
32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 -1

The 32-bit PA-RISC Run-time
Architecture Document

HP-UX 11.0 Version 1.0

(c) Copyright 1997 HEWLETT-PACKARD COMPANY.

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.
Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

CSO/STG/STD/CLO
Hewlett-Packard Company
11000 Wolfe Road
Cupertino, California 95014

By

The Run-time Architecture Team

-2

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT version 1.0 -3

CHAPTER 1 Introduction 7
1.1 Target Audiences 7

1.2 Overview of the PA-RISC Runtime Architecture Document 8

CHAPTER 2 Common Coding Conventions 9
2.1 Memory Model 9

2.1.1 Text Segment 9
2.1.2 Initialized and Uninitialized Data Segments 9
2.1.3 Shared Memory 10
2.1.4 Subspaces 10

2.2 Register Usage 10
2.2.1 Data Pointer (GR 27) 10
2.2.2 Linkage Table Register (GR 19) 10
2.2.3 Stack Pointer (GR 30) 11
2.2.4 Space Registers 11
2.2.5 User-Readable Control Registers (CR 26 and CR 27) 11
2.2.6 General Registers Summary 12

2.3 External Naming Conventions 12

2.4 Conventions for Accessing Data 13
2.4.1 Static Variables 13
2.4.2 C-Style Common 14
2.4.3 Fortran-Style Common 14
2.4.4 COBOL-Style Common 14
2.4.5 Pascal Outer Block Globals 14
2.4.6 Constants and Literals 14
2.4.7 Automatic Variables 14
2.4.8 Position-Independence 15

2.5 Conventions for Calling Procedures 15
2.5.1 Stack Frame Layout and Marker 15
2.5.2 Stack frame after dynamic memory allocation 19
2.5.3 Parameter Passing and Return Values 21
2.5.4 Type Checking and Floating-Point Parameter Relocation 29
2.5.5 Standard Procedure Calls 32
2.5.6 Indirect Procedure Calls 36
2.5.7 Millicode Procedure Calls 38

2.6 Program Startup 39

CHAPTER 3 Relocatable Object Files 41
3.1 Object File Header 43

3.2 Compilation Unit Records 50

3.3 Space Dictionary 52

3.4 Subspace Dictionary 55

3.5 String Areas 62

3.6 Fixup Requests 62
3.6.1 Fixup Rounding Modes 64
3.6.2 Interpretation of rounding mode and field selector 65
3.6.3 Examples of applying the rounding mode 67

-4 HP Proprietary

3.6.4 Apply Fixups on instructions 68
3.6.5 List of fixup requests 69
3.6.6 Fixup opcodes, lengths and parameters 75
3.6.7 Parameter Relocation Bits (rbits1, rbits2) 78

3.7 Symbol Table 80

CHAPTER 4 Relocatable Libraries 97
4.1 Archive Header 98

4.2 Library Symbol Table Header Record 100

4.3 Library Symbol Table Format 104
4.3.1 Symbol Directory 104
4.3.2 SOM Directory 113
4.3.3 Free Space List 114

CHAPTER 5 Executable Files 117
5.1 Object File Header 117

5.2 Auxiliary Headers 117
5.2.1 Loader Auxiliary Headers 120
5.2.2 Other Auxiliary Headers 121

5.3 Symbol Table 123

5.4 Stack Unwind Table 124

5.5 Recover Table 124

5.6 Auxiliary Unwind Table 124

CHAPTER 6 HP-UX Specifics 125
6.1 HP-UX Auxiliary Header 125

6.2 Program Startup 127
6.2.1 Sample Assembly Listing of crt0 code 128

6.3 Shared Libraries 141
6.3.1 Shared Library Memory Model 141
6.3.2 Linkage Table 141
6.3.3 The DL Header and Other Tables 143
6.3.4 Version Auxiliary Header 148
6.3.5 Import List 148
6.3.6 Export Table 149
6.3.7 Export Table Extension 152
6.3.8 Shared Library List 153
6.3.9 Module Table 155
6.3.10 Shared Library Unwind Info 156
6.3.11 String Table 158
6.3.12 Dynamic Relocation Records 158
6.3.13 Loading Shared Libraries 161
6.3.14 Intra-library Version Control 163
6.3.15 Library-Level Versioning 164
6.3.16 Import and Export Stubs 167

6.4 System Calls 168

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT version 1.0 -5

CHAPTER 7 Symbolic Debug Information 171
7.1 The Debug Information Organization 171

7.2 Compilation Unit Headers 172
7.2.1 Basic typedef and structure definitions 172
7.2.2 XDB Header structure definition: 174

7.3 Name and Type Tables 175
7.3.1 File-class ("File") DNTT Entries 175
7.3.2 Code-class ("Scoping") DNTT Entries 176
7.3.3 Storage-class ("Name") DNTT Entries 183
7.3.4 Type-class ("Type") DNTT Entries 187
7.3.5 General ("overall") DNTT Entry Format 203

7.4 Static Analysis Information 205
7.4.1 XREF Table (XT) Entry Format 205
7.4.2 Static Analysis Support DNTT Entries 207

7.5 Source Line Table 208
7.5.1 SLT Entry Format 208
7.5.2 SLT Types and Data Structure 209

7.6 Value Table (VT) 211

7.7 Ordering of Table Entries 211

7.8 Postprocessing 212

7.9 Debug Format Changes for Debugging of Optimized Code (DOC) 216
7.9.1 Debug Format Changes 216
7.9.2 Object File Format Details 217
7.9.3 Building the Line Tables 218
7.9.4 Debug Format Changes 219
7.9.5 Line Number Table Definition 222
7.9.6 View/modify globals and arguments when safe 224

CHAPTER 8
Stack Unwind Library 227

8.1 Overview 227

8.2 Requirements for Stack Unwinding 228
8.2.1 Unwinding Across an Interrupt Marker 229
8.2.2 Unwinding from Stubs on HP-UX 229
8.2.3 Unwinding from Millicode 229
8.2.4 Instances in Which Unwinding May Fail 230
8.2.5 Callee-Saves Register Spill 230
8.2.6 Sample entry and exit code 230

8.3 Role of Stubs in Unwinding 232
8.3.1 The Stub Unwind Types 233
8.3.2 Unwinding from Parameter Relocation Stub 234

8.4 External Interface 236
8.4.1 The Unwind Descriptor 236
8.4.2 Unwind Utility Routines 240
8.4.3 Initialize a Stack Unwind 247
8.4.4 Unwind Examples: Using U_get_previous_frame 248

8.5 Setjmp and longjmp jmp_buf 256

8.6 Process Context 258

-6 HP Proprietary

8.6.1 Ada Exception handling 258
8.6.2 C++ Exception handling 273

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 1-7

CHAPTER 1 Introduction

This document describes the runtime architecture for PA-RISC systems running either
the HP-UX or the MPE/iX operating system. Other operating systems running on
PA-RISC may also use this runtime architecture or a variant of it.

The runtime architecture defines all the conventions and formats necessary to compile,
link, and execute a program on one of these operating systems. Its purpose is to ensure
that object modules produced by many different compilers can be linked together into a
single application, and to specify the interfaces between compilers and linker, and
between linker and operating system.

The runtime architecture applies only to hardware platforms based on PA-RISC Revi-
sion 2.0.

The runtime architecture does not specify the application programming interface (API),
the set of services provided by the operating system to the program. Thus, observing the
runtime architecture does not automatically lead to a program that will run on all
PA-RISC platforms. It does, however, allow many of the development tools to be shared
to a large extent among the various operating systems.

When combined with a particular API, this runtime architecture leads to an application
binary interface (ABI). In other words, an ABI can be regarded as the composition of an
API, a hardware description, and a runtime architecture for that hardware.

1.1 Target Audiences

This document is intended for a variety of readers.

If you are a systems programmer, you will find information in this document describing
the format of an executable object file, the memory model and startup environment

Introduction

1-8

assumed by a valid program, and the architected interface between a program and the
services provided by your operating system.

If you develop compilers or other development tools, you will find information in this
document about calling conventions and other coding conventions, the object file for-
mat, interfaces to the linker, symbolic debug format, and other details important to pro-
gram translation.

If you are an application programmer, this document can help you learn about the low-
level details of how programs execute on PA-RISC. If you need to write assembly code,
process object files, examine the stack, or perform dynamic linking, you will find the
necessary information in this document.

1.2 Overview of the PA-RISC Runtime Architecture
Document

Chapter 2 describes the coding conventions used by compilers and by assembly-
language programmers. This includes details of the virtual memory model, usage of
processor registers, external name conventions, addressing data, procedure calling and
parameter passing, and the program startup environment.

Chapter 3 describes the format of relocatable object files, and Chapter 4 describes the
format of relocatable libraries.

Chapter 5 describes the format of program files in general, while Chapters 6 cover
details specific to the HP-UX operating systems, respectively. It also cover shared
libraries and executable libraries.

Chapter 7describes the format of the symbolic debug information generated by the HP
compilers and used by the debugger.

Chapter 8 describes the details of stack unwinding, and the interfaces to the stack
unwind library provided by HP.

Chapter 9 describes the library of millicode routines provided for the use of HP compil-
ers.

Chapter 10 describes the principles of dynamic linking—that is, dynamically loading
relocatable objects into the address space of a running process.

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-9

CHAPTER 2 Common Coding
Conventions

2.1 Memory Model

The PA-RISC virtual memory is a set of linear spaces. Each space is four gigabytes (232

bytes) in size and is divided into four equal portions of one gigabyte (230 bytes each),
known as quadrants. The four quadrants in a space are numbered 0,1,2, and 3, from low
memory to high memory. An application can address 216 spaces. Each application has
its own short address space composed of these four distinct quadrants (can possibly be
four distinct spaces).

2.1.1 Text Segment

The first quadrant (quadrant 0) of the short address space is mapped by space register 4
to the first quadrant of a space containing the shared text.The text is readable and exe-
cutable, but not writable and must begin at a page boundary. An application must not
change the contents of space register 4.

This area of memory is used to store code (machine instructions), and literals only. The
text address begins at 0x00000000 and ends at 0x3FFFFFFF.

2.1.2 Initialized and Uninitialized Data Segments

The second quadrant (quadrant 1) of the short address space is mapped by space register
5 to the second quadrant of a space containing the private data of applications. The data
section is readable, writable, and executable and must begin at a page boundary. The
private data includes the initialized data, the uninitialized data (BSS), the heap and the
user stack.

Common Coding Conventions

2-10

Data segments start at 0x40000000 and end at 0x7FFFFFFF.

2.1.3 Shared Memory

The third and fourth quadrant (quadrant 2 and 3) of the short address space is mapped
by space register 6 and 7 to quadrants containing shared memory. Those portions of the
shared memory that have been legally attached to the process via shared data memory
system calls are readable and writable. The upper 256 megabytes of the fourth quadrant
is not readable, writable, or executable by applications. The first page of the fourth
quadrant is the Gateway page.

Shared memory starts at 0x80000000 and ends at 0xFFFFFFFF.

2.1.4 Subspaces

While a space is a fundamental concept of the architecture, a subspace is just a logical
subdivision of a space. The linker groups subspaces into spaces as it builds an executa-
bles program file. On HP-UX systems, all subspaces in the code space must be in quad-
rant 0, and all subspaces in the data space must be in quadrant 1.

2.2 Register Usage

2.2.1 Data Pointer (GR 27)

By software convention, general register GR 27 is used to point to the beginning address
of global data in the data segment ($PRIVATE space).

The start up code for each process sets up this address which is also known as the
address of symbol $global$. Compilers and the linker then use this symbol to assign
global data or to relocate data addresses.

2.2.2 Linkage Table Register (GR 19)

The general purpose caller-saves register GR 19 has a special meaning in HP-UX shared
library. In an HP-UX shared library, register GR 19 is used for theData Linkage Table.

Each shared library and incomplete executable contains a linkage table, which is allo-
cated in the DATA space for the file. The linkage table is divided into two parts, the
Data Linkage Table (DLT), and the Procedure Linkage Table (PLT). The PLT contains
an entry for each unresolved procedure symbol referenced within the object and it is
placed immediately following the DLT (if one exists).

The DLT contains an entry for each data or procedure symbol that is accessed indirectly.
Each DLT entry is a single word which contains a pointer to the actual data item refer-
enced indirectly; this pointer value is assigned by the dynamic loader, after mapping the
shared library. All references to data items go directly through the DLT and GR 19 is

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-11

reserved to point to the middle of this table. The linker allocates GR 19-relative offsets
for each DLT entry, and uses those offsets when applying fixups.

2.2.3 Stack Pointer (GR 30)

Because no explicit procedure call stack exists in the PA-RISC processor architecture,
the stack is defined and manipulated entirely by software convention. By convention,
GR 30 is used for the stack pointer.

The stack pointer always points to the first unused byte of data segment beyond the
stack frame marker, and is 64-byte aligned.

When a process is initiated by the operating system, a virtual address range is allocated
for that process to be used for the call stack, and the stack pointer (GR 30) is initialized
to point to the low end of this range. As procedures are called, the stack pointer is incre-
mented to allow the called procedure frame to exist at the address below the stack
pointer. When procedures are exited, the stack pointer is decremented by the same
amount.

2.2.4 Space Registers

The following table (table 1) summarizes the PA-RISC available space registers and
their usage.

2.2.5 User-Readable Control Registers (CR 26 and CR 27)

CR27 is used to point to the begining address of thread specific data, CR26 is not used
at this point.

TABLE 1 Space Register Usage

Register
 Name

Other
Names Usage Convention

SR 0 Caller-saves space register or millicode return space register.

SR 1 sarg sret Space argument and return register or caller-saves space register.

SR 2 Caller-saves space register.

SR 3 Callee-saves space register.

SR 4 Code space register (stubs save and restore on inter-module
calls).

SR 5 Data space register, modified only by privileged code.

SR 6 System space register, modified only by privileged code.

SR 7 System space register, modified only by privileged code.

Common Coding Conventions

2-12

2.2.6 General Registers Summary

The following table (table 2) summarizes general register usage:

2.3 External Naming Conventions

The external naming conventions (commonly known asname space pollution solution,
or secondary definitions) are designed to allow ANSI C, POSIX users to define their
own versions of reserved symbols, while still allowing users to access the underlying
system symbols if they want to.

The external naming conventions provide a secondary definition for special names
(code or data) that would be specified from within the library source code by means of a
pragma, for example:

#pragma _HP_SECONDARY_DEF _open open

{
/* code for open */

}

TABLE 2 General Register Usage

Register Name
Other
Names Usage Convention

GR 0 Zero value register. (Writing to this register does not affect its
contents.)

GR 1 Scratch register (caller-saves). (can be destroyed by call
mechanism).

GR 2 RP Return pointer and scratch register.

GR 3 - GR 18 General purpose callee-saves registers.

GR 19 Shared Library linkage register.

GR 19 - GR 22 General purpose caller-saves registers.

GR 23 arg3 Argument register 3 or general purpose caller-saves register.

GR 24 arg2 Argument register 2 or general purpose caller-saves register.

GR 25 arg1 Argument register 1 or general purpose caller-saves register.

GR 26 arg0 Argument register 0 or general purpose caller-saves register.

GR 27 DP Global data pointer; may not be used to hold other values.
(Stubs save and restore on inter-module calls)

GR 28 ret0 Function return register on exit or function result address on
entry. May also be used as a general purpose caller-saves reg-
ister.

GR 29 SL ret1 Static link register (on entry), millicode function return or
function return register for upper part of a 33 to 64 bit func-
tion result. May also be used as a general purpose caller-saves
register.

GR 30 SP Stack pointer, may not be used to hold other values.

GR 31 Millicode return pointer, Scratch register (caller-saves).

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-13

open = secondary symbol
_open = primary symbol

Since open is only a secondary definition within libc, a primary definition of open pro-
vided by the user can override it. Within libc itself, _open is called directly to avoid con-
flicts with the user version’s of open.

In implementing the secondary definitions, the linker makes the following assumptions:

• Secondary definitions would be used only by internal developers of libc and libm.

• The reference to a secondary definition must be seen before any definition of that
symbol.

• No modules within libc or libm will make references to secondary definitions.

• Secondary symbol definitions will be ignored if there are no outstanding references
to them. Secondary symbols that are not used to resolve references will not be
placed to the output file, and secondary symbols that are used to resolve references
will have thesecondary_def flag cleared in the resultant output file.

2.4 Conventions for Accessing Data

This section describes the various classes of data, how they are mapped into the memory
model, and how the program should address that data.

2.4.1 Static Variables

Static variables can be initialized or uninitialized, they can be small or large, and they
can be local or global scope. In general, compilers allocate global variables relative to
Data Pointer (DP) or GR 27, and allocate local variables relative to Stack Pointer (SP)
or GR 30. Static variables are allocated in the DATA subspace of PRIVATE space.
Please refer“Symbol Table” on page 80 for details of symbol scopes and symbol types.

Local variables are managed by the compilers and are not visible in the object files.

Initialized global data are defined by symbols whose scope areuniversal.

The following code segments are used to make references to common,NOT position
independent globals:

• To form the address of global X into register RR:

ADDIL LR’X-$global$, DP
LDO RR’X-$global$ (r1), RR

• To load the global X into register RR

ADDIL LR’X-$global$, DP
 LDW RR’X-$global$ (0, r1), RR

Common Coding Conventions

2-14

LR’ and RR’ are representing fixups of type R_DP_RELATIVE emitted for global X in
the above code segments.

Three aspects must be described: (1) the coding conventions to be followed by the compiler or in assembly

code, (2) allocating the data to the correct segment, and (3) the responsibilities of the linker in relocating or

transforming the code and allocating the data

2.4.2 C-Style Common

Uninitialized external-scope variables in C, without theextern keyword, are normally
implemented similarly to Fortran Common blocks. The variables are treated as imported
symbols, but are allocated automatically by the linker if no definition for the symbol is
found in the program

2.4.3 Fortran-Style Common

Fortran Common blocks differ from C-style common only because the linker needs the
ability to extend an initialized common block if an uninitialized declaration for the com-
mon block is larger than the initialized definition.

2.4.4 COBOL-Style Common

2.4.5 Pascal Outer Block Globals

Pascal has two methods for allocating global variables. In one method, the compiler
allocates the global variables and assigns fixed dp-relative addresses to each symbol.
Since the compiler sees the entire set of outer block declarations in each separate compi-
lation, no link-time allocation is necessary, and the global variable names do not need to
be externally visible.

In the second method, Pascal global variables are treated as in C.

2.4.6 Constants and Literals

Constant data and compiler-generated literals can be allocated in the text segment, or
they can be allocated as static variables. Data allocated in the text segment must be
accessed in a different fashion than data in the data segment, so there must be some sup-
port for determining which form of code generation to use when making an external ref-
erence to data whose allocation is unknown at compile time. Currently, the compiler
assumes that constant data items are declared consistently at definition and reference
sites.

2.4.7 Automatic Variables

Most local variables are allocated in the procedure stack frame, and are assigned fixed
sp-relative offsets at compile time. These variables are not visible in the object files and
no link time relocation (fixups) are needed.

Example assembly code uses to access local integer X:

LDW -offset(0, R30), tmp1; to load X into register tmp1.

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-15

offset is assigned by the compiler.
STW tmp1, -offset(0, R30); to store X back to memory.

2.4.8 Position-Independence

In position independentcompilation, the data linkage register (GR 19) and T’ fixup will
be used to access global variables. Depending on the size of the DLT table, short or long
form code sequences will be generated.

• If the size of the DLT table is less than or equal to 16K bytes, the following code
sequence will be used to form the address of a variable or to load the content of a
variable, respectively:

LDW T’ X(0,R19), tmp1
LDO offset(tmp1), RR; Omit if offset = 0, RR is used instead of tmp1.

and

LDW T’ X(0,R19), tmp1
LDW offset(0,tmp1), RR

Note that the 16K bytes restriction on the DLT size are imposed because the T’ fixup on
the LDW allows for a 14-bit signed offset only.

The T’ fixup specifier should generate a DLT_REL fixup proceeded by an FSEL over-
ride fixup.

• If the DLT table size is greater than the 16K bytes limit, the linker will emit an error
indicating to users that this program must be recompiled with the +Z option. The +Z
option produces the following long form code sequence:

To form the address of a variable:

ADDIL LT’ X, R19
LDW RT’ X(0, R1), tmp1
LDO offset (tmp1), RR; Omit if offset = 0 and RR is used instead of tmp1.

To load the content of a variable:

ADDIL LT’ X, R19
LDW RT’ X(0, R1), tmp1
LDW offset (0, tmp1), RR;

2.5 Conventions for Calling Procedures

2.5.1 Stack Frame Layout and Marker

All procedures can be classified in one of two categories: leaf or non-leaf. A leaf proce-
dure is one that makes no additional calls, while a non-leaf procedure is one that does

Common Coding Conventions

2-16

make additional calls. Although simple, the distinction is essential because the two
cases entail considerably different requirements regarding (among other things) stack
allocation and usage. Every non-leaf procedure requires the allocation of an additional
stack frame in order to preserve the necessary execution values and arguments. A stack
frame is not always necessary for a leaf procedure. The recognition of a procedure as fit-
ting into either the leaf or non-leaf category and the determination of the necessary
frame size is done at compile time. It is often the case that much of a procedure’s state
information is saved in the caller’s frame. This helps to avoid unnecessary stack usage.

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-17

A general picture of the top of the stack for one call, including the frames belonging to
the caller (previous) and callee (new) is shown below:

The elements of a single stack frame that must be present in order for a procedure call to
occur are shown below in Table 3. The stack addresses are all given as byte offsets from
the actual SP (stack pointer) value; for example, ‘SP-36’ designates the address 36 bytes
below the current SP value.

Formal

Frame Marker
(inc. RP)

Register Save

Local

Actual

Frame Marker

Frame One
(previous)

Frame Two

SP

The return address
from the callee
(Frame 2) to the
caller (Frame 1), if
stored to memory

(Stack pointer always points to the first
unused byte of memory, and is always kept
64-byte aligned.)

addresses increasing

Common Coding Conventions

2-18

The size of a stack frame is required to be a multiple of 64 bytes so that the stack pointer
is always kept 64-byte aligned. Since cache-lines on PA-RISC can be no larger that 64
bytes, this requirement allows compilers to know when data structures allocated on the
stack are cache-line aligned. Knowledge of this alignment allows the compiler to use
cache hints on memory references to those structures.

Frame Marker Area

TABLE 3 Elements of Single Stack Frame Necessary for a Procedure Call

Offset Contents

Variable Arguments (optional; any number may be allocated)

SP-(4*(N+9)) arg word N

: :

: :

SP-56 arg word 5

SP-52 arg word 4

Fixed Arguments (must be allocated; may be unused)

SP-48 arg word 3

SP-44 arg word 2

SP-40 arg word 1

SP-36 arg word 0

Frame Marker

SP-32 External Data/LT Pointer (LPT) (set before Call)

SP-28 External SR4/LT Pointer (LPT’) (set after Call)

SP-24 External/stub RP (RP’) (set after Call)

SP-20 Current RP (set after Entry)

SP-16 Static Link (set before Call)

SP-12 Clean Up (set before Call)

SP- 8 Relocation Stub RP (RP’’) (set after Call)

SP- 4 Previous SP (set before Call)

Top of Frame

SP- 0 Stack Pointer (points to next available address)

< top of frame >

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-19

This eight-word area is allocated by any non-leaf routine prior to a call. The exact size
of this area is defined because the caller uses it to locate the formal arguments from the
previous frame. (Any standard procedure can identify the bottom of its own frame, and
can therefore identify the formal arguments in the previous frame, because they will
always reside in the region beginning with the ninth word below the top of the previous
frame.)

Previous SP: Contains the old (procedure entry) value of the Stack Pointer. It is only
required that this word be set if the current frame is noncontiguous with the previous
frame, has a variable size or is used with the static-link.

Relocation Stub RP (RP’’): Reserved for use by a relocation stub that must store a
Return Pointer (RP) value, so the stub can be executed after the exit from the callee, but
before return to the caller.

Clean Up: Area reserved for use by language processors; possibly for a pointer to any
extra information (i.e. on the heap) that may otherwise be lost in the event of an abnor-
mal interrupt.

Static Link: Used to communicate static scoping information to the callee that is neces-
sary for data access. It may also be used in conjunction with the SL register, or to pass a
display pointer rather than a static link, or it may remain unused.

Current RP: Reserved for use by the called procedure; this is where the current return
address must be stored if the procedure uses RP (GR2) for any other purpose.

External/Stub RP (RP’), External SR4/LTP’, and External DP/LTP: All three of these
words are reserved for use by the inter-modular (external) calling mechanism.

Fixed Arguments Area

These four words are reserved for holding the argument registers, should the callee wish
to store them back to memory so that they will be contiguous with the memory-based
parameters. All four words must be allocated for a non-leaf routine, but may be unused.

Variable Arguments Area

These words are reserved to hold any arguments that can not be contained in the four
argument registers. Although only a few words are shown in this area in table 3, there
may actually be an unlimited number of arguments stored on the stack, continuing
downward in succession (with addresses that correspond to the expression given in the
diagram). Any necessary allocation in this area must be made by the caller.

2.5.2 Stack frame after dynamic memory allocation

This section describes the extension of the PA-RISC Procedure Calling Convention to
allow C routines to allocate memory on the stack using the built-in alloca() routine.
Alloca() is a routine that works like malloc() except that it allocates storage from the

Common Coding Conventions

2-20

stack instead of the heap. The storage will be freed automatically when the routine that
called alloca() exits or returns. The following is the declaration of the alloca() routine:

char *alloca(int Size)

Here is what the stack looks like as it allocates dynamic memory:

Initially:

Frame Marker

Actual Arguments

Local Variables

Register Save Area

After first alloca():

Register Save Area

Local Variables

Actual Arguments

Frame Marker
sliding sp (R30)

pseudo-sp

frame extension:
(actual arguments
and frame marker
move)

pseudo-sp <- sp (R30)

Dynamic

Memory allocated

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-21

Since the stack pointer, SP, is modified for each call to alloca(), the existing unwind
mechanism needs to be enhanced. Refer to the unwind chapter for details of how the
entry and exit code are changed to support the variable frame size. Also, refer to that
chapter for details of how alloca() works on PA-RISC.

2.5.3 Parameter Passing and Return Values

The PA-RISC processor architecture does not have instructions which specify how reg-
isters should be used or how parameter lists should be built for procedure calls. Instead,
the software procedure calling convention prescribes the register usage and parameter
passing guidelines.

Register Partitioning

In order to reduce the number of register saves required for typical procedure calls, the
PA-RISC general and floating-point register files have been divided into partitions des-
ignated as callee-saves and caller-saves. The names of these partitions indicate which
procedure takes responsibility for preserving the contents of the register when a call is
made.

If a procedure uses a register in the callee-saves partition, it must save the contents of
that register immediately after procedure entry and restore the contents before the exit.
Thus, the contents of all callee-saves registers are guaranteed to be preserved across pro-
cedure calls.

A procedure is free to use the caller-saves registers without saving their contents on
entry. However, the contents of the caller-saves registers are not guaranteed to be pre-
served across calls. If a procedure has placed a needed value in a caller-saves register, it
must be stored to memory or copied to a callee-saves register before making a call.

Common Coding Conventions

2-22

Figure 2-2: Register Partitioning

GR0

GR1

GR2

GR3

GR18

GR19

GR22

GR31

:

:

:

GR23

GR26

GR27

GR28

GR29

GR30

:

Value (zero)

Scratch *

RP (Return Pointer/Address)

Callee Saves

Caller Saves

Arguments *

DP (Global Data Pointer)

Return Values *

SP (Stack Pointer)

MRP (Millicode Ret. Ptr)/Scratch *

* May also be considered part of the caller-saves partition

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-23

Other Register Conventions

The following are guaranteed to be preserved across calls:

• The procedure entry value of SP.

• The value of DP.

• Space registers SR3, SR4, SR5, SR6, and SR7.

Figure 2-3: Floating-Point Registers

FR0

FR3

FR4

FR7

FR31

:

:

FR11

FR12

FR21

FR22

:

:

:

:

FR8

Floating-Point Status and Exception

Arguments

Caller Saves

: Callee Saves *

Caller Saves*

*FR16-31 only available on PA-RISC processors version 1.1 or later

Common Coding Conventions

2-24

• The Processor Status Word (PSW).

• The state, including internal registers, of any special function units accessed by the
architected SPOP operations.

The following is not guaranteed to be preserved across calls:

• The shift (cr11) or any control registers that are modified by privileged software
(e.g. Protection IDs).

The Floating-Point Coprocessor Status Register

Within the floating-point coprocessor status register (FR0), the state of the rounding
mode (bits 21-22) and exception trap enable bits (bits 27-31) are guaranteed to be pre-
served across calls. An exception to this convention is made for any routine which is
defined to explicitly modify the state of the rounding mode or the trap enable bits on
behalf of the caller.

The states of the compare bit (bit 5), the delayed trap bit (bit 25), and the exception trap
flags (bits 0-4) are not guaranteed to be preserved across calls.

Value Parameters

Value parameters are mapped to a sequential list of argument words with successive
parameters mapping to successive argument words, except 64-bit parameters, which
must be aligned on 64-bit boundaries. Irregularly sized data items should be extended to
32 or 64 bits. (The practice that has been adopted is to right-justify the value itself, and
then left-extend it.) Non-standard length parameters that are signed integers are sign-
extended to the left to 32 or 64 bits. This convention does not specify how 1-31, 33-63-
bit data items are passed by value (except single ASCII characters).

Table 4 lists the sizes for recognized inter-language parameter data types. The form col-
umn indicates which of the forms (space ID, nonfloating-point, floating-point, or any)
the data type is considered to be.

☞

Note

If the routine in question is a non-leaf routine,return pointer GR2 must
be stored because subsequent calls will modify it. Once stored, it is
available to be used as a scratch register by the code generators.

Although common, it is not absolutely necessary that GR2 be restored
before exit; a branch (BV) using another caller-saves register is
allowed.

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-25

Inter-Language Parameter Data Types and Sizes
• Space Identifier (SID) (32 Bits): One arg word, callee cannot assume a valid SID.

• Non-Floating-Point (32 Bits): One arg word.

• Non-Floating-Point (64 Bits): Two words, double word aligned, high order word in
an odd arg word. This may create a void in the argument list (i.e. an unused register
and/or an unused word on the stack.)

• Floating-Point (32 Bits, single-precision): One word, callee cannot assume a valid
floating-point number.

• Floating-Point (64 Bits, double-precision): Two words, double word aligned (high
order word in odd arg word). This may create a void in the argument list. 64-bit
floating-point value parameters mapped to the first and second double-words of the
argument list should be passed in farg1 and farg3, respectively. farg0 and farg2 are
never used for 64-bit floating-point parameters. Callee cannot assume a valid float-
ing-point number.

• Any Larger Than 64 Bits: A short pointer (using SR5 - SR7) to the high-order byte
of the value is passed as a nonfloating-point 32-bit value parameter. The callee must

TABLE 4 Parameter Data Types and Sizes.

Type Size (bits) Form

ASCII character (in low order 8 bits) 32 Nonfloating-Pt.

Integer 32 Nonfloating-Pt. or
Space ID

Short Pointer 32 Nonfloating-Pt.

Long Pointer 64 Nonfloating-Pt.

Routine Reference (see below for details of Rou-
tine Reference)

32 or 64 Routine Reference

Long Integer 64 Nonfloating-Pt.

Real (single-precision) 32 Floating-Pt.

Long Real (double-precision) 64 Floating-Pt.

Quad Precision 128 Any

☞

Note The point is made that the callee “cannot
assume a valid” value in these cases because
no specifications are made in this convention
that would ensure such validity.

Common Coding Conventions

2-26

copy the accessed portion of the value parameter into a temporary area before any
modification can be made to the (caller's) data. The callee may assume that this
address will be aligned to the natural boundary for a data item of the parameter's
type. It should be noted that some compilers support options which allow data struc-
tures to be aligned on non-natural boundaries. The instruction sequence used to copy
the value should be consistent with the data alignment assumptions made by poten-
tial callers of that routine.

Reference Parameters

A short pointer to the referenced data item (using SR4-SR7) is passed as a nonfloating-
point 32-bit value parameter. The alignment requirements for the short pointer are the
same as those mentioned for value parameters larger than 64 bits. Note that SR4 can
only be used if the call is known to be local, because an external call will modify SR4.

Value-Result and Result Parameters

It is intended that language processors can use either the reference or value parameter
mechanisms for value-result and result parameters. In particular, Ada uses the argument
registers/parameters as output registers/parameters.

Routine References

This convention requires that routine references (i.e. procedure parameters, function
pointers, external subroutines) be passed as 32-bit nonfloating-point values.

It is expected that language processors that require a static link to be passed with a rou-
tine reference (i.e. Pascal passing level 2 procedures) will pass that static link as a sepa-
rate 32-bit nonfloating-point value parameter. A language processor is free to maximize
the efficiency of static scope linking within the requirements, without impacting other
language processors. (Pascal passes routine references as either two separate 32-bit val-
ues or as one 64-bit value.) See Chapter 5 for further details on Routine References.

Argument Register Usage Conventions

Parameters to routines are logically located in the argument list. When a call is made,
the first four words of the argument list are passed in registers, depending on the usage
and number of the argument. The first four words of the actual argument list on the stack
are reserved as spill locations for the argument registers. These requirement simply that

☞
Note The natural boundaries for data types on PA-

RISC are documented in the Programmer’s
Guide that is available for each supported
programming language.

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-27

the minimum argument list size is 16 bytes; this space must be allocated in the frame for
non-leaf procedures, but it may remain unused.

The standard argument register use conventions are shown in Table 5.

Function Return Values

Function result values are placed in registers as described in Table 6. As with value
parameters, irregularly sized function results should be extended to 32 or 64 bits. (The
practice that has been adopted is to right-justify the value itself, and then left-extend it.)
Non-standard length function results that are signed integers are sign-extended to the
left to 32 or 64 bits. This convention does not specify how 1 - 31 or 33 - 63-bit data
items are returned (except single ASCII characters).

When calling functions that return results larger than 64 bits, the caller passes a short
pointer (using SR5 - SR7) in GR28 (ret0) which describes the memory location for the
function result. The address given should be the address for the high-order byte of the
result. The function may assume that the result address will be aligned to the natural
boundary for a data item of the result's type. It should be noted that some compilers sup-
port options which allow data structures to be aligned on non-natural boundaries. The
instruction sequence used to store a function result should be consistent with the data
alignment assumptions made by potential callers of that function.

TABLE 5 Argument Register Use

void SID nonFP FP32 FP64

arg word 0 no reg sarg arg0 farg0 farg1 {32..63}

arg word 1 no reg arg1 arg1 farg1 farg1 {0..31}

arg word 2 no reg arg2 arg2 farg2 farg3 {32..63}

arg word 3 no reg arg3 arg3 farg3 farg3 {0..31}

definitions
:

void - arg word not used in this call

SID - space identifier value

nonFP - any 32-bit or 64-bit nonfloating-point

FP32 - 32-bit floating-point (single-precision)

FP64 - 64-bit floating-point (double-precision)

Common Coding Conventions

2-28

a. Although not common, it is possible to return floating-
point values in general registers, as long as the argument
relocation bits in the symbol record are set correctly.
(Refer to Parameter Relocation for more details.)

b. The caller may not assume that the result's address is
still in GR28 on return from the function.

