explicitly
requested by a user (via a command or system call). Also a real time
thread will always run before a time share thread.

The following are a few key points regarding a real-time thread:

• Priorities are not adjusted by the kernel

• Priorities may be adjusted by a system call

• Real-time priority is set in kt_pri

• The p_nice value has no effect

SCHED_TIMESHARE Run Queue

Figure 1-34 SCHED_TIMESHARE run queue

Timeshare threads are grouped into system priorities (128 through 177)
and user priorities (178 through 255). The queues are four priorities
wide.   The system picks the highest priority timeshare thread, and lets

Priority 640  (Internal)

Priority 767  (Internal)

Priority 128

Prority  255 (External)

SCHED_TIMESHARE [32]
32 * 4 = 128 (TQS)

PTIMESHARE

PMAX_TIMESHARE

                    (External)

4 priorities wide
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it run for a specific period of time (timeslice). As the thread is running its
priority decreases. At the end of the time slice, a new highest priority is
chosen.

Waiting threads gain priority and running threads lose priority in order
to favor threads that perform I/O and give lesser attention to
compute-bound threads.

SCHED_TIMESHARE priorities are grouped as follows:

• Real-time priority thread: range 0-127

• Time-share priority thread: range 128-255

• System-level priority thread: range 128-177

• User-level priority thread: range 178-255

RTSCHED priority queues are one priority wide; timeshare priority
queues are four priorities wide.
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Thread Scheduling
The thread of a parent process forks a child process.  The child process
inherits the scheduling policy and priority of the parent process.  As with
the parent thread, it is the child thread whose scheduling policy and
priority will be used.

The following figure illustates the flow of creation.

Figure 1-35 Inheritance of Scheduling policy and priority

• Each thread in a process is independently scheduled.

• Each thread contains its own scheduling policy and priority

• Thread scheduling policies and priorities may be assigned before a
thread is created (in the threads attributes object) or set dynamically
while a thread is running.

• Each thread may be bound directly to a CPU.

• Each thread may be suspended (and later resumed) by any thread
within the process.

The following scheduling attributes may be set in the threads attribute
object. The newly created thread will contain these scheduling
attributes:

parent process:

parent thread:

child process:

child thread:

 scheduling policy
  and priority

             scheduling policy

scheduling policy
and priority

2.

scheduling policy
and priority

3.fo
rk
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contentionscope PTHREAD_SCOPE_SYSTEM  specifies a
bound (1 x 1, kernel-spacel) thread.
When a bound thread is created, both
a user thread and a kernel-scheduled
entity are created.

PTHREAD_SCOPE_PROCESS will
specify an unbound (M x N,
combination user- and kernel-space)
thread. (Note, HP-UX release 10.30
does not support unbound threads.)

inheritsched PTHREAD_INHERIT_SCHED  specifies
that the created thread will inherit
its scheduling values from the
creating thread, instead of from the
threads attribute object.

PTHREAD_EXPLICIT_SCHED
specifies that the created thread will
get its scheduling values from the
threads attribute object.

schedpolicy The scheduling policy of the newly
created thread

schedparam The scheduling parameter (priority)
of the newly created thread.

Timeline
A process and its thread change with the passage of time. A thread’s
priority is adjusted four key times, as shown in the next figure and
described in the table that follows..
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Figure 1-36 Thread scheduling timeline
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Table 1-24 Thread priority adjustments

Thread Scheduling Routines
The following table summarizes the principal thread scheduling
routines.

Interval What happens

10 milliseconds The clock-interrupt handling routine
clock_int()  adjusts a time interval on the
monarch every clock tick. The monarch
processor calls hardclock()  to handle clock
ticks on the monarch for general maintenance
(such as disk and LAN states). hardclock()
calls per_spu_hardclock()  to charge the
running thread with cpu time accumulated
(kt_cpu ).

40 milliseconds per_spu_hardclock()  determines the
running thread has accumulated 40ms of time
and calls setpri() . setpri()  calls
calcusrpri()  to adjust the running thread’s
user priority (kt_usrpri) .

