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MEMORY MANAGEMENT
Objectives of this chapter

Objectives of this chapter
• Give an overview of physical and virtual memory

• Describe the different structures associated with virtual memory and
explain their purposes

• Explain how memory is mapped from physical to virtual and vice
versa.

• Explain how pages of memory are made and kept available for
process/thread execution.

• Describe how swap space is managed

• Describe how process structures are set up in memory

• Understand how and why memory pages are allocated, freed up, and
recovered
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OVERVIEW OF PHYSICAL AND
VIRTUAL MEMORY
The memory management system is designed to make memory resources
available safely and efficiently among threads and processes:

• It provides a complete address space for each process, protected from
all other processes.

• It enables program size to be larger than physical memory.

• It decides which threads and processes reside in physical memory and
manipulates threads and processes in and out of memory.

• It manages the parts of the virtual address space of a thread or
process not in physical memory and determines what portions of the
address space should reside in physical memory.

• It allows efficient sharing of memory between processes.

The data and instructions of any process (a program in execution) or
thread of execution within a process must be available to the CPU by
residing in physical memory at the time of execution.

To execute a process, the kernel creates a per-process virtual address
space that is set up by the kernel; portions of the virtual space are
mapped onto physical memory. Virtual memory allows the total size of
user processes to exceed physical memory. Through “demand paging”,
HP-UX enables you to execute threads and processes by bringing virtual
pages into main memory only as needed (that is, “on demand”) and
pushing out portions of a process’s address space that have not been
recently used.

The term “memory management” refers to the rules that govern physical
and virtual memory and allow for efficient sharing of the system’s
resources by user and system processes.

The system uses a combination of pageout and deactivation to manage
physical memory.  Paging involves writing recently unreferenced pages
from main memory to disk from time to time. A page is this smallest unit
of physical memory that can be mapped to a virtual address with a given
set of access attributes. On a loaded system, total unreferenced pages
might be a large fraction of memory.
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Deactivation takes place if the system is unable to maintain a large
enough free pool of physical memory. When an entire process is
deactivated, the pages associated with the process can be written out to
secondary storage, since they are no longer referenced. A deactivated
process cannot run, and therefore, cannot reference its data.

Secondary storage supplements physical memory.  The memory
management system monitors available memory and, when it is low,
writes out pages of a process or thread to a secondary storage device
called a swap device.  The data is read from the swap device back into
physical memory when it is needed for the process to execute.

Pages
Pages are the smallest contiguous block of physical memory that can be
allocated for storing data and code. Pages are also the smallest unit of
memory protection.  The page size of all HP-UX systems is four kilobytes.

On a PA-RISC system, every page of physical memory is addressed by  a
physical page number (PPN), which is a software “reduction” of the
physical page number from the physical address.  Access to pages (and
thus to the data they contain) are done through virtual addresses, except
under specific circumstances.1

Virtual Addresses
When a program is compiled, the compiler generates virtual addresses
for the code. Virtual addresses represent a location in memory.  These
virtual addresses must be mapped to physical addresses (locations of the
physical pages in memory) for the compiled code to execute. User
programs use virtual addresses only.

The kernel and the hardware coordinate a mapping of these virtual and
physical addresses for the CPU, called “address translation,” to locate the
process in memory.

A PA-RISC virtual address consists of a space identifier (SID) and an
offset.

• Each space ID represents a 4 GB unit of virtual memory.

1. When virtual translation must be turned off (the D and I bits are
off), pages are accessed by their absolute addresses.
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• The offset portion of a virtual address is the offset into this space.

Table 1-1 Format of a 48-bit virtual address

Every process running on a PA-RISC processor shares a 48-bit (or larger,
depending on HP-PA architecture version) global virtual address space
with the kernel and with all other processes running on that machine.
Although any process can create and attempt to read or write any virtual
address, the kernel uses page granularity access control mechanisms to
prevent unwanted interference between processes.

When a virtual page is “paged” into physical memory, free physical pages
are allocated to it from the free list.  These pages may be randomly
scattered throughout the memory depending on their usage history.
Translations are needed to tell the processor where the virtual pages are
loaded.  The process of translating the virtual into physical address is
called virtual address translation.

Potentially the virtual address space can be much greater than the
physical address space.  The virtual memory system enables the CPU to
execute programs much larger than the available physical memory and
allows you run many more programs at a time than you could without a
virtual memory system.

Demand Paging
For a process to execute, all the structures for data, text, and so on have
to be set up.  However, pages are not loaded in memory until they are
“demanded” by a process -- hence the term, demand paging. Demand
paging allows the various parts of a process to be brought into physical
memory as the process needs them to execute. Only the working set of
the process, not the entire process, need be in memory at one time. A
translation is not established until the actual page is accessed.

Space ID

(16 bits)

Offset

(32 bits)
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THE ROLE OF PHYSICAL MEMORY
Memory is the “container” for data storage; the general repository for
high-speed data storage is close to the CPU, and is termed random access
memory (RAM) or “main memory.”   For the CPU to execute a process,
the code and data referenced by that process must reside in random
access memory (RAM). RAM holds data during process execution in two
even-faster implementations of memory, registers and cache, found on
the processor.  RAM is shared by all processes.

The more main memory in the system, the more data the system can
access and the more (or larger) processes it can retain and execute
without having to page or cause deactivation as frequently.
Memory-resident resources (such as page tables) also take up space in
main memory, reducing the space available to applications.

At boot time, the system loads HP-UX from disk into RAM, where it
remains memory-resident until the system is shut down.

User programs and commands too are loaded from disk into RAM.  When
a program terminates, the operating system frees the memory used by
the process.

Disk access is slow compared to RAM access. Excessive disk access can
lead to increased latency or reduced throughput and can lead to the disk
access becoming the bottleneck in the system. To avoid this, you need to
do some sort of buffering. Buffering, paging, and deactivation algorithms
optimize disk access and determine when data and code for currently
running programs are returned from RAM to disk. When a user or
system program writes data to disk, the data is either written directly to
RAM (if raw data) or buffered in what is called buffer cache and written
to disk in relatively big chunks. Programs also read files and database
structures from disk into RAM.  When you issue the sync command
before shutting down a system, all modified buffers of the buffer cache
are flushed (written) out to disk.
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Figure 1-1 Physical memory available to processes

Available Memory
The amount of main memory not reserved for the kernel is termed
available memory. Available memory is used by the system for executing
user processes.

Not all physical memory is available to user processes.  Kernel text and
initialized data occupy about 8 MB of RAM.

Instead of allocating all its data structures at system initialization, the
HP-UX kernel dynamically allocates and releases some kernel structures
as needed by the system during normal operation.  This allocation comes
from the available memory pool; thus, at any given time, part of the
available memory is used by the kernel and the remainder is available
for user programs.

Physical address space is the entire range of addresses used by hardware
(4GB), and is divided into memory address space, processor-dependent
code (PDC) address space, and I/O address space. The next figure shows
the expanse of memory available for computation.   Memory address
space takes up most of the system address space, while address space
allotted to PDC and I/O consume a relatively small range of addresses.

HP-UX kernel
at bootup

Lockable memory

Available memory

Physical memory
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Figure 1-2 Major sections of system address space.

Lockable Memory
Pages kept in memory for the lifetime of a process by means of a system
call (such as mlock , plock , or shmctl ) are termed lockable memory.
Locked memory cannot be paged and processes with locked memory
cannot be deactivated.  Typically, locked memory holds frequently
accessed programs or data structures, such as critical sections of
application code.  Keeping them memory-resident improves application
performance.

The lockable_mem variable tracks how much memory can be locked.

Available memory is a portion of physical memory, minus the amount of
space required for the kernel and its data structures. The initial value of
lockable_mem  is the available memory on the system after boot-up,
minus the value of the system parameter, unlockable_mem .

The value of lockable memory depends on several factors:

• The size of the kernel varies, depending on the number of interface
cards, users, and values of the tunable parameters.

• Available memory varies from system to system.

page zero

Memory
address
space

PDC & I/O

PDC address space

I/O Register
address
space

Central bus
address space

Broadcast
address space
(local,global)

0xFFFFFFFF

0xF0000000
0xF10000000x00000000

0xF0000000

0xFFFFFFFF
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• The system parameter unlockable_mem  is a kernel tunable
parameter. Changing the value of unlockable_mem  alters the
default value of lockable_mem  also.

HP-UX places no explicit limits on the amount of available memory you
may lock down; instead, HP-UX restricts how much memory cannot be
locked.

Other kernel resources that use memory (such as the dynamic buffer
cache) can cause changes.

• As memory is used, the amount of memory that can be locked
decreases.

• As memory is freed up, the amount of memory that can be locked
increases.

As the amount of memory that has been locked down increases, existing
processes compete for a smaller and smaller pool of usuable memory. If
the number of pages in this remaining pool of memory falls below the
paging threshold called lotsfree , the system will activates its paging
mechanism, by scheduling vhand in an attempt to keep a reasonable
amount of memory free for general system use.

Care must be taken to allow sufficient space for processes to make
forward progress; otherwise, the system is forced into paging and
deactivating processes constantly, to keep a reasonable amount of
memory free.

Secondary Storage
Data is removed to secondary storage if the system is short of main
memory. The data is typically stored on disks accessible either via
system buses or network to make room for active processes.

Swap refers to a physical memory management strategy (predating
UNIX) where entire processes are moved between main memoryand
secondary storage. Modern virtual memory systems today no longer
swap entire processes, but rather use a deactivation scheme that allows
pages to be pushed out over time by a paging mechanism. While
executing a program, pages of data and instructions can be paged out to
or paged in from secondary storage if the system load warrants such
behavior.
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Device swap can take the form of an entire disk or LVM1 logical volume
of a disk. A file system can be configured to offer free space for swap; this
is termed file-system swap.  If more swap space is required, it can be
added dynamically to a running system, as either device swap or
file-system swap.  The swapon command is used to allocate disk space or
a directory in a file system for swap.

1. Logical Volume Manager (LVM) is a set of commands and underly-
ing software to handle disk storage resources with more flexibility
than offered by traditional disk partitions.
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THE ABSTRACTION OF VIRTUAL
MEMORY
A computer has a finite amount of RAM available, but each HP-UX
process has a 4GB virtual address space apportioned in four
one-gigabyte quadrants, termed virtual memory.

Virtual memory is the software construct that allows each process
sufficient computational space in which to execute.  It is accomplished
with hardware support.

Virtual Space in PA-RISC
As software is compiled and run, it generates virtual addresses that
provide programmers with memory space many times larger than
physical memory alone.  The number of bits available for the space
determines the ultimate size of the virtual address space.  At PA-RISC
1.x, the operating system has 32-bit physical addressing and 48-bit
virtual addressing (the latter consisting of 16-bit space and 32-bit offset
to allow for 4 GB per space); the total virtual address range is

(2 ^ 16) * 4 GB = 262,144 GB

By comparison, Level 2 has a far greater total virtual address range of

( 2 ^ 32 ) * 4 GB = 17,179,869,184 GB

NOTE Understand, however, that a single process has significant limitations on
the virtual address space it is allowed to access. For example, a
SHARE_MAGIC executable text is limited to 1 GB and data is limited to 1
GB. The total amount of shared virtual address space in the system is
limited to 1.75 GB.

Physical Addresses
A physical address points to a page in memory that represents 4096
bytes of data.  The physical address also contains an offset into this page.
Thus, the complete physical address is composed of a physical page
number(PPN) and  page offset.  The PPN is the 20 most significant bits of
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the physical address where the page is located.  These bits are
concatenated with an 12-bit page offset to form the 32-bit physical
address.

Figure 1-3 Bit layout of physical address

To handle the translation of the virtual address to a physical address the
virtual address also needs to be looked at as a virtual page number(VPN)
and page offset.  Since the page size is 4096 bytes, the low order 12 bits of
the offset are assumed to be the offset into the page.  The space ID and
the high order 20 bits of the offset are the VPN.

For any given  address you can determine the page number by discarding
the least significant 12 bits.  What remains is the virtual page number
for a virtual address or the physical page number for the physical
address.

The next figure shows the bit layout of a virtual address of 0x0.4873.

Figure 1-4 Bit layout of virtual page address

The virtual page number’s address must be translated to obtain the
associated physical page number, with page offset 0x873.

1000011100110000000000000000100

Page Number Page Offset

0 19 20 31

100001110011000000000000000001000000000000000000

16-bit Space ID 32-bit Offset

VPN = 0x4 Page Offset
0x873
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MEMORY-RELEVANT PORTIONS OF
THE PROCESSOR

Figure 1-5 Processor architecture, showing major components

The figure above and the table that follows, name the principal processor
components; of them, registers,  translation lookaside buffer, and cache
are crucial to memory management, and will be discussed in greater
detail following the table.

Central Bus

Central Processing
Unit (CPU)

Floating Point
Coprocessor

Translation
Cache

System Interface

Lookaside Buffer
(TLB)

Unit (SIU)
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Table 1-2 Processor Architecture, components and purposes
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Component Purpose

Central Processing
Unit (CPU)

The main component responsible for reading
program and data from memory, and
executing the program instructions. Within
the CPU are the following:

• Registers, high-speed memory used to hold
data while it is being manipulated by
instructions, for computations,
interruption processing, protection
mechanisms, and virtual memory
management.  Registers are discussed
shortly in greater detail.

• Control Hardware  (also called instruction
or fetch unit) that coordinates and
synchronizes the activity of the CPU by
interpreting (decoding) instructions to
generate control signals that activate the
appropriate CPU hardware.

• Execution Hardware to perform the actual
arithmetic, logic, and shift operations.
Execution Hardware can take on many
specialized tasks but most common are the
Arithmetic and Logic Unit (ALU) and the
Shift Merge Unit (SMU).
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The Page Table or PDIR
The operating system maintains a table in memory called the Page
Directory (PDIR) which keeps track of all pages currently in memory.
When a page is mapped in some virtual address space, it is allocated an
entry in the PDIR.  The PDIR is what links a physical page in memory to
its virtual address.

The PDIR is implemented as a memory-resident table of software
structures called page directory entries (PDEs), which contain virtual
addresses.  The PDIR maps the entire physical memory with one entry
for every page in physical memory. Each entry contains a 48/64 bit
virtual address.  When the processor needs to find  a physical page not
indexed in the TLB, it can search the PDIR with a virtual address until it
finds a matching address.

Instruction and Data
Cache

The cache is a portion of high-speed memory
used by the CPU for quick access to data and
instructions.  The most recently accessed data
is kept in the cache.

Translation
Lookaside Buffer
(TLB)

The processor component that enables the
CPU to access data through virtual address
space by :

• Translating the virtual address to physical
address.

• Checking access rights, so that access is
granted to instructions, data, or I/O only if
the requesting process has proper
authorization.

Floating Point
Coprocessor

An assist processor that carries out
specialized tasks for the CPU.

System Interface
Unit (SIU)

Bus circuitry that allows the CPU to
communicate with the central (native) bus.

Component Purpose
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The PDIR table is a hash table with collision chains. The virtual address
is used to hash into one of the buckets in the hash table and the
corresponding chain is searched until a chain entry with a matching
virtual address is found.

Page Fault
A trap occurs because translation is missing in the translation lookaside
buffer (TLB, discussed shortly). If the processor can find the missing
translation in the PDIR, it installs it in the TLB and allows execution to
continue. If not, a page fault occurs.

A page fault is a trap taken when the address needed by a process is
missing from the main memory. This occurrance is also known as a PDIR
miss. A PDIR miss indicates that the page is either on the free list, in the
page cache, or on disk; the  memory management system must then find
the requested page on the swap device or in the file system and bring it
into main memory.

Conversely, a PDIR hit indicates that a translation exists for the virtual
address in the TLB.