TABLE 6 Return Values

Type of Return Value Return Register

ASCII character ret0 (GR28) - low order 8 bits

Nonfloating-Pt. (32-bit) ret0 (GR28)

Nonfloating-Pt. (64-bit) ret0 (GR28) - high order word

ret1 (GR29) - low order word

Floating-Pt. (32-bit) fret (FR4)a

Floating-Pt. (64-bit) fret (FR4)1

Space Identifier (32-bit) sret (SR1)

Any Larger Than 64-bit result is stored to memory at location described
by a short pointer passed by caller in GR28b

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-29

2.5.4 Type Checking and Floating-Point Parameter Relocation

Parameter Type Checking

Some compilers may place argument descriptors in the object file which contain infor-
mation about the type of each parameter passed and each formal argument expected.

These descriptors are then checked by the linker for compatibility. If they do not match,
a warning is generated. There is currently no mechanism available in the PA-RISC
assembler to generate these argument descriptors.

Parameter Relocation

The procedure calling convention specifies that the first four words of the argument list
and the function return value will be passed in registers: floating-point registers for
floating-point values, general registers otherwise. However, some programming lan-
guages do not require type checking of parameters, which can lead to situations where
the caller and the callee do not agree on the location of the parameters. Problems such as
this occur frequently in the C language where, for example, formal and actual parameter
types may be unmatched, due to the fact that no type checking occurs.

A parameter relocation mechanism alleviates this problem. The solution involves a short
code sequence, called a relocation stub, which is inserted between the caller and the
callee by the linker. When executed, the relocation stub moves any incorrectly located
parameters to their expected location. If a procedure is called with more than one calling
sequence, a relocation stub is needed for each non-matching calling sequence.

The compiler or assembler must communicate the location of the first four words of the
parameter list and the location of the function return value to the linker and loader. To
accomplish this, ten bits of argument location information have been added to the defi-
nitions of a symbol and a fix-up request. The following diagram shows the first word of
a symbol definition record in the object file.

Figure 2-4: Layout of Symbol Definition Record

symbol type scope check XL Q N M R argument location

bits 8 24 1 1 1 14 10

Common Coding Conventions

2-30

The argument location information is further broken down into five location values, cor-
responding to the first four argument words and the function return value, as shown
below:

The value of an argument location is interpreted as follows:

When the linker resolves a procedure call, it will generate a relocation stub if the argu-
ment location bits of the fixup request do not exactly match the relocation bits of the
exported symbol. One exception is where either the caller or callee specifies “do not
relocate”. The relocation stub will essentially be part of the called procedure, and the
linker can optionally add a symbol record for the stub so that it can be reused. The sym-
bol record will be the same as the original export symbol record, except that the reloca-
tion bits will reflect the input of the stub. The type will be STUB and the symbol value
will be the location of the relocation stub.

The execution of a relocation stub can be separated into the call path and the return path.
During the call path, only the first four words of the parameter list will be relocated,
while only the function return will be relocated during the return path. The control flow
is shown in Figure 2-5.

If the function return does not need to be relocated, the return path can be omitted and
the branch and link will be changed to a branch. The call path must always be executed,
but if the first four words of the parameter list do not need to be relocated, it can be
reduced to the code required to establish the return path (i.e save RP and branch and link
to the callee).

When multiple stubs occur during a single call (e.g. calling stub and relocation stub),
the stubs can be cascaded (i.e. used sequentially); in such a case, both RP' and RP''
would be used. (The relocation stub uses RP''.)

The linker will generate stubs for each procedure that can be called from another load
module (i.e. called dynamically). In addition, a stub will be required for each possible

a. For return values, '10' means a single precision
floating-point value, and '11' means double preci-
sion floating-point value.

Bits 22-23: define the location of parameter list word 0

Bits 24-25: define the location of parameter list word 1

Bits 26-27: define the location of parameter list word 2

Bits 28-29: define the location of parameter list word 3

Bits 30-31: define the location of the function value return

00 Do not relocate

01 arg Argument register

10 FR Floating-point register (bits 0..31)a

11 frupper Floating-point register (bits 32..63)1

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-31

calling sequence. Each of these stubs will contain the code for both relocation and exter-
nal return, and will be required to contain a symbol definition record. Both calling and
called stubs use a standard interface: calling stubs always relocate arguments to general
registers, and called stubs always assume general registers.

In order to optimize stub generation, the compilers should maximize the use of the argu-
ment location value 00 (do not relocate). A linker option may be provided, which will
allow the user to turn stub generation on or off, depending on known conditions. Also, a
linker option is provided to allow the user to inhibit the generation of stubs for run-time
linking. In this case, if a mismatch occurs, it will be treated as a parameter type check-
ing error (which is totally independent of parameter relocation).

Assembly programmers can specify argument relocation information in the “.CALL''
and “.EXPORT'' assembler directives.

Figure 2-5: Parameter Relocation Stub.

E
n
t
r
y

.

.

.

E
n
t
r
y

.

.

.

Caller Callee

Parameter
Relocation Stub

Relocate
Arguments

Branch & Link

Relocate
Return Value

Common Coding Conventions

2-32

2.5.5 Standard Procedure Calls

The code generated by the compiler to perform a procedure call is the same whether the
call is external or local. If the linker locates the procedure being called within the pro-
gram file, it will make the call local by patching the BL instruction to directly reference
the entry point of the procedure. If the linker determines that the called procedure is out-
side of the program file, it makes the call external by inserting an import stub (calling
stub) into the calling code, and patching the BL instruction to branch to the stub. For any
routine in the program file which the linker detects is called from outside of that pro-
gram file, an export stub (called stub) is inserted into the program file's code.

Long Calls

Normally, the compilers generate a single-instruction call sequence using the BL
instruction to perform a procedure call. However, the compilers can be forced to gener-
ate a long call sequence when the module is so large that the BL instruction is not guar-
anteed to reach the beginning of the subspace. For example, COBOL compilers that
typically compile large applications need to make sure that the BL instruction can reach
to the beginning of suspace (including an estimation of stubs that will be generated by
the linker, currently HP compilers allocate 2K bytes for stubs) is within the range of
256K bytes. Otherwise, a long call sequence as show below should be generated instead
of the BL branch instruction. At link phase, the linker can then insert a stub. The exist-
ing long call sequence is three instructions, using an absolute target address:

LDIL L’target,%r1

BLE R’target(%sr4,%r1)

COPY %r31,%rp

When the PIC option is in effect, the compilers must generate the following instruction
sequence, which is PC-relative:

 BL .+8,%rp ; get pc into rp

 ADDIL L’target - $L0 + 4, %rp ; add pc-rel offset to rp

 LDO R’target - $L1 + 8(%r1), %r1

$L0: LDSID (%r1), %r31

$L1: MTSP %r31, %sr0

 BLE 0(%sr0,%r1)

 COPY %r31,%rp

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-33

External Calls
External calls occur in both shared libraries and the programs which use them. A shared
library contains subroutines that are shared by all programs that use them. Shared librar-
ies are attached to the program at run time rather than copied into the program by the
linker. Since the shared library code is not copied into the program file and is shared
among several programs as a separate load module, an external call mechanism is
needed.

In order for the object code in a shared library to be fully sharable, it must be compiled
and linked in such a way that it does not depend on its position in the virtual addressing
space of any particular process. In other words, the same physical copy of the code must
work correctly in each process.

Position independence is achieved by two mechanisms. First, PC-relative addressing is
used wherever possible for branches within modules and for accesses to literal data.
Second, indirect addressing through a per-process linkage table is used for all accesses
to global variables, for inter-module procedure calls and other branches and literal
accesses where PC-relative addressing cannot be used. Global variables must be
accessed indirectly since they may be allocated in the main program's address space,
and even the relative position of the global variables may vary from one process to
another.

Position-independent code (PIC) implies that the object code contains no absolute
addresses. Such code can be loaded at any address without relocation, and can be shared
by several processes whose data segments are allocated uniquely. This requirement
extends to DP-relative references to data. In position-independent code all references to
code and data must be either PC-relative or indirect. All indirect references are collected
in a single linkage table that can be initialized on a per-process basis.

The Linkage Table (LT) itself is addressed in a position-independent manner by using a
dedicated register, gr19, as a pointer to the Linkage Table. The linker must generate
import (calling) and export (called) stubs which set gr19 to the Linkage Table pointer
value for the target routine, and handle the inter-space calls needed to branch between
shared libraries.

The code in the program file itself does not need to be position independent, but it must
access all external procedures through its own linkage table by using import stubs. The
Linkage Table in shared libraries is accessed using a dedicated Linkage Table pointer
(LTP), whereas the program file accesses the Linkage Table through the DP register.

Code which is used in a shared library must be compiled as position independent code.
Refer to compiler documentation for specific instructions. Code in the program file is
not PIC and the linker places the import/export stubs into the program file to handle
external calls.

Common Coding Conventions

2-34

When building a shared library, the linker must generate import and export stubs for all
procedures which can be called from outside of the shared library. Figure 2-6 below
shows the control flow of an external call.

Calling Code

The calling code in program files is responsible for performing the standard procedure
call steps regardless of whether the call is external or local. The linker generates an
import stub to perform the additional steps required for external calls.

The import stub (calling stub) of an external call performs the following steps:

• Loads the target (export stub) address of the procedure from the Linkage Table

• Loads into gr19 the LTP (Linkage Table Pointer) value of the target load module.

• Saves the return pointer (RP'), since the export stub will overwrite RP with the
return address into the export stub itself.

• Performs the interspace branch to the target export stub.

The code sequence of the import stub used in the program file is shown below:

Import Stub (Program file)1

LDW disp(0, dp), r21

1. The two import stubs are for +DA2.0. For +DA1.1, the compiler uses

LDSID/MTSP/BE sequence instead of BVE.

Figure 2-6: Flow of an External Procedure Call

Program File Shared Library

Caller Callee

Import Stub
Export Stub

1

2

3

4

5

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-35

LDW disp+4(0, dp), r19
BVE 0(r21)
STW rp, -24(0, sp)

The difference between a shared library and program file import stub is that the Linkage
Table is accessed using gr19 (the LTP) in a shared library, and is accessed using DP in
the program file.

The code sequence of the import (calling) stub used in a shared library is shown below:

Import Stub (Shared Library)

X': LDW disp(0, r19), r21
LDW disp+4(0, r19), r19
BVE 0(r21)
STW rp, -24(0, sp)

Called Code

The called code in shared library files is responsible for performing the standard proce-
dure call steps regardless of whether the call is external or local.

The linker generates an export stub to perform the additional steps required for shared
library external calls. The export stub is used to trap the return from the procedure and
perform the steps necessary for an inter-space branch.

The export stub (called stub) of a shared library external call performs the following
steps:

• Branches to the target procedure. The value stored in RP at this point is the return
point into the export stub.

• Upon return from the procedure, restores the return pointer (RP').

• Performs an interspace branch to return to the caller.

The code sequence of the export stub is shown below:

For +DA1.1 :

X': BL,N X,rp ;trap the return
NOP
LDW -24(sp),rp ;restore the original rp
LDSID (rp),r1 ;load space id of return address
MTSP r1,sr0 ;move space id from general reg. to space

;register
BE,N 0(sr0,rp) ; inter-space return

Common Coding Conventions

2-36

For +DA2.0 :

X': <optional parameter relocation code>
BLL <entry>
NOP
<optional return relocation code>
LDW -24(0,sp),rp ; restore the original RP
BVE,N 0(rp) ; inter-space return

PIC Requirements for Compilers and Assembly Code

Any code which is PIC or which makes calls to PIC must follow the standard procedure
call mechanism. In addition, register gr19 (the linkage table pointer register) must be
stored at sp-32 by all PIC routines. This should be done once upon procedure entry.
Register gr19 must also be restored upon return from each procedure call, even if gr19 is
not referenced explicitly before the next procedure call. The LTP register, gr19, is used
by the import stubs and must be valid at all procedure call points in position indepen-
dent code. If the PIC routine makes several procedure calls, it may be wise to copy gr19
into a callee-saves register as well, to avoid a memory reference when restoring gr19
upon return from each procedure call. As with gr27 (DP), the compilers must treat gr19
as a reserved register whenever position-independent code is being generated.

2.5.6 Indirect Procedure Calls

Procedure Labels and Dynamic Calls

PA-RISC compilers must generate the code sequence required for proper handling of
procedure labels and dynamic procedure calls. Assembler programmers must use the
same code sequence, described below, in order to insure proper handling of procedure
labels and dynamic procedure calls.

A procedure label is a specially-formatted variable that is used to link dynamic proce-
dure calls. The format of a procedure label is shown below in Figure 2-7.

Figure 2-7: Procedure Label Layout

SID Address Part L X

bits 2 28 1 1

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-37

The X field in the address section of the procedure label is reserved. The L field is used
to flag whether the procedure label is a pointer to an LT entry (L-field is on) or to the
entry point of the procedure.

The plabel calculation produced by the compilers in both shared libraries and incom-
plete executables is modified by the linker, when building shared libraries and incom-
plete executables, to load the contents of an LT entry which is built for each symbol
associated with a CODE_PLABEL fixup.

In shared libraries and incomplete executables, a plabel value is the address of a PLT
(Procedure Linkage Table) entry for the target routine, rather than a procedure address;
therefore a utility routine named $$dyncall must be used when calling a routine via a
procedure label. The linker sets the L field (second-to-last bit) in the procedure label to
flag this as a special PLT procedure label. The $$dyncall routine checks this field to
determine which type of procedure label has been passed, and calls the target procedure
accordingly. The $$dyncall routine assumes that the X field is always 0.

The following pseudo-code sequence shows the process used by $$dyncall to perform
dynamic calls:

IF (L-field in Plabel) = 0 THEN
Perform interspace branch using Plabel as target address;
ELSE BEGIN
 Clear L-field;
 Load new LTP value into gr19;
 Load address of target;
 Save RP';
 Perform interspace branch to target address;
 END.

In order to generate a procedure label that can be used for shared libraries and incom-
plete executables, assembly code must specify that a procedure address is being taken
(and that a plabel is wanted) by using the P' assembler fixup mode. For example, to gen-
erate an assembly plabel, the following sequence must be used:

Take the address of a function

LDIL LP'function,r1
LDO RP'function(r1), r22

This code sequence will generate the necessary PLABEL fixups that the linker needs in
order to generate the proper procedure label. The $$dyncall millicode routine in /lib/
milli.a (linked in automatically by linker) must be used to call a procedure using this
type of procedure label (i.e. a BL/BV will not work). For example:

Now to call the routine using a plabel

BL $$dyncall, 31 ; r22 is the input register for $$dyncall

Common Coding Conventions

2-38

COPY r31, r2

The compilers generate the necessary code sequence required for proper handling of
procedure labels.

2.5.7 Millicode Procedure Calls

Millicode is PA-RISC’s simulation of complex microcoded instructions, accomplished
through the creation of assembly-level subroutines that perform the desired tasks. While
these subroutines perform comparably to their microcoded counterparts, they are archi-
tecturally similar to any other standard library routines, differing only in the manner in
which they are accessed. As a result, millicode is portable across the entire family of
PA-RISC machines, rather than being unique to a single machine (as is usually the case
with traditional microcode).

Millicode routines are accessed through a mechanism similar to a procedure call, but
with several significant differences. In general terms, the millicode calling convention
stresses simplicity and speed, utilizing registers for all temporary argument storage and
eliminating the need for the creation of excess stack frames. Thus, a great majority of
the overhead expense associated with a standard procedure call is avoided, thereby
reducing the cost of execution.

Making a Millicode Call

A call to a millicode routine can only be made from the assembly level. It is currently
not possible to directly call a millicode function from high-level programming lan-
guages.

It is intended that the standard register usage conventions be followed, with two excep-
tions:

• The return address (MRP) is passed in gr31; and

• Function results are returned in gr29.

There are, however, many non-standard practices regarding millicode register usage.

Local millicode can be accessed with three different methods, depending on its location
relative to currently executing code. These three methods are:

• A standard Branch and Link (BL), if the millicode is within 256K bytes of the caller,

• A BLE instruction, if the millicode is within 256K bytes of a predefined code base
register, and

• The two-instruction sequence (LDIL,BLE) that can reach any address or a BL with a
linker-generated stub.

Common Coding Conventions

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 2-39

2.6 Program Startup

All programs must include the start-up routine crt0.o. This code defines entry points,
initializes program variables such as DP, and checks for dynamic libraries. The symbols
defined by crt0.o are listed in Table 7, and the value of processor’s registers are defined
in Table 8.

a. The symbols __text_start and __data_start are defined by the
linker.

TABLE 7 Symbols Defined By crt0.o

Symbol Description

__argc_value A variable of type int containing the number of arguments.

__argv_value An array of character pointers to the arguments themselves.

_environ An array of character pointers to the environment in which the program
will run. This array is terminated by a null pointer.

_SYSTEM_ID A variable of type int containing the system id value for an executable
program.

$START$ Execution start address.

_start A secondary start-up routine for C programs, called from $START$,
which in turn calls main. This routine is contained in the C library rather
than in the crt0.o file. For Pascal and FORTRAN programs, this symbol
labels the beginning of the outer block (main program) and is generated
by the compilers.

$global$ The initial address of the program’s data pointer. The start-up code loads
this address into GR 27.

$UNWIND_START The beginning of the stack unwind table.

$UNWIND_END The end of the stack unwind table.

$RECOVER_START The beginning of the try/recover table.

$RECOVER_END The end of the try/recover table.

__text_start The beginning address of the program’s text area.a

__data_start The beginning address of the program’s data area.a

Common Coding Conventions

2-40

a. Space register 4 is unprivileged, but it must not be modified
by a conforming application.

b. Space registers 5 and 7 are privileged and cannot be modi-
fied by a conforming application.

C=Code Addr. Translation Enable,

D=Data Addr. Translation Enable

P=Protection ID Validation Enable

Q=Interruption State Collection Enable

B=Taken Branch bit

M=High-priority machine check mask

N=Nullify bit

c.

TABLE 8 Register Definition at Process Initialization

Register
C Source
Definition Value

GR 24 char ** envp array of pointers to environment strings

GR 25 char ** argv array of pointers to arguments

GR 26 int argc argument count

GR 30 stack pointer, set by O.S.

All Other GR’s Undefined

SR 4 address of first quadrant of virtual address spacea

SR 5 address of second quadrant of virtual address spaceb

SR 7 address of fourth quadrant of virtual address space

SR0-SR3 Undefined

SAR (Shift Amount
Register)

Undefined

All Co-processors’

Registers

Undefined

CCR (Co-processor

Config. Register)

If any bits are set then the corresponding co-processor
must be present and functional

PSW (Processor

Status Word)

Bitsc C,D,P,Q =1; Bits B, M, N =0

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-41

CHAPTER 3 Relocatable Object Files

The SOM common object file format defined in this document is intended to be a com-
mon representation of code and data for all compilers which generate code for PA-RISC
based systems. A SOM is the smallest unit which may be generated by a compiler, and
it may exist as a single entity or as part of a collection.

The SOM consists of a main header record, an exec auxiliary header record, and other
optional components. The location and size of the auxiliary header record and all other
components are defined in the main header record. Each location is given by a byte off-
set (relative to the first byte of the header), and the size is given either by the number of
entries (records) of the component, or the total number of bytes in the component.

The first byte of the header record is also the first byte of the SOM. It contains a 'magic'
number which distinguishes the SOM from any other entity, such as a Library File or a
random access archive. In addition to defining the size and location of the other compo-
nents of the SOM, the header contains a time stamp and other identifying information.

Figure 3-1 below shows the general block diagram of a SOM.

Table 9 shows a suggested layout of records in a SOM.

Relocatable Object Files

3-42

Figure 2-8: Block Diagram of the SOM

Header
Record

Compilation
 Unit

Dictionary

Space
Dictionary

Subspace
Dictionary

Symbol
Dictionary

Fixup
Request
Array

Space/
Subspace

String Area

Comp. Unit
Symbol Dict.
String Area

Auxiliary
Header
Area

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-43

3.1 Object File Header

The first halfword of the header record contains a 'system id' number, identifying the tar-
get architecture of the SOM. The second halfword of the header record contains a
'magic number', identifying the type of this SOM. Following this, a character array will
contain the version ID of the SOM format, and a time stamp specifying the time of cre-
ation of the particular SOM.

The remaining fields in the header record define the other components of the SOM.
These fields provide a means to do bounds checking when there is a reference to a par-
ticular component.

The SOM header is required in any executable or relocatable object.

The C language definition of the SOM header is shown in Figure 2-9

system_id

This 2-byte field is used to identify the architecture that this object module is targeted
for. The system ID for PA-RISC 1.0 systems is 20b (hexadecimal) , for PA-RISC 1.1
systems is 210 (hexadecimal), and for PA-RISC 2.0 systems is 214 (hexadecimal).

a_magic

This 2-byte field is a number that indicates certain characteristics about the internal for-
mat of the object module. The magic numbers that are currently defined for use on PA-
RISC systems are listed in Table 10.

TABLE 9 Record Layout of a SOM

Header Record

Auxiliary Header Record

Space Records

Subspace Records

Loader Fixup Records

Space Strings

Symbol Records

Fixup Records

Symbol Strings

Compiler Records

Data for Loadable Spaces

Data for Unloadable Spaces

Relocatable Object Files

3-44

Figure 2-9: Definition of SOM Header Fields

struct header {

short int system_id; /* magic number - system */

short int a_magic; /* magic number - file type */

unsigned int version_id; /* version id; format=YYMMDDHH */

struct sys_clock file_time; /* system clock- zero if unused */

unsigned int entry_space; /* index of space containing

entry point */

unsigned int entry_subspace; /* index of subspace for

entry point */

unsigned int entry_offset; /* offset of entry point */

unsigned int aux_header_location; /* auxiliary header location */

unsigned int aux_header_size; /* auxiliary header size */

unsigned int som_length; /* length in bytes of entire som*/

unsigned int presumed_dp; /* DP value assumed during

compilation */

unsigned int space_location; /* location in file of space

dictionary */

unsigned int space_total; /* number of space entries */

unsigned int subspace_location; /* location of subspace entries */

unsigned int subspace_total; /* number of subspace entries */

unsigned int loader_fixup_location; /* MPE/iX loader fixup */

unsigned int loader_fixup_total; /* number of loader fixup records */

unsigned int space_strings_location; /* file location of string area

for space and subspace names */

unsigned int space_strings_size; /* size of string area for space

and subspace names */

unsigned int init_array_location; /* reserved for use by system */

unsigned int init_array_total; /* reserved for use by system */

unsigned int compiler_location; /* location in file of module

dictionary */

unsigned int compiler_total; /* number of modules */

unsigned int symbol_location; /* location in file of symbol

dictionary */

unsigned int symbol_total; /* number of symbol records */

unsigned intfixup_request_location; /* location in file of fix_up

requests */

unsigned int fixup_request_total; /* number of fixup requests */

unsigned int symbol_strings_location; /* file location of string area

for module and symbol names */

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-45

Note that the magic numbers for executable and relocatable SOM libraries indicate that
the header is an LST header rather than a SOM header.

version_id

This is a number that is used to associate the SOM with the correct definition of its inter-
nal organization. The value of the number will be an encoding of the date the SOM ver-
sion was defined.

The version ID can be interpreted by viewing it in its decimal form and separating it into
character packets of YYMMDDHH, where YY is the year, MM is the month, DD is the
day, and HH is the hour.

The version_id that are currently defined for use by conforming applications are
85082112 for old version ID and 87102412 for new versoin ID with new fixups.

file_time

unsigned int symbol_strings_size; /* size of string area for

module and symbol names */

unsigned int unloadable_sp_location; /* byte offset of first byte of

data for unloadable spaces */

unsigned int unloadable_sp_size; /* byte length of data for

unloadable spaces */

unsigned int checksum;

};

TABLE 10 Magic Number Values

Magic Number
(in hexadecimal) SOM Type

0104 Executable SOM Library

0106 Relocatable SOM

0107 Non-sharable, executable SOM

0108 Sharable, executable SOM

010B Sharable, demand-loadable executable SOM

010D Dynamic Load Library

010E Shared Library

0619 Relocatable SOM Library

Figure 2-9: Definition of SOM Header Fields (Continued)

Relocatable Object Files

3-46

The file time is a 64 bit value that represents the time the file was last modified. The file
time is actually composed of two 32 bit quantities where the first 32 bits is the number
of seconds that have elapsed since January 1, 1970 (at 0:00 GMT), and the second 32
bits is the nano second of the second (which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystems
(e.g. the file system). The use of this field is optional, but if it is not used it will be set to
zero.

entry_space

This is the space dictionary index of the space containing the main entry point of this
particular SOM.

entry_subspace

This is the subspace dictionary index of the subspace containing the main entry point of
this particular SOM.

entry_offset

This is the byte offset of the main entry point of the SOM relative to the first byte of the
space.

aux_header_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the auxiliary header area. Setting all bits to zero indicates that the auxiliary
header record is not defined in a SOM. The auxiliary header must start on a word
boundary.Aux_header_locationmust have a value in the range 0 to 231-1. See
“Auxiliary Headers” on page 117. for restrictions on auxiliary headers.

aux_header_size

This field contains the byte length of the auxiliary header area. If the number of bytes is
zero it indicates that no auxiliary headers are defined in the SOM. The size must be a
multiple of 4 bytes. The fieldaux_header_size must have a value in the range 0 to
231-1.

som_length

This field contains the length in bytes of the entire SOM. The fieldsom_length must
be in the range 0 to 231-1.

presumed_dp

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-47

This field is only specified for shared libraries. It contains the value of the data pointer
(DP) assumed during compilation or linking of this SOM. In a shared library,
presumed_dpis the value of the data pointer that the linker used as a base to initialize
data. The dynamic loader will subtract this value to get the offset of the data.

space_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the space dictionary. Setting all bits to zero in space_location indicates that the
space dictionary is not defined in a SOM. The space dictionary must start on a word
boundary.Space_location must have a value in the range 0 to 231-1.

space_total

This field contains the number of space records in the space dictionary. Setting all bits to
zero inspace_total means that the space dictionary is not defined in a SOM.
Space_total must have value in the range 0 to 231-1.

subspace_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the subspace dictionary. Setting all bits to zero insubspace_location indi-
cates that the subspace dictionary is not defined in a SOM. The subspace dictionary
must start on a word boundary.Subspace_location must have a value in the range 0
to 231-1.

subspace_total

This field contains the number of subspace records in the subspace dictionary. Setting
all the bits to zero insubspace_total means that the subspace dictionary is not
defined in a SOM.Subspace_total must have a value in the range 0 to 231-1.

loader_fixup_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the loader fixup array. Loader fixup is used only in MPE/iX for relocation at load
time. Setting all bits to zero inloader_fixup_location indicates that the loader fixup
array is not defined in the SOM. The loader fixup array must start on a word boundary
and theloader_fixup_location must have a value in the range 0 to 231-1.

loader_fixup_total

This field contains the number of loader fixup records in the loader fixup array. Setting
all bits to zero inloader_fixup_total indicates that the loader fixup array is not defined in
the SOM.loader_fixup_total must have a value in the range 0 to 231-1.

Relocatable Object Files

3-48

space_strings_location

Space_strings_location points to a string area that contains both space and sub-
space names. It is a byte offset relative to the first byte of the SOM header. Setting all
bits to zero indicates that the space subspace string area is not defined in a SOM. The
space subspace string area must start on a word boundary. Space_strings_location
must have a value in the range 0 to 231-1.

space_strings_size

This field contains the byte length of the space subspace string area. Setting all bits to
zero inspace_strings_size indicates that the string area is not defined in a SOM.
Space_strings_sizemust be a multiple of 4 bytes and be in the range 0 to 231-1.

init_array_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the initialization pointer array Setting all bits to zero ininit_array_location indi-
cates that the initialization pointer array is not defined in the SOM. The initialization
pointer array must start on a word boundary and theinit_array_location must have a
value in the range 0 to 231-1.

init_array_total

This field contains the number of initialization pointer records in the initialization
pointer array. Setting all bits to zero ininit_array_total indicates that the initialization
pointer array is not defined in the SOM.init_array_total must have a value in the range
0 to 231-1

compiler_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the compilation unit dictionary. Setting all bits to zero incompiler_location
indicates that the compilation unit dictionary is not defined in a SOM. The compilation
unit dictionary must start on a word boundary.Compiler_location must have a value
in the range 0 to 231-1.

compiler_total

This field contains the number of compilation unit records in the compilation unit dic-
tionary. Setting all bits to zero in compiler_total means that the compilation unit dic-
tionary is not defined in a SOM.Compiler_total must have a value in the range 0 to
231-1.

symbol_location

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-49

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the symbol dictionary. Setting all bits to zero insymbol_location indicates
that the symbol dictionary is not defined in a SOM. The symbol dictionary must start on
a word boundary.Symbol_location must have a value in the range 0 to 231-1.

symbol_total

This field contains the number of symbol records in the symbol dictionary (including
symbol and argument extension records). Setting all bits to zero in symbol_total
means that the symbol dictionary is not defined in a SOM.Symbol_total must have a
value in the range 0 to 231-1.

fixup_request_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the fixup request dictionary. Setting all bits to zero in
fixup_request_location indicates that the fixup request array is not defined in a
SOM. The fixup request array must start on a word boundary.
Fixup_request_location must have a value in the range 0 to 231-1.

fixup_request_total

This field contains the number of fixup request records in the fixup request dictionary.
Setting all bits to zero infixup_request_total means that the fixup request dictionary
is not defined in a SOM.fixup_request_total must have a value in the range 0 to 231-
1.

symbol_strings_location

Symbol_strings_location is a pointer to an area that contains symbol names and
compilation unit names. It is a byte offset relative to the first byte of the SOM header.
Setting all bits to zero insymbol_strings_location indicates that there are no sym-
bol or compilation unit names in a SOM. The symbol string area must start on a word
boundary.Symbol_strings_location must have a value in the range 0 to 231-1.

symbol_strings_size

This field contains the byte length of the symbol dictionary string area. Setting all bits to
zero insymbol_strings_size indicates that the symbol string area is not defined in a
SOM.Symbol_strings_size must be a multiple of 4 bytes and be in the range 0 to
231-1.

unloadable_sp_location

This is a byte offset relative to the first byte of the SOM header that points to the first
byte of the data for unloadable spaces. Setting all bits to zero in
unloadable_sp_location indicates that there are no unloadable spaces defined in a

Relocatable Object Files

3-50

SOM. The data for unloadable spaces must be double-word aligned.
Unloadable_sp_location must have a value in the range 0 to 231-1.

unloadable_sp_size

This field contains the byte length of the data for unloadable spaces. Setting all bits to
zero inunloadable_sp_sizeindicates that the data for unloadable spaces is not
defined in a SOM.Unloadable_sp_size must be a multiple of 8 bytes and be in the
range 0 to 231-1.

checksum

This field is the exclusive OR of all the words, excluding the checksum field, of the
SOM header. It will be used to quickly evaluate valid SOM headers.

3.2 Compilation Unit Records

A compilation unit is defined as the set of procedures compiled by a single invocation of
a given compiler. The compilation unit dictionary contains one entry for each SOM cre-
ated by an invocation of a compiler. The Compilation Unit Record contains information
for version identification of the compiler which generated the given SOM. Each entry
contains information which may be used to identify the source name, the compiler lan-
guage, the compiler product number, and the particular version of the compiler used.
Lastly, each entry contains time stamps which identify the last modification made to the
(main) source file and the time of compilation.

name

struct compilation_unit {

union name_p name;

union name_pt language_name;

union name_pt product_id;

union name_pt version_id;

unsigned int reserved : 31;

unsigned int chunk_flag : 1;

struct sys_clock compile_time;

 struct sys_clock source_time;
} ;

Figure 2-10:Definition of Compilation Unit
Dictionary Record

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-51

This field contains a byte offset relative to the symbol string area which points to the
first character of the string defining the entry name. The compilers should supply the
name of the source file that produced the SOM.

language_name

This field contains a 32-bit index into the symbol string area, which points to the first
character of the name of the language used when creating this SOM.

product_id

This field contains a 32-bit index into the symbol strings area which points to the first
character of the identification number of the compiler.

version_id

This field contains a 32-bit index into the symbol strings area which points to the first
character of the version id of the compiler.

reserved

These bits are reserved for future expansion.

chunk_flag

This field indicates that the compilation unit is not the first SOM in a multiple chunk
compilation.

compile_time

compile time is a 64 bit value that represents the time the file was last compiled. The
file time is actually composed of two 32 bit quantities where the first 32 bits is the num-
ber of seconds that have elapsed since January 1, 1970 (at 0:00 GMT), and the second
32 bits is the nano second of the second (which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystems
(e.g. the file system). The use of this field is optional, but if it is not used it will be set to
zero.

source_time

The file time is a 64 bit value that represents the time the file was last modified. The time
is represented in the same format ascompile_time.

Relocatable Object Files

3-52

This value is independent of any modification time maintained by other subsystems
(e.g. the file system). The use of this field is optional, but if it is not used it will be set to
zero.

3.3 Space Dictionary

The space dictionary consists of a collection of space records in contiguous bytes in the
file. A space record is a template which defines attributes of a space (which correspond
to the address spaces defined in the PA-RISC Architecture). Spaces, in general, are used
as logical divisions of virtual memory. Current implementations may allow only one
code and one data space. Theaccess_control_bits field of a subspace record indicate
whether a subspace is code or data. Each space record will indicate the space name, a
pointer to the start of the subspace list, and a pointer to the start of the list of data initial-
ization pointers that are to be applied to a space.

name_pt

The fieldname_pt is an index into the space string area which points to the first char-
acter of the ascii representation of the space name. The index is a byte offset relative to
thespace_strings_location field of the SOM header. See the section on string areas
for more details on the format of a name.name_pt is a byte offset relative to the field
space_strings_location in the SOM header.name_pt can be converted to a file
byte offset by:

struct space_dictionary_record {

union name_pt name; /* index to subspace name */

unsigned int is_loadable : 1; /* space is loadable */

unsigned int is_defined : 1; /* space is defined within file */

unsigned int is_private : 1; /* space is not sharable */

unsigned int has_intermediate_code: 1; /* contain intermediate code */

unsigned int is_tspecific : 1; /* is thread specific */

unsigned int reserved : 11; /* reserved for future expansion */

unsigned int sort_key : 8; /* sort key for space */

unsigned int reserved2 : 8; /* reserved for future expansion */

int space_number; /* space index */

int subspace_index; /* index into subspace dictionary*/

unsigned int subspace_quantity; /* number of subspaces in space */

int loader_fix_index; /* loader usage*/

unsigned int loader_fix_quantity; /* loader usage*/

int init_pointer_index; /* index into data(initialization)

pointer array */

unsigned int init_pointer_quantity; /* number of data (init) pointers*/
};

Figure 2-11:Space Dictionary Record Definition

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-53

offset =name_pt

+ space_strings_location (found in the SOM header)

+ address of the first byte of the SOM header.