100 milliseconds By default, 10 clock ticks represents the value of
timeslice, the configurable kernel parameter
that defines the amount of time one thread is
allowed to run before the CPU is given to the
next thread. Once a timeslice interval has
expired a call to swtch()  is made to enact a
context switch.

one second statdaemon()  loops on the thread list and once
every second calls schedcpu()  to update all
thread priorities. The kt_usrpri  priority is
given to the thread on the next context switch; if
in user mode kt_usrpri  is given immediately.
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Table 1-25 Thread scheduling routines

Routine Purpose

hardclock() Runs on the monarch processor to handle
clock ticks.

per_spu_hardclock( ) handles per-processor hardclock activities.

setpri() Called with a thread as its argument and
returns a user priority for that thread.
Calls calcusrpri()  to get the new user
priority. If the new priority is stronger
than that of the currently running thread,
setpri()  generates an MPSCHED
interrupt on the processor executing that
thread, stores the new user priority in
kt_usrpri  and returns it to its caller.

calcusrpri() The user priority (kt_usrpri)  portion of
setpri() . calcusrpri()  uses the
kt_cpu  and p_nice(proc)  fields of the
thread, tt , to determine tt ’s user priority
and return that value without changing
any fields in *tt .  If tt  is a RTPRIO or
RTSCHED thread, kt_usrpri  is the
current value of kt_pri .

swtch( ) Finds the most deserving runnable
thread, takes it off the run queue, and sets
it to run.

statdaemon() A general-purpose kernel process run
once per second to check and update
process and virtual memory artifacts,
such as signal queueing and free
protection IDs.  Calls schedcpu()  to
recompute thread priorities and statistics.
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schedcpu() Once a second, schedcpu()  loops
through the thread list to update thread
scheduling priorities.  If the system has
more than one SPU, it balances SPU
loads.  schedcpu updates thread usage
information (kt_prevrecentcycles  and
kt_fractioncpu ), calculates new
kt_cpu  for the current thread (info used
by setpri() , updates the statistics of
runnable threads on run queues and those
swapped out, and awakens the swapper.

Calls setpri() .

setrq() Routine used to put threads onto the run
queues.  Set the appropriate protection
(spl7  in UP case, thread lock in MP case).
Assert valid HP-UX priority and
scheduling policy and perform
policy-specific setup

remrq() Routine used to remove a thread from its
run queue. With a valid kt_link, set the
appropriate protection (spl7  in the UP
case or thread lock in MP case). Find the
processor on which the thread is running.
Decrement the thread count on run
queues. Update the mpinfo structure.
Restore the old sp l level, update RTSCHED
counts if necessary. Adjust the kt_pri ,
return to schedcpu.

Routine Purpose
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Adjusting a Thread Priority

Figure 1-37 Adjusting a thread priority

Every 10 msecs, the routine hardclock()  is called with spinlock SPL5
to disable I/O modules and software interrupts. hardclock()  calls the
per-processor routine per_spu_hardclock() , which looks for threads
whose priority is high enough to run. (Searching the processor run
queues depends on the scheduling policy). If a thread is found, the
MPSCHED_INT_BIT in the processor EIRR (External Interrupt Request
Register) is set.

When the system receives an MPSCHED_INT interrupt while running a
thread in user mode, the trap handler puts the thread on a run queue
and switches context, to bring in the high-priority thread.

If the current executing thread is the thread with the highest priority,  it
is given 100ms (one timeslice) to run. hardclock()  calls setpri() every
40ms to review the thread’s working priority (kt_pri ). setpri()
adjusts the user priority (kt_usrpri ) of a time-share thread process
based on cpu   usage and nice   values. While a time-share thread is
running, kt_cpu  time increases and its priority (kt_pri ) worsens.
RTSCHED or RTPRIO thread priorities do not change.

Every 1 second, schedcpu()  decrements the kt_cpu  value for each
thread on the run queue. setpri() is called to calculate a new priority
of the current thread being examined in the schedcpu()  loop. remrq()
is called to remove that thread from the run queue and then setrq( )
places the thread back into the run queue according to its new priority.

TSRUNPROC
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hardclock()

schedcpu()
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If a process is sleeping or on a swap device (that is, not on the run queue),
the user priority (kt_usrpri ) is adjusted in setpri( ) and kt_pri  is set
in schedcpu() .
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Context Switching
In a thread-based kernel, the kernel manages context switches between
kernel threads, rather than processes. Context switching occurs when
the kernel switches from executing one thread to executing another.
The kernel saves the context of the currently running thread and
resumes the context of the next thread that is scheduled to run.    When
the kernel preempts a thread, its context is saved.   Once the preempted
thread is scheduled to run again, its context is restored and it continues
as if it had never stopped.

The kernel allows context switch to occur under the following
circumstances:

• Thread exits

• Thread’s time slice has expired and a trap is generated.

• Thread puts itself to sleep, while awaiting a resource.

• Thread puts itself into a debug or stop state

• Thread returns to user mode from a system call or trap

• A higher-priority thread becomes ready to run

If a kernel thread has a  higher priority than the running thread, it can
preempt the current running thread. This  occurs if the thread is
awakened by a resource it has requested.  Only user threads can be
preempted.  HP-UX does not allow preemption in the kernel except when
a kernel thread is returning to user mode.

In the case where a single process can schedule multiple kernel threads
(1 x 1 and M x N), the kernel will preempt the running thread when it is
executing in user space, but not when it is executing in kernel space (for
example, during a system call).