The Hashed Page Directory (hpde) structure
Each PDE contains information on the virtual-to-physical address
translation, along with other information necessary for the management
of each page of virtual memory.   The structural elements of the hashed
page directory for PA-RISC 1.1 are shown in the following table.

Table 1-3 struct hpde , the hashed page directory

Element Meaning

pde_valid Flag set by the kernel to indicate a valid pde
entry.

pde_vpage Virtual page - high 15 bits of the virtual offset

pde_space Contains the complete 16-bit virtual space

pde_ref Reference bit set by the kernel when it receives
certain interrupts; used by vhand() to tell if a
page has been used recently
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a. Stingy cache flush is a performance enhancement by which
the kernel recognizes whether or not to flush the cache.

b. For detailed information on access rights, see the PA-RISC 2.0
Architecture reference, chapter 3, “Addressing and Access Con-
trol.”  For information about how programs can manipulate
this field, see mmap(2)  and mprotect(2)  manpages.

pde_accessed Used by the stingy cache flush algorithm to
indicate that the page may be in data cachea

pde_rtrap Data reference trap enable bit; when set, any
access to the page causes a page reference trap
interruption

pde_dirty Dirty bit; marked if the page differs in memory
from what is on disk.

pde_dbrk Data break; used by the TLB

pde_ar Access rights; used by the TLB.b

pde_protid Protection ID, used by the TLB.

pde_executed Used by the stingy cache flush algorithm to
indicate that page is referenced as text.

pde_uip Lock flag used by trap-handling code.

pde_phys Physical page number; the physical memory
address divided by the page size.

pde_modified Indicator to the high-level virtual memory
routines as to whether the page has been modified
since last written to a swap device.

pde_ref_trick
le

Trickle-up bit for references.  Used with pde_ref
on systems whose hardware can search the htbl
directly.

pde_block_map
ped

Block mapping flag; indicates page is mapped by
block TLB and cannot be aliased.

pde_alias Virtual alias field. If set, the pde has been
allocated from elsewhere in kernel memory,
rather than as a member of the sparse PDIR.

pde_next Pointer to next entry, or null if end of list.

Element Meaning
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A word-oriented hpde  structure (struct whpde ) is implemented for
faster manipulation and is documented in
/usr/include/machine/pde.h .  The pde.h  header file also contains
the definitions space for manipulation, maximum number of entries in
the PDIR hashtable, constants related to field positions within the PDE
structure, access rights (which are now given on a region basis), and
another hashed page directory (struct hpde2_0 ) for PA-RISC 2.0.

NOTE The 2.0 version of the hpde structure has a field named var_page  that
can hold the page size information. This is used in implementing
super-pages (>4K) on systems based on the PA 2.0 processor.

Translation Lookaside Buffer (TLB)
The translation lookaside buffer (TLB) translates virtual addresses to
physical addresses.

Figure 1-6 Role of the TLB.

Address translation is handled from the top of the memory hierarchy
hitting the fastest components first (such as the TLB on the processor)
and then moving on to the page directory table (pdir  in main memory)
and lastly to secondary storage.

Organization and Types of TLB
Depending on model, the TLB may be organized on the processor in one
of two ways:

• Unified TLB - A single TLB that holds translations for both data and
instructions.

Virtual
address
space

Physical
address
spaceTLB
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• Split Data and Instruction TLB - Dual TLB units in the processor
each of which hold translations specifically for data or instructions.

At one time many systems were being designed with split Data TLB
(DTLB) and Instruction TLB (ITLB), to account for the different
characteristics of data and instruction locality and type of access
(frequent random access of data versus relatively sequential single usage
of instructions).  Cost factors have allowed the inclusion of much larger
TLBs on processors, which has lessened the disadvantages of a unified
TLB.  As a result many newer processors have unified TLBs.

Block TLB
In addition to the standard TLB that maps each entry to a single page of
memory, many processors also have a block TLB.  The block TLB is used
to map entries to virtual address ranges larger than a single page, that
is, multiple hpde s. Block TLB entries are used to  reference kernel
memory that remains resident. Since the operating system moves data
in and out of memory by pages, a range of pages referenced by a block
TLB entry is locked in memory and cannot be paged out.  Addressing
blocks of pages thus increases the overall address range of the TLB and
the speed with which large transactions can be serviced, and thus may
be thought of as a hardware implementation of large pages.  The block
TLB is typically used for graphics, because their data is accessed in huge
chunks. It is also used for mapping other static areas such as kernel text
and data.
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Figure 1-7 The TLB is a cache for address translations

The TLB translates addresses
The TLB looks up the translation for the virtual page numbers (VPNs)
and gets the physical page numbers (PPNs) used to reference physical
memory.

Ideally the TLB would be large enough to hold translations for every
page of physical memory; however this is prohibitively expensive;
instead the TLB holds  a subset of entries from the page directory table
(PDIR) in memory. The TLB speeds up the process of examining the
PDIR by caching copies of its most recently utilized translations.

Because the purpose of the TLB is to satisfy virtual to physical address
translation, the TLB is only searched when memory is accessed while in
virtual mode.  This condition is indicated by the D-bit in the PSW (or the
I-bit for instruction access).

TLB Entries
Since the TLB translates virtual to physical addresses, each entry
contains both the Virtual Page Number (VPN) and the Physical Page
Number (PPN).  Entries also contain Access Rights, an Access Identifier,
and five flags.
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Table 1-4 TLB flags (PA 2.x architecture)

a. The T,D, and B flags are only present in data or unified TLBs.

In PA 1.x architecture, an E bit (or “valid” bit) indicates that the TLB
entry reflects the current attributes of the physical page in memory.

Instruction and Data Cache
Cache is fast, associative memory on the processor module that stores
recently accessed instructions and data.  From it, the processor learns
whether it has immediate access to data or needs to go out to (slower)
main memory for it.

Cacheable data going to the CPU from main memory passes through the
cache.  Conversely, the cache serves as the means by which the CPU
passes data to and from main memory.  Cache reduces the time required
for the CPU to access data by maintaining a copy of the data and
instructions most recently requested.

Flag Meaning

O Ordered. Accesses to data for load and store are ranked by
strength -- strongly ordered, ordered, and weakly ordered.
(See PA-RISC 2.0 specifications for model and definitions.)

U Uncacheable. Determines whether data references to a page
from memory address space may be moved into the cache.
Typically set to 1 for data references to a page that maps to
the I/O address space or for memory address space that
must not be moved into cache.

Ta Page Reference bit. If set, any access to this page causes a
reference trap to be handled either by hardware or software
trap handlers

D Dirty Bit. When set, this bit indicates that the associated
page in memory differs from the same page on disk.   The
page must be flushed before being invalidated.

B Break.This bit causes a trap on any instruction that is
capable of writing to this page

P Prediction method for branching; optional, used for
performance tuning.
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A cache improves system performance because most memory accesses
are to addresses that are very close to or the same as previously accessed
addresses.  The cache takes advantage of this property by bringing into
cache a block of data whenever the CPU requests an address.  Though
this depends on size of the cache, associativity, and workload, a vast
majority of the time (according to performance measurements), the cache
has what you’re looking for the next time, enabling you to reference it.

Cache Organization
Depending on model, PA-RISC processors are equipped with either a
unified cache or separate caches for instructions and data (for better
locality and faster performance).  In multiprocessing systems, each
processor has its own cache, and a cache controller maintains
consistency.

Cache memory itself is organized as follows:

• A quantity of equal-sized blocks called cache lines, defined to be the
same unit of size as data passed between cache and main memory.   A
cache line can be 16, 32, or 64 bytes long, aligned.

• One 15-bit long cache tag for every cache line, to describe its contents
and determine if the desired data is present. The tag contains

• Physical Page Number (PPN), identifying the page in main
memory where the data resides.

• Flag Bits  When set, a valid flag indicates the cache line contains
valid data.  A dirty bit is set if the CPU has modified contents of
the cache line; that is, the cache (not main memory) contains the
most current data. If the dirty bit is not set, the flag is said to be
“clean,” meaning that the cache line does not have modified
contents.  Other implementation-specific flags may be present.

• Both the cache tag and cache line have associated parity bits used for
checksumming, to make sure the line is correct.
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Figure 1-8 Every cache entry consists of a cache tag and cache line.

How the CPU Uses Cache And TLB
When a process executes, it stores its code (text) and data in processor
registers for referencing. If the data or code is not present in the
registers, the CPU supplies the virtual address of the desired data to the
TLB and to the cache controller. Depending on implementation, caches
can be direct mapped, set associative, or fully associative. Recent PA
implementations use direct associative caches and fully associative
TLBs. Virtual addresses can be sent in parallel to the TLB and cache
because the cache is virtually indexed.

A physical page may not be referenced by more than one virtual page,
and a virtual address cannot translate to two different physical
addresses; that is, PA-RISC does not support hardware address aliasing,
although HP-UX implements software address aliasing for text only in
EXEC_MAGIC executables.

The cache controller uses the low-order bits of the virtual address to
index into the direct-mapped cache. Each index in the cache finds a cache
tag containing a physical page number (PPN) and a cache line of data.  If
the cache controller finds an entry at the cache location, the cache line is
checked to see whether it is the right one by llooking at the PPN in the
cache tag and the one returned by the TLB, because blocks from many
different locations in main memory can be mapped legitimately to a
given cache location.  If the data is not in cache but the page is
translated, the resultant data cache miss is handled completely by the
hardware. A TLB miss occurs if the page is not translated in the TLB; if
the translation is also not in the PDIR, HP-UX uses the page fault code
to fault it in. If not in RAM, the data and code might have to be paged
from disk, in which case the disk-to-memory transaction must be
performed.
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Figure 1-9 PPNs from Cache and TLB are compared

On a more detailed level, the next figure demonstrates the mapping of
virtual and physical address components.

Figure 1-10 Virtual address translation

TLB Hits and Misses
The sequence followed by the processor as it validates addresses is one of
“hit or miss.”

• The TLB is searched; that is, each virtual address and byte offset
issued by the processor indexes an entry in the TLB.
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• If the entry is valid, it is known as a TLB hit. The TLB contains a
valid physical page number (PPN), which might be accessed in
cache.

• If the entry is invalid or the TLB cannot provide a physical page
number, a TLB miss occurs and must be handled. On certain
systems, a hardware walker searches the PDIR and if it finds the
page, updates the TLB. On systems not equipped with a hardware
TLB handler or if the hardware walker does not find an entry in
the PDIR, a software interrupt is generated. The software
interrupt resolves the fault and updates the TLB, allowing the
access to proceed.

There are five TLB miss handlers (instruction, data, non-access
instruction, nonaccess data, and dirty) located in locore.s ; the header
file pde.h  has the TLB/PDIR structure definition.

TLB Role in Access Control and Page
Protection
In addition to assisting in virtual address translation, the translation
lookaside buffer (TLB) serves a security function on behalf of the
processor, by controlling  access and ensuring that a user process sees
only data for which it has privilege rights.

The TLB contains access rights and protection  identifiers.  PA-RISC
allows up to four protection IDs to be associated with each process.
These IDs are held in control registers CR-8, CR-9, CR-12, and CR-13.
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Table 1-5 Security checks in the TLB

Figure 1-11 shows the checkpoints for controlling access to a page of data
through the TLB.  Two checks are performed: protection check and
access rights check.  If both checks pass, access is granted to the page
referenced by the TLB.

Security check Purpose

Protection
Checks

The P-bit (Protection ID Validation Enable bit) of
the Processor Status Word (PSW) is checked:

• If not set, protection checking on the page is
waived, as though passed and checking proceeds
to access rights validation.

• If the protection ID validation bit is set, the
access ID of the TLB entry is compared to the
protection IDs in CR-8, CR-9, CR-12, and CR-13.

Access Rights
Check

Access Rights are stored in a seven-bit field
containing permissible access type and two
privilege levels affecting the executing instruction:

• Access types are read, write, execute.

• Privilege levels checked for read access and
write access, kernel and user execution.
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Figure 1-11 Access control to virtual pages

Cache Hits and Misses
• When the cache line was first copied into the cache, its Physical Page

Number was stored in the corresponding cache tag.  The cache
controller compares the PPN from the tag to the PPN supplied by the
TLB.

• If the PPN in the cache tag matches the PPN from the TLB, a
cache hit occurs. The data is present in the cache and is supplied
to the CPU.

• If the PPN in the cache tag does not match the PPN from the TLB,
a cache miss occurs.  In a cache miss, the cache line is loaded from
memory, because the byted referenced on the virtual page are not
yet in cache. (Typically, our implementations do not load an entire
page at a time to the cache; they load a cache line at a time.) The
data is absent from cache and the CPU must wait while the data is
brought into the cache from main memory.
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If the two PPNs do not match (assuming a TLB hit), the cache line is
loaded because the bytes referenced on the virtual page are not yet in the
cache. The time it takes to service a cache miss varies depending on if the
data already present in the cache is clean or dirty. (When the cache is
dirty, the old contents are written out to memory and the new contents
are read in from memory.) If the cache line is “clean” (that is, not
modified), it does not have to be written back to main memory, and the
penalty is fewer instruction cycles than if the cache is dirty and must be
written back to main memory.

All PA-RISC machines use a cache write-back policy, meaning that the
main memory is updated only when the cache line is replaced.

Figure 1-12 Summary of page retrieval from  TLB, Cache, PDIR

PA-RISC allows for privilege level promotion by using a GATEWAY
instruction.  This instuction performs an interspace branch to increase
the privilege level.  The most common example of this in HP-UX is a
system call, which changes the privilege level from user to kernel.
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Registers
Registers, high-speed memory in the processor’s CPU, are used by the
software as storage elements that hold data for instruction control flow,
computations, interruption processing, protection mechanisms, and
virtual memory management.

All computations are performed between registers or between a register
and a constant (embedded in an instruction), which minimizes the need
to access main memory or code. This register-intensive approach
accelerates performance of a PA-RISC system. This memory is much
faster than conventional main memory but it is also much more
expensive, and therefore used for processor-specific purposes.

Registers are classified as privileged or non-privileged, depending on the
privilege level of the instruction being executed.
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Table 1-6 Types of Registers

Type of Register Purpose

32 General
Registers, each 32
bits in size.

(non-privileged)

Used to hold immediate results or data that
is accessed frequently, such as the passing
of parameters.  Listed are those with uses
specified by PA-RISC or HP-UX.

• GR0 - Permanent Zero

• GR1 - ADDIL target address

• GR2 -  Return pointer. Contains the
instruction offset of the instruction to
which to return

• GR23 - Argument word 3 (arg3)

• GR24 - Argument word 2 (arg2)

• GR25 - Argument word 1 (arg1)

• GR26 - Argument word 0 (arg0)

• GR27 - Global data pointer (dp)

• GR28 - Return value

• GR29 - Return value (double)

• GR30 - Stack pointer (sp)

7 Shadow Registers

(privileged)

Store contents of GR1,8,9,16,17,24, and 25
on interrupt, so that they can be restored on
return from interrupt. Numbered
SHR0-SHR6.

8 Space Registers,
holding 16, 24, or
32-bit space ID.

(SR5-SR7 are
privileged)

Hold the space IDs for the current running
process.

• SR0 - Instruction address space link
register used for branch and link
external instructions.

• SR1-SR7 - Used to form virtual
addresses for processes.
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32 Control
Registers, each 32
bits. (most are
privileged)

Used to reflect different states of the
system, many related primarily to interrupt
handling.

• CR0 - Recovery Counter, used to provide
software recovery of hardware faults in
fault-tolerant systems and for
debugging.