If name_pt is greater than the fieldspace_strings_size in the SOM header it is an
error. Setting all bits to zero inname_pt indicates a null name pointer.name_pt must
have a value in the range 0 to 231-1.

is_loadable

Bit 0

If a space is loadable this flag is set to one. If a space is not loadable this flag is set to
zero. Code and data for a load module will be the typical loadable spaces.

is_defined

Bit 1

If a space is defined in the file in which the space record resides the flag is set to one. If
a space is not defined in the file in which the space record resides then the flag is set to
zero.

is_private

Bit 2

If this flag is set then the space is non-sharable.

has__intermediate_code

Bit 3

This bit indicates that the space has only intermediate code in it (ISOM). The space will
also be marked unloadable at the same time. The symbol dictionary information is com-
plete but not meaningful since the $TEXT$ and $PRIVATE$ spaces are empty.

is_tspecific

Bit 4

$TSPECIFIC$ (TSD) space.

Relocatable Object Files

3-54

Reserved

Bit 5-15

These bits are reserved for future expansion.

sort_key

Bits 16-23

This field specifies a sort key which may be used by the linker for ordering spaces in the
output file.

reserved1

Bits 24-31

These bits are reserved for future expansion.

space_number

This field specifies the number assigned to this space. Current implementations may
default the space number values. Current implementations may ignore this field.

subspace_index

This field is an index into the subspace dictionary. All of the subspace records for a par-
ticular space will be in contiguous records in the subspace dictionary.
subspace_index can be converted to a file byte offset by:

offset =subspace_index * size of (subspace record) +

subspace_dictionary_location (found in the SOM header)

+ address of the first byte of the SOM header.

If subspace_index is greater than the fieldsubspace_dictionary_total in the
SOM header it is an error. Ifsubspace_index is negative then there are no subspaces
defined for that space.Subspace_index must have a value in the range -231 to 231-1.

subspace_quantity

Subspace_quantity is a number indicating how many subspaces are in a space. If
subspace_index + subspace_quantity is greater than the field
subspace_dictionary_total in the SOM header it is an error. If

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-55

subspace_quantity is zero then there are no subspaces in that space.
Subspace_quantity must have a value in the range 0 to 231-1.

loader_fix_index

Index into loader fixup array.

loader_fix_quantity

Number of loader fixups in this space.

init_pointer_index

This field is an index into the initialization pointer array. All of the initialization pointers
for a particular space will be in contiguous records in the initialization pointer array.
init_pointer_index can be converted to a file byte offset by:

offset =init_pointer_index * sizeof (initialization pointer record)

+ init_array_location (found in the SOM header)

+ address of the first byte of the SOM header.

If init_pointer_index is greater than the fieldinit_array_total in the SOM header
it is an error. Ifinit_pointer_index is negative then there are no initialization pointers
for that space.Init_pointer_index must have a value in the range -231 to 231-1.

init_pointer_quantity
Init_pointer_quantity is a number indicating how many initialization pointers are in
the space. Ifinit_pointer_index + init_pointer_quantity is greater than
init_array_total in the SOM header it is an error. Ifinit_pointer_quantity is zero
then there are no initialization pointers for that space.Init_pointer_quantity must
have a value in the range 0 to 231-1.

3.4 Subspace Dictionary

A subspace corresponds to a logical subdivision of an address space. A subspace record
is a template used to define the attributes of a subspace. The subspace dictionary con-
sists of a collection of subspace records in contiguous bytes in the file. The subspace
records are grouped by space. They contain information that can be used for relocation,
setting of access rights of pages, determining how to build data areas, requesting a sub-
space to be locked in memory, and alignment requests.

Subspaces cannot be broken up into smaller entities, therefore there must not be any
inter-subspace references generated without also generating a fixup for that reference.

Relocatable Object Files

3-56

Compilers are responsible for insuring that all branches can reach the beginning of their
subspace.

space_index

struct subspace_dictionary_record {

int space_index;

unsigned int access_control_bits :7; /* access for PDIR entries */

unsigned int memory_resident :1; /* lock in memory during

execution */

unsigned int dup_common :1; /* data name clashes allowed */

unsigned int is_common :1; /* subspace is a common
block*/

unsigned int is_loadable :1;

unsigned int quadrant :2; /* quadrant request */

unsigned int initially_frozen :1; /* must be locked into memory

when OS is booted */

unsigned int is_first :1; /* must be first subspace */

unsigned int code_only :1; /* must contain only code */

unsigned int sort_key :8; /* subspace sort key */

unsigned int replicate_init :1; /* init values replicated to

fill subspace_length */

unsigned int continuation :1; /* subspace is a continuation*/

unsigned int is_tspecific :1; /* Is thread specific ?*/

unsigned int is_comdat :1; /* Is for COMDAT subspaces?*/

unsigned int reserved :4;

int file_loc_init_value; /* file location or

initialization value */

unsigned int initialization_length;

unsigned int subspace_start; /* starting offset */

unsigned int subspace_length; /* number of bytes defined

by this subspace */

unsigned int reserved2 :5;

unsigned int alignment :27; /* alignment required for the

subspace (largest alignment

requested for any item in

the subspace) */

union name_pt name; /* index of subspace name */

int fixup_request_index; /* index into fixup array */

unsigned int fixup_request_quantity; /* number of fixup requests */

};

Figure 2-12:Subspace Dictionary Record Definition

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-57

This field is a index into the space dictionary. All of the space records will be in contig-
uous records in the space dictionary. space_index can be converted to a file byte offset
by:

offset =space_index * size of (space record)

+ space_dictionary_location (found in the SOM header)

+ address of the first byte of the SOM header.

If a space_index is greater than the field space_quantity in the SOM header record it
is an error. Ifspace_index is negative it is an error.Space_index must have a value
in the range 0 to 231-1.

access_control_bits

Theaccess_control bits specify the access rights and privilege level of the subspace.
They also specify whether the subspace contains code or data. Bits 0-7 of the
access_control_bits are defined in Table 11.

memory_resident

If this flag is set to one then the subspace is to be locked in physical memory once the
subspace goes into execution.

dup_common

Bit 8

TABLE 11 Subspace Access Control Bits

Type (3 bits) Read/Write/Execute/Gateway (4 bits)

1st Field (PL1) 2nd Field (PL2) Usage

0 Read Not Used Read only data page

1 Read Write Normal data page

2 Read/Xleast Xmost Normal code page

3 Read/Xleast Write/Xmost Dynamic code page

4 Xleast Xmost Gateway to PL0

5 Xleast Xmost Gateway to PL1

6 Xleast Xmost Gateway to PL2

7 Xleast Xmost Gateway to PL3

Relocatable Object Files

3-58

If this flag is set, then there may be more than one universal data symbol of the same
name and the linker will not give a duplicate definition type of error. This field is used to
facilitate implementation of Fortran initialized common and Cobol common.

is_common

Bit 9

This flag is set to one if the subspace is to define an initialized common data block. For
example, Fortran initialized common, and Cobol common data blocks. Only one initial-
ized data block is allowed per is_common subspace.

is_loadable

Bit 10

This flag is set to 1 if a subspace is loadable. Loadable subspaces must reside in load-
able spaces. Unloadable subspaces must reside in unloadable spaces.

quadrant

Bits 11-12

This is to specify which of the four possible quadrants of a space that this subspace is
going to reside. Current implementations may ignore this field, and place the subspace
in a pre-determined quadrant.

initially_frozen

Bit 13

If this flag is set to one then the subspace is to be locked in physical memory when the
operating system is being booted.

is_first

Bit 14

TABLE 12 Quadrant Values

Bits Meaning

00 Quadrant 0

01 Quadrant 1

10 Quadrant 2

11 Quadrant 3

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-59

If this flag is set then the subspace must be the first subspace.

code_only

Bit 15

If set, this flag specifies that this subspace must only contain code (no literal data).

sort_key

Bits 16-23

This field contains the primary sort key by which the linker arranges subspaces in an
output file. Subspaces are first ordered by the sort key, then are arranged according to
the subspace name. Within sort keys, the linker groups subspaces by their name but it
does not sort by name. Instead, the subspaces are output in the order in which the linker
first encounters each name.

replicate_init

Bit 24

If the initialization contained in the file is shorter than the subspace length, replicate it to
fill the length of the subspace.

continuation

Bit 25

If set, the subspace is a continuation of a previous subspace and the two (or more) sub-
spaces should be treated as a single unit.

is_tspecific

Bit 26

Thread specific subspace.

is_comdat

Bit 27

Thread specific subspace.

Relocatable Object Files

3-60

reserved

Bits 28-31

These bits are reserved for future use.

file_loc_init_value

If initialization_length field is non-zero, the subspace is initialized, and this field
contains a byte offset relative to the first byte of the SOM header. In other words, it is a
file location of the initialization image.

If initialization_length is zero then this field contains a 32 bit quantity which is used
as an initialization pattern for the entire subspace. The total length of the subspace is
defined by the subspace_length field. This is how BSS subspaces are represented.

initialization_length

This field contains the size in bytes of the initialization area in the file. If this field is
zero then the value contained in the fieldfile_loc_init_value is used as the initializa-
tion pattern for the subspace.

The initialization_lengthfield can also be non-zero, but less than thesubspace_length
field. In this case, the length of the initialization image is given byinitialization_length,
and the remainder of the subspace, up tosubspace_length, is initialized with zeros.

subspace_start

This is a byte address of where the subspace is to start relative to the beginning of a
space. It is a virtual address that indicates the assumed beginning of that subspace in
memory. This value in conjunction withsubspace_length will be used to insure that
subspaces do not overlap.Subspace_start must have a value in the range 0 to 232-1.

subspace_length

This is the length in bytes of a subspace. A total length of a space will be kept, and if the
addition of all of thesubspace_length fields in a space is greater than 232-1 then it is
an error.

reserved2

Bits 0-15

These bits are reserved for future expansion.

alignment

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-61

Bits 16-31

This 2-byte field specifies what alignment is required for the subspace. The alignment
request is in bytes. The subspace will start on the alignment byte boundary. The align-
ment value must be greater than zero.

name

The fieldname is an index into the space/subspace string area. The index is a byte rela-
tive offset which points to the first character of the string. See the chapter on string areas
for more details on the format of a name.name can be converted to a file byte offset by:

offset =name + space_strings_location (found in the SOM header)

+ address of the first byte of the SOM header.

If name is greater than the fieldspace_strings_size in the SOM header it is an error.
Setting the field name to zero means that it is a null name pointer.

fixup_request_index

This field is an index into the fixup request array. All of the fixup request records for a
particular subspace will be in contiguous records in the fixup request array.
fixup_request_index can be converted to a file byte offset by:

offset =fixup_request_index * size of (fixup record)

+ fixup_request_location (found in the SOM header)

+ address of the first byte of the SOM header.

If fixup_request_index is greater than the fieldfixup_request_total in the SOM
header record it is an error. Iffixup_request_index is negative then there are no fixup
requests for that subspace.Fixup_request_index must have a value in the range -231

to 231-1.

fixup_request_quantity

Fixup_request_quantity is a number indicating how many fixup requests there are
for a subspace. Iffixup_request_index + fixup_request_quantity is greater than
the fieldfixup_request_total in the SOM header record it is an error.
Fixup_request_quantity must have a value in the range 0 to 231-1. If
fixup_request_quantity is zero then there are no fixup requests for that subspace.

Relocatable Object Files

3-62

3.5 String Areas

The string area contains all symbols used in the SOM, including space names, subspace
names, export names, import requests, and compilation unit names. There will be two
string areas; one for space and subspace names, and one for symbols and compilation
unit names.

The first word of each string contains the total number of characters in the string. The
byte immediately following the last byte of the string will be zero (the null character).
Successive strings will begin on the next word boundary.

string header

This field contains the total number of characters contained in the string (does not
include the terminating null character).

string data

Bits 0-??

The string is defined by the character data given here.

3.6 Fixup Requests

In the object files, relocation entries consist of a stream of bytes. The
fixup_request_index field in the subspace dictionary entry is a byte offset into the
fixup dictionary defined by the file header, and thefixup_request_quantity field
defines the length of the fixup request stream, in bytes, for that subspace. The first byte
of each fixup request (the opcode) identifies the request and determines the length of the
request.

In general, the fixup stream is a series of linker instructions that governs how the linker
places data in the a.out file. Fixups requests can be grouped into the following five cate-
gories:

• fixup requests that cause the linker to copy one or more bytes from the input sub-
space to the output subspace without change. For example, the
R_NO_RELOCATION fixup that cause the linker to copy n bytes to the output sub-
space with no relocation.

• fixups that direct the linker to relocate words or resolve external references. For
example, the R_DP_RELATIVE fixup used to relocate the target symbol in the out-
put subspace. The address is calculated based on the offset from $global$, the data
pointer (r27).

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-63

• fixups that direct the linker to insert zeroes in the output subspace. For example, the
R_REPEATED_INIT to replicate the data to fill n bytes of initialized value in the
output subspace.

• fixups that direct the linker to leave areas uninitialized without copying any data
from the input subspace. For example, the R_UNINIT fixup that tells the linker to
skip bytes in the output subspace.

• fixups that describe points in the code without contributing any new data to the out-
put file. These fixups DO indirectly affect the output, they are considered fixups for
changing the environment. For example, the rouding mode fixups (R_N_MODE,
R_D_MODE and the R_ENTRY and R_EXIT fixups). They do affect how the data
are to be interpreted for the output file.

When applying the fixups, the linker examines the instruction opcode (the high-order
six bits of the instruction) to determine the format of the instruction and what part of the
word should be relocated. The linker also selects a default field selector based on the
opcode if an explicit field selector override is not in effect.

 In earlier phases of the link, however, the instruction opcode is not available for exam-
ination (the linker does not read the contents of a subspace until the final link phase).
The linker must therefore be able to infer certain opcodes and field selectors from the
fixup information alone. In particular, each R_PCREL_CALL fixup is assumed to apply
to a branch-and-link (BL) instruction with a (default) F% field selector, unless the fixup
is preceded by an R_LSEL or R_RSEL override. For R_PCREL_CALL fixups not pre-
ceded by either of these overrides, the linker will test the branch distance to determine if
a long branch stub is required, and will insert a long branch stub if necessary. Thus, it is
necessary that long-format pc-relative calls (using the ADDIL and LDO instructions)
use explicit overrides,as in this example (from Section 2.5.5):

 BL .+8,rp
 ADDIL L’target-$L0+4,rp
 LDO R’target-$L1+8(r1),r1
 $L0: LDSID (r1),r31
 $L1: MTSP r31,sr0

BLE 0(sr0,r1)
COPY r31,rp

 Here, the ADDIL should be tagged with R_LSEL and R_PCREL_CALL fixups, and
the LDO should be tagged with R_RSEL and R_PCREL_CALL fixups.

Relocatable Object Files

3-64

3.6.1 Fixup Rounding Modes

All direct and dp-relative effective address calculations use the LR and RR rounding
modes. In these rounding modes, the left part is computed based on a rounded constant
instead of the actual constant. The constant is rounded to the nearest multiple of 8192
prior to computing the effective address. The right part is computed as the difference
between the full value of the expression and the value used in the left-part relocation.
Because the difference between the original constant and the rounded constant can be
no larger than 4K, this result will always fit in a signed 14-bit field. This permits several
load and store instructions to reuse the result of a single ADDIL or LDIL instruction, as
long as the symbol index and the rounded value of the constant are identical.

For pc-relative relocations, the standard L and R rounding modes are used. The expres-
sion is computed based on the actual effective address.

The following C language functions define the operation of the LR, RR,L, R, and RND
functions:

unsigned long LR(unsigned long x, unsigned long constant)

{

return L(x + RND(constant));

}

unsigned long RR(unsigned long x, unsigned long constant)

{

return R(x + RND(constant)) + (constant - RND(constant));

TABLE 13 R and L-Class Fixups

L’ Set bits 21-31 to 0 (set the rightmost 11 bits to 0)

R’ Set bits 0-20 to 0

LD’ Add 0x800, set bits 21-31 to 0

RD’ Set bits 0-20 to 1

LR’ Round constant before evaluating expression, set bits 21-31 to 0

RR’ Round constant before evaluating expression, set bits 0-20 to 0, add (constant - round(coun-
stant)) round(constant) = (constant + 0x1000) & ~0x1FFF

LS’ If (bit 21) then add 0x800 and set bits 21-31 to 0

RS’ Sign extend from bit 21

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-65

}

unsigned long L(unsigned long x)

{

return (x & 0xffff f800);

}

unsigned long R(unsigned long x)

{

return (x & 0x000007ff);

}

unsigned long RND(unsigned long x)

{

return ((x + 0x1000) & 0xffffe000);

}

3.6.2 Interpretation of rounding mode and field selector

In a relocatable object file, the immediate fields of the instructions contain only the con-
stant part of the expression. For a “symbol+constant” expression, the
R_CODE_ONE_SYMBOL fixup identifies the symbol and the immediate field contains
the constant. Whether the instruction is forming the left part or the right part of an
address, the immediate field still contains the entire constant. If the constant is too large
for the immediate field, the compilers precede the fixup with an R_DATA_OVERRIDE
fixup that supplies the full 32 bits.

For a “symbol-$global$+constant” expression, the R_DP_RELATIVE fixup identifies
the symbol, and the constant is in the immediate field. For other kinds of expression, the
linker resort to the more general stack-based expression evaluation mechanism, and the
R_CODE_EXPR fixup would be used. For example, “symbol1-symbol2+constant”
would be represented by the fixup stream:

R_PUSH_SYM symbol1

R_PUSH_SYM symbol2

Relocatable Object Files

3-66

R_COMP1 R_SUB

R_CODE_EXPR

Again, the constant part of the expression is in the instruction itself.

The field selector in the assembly syntax really consists of two parts: the rounding mode
(normal, D, R, S), and the field selector itself (F, L, or R).

The field selector is normally implied by the opcode. ADDIL and LDIL instructions
only imply the L% field selector. Most other opcodes that take displacements or offsets
imply the R% field selector, with the exception of the BL opcode, which implies the F%
field selector, since it is most often used for a single-instruction procedure call. If the
full 32-bit displacement for a BL instruction is too large (computed by the
R_PCREL_CALL fixup), the linker creates a long branch stub. In all other cases, a dis-
placement that does not fit in the instruction causes a link-time error.

Note that the default field selector in assembly syntax is F%. If an assembly instruction
is coded with F% or with no field selector, the assembler must generate a field selector
override fixup immediately preceding the regular fixup for that instruction. Likewise, if
an assembly instruction with a field selector other than the default, an override must be
generated.

The particular rounding mode selected in the assembly instruction affects only the fix-
ups generated. If the rounding mode selected is different from the “current” rounding
mode, a fixup is generated to change the current mode. Unlike the field selector over-
ride, the rounding mode is persistent, and must be changed back for the next instruction
that uses a different mode.

The field selectors come in pairs, and an LDIL or ADDIL instruction must always be
paired with an LDO/LDW/STW that uses the same rounding mode. The relations

L%expr + R%expr = expr

LD%expr + RD%expr = expr

LS%expr + RS%expr = expr

LR%expr + RR%expr = expr

always hold. R%expr is always positive, which implies that L%expr is always the first
2K boundary less than or equal to expr. This is the most straightforward definition.

RD%expr, however, is always negative, implying that LD%expr is always the first 2K
boundary greater than expr. This mode is useful when the code is near a quadrant
boundary, and the base register formed by LDIL and used by the LDW is on the higher
quadrant. The space register used in an LDW instruction when the s field is 0 is deter-
mined solely by the upper two bits of the base register (not by the effective address).
Therefore, if code is generated to access a non-zero based array, for example, this mode

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-67

can be used to ensure that the intermediate address is not down in quadrant 0 when the
data to be accessed is in quadrant 1.

The next mode, LS%/RS%, is defined such that RS%expr is between -1024 and +1023,
inclusive. This implies that LS%expr is the nearest 2K boundary to expr. If the second
instruction of a pair is an ADDI instruction (or SUBI, COMICLR, ..etc.), this mode is
essential, since there are only 11 bits of immediate field available, and the immediate is
sign-extended.

The last mode, LR%/RR%, is the only one where the constant field is treated separately
from the rest of the expression. This pair is defined like L% and R%, except that the
lower bits of the constant do not participate in the LR% determination; they get added
back in to the R% value. This allows the final value of RR%expr to be larger than 2K,
but never too large to fit in the 14-bit signed immediate field of an LDW-class instruc-
tion.This mode is conveniently defined so that the compiler can share a single ADDIL
instruction among several LDW-class instructions where the expressions are the same
except for the constant part of the expression. Note that they can be shared as long as the
constants are all equal in their upper bits. In other words, if the compiler knows that
LR%symbol+con1 will evaluate to the same thing as LR%symbol+con2, it can share
one ADDIL instruction with both corresponding LDW/STW instructions using
RR%symbol+con1 and RR%symbol+con2. This is efficient when generating code to
access structures and static data where several adjacent memory locations are all
addressed by a single symbol.

3.6.3 Examples of applying the rounding mode

The following is an example of how the rounding modes are applied:

symbol 4 = 0x4000fff0

ADDIL 0x1000000,27 /* immediate is 8192 in decimal */

LDO 4104 (1), 25 /* immediate is in decimal as is */

For the LR% and RR% modes, the constant is rounded to the nearest 8K multiple before
splitting the value in half. Then, after splitting, the difference is added back in to the
right half. The following is the pseudo code for this algorithm:

#define FIXUP_ROUND(c) (((c) + 0x1000) & ~0x1fff)

expr = symbol_value + FIXUP_ROUND(constant);

left = expr & 0xFFFFF800;

right = (expr & 0x7FF) + (constant - FIXUP_ROUND(constant));

In this example, the ADDIL gets a “rounded” expression value of 0x4000fff0 + 0x1000
= 0x40010ff0, which gets truncated to 0x40010800. The LDO gets a “rounded” expres-

Relocatable Object Files

3-68

sion value of 0x4000fff0 + 0x1000 = 0x40010ff0, which gets truncated to 0x7f0, to
which we add the difference between the constant 0x1008 and the rounded constant
(0x1000), resulting in 0x07f8.

Thus, the ADDIL/LDO form the address 0x40010800 + 0x07f8 = 0x40010ff8, which is
the same as 0x4000fff0 + 0x1008 (symbol #4 plus 4104).

As mentioned briefly in the previous section, the reason that this is done this way is that
a single ADDIL can be accessed with many LDO/LDW/STW instruction, each of which
may have a slightly different constant. As long as the constants all round to the same
value, we can use a common ADDIL instruction for all of them. In practice, this works
for accesses to the fields of a structure, where we use the same symbol with different
displacements in several loads or stores.

3.6.4 Apply Fixups on instructions

The linker apply fixups to instructions in the following three steps:

1. Calculate the effective address. This depends on the fixup type. This usually
involves checking the opcode and extracting a constant from the immediate or dis-
placement field. Step one is where the linker actually looks at the opcode, decide
what the default field selector should for step two, and identify which of the six
instruction formats to use in step three.

2. Apply the field selector. This can be implied by the opcode, or can be overridden by
a field selector override fixup (R_xSEL). It also depends on the current rounding
mode. The default field selector is L% for LDIL and ADDIL, F% for BL, COMB,
ADDB, and BB family of opcodes, and R% for everything else. For example, BE/
BLE instructions have an implicit R% field selector. If one were to code a BE/BLE
in assembler without the R%, an F% field selector override fixup (R_FSEL) for that
instruction is needed. This tells the linker not to chop off the top 21 bits of the effec-
tive address, and try to fit the address into the instruction as is. If the address is too
large, the linker would issue a diagnostic such as “displacement too large”. Step two
is where the expression gets converted from an absolute address to a pc-relative
address. If the instruction format is i_rel12 or i_rel17, (pc+8) is subtracted from the
effective address to obtain the proper pc-relative displacement.

3. Apply the resulting value to the target instruction. The opcode determines the actual
disposition of the various bits. There are really only six different instruction formats:
i_exp11 (ADDI), i_exp14 (LDW), i_exp21 (LDIL), i_rel12 (ADDIB), i_rel17 (BL)
and i_abs17 (BE). These names are in <reloc.h>. i_rel17 and i_abs17 are really the
same instruction format, but the linker adjust the space register field in the BE-class
instructions based on where the target is.

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-69

3.6.5 List of fixup requests

The meaning of each fixup request is described below. The opcode ranges and parame-
ters for each fixup are described in the table further below.

TABLE 14 Fixup Requests

R_NO_RELOCATION Copy L bytes with no relocation.

R_ZEROES Insert L zero bytes into the output subspace.

R_UNINIT Skip L bytes in the output subspace.

R_RELOCATION Copy one data word with relocation. The word is assumed to con-
tain a 32-bit pointer relative to its own subspace. It describes a
single word whose value must be relocated, assuming it contains
an address constant of a location within the same subspace. The
word to be relocated comes from the initialization image, not
from the fixup stream.

R_DATA_ONE_SYMBOL Copy one data word with relocation relative to an external symbol
whose symbol index is S.

R_DATA_PLABEL Copy one data word as a 32-bit procedure label, referring to the
symbol S. The original contents of the word should be 0 (no static
link) or 2 (static link required).

R_SPACE_REF Copy one data word as a space reference. This fixup request is not
currently supported.

R_REPEATED_INIT Copy L bytes from the input subspace, replicating the data to fill
M bytes in the output subspace.

R_PCREL_CALL Copy one instruction word with relocation. This word is assumed
to be a pc-relative procedure call using the branch-and-link
instruction (BL), unless an R_LSEL or R_RSEL override is in
effect. The target procedure is identified by symbol S, and the
parameter relocation bits are R. Note: The displacement on pc-rel-
ative calls is assumed to be -8, unless preceded by a data override
fixup.

R_SHORT_PCREL_MODE this specifies that any following R_PCREL_CALL fixup
(with the default field selector) is applied to a BL instruc-
tion with a maximum 17-bit signed displacement. It is a
single-byte mode change fixup, and is the initial default
mode.

R_LONG_PCREL_MODE this specifies that any following R_PCREL_CALL fixup
(with the default field selector) is applied to a BL instruc-
tion with a maximum 22-bit signed displacement (i.e., a
BLL instruction). It is a single-byte mode change fixup.

R_ABS_CALL Copy one instruction word with relocation. The word is assumed
to be an absolute procedure call instruction (for example, BLE).
The target procedure is identified by symbol S, and the parameter
relocation bits are R. Note: absolute calls using LDIL/ADDIL and
BE/BLE always default to the R’/L’ rounding mode, unless
explicitly preceded by a rounding mode override (this is the one
exception to the rounding mode being a persistent change). The
displacement on absolute calls is assumed to be 0, unless pre-
ceded by a data override fixup.

Relocatable Object Files

3-70

R_DP_RELATIVE Copy one instruction word with relocation. The word is assumed
to be a dp-relative load or store instruction (for example, ADDIL,
LDW, STW). The target symbol is identified by symbol S. The
linker forms the difference between the value of the symbol S and
the value of the symbol $global$. By convention, the value of
$global$ is always contained in register 27. Instructions may have
a small constant in the displacement field of the instruction.

R_DATA_GPREL When not building a shared library, the linker forms the difference
betweeen the value of the symbol S and the value of the symbol
$global$. When building a shared library, the linker computes a
linkage table offset relative to register 19 (reserved for a linkage
table pointer in position-independent-code) for the symbol S.

R_INDIRECT_CALL Directs the linker to substitute calls to $$dyncall with
calls to $$dyncall_external().

R_PLT_REL This is analogous to R_DLT_REL; it requests the dis-
placement field of the instruction to be filled with the
value <linkage table pointer address - PLT slot for sym-
bol>. It is used for instructions in inlined import stubs. It
is only available in a 4-byte form, in which the symbol
index is encoded in the last 3 bytes of the fixup.

R_DLT_REL Copy one instruction word with relocation. The word is assumed
to a register r19-relative load or store instruction (for example,
LDW, LDO, STW). The target symbol is identified by symbol S.
The linker computes a linkage table offset relative to register 19
(reserved for a linkage table pointer in position-independent-
code) for the symbol S.

R_CODE_ONE_SYMBOL Copy one instruction word with relocation. The word is assumed
to be an instruction referring to symbol S (for example, LDIL,
LDW, BE).

R_MILLI_REL Copy one instruction word with relocation. The word is assumed
to be a short millicode call instruction (for example, BLE). The
linker forms the difference between the value of the target symbol
S and the value of symbol 1 in the module’s symbol table. By con-
vention, the value of symbol 1 should have been previously
loaded into the base register used in the BLE instruction. The
instruction may have a small constant in the displacement field of
the instruction.

R_CODE_PLABEL Copy one instruction word with relocation. The word is assumed
to be part of a code sequence forming a procedure label (for
example, LDIL, LDO), referring to symbol S. The LDO instruc-
tion should contain the value 0 (no static link) or 2 (static link
required) in its displacement field.

R_BREAKPOINT Copy one instruction word conditionally. On HP-UX, the linker
always replaces the word with a NOP instruction.

R_ENTRY Define a procedure entry point. The stack unwind bits, U, and the
frame size, F, are recorded in a stack unwind descriptor (copied to
words 3 and 4 for the unwind region).

TABLE 14 Fixup Requests

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-71

R_ALT_ENTRY Define an alternate procedure entry point.

R_EXIT Define a procedure exit point.

R_BEGIN_TRY Define the beginning of a try/recover region.

The try/recover mechanism is designed to support features such as
try/recover in Pascal and try/catch in C++. The recover table is
constructed by the linker and consists of some number of recover
descriptors. A recover descriptor consists of three words:

word 1: the starting address of the “try” region.

word 2: the ending address of the “try” region.

word 3: an address pointing at language-dependent region.

 For example:

Pascal: the address of the exception handler

Ada: the address of a descriptor block

C++: a pointer to a C++ data structure

The linker builds try/recover descriptors based on the
R_BEGIN_TRY/R_END_TRY fixups. The first two words of the
try/recover descriptor are just the addresses of the beginning and
end of the guarded region as indicated by the placement of the fix-
ups. The third word is the address of the end of the guarded region
(the second word) plus four times the argument of R_END_TRY.
This region is sometimes referred to as the “recover block”. The
END_TRY fixup contains a pc-relative offset to the recover block.
The actual meaning of the recover block is language dependent. In
Pascal, it is just a pointer to the recover code, so it is often the
address immediately following the guarded region so the constant
in the END_TRY fixup is often 0.

The C++ exception handling mechanism uses a recover block that
points to other information. The first word of this recover block is
a pointer to the code in the catch block. Like the Pascal case
above, the catch block often immediately follows the guarded
region, so this pointer often points back to the first instruction
beyond the END_TRY fixup. Since this pointer is actually a self-
relative offset, it often is the same number as was found in the
END_TRY fixup. This may be a frequent case, but it is not guar-
anteed, for example, nested try/catch blocks will probably show a
difference.

R_END_TRY Define the end of a try/recover region. The offset R defines the
distance in words from the end of the region to the beginning of
the recover block.

R_BEGIN_BRTAB Define the beginning of a branch table.

R_END_BRTAB Define the end of a branch table.

R_STATEMENT Define the beginning of statement number N.

TABLE 14 Fixup Requests

Relocatable Object Files

3-72

R_DATA_EXPR Pop one word from the expression stack and copy one data word
from the input subspace to the output subspace, adding the
popped value to it.

R_CODE_EXPR Pop one word from the expression stack, and copy one instruction
word from the input subspace to the output subspace, adding the
popped value to the displacement field of the instruction.

R_FSEL Use an F’ field selector for the next fixup request instead of the
default appropriate for the instruction. An F field selector denotes
“no change”. The “default” modes can be any of the R-class or L-
class field selectors.

R_LSEL Use an L’-class field selector for the next fixup request instead of
the default appropriate for the instruction. Depending on the cur-
rent rounding mode, L’, LS’, LD’, or LR’ may be used.

R_RSEL Use an R-class field selector for the next fixup request instead of
the default appropriate for the instruction. Depending on the cur-
rent rounding mode, R’., RS’, RD’, or RR’ may be used.

R_N_MODE Select round-down mode (L’/R’). This is the default mode at the
beginning of each subspace. This setting remains in effect until
explicitly changed or until the end of the subspace.

R_S_MODE Select round-to-nearest-page mode (LS’/RS’). This setting
remains in effect until explicitly changed or until the end of the
subspace.

R_D_MODE Select round-up mode (LD’/RD’). This setting remains in effect
until explicitly changed or until the end of the subspace.

R_R_MODE Select round-down-with-adjusted-constant mode (LR’/RR’). This
setting remains in effect until explicitly changed or until the end
of the subspace.

R_DATA_OVERRIDE Use the constant V for the next fixup request in place of the con-
stant from the data word or instruction in the input subspace.

R_TRANSLATED Toggle ‘‘translated’’ mode. This fixup request is generated only
by the linker during a relocatable link to indicate a subspace that
was originally read from an old-format relocatable object file.

R_AUX_UNWIND Define an auxiliary unwind table. CN is a symbol index of the
symbol that labels the beginning of the compilation unit string
table. SN is the offset, relative to the CN symbol, of the scope
name string. SK is an integer specifying the scope kind.

R_COMP1 Stack operations. The second byte of this fixup request contains a
secondary opcode. In the descriptions below, A refers to the top of
the stack and B refers to the next item on the stack. All items on
the stack are considered signed 32-bit integers.

TABLE 14 Fixup Requests

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-73

R_PUSH_PCON1 Push the (positive) constant V.
R_PUSH_DOT Push the current virtual address.
R_MAX Pop A and B, then push max(A, B).
R_MIN Pop A and B, then push min(A, B).
R_ADD Pop A and B, then push A + B.
R_SUB Pop A and B, then push B - A.
R_MULT Pop A and B, then push A * B.
R_DIV Pop A and B, then push B / A.
R_MOD Pop A and B, then push B % A.
R_AND Pop A and B, then push A & B.
R_OR Pop A and B, then push A | B.
R_XOR Pop A and B, then push A XOR B.
R_NOT Replace A with its complement.
R_LSHIFT If C = 0, pop A and B, then push B \<< A. Otherwise,

replace A with A \<< C.
R_ARITH_RSHIFT If C = 0, pop A and B, then push B \>> A. Otherwise,

replace A with A \>> C. The shifting is done with sign
extension.

R_LOGIC_RSHIFT If C = 0, pop A and B, then push B \>> A. Otherwise,
replace A with A \>> C. The shifting is done with zero
fill.

R_PUSH_NCON1 Push the (negative) constant V.

R_COMP2 More stack operations.

R_PUSH_PCON2 Push the (positive) constant V.
R_PUSH_SYM Push the value of the symbol S.
R_PUSH_PLABEL Push the value of a procedure label for symbol S. The

static link bit is L.
R_PUSH_NCON2 Push the (negative) constant V.

R_COMP3 More stack operations.

R_PUSH_PROC Push the value of the procedure entry point S. The
parameter relocation bits are R.