The swtch()  Routine
The swtch()  routine finds the most deserving runnable thread, takes it
off the run queue, and starts running it. The following figure shows the
routines used by swtch() .
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Figure 1-38 process scheduling -- swtch()
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Table 1-26 swtch() routines
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Routine Purpose

swidle()

(asm_utl.c)

Performs an idle loop while waiting to
take action.

Checks for a valid kt_link .

On a uniprocessor machine without a
threadlock thread, goes to spl7 .

Finds the thread’s spu.

Decrements the count of threads on run
queues.

Updates ndeactivated,
nready_free, nready_locked  in the
mpinfo()  structure.

Removes the thread from its run queue.
Restores the old spl  level.

Updates RTSCHED counts.
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Process and Processor Interval Timing
Timing intervals are used to measure user, system, and interrupt times
for threads and idle time for processors.  These measurements are taken
and recorded in machine cycles for maximum precision and
accountability.  The algorithm for interval timing is described in
pm_cycles.h .

Each processor maintains its own timing state by criteria defined in
struct mpinfo , found in mp.h .

save()

(resume.s)

Routine called to save states.

Saves the thread’s process control block
(pcb ) marker

find_thread_my_spu()

(pm_policy.c )

For the current CPU, find the most
deserving thread to run and remove the
old. Search starts at bestq , an index into
the table of run queues.

When found, set up the new thread to run.

Mark the interval timer in the spu’s
mpinfo .

Set the processor state as MPSYS.

Remove the thread from its run queue.

Verify that it is runnable (kt_stat==
TSRUN).

Set the EIRR to MPSCHED_INT_ENABLE.
Set the thread context bit to TSRUNPROC
to indicate the thread is running.

resume()

(resume.s)

Restores the register context from pcb
and transfers control to enable the thread
to resume execution.

Routine Purpose



Chapter 1 117

Process Management
Context Switching

Table 1-27 Processor timing states

Processor states are shown in the next table.

Table 1-28 Processor states

Time spent processing interrupts is attributed to the running process as
user or system time, depending on the state of the process when the
interrupt occurred.  Each time the kernel calls wakeup() while on the
interrupt stack, a new interval starts and the time of the previous
interval is attributed to the running process.  If the processor is idle, the
interrupt time is added to the processor’s idle time.

State Transitions
A thread leaves resume() , either from another thread or the idle loop.
Protected by a lock, the routine resume_cleanup()  notes the time,
attributes the interval to the previous thread if there was one or the
processor’s idle time if not, marks the new interval’s start time, and
changes the current state to SPUSTATE_SYSTEM.

Timing state Purpose

curstate The current state of the processor (spustate_t )

starttime Start time (CR16) of the current interval

prevthreadp Thread to attribute the current interval.

idlecycles Total cycles the SPU has spent idling since boot
(cycles_t )

SPU state Meaning

SPUSTATE_NONE Processor is booting and has not yet
entered another state

SPUSTATE_IDLE Processor is idle.

SPUSTATE_USER Processor is in user mode

SPUSTATE_SYSTEM Processor is in syscall()  or trap.
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When the processor idles, the routine swtch() , protected by a currently
held lock, notes the time, attributes the interval to the previous thread,
marks the new interval as starting at the noted time, and changes the
current state to SPUSTATE_IDLE.

Figure 1-39 A user process makes a system call.

A user process running in user-mode at (a) makes a system call at (b).  It
returns from the system call at (e) to run again in user-mode. Between
(b) and (e) it is in running in system-mode.  Toward the beginning of
syscall()  at (c), a new system-mode interval starts.  The previous
interval is attributed to the thread as user time.  Toward the end of
syscall()  at (d), a new user-mode interval starts.  The previous
interval is attributed to the thread as system-time.

For timing purposes, traps are handled identically, with the following
exceptions:

• (c) and (d) are located in trap() , not syscall() , and

• whether or not (d) starts a user- or system-mode interval depends on
the state of the thread at the time of the trap.

Figure 1-40 An interrupt occurs

Interrupts are handled  much like traps, but any wakeup that occurs
while on the interrupt stack (such as w1 and w2 in the figure above)
starts a new interval and its time is attributed to the thread being
awakened rather than the previous thread.
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Interrupt time attributed to processes is stored in the
kt_interrupttime  field of the thread structure.  Concurrent writes to
this field are prevented because wakeup is the only routine (other than
allocproc() ) that writes to the field, and it only does so under the
protection of a spinlock.  Reads are performed (by pstat()  and others)
without locking, by using timecopy()  instead.

Conceptually, the work being done is on behalf of the thread being
awakened instead of the previously running thread.