• CR10 - Low-order bits are known as the
Coprocessor Configuration Register
(CCR), 8 bits that indicate presence and
usability of coprocessors.  Bits 0, 1
correspond to the floating point
coprocessor; bit 2, the performance
monitor coprocessor.

• CR14 - Interruption Vector Address
(IVA)

• CR16 - Interval Timer.  Two internal
registers, one counting at a rate between
twice and half the
implementation-specific “peak
instruction rate”, the other register
containing a 32-bit comparison value.
Each processor in a multi-processor
system has its own Interval Timer, but
they need not be synchronized nor clock
at the same frequency.

• CR17 - Stores the contents of the
Instruction Address Space Queue at
time of interruption.

• CR19 - Used to pass an instruction to an
interrupt handler.

• CR20, CR21 - Used to pass a virtual
address to an instruction handler.

• CR26, CR27 - Temporary registers
readable by code  executing at any
privilege level but writable only by
privileged code.

Type of Register Purpose
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64 Floating Point
Registers, 32-bits
each, or 32, 64-bits
each.

Data registers used to hold computations.

• FP-0L - Status register.  Controls
arithmetic modes, enables traps,
indicates exceptions, results of
comparison, and identifies coprocessor
implementation.

• FP-0R through FP-3 - Exception
registers, containing information on
floating point operations whose
execution has completed and caused a
delayed trap.

2 Instruction
Address Queues,
each 64 bits

Two queues 2 elements deep.  The front
elements of the queues (IASQ_Front and
IAOQ_Front) form the virtual address of the
current instruction, while the back elements
(IASQ_Back and IAOQ_Back) contain the
address of the following instruction.

• Instruction Address Space Queue holds
the space ID of the current and following
instruction.

• Instruction Address Offset Queue holds
the offset of the instruction for the given
space  High-order 62 bits contain the
wrod offset of the instruction; the 2
low-order bits maintain the privilege
level of the instruction.

1 Processor Status
Word (PSW), 32 bits

(privileged)

Contains the current processor state. When
an interruption occurs, the PSW is saved
into the Interrupt Processor Status Word
(IPSW), to be restored later.  Low-order five
bits of the PSW are the system mask, and
are defined as mask/unmask or
enable/disable.  Interrupts disabled by PSW
bit are ignored by the processor; interrupts
masked remain pending until unmasked.

Type of Register Purpose
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VIRTUAL MEMORY STRUCTURES

Figure 1-13 Memory management structures

Process management uses kernel structures down to the pregions  to
execute a process. The u_area , proc  structure, vas , and pregion  are
per-process resources, because each process has its own unique copies of
these structures, which are not shared among multiple processes.

Below the pregion  level are the systemwide resources.  These
structures can be shared among multiple processes (although they are
not required to be shared).

Memory management kernel structures map pregions to physical
memory and provide support for the processor’s ability to translate
virtual addresses to physical memory. The table that follows introduces
the structures involved in memory management; these are discussed
later in detail.
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Table 1-7 Principal Memory Management Kernel Structures

Virtual Address Space (vas )
The vas  represents the virtual address space of a process and serves as
the head of a doubly linked list of process region data structures called
pregions. The vas  data structure is always memory resident.

When aprocess is invoked, the system allocates a vas structure and puts
its address in p_vas , a field in the proc  structure.

The virtual address space of a process is broken down into logical chunks
of virtually contiguous pages.  (See the Process Management white paper
for table of vas  entries.)

Virtual memory elements of a pregion

Each pregion  represents a process’s view of a particular portion of
pages and information on getting to those pages. The pregion points to
the region data structure that describes the pages’ physical locations in
memory or in secondary storage. The pregion  also contains the virtual
addresses to which the process’s pages are mapped, the page usage (text,
data, stack, and so forth), and page protections (read, write, execute, and
so on).

Kernel
structure Purpose

vas Keeps track of the structural elements associated with a
process in memory. One vas  maintained per process.

pregion A per-process resource that describes the regions
attached to the process.

region A memory-resident system resource that can be shared
among processes. Points to the process’s B-tree , vnode ,
pregions .

B-tree Balanced tree that stores pairs of page indices and
chunk addresses. At the root of a B-tree  of VFDs and
DBDs is struct broot .

hpde Contains information for virtual to physical translation
(that is, from VFD to physical memory).
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Figure 1-14 Virtual memory elements of the pregion

The following elements of a per-process pregion  structure are
important to the virtual memory subsystem.

Table 1-8 Principal elements of struct pregion

pregion

vas

pregionpregionpregion

region

Element Purpose

p_type Type of pregion

*p_reg Pointer to the region attached by the pregion .

p_space,
p_vaddr

Virtual address of the pregion , based on virtual
space and virtual offset.

p_off Offset into the region, specified in pages.

p_count Number of pages mapped by the pregion .

p_ageremain,
 p_agescan,
p_stealscan,
 p_bestnice

Used in the vhand  algorithm to age and steal
pages of memory (discussed later).

*p_vas Pointer to the vas  to which the pregion  is
linked.

p_forw,
p_back

The doubly-linked list, used by vhand  to walk the
active pregions .
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The Region, a system resource
The region is a system-wide kernel data structure that associates groups
of pages with a given process. Regions can be one of two types, private
(used by a single process) or shared (able to be used by more than one
process).  Space for a  region data structure is allocated as needed.  The
region structure is never written to a swap device, although its B-tree
may be.

Regions are pointed to by pregions, which are a per-process resource.
Regions point to the vnode  where the blocks of data reside when not in
memory.

Table 1-9 region (struct region )

p_deactsleep The address at which a deactivated process is
sleeping.

p_pagein Size of an I/O, used for scheduling when moving
data into memory.

p_strength,
p_nextfault

Used to track the ratio between sequential and
random faults; used to adjust p_pagein .

Element Purpose

Element Meaning

 r_flags Region flags (enumerated shortly).

r_type • RT_PRIVATE:  Multiple processes cannot
share region. PT_DATA and PT_STACK
pregions  point to RT_PRIVATE regions.

• RT_SHARED: Multiple processes can share
region. PT_SHMEM and most PT_TEXT
pregions  point to RT_SHARED regions.

 r_pgsz Size of region in pages if all pages are in
memory.

 r_nvalid Number of valid pages in region.  This equals the
number of valid vfd s in the B-tree  or
b_chunk .
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r_dnvalid Number of pages in swapped region.  If the
system swaps the entire process, the value of
r_nvalid  is copied here to later calculate how
many pages the process will need when it faults
back in.  This information is used to decide
which process to reactivate.

r_swalloc Total number of pages reserved and allocated for
this region on the swap device.  Does not account
for swap space allocated for vfd/dbd  pairs.

r_swapmem,
r_vfd_swapmem

Memory reserved for pseudo-swap or vfd  swap.

r_lockmem Number of pages currently allocated to the
region for lockable memory, including lockable
memory allocated for vfd/dbd  pairs.

r_pswapf,
r_pswapb

Forward and backward pointers to lists of
pseudo-swap pages.

r_refcnt Number of pregion s pointing at the region

r_zomb Set to indicate modified text.  If an executing
a.out file on a remote system has changed, the
pages are flushed from the processor’s cache,
causing the next attempted access to fault.  The
fault handler finds that r_zomb  is non-zero,
prints the message Pid %d killed due to
text modification  or page I/O error  and
sends the process a SIGKILL .

r_off Offset into the page-aligned vnode, specified in
pages;  valid only if RF_UNALIGNED is not set.
Page r_off  of the vnode  is referenced by the
first entry of the first chunk of the region’s
B-tree .

r_incore Number of pregion s sharing the region whose
associated processes have the SLOAD flag set.

Element Meaning
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r_mlockcnt Number of processes that have locked this region
in memory.

r_dbd Disk block descriptor for B-tree  pages written
to a swap device  Specifies the location of the
first page in the linked list of pages.

r_fstore,
r_bstore

Pointers to vnode  of origin and destination of
block.  This data depends on the type of
pregion  above the region.  In most cases,
r_bstore  is set to the paging system vnode , the
global swapdev_vp  that is initialized at system
startup.

r_forw,
r_back

Pointers to linked list of all active pregions.

r_hchain Hash for region.

 r_lock Region lock structure used to get read or
read/write locks to modify the region structure.

r_mlock Wait for region to be locked in memory.

 r_poip Number of page I/Os in progress

r_root Root of B-tree ; if referencing more than one
chunk, r_key  is set to DONTUSE_IDX.

r_key, r_chunk Used instead of B-tree  search if referencing 32
or fewer pages.

r_excproc Pointer to the proc  table entry, if the process
has RF_EXCLUSIVE set in r_flags .

r_hdl Hardware-dependent layer structure

r_next, r_prev Circularly linked list of all regions sharing
pages/vnode .

Element Meaning
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a.out  Support for Unaligned Pages
Text and data of most executables start on a four-kilobyte page boundary.
HP-UX can treat these as memory-mapped files, because a page in the
file maps directly to a page in memory.

In addition to the fields shown, struct region has fields to support
executables compiled on older versions of HP-UX whose text and data do
not align on a (4 KB) page boundary. These executables are referenced by
regions whose r_flag  is set to RF_UNALIGNED.

Table 1-10 a.out  support by regions

Region flags
Various indicators of the state of the region are specified in r_flags .

r_pregs List of pregion s pointing to the region.

r_lchain Linked list of memory lock ranges

r_mlockswap swap reserved to cover locks

Element Meaning

Element Meaning

r_byte, r_bytelen Offset into the a.out  file and length of its
text.

r_hchain Hash list of unaligned regions.
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Table 1-11 Region flags

Region flag Meaning

RF_ALLOC Always set because HP-UX regions are
allocated and freed on demand; there is no
free list.

RF_MLOCKING Indicator of whether a region is locked; set
before r_mlock , cleared after r_mlock
is released.

RF_UNALIGNED Set if text of an executable does not start
on a page boundary.  In this case, the text
is read through the buffer cache to align
it, and the vfd s are pointed at the buffer
cache pages.

RF_WANTLOCK Set if another stream wanted to lock this
region, but found it already locked and
went to sleep.   After the region is
unlocked, this flag ensures that
wakeup()  is called so the waiting
stream(s) can proceed.

RF_HASHED  The text is unaligned (RF_UNALIGNED)
and thus is on a hash chain.  The region is
hashed with r_fstore  and r_byte ; the
head of each hash chain is in texts[] .
The RF_UNALIGNED flag may be set
without the RF_HASHED flag (if the
system tries to get the hashed region but
it is locked, the system will create a
private one), but the RF_HASHED flag will
never be set without the RF_UNALIGNED
flag.

RF_EVERSWP,
RE_NOWSWP

 Set if the B-tree  has ever been or is now
written to a swap device.  These flags are
used for debugging.

RF_IOMAP This region was created with an iomap()
system call, and thus requires special
handling when calling exit() .
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RF_LOCAL Region is swapped locally.

RF_EXCLUSIVE The mapping process is allowed exclusive
access to the region.  This flag is set, and
r_excproc  is set to the proc  table
pointer.

RF_SWLAZYWRT If an a.out is marked EXEC_MAGIC, a lazy
swap algorithm is used, meaning swap is
not reserved or allocated until needed.
The text file is not likely to be modified,
but if it is, a page of swap will be reserved
for it at that time.

RF_STATIC_PREDICT Text object uses static branch prediction
for compiler optimization.

RF_ALL_MLOCKED Entire region is memory locked, as a
result of a plock  having been performed
on the pregion associated with the region.

RF_SWAPMEM Region is using pseudo-swap; that is, a
portion of memory is being held for swap
use.

RF_LOCKED_LARGE Region is using large pages; used with
superpages.

RF_SUPERPAGE_TEXT Text region using large pages.

RF_FLIPPER_DISABLE Disable kernel assist prediction; a flag
used for performance profiling.

RF_MPROTECTED Some part of the region is subject to the
system call mprotect , which is performed
on an memory-mapped file.

Region flag Meaning
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pseudo-vas  for Text and Shared Library
pregions

When a file is opened as an a.out or shared library, the easiest way to
keep track of the region is to create a pseudo-vas  the first time the file
is opened as an executable.  This is done by calling mapvnode()  and
storing the vas  pointer in the vnode ’s v_vas  element.  On subsequent
opens of the file as an executable, the non-NULL value in v_vas  aids in
finding the region to which the virtual address space is being attached.

The pseudo-vas  is type PT_MMAP, and the associated pregion  has
PF_PSEUDO set in p_flag s.  This pregion  is attached to the region for
this vnode .  All the processes that use this executable or shared library
(non-pseudo pregions) then attach to the region with type PT_TEXT
(a.out ) or PT_MMAP (shared library).  The number of processes using a
particular vnode  as an executable is kept in the pseudo-vas  in
va_refcnt .

All pregions  associated with a region are connected with a
doubly-linked list that begins with the region element r_pregs , and is
defined in the pregions by p_prpnext  and p_prpprev .  The list is sorted
by p_off , the pregion ’s offset into the region, and is NULL-terminated.

Even after all processes using the a.out or shared library exit, the
handle to the region remains; its pages can be disposed of at that time.
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Figure 1-15 Mapping the pseudo-vas  structures

Chunks -- Keeping the vfds and dbds together
in one place
 Since information is typically needed about groups of (rather than
individual) pages, pages are grouped  into chunks. A chunk contains 32
pairs of virtual frame descriptors and disk block desciptors:

• The kernel looks for a page in memory by its virtual frame descriptor
(vfd ).

• The kernel looks for a page on disk by its disk block descriptor (dbd ).

• By definition, if the vfd ’s pg_v  bit is set, the vfd  is used; if not, the
dbd  is used.
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A one-to-one correspondence is maintained between vfd  and dbd
through the vfddbd  structure, which simply contains one vfd (c_vfd)
and one dbd (c_dbd) .

Figure 1-16 A chunk contains 32 vfddbd  (256 bytes)

HP-UX regions use chunks of vfd s and dbds to keep track of page
ownership:

• For assignment from virtual page to physical page if the page is valid.
(This is required in addition to the PDIR. The term “assignment” is
used (rather than mapping) because the page might not be translated
but valid.

• Other virtual attributes of the page (such as whether the page is
locked in memory, or whether it is valid).

• Location on disk for front-store and back-store pages.

Virtual Frame Descriptors (vfd )
A one-word structure called a virtual frame descriptor enables processes
to reference pages of memory. The vfd  is used when the process is in
memory, and can be used to refer to the page of memory described in
pfdat.

vfd

dbd

chunks
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Figure 1-17 Virtual frame descriptor (vfd ) contents

Table 1-12 Virtual Frame Descriptor (struct vfd )

Disk Block Descriptor (dbd )
When the pg_v  bit in a vfd is not set, the vfd  is invalid and the page of
data is not in memory but on disk. In this case, the disk block descriptor
(dbd ) gives valid reference to the data.  Like the vfd  structure, the dbd
is one word long.

Element Meaning

pg_v Valid flag.  If set, this page of memory contains valid
data and pg_pfnum  is valid.  If not set, the page’s
valid data is on a swap device.

pg_cw Copy-on-write flag. If set,  a write to the page causes
a data protection fault, at which time the system
copies the page.

pg_lock Lock flag.  If set, raw I/O is occurring on this page.
Either the data is being transferred between the
page and the disk, or data is being transferred
between two memory pages.  The kernel sleeps
waiting for completion of I/O before launching
further raw I/O to or from this page.  Nothing can
read the page while it is being written to disk.

pg_mlo ck If set, the page is locked in memory and cannot be
paged out.

pg_pfnum
(aliased as
pg_pfn )

Page frame number, from which can be accessed the
correct pfdat  entry for this page.

flags page frame number

0 11 31
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Figure 1-18 Contents of disk block descriptor (dbd )

Table 1-13 Disk Block Descriptor (struct dbd )

a. When the dbd_type  is DBD_FSTORE, it means that the page
of data resides in the file pointed to by v_fstore  (typically a
file system). When the dbd_type  is DBD_BSTORE, the page of
data resides in the file or device file pointed to by r_bstore
(typically a swap device).