R_PUSH_CONST Push the constant V.

R_PREV_FIXUP The linker keeps a queue of the last four unique multi-byte fixup
requests; this is an abbreviation for a fixup request identical to one
on the queue. The queue index X references one of the four; X = 0
refers to the most recent. As a side effect of this fixup request, the
referenced fixup is moved to the front of the queue.

R_SEC_STMT Secondary statement number.

R_N0SEL Indicates that the following fixup is applied to the first of a three-
instruction sequence to access data, generated by the compilers to
enable the importing of shared library data.

TABLE 14 Fixup Requests

Relocatable Object Files

3-74

R_N1SEL Uses a N field selector for the next fixup request; this indicates
that zero bits are to be used for the displacement on the instruc-
tion. This fixup is used to identify three-instruction sequences to
access data (for importing shared library data).

R_LINETAB The compilers generate this fixup to request that debugging opti-
mized code (DOC) line tables be built. The first parameter is a 1-
byte version number which identifies the line table version (for-
mat). The actual value is not important to the linker. The second
parameter is a symbol index to be used in conjunction with the
third parameter, an offset, as a location which is to be filled with
the offset (relative to the $LINES$ subspace) of the line table
about to be built.

The line number information is passed to the linker via the
R_STATEMENT fixup request, which is embedded within the fix-
ups for the code at statement boundaries. The R_STATEMENT
fixup has three variants to handle one-, two-, and three-byte state-
ment or line numbers as necessary. The actual meaning assigned
to the number, whether it be statement number or line numbers, is
irrelevant to the linker, and needs to be agreed upon only by the
compiler and the end user of the line table information.

R_LINETAB_ESC Fixup used to place escape entries into the line table. There are
several escape entries defined in the line table format which are
used by the debugger and other tools when processing the line
table. Some of these escapes must be generated by the liner, the
others are generated by the compiler and the liner does not need to
know the details of these escapes. The escapes entries which are
not generated by the linker are entered into the line table via a
combination of the R_LINETAB_ESC and R_STATEMENT fix-
ups.

The second parm specifies how many of the following
R_STATEMENT entries contain data to be entered directly into
the line table (these statement fixups will not contain line num-
bers. Instead, they hold data which is to be placed directly into the
line number table as part of an escape sequence. With the cur-
rently defined escapes the value of the second parameter will be in
the range [0,4].

R_LTP_OVERRIDE Override the following fixup which is expected to be an
R_DATA_ONE_SYMBOL fixup. If the linker encounters an
R_DATA_ONE_SYMBOL with the override set and it is building
a shared library then it will convert the relocatable address repre-
senting the data item into a absolute offset by subtracting the pre-
sumed link time R19 value from the relocatable address. This will
eventually require a run time relocation before it can be used to
access the data item. There is currently no way to generate this
fixup through the assembler interface.

If the linker is not building a shared library, the absolute virtual
address is placed in the target subspace.

TABLE 14 Fixup Requests

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-75

3.6.6 Fixup opcodes, lengths and parameters

The include file <reloc.h> defines constants for each major opcode. Many fixup requests
use a range of opcodes; only a constant for the beginning of the range is defined.

Table 15 shows the mnemonic fixup request type and length and parameter information
for each range of opcodes. In the parameters column, the symbol D refers to the differ-
ence between the opcode and the beginning of the range described by that table entry;
the symbols B1, B2, B3, and B4 refer to the value of the next one, two, three, or four
bytes of the fixup request, respectively.

R_COMMENT Fixup used to pass comment information from the compiler to the
linker. This fixup has a 5 byte argument that can be skipped and
ignored by most applications.

R_TP_OVERRIDE Override the following fixup which is expected to be an
R_DP_RELATIVE, an R_DLT_REL, or an
R_DATA_ONE_SYMBOL fixup. This override precede referenc-
ing TLS symbols.

R_RESERVED Fixups in this range are reserved for internal use by the compilers
and linker.

TABLE 15 Fixup Request Opcodes (in hex) and Parameters

mnemonic opcodes length parameters

R_NO_RELOCATION 0x00 - 17 1 L = (D+1) * 4

0x18 - 1B 2 L = (D<<8 + B1 + 1) * 4

0x1C-1E 3 L = (D<<16 + B2 + 1) * 4

0x1F 4 L = B3 + 1

R_ZEROES 0x20 2 L = (B1 + 1) * 4

0x21 4 L = B3 + 1

R_UNINIT 0x22 2 L = (B1 + 1) * 4

0x23 4 L = B3 + 1

R_RELOCATION 0x24 1 none

R_DATA_ONE_SYMBOL 0x25 2 S = B1

0x26 4 S = B3

R_DATA_PLABEL 0x27 2 S = B1

0x28 4 S = B3

R_SPACE_REF 0x29 1 none

R_REPEATED_INIT 0x2A 2 L = 4; M = (B1 + 1) * 4

0x2B 3 L = (B1 +1)* 4; M = (B1 + 1) * L

TABLE 14 Fixup Requests

Relocatable Object Files

3-76

0x2C 5 L = (B1 +1) *4; M = (B3 + 1) * 4

0x2D 8 L = B3 + 1; M = B4 + 1

0x2E-2F Reserved

R_PCREL_CALL 0x30 - 39 2 R = rbits1(D); S = B1

0x3A-3B 3 R = rbits2(D<<8 + B1); S = B1

0x3C-3D 5 R = rbits2(D<<8 + B1); S = B3

R_SHORT_PCREL_MODE 0x3E 1 mode shift to BL for
R_PCREL_CALL(+DA2.0 only)

R_LONG_PCREL_MODE 0x3F 1 mode shift to BLL for R_PCREL_CALL
(+DA2.0 only)

R_ABS_CALL 0x40-49 2 R = rbits1(D); S = B1

0x4A-4B 3 R = rbits2(D<<8 + B1); S = B1

0x4C-4D 5 R = rbits2(D<<8 + B1); S = B3

0x4E-4F Reserved

R_DP_RELATIVE 0x50-6F 1 S = D

0x70 2 S = B1

0x71 4 S = B3

R_DATA_GPREL 0x72 4 S = B3

0x73-75 Reserved

R_INDIRECT_CALL 0x76 1 Specify target instruction is an indirect call
through $$dyncall_external().

R_PLT_REL 0x77 4 Request the displacement field to be filled
with the value (LPT addr - PLT slot for
symbol).

R_DLT_REL 0x78 2 S = B1, DLT relative load/store

0x79 4 S = B3

R_CODE_ONE_SYMBOL 0x80-9F 1 S = D

0xA0 2 S = B1

0xA1 4 S = B3

R_MILLI_REL 0xAE 2 S = B1

0xAF 4 S = B3

R_CODE_PLABEL 0xB0 2 S = B1

0xB1 4 S = B3

R_BREAKPOINT 0xB2 1 none

R_ENTRY 0xB3 9 U,F = B8 (U is 37 bits; F is 27 bits)

0xB4 6 U = B5 >> 3; F = pop A

R_ALT_ENTRY 0xB5 1 none

R_EXIT 0xB6 1 none

TABLE 15 Fixup Request Opcodes (in hex) and Parameters

mnemonic opcodes length parameters

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-77

R_BEGIN_TRY 0xB7 1 none

R_END_TRY 0xB8 1 R = 0

0xB9 2 R = B1 * 4

0xBA 4 R = sign-extend(B3) * 4

R_BEGI_BRTAB 0xBB 1 none

R_END_BRTAB 0xBC 1 none

R_STATEMENT 0xBD 2 N = B1

0xBE 3 N = B2

0xBF 4 N = B3

R_DATA_EXPR 0xC0 1 none

R_CODE_EXPR 0xC1 1 none

R_FSEL 0xC2 1 none

R_LSEL 0xC3 1 none

R_RSEL 0xC4 1 none

R_N_MODE 0xC5 1 none

R_S_MODE 0xC6 1 none

R_D_MODE 0xC7 1 none

R_R_MODE 0xC8 1 none

R_DATA_OVERRIDE 0xC9 1 V = 0

0xCA 2 V = sign-extend(B1)

0xCB 3 V = sign-extend(B2)

0xCC 4 V = sign-extend(B3)

0xCD 5 V = B4

R_TRANSLATED 0xCE 1 none

R_AUX_UNWIND 0xCF 12 CU,SN,SK = B11 (CU is 24 bits;SN is 32)

R_COMP1 0xD0 2 OP = B1; V = OP & 0x3f; C = OP & 0x1f

R_COMP2 0xD1 5 OP = B1; S = B3; L = OP & 1;

V = ((OP & 0x7f) << 24) | S

R_COMP3 0xD2 6 OP = B1; V = B4;

R = ((OP & 1) << 8) | (V >> 16);

S = V & 0xffffff

R_PREV_FIXUP 0xD3-D6 1 X = D

R_SEC_STMT 0xD7 1 none

R_N0SEL 0xD8 1 none

R_N1SEL 0xD9 1 none

TABLE 15 Fixup Request Opcodes (in hex) and Parameters

mnemonic opcodes length parameters

Relocatable Object Files

3-78

3.6.7 Parameter Relocation Bits (rbits1, rbits2)

Parameter relocation bits are encoded in the fixup requests in two ways, noted as rbits1
and rbits2 in Table 15. The first encoding recognizes that the most common procedure
calls have only general register arguments with no holes in the parameter list. The
encoding for such calls is simply the number of parameters in general registers (0 to 4),
plus 5 if there is a return value in a general register.

Here is how “rbits1” decodes its parameter. The “diff” is the difference between the
actual opcode and the first opcode of the range. When “rbits1” is used, it is describing a
function call with 0 to 4 general register parameters (no holes, and no floating point reg-
ister parameters), and either a general register return value or no return value. The “diff”
can be from 0 to 9; if it is between 0 and 4, it indicates 0 to 4 parameters with no return
value; if it’s between 5 and 9, it indicates 0 to 4 parameters with a return value. Here is
some code that turns this into the 10-bit parameter relocation field:

if (diff >= 5)

j = diff -5;

else

j = diff;

for (i = 0; i < 4; i++)

R_LINETAB 0xDA 10 version number = B1

symbol index = B2 to B5 (symbol-relative
loc to patch w/ line table offset)

offset = B6 to B9 (symbol + offset, location
to patch w/line table offset)

R_LINETAB_ESC 0xDB 3 escape code = B1

number of following R_STATEMENT fix-
ups containing escape data in B2

R_LTP_OVERRIDE 0xDC 1 none

R_COMMENT 0xDD 6 OP=B1

V = B2 to B6

R_TP_OVERRIDE 0xDE 1 none

R_RESERVED 0xDF-FF - reserved

TABLE 15 Fixup Request Opcodes (in hex) and Parameters

mnemonic opcodes length parameters

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-79

arg = (arg << 2) + (i<j);

arg = (arg << 2) + (diff >=5);

The second encoding is more complex (presumably less common); the 10 argument
relocation bits are compressed into 9 bits by eliminating some impossible combinations.
The encoding is the combination of three contributions. The first contribution is the pair
of bits for the return value, which are not modified. The second contribution is 9 if the
first two parameter words together form a double-precision parameter; otherwise, it is 3
times the pair of bits for the first word plus the pair of bits for the second word. Simi-
larly, the third contribution is formed based on the third and fourth parameter words.
The second contribution is multiplied by 40, the third is multiplied by 4, then the three
are added together. Here is some code to decode the “rbits” encoding:

i = ((diff &1) <<8) + next_fixup_byte;

arg = decode_arg_reloc(i);

where:

int decode_arg_reloc(i)

int i;

{

int j, k, ret_val;

ret_val = i &03;

i >>= 2;

j = i / 10;

i -= 10*j;

if (j == 9)

ret_val += (03 << 6); /* FARGU */

else {

k = j / 3;

Relocatable Object Files

3-80

j -= 3*k;

ret_val += (k << 8) + (j << 6);

}

if (i ==9)

ret_val += (03 << 2); /* FARGU */

else {

k = i /3;

i -= 3*k;

ret_val += (k << 4) + (i << 2);

}

return (ret_val);

}

3.7 Symbol Table

The symbol table or symbol dictionary for a SOM consists of symbol records strung
together in contiguous space within the SOM. The byte offset of the dictionary, relative
to the SOM header, is contained in the variablesymbol_dictionary_location in the
SOM header and the number of entries is contained in the variable
symbol_dictionary_total, also in the SOM header.

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-81

A particular symbol in the dictionary can be located either by scanning the dictionary
until it is found, or the symbol’s index can be used to index into the dictionary as if it
were an array of five word elements.

An entry in the dictionary consists of the symbol dictionary record and an optional
extension record and 0 to 61 descriptor array records as shown in Figure 2-13. Symbol
records do not need to be sorted.

Figure 2-13:Symbol Dictionary Record Definition

struct symbol_dictionary_record {

unsigned int hidden : 1;

unsigned int secondary_def : 1;

unsigned int symbol_type : 6;

unsigned int symbol_scope : 4;

unsigned int check_level : 3;

unsigned int must_qualify : 1;

unsigned int initially_frozen : 1;

unsigned int memory_resident : 1;

unsigned int is_common : 1;

unsigned int dup_common : 1;

unsigned int xleast : 2;

unsigned int arg_reloc :10;

union name_pt name;

union name_pt qualifier_name;

unsigned int has_long_return :1;

unsigned int no_relocation :1;

unsigned int is_comdat :1;

unsigned int reserved :5;

unsigned int symbol_info :24;

unsigned int symbol_value;

};

☞
Note A symbol’s index is NOT its relative entry number in the symbol

dictionary since some entries use extension records and argument
descriptor arrays. But all entries are a multiple of 5-words in
length so the index can be used to index into the symbol dictionary.

Relocatable Object Files

3-82

Whether an extension record and argument descriptor arrays follow the symbol record is
dependent upon the check level and the number of parameters according to the follow-
ing algorithm:

IF CHECK_LEVEL >= 1
THEN
An extension record will be present.

IF num_args > 3 AND check_level >= 3
THEN
In addition to the extension record there will be enough

argument descriptor arrays to contain one descriptor for each argument except the first 3.
i.e. NUM_DESCS = round_up ((NUM_ARGS-3)/4)

Two symbol types, SYM_EXT and ARG_EXT, are defined to mark the symbol exten-
sion and argument descriptor array records respectively.

hidden

Bit 0

Figure 2-14:Structure of a Dictionary Entry

Symbol
Record

Symbol
Extension

Record

Descriptor
Array

Records

Symbol Name
Qualifier Name

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-83

If this flag is set to one, it indicates that the symbol is to be hidden from the loader for
the purpose of resolving external (inter-SOM) references. It has no effect on linking.
This flag allows a procedure to be made private to its own executable SOM, although it
has universal scope within that SOM.

secondary_def

Bit 1

If this flag is set to one, the symbol is a secondary definition and has an additional name
that is preceded by “_”. The linker will ignore duplicate definitions involving secondary
definitions.

symbol_type

Bits 2-7

This field defines what type of information this symbol represents. A complete list of
the defined symbol types is presented in Table 16, however only certain ones may be
valid depending on the use (e.g. import/export, relocatable/executable, etc.).

TABLE 16 symbol_type Definition

Symbol Description

0 NULL Invalid symbol record. The contents of the entire record is undefined (it is 5
words long).

1 ABSOLUTE Absolute constant.

2 DATA Normal initialized data. Initialized data symbols including Fortran and
Cobol initialized common data blocks, as well as C initialized data. Data
can be either imported or exported. For example C construct “EXTERN
INT I” would be imported data. And the C construct “INT I = 1” would be
exported data.

3 CODE Unspecified code. For example, code labels. Code labels are only relevant
up to link time, and they cannot be the target of interspace calls.

4 PRI_PROG Primary program entry point.

5 SEC_PROG Secondary Program entry point.

6 ENTRY Any code entry point. Includes both primary and secondary entry points.
Code entry point symbols may be used as targets of inter-space calls.

7 STORAGE The value of the symbol is not known, but the length of the area is given. If
a matching definition is not found, storage is allocated within a specified
subspace and the symbol’s value becomes the virtual address of that stor-
age.

For example, Fortran and Cobol uninitialized common data blocks, and the
C construct “INT I” would be storage requests with no initial value.

Relocatable Object Files

3-84

symbol_scope

Bits 8-11

The scope of a symbol defines the range over which an exported symbol is valid,or the
range of the binding used to import the symbol. In addition, this field is used to deter-
mine whether the requested symbol record is a import or export request.

The scope of a symbol will be one of the following:

Imports

0: UNSAT Import request that has not been satisfied.

1: EXTERNAL Import request linked to a symbol in another SOM. This symbol will
require additional linking when it is loaded.

Internal

8 STUB This symbol marks an import (outbound) external call stub (EXTERNAL
scope) or a parameter relocation stub (LOCAL scope). The linker may cre-
ate an import stub for any unsatisfied code symbols, and the loader would
be responsible for satisfying the reference by filling in the XRT entry allo-
cated for this stub.

9 MODULE This symbol is a source module name.

10 SYM_EXT This type is used to indicate that an entry in the SOM symbol dictionary is
an extension record of the current entry (previous valid symbol entry in the
list).

11 ARG_EXT This type is used to indicate that an entry in the SOM symbol dictionary is
an extension record of the current entry (previous valid symbol entry in the
list.

12 MILLICODE This is the name of the millicode routine.

13 PLABEL This symbol defines an export stub for a procedure for which a procedure
label has been generated. The loader must build an XRT entry for the pro-
cedure at the offset allocated by the linker.

14 OCT_DIS This type is used to indicate that the pointer to a translated code segment
exists, but has been disabled. Used by the Object Code Translator only.

15 MILLI_EXT This symbol defines the address of an external millicode subroutine. It
should be treated as an constant.

16 TSTORAGE This symbol defines Thread Specific data storage.

17 COMDAT This type is used to identify the secondary subspaces of a COMDAT set to
support the C++ Compile Time Template Instantiation feature

TABLE 16 symbol_type Definition

Symbol Description

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-85

2: LOCAL This symbol is not exported for use outside the SOM. It may be used as the
target for fixups, but the linker does not use this symbol for resolving
symbol references.

Exports

3: UNIVERSAL This symbol is exported for use outside the SOM.

Table 17 shows the valid values of the scope field given the type of the symbol.Any
square that does not contain an “X” is an invalid value for that type.

check_level

Bits 12-14

This value indicates how closely an import definition must match an export definition
during linking. This checking can be applied to both code and data linkage according to
the following checking levels:

0 No checking.
1 Check the symbol type descriptor only.
2 Level 1, plus check the number of arguments passed by the

import with the minimum and maximum range declared in
the export (code types only).

3 Level 2, plus check the type of each argument passed (code
types only).

TABLE 17 Valid symbol_scope Values

TYPE UNSAT EXTERNAL LOCAL UNIV

PRI_PROG X

SEC_PROG X

ENTRY X X

STUB X X

MODULE X X

ABSOLUTE X X X

CODE X X X

DATA X X X

STORAGE X

PLABEL X

Relocatable Object Files

3-86

must_qualify

Bit 15

If this bit is set to one, it indicates that there is more than one entry in the symbol direc-
tory that has the same name as this entry, and is the same generic type (i.e. code, data or
stub). Therefore, the qualifier name must be used to fully qualify the symbol.

If this flag is not set, the qualifier name will only be used to qualify the symbol name if
the name it is being compared with is also fully qualified.

The flag is used for both import and export requests.

initially_frozen

Bit 16

If this flag is set to one it indicates that the code importing or exporting this symbol is to
be locked in physical memory when the operating system is being booted.

memory_resident

Bit 17

If this field is set to one it indicates that the code that is importing or exporting this sym-
bol is frozen in memory. This flag is used so that links between memory resident proce-
dures can also be frozen in memory.

is_common

Bit 18

Specifies that this symbol is an initialized common data block. Each initialized common
data block resides in its own subspace. For example, a Fortran initialized common dec-
laration would produce a symbol of type data with theis_common flag set to one.
Refer to the Language Requirements Document for implementation details.

dup_common

Bit 19

If this flag is set to one, it specifies that this symbol name may conflict with another
symbol of the same name if both are of type data. This is to facilitate the Cobol “com-
mon” feature, since Cobol allows duplicate initialization of “common” data blocks. This
flag would be set to one if the language allows duplicate initialization, otherwise it will
be set to zero for symbols of type data. Refer to the Language Requirements Document
for implementation details.

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-87

xleast

Bits 20-21

This is the execution level that is required to call this entry point. This XLEAST level is
placed in any XRT entry linked to this entry point. The XLEAST level will be checked
by the Spectrum external procedure call primitive during execution.

This field is not used if (i.e. its content is meaningless):

1) the symbol is an import.

2) the symbol is not one of the code types.

XLEAST must be a value in the range of 0 to 3. Furthermore, if the value is not in the
range of XLEAST to XMOST of the page containing the entry point a run time error
can occur.

arg_reloc

Bits 22-31

This field is used to communicate the location of the first four words of the parameter
list, and the location of the function return value to the linker and loader. This field is
meaningful only for exported ENTRY, PRI_PROG, and SEC_PROG symbols.

The linker matches the argument relocation bits of an exported symbol with the argu-
ment relocation bits in each fixup that references the symbol. If it finds a mismatch, it
builds an argument relocation stub and redirects the call to that stub.

The ten bits of this field are broken down as follows:
bits 22-23 define the location of parameter list word 0
bits 24-25 define the location of parameter list word 1
bits 26-27 define the location of parameter list word 2
bits 28-29 define the location of parameter list word 3
bits 30-31 define the location of the function return

For MPE/iX, this field can contain new values if the shared_data bit in the LST SOM
Auxiliary header is set:

For Storage requests and Data Universals, this field is set to the access rights of the sub-
space the data is defined in.

For Data Unsats, this field is set to the access rights of the subspace that contains the ref-
erence.

Relocatable Object Files

3-88

The argument location value is defined as follows:

The FARGupper tag can be used only for parameter list words 0 and 2, or for the func-
tion return. If it is used for parameter list words 0 or 2, then parameter list word 1 or 3,
respectively, must be tagged as FARG; this indicates a double-precision floating-point
number in a single floating point coprocessor register. If it is used for the function
return, it indicates a double-precision floating point return value in a single floating
point coprocessor register.

name

This variable is used to locate the name of the symbol in the symbol dictionary string
table of the SOM. Its value is the byte offset, relative to the beginning of the string table,
to the first character (not the length) of the symbol name. The name begins on a word
boundary and is preceded by a 32 bit number that contains the number of characters in
the name. The symbol is terminated with an 8 bit zero, but the terminator is not included
as part of the length.

The size of the symbol dictionary string area can be used to bounds check this variable
such that it is a value in the range of 0 to the value of the variable
symbol_strings_size found in the SOM header.

qualifier_name

This field contains a byte offset relative to the beginning of the symbol strings area
which points to the first character of a symbol name which may be used to further qual-
ify the current symbol.

If there is no qualifier, this field should be set to 0.

has_long_return

this bit is set for an Entry Universal symbol means its return sequence can cross a space;
setting it for a Code Unsat asserts that the called entry point will have a long return
sequence.

no_relocation

Table 5-1:

Value Mnemonic Location

0 Do not relocate - Mismatch is not an error.

1 ARG Argument Register

2 FARG Floating point coprocessor register, bits 0 to 31.

3 FARGupper Floating point coprocessor register, bits 32 to 64.

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-89

Setting the no_relocation bit for an Entry Universal is unnecessary, but should be done
for any such symbol record whose arg_reloc field is 0. Setting the bit for a Code Unsat
asserts that the called entry point will not require any parameter relocation.

is_comdat

Setting the is_comdat bit to identify the symbol as the key symbol for a set of COMDAT
subspaces

symbol_info

This field contains variant information depending on the scope of the symbol. The fol-
lowing list shows the interpretation of this field:

For MPE/iX, this field can contain new values if the shared_data bit in the LST SOM
Auxiliary header is set:

For Storage Requests, this field is set to the size of the storage request.

For Data Unsats, this field is set to the index of the subspace that contained the refer-
ence.

symbol_value

This field contains the 32 bit value of this particular symbol.

Depending on the type and scope of the symbol this field may have a different meaning.
The following matrix shows the meaning of the symbol value for each valid combina-

Table 5-2:

Scope Meaning

UNSAT Contains the index of the subspace that imported this symbol. If
STORAGE_REQUEST then it is the index of the subspace which may
contain this symbol.

EXTERNAL Contains the XRT offset allocated by the linker for the import stub.

LOCAL Index of the subspace containing this symbol. For export stubs (proce-
dure labels), this field contains the XRT offset instead.

UNIVERSAL Index of the subspace containing this symbol.

Relocatable Object Files

3-90

tion of type and scope. Invalid combinations will be denoted as a blank cell in the
matrix. Immediately following the matrix are the definitions for the mnemonics used.

SOFF - This stands for space offset and it is the byte offset within a space (when it is
loaded in virtual memory) to an entry point (i.e. the first instruction to be executed). For
code symbols, bits 30-31 of the offset will contain the privilege level that the procedure
will execute at (subject to privilege level checking at load time and XLEAST / XMOST
level checking during execution).

CONST - This stands for a numeric constant or its value may be the virtual address of a
location within a subspace defined by this SOM.

LEN - This is the length of the storage request in bytes.

UNUSED- The content of this field is meaningless.

For MPE/iX, this field can contain new values if the shared_data bit in the LST SOM
Auxiliary header is set:

For Data and Storage Universals, this field is set to the DP-positive address of the sym-
bol.

For Data Unsats, this field is set to the DXRT offset for the symbol (will be a negative
offset).

TABLE 6 Valid symbol_value Mnemonics

TYPE UNSAT EXTRN LOCAL UNIV

PRI_PROG SOFF

SEC_PROG SOFF

ENTRY SOFF SOFF

STUB SOFF SOFF

MODULE UNUSED UNUSED

ABSOLUTE UNUSED CONST CONST

CODE UNUSED SOFF SOFF

DATA UNUSED SOFF SOFF

STORAGE LEN

PLABEL SOFF

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-91

Symbol Dictionary Extension Record

Symbol Dictionary Extension Record Fields

type

Bits 0-7

This field will be set to SYM_EXT (i.e. 12) so that it can be identified as an extension to
the symbol definition of the previous entry in the symbol list (see SYMBOL_TYPE of
symbol dictionary record fields).

max_num_args

Bits 8-15

If CHECK_LEVEL indicates that the number of arguments passed should be checked,
the num_args field of the imported symbol (this field is in the exported symbol) must be
less than or equal to this value.

This field is not used if (i.e. its content is meaningless) if the symbol is an import.

The range of this variable ismin_num_args to 255.

min_num_args

Bits 16-23

If CHECK_LEVEL indicates that the number of arguments passed should be checked,
the num_args field of the imported symbol (this field is in the exported symbol) must be
greater than or equal to this value.

This field is not used if (i.e. its content is meaningless) if the symbol is an import.

The range of this variable is 0 to max_num_args".

Figure 2-15:

struct symbol_extension_record {

unsigned int type :8;

unsigned int max_num_args :8;

unsigned int min_num_args :8;

unsigned int num_args :8;

union arg_descriptorsymbol_desc;

union arg_descriptorargument_desc[3];

};

Relocatable Object Files

3-92

num_args

Bits 24-31

This value is the number of arguments associated with the symbol. A procedure return
value is NOT counted as an argument.

The range of this variable is 0 to 255. Since this variable is not essential for linking or
loading, compilers are not constrained to limit the number of parameters to 255. How-
ever, if this limit is exceeded, functions that use this field (e.g. parameter checking) may
produce unpredictable results.

symbol_desc

This is an argument descriptor for the procedure's type or the data type depending upon
the type of the symbol (see argument descriptor definition, section 9.5).

This field is not used (i.e. its content is meaningless) if the checking level is 0.

argument_desc [1]

This is the argument descriptor for the first argument in the procedure's

argument list.

This field is not used (i.e. its content is meaningless) if the checking level is less than 3
or the number of arguments is 0.

argument_desc [2]

This is the argument descriptor for the second argument in the procedure's

argument list.

This field is not used (i.e. its content is meaningless) if the checking level is less than 3
or the number of arguments is less than 2.

argument_desc [3]

This is the argument descriptor for the third argument in the procedures argument list.

This field is not used (i.e. its content is meaningless) if the checking level is less than 3
or the number of arguments is less than 3.

Argument Descriptor

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-93

struct argument_desc_array {

unsigned int type : 8;

unsigned int reserved : 24;

union arg_descriptor argument_desc[4];

};

Argument Descriptor Fields

reserved

Bits 0-2

These bits are reserved for future use, and must be set to zero.

packing

Bit 3

This field specifies the packing algorithm used in calculating the storage layout, the
alignment of, and the data representation of the particular item. The real number data
representation on Spectrum is different from that of the HP 3000. This field may be
increased in size to allow more packing possibilities, such as 9000 or 1000 packing. The
valid values for this field are:

0 Spectrum packing and IEEE real numbers

1 3000 mode packing and real numbers alignment

Figure 2-16:Argument Descriptor Definition

union arg_descriptor {

struct {

unsigned int reserved :3;

unsigned int packing :1;

unsigned int alignment :4;

unsigned int mode :4;

unsigned int structure :4;

unsigned int hash :1;

int arg_type :15;

} arg_desc;

unsigned int word;

};

Relocatable Object Files

3-94

Bits 4-7

This field specifies the alignment of the descriptor. The valid values for this field are:

0 Byte aligned

1 Half-word aligned

2 Word aligned

3 Double-word aligned

4 Cache line (24 byte, 16-byte) aligned

5 Cache line (25 byte, 32-byte) aligned

.. ..

n Cache line (2n byte) aligned

.. ..

12 Page (212byte, 4096-byte) aligned

mode

Bits 8-11

This field specifies the type of the descriptor and its use. A value of zero for this field is
used to match with any other value. The valid values for this field are:

0 Wild card

1 Parameter, passed by value

2 Parameter, passed by reference

3 Parameter, passed by value-result

4 Parameter, passed by name

5 Global/External/Module variable

6 Function return

7 Procedure

8 Parameter, passed by long reference

structure

Bits 12-15

This field specifies the structure for a particular item.

A value of zero for this field will match any other value.

The valid values for this field are:

0 Wild card

1 Simple variable

2 Array

3 Record or composite

Relocatable Object Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 3-95

4 Short pointer

5 Long pointer

6 String, zero terminated

7 String, with length word

8 Procedure

9 Function

10 Label

hash

Bit 16

This bit, when set, specifies that the arg_type field contains a hash value, rather than a
predefined type.

arg_type

Bits 17-31

This field specifies the basic machine type for the particular item. If the item is a record,
string, or procedure (structure field 3, 6, 7, or 8), the the type will be void. Type 17
(structure or array) is allowed only when the structure field is type 2 (array), which
describes an array or structure within an array. A value of zero for this field is used to
match with any other valid value. The valid values for this field are:

0 Wild card

1 Void

2 Signed byte(8 bits)

3 Unsigned byte(8 bits)

4 Signed half-word(16 bits)

5 Unsigned half-word(16 bits)

6 Signed word(32 bits)

7 Unsigned word(32 bits)

8 Signed double-word(64 bits)

9 Unsigned double-word(64 bits)

10 Short real(32 bits)

11 Real(64 bits)

12 Long real(128 bits)

13 Short complex(64 bits)

14 Complex(128 bits)

15 Long complex(256 bits)

16 Packed decimal

17 Structure or array

Relocatable Object Files

3-96

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-97

CHAPTER 4 Relocatable Libraries

A relocatable library is a file of one or more SOMs and the data structures needed to
efficiently manage the SOMs. At the front of the file is a Library Symbol Table (LST)
header. The header is used to identify the file structure and locate the major sub-struc-
tures of the library. In particular, the header contains the location of the symbol direc-
tory, the SOM directory, an optional area for auxiliary headers and the free space list.

Relocatable Libraries

4-98

Figure 2-17 on page 98 shows a general layout of a relocatable library. Note that each

relocatable library is identifiable by the following 8-byte magic characters at the begin-
ning of the file:

!<arch>\n

where\n is the new line, or the line feed character (hex 0A).

4.1 Archive Header

The archive header appears in front of every SOM in a library, and in front of the LST in
a relocatable library. It defines the name of the SOM that follows and its length (in
bytes), as well as several other fields that are used by the HP-UX archiver utility. See the
HP-UX Users' Manual for further details.

ar_name

This field contains the name of the following SOM. The name is that of the “.o” file that
was copied into the library. The name must be left justified in the field, terminated by a
slash (“/”), and padded on the right with blanks.

For the archive header that precedes the LST, this field should contain a blank name
(i.e., a single slash padded with 15 blanks).

If a member with a file name greater than 15 bytes exists within the archive, then the
archive will also contain an additional special member to store the long file name string
table. The special string table member also has a zero length name where ar_name[0]
== ‘/’ and ar_name[1] == ‘/’.

8-byte magic characters| 60-byte archive header for this library

LST header record

Symbol Dictionary

SOM Dictionary

String Table

60-byte archive header for SOM #1

SOM #1

. . .

60-byte archive header for SOM #2

SOM #2

. . .

Figure 2-17:General Layout of a Relocatable Library

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-99

If a special string table exists, it will precede all non-special archive members. If both a
symbol table member and a string table member exist then the symbol table member
will always precede the string table member.

Each entry in the string table is followed by a slash and a new-line character. The offset
of the table begins at zero. If an archive member name exceeds 15 bytes, then the
ar_name entry in the members header does not hold a name, but holds the offset into the
string table preceded by a slash.

For example, the member name thisverylongfilename.o contains /0 for the ar_name
value. This value represents the offset into the string table. The member nameyetan-
otherfilename.ocontains /27 for the ar_namevalue. The long name string table would
have the following format:

ar_date

struct ar_hdr { /* archive file member header - printable ascii */

char ar_name[16]; /* file member name - ‘/'
terminated */

char ar_date[12]; /* file member date - decimal */

char ar_uid[6]; /* file member user id - decimal
*/

char ar_gid[6]; /* file member group id -
decimal */

char ar_mode[8]; /* file member mode - octal */

char ar_size[10]; /* file member size - decimal */

char ar_fmag[2]; /* ARFMAG - string to end
header */

};

Figure 2-18:Definition of Archive Header Record

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 t h i s i s a v e r

10 y l o n g f i l e n

20 a m e . o / \n y e t

30 a n o t h e r l o n

40 g f i l e n a m e .

50 o / \n

Relocatable Libraries

4-100

This field contains the modification date and time of the following SOM or LST. It
should be a decimal number (in ASCII characters) representing the number of seconds
since January 1, 1970. The number should be left adjusted in the field and padded with
blanks.

ar_uid

This field contains the user id of the owner of the following SOM or LST. It should be a
decimal number (in ASCII), left adjusted and blank padded.

ar_gid

This field contains the group id of the owner of the following SOM or LST. It should be
a decimal number (in ASCII), left adjusted and blank padded.

ar_mode

This field contains the mode bits for the following SOM or LST. It is an octal number,
left adjusted and blank padded.

ar_size

This field contains the size of the following SOM or LST in bytes. It is an ASCII deci-
mal number, left adjusted and blank padded. The size does not include the archive
header.

ar_fmag

This field always contains the two ASCII characters “‘” and newline (or line feed, hex
0A).

4.2 Library Symbol Table Header Record

The Library Symbol Table always begins with a LST header record. For a relocatable
library, the LST header begins immediately following the 8-byte archive “magic string”
and the 60-byte archive header; the file name field in the archive header is empty (i.e., “/
” followed by 15 blanks).

The first four bytes of the LST header will contain a number that identifies the file as a
library format file (actually it has a sub-structure of two 16 bit numbers). In addition, the
header is used to locate the major sub-structures of the library. In particular, the header
contains the locations of the symbol directory, the SOM directory, the import table
which is always set to zero, an optional area for auxiliary headers and the free space list.

system_id

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-101

Bits 0-15

This field is used to identify the architecture that this object file is targeted for. The PA-
RISC 1.1 architecturesystem_id is 210 (hexadecimal).

a_magic

Bits 16-31

This is a number that indicates the format and function of the file.

The magic number for a relocatable library is 0619 (hex), and for an executable library
is 0104 (hex).

version_id

This is a number that is used to associate the LST with the correct definition of its inter-
nal organization. The value of the number will be an encoding of the date the LST ver-
sion was defined.

struct lst_header {

short int system_id;

short int a_magic;

unsigned int version_id;

struct sys_clock file_time;

unsigned int hash_loc;

unsigned int hash_size;

unsigned int module_count;

unsigned int module_limit;

unsigned int dir_loc;

unsigned int export_loc;

unsigned int export_count;

unsigned int 0 (import_loc);

unsigned int aux_loc;

unsigned int aux_size;

unsigned int string_loc;

unsigned int string_size;

unsigned int free_list;

unsigned int file_end;

unsigned int checksum;

};

Figure 2-19:LST Header Definition

Relocatable Libraries

4-102

The version ID can be interpreted by viewing it in decimal form and separating it into
character packets of YYMMDDHH, where YY is the year, MM is the month, DD is the
day, and HH is the hour.

The only version_id that is currently defined for use by conforming applications is
85082112.

file_time

file_time is a 64 bit value that represents the time the file was last modified.file_time
is actually composed of two 32 bit quantities where the first 32 bits is the number of sec-
onds that have elapsed since January 1, 1970 (at 0:00 GMT), and the second 32 bits is
the nano second of the second (which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystems
(e.g. the file system). The use of this field is optional, but if it is not used it will be set to
zero.

hash_loc

This is the LST relative byte offset to the LST directory hash table.

hash_size

This is the number of entries in the LST directory hash table.

Since the number of entries in the hash table is also the number of symbol lists in the
directory, changing this value can affect the length of the symbol lists. The length of the
symbol lists in turn, affects the overhead required to locate a symbol.

This value must be a number between 1 and 231-1. The maximum size of the hash table
is not constrained by the range of this variable, but by other resource constraints (e.g.
file size).

module_count

This contains the index beyond the last used SOM directory entry.

module_limit

This is the maximum number of SOMs that can be in this file. Therefore, it is also the
number of entries in the SOM directory table and the number of entries in the import
table.

This value must be a number between 1 and 231-1. The maximum value of this variable
will be constrained by external resource constraints (e.g. system tables with SOM refer-
ence counts may use fixed length arrays).

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-103

dir_loc

This is the LST relative byte offset to the SOM directory.

export_loc

This is the LST relative byte offset to the export table. Not all exported symbols are nec-
essarily contained within the bounds defined byexport_loc andexport_count, but
most symbols should be. These fields are provided to allow programs that process the
export table to read in the majority of the symbol table efficiently.

export_count

This is the number of symbols contained in the main portion of the export table. Over-
flow symbols (symbols allocated after this table is full) may be scattered throughout the
LST.

import_loc

This is the LST relative byte offset to the import table. It is set to zero for relocatable
library.

aux_loc

This is the LST relative byte offset to the auxiliary header area. If no auxiliary headers
are present this variable will be set to zero.

aux_size

This is the size of the auxiliary header area in bytes. If no auxiliary headers are present
this variable will be set to zero.

string_loc

This is the LST relative byte offset to the string area of the LST.

string_size

This is the size of the LST string area in bytes.

free_list

This is the LST relative byte offset to the first free area in the file.

file_end

Relocatable Libraries

4-104

This is the LST relative offset to the first byte past the end of the file.

checksum

This field contains the value of all the other fields (i.e. not including this field) in the
LST header record after they have been exclusive ORed together.

If (in the future) there is are undefined bits in this record they must be set to zero so that
they do not affect the value ofchecksum.

4.3 Library Symbol Table Format

Data structures in relocatable library are designed to efficiently manage the SOMs in the
library. The LST header record contains addresses and ranges of the sub-structures
inside the library. Symbol dictionary and SOM dictionary are the two most important
data structures of a relocatable library. describes a relocatable as a block diagram seen
from the LST header record, the rest of this section describes the data structures in the
relocatable library.

4.3.1 Symbol Directory

The symbol directory provides direct access to the definitions of all the exported sym-
bols in the library. Each symbol definition, in turn, contains the index number of the
SOM that exported the symbol. The SOM index can be used to index into the SOM
directory or the import table (to locate the SOM or its import list).

The LST directory search algorithm will support more than one entry with the same
name provided it can be qualified by its module name or by the general type of the sym-
bol (i.e. code, data or stub).

The symbol directory is implemented as a hash table. Each entry contains an offset to a
“hash bucket” which is a chained list of symbols that hash to the same index. If a bucket

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-105

is empty, its hash table entry will be zero and the bucket will not exist. The number of
entries in the hash table is contained in the variablehash_size in the LST header and
the hash table location is contained in the variablehash_loc.

The hash function that is used for indexing the symbol directory ishash_key modulo
hash_size. The hash key is a 4 byte variable where the first byte is the length of the
symbol, the second byte of the key is the second character in the symbol, the third byte
of the key is the next to last character in the symbol, and the last byte of the key is the
last character in the symbol. If the symbol is only one character long, then that character
is used as the second byte of the key and the last two bytes of the key are the same as the
first two bytes. The result of the hash function is the hash table entry number, not the
offset into the hash table.

.

Figure 2-20:Block Diagram of a Relocatable Library

LST Header
Record

String
Table

Auxiliary

Symbol

Free

SOM

Relocatable Libraries

4-106

Figure 2-21:Block Diagram of Symbol Directory

Figure 2-22:hash_key Format (symbol length > 1 byte)

Figure 2-23:hash_key Format (symbol length = 1 byte)

☞

Note If a symbol is greater than 128 characters the first byte of the key will be
the symbol length modulo 128 (256 is not used to eliminate any affect the
sign bit may have on the modulo operation).

Hash

 Table

Symbol

hash_loc

hash_index

End of List

Symbol

Symbol

0 8 16 3124

len chr(2) chr(len-1) chr(len)

0 8 16 3124

len (=1) chr(1) len (=1) chr(1)

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-107

A symbol record consists of a symbol header record and 0 to 255 argument descriptors
constructed as shown in Figure 2-24.

Symbol records are used for the symbol entries in both the LST symbol directory and
the import list symbol entries.

The symbol header contains the information needed to import or export a symbol when
the file is loaded. The presence and number of argument descriptors is determined by a
combination of the checking level and the number of arguments according to the follow-
ing algorithm:

IF CHECKING_LEVEL < 3

THEN

No argument descriptors present (except the symbol descriptor

 in the header).

ELSE

There will be one descriptor for every argument passed.

The lst_symbol_record structure

In general, the lst_symbol_record structure is very similar to the
symbol_dictionary_record of the SOM with the addition of the som_index, symbol_key,
and next_entry fields to support symbol searching.

hidden

Bit 0

If this flag is set to one, it indicates that the symbol is to be hidden from the loader for
the purpose of resolving external (inter-SOM) references. It has no effect on linking.
This flag allows a procedure to be made private to its own executable SOM, although it
has universal scope within that SOM.

secondary_def

Bit 1

If this flag is set to one, the symbol is a secondary definition and has an additional name
that is preceded by “_”. The linker will ignore duplicate definitions involving secondary
definitions. This field is implemented to support the external naming convention.

Relocatable Libraries

4-108

symbol_type

Bits 2-7

This field defines what type of information this symbol represents.

See “Symbol Table” on page 80.

symbol_scope

Bits 8-11

The scope of a symbol defines the range over which an exported symbol is valid, or the
range of the binding used to import the symbol. In addition, this field is used to deter-
mine whether the symbol record is a import or export request.

struct lst_symbol_record {

unsigned int hidden : 1;

unsigned int secondary_def : 1;

unsigned int symbol_type : 6;

unsigned int symbol_scope : 4;

unsigned int check_level : 3;

unsigned int must_qualify : 1;

unsigned int initially_frozen : 1;

unsigned int memory_resident : 1;

unsigned int is_common : 1;

unsigned int dup_common : 1;

unsigned int xleast : 2;

unsigned int arg_reloc :10;

union name_pt name;

union name_pt qualifier_name;

unsigned int symbol_info;

unsigned int symbol_value;

unsigned int symbol_descriptor;

unsigned int reserved : 8;

unsigned int max_num_args : 8;

unsigned int min_num_args : 8;

unsigned int num_args : 8;

unsigned int som_index;

unsigned int symbol_key;

unsigned int next_entry;

};

Figure 2-24:LST Symbol Record Definition

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-109

See “Symbol Table” on page 80.

check_level

Bits 12-14

This value indicates how closely an import definition must match an export definition
during linking.

For more info on check_level, See “Symbol Table” on page 80..

must_qualify

Bit 15

If this bit is set to one, it indicates that there is more than one entry in the symbol direc-
tory that has the same name as this entry, and is the same generic type (i.e. code, data, or
stub). Therefore, the qualifier name must be used to fully qualify the symbol.

If this flag is not set, the qualifier name will only be used to qualify the symbol name if
the name it is being compared with is also fully qualified.

must_qualify is used for both import and export requests.

initially_frozen

Bit 16

If this flag is set to one it indicates that the code importing or exporting this symbol is to
be locked in physical memory when the operating system is being booted.

memory_resident

Bit 17

If this field is set to one it indicates that the code that is importing or exporting this sym-
bol is frozen in memory. This flag is used so that links between memory resident proce-
dures can also be frozen in memory.

is_common

Bit 18

Specifies that this symbol is an initialized common data block. Each initialized common
data block resides in its own subspace. For example, a Fortran initialized common dec-
laration would produce a symbol of type data with theis_common flag set to one.

Relocatable Libraries

4-110

duplicate_common

Bit 19

If this flag is set to one, it specifies that this symbol name may conflict with another
symbol of the same name if both are of type data. This is to facilitate the Cobol “com-
mon” feature, since Cobol allows duplicate initialization of “common” data blocks. This
flag would be set to one if the language allows duplicate initialization, otherwise it will
be set to zero for symbols of type data.

xleast

Bits 20-21

This is the execution level that is required to call this entry point. Thisxleast level is
placed in any XRT entry linked to this entry point. Thexleast level will be checked by
the Spectrum external procedure call primitive during execution.

See “Symbol Table” on page 80.

arg_reloc

Bits 22-31

This field is used to communicate the location of the first four words of the parameter
list, and the location of the function return value to the linker and loader. This field is
meaningful only for exported ENTRY, PRI_PROG, and SEC_PROG symbols.

See “Symbol Table” on page 80.

name

This variable is used to locate the name of the symbol in the string table of the LST. Its
value is the byte offset, relative to the beginning of the string table, to the first character
(not the length) of the symbol name.name begins on a word boundary and is preceded
by a 32 bit number that contains the number of characters in the name. The symbol is
terminated with an 8 bit zero, but the terminator is not included as part of the length.

This variable may point to any location within the library file (although it must always
be relative to the beginning of the LST string table). In particular, it may point to a string
within a symbol string table belonging to one of the SOMs contained within the library.
Although this may save space in the library file, it may have a negative impact on loader
performance.

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-111

If this field is not used, this symbol will be treated as unnamed common data and must
be of typestorage_request. In this case, this field will be set to 0.

qualifier_name

This variable is used to locate the name of a qualifier that may be user to further qualify
this symbol. Its value is the byte offset, relative to the beginning of the LST string table,
to the first character (not the length) of the qualifier name. The name begins on a word
boundary and is preceded by a 32 bit number that contains the number of characters in
the name. The name is terminated with an 8 bit zero, but the terminator is not included
as part of the length.

This variable may point to any location within the library file (although it must always
be relative to the beginning of the LST string table). In particular, it may point to a string
within the symbol string table belonging to one of the SOMs contained within the
library. Although this may save space in the library file, it may have a negative impact
on loader performance.

If there is no qualifier, this field should be set to 0.

symbol_info

This field contains variant information depending on the scope of the symbol.

See “Symbol Table” on page 80.

For MPE/iX, this field can contain new values if the shared_data bit in the LST SOM
Auxiliary header is set:

For Data Universals, this field is set to the index of the subspace the symbol is defined
in.

For Storage Universals, this field is set to the size of the storage request.

For Data Unsats, this field is set to the DXRT offset for the symbol (will be a negative
offset).

symbol_value

This field contains the 32 bit value of this particular symbol. Depending on the type and
scope of the symbol this field may have a different meaning.

☞

Note
Zero is not a legal string table offset since the first name in
string will be at offset 4.

Relocatable Libraries

4-112

See “Symbol Table” on page 80.

For MPE/iX, this field can contain new values if the shared_data bit in the LST SOM
Auxiliary header is set:

For Data and Storage Universals, this field is set to the DP-positive address of the sym-
bol.

For Data Unsats, this field is set to the index of the subspace the symbol was referenced
in.

symbol_descriptor

This is an argument descriptor for the procedure's type or the data type depending upon
the type of the symbol (see argument descriptor definition, section 9.5).

See “Symbol Table” on page 80.

reserved

Bits 0-7

These bits are reserved for future expansion.

max_num_args

Bits 8-15

If check_level indicates that the number of arguments passed should be checked, the
num_args field of the imported symbol (this field is in the exported symbol) must be less
than or equal to this value.

See “Symbol Table” on page 80.

min_num_args

Bits 16-23

If check_level indicates that the number of arguments passed should be checked, the
num_args field of the imported symbol (this field is in the exported symbol) must be
greater than or equal to this value.

See “Symbol Table” on page 80.

num_args

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-113

Bits 24-31

This value is the number of arguments associated with the symbol.

som_index

This value is an index that identifies the SOM that defines this symbol. The index can be
used (when multiplied by the entry size) to index into the SOM pointer table that fol-
lows LST header and thereby, be used to locate the SOM.

The SOM index must be a number between 0 and value of the variablemodule_limit-
1 in the LST header.

This field is not used if the symbol is an import.

symbol_key

This is the 4 byte hash key for this symbol. The key is supplied to provide a quick check
before comparing each byte of the symbol to determine if this is the correct symbol.
Refer to “Symbol Directory” on page 104 for the hash algorithm to get this key.

next_entry

This value is the LST relative byte offset to the next entry in the list that contains this
symbol. If this symbol is the last entry in the list, this field is set to zero.

Argument Descriptor Fields

See “Symbol Table” on page 80.

4.3.2 SOM Directory

The SOM directory is a table of entries that contain the location and length of every
SOM within the file. Both the location and length are in bytes. The location is relative to
the start of the file (not to the LST header), and points to the first byte of the SOM
header (not to the archive header). The length does not include the archive header. The
index of a SOM is used to index into the SOM directory.

☞

Note A procedure return value is NOT counted as an argument. The
range of this variable is 0 to 255. Since this variable is not essential
for linking or loading, compilers are not constrained to limit the
number of parameters to 255. However, if this limit is exceeded,
functions that use this field (e.g. parameter checking) may produce

Relocatable Libraries

4-114

Since each SOM will require a SOM directory entry, the variablemodule_limit in the
LST header will contain the number of entries in the SOM directory. The table is
pointed to by the variabledir_loc, which contains the LST header relative byte offset
to the beginning of the SOM directory.

If a SOM does not exist, its entry in the SOM directory table will be set with a length of
zero and the location set so that all bits are one.

Figure 2-25 shows the structure of the SOM directory.

4.3.3 Free Space List

A linked list of free areas within the file is maintained to support additions and deletions
to an existing library file.The first free area is located by the variablefree_list, which
contains the LST header relative byte offset to the first free area. Free areas are kept
track of by linking each area with a free link.

A free link is a three word link stored at the front of each free area. The first word is the
LST header relative byte offset to the previous entry in the list, the second word is the

Figure 2-25:Structure of the SOM directory

SOM
Directory

Symbol
Directory

dir_loc

Archive Header

SOM

Symbol

SOM Index

Relocatable Libraries

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 4-115

LST header relative byte offset to the next entry in the list, and the third word is the size
of the current entry in bytes.

The previous link field in the first free link and the next link field in the last free link will
be set to zero in order to mark the corresponding end of the free list. If the file has no
free space, the free list pointer in the LST header will be set to zero.

Free space is always allocated from the free list in multiples of 4 bytes, beginning on a 4
byte boundary. If a free area is smaller than a free link it will be ignored and become lost
space.

0
32

4

8

previous_free_linkprevious_free_link

free_area_size

next_free_link

Figure 2-26:FREE_LINK Format

Relocatable Libraries

4-116

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 5-117

CHAPTER 5 Executable Files

5.1 Object File Header

The object file header must be present, and must be at the beginning of an executable
file. Magic numbers reserve for executable file are 0x107, 0x108, and most commonly
0x10B. Refer to Section 3.1 on page 43 for a detail description of the object file header
and Table 10 on page 45 for more information regarding the magic numbers.

5.2 Auxiliary Headers

If the auxiliary area is present it will contain one or more auxiliary header records. The
first two words of every auxiliary header record (also known asauxiliary header identi-
fier) will identify the type and length of the auxiliary header. A provision has been made
to allow user defined auxiliary header records, however, there will be no centralized
control over the assignment of user defined auxiliary header types.

The structure of the auxiliary header id defined below in Figure 2-27.

Executable Files

5-118

mandatory

Bits 0

If this bit flag is set to one it indicates that this auxiliary header contains information that
the linker must understand. If the type field is undefined for the version of the linker
being used, it is an error.

copy

Bits 1

If this bit flag is set to one it indicates that this auxiliary header is to be copied without
modification to any new SOM created from this SOM. Two auxiliary headers with the
same type field should not be merged together but left as separate entries.

append

Bits 2

This bit flag is the same as thecopy flag above except that multiple entries with the same
type and append set of “action flags” (i.e.,mandatory, copy, append, ignore) should be
merged (concatenation of the data portion). The order of merging is not important.

ignore

Bits 3

If this bit flag is set to one it indicates that this auxiliary header should be ignored if its
type field is unknown (i.e., do not copy, do not merge).

struct aux_id {

unsigned int mandatory : 1;

unsigned int copy : 1;

unsigned int append : 1;

unsigned int ignore : 1;

unsigned int reserved : 12;

unsigned int type : 16;

unsigned int length;

};

Figure 2-27: Definition of the
Auxiliary Header

Executable Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 5-119

reserved

Bits 4-15

These bits are reserved for future use.

type

Bits 16-31

This field is a numeric value that defines the contents of the auxiliary header.

This field has a range of 0 to 65535. TYPE values less than 32767 are reserved for
Hewlett-Packard defined auxiliary header record types. TYPE values greater that 32767
are user definable.

The currently defined auxiliary header type values are defined in Table 7 on page 119.

length

This is the length of the auxiliary header in bytes. This value does NOT include the two
word identifier at the front of the header.

An auxiliary header is not constrained to be an integral number of words in length. If it
is not word aligned, the next auxiliary header or the end of the auxiliary header area will
be placed at the next word boundary. The value of pad bytes are not defined. If two aux-
iliary headers are merged and the first is not word aligned, the next one will start on the
very next byte.

TABLE 7 Auxiliary Header Types

Value Usage

0 NULL

1 Linker footprint

2 Obsolete (used to be MEP/iX program)

3 Debugger footprint

4 Exec Auxiliary Header

5 IPL auxiliary header

6 Version string

7 MPE/iX program

8 MPE/iX SOM

9 Copyright

10 Shared Library version information

11 Product specifics

12 NetWare Loadable Module

Executable Files

5-120

5.2.1 Loader Auxiliary Headers

Currently there are three type of loader auxiliary headers:

• HP-UX auxiliary header: This auxiliary header contains run-time information used
by the HP-UX loader to do a fast and efficient program load of an executable SOM.
See Section 6.1 on page 125 for the detail structure of this auxiliary header.

• MPE/iX program and SOM auxiliary headers: These are auxiliary headers used by
the MPE/iX loader to load program (executable SOM) or executable library.

• IPL auxiliary header: This auxiliary header is used to provide information that is
needed for loading bootable utilities. All bootable utilities accessible through the
LIF directory must have enough of a common format for IPL to load and launch util-
ities through a standard method. IPL may need to know the intended physical desti-
nation address for which the module was linked, as well as the entry point and the
length of the image. This auxiliary header meets IPL’s needs for loading and launch-
ing bootable utilities.

Following is the IPL auxiliary header definition and its fields description:

header_id

struct ipl_aux_hdr {

struct aux_id header_id;

unsigned int file_length;

unsigned int address_dest;

unsigned int entry_offset;

unsigned int bss_size;

unsigned int checksum;

};

Figure 2-28: Definition of the
Auxiliary Header

☞
Note

The mandatory, copy, append and ignore bits fields in the auxiliary
header are not used consistently. Thus, users should consider these
fields meaningless and unreliable.

Executable Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 5-121

This is the auxiliary header id for an IPL SOM. The type field of this id must be 5.

file_length

This field contains the length of the entire SOM including all headers.

address_dest

This field specifies the destination address at which the file should be loaded. For those
utilities which are position independent, this field can be set to -1 and IPL will load it at
the first available memory after IPL.

entry_offset

This field contains the file offset of the entry point relative to the beginning of the file.

bss_size

This field specifies the length of the un-initialized data area for the program. The loader
must allocate this area immediately following the initialized data and fills it with zeroes.

checksum

This field contains the checksum of the entire file. The checksum is computed as the
negated arithmetic sum of every word in the file (not including itself). In other words,
the arithmetic sum of all the words in a valid file, including the checksum would be
zero.

5.2.2 Other Auxiliary Headers

a.Linker footprint

The linker footprint auxiliary header is used to record the last time the linker modified
this SOM or LST (whichever applies). The presence of the linker footprint is optional.
Following is the linker footprint auxiliary header definition and its fields description:

struct linker_footprint {

struct aux_id header_id;

char product_id[12];

char version_id[8];

struct sys_clock htime;

};

Figure 2-29: Definition of the Linker
Footprint Auxiliary Header

Executable Files

5-122

header_id

This is the auxiliary header id for the linker footprint. The type field of this id must be 1.

product_id

bits 0--95

This twelve character array contains the HP product identification number of the linker
that last modified this SOM or LST.

version_id

This twelve character array contains the HP version number of the linker that last modi-
fied this SOM or LST.

htime

The htime is a 64 bit value that represents the time the file was last modified by the
linker. The htime is actually composed of two 32 bit quantities where the first 32 bits is
the second of the century (maximum value is 3162240000-1, which requires 32 bits to
represent) and the second 32 bits is the nano second of the second (which requires 30
bits to represent).

This value is independent of any modification time maintained by other subsystems
(e.g. the file system). The use of this field is optional, but if it is not used it will be set to
zero.

b.Debugger_footprint

The debugger footprint auxiliary header is used to record the last time the debugger
modified this SOM or LST (whichever applies). The presence of the debugger footprint
is optional. Following is the debugger footprint auxiliary header definition and its fields
description:

header_id

struct debugger_footprint {

struct aux_id header_id;

char debugger_product_id[12];

char debugger_version_id[8];

struct sys_clock debug_time;

};

Figure 2-30: Definition of the
Debugger Footprint Auxiliary

Header

Executable Files

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 5-123

This is the auxiliary header id for the debugger footprint. The type field of this id must
be 3.

debugger_product_id

bits 0--95

This twelve character array contains the HP product identification number of the debug
program that last modified this SOM or LST.

debugger_version_id

This eight character array contains the HP version number of the linker that last modi-
fied this SOM or LST.

debug_time

The debug_time is a 64 bit value that represents the time the file was last modified by
the debugger . The debug_time is actually composed of two 32 bit quantities where the
first 32 bits is the second of the century (maximum value is 3162240000-1, which
requires 32 bits to represent) and the second 32 bits is the nano second of the second
(which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystems
(e.g. the file system). The use of this field is optional, but if it is not used it will be set to
zero.

c.Version String Auxiliary Header

The Version_String auxiliary header can be used for any user-defined string. The length
of the string is essentially unbounded. The string must be null-terminated. The
string_length field contains the length of the user-defined version string, not including
the null () terminator. (Note that the length field inaux_header_id includes both the
string_length field and the padding bytes of the string.)

Additional auxiliary header types for other kinds of user strings may be added in the
future, rather than reserving one auxiliary header type for all such user strings.

Following is the version string auxiliary header definition. Note that the type of the
header_id field must be 6:

5.3 Symbol Table

The symbol table (also known as symbol dictionary) has the same format as the symbol
table in the relocatable object file. Please refer to Section 3.7 on page 80 for detail
descriptions of the symbol table.

Executable Files

5-124

5.4 Stack Unwind Table

Each entry in the unwind table contains two addresses which describe a region of code,
typically the starting and ending address of a procedure. Each entry also contains an
unwind descriptorwhich holds information about the frame and register usage of that
region. When an unwind operation is required, the unwind table is searched to find the
region containing the instruction where the exception or interrupt occurred.

Please refer to the “Stack Unwind Library” chapter for more information on unwind.

5.5 Recover Table

The recover table has three words entries that contains the beginning and the end
addresses of the unwind region and the resume address. Please refer to the “Stack
Unwind Library” chapter for more information on unwind and recover.

5.6 Auxiliary Unwind Table

The auxiliary unwind table is implemented to mainly support the Ada trace back mech-
anism. The auxiliary unwind table parallels to the unwind table and contains four words
entries that describe information on the compilation unit, the scope name, the scope type
and the address of the line table.. Please refer to the “Stack Unwind Library” chapter for
more information on Ada procedure trace back tables and mechanism.

struct version_string_aux_hdr {

struct aux_id header_id;

unsigned int string_length;

char user_string[1];

};

Figure 2-31: Definition of the
Version String Auxiliary Header

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-125

CHAPTER 6 HP-UX Specifics

6.1 HP-UX Auxiliary Header

The exec auxiliary header (also known as the 'HP-UX' auxiliary header within Hewlett-
Packard) is used to contain run-time information for executable SOM files which con-
form to the notion of a 32-bit local address space. This header is filled in by the linker
and is used by the system loader. The exec auxiliary header must immediately follow
the SOM header record. This auxiliary header contains all the information needed by
the system loader to perform fast and efficient program load of an executable SOM. All
fields are mandatory and are expected to be filled in by the linker.

The Exec Auxiliary Header is required in all incomplete executables and relocatable
objects. Figure 2-32 on page 126 defines the Exec Auxiliary Header.

som_auxhdr

This field contains the auxiliary header identifier for a program file. The type field of
this header id must be 4.

exec_tsize

This field specifies the text (code) size in bytes (does not have to be a multiple of 4
Kbytes). The actual size of the text section in the file must be a multiple of 4 Kbytes and
can be padded with zeroes to make it a multiple of 4 Kbytes.

exec_tmem

HP-UX Specifics

6-126

This field specifies the space-relative byte offset of text (code) in memory. The address
must be page aligned.

exec_tfile

This field contains the location of the text (code) in the file. The value will be a byte off-
set relative to the first byte of the SOM.

exec_dsize

This field specifies the size in bytes of the initialized data (does not have to be a multiple
of 4 Kbytes). The actual size of the data section in the file must be a multiple of 4
Kbytes and can be padded with zeroes to make it a multiple of 4 Kbytes.

exec_dmem

This field specifies the space-relative byte offset of data in memory. The address must be
4 Kbyte aligned.

exec_dfile

This field contains a location of the data in the file. The value is a byte offset relative to
the beginning of the SOM.

exec_bsize

This field contains the size in bytes of the uninitialized data in the file.

struct som_exec_auxhdr {

struct aux_id som_auxhdr;/* som auxiliary header */

long exec_tsize; /* text size in bytes */

long exec_tmem; /* offset of text in memory */

long exec_tfile; /* location of text in file */

long exec_dsize; /* initialized data */

long exec_dmem; /* offset of data in memory */

long exec_dfile; /* location of data in file */

long exec_bsize; /* uninitialized data (bss) */

long exec_entry; /* offset of entrypoint */

long exec_flags; /* loader flags */

long exec_bfill; /* bss initialization value */

};

Figure 2-32: Definition of Exec Auxiliary Header

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-127

exec_entry

This field contains the space-relative byte offset of the main entry point for this file.

exec_flags

This field contains a series of one-bit flags for use by the loader.

The low-order bit (bit 31) is defined to indicate whether nil-pointer dereferences should
be trapped by the operating system. If the bit is set, dereferences of nil pointers will be
trapped; if the bit is not set, dereferences of nil pointers will return 0.

Bit 30 indicates that external millicode (if implemented) is used by this program file.

Bit 29 indicates dynamically linked (incomplete) executables (for example, an execut-
able linked with shared libraries).

Bit 28 indicates executable built with the aid of profile information.

Bit 24-27 - instruction page size field :

0:4 K 1:16 K 2: 64 K 4: 1M 5: 4M 6: 16 M 7: 64 M 8: 256 M

Bit 22-23 - initialized to 0 and reserved.

Bit 21 - static branch prediction recommended for this load image.

Bit 17-20 - data page size field; values as for instruction page size field above.

Bit 15 - Enable lazy swap when set.

Bit 14 - Lock text into physical memory when set.

Bit 13 - Lock data into physical memory when set.

exec_bfill

This field specifies the value to which uninitialized data (BSS) should be initialized.

6.2 Program Startup

All programs must be linked with the relocatable startup objectcrt0.o.This object code
defines entry points, sets up data pointer register (DP), initializes program variables, and
checks for dynamic (shared) libraries.

HP-UX Specifics

6-128

Table 7 on page 39 summaries program variables that are defined bycrto, and Table 8
on page 40 lists the register definition at process initialization.

Here is how shared libraries work at run time: Startup code in /usr/ccs/lib/crt0.o invokes
the dynamic loader, /usr/lib/dld.sl, which in turn maps all the shared libraries, binds all
the symbols, and applies all the dynamic relocations, then branches back to the invoking
executable file.

The magic numbers and aux headers are the same between an incomplete and a fully
bound executable. To decide whether to invoke the dynamic loader, crt0 looks at the first
word in the TEXT space, found by looking at __text_start symbol created by the linker.
If this matches the value of the DL_HEADER_VERSION_ID or
DL_HEADER_VERSION_ID2 in <shl.h>, then the executable is an incompletely
bound program file.

crt0 will then map dld.sl. First it opens the file; then it reads the text, data, and bss sizes
from the HP-UX aux header; then it calls mmap(2) to map all three sections into mem-
ory. Finally, it invokes the entry point for dld.sl indirectly, by adding the exec_entry field
of the aux header to the mapped address of dld’s text start, and makes an indirect func-
tion call to this point.

Several parameters are sent to dld’s main entry point in this call. These include the start-
ing and ending addresses of dld’s text, data, and bss, as well as the name of the program
file, its starting and ending addresses, and a value that dld will use as its stack location.

Since dld runs before the program file itself, and it uses the stack as pointed to by %r30
for local variables just as any code, by the time the program file routines are entered, the
stack is likely to be non-zero -- that is, dirty. This has caused no small concern to vari-
ous (poorly-written) applications that expect their local variables to start out with a zero
initial value. In order to prevent a dirty stack on program entry, dld bumps the stack by
8K bytes on entry, and uses this value as its starting stack address.

Actually, crt0 bumps the stack by this new value before it invokes dld, then restores the
original SP value upon dld’s return. But this stack location is sent to dld so that it can
use the same minimum address when it is invoked during program execution: specifi-
cally, when deferred binding is on and a procedure call must be bound at first invoca-
tion.

6.2.1 Sample Assembly Listing of crt0 code

#define etext _etext

#define monitor _monitor

;;; these constants come from /usr/include/shl.h

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-129

DL_HDR_VERSION_ID .equ 89060912

DL_HDR_VERSION_ID2 .equ 93092112

#include <machine/break.h>

.space$TEXT$

.subspa$UNWIND_START$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=56

.subspa$UNWIND$MILLICODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=62

.subspa$CODE$

 .import __text_start, data

.proc

.callinfo SAVE_SP,FRAME=128

.export$START$,entry

.entry

$START$

ldil L’$global$,dp ;Initialize the global data

ldo R’$global$(dp),dp ; pointer

ldo 128(sp),sp ;Allocate frame, marker, and argument

depi 0,31,3,sp ; list and doubleword align sp

ldw 0(arg1),r3 ;Get argv[0]...

addil L’$ARGV-$global$,dp

stw r3,R’$ARGV-$global$(r1) ; and stash it away

addilL’_environ-$global$,dp ; Initialize _environ

stwarg2,R’_environ-$global$(r1) ; so getenv(3) works

HP-UX Specifics

6-130

; Floating point status register initialization.

; We use the dld ltptr location at dp-4 as a scratch area

fstws fr0,-4(0,dp)

ldil LR’_fp_status,r5 ;symbol value set by ld +FP option

ldo RR’_fp_status(r5),r5 ;default value is 0

ldw -4(dp),r4

orr4,r5,r5 ;we OR into the current status

stwr5,-4(dp) ;store result into scratch area

addil L’ DL_HDR_VERSION_ID2, %r0 ; load constant here to avoid

ldo R’ DL_HDR_VERSION_ID2 (%r1), %r19 ; interlock from store

fldws-4(dp),fr0; load the fp status register from the

; scratch area we saved it in

; This is the documentation of the structure pointed to by

; %arg3. Learn it, know it, live it. Its definition lives in

; /usr/include/machine/cpu.h, the structure name is keybit_info.

; +------------------------------+

; | cpu_version |

; +------------------------------+

; | FP status reg after copr 0,0 |

; +------------------------------+

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-131

; | number of words of keybits |

; +------------------------------+

; | Keybits_1 |

; +------------------------------+

; | addtional opt. keybits |

; | . |

; | . |

; | . |

; +------------------------------+

; | -1 |

; +------------------------------+

; The -1 marks the end of the list. This way, we can extend this

; structure in the future, and add fields besides keybits if we want.

.import _is_89_0

copy %r26, %r4 ; save arvc, argv and envp

copy %r25, %r5

copy %r24, %r6

copy %r23, %r7 ; save keybits pointer

ldil L’_is_89_0,r31 ; Make sure we are not on a 8.0 or 9.0 system

ble R’_is_89_0(sr4,r31) ; before we de-reference the keybits pointer

copy r31,rp

copy %r4, %r26 ; restore arvc, argv and envp

copy %r5, %r25

copy %r6, %r24

copy %r7, %r23 ; restore keybits pointer

HP-UX Specifics

6-132

comb,<>,n %ret0, %r0, L$0002 ; If return value is non-zero, we are

; on a 9.0 system, and should not

; de-reference the keybits pointer.