Element Meaning

dbd_type One of six three-bit flags used to interpret dbd_data :

• DBD_NONE: No copy of this data exists on disk.

• DBD_FSTORE, DBD_BSTORE: Page can be found on a
“front or back store” device, pointed to by a region’s
vnode. a

• DBD_DFILL: This is a demand-fill page. No space is
allocated; when a fault occurs it is initialized by
filling it with data from disk.

• DBD_DZERO: This is a demand zero page; when
requested, allocate a new page and initialize it with
zeroes.

• DBD_HOLE: Used for a sparse memory-mapped file;
when read, the page gives zeros.  When written to, a
page is allocated, initialized to zero, data inserted, at
which time the dbd  type changes to DBD_NONE.

dbd_data vnode  type (nfs, ufs ) specific data.  A pointer points
to data in a file pointed to by a vnode .

type data

3130
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Balanced Trees (B-Trees)
Each region contains either a single array of vfd/dbd  (chunk) or a
pointer to a B-tree . The structure called a B-tree  allows for quick
searches and efficient storage of sparse data.  A bnode  is the same size
as a chunk; both can be gotten from the same source of memory. The
region’s B-tree stores pairs of page indices and chunk addresses. HP-UX
uses an order 29 B-tree .

A B-tree  is searched with a key and yields a value.  In the region
B-tree , the key is the page number in the region divided by 32, the
number of vfddbd s in a chunk.

Figure 1-19 A sample B-tree  (order = 3, depth = 3)

Each node of a B-tree  contains room for order+1 keys (or index
numbers) and order+2 values.  If a node grows to contain more than
order keys, it is split into two nodes; half of the pairs are kept in the
original node and the other half are copied to the new node.   The B-tree
node data also includes the number of valid elements contained in that
node.
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Table 1-14 B-tree  Node Description (struct bnode )

Root of the B-tree

A structure called struct broot  points to the start of the B-tree .

Table 1-15 Struct broot

Element Meaning

b_key[B_SIZE] The array of keys used for each page index of
the bnode .

b_nelem Number of valid keys/values in the bnode .

b_down[B_SIZE+1] The array of values in the bnode , either
pointers to another bnode  (if this is an interior
bnode ) or pointers to chunks (if this is a leaf
bnode ).

b_scr1, b_scr2 bnode  padding to the size of a chunk, to allow
bnodes  and chunks to be allocated from the
same pool of memory.

Element Meaning

b_root Pointer to the initial point of the B-tree .

b_depth Number of levels in the B-tree

b_npages Pages used to construct the B-tree , counting both
pages used for chunks and bnodes.

b_rpages Number of  real pages in the region; swap pages
reserved for the B-tree  by the kernel, using the
routine vfdpgs() . Amount of swap allocated for
the vfd/dbd  pairs in the B-tree  structure.

b_list Pointer to a linked list of memory pages from which
new bnode s or chunks can be added to the B-tree .

b_nfrag Number of the next chunk available, derived from
the unused 256-byte fragments in b_list .

b_rp Pointer to the region using the B-tree .
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vfd/dbd  prototypes
The struct vfdcw  governs the vfd  prototype.

Table 1-16 vfd  prototype (struct vfdcw )

Hardware-Independent Page Information
table (pfdat )
The hardware independent layer of the virtual memory subsystem
manages pages  in memory, pages written to swap devices, and the
movement of pages from one to the other.  The act of moving data from
physical memory to a swap device, or moving data from a swap device to
physical memory, is called paging.

Basic to hardware independence is the page frame data table (pfdat ), a
big array indexed directly through the page number.  Each page of
available memory is represented by one pfdat structure; one pfdat
entry represents each page frame writable to a swap device.  HP-UX
never pages kernel memory (the pages containing kernel text, stack, and
data); thus, pfdat manages only the subset representing freely
available physical memory.  When the pfdat  is initialized, all free pages
are linked in a list pointed to by phead .

b_protoidx,
b_proto1,
b_proto2

Stores page index of default dbd  and prototype to
minimize time and memory costs to allocate chunk
space.

b_vproto List of page ranges whose bits are marked copy on
write.

b_key_cache
,
b_val_cache

Caches of most recently used keys and pointers to
chunks associated with the keys; checked first when
querying the virtual memory subsystem.

Element Meaning

Element Meaning

v_start[MAXVPROTO] Page that indexes start of copy-on-write
range; set to -1 if unused.

v_end[MAXVPROTO] End of copy-on-write range
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Table 1-17 Principal entries in struct pfdat  (page frame data)

a. Hashing is done on the tuple (pf_devvp, pf_data) .

Flags showing the Status of the Page
Table 1-18 Principal pf_flag  values

Element Meaning

pf_hchain Hash chain link.

pf_flags Page frame data flags (shown in the next
table).

pf_pfn Physical page frame number.

pf_use Number of regions sharing the page; when
pf_use  drops to zero, the page can be placed
on the free linked list.

pf_devvp a vnode  for swap device.

pf_data Disk block number on swap device.

pf_next, pf_prev Next and previous free pfdat  entries.

pf_cache_waiting If set, this element means that a thread is
waiting to grab the pf_lock on that page.
Required for synchronization.

pf_lock Lock pfdat  entry (beta semaphore), used to
lock the page while modifying the pde
(physical-to-virtual translation, access rights,
or protection ID)

pf_hdl Hardware dependent layer elements (see
hdl_pfdat  discussion, shortly).

Flag Meaning

P_QUEUE Page is on the free queue, headed by phead .

P_BAD Page is marked as bad by the memory
deallocation subsystem.

P_HASH Page is on a hash queue; contains head of queue.
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Hardware-Dependent Layer page frame data entry
If pf_hdl  is referenced in struct pfdat , the struct hdlpfdat (defined
in hdl_pfdat.h ) is used. pf_hdl  is a type of struct hdlpfdat.

P_ALLOCATING Page is being allocated; prevents  another process
from taking the page while it is being remapped.

P_SYS Page is being used by the kernel rather than by a
user process.  Pages marked with this flag
include dynamic buffer cache pages, B-tree
pages  and the results of kernel memory
allocation. They are used by the kernel for critical
data structures in addition to the kernel static
pages that were not included in pfdat .

P_DMEM Page is locked by the memory diagnostics
subsystem; set and cleared with an ioctl()  call
to the dmem driver.

P_LCOW Page is being remapped by copy-on-write.

P_UAREA Page is used by a pregion of type PT_UAREA.

Flag Meaning
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Table 1-19 struct hdlpfdat

Element Meaning

hdlpf_flags Flags that show the HDL status of the page:

• HDLPF_TRANS: A virtual address translation
exists for this page.

• HDLPF_PROTECT: Page is protected from user
access.  This flag indicates that the saved
values are valid.

• HDLPF_STEAL: Virtual translation should be
removed when pending I/O is complete.

• HDLPF_MOD: Analogous to changing the
pde_modified flag in the pde .

• HDLPF_REF: Analogous to changing the
pde_ref  flag in the pde .

• HDLPF_READA: Read-ahead page in transit;
used to indicate to the hdl_pfault()
routine that it should start the next I/O
request before waiting for the current I/O
request to complete.

hdlpf_savear Saved page access rights.

hdlpf_saveprot Saved page protection ID.
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MAPPING VIRTUAL TO PHYSICAL
MEMORY
The PA-RISC hardware attempts to convert a virtual address to a
physical address with the TLB or the block TLB.  If it cannot resolve the
address, it generates a page fault (interrupt type 6 for an instruction
TLB miss fault; interrupt type 15 for a data TLB miss fault).  The kernel
must then handle this fault.

PA-RISC uses a hashed page table (HTBL) to pinpoint an address in the
enormous virtual address space.  A ratio is kept of PDIR to hash table
entries, depending on specific PA-RISC implementation (see cpu.h ).
Control register 25 (CR25) contains the hash table address (see reg.h ).

Figure 1-20 Contents of the htbl  index

The HTBL

The algorithm for converting a virtual address to a physical address
depends on the particular processor.

Likewise, the algorithm for choosing the size of HTBL has been developed
empirically as the result of performance tests.

• Each graphics driver estimates how many entries it will need for I/O
mapping.  This number is stored in niopdir .

• The kernel first approximates nhtbl  as the sum of niopdir  and the
number of pages of RAM (physmem).

Space

htbl   Index

Offset
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• nhtbl  is now adjusted to a power of two and rounded appropriately.

Figure 1-21 Mapping from the htbl  entry to the page directory entry

The index generated by the hashing algorithm is now used as an index
into HTBL.  Each entry in the table is referred to as a pde  (page directory
entry), and is of type struct hpde .

The virtual space and offset are compared to information in the pde to
verify  the entry.  The physical address is retrieved from the pde to
complete the translation from virtual address to physical address.

When multiple addresses hash to the same HTBL entry
As with any hash algorithm, multiple addresses can map to the same
HTBL index. The entry in HTBL is actually the starting point for a linked
list of pdes.  Each entry has a pde_next  pointer that points to another
pde, or contains NULL if it is the last item of the linked list.

Each HTBL entry can point to two other collections of pdes, ranging from
base_pdir  to htbl  and from pdir  (which is also the end of HTBL) to
max_pdir .    The entirety of the HTBL and surrounding pde s is referred
to collectively as the sparse PDIR. HTBL is always aligned to begin at an
address that is a multiple of its size (that is, a multiple of nhtbl *
sizeof(struct hpde) ).

Space Offset

pde

pde

RAMhtbl index

htbl[nhtbl -1]

htbl[n]

htbl
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In practice, HTBL contains sufficient entries, as that the linked lists
seldom grow beyond three links. pdir_free_list  points to a linked
list of sparse PDIR entries that are not being used and are available for
use. pdir_free_list_tail  points to the last pde  on that linked list.

Figure 1-22 How multiple addresses hash to the same HTBL entry

Mapping Physical to Virtual Addresses
HP-UX uses a hashed page directory to translate from virtual to physical
address.

The pfdat  table maps physical to virtual addresses. Inverse
translations from physical to virtual use the pfn_to_virt_table[] , an
array that contains entries of either space and offset page (in the case of
a single translation to a page) or a list of alias structures (when the
physical page has more than one virtual address translation).

The hashed pdir  stores the physical address in the translation “bucket”
(hash table) to disassociate the physical page number from that page’s
pde .

base_pdir

max_pdir

pdir

htbl
pde

RAM
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Figure 1-23 Physical-to-virtual address translation

The pfn_to_virt_table  may contain the space.offset (virtual
address) corresponding to a physical address or it may have a pointer to
a link list of alias structures, each of which has a space.offset pair.

Address Aliasing
HP-UX supports software address aliasing for text only of EXEC_MAGIC
executables.  (Whereas the hardware implements address aliasing on
1MB boundaries, software address aliasing is implemented on a per-page
basis; pages are 4KB apart.)

When a text segment is first translated, it has no alias.  However, if a
process or thread attaches to the same text segment, it may require
another translation. Processes sharing text segments do not use aliases.
Only processes with private text segments that share data pages using
copy-on-write  use aliases.

When multiple virtual addresses translate to the same physical address,
HP-UX uses alias structures to keep track of them. Aliases for a page
frame (pfn ) are maintained via alias chains off the
pfn_to_virt_table[] .  When a pfn_to_virt_table ’s space field is
invalid and the offset field is non-zero, the non-zero value points to the
beginning of a linked list of alias structures.  Each alias structure
contains the space and offset of the alias, and a temporary hold field for a
pde’s access rights and access ID.  The pfdat_lock  of the alias’s pfn
protects the alias chain from being read and modified.

To locate the pde  for a particular alias space and offset, the space and
offset are hashed for the pde  chain and its corresponding pdlock .  Once
the pdlock  is obtained, the vtopde()  routine walks the pde  hash chain
to find a match of the tag.

pfn

pfn_to_virt_table[]

alias1 alias2

struct alias entries

vtopde()

pde corresponding to this space.offset

*alias

space.offset
space.offset

alias3 aliasn
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The aa_entfreelist  is the head of the doubly-linked list of free alias
entries.  The system gets an alias structure from aa_entfreelist ,  in
which it stores the information for this new virtual-to-physical
translation.

The global variable max_aapdir  contains the total number of alias pdes
on the system.  Once a page is allocated for use as alias pdes, it is not
returned, so the value of max_aapdir  may grow over time but will never
shrink.

The number of available alias pdes is stored in aa_pdircnt .  When an
alias pde  is used or reserved (we reserve one if we include an HTBL pde
in an alias linked list, in case we have to move it later), aa_pdircnt  is
decremented.  When an alias pde is returned to aa_pdirfreelist or
unreserved, aa_pdircnt  is incremented.

The number of available alias structures is kept in aa_entcnt .  Once a
page is allocated for use as a group of alias structures, it is not returned.
We do not keep track of the total number of alias structures on the
system, just the number of available structures.
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MAINTAINING PAGE AVAILABILITY
Two computational elements maintain page availability:

• Paging thresholds trigger the gamut of paging events.

• The vhand  and sched  daemons (system processes) handle the actual
paging and deactivation.

vhand  monitors free pages to keep their number above a threshold and
ensure sufficient memory for demand paging. vhand  governs the overall
state of the paging system. sched  becomes operative when the number
of pages available in memory diminishes below a certain level. vhand
and sched  will be described in the context of their work shortly.

NOTE The sched process is known colloquially as the swapper.

Paging Thresholds
Memory management uses paging thresholds that trigger various paging
activities. The figure shows the full range of available memory and
indicates what paging activity occurs when memory level falls below
each paging threshold.

Figure 1-24 Available memory in the system

lotsfree

desfree

minfree
deactivate

physmem

0
* fluctuates between desfree and lotsfree

kernel static memory

gpgslim*

freemem

vhand begins paging

total memory at boot-up

   page

sched begins deactivating
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The value termed freemem  represents the total number of free pages in
the phead  linked list, which includes all memory available in a system
after kernel initialization.

Three tunable paging thresholds are initialized by the
setmemthresholds()  routine.

Table 1-20 setmemthresholds() paging thresholds

The gpgslim  Paging Threshold
The gpgslim  paging threshold is the point at which vhand  starts
paging.  gpgslim adjusts dynamically according to the needs of the
system. It oscillates between an upper bound called lotsfree  and a
lower bound called desfree . Both lotsfree and desfree are
calculated when the system boots up and are based on the size of system
memory.

When the system boots, gpgslim is set to 1/4 the distance between
lotsfree  and desfree  (desfree + (lotsfree - desfree)/4 ).  As
the system runs, this value fluctuates between desfree  and lotsfree .
When the sum of available memory and the number of pages scheduled
for I/O (soon to be freed) falls below gpgslim , vhand()  begins aging
and stealing little-used pages in an attempt to increase the available
memory above this threshold.

Paging
threshold Meaning

lotsfree Plenty of free memory, specified in pages. The upper
bound from which the paging daemon will begins to
steal pages.

desfree Amount of memory desired free, specified in pages.
This is the lower bound at which the paging daemon
begins stealing pages.

minfree The minimal amount of free memory tolerable,
specified in pages.  If free memory drops below this
boundary, sched()  recognizes the system is
desperate for memory and deactivates entire
processes whether they are runnable or not.
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The system wants to keep memory at gpgslim .  If the system is not
stressed, gpgslim  starts rising, because it does not need to have a lot
more pages freed.  As memory becomes more scarce, the system tries to
maintain the pool of free memory, causing gpgslim  to fall.  If gpgslim
decreases to minfree , the system starts to deactivate entire processes.