; Even though we check to make sure we are not on 8.0 or 9.0

; above, still validate pointer in case we are running on a pre-8.0

; system.

; The pointer validation assumes that exec will always place

; the CPU_INFO structure higher on the stack than envp.

comb,>>,n %arg3,%sp,L$0002 ; If passed_ptr > sp, it must be a

; bogus pointer.

comb,<<,n %arg3,%arg2,L$0002 ; If passed_ptr < envp, it must be a

; bogus pointer.

; We have a valid pointer

ldw (%arg3),%r5 ; Get first word of structure (cpu_version)

addil L’_CPU_REVISION-$global$,dp ; Store _CPU_REVISION info

stw %r5,R’_CPU_REVISION-$global$(r1) ; passed in from the kernel

ldw 12(%arg3),%r5 ; Get first word of keybits (key_bits[0])

addil L’_CPU_KEYBITS_1-$global$,dp ; Store key bits loaded from stack

stw %r5,R’_CPU_KEYBITS_1-$global$(r1) ; into _CPU_KEYBITS_1

; Now we set up the _FPU_MODEL and _FPU_REVISION globals with

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-133

; the data from the fpu_info field of the keybit_info structure

ldil L’_FPU_MODEL,%r4 ; put the address of _FPU_MODEL

ldo R’_FPU_MODEL(%r4),%r4 ; in %r4

ldw 4(%arg3),%r5 ; put copr 0,0 results into %r5

extru %r5,15,6,%r6 ; put the fpu model into %r6

sth %r6,(%r4) ; store the fpu model in _FPU_MODEL

extru %r5,20,5,%r6 ; put the fpu revision into %r6

sth %r6,2(%r4) ; store the revision _FPU_REVISION

L$0002

; Shared Library support -- mapping dld.sl

; check a.out file for dl_header

; dl_header is the first thing in the text space.

ldil L’__text_start,r1 ; dl_header.hdr_version

ldw R’__text_start(r1),r31

addil L’DL_HDR_VERSION_ID,%r0 ; start loading old version number

combt,=,n %r19,%r31,L$0004 ; if new version, go map dld now

ldo R’DL_HDR_VERSION_ID (%r1), %r19

combf,=,n %r19,%r31,L$0001 ; if not old version, skip mapping

L$0004

.import __map_dld

.import ___stack_zero, absolute

; map_dld

HP-UX Specifics

6-134

; set sp to skip nominal 8K to maintain clean stack (dld uses sp+8k

; for sp) - actually linker-set value of “___stack_zero”, setable

; with ld -FS <val>, where val is in decimal bytes.

copy sp, %r7 ; save sp

addil LR’___stack_zero, sp

ldo RR’___stack_zero(%r1),sp

copy %r26, %r4 ; save arvc, argv and envp

copy %r25, %r5

copy %r24, %r6

copy sp, arg1 ;pass dld’s sp as 2nd arg

;envp is already in place for 3rd arg

copy %r7, arg3 ;pass in orig user sp (saved in gr7) as 4th arg

copy r3, arg0 ;pass in program file name as 1st arg

ldil L’__map_dld,r31

ble R’__map_dld(sr4,r31)

copy r31,rp

copy %r4, %r26 ; restore arvc, argv and envp

copy %r5, %r25

copy %r6, %r24

copy %r7, sp ; restore original sp.

L$0001

.import _start

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-135

.call

stw r0,-4(sp) ;Mark last stack frame (null fm_psp)

addil L’_environ-$global$,dp ; Pass in the (possibly)

ldw R’_environ-$global$(r1),arg2 ; updated value of _environ

ldil L’_start,r31

ble R’_start(sr4,r31)

copy r31,rp

$START_RTN$

break BI1_AZURE,BI2_AZURE_CRT0 ;Should never get here

.procend

.proc ; so a profiling SOM will load with this.

.callinfo ;

.export _mcount,entry ;

.entry

_mcount

.exit

bv,n(rp)

nop

.procend

.proc

.callinfo

.export _clear_counters,entry

HP-UX Specifics

6-136

.entry

_clear_counters

.exit

 bv,n (rp)

 nop

 .procend

.proc ; _sr4export serves as target of calls

.callinfo export_stub ; from dynamically-loaded code to the

.export _sr4export,code ; basis code.

_sr4export

ble 0(sr4,r22) ; branch to real entry point

copy r31,rp ; ...return link in rp

ldw -24(sp),rp ; restore return link from stack

ldsid (rp),r1; get space id for return

mtsp r1,sr0

be,n 0(sr0,rp); return

nop

.procend

.proc ; __d_trap is used by HP/PAK

.callinfo

.export __d_trap,entry

.entry

__d_trap

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-137

.exit

bv,n(rp) ; just return

nop

.procend

.subspa $UNWIND_START$;Declare subspace start symbols

.export $UNWIND_START, data

$UNWIND_START

.subspa $UNWIND_END$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=72

.export $UNWIND_END, data

$UNWIND_END

.subspa $RECOVER_START$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=73

.export $RECOVER_START, data

$RECOVER_START

.subspa $RECOVER$MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=78

.subspa $RECOVER$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=80

.subspa $RECOVER_END$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=88

.export $RECOVER_END, data

$RECOVER_END

.space $PRIVATE$

.subspa $GLOBAL$

.export $global$

HP-UX Specifics

6-138

.export __dld_flags, data

.export __dld_hook, data

.export __dld_list, data

; NOTE: We must always make sure that $global$ is double-word aligned

__dld_list

.WORD 0 ; holds address of pointer to dld library handle list

; provided to support core file debugging.

__dld_hook

.WORD 0 ; word to hold plabel of routine for dld to call back

; into the a.out so xdb can hit known breakpoint.

__dld_flags

.WORD 4 ; Bit vector for xdb or other external process to

; pass flags to crt0.o/dld.sl. All writes to

; this flag must OR in the previous contents.

;

; Meaning of bits

; 0 - if set -> dld should map libraries private

; 1 - if set -> dld should call hook routine

; 2 - if set -> dld allowed to store address

; of pointer to dld library handle list at

; location __dld_list

; 3 - if set and hook routine valid, dld should call ; hook rou-
tine during BOR (bind on reference).

; Dynamically changed.

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-139

 ;

; All other bits must be zero until defined later.

.WORD 0 ; leave word at dp-4 to hold LT-pointer of dld.sl

; This location is also used as a scratch area

; by startup code in crt0

 ;

$global$;Contents of dp for HP-UX

;DO NOT PUT ANY DATA ON THIS SIDE OF $global$ - YOU WILL FOUL UP
PASCAL’s

;SCHEME FOR ALLOCATING THEIR MAIN PROGRAM GLOBALS HERE
INSTEAD OF ON THE

;STACK

; Define data sym to hold the system id of final executable

; __SYSTEM_ID will be defined by ld(1)

.subspa $DATA$

.import __SYSTEM_ID,ABSOLUTE

.align 8

_SYSTEM_ID

.word __SYSTEM_ID

.export _SYSTEM_ID

_FPU_MODEL

HP-UX Specifics

6-140

.half 0

; YOU MUST KEEP _FPU_REVISION IMMEDIATELY AFTER _FPU_MODEL,
SINCE THE

; CODE IN CRT0.S RELIES ON THIS!!!!!!!!!!!

_FPU_REVISION

.half 0

.export _FPU_MODEL,data

.export _FPU_REVISION,data

_CPU_REVISION

.word 0

.export _CPU_REVISION,data

_CPU_KEYBITS_1

.word 0

.export _CPU_KEYBITS_1,data

_environ

environ

.word 0

.export _environ,data

.export environ,data,sec_def

.import _fp_status,ABSOLUTE

__d_trap_fptr

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-141

.word P’__d_trap

.export __d_trap_fptr,data

.subspa $PFA_COUNTER$,QUAD=1,ALIGN=4,ACCESS=0x1f,SORT=8

.export $ARGV

$ARGV .word 0;Copy of argv[0]

.align8

.export $PFA_C_START

$PFA_C_START

.subspa $PFA_COUNTER_END$,QUAD=1,ALIGN=4,ACCESS=0x1f,SORT=10

.export $PFA_C_END

$PFA_C_END

.end

6.3 Shared Libraries

6.3.1 Shared Library Memory Model

The HP-UX shared memory starts at hexadecimal address 0x80000000 and ends at
0xFFFFFFFF (third and fourth quadrant) with the upper 256 megabytes of the fourth
quadrant reserved for system use. The above address range is mapped into memory
using space register SR6 and SR7.

6.3.2 Linkage Table

The Linkage Table is located in the $DATA$ space of a shared library and/or program
file. It is divided into two parts: a Data Linkage Table (DLT) for data references and a
Procedure Linkage Table (PLT) for procedure calls. The linkage table is used as a
branch table to handle indirect procedure and data references.The DLT contains an entry
for each data or procedure symbol that is accessed via the DLT_REL fixup request. The

HP-UX Specifics

6-142

PLT contains an entry for each unresolved procedure symbol referenced within the
object.

6.3.2.1 Data Linkage Table

Each DLT entry is a single word which contains a pointer to the actual data item refer-
enced via a T’ fixup; this pointer value is assigned by the dynamic loader, after mapping
the shared library. Since T’ references to data items go directly through the DLT (rather
than a stub), the register r19 is reserved to point to the middle of the DLT, to provide
maximum addressability for short load instructions. The linker allocates r19-relative
offsets for each DLT entry, and uses those offsets when rewriting code that accesses data
with the DLT_REL fixup.

6.3.2.2 Procedure Linkage Table
The Procedure Linkage Table (PLT) is created for both shared libraries and incomplete
executables, and is placed immediately following the DLT (if one exists). A PLT entry is
created for each unique procedure symbol imported by the object. The linker creates an
import stub for each unresolved procedure and redirects the reference to the import stub
created, which uses the address in the PLT entry to branch to the actual procedure. In
PIC code (shared libraries), import stubs use a long r19-relative offset to access an entry
in the PLT; therefore, PLT entries are not constrained to be a fixed distance from r19 (as
the DLT references are). For non-PIC code (incomplete executables), register r19 is not
reserved, and import stubs will be able to access the PLT entries directly (because the
executable program knows where its Linkage Table is allocated: right before DP). Each
PLT entry consists of two words: the first word contains the address of the target proce-
dure, and the second word contains the r19 (linkage table pointer) value required by the
procedure being called.

proc_addr

This field contains the address of the procedure to be branched to, taken from the export
table of a shared library or program file. It can also be initialized to the address of the
bind on reference (BOR) dynamic loader routine that will bind the procedure upon first
reference.

ltptr_value

struct PLT_entry {

int proc_addr; /* address of procedure */

int ltptr_value; /* value of r19 required for this procedure */

};

Figure 2-33: PLT Entry Definition

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-143

If proc_addr points to the BOR routine, this holds the import index of the code symbol.
Once the actual destination address has been calculated and stored in proc_addr, this
field holds the Linkage Table pointer value for the callee routine.

6.3.3 The DL Header and Other Tables

The DL header appears in every shared library and in incomplete executables (program
files linked with shared libraries--may contain unsatisfied symbols which will be satis-
fied at run time by the dynamic loader). It is assumed to be at offset 0 in the $TEXT$
space. It defines fields used by the dynamic loader and various other tools when attach-
ing the shared libraries at run time. The header contains information on the location of
the export and import lists, the module table, the linkage tables, as well as the sizes of
the tables.

Figure 2-34 on page 144 defines the dl_header structure. The followings are its fields
description:

hdr_version

This field is used to denote the version of the DL header. The old value was set to the
decimal number “89060912” prior to 10.0. The new value is “93092112”.

ltptr_value

This field is the data-relative offset of the Linkage Table pointer (GR 19 for shared
libraries, GR 27 for incomplete executables). The linkage table pointer is used by the
dynamic loader to access the Data Linkage Table and Procedure Linkage Table entries
at load time so it can bind symbols and attach shared libraries. All data references and
PIC code in a shared library must go indirectly though the linkage pointer.

shlib_list_loc

This field is the text-relative offset of the shared library list. The shared library list is a
list of shared libraries that the given file depends on for symbol bindings. If the shared
library list in a shared library is present, the shared library is said to “depend” on the
libraries in the shared library list.

shlib_list_count

This field is the number of entries in the shared library list.

import_list_loc

This field is the text-relative offset of the import list. The dynamic loader searches the
import list and binds each entry in the list at load time.

import_list_count

HP-UX Specifics

6-144

This field is the number of entries in the import list.

struct dl_header {

int hdr_version; /* header version number */

int ltptr_value; /* data offset of LT pointer (R19) */

int shlib_list_loc; /* text offset of shlib list */

int shlib_list_count; /* count of items in shlib list */

int import_list_loc; /* text offset of import list */

int import_list_count; /* count of items in import list */

int hash_table_loc; /* text offset of export hash table */

int hash_table_size; /* count of slots in export hash table */

int export_list_loc; /* text offset of export list */

int export_list_count; /* count of items in export list */

int string_table_loc; /* text offset of string table */

int string_table_size; /* length in bytes of string table */

int dreloc_loc; /* text offset of dynamic reloc records
*/

int dreloc_count; /* number of dynamic relocation
records */

int dlt_loc; /* data offset of data linkage table */

int plt_loc; /* data offset of procedure linkage
table */

int dlt_count; /* number of dlt entries in linkage table
*/

int plt_count; /* number of plt entries in linkage table
*/

short highwater_mark; /* highest version number seen in lib or
in shlib list*/

short flags; /* various flags */

int export_ext_loc; /* text offset of export extension tbl */

int module_loc; /* text offset of module table*/

int module_count; /* number of module entries */

int elaborator; /* import index of elaborator */

int initializer; /* import index of initializer */

int embedded_path; /* index into string table for search
path */

/* index must be > 0 to be valid */

int initializer_count; /* count of items in initializer import
list*/

int tdsize; /* size of the TSD area */

int fastbind_list_loc; /* text-relative offset of fastbind info
*/

};

Figure 2-34: Definition of DL Header

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-145

hash_table_loc

This field is the text-relative offset of the hash table.

hash_table_size

This field is the number of slots used in the hash table.

export_list_loc

This field is the text-relative offset of the export list.

export_list_count

This field is the number of export entries.

string_table_loc

This field is the text-relative offset of the string table.

string_table_size

This field is the length of the string table.

dreloc_loc

This field is the text-relative offset of the dynamic relocation records. Dynamic reloca-
tion records are built for each data location initialized with the address of a function or
data item.

dreloc_count

This field is the number of dynamic relocation records generated.

dlt_loc

This field is the offset in the $DATA$ space of the Data Linkage Table. The Data Link-
age Table consists of one word entries for each static data item that is referenced by
Position Independent Code (PIC).

plt_loc

This field is the offset in the $DATA$ space of the Procedure Linkage Table. The Proce-
dure Linkage Table contains entries for each unresolved procedure call in a shared

HP-UX Specifics

6-146

library or for calls to exported procedure symbols. The dynamic loader binds procedure
symbols at run time.

dlt_count

This field is the number of entries in the DLT.

plt_count

This field is the number of entries in the PLT.

highwater_mark

Bits 0-15

The highest version number of any symbol defined in the shared library or in the set of
highwater marks of the shared libraries in the shared library list. For a program file, a
highwater version of each library linked with the program is recorded.
highwater_mark is used by the dynamic loader at run time to determine which
shared library symbol is to be used for binding the program file's symbol reference.

flags

Bits 16-31

This field is used to specify the dl_header flags, such as to denote if initializers or elabo-
rators have been seen in the libraries. The valid values for this field are:

#define ELAB_DEFINED 1 /* an elaborator has been defined for this library */

#define INIT_DEFINED 2 /* an initializer has been defined for this library */

#define SHLIB_PATH_ENABLE 4 /* allow search of SHLIB_PATH at runtime */

#define EMBED_PATH_ENABLE 8 /*allow search of embed path at runtime*/

#define SHLIB_PATH_FIRST 16 /* search SHLIB_PATH first */

#define SEARCH_ALL_STORS 32 /* search all shlibs to satisfy STOR import */

#define SHLIB_INTERNAL_NAME 64 /*shlib has an internal name, for library-level
versioning support*/

See “Library-Level Versioning” on page 164 for details about the usage of
SHLIB_INTERNAL_NAME for library level versioning support.

export_ext_loc

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-147

This field is the text-relative offset of the export extension table. The export extension
table contains information about a symbol such as its size, the start of the dreloc list, and
a list of exports with the same value.

module_loc

This field is the text-relative offset of the module table. The module table is a structure
containing information on the modules used to build the shared library. It has the infor-
mation on defined and referenced symbols for each module in the table.

module_count

This field is the number of modules in the module table.

elaborator

This field holds an index into the import table if theelab_ref bit in the flags field is set.

initializer

This field holds an index into the import table if theinit_ref bit in the flags field is set
and theinitializer_countfield is set 0. Ifinitializer_count is non-zero, then theinitializer
field will no longer contain an import index. Instead it will be an offset of the initializer
import list relative to the beginning of the $TEXT$ space. The contents of the table will
be import indexes of the specified initializers.

embedded_path

This field is an index into the shared library string table.

initializer_count

This field holds the number of initializers declared.

tdsize

This field holds size of the TSD area.

fastbind_list_loc

This field holds text-relative offset of fastbind info.

HP-UX Specifics

6-148

6.3.4 Version Auxiliary Header

The shared library version auxiliary header is used to record the version number of the
object module. This auxiliary header is optional. The linker can use this auxiliary header
to determine the version of the exported symbols within the module plus the high water
mark for a shared library or incomplete executable.

aux_header_id

Bits 0-63

This field contains the auxiliary header identifier for the object module.

version

Bits 0-15

This field contains the version number of the object module. The version number is rep-
resented as the number of months since January, 1990.

6.3.5 Import List

An import list is created for both incomplete executables and shared libraries. The
import list is allocated in the TEXT space of the object, and consists of an array of
import entries. Each import entry contains information about the symbol name, symbol
type, and the shared library which defined the symbol at link time. The import list must
maintain a one-to-one correspondence with the linkage table. There is an import symbol
for each DLT entry in the linkage table, followed by an import symbol for each PLT
entry in the linkage table.

The following is the import_entry data structure, which makes up the import list in
incomplete executables and shared libraries.

name

Bits 0-31

This field contains an offset into the string table denoting the symbol name.

reserved2

struct shlib_version_aux_hdr {

struct aux_id header_id;

short version;

};

Figure 2-35: Shared Library Version Auxiliary Header Definition

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-149

Bits 0-15

Unused. Initialized to -1 if a shared library, 0 if an incomplete executable.

type

Bits 16-23

This field specifies the symbol type (text, data, or bss).

bypassable

Bits 24

This bit is set (1) in shared libraries for code imports which do NOT have their address
taken in that shared library. Otherwise, it is 0. The bypassable bit controls a runtime
optimization performed by dld.sl. This optimization bypasses export stubs for shared
library imports that are satisfied by exports from a shared library (either the same library
or a different library).

reserved1

Bits 25-31

These bits are reserved for future expansion (currently initialized to 0).

6.3.6 Export Table

The export table is allocated in the TEXT space of the object and is built for both shared
library and incomplete executables files. The export table has an associated hash table
for fast lookup; each one-word entry in the hash table contains an index into the export
entry list. The next field of the export record holds the index of the next export record on
the hash chain. A NIL (-1) next value terminates the list. Each entry in the export list
contains information about the symbol name, symbol type, symbol address (symbol off-

struct import_entry {

int name; /* offset in string table */

short reserved2; /* unused */

unsigned char type; /* symbol type */

unsigned int bypassable : 1; /* address of code symbol

not taken in shlib */

unsigned int is_tp_relative; /* new field*/

unsigned int reserved1 : 6; /* unused */

};

Figure 2-36: Import entry structure

HP-UX Specifics

6-150

set), and symbol version number. There is a separate entry for each version of a symbol.
Parameter relocation information is not currently used.

struct misc_info {

short version; /* months since January, 1990 */

unsigned int reserved2: 6;

unsigned int arg_reloc: 10; /* parameter relocation bits (5*2) */

}

struct export_entry {

int next; /* index of next export entry in hash chain */

int name; /* offset within string table */

int value; /* offset of symbol (subject to relocation) */

union {

int size; /* storage request area size in bytes */

struct misc_info misc; /* version, etc. N/A to storage requests */

} info;

unsigned char type; /* symbol type */

unsigned int is_tp_relative : 1; /* TLS export*/

unsigned int reserved1 : 7; /*reserved */

short module_index; /* index of module defining this symbol */

};

next

Bits 0-31

This field contains an index to the next export record in the hash chain.

name

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-151

Bits 0-31

This field contains an offset into the string table denoting the symbol name.

value

Bits 0-31

This field specifies the symbol address (subject to relocation).

info

Bits 0-63

If the exported symbol is of type STORAGE, this field specifies the size of the storage
request area in bytes. Otherwise, this field contains the version of the exported symbol
along with argument relocation information.

type

Bits 0-7

This field specifies the symbol type. Valid symbol types are:

ST_CODE

ST_DATA

ST_STORAGE

ST_PLABEL

reserved1

Bits 8-15

These bits are reserved for future expansion.

module_index

Bits 16-31

This field contains the index into the module table of the module defining this
symbol.

HP-UX Specifics

6-152

6.3.7 Export Table Extension

The export table extension is allocated in the TEXT space of the object and only appears
in shared libraries. It runs parallel to the export table and provides extra information
about each export record. Currently, the information in this extension contains informa-
tion needed to perform data copying from a shared library to the program file. It indi-
cates the size in bytes of each data item as well as any dynamic relocations that must be
applied. A same list field is included to ensure that all data symbols that refer to the
same physical location within the shared library are copied to the program file. This
ensures that all alias names, common with secondary defs, refer to the same location in
the resulting program. The information in the export extension table is only used at link
time, in order to correctly apply DR_PROPAGATE dreloc records; it currently is not
accessed by the dynamic loader anywhere.

struct export_entry_ext {

int size; /*export symbol size, data only */

int dreloc; /* start of dreloc list for this symbol */

int same_list; /* circular list of exports that have the same value */

int reserved2;

int reserved3;

};

size

Bits 0-31

This field is the size in bytes of the export symbol and is only valid for exports of type
ST_DATA. For other export types, this field is initialized to -1.

dreloc

Bits 0-31

This field is the start of the dreloc records for the exported symbol. If no relocation
records exist for this symbol, this field is initialized to -1.

same_list

Bits 0-31

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-153

This field is a circular list of exports that have the same value (physical location) in the
library. This is to ensure that all data symbols that refer to the same physical location in
the library are copied to the program file.

reserved2

Bits 0-31

This field is reserved for future expansion (currently initialized to 0).

reserved3

Bits 0-31

This field is reserved for future expansion (currently initialized to 0).

6.3.8 Shared Library List

The shared library list is built for both shared libraries and incomplete executables. This
list is allocated in the TEXT space, and contains an entry for each shared library speci-
fied at static link time. The shared library list is an array of entries which contain infor-
mation about the library name, whether the library was specified with “-lc” or as an
absolute path name, and whether the library was specified with an immediate or
deferred binding attribute. The shared library name, as placed into the string table,
should be the fully qualified path name of the shared library as determined at static link
time. Please see Section 6.3.15 on page 164 for details of handling library versioning
when the internal_name bit is set.

struct shlib_list_entry {

int shlib_name; /* offset within string table */

unsigned char reserved1:6;

unsigned char internal_name:1; /* shlib entry is an internal name */

unsigned char dash_l_reference:1; /*referenced with -lc or absolute path */

unsigned char bind; /* BIND_IMMEDIATE, BIND_DEFERRED or

BIND_REFERENCE */

short highwater_mark; /* highwater mark of the library */

}

shlib_name

HP-UX Specifics

6-154

Bits 0-31

This field contains an index into the string table of the fully qualified path name of the
shared library specified at static link time.

reserved1

Bits 0-5

This field is reserved for future use.

internal_name

Bits 6

This field is a flag to indicate if shared library entry is an internal name. Please see
Section 6.3.15 on page 164 for details of handling library versioning for specifying
internal name with the +h linker option.

dash_l_reference

Bits 7

This field is a flag to denote if the shared library was specified on the link line with the -
l option or not. If specified with -l, this flag is set to true. If the incomplete executable
was linked with either the +b or +s options, the dynamic loader will search for those
libraries specified with -l at link time using the path(s) given. This allows a different
path to be searched at run time than what was specified at link time.

bind

Bits 8-15

This field describes the binding-time preference specified at link time when the program
is built. Valid binding modes are bind-deferred and bind-immediate. Bind-deferred
means the symbols are bound upon reference by the dynamic loader. Bind-immediate
means the symbols are bound at program start-up.

highwater_mark

Bits 16-31

This field contains the highwater_mark seen in the shared library at link time and is only
valid for shared library lists located in program files.

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-155

6.3.9 Module Table

The module table is allocated in the TEXT space and is only present in shared libraries.
This table was implemented to support the smart-bind binding algorithm within dld.sl.
The table consists of records that describe the symbols that are imported from the mod-
ules (object files) that comprise the library. These records allow the loader to select
which imports need to be resolved based on which modules are reachable. This is very
similar to the way the linker deals with archive libraries at link time. The linker selects
modules based on their ability to resolve current unsats of the main program. As these
modules are selected, they introduce new unsatisfied symbols that must then be
resolved. Eventually, imports are resolved without the need of more modules and we
have closure for a correct program. If closure cannot be reached, unsatisfied symbol
errors will result. The drelocs field indicates the relocation records that must be applied
if this module is used. The module_dependencies field indicates the number of modules
that this module directly depends on. Direct dependency can result when one module
calls a routine in another module and these symbols are then hidden. Since there is no
symbolic trace of the call, the loader cannot detect the dependency through symbol
records. The imports field points to an array of integers used to determine dependencies.
Module dependencies appear first on this list followed by import_count import table
indices.

struct module_entry {

int drelocs; /* text offset into module dynamic relocation array. */

int imports; /* text offset into module import array */

int import_count; /* number of entries into module import array */

char flags; /* currently flags defined: ELAB_REF */

char reserved1;

unsigned short module_dependencies;

int reserved2;

}

drelocs

Bits 0-31

This field is a text address (subject to relocation) into the dynamic relocation table.

imports

Bits 0-31

HP-UX Specifics

6-156

This field contains a text address (subject to relocation) into the module import table.
This table is a list of import symbols and module table indices. The modules and sym-
bols in this list must be resolved before the module can be used.

import_count

Bits 0-31

This field is the number of import symbol entries in the module import table belonging
to this module.

flags

Bits 0-7

This field denotes if an elaborator was referenced in the module

module_dependencies

Bits 8-15

This field is the number of modules the current module needs to have bound before all
of its own import symbols can be bound.

reserved2

Bits 0-31

This field is reserved for future expansion (currently initialized to 0).

6.3.10 Shared Library Unwind Info

The shlib_unwind_info structure is used to provide the necessary unwind information
for debugging shared library code. The debuggers (adb, xdb) need a way to access the
unwind tables for shared libraries. The dynamic loader will also use this table to access
stack unwind, try/recover and line table information. Currently, in a program file, the
unwind information is accessed symbolically, using the $UNWIND_START$,
$UNWIND_END$, $RECOVER_START$, and $RECOVER_END$ symbols. For
shared libraries, there will be separate unwind tables for each shared library at addresses
which are unknown at static link time; therefore the shlib_unwind_info structure must
be accessed through a known offset off of r19 (which is reserved to point to the Linkage
Table for a shared library). The shlib_unwind_info structure is only placed into shared
library files, since program files can continue to access the unwind information symbol-
ically. One DLT entry at r19 + 0, is reserved to contain an r19-relative offset to the fol-
lowing structure:

struct shlib_unwind_info {

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-157

int magic; /* magic number for unwind detection */

int shlib_name; /* index into string table */

int text_start; /* virtual address of the start of text */

int data_start; /* virtual address of the start of data */

int unwind_start; /* text-relative offset of unwind table */

int unwind_end; /* text-relative offset of stub unwind table */

int recover_start; /* text-relative offset of recover table */

int recover_end; /* text-relative offset of the line table */

};

This structure is initialized by the static linker which sets the shlib_name field to point
to the shared name of the shared library in the string table and sets the unwind_start,
unwind_end, recover_start, and recover_end fields to text-relative offsets for the corre-
sponding tables. The dynamic loader will then fill in the text_start and data_start fields
when the library is mapped into memory, and the unwind_start, unwind, recover_start
and recover_end fields will be patched with the virtual address for the unwind tables.

magic

Bits 0-31

This field identifies the header as a shared library unwind header.

shlib_name

Bits 0-31

This field is the name of the shared library. Within the shared library file, this field holds
an offset into the shared library string table. At run time, the dynamic loader converts
this offset into the actual unwind address of the string.

text_start

Bits 0-31

This field specifies the presumed virtual address of the start of data. At run time, this
field is relocated to hold the true address at which data is mapped.

HP-UX Specifics

6-158

data_start

Bits 0-31

This field specifies the presumed virtual address of the start of data. At run time, this
field is relocated to hold the true address at which data is mapped.

unwind_start

Bits 0-31

This field denotes the presumed text address of the stack unwind table. At run time, this
field is relocated to hold the true unwind address of the stack unwind table.

unwind_end

Bits 0-31

This field denotes the presumed text address of the stub unwind table. At run time, this
field is relocated to hold the true address of the stub unwind table.

recover_start

Bits 0-31

This field denotes the presumed text address of the start of the try-recover table. At run
time, this field is relocated to hold the true address of the try-recover table.

recover_end

Bits 0-31

This field denotes the presumed text address of the line table. At run time, this field is
relocated to hold the true address of the line table.

6.3.11 String Table

The string table is allocated in the TEXT space for both shared libraries and incomplete
executables. This table consists of a series of null-terminated strings, which represent
the names of all symbols exported or imported in this file, and all library names speci-
fied at static link time. Note: this string table is distinct from the “normal” string table in
a SOM.

6.3.12 Dynamic Relocation Records

Dynamic relocation, or dreloc records are used by the dynamic loader to apply run time
patches to the data area of shared libraries and incomplete executables. A dynamic relo-
cation record is built in an object each time it has a data item initialized to the address of

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-159

a shared library’s function or variable. The dynamic relocation record is needed since
the linker does not know the actual address for code and data items within a shared
library; the final address of library code and data is only known at run time, after the
shared library has been mapped into memory. When the executable imports data, using
data copying, that is affected by that library’s relocation record (i.e. it imports a data
item that needs relocation) a special DR_PROPAGATE relocation record is generated in
the program file that allows the loader to first determine the original shared library that
supplied the data item and then use the relocation records within the shared library to
update the data item that has been copied to the program file. When an incomplete exe-
cutable imports data from a shared library, only the data item itself is copied into the
executable, with the size of the data item being determined by the export extension
record.

With HP-UX 9.0, run time data copying has been implemented as well as copying the
data statically at link time. This causes a DR_PROPAGATE dreloc record to be emitted
for each data copied object between a shared library and the program file. (The current
plan is to eliminate data copying entirely for HP-UX 10.0; this will obsolete the use of
the DR_PROPAGATE dreloc record altogether.)

struct dreloc_record {

int shlib; /* Reserved */

int symbol; /* index into import table of shlib if *_EXT type

low-order 16 bits used for module index if *_INT type*/

int location; /* offset of location to patch data-relative */

int value; /* text for data-relative offset to use for patch if

 internal-type fixup */

unsigned char type; /* type of dreloc record */

char reserved; /* currently unused */

short module_index; /* Reserved */

}

shlib

Bits 0-31

Reserved.

symbol

HP-UX Specifics

6-160

Bits 0-31

This field is an index into the import table if the relocation is an external type.

location

Bits 0-31

This field is the data-relative offset of the data item the dreloc record refers to

value

Bits 0-31

This is the text or data-relative offset to use for a patch if it is an internal fixup type.

type

Bits 0-7

The field represents the of the dynamic relocation record. Valid relocation types are:

#define DR_PLABEL_EXT 1 /* initialized to a external code plabel (PLT)*/

#define DR_PLABEL_INT 2 /* initialized to internal (local code plabel (PLT)*/

#define DR_DATA_EXT 3 /* initialized to external data symbol */

#define DR_DATA_INT 4 /* initialized to internal data offset;

data-relative “value” field */

#define DR_PROPAGATE 5 /* data item copied from shared library into a.out*/

#define DR_INVOKE 6 /* invoke elaborator function */

#define DR_TEXT_INT 7 /* initialized to internal text offset; text-relative

“value” field */

Note that DR_INVOKE is for C++ shared libraries with static constructors. A C++
shared library is built with a procedure called an “elaborator”, identified by a symbol

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-161

index in the dl_header. For each DR_INVOKE relocation record seen, the elaborator is
called with three arguments, the location field from the relocation record, the symbol
index from the relocation record, and the shared library handle. DR_INVOKE are
applied after all other fixups.

The PLABEL_EXT relocation record is the result of an initialized function pointer in
the data segment. It points to the code import list entry, which corresponds to a PLT slot.
The dynamic loader will fixup the initialized function pointer with the address of the
“canonical” PLT entry for the referenced procedure, which may or may not be the one
provided by the importing module. Every module that creates a plabel allocates a PLT
slot for the imported procedure, and the loader picks one to serve as the canonical one.
This ensures that plabels for the same routine will compare equal. Unfortunately, there
are still cases where this cannot work, like when libraries are dynamically loaded and
unloaded. For this reason, we have a plabel comparison millicode routine that compares
the contents of plabels rather than their addresses.

reserved

Bits 8-15

These bits are reserved for future expansion (currently initialized to 0)

module_index

Bits 16-31

Reserved.

6.3.13 Loading Shared Libraries

6.3.13.1 Loading Libraries

When a program begins execution, the first thing it does is attach all shared libraries that
were searched at link time. This activity is performed by the startup code in crt0.o,
which maps in thedynamic loader which then scans a list (built at link time and stored
in the program file) of shared libraries that were searched by the linker.

This list of libraries in the program file contains the paths of the libraries specified on
the linker command line. Library names referred to with the-l option will be expanded
by the linker to the fully qualified pathname for the library, as found at link time.

If a library is listed explicitly, without the-l option, the library name in the list will be
exactly as specified on the command line.

HP-UX Specifics

6-162

The directories searched by the linker are by default,/usr/lib and/opt/langtools/lib , but
they may be overridden by the environment variableLPATH (see the ld(1) manual page
for details).

Note that theLPATH specified at link time will be used when creating the shared library
list used by the dynamic loader, that is, the shared library names will be the fully quali-
fied path names of the libraries as found at link time. TheLPATH environment variable
will not be used during dynamic loading of the library.

6.3.13.2 Dynamic Library Path Support

On the Series 700/800, support has been added for the run-time path lookup of shared
libraries needed by a program file. Directory search information can come from two
sources; the program file itself and an environment variable.

The program provides directory search information if it is linked with the+b path_list
option where path_list is a list of directories to search. If path_list is a single colon ’:’,
the linker will construct a list of directories to search consisting of all the-L directories
followed by the directories specified by the LPATH environment variable. The directory
search list will be stored in the program file itself and will be made available to the
dynamic loader at run-time.

The environment variable SHLIB_PATH can be used by the dynamic loader to dynami-
cally locate shared library files if the program file was linked with the+s option. If both
the+b and+s options are specified at link time, the relative order of these options on
the command line indicates which path list will be searched first. The environment will
be scanned once at program start up for the value of the SHLIB_PATH environment
variable. Future modifications to this environment variable by the executing program
will not be picked up by the dynamic loader.

If dynamic path lookup is enabled either through+b or +s, only shared libraries speci-
fied on the link line via the -l option are subject to path lookup. For libraries loaded via
the shl_load() call, the library will be subject to dynamic search only if the
DYNAMIC_PATH flag is passed to shl_load().

For both the SHLIB_PATH environment variable and the path list specified via the+b
option, a path list consists of a colon ’:’ separated list of directories with leading and
trailing colons ’:’ being optional. The directories will be searched in the order in which
they appear in the path list. A null directory specification “::” indicates that the default
library path stored by the linker in the program file or provided via a shl_load() call
should be used at that point in the search. If a directory specified in the path list is rela-
tive (does not begin with a ’/’), the directory actually searched will depend on the cur-
rent working directory, not the directory where the program file actually resides. For
example, if SHLIB_PATH were set to the path list “/usr/lib/X11::../mylibs:/usr/lib/
Motif1.1” and the loader was presented with a shared library path list via a shl_load()
call or by searching the library list in the program file or the dependency list of a shared
library, the following locations would be probed in order:

input library path: /mnt/usr/local/thislib.sl

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-163

1) /usr/lib/X11/thislib.sl

2) /mnt/usr/local/thislib.sl

3) $PWD/../mylibs/thislib.sl

4) /usr/lib/Motif1.1/thislib.sl

If the loader has attempted to perform a dynamic path lookup for a shared library and
failed to find it using the supplied directories, it will search the default path list of “::”.

Note, no special provisions related to security issues are taken for programs that per-
form chown(2) or chgrp(2). The builder of such a program file must ensure that the user
cannot substitute his own library on a search path and gain undesirable privileges. Since
the default when building the program file is to not allow any dynamic shared library
searching, this is not considered a security hole in the program development environ-
ment, rather it is a responsibility of the program builder.

The chatr(1) command has been modified to allow the user to control several aspects of
shared library behavior. The options include:

-B bind - Modify symbol binding modes, same as ld(1) -B

+b flag - Control whether the program directory path list can be used, flag =
enable or disable

+s flag - Control whether the environment variable SHLIB_PATH can be used,
flag = enable or disable

-l library - Indicates that the specified shared library is subject to dynamic path
lookup.

+l library - Indicates that the specified shared library is not subject to dynamic path
lookup.

6.3.14 Intra-library Version Control

Prior to 10.0, all library versioning are done at the “intra-library” level in that version
control is done at program object level. Please refer to “Programming on HP-UX” for
details on how to handle version control by using compiler directives and linker options.
Since code from a shared library is mapped in at run time from a separate shared library
file, modifications to a shared library may alter the behavior of existing executables. In
some cases, this may cause programs to operate incorrectly. A means of version control
is provided to solve this problem.

Whenever an incompatible change is made to a library interface, both versions of the
affected module or modules are included in the library. A mark indicating the date
(month/year) the change was made is recorded in the new module in a Shared Library
Version Auxiliary Header (See “Version Auxiliary Header” on page 148.) This date

HP-UX Specifics

6-164

applies to all symbols defined within the module. A high water mark giving the date of
the latest incompatible change is recorded in the shared library, and the high water mark
for each library linked with the program is recorded in the incomplete executable file.

At run time, the dynamic loader checks the high water mark of each library and loads
the library only if it is at least as new as the high water mark recorded at link time. When
binding symbolic references, the loader chooses the latest version of a symbol that is not
later than the high water mark recorded at link time. These two checks help ensure that
the version of each library interface used at run time is the same as was expected.

6.3.15 Library-Level Versioning

Starting at HP-UX 10.0, shared library versioning will now be provided on an entire
library. We will refer to this as “library-level versioning”, as distinguished from “intra-
library” shared library versioning we provided prior to HP-UX 10.0. Note that the intra-
library versioning functionality will not be going away anytime soon, as some users
depend on this functionality; the library-level scheme will be an additional feature.

Here is how library-level versioning works in general: The traditional name of a deliv-
ered shared library will now be a symbolic link that points to the latest version of that
library on the file system. All the “real” shared libraries will be suffixed with the pattern

lib_name.<digit>

instead of “lib_name.sl”; e.g., “libc.2”. Many versions of shared libraries may reside on
the system at a given time, older versions will use lower numbered digits. The internal
name, e.g. “lib2.2” is recorded in the library when it is built. See Section 6.3.15.1 on
page 166 for details of building libraries with internal names.

When the user links an application against a shared library on the filesystem, the file
specified will have a standard “.sl” suffix; normally this is done with a “-l<name>”
option to the linker, which searches for a shared library called “<path>/libname.sl”.

Since this library is a symlink to the latest version available, the linker will actually
open this latest shared library and link against it; it is the internal name ofthis library
that is recorded in the library list of the application. For example, if these files exist on a
system (Note: at HP-UX 10.0, the highest digit suffix will be “1”):

/usr/lib/libfoo.0

/usr/lib/libfoo.1

/usr/lib/libfoo.sl -> ./libfoo.1

/usr/lib/libbar.0

/usr/lib/libbar.1

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-165

/usr/lib/libbar.2

/usr/lib/libbar.sl -> ./libbar.2

/usr/lib/libc.0

/usr/lib/libc.1

/usr/lib/libc.2

/usr/lib/libc.3

/usr/lib/libc.sl -> /usr/lib/libc.3

and the user links an application with this command line:

ld /usr/ccs/lib/crt0.o main.o -lfoo -lbar -lc -o prog

then these shared libraries will be recorded in the file “prog”:

/usr/lib/libfoo.1

/usr/lib/libbar.2

/usr/lib/libc.3

If then in subsequent releases all of these libraries were versioned with incompatible
changes (e.g.: if “libfoo.sl” now pointed to a new library, “libfoo.2”), the file “prog”, if
not relinked, would always bind against thesesame shared libraries, which would
remaincompletely unchanged for the life of the application.

Libraries loaded programmatically, dynamically loaded libraries (shl_load(3x)), should
explicitly load thereal file. For example, loading /usr/lib/libfoo.1 explicitly rather than
the symlink /usr/lib/libfoo.sl. In this way, when the application is moved forward, it will
always use the correct version.

HP-UX Specifics

6-166

6.3.15.1 Building libraries

In order to use the “library-level” versioning scheme, libraries must be built with the
new linker option, “+h <internal-name>”. This “internal name” to be supplied on the
linker command line is usually the basename of the file where it will eventually be
installed. When the +h option is specified, the SHLIB_INTERNAL_NAME in the flags
field of the dl_header will be set to true. Using the same example in this section, the lat-
est versions of the three libraries will be built as follow:

ld -b *.o ... +h libfoo.1 -o libfoo.1

ld -b *.o ... +h libbar.2 -o libbar.2

ld -b *.o ... +h libc.3 -o libc.3

This “internal name” will be used by the linker to write into the library list of any appli-
cation or shared library that is linked against the symbolic links of a shared library; not
the name of the file itself. The linker will use thedirectorywhere it searches for the
library, concatenated with theinternal namein the library, to be recorded in the library
list. For example, if /usr/lib/libfoo.sl is the shared library used to link with, and this file
has an internal name of “libfoo.1”, then the name recorded in the library list will be /usr/
lib/libfoo.1. Users must take extra caution when a path is specified in the internal name.
If the internal name is an absolute path, i.e. file name that begins with “/”, then the
recorded dependency in the library list is the absolute path name. Otherwise, the base
name is appended to the recorded dependency path.

For example:

If /usr/lib/libfoo.sl

is a sym link to

/xxx/libfoo.1

internal name with +h recorded dependency

libfoo.1 /usr/lib/libfoo.1

/xxx/libfoo.1 /xxx/libfoo.1

../mylib/libfoo.1 /usr/lib/../mylib/libfoo.1

Please see “Programming on HP-UX” for details on how to build libraries with
“Library-Level Versioning”.

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-167

6.3.15.2 Pre-10.0 Applications

At 10.0, the dynamic loader has an enhancement to help migrate 9.0 applications
because of the filesystem changes. Any shared library in /lib will be searched for in /usr/
lib before the dynamic loader aborts, so /lib/libc.sl will be found correctly in /usr/lib/
libc.sl.

6.3.15.3 Migrating to Library-Level Versioning

The dynamic loader has a special “compatibility enhancement” in place, strictly for the
purposes of providing a suitable run-time environment for older applications moving
forward when applications are migrating to Library-Level versioning.

If the dynamic loader encounters an application with no internal name specified, then
when it attempts to bind a shared library to the process it will first change the “.sl” suffix
to “.0” in the filename before it makes the open(2) call. If it does not find a “.0” shared
library, it will use the library asspecified in the application.

For example, if there is no /usr/lib/libfoo.0 on the 10.0 system, it will look for and use

/usr/lib/libfoo.sl, just like it did for 9.0x systems.

6.3.16 Import and Export Stubs

All procedure calls from the shared library to entry points outside the library, or to
exported entry points in the library, are routed through import stubs. These stubs are cre-
ated by the linker in the code space of the library, and manage both the indirect refer-
ence through the linkage table and the possibility of inter-space procedure calls.

In addition, each exported procedure (including non-exported procedures whose
addresses are taken) is assigned an export stub, which handles the return path of inter-
space calls.

The stubs generated by the linker are defined as follows:

Import Stub (Incomplete Executable)

X’: ADDIL L’lt_ptr+ltoff,dp ; get procedure entry point.
LDW R’lt_ptr+ltoff(1),21
LDW R’lt_ptr+ltoff+4(1),r19 ; get new r19 value.
LDSID (r21),r1
MTSP r1,sr0
BE 0(sr0,r21) ; branch to target.

HP-UX Specifics

6-168

STW rp,-24(sp) ; do this as a favor to the export stub.

Import Stub (Shared Library)

 X’: ADDIL L’ltoff,r19 ; get procedure entry point.
LDW R’ltoff(r1),r21;
LDW R’ltoff+4(r1),r19 ; get new r19 value.
LDSID (r21),r1
MTSP r1,sr0
BE 0(sr0,r21) ; branch to target.
STW rp,-24(sp) ; do this as a favor to the export stub.

Export Stub (Shared libs and Incomplete Executables)

 X’: BL,N X,rp ; trap the return.
NOP
LDW -24(sp),rp ; restore the original rp.
LDSID (rp),r1
MTSP r1,sr0
BE,N 0(sr0,rp) ; inter-space return.

6.4 System Calls

The HP-UX operating system defines a large set of system calls. These system calls can
be made indirectly by calling the interface routines in the C run-time library, or they can
be made directly from assembly code. All system calls are funneled through a single
entry point in the system space, which is identified by space register 7 (SR7). Each sys-
tem call is assigned a unique number, which must be loaded into general register 22
(GR22). The arguments to the system routine should be loaded into argument registers:
GR26, GR25, GR24, and GR23 (arg0, arg1, arg2, arg3 respectively) as necessary.When
the system call returns, a status code is also returned in GR22. If the status code is zero,
the system call succeeded and the return value, if any, is in GR28. If the status is not
zero, the system call failed and the error number is found in GR28.

A list of system call numbers as well as the location of the system call entry points is in
the standard include file/usr/include/sys/syscall.h.

Following is an example of a code fragment shows a call to theread system call:

READCALL
or %r0, %r0, %arg0 ; file descriptor = 0
addil L%buf-$global$, %dp ; set up buffer address in arg1
ldo R%buf-$global$ (%r1), %arg1
ldo 10, %arg2 ; length = 10 into arg2
ldil L%0xC0000004, %r1 ; load system call entry point and
ble R%0xC0000004(%sr7,%r1); branch to it
ldo 3, %r22 ;read system call number is 3

HP-UX Specifics

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 6-169

In the above code fragment, the last instruction loads the constant 3, which is the unique
number for theread system call, into GR22, and executes in the delay slot of the BLE
instruction.

The standard procedure calling convention should be used to call the system call inter-
face routines in the C library.

HP-UX Specifics

6-170

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-171

CHAPTER 7 Symbolic Debug
Information

7.1 The Debug Information Organization

The debug information are generated by the compilers, fixed up by the linker, and used
by various programs (primarily the symbolic debugger(s)) to reconstruct information
about the program.

On PA-RISC, a major goal was that the linker needs not know anything about the for-
mat. To this end, it was decided that the debug information be composed of several
unloadable subspaces within an unloadable space (named $DEBUG$), and that at link
time, updates to the debug information be made through the standard mechanism of a
list of fixups. The linker will perform the required fixups for the debug spaces, and sub-
spaces from separate compilation units will be concatenated. However, at exec time, the
loader would know that the debug space is not to be loaded.

The debug information consists of six tables: a header table and five special tables. The
header table contains one header record for each compilation unit. Each header record
identifies the size (in bytes) of the five tables generated by that compilation unit. Two of
the tables are very similar. The GNTT and LNTT both contain name and type informa-
tion (NTT for Name and Type Table). The GNTT contains information about globals,
and is thus limited to variables, types, and constants. The LNTT is for information about
locals. The LNTT must therefore contain scoping information such as procedure nest-
ing, begin-end blocks, etc. The GNTT and LNTT are both DNTTs (Debug Name and
Type Tables), so the prefix DNTT is attached to objects (like a DNTTPOINTER) that
are relevant to both the GNTT and LNTT. The SLT contains information relating source
(or listing) lines to code addresses. The SLT and LNTT contain pointers between the
two tables, so that the scoping information contained in the LNTT can also be used with
the SLT. The VT contains ascii strings (such as variable names) and the values of named
constants.

The five tables are summarized below:

Symbol ic Debug Informat ion

7-172

The pointers needed within the debug tables are in fact indexes into the tables. The
GNTT, LNTT, and SLT each consist of a series of equal-sized entries. Some DNTT
entries begin a data structure and some are extension entries. Some SLT entries are
“special” (point back to the LNTT), others are “assist” (point forward in the SLT), but
most are “normal” (point to code). There can be pointers from the LNTT to the GNTT,
as it is common to have local variables of a global type. However, there are never point-
ers from the GNTT to the LNTT, as global variables are never of a local type.

The tables are defined to be as machine-independent as possible, but the debugger may
need to “know” some facts about the system and language it is dealing with. The GNTT
and LNTT are the only tables that require fixups to be generated by the compiler and
acted upon by the linker. There are other fixups to be done, but these are all done by the
pre-processor.

7.2 Compilation Unit Headers

7.2.1 Basic typedef and structure definitions

The following basic typedefs and structure definition are used through out this chapter:

typedef long ADDRESS;

typedef unsigned long ADRT, *pADRT;

typedef unsigned int LANGTYPE;

typedef unsigned long STATTYPE; /* static-type location */

typedef long DYNTYPE; /* dynamic-type location */

typedef unsigned long REGTYPE; /* register-type location */

typedef unsigned int BASETYPE;

TABLE 8 Debug Table

Table Abbr. Contents Points to

Global symbols GNTT Global name-
and-type info.

GNTT

Local symbols LNTT Local name-

and-type info.

GNTT,

LNTT, SLT, VT

Source lines SLT Source / listing
line info.

LNTT,

SLT

Value VT Names and con-
stants

Xref XT File offsets and
Attributes

XT, VT

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-173

typedef unsigned int BITS;

DNTT pointer:

struct DNTTP_IMMEDIATE {

BITS extension: 1; /* always set to 1 */

BITS immediate: 1; /* always set to 1 */

BITS global: 1; /* always set to 0 */

BASETYPE type: 5; /* immediate basetype */

BITS bitlength: 24; /* immediate bitlength */

};

struct DNTTP_NONIMMED {

BITS extension: 1; /* always set to 1 */

BITS immediate: 1; / * always set to 0 */

BITS global: 1; /* 1 => GNTT, 0 => LNTT */

BITS index: 29; /* DNTT table index */

};

typedef union {

struct DNTTP_IMMEDIATE dntti;

struct DNTTP_NONIMMED dnttp;

long word; /* for generic access */

} DNTTPOINTER; /* one word */

A DNTTPOINTER of DNTTNIL means a nil pointer. In the DNTTimmediate case
there is always at least one zero bit (the globalbit) to distinguish that case from nil
pointer (-1). In thenon-immediate, non-nil case DNTTPOINTER is the block index,
base zero, of another DNTT entry; the global bit indicates which table it is an index into,
the GNTT or LNTT. Each block is 12 bytes.

Extension bits really have nothing to do with DNTT pointers, but are needed for con-
structing the DNTT. See the next section.

Bitlength is the MINIMUM (packed) size of the object. In lieu of other information (i.e.,
outside of a structure or array), the object is assumed to be right-justified in the minium
number of whole bytes required to hold the bit length.

An immediate DNTTPOINTER is only allowed if the type is a simple BASETYPE.
Otherwise, a separate DNTT entry must be used.

SLT pointer:

Symbol ic Debug Informat ion

7-174

Signed entry index, base zero, into the source line table.Each entry is eight bytes.

typedef long SLTPOINTER;

VT pointer:

Unsigned byte offset into the value table. Note that VTNIL is not actually a nil pointer,
but rather a pointer to a nil string.

typedef long VTPOINTER;

XREF pointer:

 Signed entry index, base zero, into the cross reference table.Each entry is four bytes.

typedef long XREFPOINTER;

typedef int KINDTYPE;

7.2.2 XDB Header structure definition:

The header table is composed of five word header records. For each compilation unit,
the compiler must generate a header record, indicating the length (in bytes) of the five
tables (GNTT, LNTT, SLT, VT and XT) produced for that compilation unit.

The five tables are each contained in a separate subspace on PA-RISC and at link time,
the tables from different compilation units will be concatenated separately:

 GNTTs to GNTTS, SLTs to SLTs, etc.

struct XDB_header {

long gntt_length;

long lntt_length;

long slt_length;

long vt_length;

long xt_length;

};

The preprocessor requires the number of compilation units, and the size of each of the
five tables produced by each compilation unit. The header records supply this size
information, and the number of header records equals the number of compilation units.

In PA-RISC, the header_extension flag (MSB) is set in the gntt_length word in each
header-record by the compilers to indicate the header contains an xt_length and is words
long. This bit is used to distinguish SOM's that were created with the earlier version of
compilers which do not have an XT subspace.

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-175

7.3 Name and Type Tables

The DNTT consists of a series of three-word blocks. Each starts with an "extension
bit". Each structure in the union"dnttentry" begins in an "initial block" with a bit
which is always zero. If a structure is more than three words (one block) long, it occu-
pies one or more additional "extension blocks", each of which starts with a bit set
to one to distinguish it from an initial block.

Note that every DNTTPOINTER has a high bit of one and that every DNTT structure
bigger than one block is carefully arranged so that a DNTTPOINTER resides in the
fourth and seventh words. (The extension bit is in the DNTTPOINTER to avoid wast-
ing space due to structure packing rules.)

The second field in each structure is "kind", which acts like a Pascal variant tag to
denote the type of the structure. The "unused" fields are just included for clarity.

Followings are different classes of DNTT entries. The whole union "dnttentry" is
declared at the end of this section.

7.3.1 File-class ("File") DNTT Entries

• DNTT_SRCFILE structure definition:

struct DNTT_SRCFILE { /* 3 words */

BITS extension: 1;

KINDTYPE kind: 10;

LANGTYPE language: 4;

BITS unused: 17;

VTPOINTER name;

SLTPOINTER address;

};

Fields definition:

extension: Always zero.

kind: always K_SRCFILE type.

language: Language type.

unused: 17 bits filler to the end of 1st word.

name: Source/listing file name.

address: Code and text locations. "address" points to a special SLT entry
(for the line number only), but the code location is known from context in the SLT.

One SRCFILE is emitted for the start of each source file, the start of each included
file, and the return from each included file. Additional SRCFILE entries must also be
output before each DNTT_FUNC entry. This guarantees the debuggers know which file
a function came from. Specifically, the definitions and rules are as follows:

Symbol ic Debug Informat ion

7-176

Definitions

Source block: Contiguous block of one or more lines of text in a source-file, bounded
by beginning or end-of-file or include directives (conceptually identical to the "basic
block" in optimizer term). No distinction is made between blocks that contain com-
pilable code and those that don't.

Code segment: Contiguous LINEAR bl/‘basoocock of DNTT (and associated SLT)
entries that are generated from the same "source block". "SLT_SRC" is used here to
actually refer to an SLT_SPEC entry of type SLT_SRCFILE. Same goes for
SLT_FUNC.

Rules

4. One DNTT_SRCFILE and SLT_SRC must be emitted at the head of each code seg-
ment to facilitate reading backwards through the DNTT or SLT tables from any
point in the segment to determine the enclosing source file. If the source-file
changes within the body of a function/subprogram, a DNTT_SRCFILE/SLT_SRC
pair must be emitted prior to any additional DNTT or SLT entries generated by the
remainder of that function/subprogram.

5. One DNTT_SRCFILE/SLT_SRC pair is always emitted *immediately* before any
DNTT_FUNC/SLT_FUNC. Exception: a DNTT_SA and associated
DNTT_XREF may appear between a DNTT_FUNC and it's preceding
DNTT_SRCFILE. There can be nothing between the SLT_SRC and the
SLT_FUNC. The DNTT_SRCFILE (preceding the DNTT_FUNC) must name
the file containing the functions declaration. The SLT_FUNC must contain the
line number of the line in the function's declaration where the function's name
appears. This line number must match the line number that appears in the XT
record denoting the function's declaration. The SLT_END associated with the
SLT_FUNC must contain the line number of the source line containing the scope-
closing token (i.e. "}" or "end").

6. One DNTT_SRCFILE/SLT_SRC pair must be emitted for a source file that other-
wise would not be mentioned in the DNTT i.e. source files that do not generate a
code segment. This is required for static analysis only.

Notes:

• Listing files and listing file line numbers may be used in place of source files and
source file line numbers. A special compiler option will designate which is generated
by the compiler

• SRCFILE names are exactly as seen by the compiler, i.e. they may be relative, abso-
lute, or whatever. C include file names must be given as absolute paths if found "in
the usual place", i.e., /usr/include/...

7.3.2 Code-class ("Scoping") DNTT Entries

• DNTT_MODULE structure definition:

struct DNTT_MODULE { /*5 words */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-177

BITS extension: 1;

KINDTYPE kind: 10;

BITS unused: 21;

VTPOINTER name;

VTPOINTER alias;

DNTTPOINTER dummy;

SLTPOINTER address;

};

Fileds definition:

extension: Always zero.

kind: always K_MODULE type.

unused: 21 bits filler to the end of 1st word.

name: Module name.

alias: Alternate name, if any.

dummy: 4th word must be DNTTPOINTER.

address: Code and text location.

 One MODULE is emitted for the start of each Pascal/Modcal module or C source file
(C sources are considered a nameless module). "address" points to a special SLT entry,
but the code location is known from context in the SLT.

In the case of languages that do not support modules (such as FORTRAN) a
DNTT_MODULE and DNTT_END pair are not used. Every MODULE must have a
matching END (see below). If a Pascal/Modcal module has a module body (some
code), the latter must be represented by a FUNCTION-END pair as well (see below).

For items within a module, the public bit is true if that item is exported by the module.
If the public bit of an item is set, that item is visible within any module or procedure that
imports the module containing the item. If the public bit of an item is not set, then the
item is only visible within the module.

The "dummy" field exists only because the first word of each extension block must be a
DNTTPOINTER; it is important only that the extension bit of the DNTTPOINTER be
set.

The MODULE DNTT should be used only in the LNTT.

• DNTT_FUNC structure definition:

struct DNTT_FUNC {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* K_FUNCTION, K_ENTRY,

K_BLOCKDATA, or,

Symbol ic Debug Informat ion

7-178

KMEMFUNC */

BITS public: 1; /* 1 => globally visible */

LANGTYPE language: 4; /* type of language */

BITS level: 5; /* nesting level (top level =0)*/

BITS optimize: 2; /* level of optimization */

BITS varargs: 1; /* ellipses. Pascal/800 later */

BITS info: 4; /* lang-specific stuff; F_xxxx*/

#ifdef CPLUSPLUS

BITS inlined: 1;

BITS localloc: 1; /* 0 at top, 1 at end of block */

#ifdef TEMPLATES

BITS expansion: 1; /* 1 = function expansion */

BITS unused: 1;

#else /* TEMPLATES */

BITS unused: 2;

#endif /* TEMPLATES */

#else

BITS unused: 4;

#endif

/*1*/ VTPOINTER name; /* name of function */

/*2*/ VTPOINTER alias; /* alternate name, if any */

/*3*/ DNTTPOINTER firstparam; /* first FPARAM, if any */

/*4*/ SLTPOINTER address; /* code and text locations */

/*5*/ ADDRESS entryaddr; /* address of entry point */

/*6*/ DNTTPOINTER retval; /* return type, if any */

/*7*/ ADDRESS lowaddr; /* lowest address of function */

/*8*/ ADDRESS hiaddr; /* highest address of function */

}; /* nine words */

Struct DNTT_FUNC is used for dfunc and dentry, and dblockdata types.

One FUNCTION or ENTRY is emitted for each formal function declaration
(with a body) or secondary entry point, respectively. They are not emitted for
bodyless declarations (FORWARD, EXTERNAL, "int x ();" etc.).

A dblockdata is emitted for Fortran BLOCK DATA constructs only. "address" always
points to a special SLT entry.

For FUNCTION types, the "entryaddr" field is the code address of the primary entry
point of the function. The "lowaddr" field is the lowest code address of the function.
The "hiaddr" field is the highest code address of the function. This both gives the size of
the function and helps in mapping code locations to functions when there are anony-

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-179

mous (non-debuggable) functions present. These three fields should be filled in by the
generation of fixups.

 For ENTRY types, the "entryaddr" field points to the proper code location for calling
the function at the secondary entrypoint, and the "lowaddr" and "hiaddr" fields are nil
(zero). For a FORTRAN subroutine with alternate entries, DNTT_DVARs are required
to represent the parameters, see the DNTT_FPARAM definition for the details.

For BLOCKDATA types, the "public" bit should be set to 1, the "optimize" field should
be set to the optimized level when compiling with -O, the “level”, "varargs" and "info"
fields should all be 0. The "firstparam" field should be DNTTNIL. The "entryaddr" and
"lowaddr" fields should be 0, and the "highaddr" field should be FFFFFFFC (-4). The
"retval" field should be set to T_UNDEFINED, with length 0. An SLT_FUNCTION/
SNT_END pair should be emitted for each DNTT_FUNC (BLOCKDATA).

Every FUNCTION or BLOCKDATA must have a matching END (see below).

For languages in which a functions return value is set by assigning the value to the func-
tion name (such as FORTRAN & Pascal), a DVAR entry should also be emitted for the
function. The address of this DVAR for the function should be the address of the
answer spot for the function. This will allow the user to display the current return value
while the function is executing.

The "varargs" field indicates whether the function was declared as having a variable-
length parameter list. This is currently possible only via ANSI/C function-prototype
"ellipses" (...). The "info" field provides additional language-specific characteristics of
the function and/or its parameter-list.

The localloc (local variables location) is currently only used in the following context: If
the function language is LANG_CPLUSPLUS, then 0 means that locals are at the
beginning of the block, and 1 means that locals appears at the end of a block. For all
other languages this bit is not used.

The FUNCTION DNTT should be used only in the LNTT.

• DNTT_BEGIN structure definition:

struct DNTT_BEGIN {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; / * always K_BEGIN */

#ifdef CPLUSPLUS

BITS classflag: 1; /* beginning of class def'n */

BITS unused: 20;

#else

BITS unused: 21;

#endif

Symbol ic Debug Informat ion

7-180

/*1*/ SLTPOINTER address; /* code and text locations */

}; /* two words */

BEGINs are emitted as required to open a new (nested) scope for any type of variable
or label, at any level within MODULE-END and FUNCTION-END pairs. Every
BEGIN must have a matching END (see below). "address" points to a special SLT
entry, but the code location is known from context in the SLT. Because a DNTT
BEGIN-END is used to indicate a new scope, the Pascal BEGIN- END pair does not
produce a DNTT BEGIN-END, while the C { } construct does.

The BEGIN DNTT should be used only in the LNTT.

• DNTT_COMMON structure definition:

struct DNTT_COMMON {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_COMMON */

BITS unused: 21;

/*1*/ VTPOINTER name; /* name of common block */

/*2*/ VTPOINTER alias; /* alternate name, if any */

}; /* three words */

COMMONs are used to indicate that a group of variables are members of a given FOR-
TRAN common block. For each common block, a DNTT_ COMMON is emitted, fol-
lowed by a DNTT_SVAR for each member of the common block, and finally a
DNTT_END. If type information is required for a member of the common block (such
as an array), it may also be within the DNTT_COMMON, DNTT_END pair.

The COMMON DNTT should be used only in the LNTT.

• DNTT_WITH structure definition:

truct DNTT_WITH {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_WITH */

BITS addrtype: 2; /* 0 => STATTYPE */

/* 1 => DYNTYPE */

/* 2 => REGTYPE */

BITS indirect: 1; /* 1 => pointer to object */

BITS longaddr: 1; /* 1 => in long pointer space */

BITS nestlevel: 6; /* # of nesting levels back */

BITS unused: 11;

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-181

/*1*/ long location; /* where stored (allocated) */

/*2*/ SLTPOINTER address;

/*3*/ DNTTPOINTER type; /* type of with expression */

/*4*/ VTPOINTER name; /* name of with expression */

/*5*/ unsigned long offset; /* byte offset from location */

}; /* six words */

WITHs are emitted to open a with scope. Like a BEGIN, a WITH requires a matching
END to close the scope. A single WITH statement possessing more than one record
expression, should be handled as multiple nested withs with only one expression each.

The "addrtype" field indicates the addressing mode used for the record expression, and
along with the "indirect" field, tells how to interpret the "location" and "offset" fields.
Thus, depending upon the value of "addrtype", "location" may contain a short pointer,
an offset from the local frame pointer, or a register number. If "nestlevel" is non-zero
and "addrtype" is DYNTYPE, the address for the record expression is computed by trac-
ing back "nestlevel" static links and using "location" as an offset from the frame pointer
at that level. (This situation occurs only on the HP9000 FOCUS architecture.) The use
of the "offset" field is the same as for the DNTT_SVAR entry (see below). The "type"
field is the type of the record expression. The "name" field is the symbolic representa-
tion of the record expression (ex. "p[i]^"). "address" points to a special SLT, but the
code location is known from context in the SLT.

The WITH DNTT should be used only in the LNTT.

• DNTT_END structure definition:

struct DNTT_END {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_END */

KINDTYPE endkind: 10; /* DNTT kind closing scope for */

#ifdef CPLUSPLUS

BITS classflag: 1; /* end of class def'n */

BITS unused: 10;

#else

BITS unused: 11;

#endif

/*1*/ SLTPOINTER address; /* code and text locations */

/*2*/ DNTTPOINTER beginscope; /* start of scope */

}; /* three words */

Symbol ic Debug Informat ion

7-182

ENDs are emitted as required to close a scope started by a MODULE, FUNCTION,
WITH, COMMON, or BEGIN (but not an ENTRY).

Each points back to the DNTT entry that opened the scope. "endkind" indicates which
kind of DNTT entry is associated with the END and is filled in by the preprocessor.
"address" points to a special SLT entry, but the code location is known from context in
the SLT.

The END DNTT should be used only in the LNTT.

• DNTT_IMPORT structure definition:

struct DNTT_IMPORT {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_IMPORT */

BITS explicit: 1; /* module directly imported */

BITS unused: 20;

/*1*/ VTPOINTER module; /* module imported from */

/*2*/ VTPOINTER item; /* name of item imported */

}; /* three words */

Within a module, there is one IMPORT entry for each imported module, function, or
variable. The item field is nil when an entire module is imported. Used only by Pas-
cal/Modcal. Note that exported functions and variables have their public bits set.

The "explicit" flag indicates the module was directly imported. When not set, the mod-
ule was imported by an imported module.

The IMPORT DNTT should be used only in the LNTT.

• DNTT_LABEL structure definition:

struct DNTT_LABEL {

/*0*/ BITS extension: 1; /* always zero */

 KINDTYPE kind: 10; /* always K_LABEL */

 BITS unused: 21;

/*1*/ VTPOINTER name; /* name of label */

/*2*/ SLTPOINTER address; /* code and text locations */

}; /* three words */

One LABEL is emitted for each source program statement label, referencing the
matching physical line (SLT entry). An SLT pointer is used, instead of just a line-

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-183

number, so a code location is known for setting a breakpoint. This is the only case of
SLTPOINTER that points to a normal (not special) SLT entry.

If a label appears at the very end of a function (after all executable code), a normal SLT
entry must be emitted for it anyway. In this case the SLT entry points to an exit
(return) instruction.

Numeric labels are named as the equivalent character string with no leading zeroes,
except in those languages where the leading zeroes are significant (i.e. COBOL).

The LABEL DNTT should be used only in the LNTT.

7.3.3 Storage-class ("Name") DNTT Entries

• DNTT_FPARAM structure definition:

struct DNTT_FPARAM {

 /*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_FPARAM */

BITS regparam: 1; /* 1 => REGTYPE, */

/* not DYNTYPE */

BITS indirect: 1; /* 1 => pass by reference */

BITS longaddr: 1; /* 1 => in long pointer space */

BITS copyparam: 1; /* 1 => Copied to a local */

/* only for fortran strings */

#ifdef CPLUSPLUS

BITS dflt: 1; /* default parameter value? */

BITS unused: 16;

#else

BITS unused: 17;

#endif

 /*1*/ VTPOINTER name; /* name of parameter */

 /*2*/ DYNTYPE location; /* where stored */

 /*3*/ DNTTPOINTER type; /* type information */

 /*4*/ DNTTPOINTER nextparam; /* next FPARAM, if any */

 /*5*/ int misc; /* assorted uses */

 }; /* six words */

FPARAMs are chained together in parameter list order (left to right) from every
FUNCTION, ENTRY, or FUNCTYPE (see below), one for each parameter, whether
or not the type is explicitly declared.