How Memory Thresholds are Tuned
Performance testing has shown that memory usage differs for a server
versus a workstation. Workstations typically run a few large applications
whereas servers typically run many applications of varying size.
Consequently, the paging and deactivation thresholds on workstations
are a smaller fraction of memory than on the servers.  In a typical
workstation environment, applications start up requiring a large
number of pages, which eventually reduce to a smaller working set of
pages.  By allowing applications to claim more memory before paging or
deactivating, the working set is more likely to stay in memory.

Paging and activation algorithms take these and other differences into
account.  Depending on the physical memory size of the system, the
paging thresholds are initialized to either a “small memory” or “large
memory” set of values.

Small Memory Thresholds
For small memory systems (that is, systems with 32MB or less of
freemem ), the paging thresholds are set to a smaller fraction of total
memory to allow applications to utilize more memory before the system
begins paging and deactivating.  The paging thresholds are set as
follows:

Table 1-21 Small-memory paging thresholds

Threshold Limit Not to exceed

lotsfree 1/8 freemem 1MB

desfree 1/16 freemem 240 KB

minfree 1/2 desfree 100 KB
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Large Memory Thresholds
For large memory systems (that is, systems with greater than 32 MB of
freemem), the paging thresholds are set to a larger fraction of memory to
allow vhand() to start paging earlier so that it can efficiently walk a
(potentially) longer active pregions list.  This also helps sched()
process a potentially longer active process list by starting process
deactivation earlier.  The paging thresholds are set as follows:

Table 1-22 Large-memory paging thresholds

These settings result in a linear increase of the paging thresholds up to a
certain memory size, after which the thresholds remain fixed.  For
example, lotsfree  increases linearly and reaches its maximum value of
32 MB when freemem  is 512 MB.  For memory sizes beyond 512 MB,
lotsfree remains fixed at 32 MB.  This results in the system paging
earlier for smaller memory configurations and later for larger sizes.

When physical memory sizes exceed 2 GB, all the paging thresholds are
increased to a larger set of fixed values.

How Paging is Triggered
The rate schedpaging() runs is termed vhandrunrate , a tunable
parameter (set to run by default at eight times per second) activated
when the sum of free memory and paroled memory (freemem +
parolemem ) is less than lotsfree .

vhand , the pageout daemon
Programmatically, vhand is awakened by schedpaging()  periodically
to maintain recently referenced pages and to move pages out when
memory is tight. vhand  operates on the basis of vhandargs_t , which
consists of a pointer to the target pregion , a count of the physical pages
visited, and a nice value for preferential aging.

Threshold Limit
Capacity if

freemem
< 2 GB

Capacity if
freemem
> 2 GB

lotsfree 1/16 freemem 32 MB 64 MB

desfree 1/64 freemem 4 MB 12 MB

minfree 1/4 desfree 1 MB 5 MB
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vhand  can also be awakened by allocpfd2()  (in vm_page.c ), a routine
that allocates a single page of memory.

If all the pages on the free memory list (phead ) are locked, or the routine
has been called while using the interrupt control stack (ICS ) and all
pages on the free list are also in the page cache (phash ), allocpfd2()
cannot get any pages.

If on the ICS  without any available pages, allocpfd2()  wakes the page
daemon.  Regardless of which stack the system is running on,
allocpfd2()  then wakes up unhashdaemon , which removes pages
from the page cache.

If on the ICS , allocpfd2()  returns NULL; if not on the ICS ,
allocpfd2()  sleeps waiting for a page to become available, and then
retry.

Two-Handed Clock Algorithm
A doubly linked list of pregions, termed the active pregion  list, is used
by vhand  to examine memory availability.  Conceptually, the pregions
can be visualized as being linked in a circle, in the center of which are
two clock-like hands.  The two hands function as a steal hand and an age
hand.

• A steal hand removes pages whose reference bits remain clear since
the most recent pass of the age hand.

• An age hand clears reference bits on in-core pages in an active
pregion .

The kernel automatically keeps an appropriate distance between the
hands, based on the available paging bandwidth, the number of pages
that need to be stolen, the number of pages already scheduled to be freed,
and the frequency by which vhand  runs.
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Figure 1-25 Two-handed vhand  clock algorithm, showing also the factors that
affect vhand

The two hands cycle through the active pregion  linked lists of physical
memory to look for memory pages that have not been referenced recently
and move them to secondary storage - the swap space.  Pages that have
not been referenced from the time the age hand passes to the time the
steal hand passes are pushed out of memory.  The hands rotate at a
variable rate determined by the demand for memory.

The vhand daemon decides when to start paging by determining how
much free memory is available.  Once free memory drops below the
gpgslim  threshold, paging occurs. vhand  attempts to free enough pages
to bring the supply of memory back up to gpgslim .  Between gpgslim
and lotsfree , the page daemon continues to age pages (that is, clear
their reference bits) but no longer steals pages.

Factors Affecting vhand

vhand  responds to various workloads, transient situations, and memory
configurations.   When aging and stealing from regions, vhand

• ages some constant fraction of each pregion .

p_agescan

p_bestnice

p_ageremain

p_stealscan

p_forw

pregion linked lists

steal and age hands
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• uses the pregion  field p_agescan  to track the last age hand
location.

• uses the pregion  field p_ageremain  to track remaining pages to be
aged.

• uses the pregion  field p_stealscan to track the last steal hand
location.

• pushes vfd/dbd  pairs to swap if they have no valid pages.

When the age hand arrives at a region, it ages some constant fraction of
pages before moving to the next region (by default 1/16 of the region’s
total pages). The p_agescan  tag enables the age hand to move to the
location within a pregion  where it left off during its previous pass,
while the p_ageremain  charts how many pages must be aged to fill the
1/16 quota before moving on to the next pregion .

The steal hand uses the pregion field p_stealscan  to locate itself
within a pregion and resume taking pages that have not been
referenced since last aged.  If no valid page remain, vhand pushes out of
memory the vfd/dbd  pairs associated with the region.

How much to age and steal depends on several factors:

• frequency of vhand runs (by default eight times per second).

• available paging bandwidth (based on comparison with a global rate
of pageouts completed within an interval of time).

• how often the system falls to zero free memory.

• position of the paging threshold gpgslim .

• number of pages already scheduled to be freed.

vhand  is biased against threads that have nice priorities: the nicer a
thread, the more likely vhand  will steal its pages.  The pregion  field
p_bestnice  reflects the best (numerically, the smallest value) nice
value of all threads sharing a region.

What Happens when vhand  Wakes Up
Refer to the table that follows for explanations of the vhand variables.

• vhand  establishes pagecounts for pages to age and pages to steal, and
sets the coalescecnt  to zero.
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• vhand  uses the SCRITICAL  flag  to get access to the system critical
memory pool. (The SCRITICAL  flag for the vhand  process is set when
the process starts running for the first time.)

• vhand  increments the value coalescecnt and compares it to the value
coalescerate .  If coalescecnt  is higher, vhand  attempts to
remove pages from kernel allocation buckets until freemem is above
lotsfree.  Then vhand  resets coalescecnt to zero.

• Next vhand  updates the value of gpgslim , based on value of
memzeroperiod .

• vhand  updates pageoutrate , using pageoutcnt .

• vhand  updates targetlaps , the number of desired laps between the
age and  steal hands.   If less CPU cycles are being used than the
value of targetcpu , vhand  increases the value of targetlaps (up
to a maximum of 15); if more CPU cycles are being used than
targetcpu , targetlaps  is decreased.

• vhand  updates agerate , the number of pages to age per second.

• If vhandinfoticks  is non-zero, diagnostic information prints to the
console.

NOTE None of the variables in the table that follows may be tuned.
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Table 1-23 Variables affecting vhand

Variable Purpose

coalescerate How often vhand()  attempts to reclaim
unused memory from the kernel allocation
buckets, beginning at 128; that is, every 128th
time vhand  runs, it attempts to return memory
to the system.

• If successful, vhand  resets coalescerate
to every 128th time.

• If unsuccessful, vhand  multiplies
coalescerate  by two (checks memory half
as often) up to every 512th time.

memzeroperiod Minimum time period (default=3 seconds)
permissible for freemem  to reach zero events;
determines how often gpgslim  is adjusted
when vhand()  is running.

• gpgslim  is incremented if freemem  does
not reach zero twice within
memzeroperiod.

• gpgslim  is decremented if freemem
reaches zero twice within memzeroperiod
slightly above lotsfree .

pageoutrate Current pageout rate, calculated empirically
from number of pageouts completed.

pageoutcnt Recent count of pageouts completed

targetlaps Ideal gap between steal and age hands for
handlaps ; adapts at run time.  During normal
operation, the hands should be as far apart as
possible to give processes maximum time to
reset a cleared reference bit being used by a
page. targetlaps  is defined in the kernel as a
static variable; it does not appear in the symbol
table.
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vhand  Steals and Ages Pages
 Once vhand  establishes its criteria, it proceeds to traverse the linked
list of pregions. Continuing in the clock-hands analogy, vhand  is ready to
move its hands.

• vhand  determines how many pages and what pages are available to
steal.

• Next, vhand  moves the age hand to clear the reference bit from a
selected number of pages.

• If the steal hand is pointing to bufcache_preg , vhand  steals
buffers  from the buffer cache with the stealbuffers()  routine.
The global parameter dbc_steal_factor determines how much more
aggressively to steal buffer cache pages than pregion pages.  If
dbc_steal_factor  has a value of 16, buffer cache pages are
treated no differently than pregion  pages; the default value of 48
means that buffer cache pages are stolen three times as
aggressively as pregion  pages.

targetcpu Maximum percentage of CPU vhand should
spend paging. (default value is 10%.)

handlaps Actual number of laps between the age and
steal hands.

agerate Number of pages the age hand visits to age per
second; adapts continually to system load.

These are defined in the kernel as static
variables (meaning they do not appear in the
symbol table).

stealrate How many pages the steal hand visits per
second; adapts continually to system load.
These are defined in the kernel as static
variables (meaning they do not appear in the
symbol table).

Variable Purpose
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• If the steal hand points to a pregion  whose region has no valid
pages (that is, r_nvalid == 0 ), vhand  pushes its B-tree  out to
the swap device.  If none of the processes using the region are
loaded in memory (that is, r_incore == 0 ), the entire region
may be swapped out.

• Otherwise, vhand  steals all pages between p_stealhand  and
(p_agescan - p_count/16 * handlaps ), up to the steal quota
(calculated from stealrate ).

• vhand  updates p_stealscan  to the page number following the
last stolen page of the affected pregion .

• If vhand has not stolen as many pages as permissible (calculated
from stealrate ), it moves to the next pregion  and repeats the
process until it satisfies the system’s demand.

• If the age hand points to bufcache_preg , vhand  ages one
sixteenth of the pages in the buffer cache with the agebuffers()
routine.

• vhand  determines the best nice value (that is, the lowest number)
of all the pregions  using the region.  For each page in the region,
if the nice value exceeds a randomly generated number, vhand
does not age the page.

• Otherwise, vhand  ages all pages between p_agehand  and
(p_agehand + p_ageremain ) by clearing the pde_ref  bit and
purging the TLB.

• Finally, vhand  updates p_agehand  to be the page number after
the last aged page in the affected pregion.

Note, the steal hand is moved first to keep it behind the age hand and
prevent aging and stealing a page in the same cycle.

Figure 1-26 Ranges within which pregion  pages are aged and stolen

p_stealscan
p_agescan

p_count/16
* handlaps

pages to age
(p_ageremain)pages to steal
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The sched()  routine
The sched() routine (colloquially termed “the swapper”) handles the
deactivation and reactivation of processes when free memory falls below
minfree, or when the system appears to be thrashing.

NOTE Deactivation occurs on a per-thread basis. sched() chooses to
deactivate on a process level and then deactivates each thread.

Deactivation occurs when sched() determines the system:

• is low on memory; that is, if freemem  falls below the deactivation
threshold minfree  and more than one process is running.

• appears to be thrashing; that is, if the system has a high paging rate
and low CPU usage.

Reactivation occurs when the system is no longer low on memory or
thrashing.

What to Deactivate or Reactivate
Deactivation and reactivation are determined by:

• process priority; the lower the process priority (meaning the higher
the nice value), the more likely it will be deactivated.  The higher the
process priority, the more likely it will be reactivated.  Real-time
processes are ineligible for deactivation.

• process size; the larger the process resident set size, the more likely it
will be deactivated.

• process state; a process that has been sleeping or has been in memory
for some time is likely to be deactivated.  A process deactivated for a
while and is now ready to run is likely to be reactivated.

• process type.  A batch process (one that works continuously) or one
marked for serialization is more likely than an interactive process
(one that works in spurts) to be deactivated. Interactive processes are
more likely to be reactivated than batch or serialized processes.

• time in current state
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The swapper deactivates processes and prevents them from running,
thus reducing the rate at which new pages are accessed.  Once swapper
detects that available memory has risen above minfree  and the system
is not thrashing, the swapper reactivates the deactivated processes and
continues monitoring memory availability.

Figure 1-27 sched() chooses processes to deactivate based on size, nice
priority, and how long it has been running.

sched()  walks the chain of active processes, examining each, and
deciding the best  candidate to be deactivated based on size, nice priority,
and how long it has been running.

Programmatically, sched()  deactivates and reactivates processes.

If the system appears to be thrashing or experiencing memory pressure,
the sched routine walks through the active process list calculating each
process’s deactivation priority based on type, state, size, length of time in
memory, and how long it has been sleeping.  (Batch and processes
marked for serialization by the serialize()  command are more likely
to be deactivated than interactive processes.) The best candidate is then
marked for deactivation.

If the system is not thrashing or experiencing memory pressure, the
sched routine walks through the active proc list calculating each
deactivated process’ reactivation priority based on how long it has been

linked list of active
processes on
proc list

sched()
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deactivated, its size, state, and type.  Batch processes and those marked
by the serialize() command are less likely to be reactivated than is
an interactive process. Once the most deserving process has been
determined, it is reactivated.

When a process is deactivated
Once a process and its pregions are marked for deactivation, sched()

• removes the process from the run queue.

• adds its uarea  to the active pregion  list so that vhand  can page it
out.

• moves all the pregions  associated with the target process in front of
the steal hand, so that vhand  can steal from them immediately.

• enables vhand  to scan and steal pages from the entire pregion ,
instead of 1/16.

Eventually, vhand  pushes the deactivated process’s pages to secondary
storage.

When a process is reactivated
Processes stay deactivated until the system has freed up enough memory
and the paging rate has slowed sufficiently to return processes to the run
queue.  The process with the highest reactivation priority is then
returned to the run queue.

Once a process and its pregions are marked for reactivation, sched():

• removes the process’s uarea  from the active pregion list.

• clears all deactivation flags.

• brings in the vfd/dbd pairs.

• faults in the uarea .

• adds the process to the run queue.

Self-Deactivation
Earlier HP-UX implementations did not permit a process to be swapped
out if it was holding a lock, doing I/O, or was not at a signalable priority.
Even if priority made it most likely to be deactivated, vhand  bypassed
the process.
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Now, if the most deserving process cannot be deactivated immediately, it
is marked for self-deactivation; that is, the process sets a
self-deactivation flag.  The next time the process must fault in a page, it
deactivates itself.

NOTE sched() deactivates and reactivates processes. As part of a process’s
deactivation or reactivation, all its threads get deactivated or
reactivated. sched()  does not deactivate or reactivate threads
individually.

Thrashing
Thrashing is defined as low CPU usage with high paging rate.
Thrashing might occur when several processes are running, several
processes are waiting for I/O to complete, or active processes have been
marked for serialization.

On systems with very demanding memory needs (for example, systems
that run many large processes), the paging daemons can become so busy
deactivating/reactivating, and swapping pages in and out that the
system spends too much time paging and not enough time running
processes.

When this happens, system performance degrades rapidly, sometimes to
such a degree that nothing seems to be happening.  At this point, the
system is said to be thrashing, because it is doing more overhead than
productive work.

If your working set is larger than physical memory, the system will
thrash. To solve the problem,

• reduce the working set of running processes by deactivation, or

• increase the size of physical memory.

If you are left with one huge process constrained with physical memory
and the system still thrashes, you will need to rewrite the application so
that it uses fewer pages simultaneously, by grouping data structures
according to access, for example.

Serialization
 All processes marked by the serialize command are run serially. This
functionality unjams the bottleneck (recognizable by process throughput
degradation) caused by groups of large processes contending for the CPU.
By running large processes one at a time, the system can make more
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efficient use of the CPU as well as system memory since each process
does not end up constantly faulting in its working set, only to have the
pages stolen when another process starts running.

As long as there is enough memory in the system, processes marked by
serialize()  behave no differently than other processes in the system.
However, once memory becomes tight, processes marked by serialize are
run one at a time in priority order.  Each process runs for a finite interval
of time before another serialized process may run. The user cannot
enforce an execution order on serialized processes.

serialize()  can be run from the command line or with a PID  value.
serialize() also has a timeshare option that returns the PID
specified to normal timeshare scheduling algorithms.

If serialization is insufficient to eliminate thrashing, you will need to add
more main memory to the system.
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SWAP SPACE MANAGEMENT
Swap space is an area on a high-speed storage device (almost always a
disk drive), reserved for use by the virtual memory system for
deactivation and paging processes. At least one swap device (primary
swap) must be present on the system.

During system startup, the location (disk block number) and size of each
swap device is displayed in 512-KB blocks. The swapper reserves swap
space at process creation time, but does not allocate swap space from the
disk until pages need to go out to disk. Reserving swap at process
creation protects the swapper from running out of swap space. You can
add or remove swap as needed (that is, dynamically) while the system is
running, without having to regenerate the kernel.

HP-UX uses both physical and pseudo swap to enable efficient execution
of programs.

Pseudo-Swap Space
System memory used for swap space is called pseudo-swap space. It
allows users to execute processes in memory without allocating physical
swap.  Pseudo-swap is controlled by an operating-system parameter; by
default, swapmem_on is set to 1, enabling pseudo-swap.

Typically, when the system executes a process, swap space is reserved for
the entire process, in case it must be paged out.  According to this model,
to run one gigabyte of processes, the system would have to have one
gigabyte of configured swap space.  Although this protects the system
from running out of swap space, disk space reserved for swap is
under-utilized if minimal or no swapping occurs.

To avoid such waste of resources, HP-UX is configured to access up to
three-quarters of system memory capacity as pseudo-swap.  This means
that system memory serves two functions: as process-execution space
and as swap space. By using pseudo-swap space, a one-gigabyte memory
system with one-gigabyte of swap can run up to 1.75 GB of processes.  As
before, if a process attempts to grow or be created beyond this extended
threshold, it will fail.

When using pseudo swap for swap, the pages are locked; as the amount
of pseudo-swap increases, the amount of lockable memory decreases.
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For factory-floor systems (such as controllers), which perform best when
the entire application is resident in memory, pseudo-swap space can be
used to enhance performance: you can either lock the application in
memory or make sure the total number of processes created does not
exceed three-quarters of system memory.

Pseudo-swap space is set to a maximum of three-quarters of system
memory because the system can begin paging once three-quarters of
system available memory has been used. The unused quarter of memory
allows a buffer between the system and the swapper to give the system
computational flexibility.

When the number of processes created approaches capacity, the system
might exhibit thrashing and a decrease in system response time.  If
necessary, you can disable pseudo-swap space by setting the tunable
parameter swapmem_on in /usr/conf/master.d/core-hpux  to zero.

At the head of a doubly linked list of regions that have pseudo-swap
allocated is a null terminated list called pswaplist .

Physical Swap Space
There are two kinds of physical swap space: device swap and file-system
swap.

Device Swap Space
Device swap space resides in its own reserved area (an entire disk or
logical volume of an LVM disk) and is faster than file-system swap
because the system can write an entire request (256 KB) to a device at
once.

File-System Swap Space
File-system swap space is located on a mounted file system and can vary
in size with the system’s swapping activity.  However, its throughput is
slower than device swap,  because free file-system blocks may not always
be contiguous; therefore, separate read/write requests must be made for
each file-system block.

 To optimize system performance, file-system swap space is allocated and
de-allocated in swchunk -sized chunks. swchunk  is a configurable
operating system parameter; its default is 2048 KB (2 MB).  Once a



Chapter 1 81

MEMORY MANAGEMENT
SWAP SPACE MANAGEMENT

chunk of file system space is no longer being used by the paging system,
it is released for file system use, unless it has been preallocated with
swapon.

If swapping to file-system swap space, each chunk of swap space is a file
in the file system swap directory, and has a name constructed from the
system name and the swaptab  index (such as becky.6  for swaptab[6]
on a system named becky).

Swap Space Parameters
Several configurable parameters deal with swapping.

Table 1-24 Configurable swap-space parameters

Swap Space Global Variables
When the kernel is initialized, conf.c includes globals.h, which contains
numerous characteristics related to swap space, shown in the next table.
The most important to swap space reservation are swapspc_cnt ,
swapspc_max , swapmem_cnt , swapmem_max, and sys_mem

Table 1-25 Swap-space characteristics in globals.h

Parameter Purpose

swchunk The number of DEV_BSIZE blocks in a unit of
swap space, by default, 2 MB on all systems.

maxswapchunks Maximum number of swap chunks allowed on a
system.

swapmem_on Parameter allowing creation of more processes
than you have physical swap space for, by using
pseudo-swap.

Element Meaning

bswlist head of free swap header list.

*pageoutbp pointer to swbuf  header used by pageout
when swapping.

ref_hand current reference hand used by pageout
daemon.
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maxmem page count of actual max memory per process.

physmem page count of physical memory on this CPU.

nswdev number of swap devices.

nswap page count of size of swap space.

*fswdevt pointer to file system swap table.

*swaptab pointer to the table of swap chunks.

swapphys_buf pages of physical swap space to keep available.

swapphys_cnt pages of available physical swap space on disk.

swapspc_cnt Total amount of swap currently available on
all devices and file systems enabled in units of
pages.  Updated each time a device or file
system is enabled for swapping.

swapspc_max Total amount of device and file-system swap
currently enabled on the system in units of
pages. Updated each time a device or file
system is enabled for swapping.

swapspc_debit number of swap blocks by which to adjust
swapspc_cnt.

swapspc_sparing number of swap blocks unavailable to swap.

swapmem_max Maximum number of pages of pseudo-swap
enabled.  Initialized to 3/4 available system
memory.

swapmem_cnt Total number of pages of pseudo-swap
currently available.  Initialized to 3/4 available
system memory.

maxfs_pri highest available device priority.

maxdev_pri highest available swap prioirity.

Element Meaning
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Swap Space Values
System swap space values are calculated as follows:

• Total swap available on the system is swapspc_max  (for device swap
and file system swap) + swapmem_max (for pseudo-swap).

• Allocated swap is swapspc_max - [sum(swdevt[n].sw_nfpgs)
+ sum(fswdevt[n].fsw_nfpgs)]  (for device swap and file system
swap) + (swapmem_max - swapmem_cnt)  (for pseudo-swap).

In HP-UX, only data area growth (using sbrk() ) or stack growth will
cause a process to die for lack of swap space. Program text does not use
swap.

Reservation of Physical Swap Space
Swap reservation is a numbers game.  The system has a finite number of
pages of physical swap space.  By decrementing the appropriate
counters, HP-UX reserves space for its processes.

Most UNIX systems and UNIX-like systems allocate swap when needed.
However, if the system runs out of swap space but needs to write a
process’ page(s) to a swap device, it has no alternative but to kill the
process. To alleviate this problem, HP-UX reserves swap at the time the
process is fork ed or exec ’d. When a new process is forked or executed, if
insufficient swap space is available and reserved to handle the entire
process, the process may not execute.

At system startup, swapspc_cnt  and swapmem_cnt  are initialized to
the total amount of swap space and pseudo-swap available.

sys_mem Number of pages of memory not available for
use as pseudo-swap.  Initialized to 1/4
available system memory.

sysmem_max maximum pages not available for swap.

freemem page count of remaining blocks of free memory.

freemem_cnt Number of processes waiting for memory.

Element Meaning
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Whenever the swapon()  call is made to a device or file syste, the amount
of swap newly enabled is converted to units of pages and added to the
two global swap-reservation counters swapspc_max  (total enabled swap)
and swapspc_cnt  (available swap space).

Each time swap space is reserved for a process (that is, at process
creation or growth time), swapspc_cnt  is decremented by the number of
pages required. The kernel does not actually assign disk blocks until
needed.

Once swap space is exhausted (that is, swapspc_cnt == 0 ), any
subsequent request to reserve swap causes the system to allocate
addition chunk of file-system swap space.  If successful, both
swapspc_max  and swapspc_cnt  are updated and the current (and
subsequent requests) can be satisfied.  If a file-system chunk cannot be
allocated, the request fails, unless pseudo-swap is available.

When swap space is no longer needed (due to process termination or
shrinkage), swapspc_cnt  is incremented by the number of pages freed.
swapspc_cnt  never exceeds swapspc_max  and is always greater than
or equal to zero.  If a chunk of file-system swap is no longer needed, it is
released back to the file system and swapspc_max  and swapspc_cnt
are updated.

If no device or file system swap space is available, the system uses
pseudo-swap as a last resort.  It decrements swapmem_cnt  and locks the
pages into memory.  Pseudo swap is either free or allocated; it is never
reserved.

Swap Reservation Spinlock
The rswap_lock  spinlock guards the swap reservation structures
swapspc_cnt , swapspc_max , swapmem_cnt , swapmem_max, sys_mem,
and pswaplist .

Reservation of Pseudo-Swap Space
Approximately 3/4 of available system memory is available as
pseudo-swap space if the tunable parameter swapmem_on is set to 1.
Pseudo-swap is tracked in the global pseudo swap reservation counters
swapmem_max (enabled pseudo-swap) and swapmem_cnt  (currently
available pseudo-swap).  If physical swap space is exhausted and no
additional file-system swap can be acquired, pseudo swap space is
reserved for the process by decrementing swapmem_cnt .
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For example, on a 64MB system, swapmem_max and swapmem_cnt  track
approximately 48MB of pseudo-swap space, the remainder  tracked by
the global sys_mem, which represents the number of pages reserved for
system use only.

Processes track the number of pseudo swap pages allocated to them by
incrementing a per region counter r_swapmem.  All regions using pseudo
swap are linked on the pseudo swap list pswaplist .  Once pseudo swap
is exhausted (that is, swapmem_cnt==0 ), attempts at process creation or
growth will fail.

Because the swapper competes with the operating system for use of
memory, swapmem_cnt  can also be decremented by the operating
system for any dynamically allocated memory.   Once swapmem_cnt  is
exhausted, subsequent requests for swap space fail; however, the
operating system can still reserve memory out of the malloc  pool.

Once a process no longer needs its allocated pseudo swap space,
swapmem_cnt  is incremented by the amount released and r_swapmem is
updated.  If the system returns the pseudo swap space used for
dynamically allocated kernel memory, the amount being released is firtst
added to sys_mem.  Once sys_mem grows to its maximum value, any
additional pages returned are used to update swapmem_cnt .

swapmem_cnt  must be less than or equal to swapmem_max and greater
than or equal to zero.

Because pseudo swap is shared by the swapper and memory allocation
routines, it is used sparingly.  The operating system periodically checks
to see if physical swap space has been recently freed.  If it has, the
system attempts to migrate processes using pseudo swap only to use the
available physical swap by walking the doubly linked list of pseudo swap
regions. swapspc_cnt  is decremented by the r_swapmem value for each
region on the list until either swapspc_cnt  drops to zero or no other
regions utilize pseudo swap. swapmem_cnt  is then incremented by the
amount of pseudo swap successfully migrated.

Pseudo Swap and Lockable Memory
Because pseudo swap is related to system memory usage, the swap
reservation scheme reflects lockable memory policies.
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Although the system is not necesarily allocating additional memory
when a process locks itself into memory, locked pages are no longer
available for general use.  This causes swapmem_cnt  to be decremented
to account for the pages. swapmem_cnt  is also decremented by the size
of the entire process if that process gets plock ed in memory

Figure 1-28 Reserving swap space from file-system swap to memory

How Swap Space is Prioritized
All swap devices and file systems enabled for swap have an associated
priority, ranging from 0 to 10, indicating the order that swap space from
a device or file system is used.  System administrators can specify
swap-space priority using a parameter of the swapon(1M)  command.

Swapping rotates among both devices and file systems of equal priority.
Given equal priority, however, devices are swapped to by the operating
system before file systems, because devices make more efficient use of
CPU time.

We recommend that you assign the same swapping priority to most swap
devices, unless a device is significantly slower than the rest. Assigning
equal priorities limits disk head movement, which improves swapping
performance.
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Three Rules of Swap Space Allocation

• Start at the lowest priority swap device or file system.  The lower the
number, the higher priority; that is, space is taken from a system
with a zero priority before it is taken from a system with a one
priority.

• If multiple devices have the same priority, swap space is allocated
from the devices in a round-robin fashion. Thus, to interleave swap
requests between a number of devices, the devices should be assigned
the same priority. Similarly, if multiple file systems have the same
priority, requests for swap are interleaved between the file systems.
In the figure, swap requests are initially interleaved between the two
swap devices at priority 0.

• If a device and a file system have the same swap priority, all the swap
space from the device is allocated before any file-system swap space.
Thus, the device at priority 1 will be filled before swap is allocated
from the file system at priority 1.

Figure 1-29 Choosing a swap location

Swap Space Structures
Swapping is accomplished on HP-UX using the following data structures:
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• Device swap priority array (swdev_pri[] ), used to link together
swap devices with the same priority. That is, the entry in
swdev_pri[n]  is the head of a list of swap devices having priority n.
The first field in swdev_pri[]  structure is the head of the list; the
sw_next field in the swdevt[]  structure links each device into the
appropriate priority list.

• File system swap priority array (swfs_pri[] ), which serves the
same purpose as swdev_pri[],  but for file system swap priority.

• Device swap table (struct swdevt ), defined in conf.h to  establish
the fundamental swap device information.

• File system swap table (struct fswdevt ), defined in swap.h  for
supplimentary file-system swap.

• Swap table of available chunks (struct swaptab ), which keeps
track of the available free pages of swap space.

• Mapping of swap pages (struct swapmap ), whose entries together
with swaptab combine for a swap disk block descriptor.

The following table details the elements of the struct swdevt .

Table 1-26 Device swap table (struct swdevt )

Element Meaning

sw_dev Actual swap device, as defined by its major
(upper 8 bits) and minor (lower 24 bits)
numbers.

sw_enable Enabled flag.  Zero if device swap is disabled;
one if enabled.

sw_start Offset into the swap area on disk, in kilobytes.

sw_nblksavail Size of swap area, in kilobytes.

sw_nblksenabled Number of blocks enabled for swap. Must be a
multiple of swchunk  (2MB default).

sw_nfpgs Number of free swap pages on the device.
Updated whenever a page is used or freed.
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The following table details the principle elements of the struct
fswdev t.

Table 1-27 File system swap table (struct fswdevt )

sw_priority Priority of swap device (1-10).

sw_head,
sw_tail

First and last swaptab[] entry associated
with swap device.

sw_next Pointer to the next device swap entry (swdevt )
at this priority; implemented as a circular list
used to update the pointer in swdev_pri  for
round-robin use of all devices at a particular
priority.

Element Meaning

Element Meaning

fsw_next Pointer to next file system swap (fswdevt entry)
at this priority; implemented as a circular list.

fsw_enable Enabled flag.  Zero if file-system swap is
disabled; one if enabled.

fsw_nfpgs Number of free swap pages in this file system
swap; updated whenever a page is used or freed.

fsw_allocated Number of swchunks   (2MB default) allocated
on this file-system swap.

fsw_min Minimum swchunks  to be preallocated when the
file-system swap is enabled.

fsw_limit Maximum swchunks  allowed on file system;
unlimited if set to zero.

fsw_reserve Minimum blocks (of size fsw_bsize ) reserved
for non-swap use on this file system.

fsw_priority Priority of device (0-10). Priority can also be
determined by identifying swfs_pri[]  linked
list.
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swaptab  and swapmap Structures
Two structures track swap space.  The swaptab[] array  tracks a
chunk of swap space. swapmap entries hold swap information on a
per-page level. swaptab  defaults to track a 2MB chunk of space and
swapmap tracks each page within that 2MB chunk.

Each entry in the swaptab[] array has a pointer (called st_swpmp ) to a
unique swapmap. swapmap entries have backwards pointers to the
swaptab  index.  There is one entry in the swapmap for each page
represented by the swaptab entry (default 2 MB, or 512 pages); that is,
swapmap conforms in size to swchunk .

A linked list of free swap pages begin at the swaptab  entry’s st_free
and use each free swapmap entry’s sm_next .   When a page of swap is
needed, the kernel walks the structures (using the getswap() routine
in vm_swalloc.c ), which calls other routines that actually locate the
chunk, and so forth.

• Beginning with the lowest priority, we begin by examining
swdev_pri[].curr , which points to a swdevt  entry.

• If sw_nfpgs  is zero (no free pages), we follow the pointer sw_next  to
get the next swdevt  entry at this priority.

• If none of these have free pages, we move on to swfs_pri[].curr ,
the file system swap at this priority, checking fsw_nfpgs  for free
pages.

fsw_vnode vnode  of the file system swap directory
(/paging ) under which the swap files are
created.

fsw_bsize Block size used on this file system;  used to
determine how much space fsw_reserve  is
reserving

fsw_head
fsw_tail

Index into swaptab[]  of first, last entry
associated with this file system swap.

fsw_mntpoint File system mount point; character
representation of fsw_vnode , used for utilities
(such as swapinfo(1M) ) and error messages.

Element Meaning
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• If we are still unsuccessful, we move to the next priority and try
again.

• Once we find a swdevt  or fswdevt  with free pages, we walk that
device’s swaptab  list, starting with sw_head  or fsw_head , and using
st_next  in each swaptab  entry, until we find a swaptab  entry with
non-zero st_nfpg s.

• st_free  points to the first free swapmap entry (and thus first free
page) in this swaptab  chunk.

• The swalloc()  routine creates a disk block descriptor (dbd ) using 14
bits of dbd_data  for the swaptab  index and 14 bits for the swapmap
index.  The r_bstore  in the region is set to the disk device vnode  or
the file system directory vnode , and the dbd  is marked DBD_BSTORE.

When faulting in from swap, the same process is followed as for
faulting in from the file system: r_bstore  and dbd_data  are hashed
together and checked for a soft fault, then devswap_pagein()  is
called.  The devswap_pagein()  routine uses the dbd_data  as a
14-bit swaptab  index and a 14-bit swapmap index to determine the
location of the page on disk.

Now all information needed to retrieve the page from swap has been
stored.

Figure 1-30 The swaptab  and swapmap structures
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Table 1-28 Swap table entry (struct swaptab )

Element Meaning

st_free Index to the first free page in the chunk. Each entry
maps to a 4KB-age of swap.

st_next Index to next swaptab  entry for same device or
file-system swap; at end of list, st_next  is -1.

st_flags ST_INDEL : File-system swap flag, indicating  chunk
is being deleted; do not allocate pages from it.  Set
only by the realswapoff()  routine.
ST_FREE: File-system swap flag, indicating chunk
may be deleted, because none of its pages are in use.
In the case of remote swap, the chunk should not be
deleted immediately; set st_free_time to current
time plus 30 minutes (1800 seconds) when setting
this flag.  Once 30 minutes has elapsed, the chunk
can be freed.  If the chunk is needed during the
interim, the flag can be cleared using
chunk_release() , called from lsync() .
ST_INUSE: swaptab  entry is being changed.

st_dev,
st_fsp

Pointers to swdevt  entry that references the
swaptab  entry.

st_nfpgs Number of free pages in this (swchunk ) swaptab
entry.

st_swpmp Pointer to swapmap[]  array that defines this
swchunk  of swap pages.

st_free_time Indicates when remote fs  chunk can be freed (see
explanation of ST_FREE flag).
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Table 1-29 swap map entry (struct swapmap)

Deactivation using the pager
Since vhand() is tuned to be nice regarding I/O usage and CPU usage, it
allows the pager to fault out swapped processes.  The swapper marks the
process to be swapped for deactivation, which takes it off the run queue.
Since it cannot run once its pages are aged, they cannot be referenced
again.  When the steal hand comes around, it steals all the pages in the
region.

When memory pressure is high, sched()  selects a process to swap using
the routine choose_deactivate() .  This routine is biased to choose
non-interactive processes over interactive ones, sleeping processes over
running ones, and long-running processes over newer ones.

Once a process has been chosen to be deactivated, the following actions
occur:

• The process’s SDEACT flag and its threads’ TSDEACT flags are set.

• The process’s threads are removed from the run queue. It the process
is waiting for I/O, its SDEACTSELF flag and its threads’ TSDEACTSELF
flags are set.  When I/O completes, the process deactivates in the
paging routines.

• The process’s p_deactime  in the proc structure is set to the
current time to establish a record of how long the process is
deactivated.

• The process is positioned in the active pregion  chain to ready it for
the steal hand.

• The uarea pregion  is added to the list of active regions for it to get
paged out.

Element Meaning

sm_ucnt Number of threads using the page. When
decremented to zero, the swap page is free and the
free pages linked list can be updated.

sm_next Index of the next free page in the swapmap[] . This
is valid only if sm_ucnt  is zero; that means that
this swapmap entry is included in the linked list
beginning with swaptab’s st_free .
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• The global counter deactive_cnt  is incremented.

A process that has been inactive long enough for all its pages to have
been aged and stolen is virtually swapped out already.  The global
deactprocs  points to the head of a list of inactive processes, its chain
running through the pregion element p_nextdeact .  If the average
number of free pages drops below lotsfree , these pages are swapped
out.

When memory pressure eases, a deactivated process is reactivated.  The
choose_reactivate() routine is biased to choose interactive over
non-interactive ones processes, runnable processes over sleeping ones,
and processes that have been deactivated longest over those more
recently deactivated.
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Overview of Demand Paging
Recall that for a process to execute, all the regions (for data, text, and so
forth) have to be set up; yet pages are not loaded into memory until the
process demands them. Only when the actual page is accessed is a
translation established.

A compiled program has a header containing information on the size of
the data and code regions. As a process is created from the compiled code
by fork and exec, the kernel sets up the process’s data structures and the
process starts executing its instructions from user mode. When the
process tries to access an address that is not currently in main memory, a
page fault occurs. (For example, you might attempt to execute from a
page not in memory.) The kernel switches execution from user mode to
kernel mode and tries to resolve the page fault by locating the pregion
containing the sought-after virtual address. The kernel then uses the
pregion’s offset and region to locate information needed for reading in the
page.

If the translation is not already present and the page is required, the
pdapage()  routine executes to add the translation (space ID, offset into
the page, protection ID and access permissions assigned the page, and
logical frame number of the page), and then on demand brings in that
page and sets up the translation, hashes in the table, and all the rest.

In main memory, the kernel also looks for a free physical page in which
to load the requested page.  If no free page is available, the system swaps
or pages out selected used pages to make room for the requested page.
The kernel then retrieves (pages in) the required page from file space on
disk. It also often pages in additional (adjacent) pages that the process
might need.

Then the kernel sets up the page’s permissions and protections, and exits
back to user mode.  The process executes the instruction again, this time
finding the page and continuing to execute.

The flexibility of demand paging lies in the fact that it allows a process to
be larger than physical memory.  Its disadvantage lies in the degree of
complexity paging requires of the processor; instructions must be
restartable to handle page faults.
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By default, all HP-UX processes are load-on-demand. A demand paged
process does not preload a program before it is executed.  The process
code and data are stored on disk and loaded into physical memory on
demand in page increments. (Programs often contain routines and code
that are rarely accessed.  For example, error handling routines might
constitute a large percentage of a program and yet may never be
accessed.)

copy-on-write
HP-UX now implements copy-on-write of EXEC_MAGIC processes, to
enable the system to manipulate processes more efficiently. The system
used to copy the entire data segment of a process every time the process
fork ’d, increasing fork time as the size of the data and code segments
increased. Only one translation of a physical page is maintained; a
parent process can point to and read a physical page, but copies it only
when writing on the page.  The child process does not have a page
translation and must copy the page for either read or write access.

Copy-on-write means that pages in the parent’s region are not copied to
the child’s region until needed.  Both parent and child can read the pages
without being concerned about sharing the same page.  However, as soon
as either parent or child writes to the page, a new copy is written, so that
the other process retains the original view of the page.

For more information about the implementaton of EXEC_MAGIC, see the
HP-UX Process Management white paper.
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HOW PROCESS STRUCTURES ARE
SET UP IN MEMORY
When a process is fork ’d, a duplicate copy of its parent process forms the
basis of the child process.  .

Region Type Dictates Complexity
Under the kernel procdup()  routine, the system walks the pregion list
of the parent process, duplicating each pregion for the child process.
How this is done is dictated by the region type.

• If the region is type RT_SHARED, a new pregion  is created that
attaches to the parent’s region.

• If the region is type RT_PRIVATE, the region is duplicated first, and
then a new pregion  is created and attached to the new region.

Duplicating pregions  for Shared Regions
Because a region of type RT_SHARED is shared by parent and child, fewer
changes occur to the pregions and region: Only a new pregion  must be
created and attached to the shared region.

• A new pregion  is allocated and fields copied from the parent pregion
to the child pregion.

• The pregion elements used by vhand  (p_agescan , p_ageremain ,
and p_stealscan ) are initialized to zero and the child pregion is
added to the active pregion  chain just before the stealhand , to
prevent it from being stolen yet.

• The region elements r_incore  and r_refcnt  are incremented to
reflect the number of in-core pregions  accessing the region and the
number of pregions , in-core or paged, accessing the region.

The procedure is considerably more complex when an RT_PRIVATE
region is copied.
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Figure 1-31 Duplicating pregions  with shared regions

Duplicating pregions  for Private Regions
Forking a process with a region of type RT_PRIVATE requires that a new
child region be allocated first.

• The child region’s pointers are set:

• r_fstore , the forward store pointer is pointed to the same value
as the parent’s, and the vnode ’s  reference count (v_count ) is
incremented.

• r_bstore , the backward store pointer is set to the kernel global
swapdev_vp , and its v_count  is incremented also.

• The child region is attached to the end of the linked list of active
regions.

• Swap is reserved.  If insufficient swap space is available, fork()  fails
and returns the error ENOMEM.

• The child region’s B-tree structures are initialized and sufficient
swap space is reserved for a completely filled B-tree.
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Figure 1-32 Duplicating a child process of type RT_PRIVATE

• The parent’s vfd and dbd  proto values are copied to the child’s
B-tree  root.

• The vfd  proto in both the parent region and the child region are set
so that all pages of the region are copy-on-write.

• The B-tree  element b_vproto  is set to indicate that the
copy-on-write flag (pg_cw ) must be set in the vfd  for any new vfddbd
pair added to the B-tree .

• A chunk of vfddbd s is created for the child’s B-tree  (equal to each
chunk of vfddbd s in the parent’s B-tree ) and filled with proto
values. The pg_cw  bit is already set to copy-on-write for all default
vfd s in the child B-tree ’s chunk.

Setting copy-on-write when the vfd is valid
Before the chunks of vfddbd s in the child region can be used, the
validity of every entry must be checked.

• If a vfd  is not valid (that is, its pv_v  is not set), the pg_cw  of the
parent’s vfd  must be set and copied to the child.  If pg_lock  is set in
the parent, it must be unset in the child, as locks are not inherited.
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Once the vfd  is valid, further modifications are made to the low-level
structures:

• The r_nvalid  element in the child region is incremented to reflect
the number of valid pages.

• The vfd contains a pfn  (page frame number), which indexes into the
pfdat[]  array.  The pfdat  entry pf_use  count (number of regions
using this page) must be incremented.

• If the parent vfd ’s copy-on-write bit isn’t set, the pde  must be set for
translations to the page to behave as copy-on-write.

Reconciling the Page and Swap Image
If a page has been written to a swap device, but has since been modified,
the swap-device data now differs from the data in memory.   The disk
page must be disassociated from the page in memory by setting the dbd
type to DBD_NONE.  Then, the next time the page is written to a swap
device, it will be assigned a new location.

Everything is now set up from the perspective of the parent’s B-tree  for
copy-on-write.

Setting the child region’s copy-on-write status
• The child’s r_swalloc  is set to the number of region and B-tree

pages reserved.

• The r_prev  and r_next  are set to link the child region to the parent
region.

• The kernel chooses new space for the pregion , rather than copying it
from the parent pregion .  This establishes two ranges of virtual
addresses (different space, same offset) translating to the single
range of physical address.

• If a parent process accesses its virtual addresses, it willl get a TLB
miss fault because the addresses have been purged from the TLB.

• If a child process accesses any of its virtual addresses, it will also
get a TLB miss fault because the addresses did not previously
exist in the TLB, and do not exist in HTBL.
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Duplicating a Process Address Space to Make
the Process copy-on-write

• procdup()  creates a duplicate copy of a process based on forktype,
parent process (pp), child process (cp ), and parent thread (pt ) and
child thread (ct ).

procdup()  allocates memory for the uarea  of the child.  (In fact,
procdup()  is the routine that calls createU() to create the uarea
too.)

procdup()  calls dupvas  to duplicate the parent’s virtual address
space, based on the kind of process (fork  vs vfork ) being executed.

• If the process was created by fork , dupvas  duplicates the parent
process’s virtual address space; if the process was vfork ’d the
parent’s virtual address space is used.

dupvas  looks for and finds each private data object, does whatever
each requires to be duplicated (there are special considerations
required for text, memory mapping, data objects, graphics), and when
it finishes duplicating the special objects, calls private_copy  or
shared_copy , depending on whether it is dealing with a private or
shared region.

• If the region is shared, shared_copy  increments the reference
count on the region to indicate it is being shared.

• If the region is private, private_copy  locks the region and
enables the region to be duplicated by calling dupreg() .

• dupreg()  allocates a new region for the child, duplicates the parent’s
vfd s and the entire region structure, then calls do_dupc  to duplicate
entries under the region.

• do_dupc() sets up a parent-child relationship, and by duplicating
the relationship, sets up the child to be copy-on-write .  It makes
sure the parent’s region is valid, sets copy on write for the child, sets
the translation as rx  (read-execute) only, duplicates information for
every vfddbd combination in the region.

once do_dupc() completes, the child process exists as a duplicated
version of the parent process. The child process is attached to the
child’s address space and is no longer dependent on the parent.

• do_dupc  then calls hdl_cw() to update the child’s access rights and
make the child copy on write.
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Duplicating the uarea  for the Child’s Process
The createU()  routine builds a uarea  and address space for the child
process.  The uarea  is set up last for a fork ’d process, to prevent the
child process from resuming in the middle of pregion  duplication code.
If the process is vfork ’d, the uarea  is created during exec() . Until
then, the child uses the parent’s uarea .

• When a user process is created with FORK_PROCESS, a temporary
space is allocated for a working copy of the parent’s uarea  to be
modifed into the child’s uarea.  The temporary space will be freed
after the uarea  is copied to the new region. fork() updates the
savestate  in the parent uarea ’s u_pcb  just before copying the data.
(vfork()  does not do this because it creates the uarea  during
exec() , and the savestate  will change immediately.)

• A region is allocated for the new uarea , its data structure is
initialized, its r_bstore  value set back to the swap device, and the
new region is added to the list of active regions.  The uarea  has no
r_fstore  value, since it comes with ready-made data.

• Space is allocated for the uarea ’s pregion , which is initialized.
Each uarea  has a unique space ID.  The new pregion is marked with
the PF_NOPAGE flag.  uarea pregions  are unaffected by vhand
because they are not added to the list of active pregions .  Only if an
entire process is swapped out are the uarea ’s pages written to a swap
device.

• Once created, the pregion  is attached into the linked list of
pregions  connected to the vas.  Its pointer is stored in r_pregs , its
p_prpnext  set to NULL, and its r_incore  and r_refcnt  set to one.

• Once swap space is reserved for the uarea  and B-tree pages and
the default dbd  is set to DBD_DFILL, the uarea  pages (UPAGES) are
allocated. Each page requires a pfdat  entry from phead  (sleeping if
none is available immediately). The pfn  is stored in the vfd , the
pg_v  is set as valid, r_nvalid  is incremented, and a pde is created
for the physical-to-virtual translation. The pfdat entry’s P_UAREA
and HDLPF_TRANS flags are set, and the dbd is set to DBD_NON.

• The pointers u_procp  (to the child process) and u_kthreadp  (to the
child thread) are pointed to the child uarea .

Conceivably, the child can now run successfully.  The current state is
therefore saved in the copied uarea  with a setjmp() call and pointed
to with pcb_sswap .  Thus, when the child first calls the resume()
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routine, it detects that pcb_sswap  is non-zero and does a longjmp() to
get back here.  The child then return from procdup() with the value
FORKRTN_CHILD.

The parent’s open file table is copied to the child and the copied uarea is
copied into the actual pregion.  This copy causes TLB miss faults that
cause the pregion ’s pdes to be written to the TLB, thus associating the
uarea ’s virtual address with the physical pages just set up.  The process
completes by returning from procdup  with the return value
FORKRTN_PARENT.

Reading from the parent’s copy-on-write
page
When the parent region accesses one of its RT_PRIVATE pages for read,
the processor generates a TLB miss fault, which the kernel handles as an
interrupt.  The TLB miss fault handler finds the pde  and inserts the
information (including the new access rights) into the processor’s TLB.
On return from the interrupt, the processor retries the read and is
successful, since PDE_AR_CW allows user-mode read and execute access

Figure 1-33 The first time a read is done to a copy-on-write  page
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Update TLB with PDE_AR_CW permissions.
Retry instruction.
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Reading from the child’s copy-on-write  page
When the child region accesses one of its pages for read, the TLB miss
handler does not find a pde  for the virtual address, because none has
been set one up yet.  The virtual address was set up in the pregion
structure. If you are not doing copy-on-access (which is now the default)
and the page is needed, the aliased translation must be made.

• First a save state  is created.

• The vas  pointer is taken and the skip list searched to find the
pregion  containing the page with this address.

• If the page translates to more than one virtual address, the
appropriate alias is acquired.

• The child region fails to access a page for read and gets a TLB miss,
but the miss handler finds a translation and loads it into the TLB.

• The routine returns from interrupt and succeeds in reading the page.

Faulting In A Page
When regions are initialized, the disk block descriptor (dbd ) dbd_data
field of the is set to DBD_DINVAL (0xfffffff) in all cases.  The
prototype dbd_type values are set as follows:

• DBD_FSTORE for text and initialized data,

• DBD_DZERO for stack and uninitialized data.

When a page is read for the first time, a TLB miss fault results because
the physical page (and therefore its translation in the sparse PDIR) does
not yet exist. The fault handler is responsible for bringing in the page
and restarting the instruction that faulted.  In determining whether or
not the page is valid, the fault handler determines which pregion  in the
faulting process contains the faulting address.  The fault code eventually
calls virtual_fault() , the primary virtual-fault handling routine .
The arguments passed to this routine are the virtual address causing the
fault, the virtual address and virtual space of the pregion , and a flag
indicating read or write access.

The kernel searches the B-tree  for the vfd and dbd of the page.  If the
valid bit in the vfd  flag is set, another process has read the address into
memory already.  If the r_zomb  flag is set in the region, the program
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prints Pid %d killed due to text modification or page I/O
error message and returns SIGKILL , which the handler sends to the
process.

Faulting In a Page of Stack or Uninitialized Data
If the dbd_type  value is set to DBD_DZERO (as is the case for stack and
uninitialized data), the process sets the copy-on-write  bit to zero. The
kernel then checks to determine whether the page pertains to a system
process or to a high-priority thread.  If neither and memory is tight, the
process sleeps until free memory is driven down to the priority
associated with the process.  (In worst case, a thread might wait until
memory is above desfree .)

Once the process is restarted, vfd  and dbd  pointers are examined to
ensure their continued accuracy.  A free pfdat entry is acquired from
phead, its pfn (pf_pfn) placed in the vfd , the vfd ’s valid bit set, and
the region’s r_nvalid  counter (number of valid pages) incremented.
The process changes dbd_type  to DBD_NONE and dbd_data  to
0xfffff0c .  Finally, the virtual-to-physical translation of the page is
added to the sparse PDIR and the page is zeroed.

Figure 1-34 Checking the free list to fault in a DBD_FSTORE page
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Faulting in a Page of Text or Initialized Data
If a process has a virtual fault on a DBD_FSTORE page, the kernel uses
the r_fstore  pointer of the region’s vnode , to determine which
file-system specific pagein() routine (for example, ufs_pagein() ,
nfs_pagein() , cdfs_pagein() , vx_pagein() ) to call. The pagein()
routines are used to recover the correct page from a free list of memory
pages or to read in a correct page from disk.

The pagein  routine gets information about the page being faulted from
the vm_pagein_init() routine, which gets the vfd/dbd pairs, sets
up the region index, and ascertains that no valid page already exists.

One page must be reserved. Then  vm_no_io_required() is called to
determine if the page can be satisfied locally, either by a zero-filled page
(sparse file) or from the page cache.

vm_no_io_required() checks for the faulted page in the page cache:

• vm_no_io_required  acquires the device vnode pointer (devvp) that
points to the actual disk device (such as /dev/vg00/lvol5) rather than
to the file referenced by r_fstore.

• If the dbd  data field is DBD_DINVAL, vm_no_io_required  gets the
actual  location of the disk block on the disk device and stores this
value in the dbd  data field.

• vm_no_io_required  calls pageincache() with the device vnode
pointer and the dbd_data  to determine whether the faulted page is
on the hash list.

• The pageincache() routine hashes on the vnode  pointer and data
to choose a  pfdat pointer in phash[] .  The routine walks the
pf_hchain chain of pfdat  entries looking for a matching vnode
pointer (pf_devvp ) and data value (pf_data ).  If it finds a match, it
removes  it from the free list.

• If pageincache()  returns a pfdat  entry, the region’s valid page
count (r_nvalid ) is incremented, the vfd  is updated with the pfn
(pf_pfn ), and a virtual-to-physical translation for the page to the
sparse PDIR is added (if it had been removed).

On successfully finding the page in the free list, vm_no_io_required()
returns a 1, meaning that no I/O is required to retrieve the page.  This is
called a soft page fault.



Chapter 1 107

MEMORY MANAGEMENT
HOW PROCESS STRUCTURES ARE SET UP IN MEMORY

If vm_no_io_required()  cannot find the page locally, it returns 0,
meaning the page must be faulted in from disk.

Retrieving the Page of Text or Initialized Data from
Disk
If the required page is not found in the free list, the pagein() routines
refer to dbd  to ascertain which page to fetch.  (The information had been
stored in the dbd  by vm_no_io_required() .)  The pagein()  routines
also schedule read-ahead pages for I/O, the number of read-ahead pages
based on the value of p_pagein  in the pregion.  This value is adjusted
based on whether the file is being accessed at random or sequentially.

Figure 1-35 DBD_FSTORE fault of data not in the free list
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A page of memory is allocated from phead , a virtual-to- physical
translation added to the sparse PDIR, the I/O scheduled from the disk to
the page, and the process put to sleep awaiting the non-read-ahead I/O to
complete (the process does not await read-ahead I/O to complete). The
vfd  is marked valid.  The dbd  is left with dbd_type  set to DBD_FSTORE
and dbd_data  set to the block address on the disk.

Regardless of whether the page data is retrieved from zero-fill, free list,
or disk, the page directory entry (pde ) has been touched.  The instruction
is retried and gets a TLB miss fault; the miss handler writes the
modified pde data into the TLB; the instruction is retried again and
succeeds.

p_strength  varies between -100 and 100; p_pagein  varies by powers
of two between 1 and 64.
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VIRTUAL MEMORY AND exec()
When the system performs an exec() , the virtual memory system
concerns itself with cleaning up old pregions /regions and setting up
new ones.

Cleaning up from a vfork()

Cleanup in the vfork() case is simple.

• The child process is executing but borrowing its resources from the
parent process.

• The routine creates its own uarea  and returns the parent’s resources.

• Then the routine adds text, data, and so on.

• The routine gets a new vas  and attaches it to the child process
(p_vas ).

• The uarea  and stack of the parent process are copied and the
pregions  and regions are created for the child uarea , just as for
a FORK_PROCESS fork type.

• The uarea  is copied into the child’s uarea  region, which is
pointed to the now-complete uarea  from the thread, and the
thread switches from using the parent’s kernel stack to the new
child kernel stack.

Disposing of the old pregions : dispreg()

If exec()  is called after a FORK_PROCESS fork, several regions must
be disposed of first.  Typically, all pregion s are disposed of except for the
PT_UAREA pregion, which is still needed.  If the file is calling exec()  on
itself, we save a little processing and keep the PT_TEXT and
PT_NULLDREF regions, too.

• deactivate_preg()  is used to deactivate the pregion by removing
it from the active pregion  list.  If the agehand  is pointing to the
pregion  being deactivated and stealhand  is pointing to the next
region in the active pregion  list, the agehand  is moved back one
pregion  to prevent the agehand  from exceeding the stealhand  in
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sequence.  Otherwise if the agehand  or stealhand  is pointing to the
pregion  being deactivated, both hands are moved forward one
pregion .

• If the region is type RT_PRIVATE or the pregion  being discarded is
the last attached, its resources must be freed up.

• wait_for_io() awaits completion of any pending I/O to the
region (that is, r_poip = 0 ), so that no I/O request returns to
modify a page now assigned a different purpose.

• The region’s B-tree  is traversed to delete all the virtual address
translations.  (That is, for each valid vfd , the TLBs are purged,
the cache flushed, and  the pde entry invalidated (set space to -1,
address to 0, pfn to 0, valid to 0, ref to 0, and clear the bit from
pde_os ).

• If the pde  is not the HTBL entry, the pde  is moved from hash list to
free list.  If it is the HTBL pde and it is unused, an effort is made to
fill it with a translation down its linked list, and then free the copied
pde .

• The physical-to-virtual translation is removed from
pfn_to_virt_table . If it was the last virtual translation for this
physical page, the HDLPF_TRANS is cleared in the pfdat  entry.

• The pregion  pointer is removed from the rpregs  list and the
memory used by the pregion  is freed (that is, returned to its kernel
memory bucket).

• The region’s r_incore  and r_refcnt  elements are decremented.  If
r_refcnt  equals zero, the region is freed also.

• Again, r_poip  must decrement to zero before a region can be
freed, to prevent any unexpected I/O to its pages.

• The B-tree  is walked again, and for each valid page found,
r_nvalid  and pf_use  are decremented in the pfdat  entry.  If
the physical page is not aliased, its pf_use  will now be 0; it can be
freed for other uses.

• Its P_QUEUE flag is set and the page is put on the pfdat  free list
(phead ). The kernel global freemem  is incremented.  If any other
processes are waiting for memory, we wake them all up so that the
first one here can have the page (the losers of the race will go to
sleep again).
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• If r_bstore  is swapdev_vp , the reserved swap pages (r_swalloc )
are released, as are the swap pages reserved for the B-tree
structure (r_root->b_rpages ).

• The pages themselves are freed by invalidating their pdes, purging
the TLBs, flushing the caches, moving the non-HTBL pde s from the
hash list to the free list, and linking the pfdat  entry into phead.

• r_root  and r_chunk  region elements are moved back to the buckets
rather than being freed.

• activeregions  is decremented; the region is removed from the
r_forw / r_back  region chain, and the region memory returned to
its memory allocation bucket.

Building the new process
If the process for which memory structures are being created is the first
to use the a.out  as an executable, the a.out vnode ’s v_vas  is NULL,
and requires creating the pseudo-vas, pseudo-pregion, and region.
Otherwise, the pseudo-vas ’ reference count is updated.

• To what region a PT_TEXT pregion  is attached depends on the type
of executable.

• If the executable is non-EXEC_MAGIC, a PT_TEXT pregion  is
attached to the pseudo-vas  region.

• If the executable is EXEC_MAGIC, VA_WRTEXT is set in the process
vas , the pseudo-vas ’ region is duplicated as a type RT_PRIVATE
region (performing all the steps discussed for an RT_PRIVATE
region), RF_SWLAZYWRT is set in the new region so that no swap is
reserved before needed, and a PT_TEXT pregion  is attached to it.

• In both cases, a new space is attached to the pregion ’s virtual
address.

• A PT_NULLDREF pregion  is attached to the global region
(globalnullrp ), using the same space as PT_TEXT.

• The pseudo-vas ’ region is duplicated as a type RT_PRIVATE
region using r_off  to point to the beginning of the data portion of
the a.out file.  A PT_DATA pregion  is attached to it.  If this is
an EXEC_MAGIC executable, we use the PT_TEXT pregion ’s
space, otherwise a new space is assigned.
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• The PT_DATA pregion  is incremented by the size of bss
(uninitialized data area), using dbd  type DBD_DZERO.  This sets
b_protoidx  to the end of the inititialized data area and
b_proto2  to DBD_ZERO.  More swap is reserved.

• A private region of three pages (SSIZE +1 ) is created for the user
stack.  The dbd proto value is set to DBD_DZERO, and a PT_STACK
pregion  is attached  at USRSTACK.  The PT_DATA pregion ’s
space is used.

• When a shared library is linked to the process, two PT_MMAP
pregions  are created:  an RT_SHARED pregion  containing text
mapped into the third quadrant with a space of KERNELSPACE and
an RT_PRIVATE pregion  containing associated data (such as
library global variables) with the PT_DATA pregion ’s space.

• If VA_WRTEXT is set, the data pregion takes the first available
address above where the text ends (in the first or second
quadrant); othwerwise it is assigned the first available address
above 0x40000000 (the second quadrant).

Virtual memory and exit()

From the virtual memory perspective, an exit() resembles the first
part of an exec() .  All virtual memory resources associated with the
process are discarded, but no new ones are allocated.

Thus, when exit ing from a vfork  child before the child has performed
an exec() , nothing needs to be cleaned up from virtual memory except
to return resources to the parent process. If exiting from a non-vfork
child, the virtual memory resources are discarded by calling
dispreg().