Symbol ic Debug Informat ion

7-184

For unnamed parameters, the FPARAM name is "*". "regparam" implies that the stor-
age location given is to be interpreted as a REGTYPE, not a DYNTYPE, that is, the
parameter was passed in a register. "indirect" implies that the storage location given
contains a data pointer to the parameter described, not the parameter itself, due to a
call by reference (Pascal VAR, for instance). In the case where a call-by-value param-
eter is too big to be passed in the parameter list (e.g., a copied-value parameter in Pas-
cal), the "location" must be given as the actual (post-copy) location of the parameter.
"longaddr" is meaningful only for varparams, and indicates that the storage location
given contains a 64 bit Spectrum long pointer. The long pointer could be in 2 consecu-
tive words, or in the case of a regparam, two consecutive registers. "copyparam" implies
that the parameter has been copied to a local, and thus the location is relative to the sp of
the current procedure, not the sp of the previous procdeure. "misc" is for assorted val-
ues. Currently, if the parameter is of type T_FTN_STRING_S300 then the "misc" field
contains the SP relative offset of the word containing the length of the string

In the case of a FORTRAN routine with alternate entries, DNTT DVARs also must be
emited for each parameter. The reason is that with FORTRAN alternate entries, the
same parameter can be in two different entry's parameter lists, in a different location (ex.
the parameter "x" in "subroutine a(x,y,z)" and "entry b(v,w,x)") and yet they both repre-
sent the same parameter. Thus in order to insure a consistant address for such parame-
ters, the compiler allocates a local temporary, and the prologue code for each entry
copies the parameters into the local temps. So, to insure that the debugger can find the
parameters, a DNTT DVAR must be generated for each temporary, with the name of the
DVAR being the name of the FPARAM for which the temp. was allocated.

The FPARAM DNTT should be used only in the LNTT.

• DNTT SVAR and DVAR structures definition:

struct DNTT_SVAR {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_SVAR */

BITS public:1; /* 1 => globally visible */

BITS indirect:1; /* 1 => pointer to object */

BITS longaddr:1; /* 1 => in long pointer space */

#ifdef CPLUSPLUS

BITS staticmem:1; /* 1 => member of a class */

BITS a_union:1; /* 1 => anonymous union member */

BITS unused:16;

#else

BITS unused:18;

#endif

/*1*/ VTPOINTER name; /* name of object (variable) */

/*2*/ STATTYPE location; /* where stored (allocated) */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-185

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long offset; /* post indirection byte offset */

/*5*/ unsigned long displacement; /* pre indirection byte offset */

}; /* six words */

struct DNTT_DVAR {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* always K_DVAR */

BITS public:1; /* 1 => globally visible */

BITS indirect:1; /* 1 => pointer to object */

BITS regvar:1; /* 1 => REGTYPE, not DYNTYPE */

#ifdef CPLUSPLUS

BITS a_union:1; /* 1 => anonymous union member */

BITS unused:17;

#else

BITS unused:18;

#endif

/*1*/ VTPOINTER name; /* name of object (variable) */

/*2*/ DYNTYPE location; /* where stored (allocated) */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long offset; /* post indirection byte offset */

/* for use in cobol structures */

}; /* five words */

SVARs describe static variables (with respect to storage, not visibility) and DVARs
describe dynamic variables, and also describe register variables. Note that SVARs
have an extra word, "offset", not needed for the other types. This provides for direct
data which is indexed from a base, and indirect data which is accessed through a
pointer, then indexed.

The "location" field of an SVAR will require a fixup. An example of when the offset
field can be useful, is a FORTRAN common block. In a common block declaration
such as "common /marx/ groucho, harpo, chico", the symbol "marx" is the only global
symbol. If "marx" is accessed indirectly, then the address of "harpo" would contain the
address of "marx" in the location field (with the indirect bit on), and the offset of
"harpo" from "marx" in the offset field. If "marx" is not indirect, then location field can
be filled in by a fixup of the form address(marx) + offset of harpo, and the offset field is
not needed.

The compilers must emit SVARs even for data objects the linker does not know about
by name, such as variables in common blocks.

Symbol ic Debug Informat ion

7-186

As in the FPARAM entry, the longaddr field indicates the use of a Spectrum long
pointer, and is valid only if the indirect flag is true. The "regvar" field also has the same
meaning as in the FPARAM case.

For languages in which a functions return value is set by assigning the value to the func-
tion name (such as FORTRAN & Pascal), a DVAR entry should also be emitted for the
function. The address of this DVAR for the function should be the address of the
answer spot for the function. This will allow the user to display the current return value
while the function is executing.

For a FORTRAN subroutine with alternate entries, DNTT_DVARs are required to rep-
resent the parameters, see the DNTT_FPARAM definition for the details.

The SVAR can be used in both the GNTT and LNTT, while the DVAR is only applica-
ble to the LNTT.

• DNTT_CONST structure definition:

struct DNTT_CONST {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_CONST */

BITS public:1; /* 1 => globally visible */

BITS indirect:1; /* 1 => pointer to object */

LOCDESCTYPE locdesc:3; /* meaning of location field */

#ifdef CPLUSPLUS

BITS classmem:1; /* 1 => member of a class */

BITS unused:15;

#else

BITS unused:16;

#endif

/*1*/ VTPOINTER name; /* name of object */

/*2*/ STATTYPE location; /* where stored */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long offset; /* post indirection byte offset */

/*5*/ unsigned long displacement; /* pre indirection byte offset */

}; /* six words */

The value of locdesc determines the meaning of location. Compilers are free to use
any of the three types (LOC_IMMED, LOC_PTR, LOC_VT) as feasible and appro-
priate. They might, for example, merely dump all CONST values into the VT, with

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-187

some redundancy, if they could do no better. Ideally, each compiler would use all three
types according to whether the constant is stored in an immediate instruction (so a
copy is needed here), in code or data space, or nowhere else, respectively.

If locdesc == LOC_PTR, CONST is very much like an SVAR, and the indirect and off-
set values are relevant.

The CONST DNTT can be used in both the GNTT and LNTT.

7.3.4 Type-class ("Type") DNTT Entries

• DNTT_TYPE structure definition:

struct DNTT_TYPE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* either K_TYPEDEF or */

/* K_TAGDEF */

BITS public:1; /* 1 => globally visible */

BITS typeinfo:1; /* 1 => type info available */

BITS unused:19;

/*1*/ VTPOINTER name; /* name of type or tag */

/*2*/ DNTTPOINTER type; /* type information */

}; /* three words */

The DNTT_TYPE type is used for dtype and dtag entries. TYPEDEFs are just a way
of remembering names associated with types declared in Pascal, via "type" sections,
or in C, via "typedef"s. TAGDEFs are used for C "struct", "union", and "enum" tags,
which may be named identically to "typedef"s in the same scope. TAGDEFs
always point at STRUCTs, UNIONs, or ENUMs (see below), and provide a way to
"hang" a name onto a subtree.

Note that named types point directly to the underlying structures, not to inter-
vening TYPEDEFs or TAGDEFs. Type information in TYPEDEFs and TAGDEFs
point to the same structures independent of named instantiations of the types.

For example:

typedef struct S {...} *pS;

Symbol ic Debug Informat ion

7-188

would generate something like this:

And:

typedef enum E { ... } EEE;

would generate something like this:

TYPEDEF “pS”

POINTER

TAG “S”

STRUCT

.......

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-189

Note also that variables (of a named non-base type) must point to TYPEDEF or TAG-
DEF dntt, and not the underlying structures. If this is not done, the removal of dupli-
cate global information is impossible.

The "typeinfo" flag only applies to TAGDEFs. When not set, it is used to indicate that
an underlying struct, union, or enum is named, but the actual type is not declared.
In general, "typeinfo" will be set to 1. It will be set to a 0 if the type subtree is not
available. Consider the C file

*typedef struct s *Sptr;

*main(){}

which is a valid compilation unit with "struct s" defined in another file. For this case,
the "typeinfo" for TAGDEF "s" will be set to 0, and "type" points to a "nil"
DNTT_STRUCT (i.e. a DNTT_STRUCT entry with its "firstfield", "vartagfield",
and "varlist" fields set to DNTTNIL and its "declaration" and "bitlength" fields set
to 0).

Graphically:

TYPEDEF “EEE”

TAG “E”

ENUM

....

Symbol ic Debug Informat ion

7-190

Thus, whenever "typeinfo" is 0, "type" must point to an appropriate DNTT entry
which has all its fields correctly NIL'ed. This applies to *named* DNTT_STRUCT's,
DNTT_UNION's, and DNTT_ENUM's.

The TYPEDEF and TAGDEF DNTTs may be used in both the GNTT and LNTT.

• DNTT_POINTER structure definition:

struct DNTT_POINTER {

/*0*/ BITS extension: 1; /* always zero */

#ifdef CPLUSPLUS

KINDTYPE kind: 10; /* K_POINTER or K_REFERENCE */

#else

KINDTYPE kind: 10; /* always K_POINTER */

TYPEDEF “Sptr”

POINTER

<first field>-----> DNTTNIL

<vartagfield>-----> DNTTNIL

<varlistfield>-----> DNTTNIL

<.. otherfields>-----> all set to 0

TAG “s”

STRUCT

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-191

#endif

BITS unused: 21;

/*1*/ DNTTPOINTER pointsto; /* type of object */

/*2*/ unsigned long bitlength; /* size of pointer, not object */

}; /* three words */

• DNTT ENUM and MEMENUM structures definition:

struct DNTT_ENUM {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_ENUM */

BITS unused: 21;

/*1*/ DNTTPOINTER firstmem; /* first MEMENUM (member) */

/*2*/ unsigned long bitlength; /* packed size */

}; /* three words */

struct DNTT_MEMENUM {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_MEMENUM */

#ifdef CPLUSPLUS

BITS classmem: 1; /* 1 => member of a class */

BITS unused: 20;

#else

BITS unused: 21;

#endif

/*1*/ VTPOINTER name; /* name of member */

/*2*/ unsigned long value; /* equivalent number */

/*3*/ DNTTPOINTER nextmem; /* next MEMENUM, else */

/* ENUM type */

}; /* four words */

Each ENUM begins a chain of (name, value) pairs. The nextmem field of the last
memenum, should be DNTT NIL. The POINTER, ENUM, and MEMENUM DNTTs
can all be used in both the GNTT and LNTT.

Symbol ic Debug Informat ion

7-192

• DNTT SET, SUBRANGE, and ARRAY structures definition:

struct DNTT_SET {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_SET */

BITS declaration:2; /* normal, packed, or crunched */

BITS unused:19;

/*1*/ DNTTPOINTER subtype; /* type implies bounds of set */

/*2*/ unsigned long bitlength; /* packed size */

}; /* three words */

struct DNTT_SUBRANGE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_SUBRANGE */

BITS dyn_low:2; /* >0 => nonconstant low bound */

BITS dyn_high:2; /* >0 => nonconstant high bound */

BITS unused: 17;

/*1*/ long lowbound; /* meaning depends on subtype */

/*2*/ long highbound; /* meaning depends on subtype */

/*3*/ DNTTPOINTER subtype; /* immediate type or ENUM */

/*4*/ unsigned long bitlength; /* packed size */

}; /* five words */

struct DNTT_ARRAY {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_ARRAY */

BITS declaration: 2; /* normal, packed, or crunched */

BITS dyn_low: 2; /* >0 => nonconstant low bound */

BITS dyn_high: 2; /* >0 => nonconstant high bound */

BITS arrayisbytes:1; /* 1 => array size is in bytes */

BITS elemisbytes: 1; /* 1 => elem. size is in bytes */

BITS elemorder: 1; /* 0 => in increasing order */

BITS justified: 1; /* 0 => left justified */

BITS unused: 11;

/*1*/ unsigned long arraylength; /* size of whole array */

/*2*/ DNTTPOINTER indextype; /* how to index the array */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-193

/*3*/ DNTTPOINTER elemtype; /* type of each array element */

/*4*/ unsigned long elemlength; /* size of one element */

}; /* five words */

The dyn_low and dyn_high fields are non-zero only if the DNTT_SUBRANGE is
defining the range of an array index, otherwise they are always zero. The dyn_low
and dyn_high bits are duplicated in the DNTT_SUBRANGE defining the range of
the array index (so sllic can fix the pointers). "dyn_low" indicates whether the
lower bound for the subscript of the array is dynamic. If the dyn_low field is zero,
then the lowbound field of the DNTT_SUBRANGE entry, pointed to by the indextype
field in the DNTT_ARRAY entry, is interpreted as a constant lower bound. If the
dyn_low field is 1, then the lowbound field of the DNTT SUBRANGE is interpreted
as a DYNTYPE giving a local address where the lower bound can be found. If the
dyn_low field is 2, then the lowbound field of the DNTT_SUBRANGE is interpreted
as a DNTTPOINTER to a variable whose value is the lower bound (needed if the lower
bound is a static variable). The dyn_low value of 3 is not used. The "dyn_high" bit has
a similar meaning relating to the upper bound. If an upper bound for an array param-
eter is not given (like assumed size arrays in FORTRAN, or "char foo[]" in C) then the
upper bound in the DNTT_SUBRANGE should be the largest integer that fits in a
long integer, so that any value the user can give is legal.

"arrayisbytes" indicates that the field "arraylength" contains the length in bytes rather
then bits. This is needed on Spectrum where an array could be up to 2**32 bytes. A
value of zero for bitsize will be used to represent 2**32.

"elemisbytes" indicates that the field "elemlength" contains the elem. length in bytes
rather then bits. The "elemlength" field contains the not the "true" size of an array
element, but the size allocated to each element within the array (the "true" size plus any
wasted bits on the left or right). As an example for a

Pascal array of a 13 bit structure, the array element size might equal 16, with the justi-
fied field equal to 0 to indicate the structure is left justified within the 16 bits. The
"true" size of the structure would be found in the size field of the

DNTT_STRUCT pointed to by the "elemtype" field of the DNTT_ARRAY.

"indextype" typically points to a SUBRANGE for bounds.

"elemtype" may point to another ARRAY for multi-dimensional arrays. Row or col-
umn precedence in the language is reflected in the order of the ARRAY entries on the
chain. For example, in Pascal, which is row-precedent, an array declared [1..2, 3..4,
5..6] would result in "array 1..2 of array 3..4 of array 5..6 of ...". The same declara-
tion in FORTRAN, which is column-precedent, would result in "array 5..6 of
array 3..4 of array 1..2 of ...". This makes index-to-address conversion much easier.
Either way an expression handler must know the precedence for the language.

The SET, SUBRANGE, and ARRAY DNTTs can be used in both the GNTT and
LNTT.

Symbol ic Debug Informat ion

7-194

• DNTT STRUCT structure definition:

struct DNTT_STRUCT {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_STRUCT */

BITS declaration:2; /* normal, packed, or crunched */

BITS unused:19;

/*1*/ DNTTPOINTER firstfield; /* first FIELD, if any */

/*2*/ DNTTPOINTER vartagfield; /* variant tag FIELD, or type */

/*3*/ DNTTPOINTER varlist; /* first VARIANT, if any */

/*4*/ unsigned long bitlength; /* total at this level */

}; /* five words */

The "declaration", "vartagfield", and "varlist" fields apply to Pascal/Modcal records
only and are nil for record structures in other languages. If there is a tag, then the "vart-
agfield" points to the FIELD DNTT describing the tag. Otherwise, the "vartagfield"
points to the tag type.

The STRUCT DNTT may be used in both the GNTT and LNTT.

• DNTT UNION structure definition:

struct DNTT_UNION {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_UNION */

BITS unused: 21;

/*1*/ DNTTPOINTER firstfield; /* first FIELD entry */

/*2*/ unsigned long bitlength; /* total at this level */

}; /* three words */

This type of DNTT_UNION supports C unions only and is not used otherwise.

Since STRUCTUREs and UNIONs are not packable inside of outer STRUCTUREs
and UNIONs, their bitlengths tell their actual (not necessarily packed) size, accord-
ing only as to how they are internally packed.

The UNION DNTT may be used in both the GNTT and LNTT.

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-195

• DNTT FIELD structure definition:

struct DNTT_FIELD {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_FIELD */

#ifdef CPLUSPLUS

BITS visibility:2; /* pub = 0, prot = 1, priv = 2 */

BITS a_union:1; /* 1 => anonymous union member */

#ifdef TEMPLATES

BITS staticMem:1; /* 1 -> static member of a template */

BITS unused:17;

#else /* TEMPLATES */

BITS unused:18;

#endif /* TEMPLATES */

#else /* normal code, not C++ support */

BITS unused:21;

#endif

/*1*/ VTPOINTER name; /* name of field, if any */

/*2*/ unsigned long bitoffset; /* of object itself in STRUCT */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long bitlength; /* size at this level */

/*5*/ DNTTPOINTER nextfield; /* next FIELD in STRUCT, if any */

}; /* six words */

This type describes the fields in Pascal records and C structures and unions. The
bitoffset is from the start of the STRUCT or UNION that started the chain, to the start
of the object itself, ignoring any padding. Note that bitoffset does not have to be
on a byte boundary. For unions, each bitoffset should be zero since all fields overlap.

The bitlength field is the same as that of the type except for C bit fields, which may be a
different size than the base type.

The FIELD DNTT can be used in both the GNTT and LNTT.

Symbol ic Debug Informat ion

7-196

• DNTT VARIANT structure definition:

struct DNTT_VARIANT {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_VARIANT */

BITS unused: 21;

/*1*/ long lowvarvalue; /* meaning depends on vartype */

/*2*/ long hivarvalue; /* meaning depends on vartype */

/*3*/ DNTTPOINTER varstruct; /* this variant STRUCT, if any */

/*4*/ unsigned long bitoffset; /* of variant, in outer STRUCT */

/*5*/ DNTTPOINTER nextvar; /* next VARIANT, if any */

}; /* six words */

"varstruct" points to the STRUCT which in turn describes the contents of the variant.
The latter might in turn point to VARIANTs of its own, and to FIELDs which point to
other STRUCTs.

"lowvarvalue" and "hivarvalue" are the range of values for which this variant applys;
more than one dntt VARIANT may be necessary to describe the range (e.g., 'a'..'n','q':).
A type field is un necessary, as the type can be obtained from the "vartagfield" field of
the STRUCT DNTT.

The VARIANT DNTT can be used in both the GNTT and LNTT.

• DNTT FILE structure definition:

struct DNTT_FILE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_FILE */

BITS ispacked: 1; /* 1 => file is packed */

BITS unused: 20;

/*1*/ unsigned long bitlength; /* of whole element buffer */

/*2*/ unsigned long bitoffset; /* of current element in buffer */

/*3*/ DNTTPOINTER elemtype; /* type and size of of element */

}; /* four words */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-197

Pascal/Modcal is the only language of interest with built-in file buffering. For Pascal/
Modcal files, the symbol table tells the file element type, the sizes of the current element
(via "elemtype") and the whole buffer (via "bitlength"), and the locations of the ele-
ment buffer (from the parent "NAME" entry) and the element itself within the buffer,
following header information (from "bitoffset").

The FILE DNTT can be used in both the GNTT and LNTT.

• DNTT FUNCTTYPE structure definition:

struct DNTT_FUNCTYPE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_FUNCTYPE */

BITS varargs:1; /* func-proto ellipses. */

BITS info:4; /* lang-specific stuff; F_xxxx */

BITS unused:16;

/*1*/ unsigned long bitlength; /* size of function pointer */

/*2*/ DNTTPOINTER firstparam; /* first FPARAM, if any */

/*3*/ DNTTPOINTER retval; /* return type, if any */

}; /* four words */

This type supports function variables in a limited way, including the parameter
types (if any) and the return value type (if any).

See DNTT_FUNC for discussion of various fields.

The FUNCTYPE DNTT can be used in both the GNTT and LNTT.

• DNTT COBSTRUCT structure definition:

struct DNTT_COBSTRUCT {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_COBSTRUCT */

BITS hasoccurs:1; /* descendant has OCCURS clause */

BITS istable: 1; /* is a table item? */

BITS unused:19;

/*1*/ DNTTPOINTER parent; /* next higher data item */

/*2*/ DNTTPOINTER child; /* 1st descendant data item */

Symbol ic Debug Informat ion

7-198

/*3*/ DNTTPOINTER sibling; /* next data item at this level */

/*4*/ DNTTPOINTER synonym; /* next data item w/ same name */

/*5*/ BITS catusage: 6; /* category or usage of item */

BITS pointloc:8; /* location of decimal point */

BITS numdigits:10; /* number of digits */

BITS unused2:8;

/*6*/ DNTTPOINTER table; /* array entry describing table */

/*7*/ VTPOINTER editpgm; /* name of edit subprogram */

/*8*/ unsigned long bitlength; /* size of item in bits */

}; /* nine words */

This entry is used to describe COBOL data items and table items.

A Cobol variable will begin with a DNTT_SVAR, DNTT_DVAR, or DNTT_ FPARAM
whose "type" field is a DNTTPOINTER to a DNTT_COBSTRUCT.

"parent", "child", "sibling", and "synonym" are DNTTPOINTER to other
DNTT_SVAR, DNTT_DVAR, or DNTT_FPARAMs having these particular relation-
ships with the current DNTT_COBSTRUCT (or are set to DNTTNIL if no such rela-
tionship exists).

"hasoccurs" is set to 1 if the descendent of this COBOL element (pointed to by "child")
has an OCCURS ... DEPENDING ON clause.

"istable" is set to 1 if this COBOL data item is a table. In this case, "table" will point to
a DNTT_ARRAY entry describing the table.

The COBSTRUCT DNTT can be used in both the GNTT and LNTT.

• DNTT MODIFIER structure definition:

struct DNTT_MODIFIER {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_MODIFIER */

BITS m_const:1; /* const */

BITS m_static:1; /* static */

BITS m_void:1; /* void */

BITS m_volatile: 1; /* volatile */

BITS m_duplicate:1; /* duplicate */

BITS unused:16;

/*1*/ DNTTPOINTER type; /* subtype */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-199

}; /* 2 words */

• The following DNTTs :

DNTT_GENFIELD,

DNTT_MEMACCESS,

DNTT_VFUNC,

DNTT_CLASS_SCOPE,

DNTT_FRIEND_CLASS,

DNTT_FRIEND_FUNC,

DNTT_CLASS,

DNTT_TEMPLATE,

DNTT_TEMPL_ARG,

DNTT_PTRMEM,

DNTT_INHERITANCE,

DNTT_OBJECT_ID

are defined to support C++ and template.

struct DNTT_GENFIELD {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_GENFIELD */

BITS visibility:2; /* pub = 0, prot = 1, priv = 2 */

BITS a_union:1; /* 1 => anonymous union member */

BITS unused:18;

/*1*/ DNTTPOINTER field; /* pointer to field or qualifier */

/*2*/ DNTTPOINTER nextfield; /* pointer to next field */

}; /* three words */

struct DNTT_MEMACCESS {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; / * always K_MEMACCESS */

BITS unused:21;

/*1*/ DNTTPOINTER classptr; /* pointer to base class */

/*2*/ DNTTPOINTER field; /* pointer field */

}; /* three words */

struct DNTT_VFUNC {

/*0*/ BITS extension: 1; /* always zero */

Symbol ic Debug Informat ion

7-200

KINDTYPE kind:10; /* always K_VFUNCTION */

BITS pure:1; /* pure virtual function ? */

BITS unused:20;

/*1*/ DNTTPOINTER funcptr; /* function name */

/*2*/ unsigned long vtbl_offset; /* offset into vtbl for virtual */

}; /* three words */

struct DNTT_CLASS_SCOPE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_CLASS_SCOPE */

BITS unused:21;

/*1*/ SLTPOINTER address; /* pointer to SLT entry */

/*2*/ DNTTPOINTER type; /* pointer to class type DNTT */

}; /* three words */

struct DNTT_FRIEND_CLASS {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_FRIEND_CLASS */

BITS unused: 21;

/*1*/ DNTTPOINTER classptr; /* pointer to class DNTT */

/*2*/ DNTTPOINTER next; /* next DNTT_FRIEND */

}; /* three words */

struct DNTT_FRIEND_FUNC {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_FRIEND_FUNC */

BITS unused:21;

/*1*/ DNTTPOINTER funcptr; /* pointer to function */

/*2*/ DNTTPOINTER classptr; /* pointer to class DNTT */

/*3*/ DNTTPOINTER next; /* next DNTT_FRIEND */

}; /* four words */

struct DNTT_CLASS {

/*0*/ BITS extension:1; /* always zero */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-201

KINDTYPE kind:10; /* always K_CLASS */

BITS abstract:1; /* is this an abstract class? */

BITS class_decl:2; /* 0=class,1=union,2=struct */

#ifdef TEMPLATES

BITS expansion:1; /* 1=template expansion */

BITS unused:17;

#else /* TEMPLATES */

BITS unused:18;

#endif /* TEMPLATES */

/*1*/ DNTTPOINTER memberlist; /* ptr to chain of K_[GEN]FIELDs */

/*2*/ unsigned long vtbl_loc; /* offset in obj of ptr to vtbl */

/*3*/ DNTTPOINTER parentlist; /* ptr to K_INHERITANCE list */

/*4*/ unsigned long bitlength; /* total at this level */

/*5*/ DNTTPOINTER identlist; /* ptr to chain of class ident's */

/*6*/ DNTTPOINTER friendlist; /* ptr to K_FRIEND list */

#ifdef TEMPLATES

/*7*/ DNTTPOINTER templateptr; /* ptr to template */

/*8*/ DNTTPOINTER nextexp; /* ptr to next expansion */

#else /* TEMPLATES */

/*7*/ unsigned long future2;

/*8*/ unsigned long future3;

#endif /* TEMPLATES */

}; /* nine words */

struct DNTT_TEMPLATE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_TEMPLATE */

BITS abstract:1; /* is this an abstract class? */

BITS class_decl: 2; /* 0=class,1=union,2=struct */

BITS unused:18;

/*1*/ DNTTPOINTER memberlist; /* ptr to chain of K_[GEN]FIELDs */

/*2*/ long unused2; /* offset in obj of ptr to vtbl */

/*3*/ DNTTPOINTER parentlist; /* ptr to K_INHERITANCE list */

/*4*/ unsigned long bitlength; /* total at this level */

/*5*/ DNTTPOINTER identlist; /* ptr to chain of class ident's */

/*6*/ DNTTPOINTER friendlist; /* ptr to K_FRIEND list */

/*7*/ DNTTPOINTER arglist; /* ptr to argument list */

/*8*/ DNTTPOINTER expansions; /* ptr to expansion list */

Symbol ic Debug Informat ion

7-202

}; /* 9 words */

DNTT_TEMPLATEs only appear in the GNTT. Functions and classes templates cannot
be local. (Their instantiations may be).

struct DNTT_TEMPL_ARG {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* always K_TEMPL_ARG */

BITS usagetype:1; /* 0 type-name 1 expression */

BITS unused: 20;

/*1*/ VTPOINTER name; /* name of argument */

/*2*/ DNTTPOINTER type; /* for non type arguments */

/*3*/ DNTTPOINTER nextarg; /* Next argument if any */

/*4*/ long unused2[2];

}; /* 6 words */

Pxdb fills in the prevexp, and nextexp in the DNTT_CLASS. Pxdb also fills in the
expansions field in the DNTT_TEMPLATE.

struct DNTT_PTRMEM {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* K_PTRMEM or

/* K_PTRMEMFUNC */

BITS unused:21;

/*1*/ DNTTPOINTER pointsto; /* pointer to class DNTT */

/*2*/ DNTTPOINTER memtype; /* type of member */

}; /* three words */

struct DNTT_INHERITANCE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* K_INHERITANCE */

BITS Virtual:1; /* virtual base class ? */

BITS visibility:2; /* pub = 0, prot = 1, priv = 2 */

BITS unused:18;

/*1*/ DNTTPOINTER classname; /* first parent class, if any */

/*2*/ unsigned long offset; /* offset to start of base class */

/*3*/ DNTTPOINTER next; /* pointer to next K_INHERITANCE */

}; /* four words */

struct DNTT_OBJECT_ID {

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-203

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* K_OBJECT_ID */

BITS unused:21;

/*1*/ unsigned long object_ident; /* object identifier */

/*2*/ unsigned long offset; /* offset to start of base class */

/*3*/ DNTTPOINTER next; /* pointer to next K_OBJECT_ID */

/*4*/ unsigned long segoffset; /* for linker fixup */

}; /* five words */

7.3.5 General ("overall") DNTT Entry Format

• Generic Entry for Easy Access:

struct DNTT_GENERIC {

unsigned long word [9]; /* rounded up to

}; /* whole number of blocks */

struct DNTT_BLOCK { /* easy way to deal with one block */

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* kind of dnttentry */

BITS unused:21;

/*1*/ unsigned long word [2];

};

• Overall DNTT entry:

union dnttentry {

struct DNTT_SRCFILE dsfile;

struct DNTT_MODULE dmodule;

struct DNTT_FUNC dfunc;

struct DNTT_FUNC dentry;

struct DNTT_FUNC dblockdata;

struct DNTT_BEGIN dbegin;

struct DNTT_END dend;

struct DNTT_IMPORT dimport;

struct DNTT_LABEL dlabel;

struct DNTT_WITH dwith;

struct DNTT_COMMON dcommon;

Symbol ic Debug Informat ion

7-204

struct DNTT_FPARAM dfparam;

struct DNTT_SVAR dsvar;

struct DNTT_DVAR ddvar;

struct DNTT_CONST dconst;

struct DNTT_TYPE dtype;

struct DNTT_TYPE dtag;

struct DNTT_POINTER dptr;

struct DNTT_ENUM denum;

struct DNTT_MEMENUM dmember;

struct DNTT_SET dset;

struct DNTT_SUBRANGE dsubr;

struct DNTT_ARRAY darray;

struct DNTT_STRUCT dstruct;

struct DNTT_UNION dunion;

struct DNTT_FIELD dfield;

struct DNTT_VARIANT dvariant;

struct DNTT_FILE dfile;

struct DNTT_FUNCTYPE dfunctype;

struct DNTT_COBSTRUCT dcobstruct;

#ifdef CPLUSPLUS

struct DNTT_CLASS_SCOPE dclass_scope;

struct DNTT_POINTER dreference;

struct DNTT_PTRMEM dptrmem;

struct DNTT_PTRMEM dptrmemfunc;

struct DNTT_CLASS dclass;

struct DNTT_GENFIELD dgenfield;

struct DNTT_VFUNC dvfunc;

struct DNTT_MEMACCESS dmemaccess;

struct NTT_INHERITANCE dinheritance;

struct DNTT_FRIEND_CLASS dfriend_class;

struct NTT_FRIEND_FUNC dfriend_func;

struct DNTT_MODIFIER dmodifier;

struct DNTT_OBJECT_ID dobject_id;

struct DNTT_FUNC dmemfunc;

#ifdef TEMPLATES

struct DNTT_TEMPLATE dtemplate;

struct DNTT_TEMPL_ARG dtempl_arg;

struct DNTT_FUNC_TEMPLATE dfunctempl;

struct DNTT_LINK dlink; /* generic */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-205

struct DNTT_TFUNC_LINK dtflink;

#endif /* TEMPLATES */

#endif /* CPLUSPLUS */

struct DNTT_XREF dxref; /* Static analyis info section */

struct DNTT_SA dsa; /* Static analyis info section */

struct DNTT_GENERIC dgeneric;

struct DNTT_BLOCK dblock;

};

7.4 Static Analysis Information

7.4.1 XREF Table (XT) Entry Format

This table contains static information about each named object in a compilation unit. It
consists of a collection of of lists, each list associated with a DNTT object via the
DNTT_XREF that follows the object. The DNTT_XREF contains an XREF-
POINTER which is an offset into the XT table, and denotes the beginning of the refer-
ence list.

Each list is actually one or more of linear sub-list that are linked together. Each sub-
list begins with an XREFNAME entry, which names a (current) source file. Following
the XREFNAME is one or more XREFINFO entries, one for each appearance of the
object's name in the current file. These entries list what type of reference and the line
no. within the file. Column numbers are currently unsupported. The XREFINFO1
structure is normally used.

The XREFINFO2A/B structure pair is only used for compilers which support line
numbers greater than 16 bits long. An XREFLINK marks the end of a sublist, so a
typical sequence looks like:

 XREFNAME, XREFINFO1, XREFINFO1, ... , XREFLINK

Note that all elements of a sublist must appear in sequence (linearly). If the list must
be continued, the XREFLINK serves as a continuation pointer from one sublist to
the next, and contains another offset into the XT where the next sublist is found for
the same named object. If there is no additional sublist, the XREFLINK contains a 0
index, denoting the end of the current list.

Lists for the same named object may appear in different compilation units. It is
the responsibility of PXDB to link these together.

Symbol ic Debug Informat ion

7-206

struct XREFINFO1 {

BITS tag: 3; /* always XINFO1 */

BITS definition: 1; /* True => definition*/

BITS declaration:1; /* True => declaration*/

BITS modification:1; /* True => modification*/

BITS use:1; /* True => use*/

BITS call:1; /* True => call */

BITS column:8; /* Unsigned Byte for Column

/* within line */

BITS line:16; /* Unsigned 16-bits for line # relative */

/* to beginning of current inlude file. */

};

struct XREFINFO2A {

 /* first word */

BITS tag:3; /* always XINFO2A */

BITS definition:1; /* True => definition*/

BITS declaration: ; /* True => declaration*/

BITS modification:1; /* True => modification*/

BITS use:1; /* True => use */

BITS call:1; /* True => call */

BITS extra:16;

BITS column:8;

};

struct XREFINFO2B {

 /* second word */

BITS line:32; /* Unsigned 32-bits for line # relative */

/* to beginning of current file. */

};

struct XREFLINK {

BITS tag:3; /* always XLINK for XREFLINK */

BITS next:29; /* index of next list. If */

/* zero then this is the end of line. */

/* a.k.a. continuation pointer */

};

struct XREFNAME {

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-207

BITS tag:3; /* always XNAME for XREFNAME */

BITS filename:29; /* VTPOINTER to file name */

};

union xrefentry {

struct XREFINFO1 xrefshort;

struct XREFINFO2A xreflong;

struct XREFINFO2B xrefline;

struct XREFLINK xlink;

struct XREFNAME xfname;

};

7.4.2 Static Analysis Support DNTT Entries

Static analysis support consists of two DNTT entries:

• DNTT XREF Entry:

struct DNTT_XREF {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* always K_XREF */

BITS language:4; /* language of DNTT object */

BITS unused: 17;

/*1*/ XREFPOINTER xreflist; /* index into XREF subspace */

/*2*/ long extra; /* free */

}; /* three words */

This entry is used to retrieve cross-reference information from the XREF Table (XT). A
DNTT_XREF entry immediately follows the DNTT_SVAR, DNTT_DVAR,
DNTT_TYPE, etc. entry to which it pertains.

The XREFPOINTER points into the XT table where the information about the previous
DNTT entry is contained. If no entries are generated in the XT table, the xreflist field
should contain XREFNIL. The language field contains the source language
(LANG_xxx) value of the DNTT object.

The XREF DNTT can be used in both the GNTT and LNTT.

• DNTT SA Entry:

Symbol ic Debug Informat ion

7-208

struct DNTT_SA {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_SA */

KINDTYPE base_kind:10; /* K_FUNCTION, K_LABEL, etc */

BITS unused: 11;

/*1*/ VTPOINTER name;

/*2*/ long extra; /* free */

};

This entry is used with static analysis info. It supplies the name and kind for a few spe-
cial cases not currently handled by a DNTT_SVAR, DNTT_DVAR, DNTT_TYPE, etc.
It is used for a local entity that has a global scope.

Example:

If a function, has a DNTT_FUNCTION entry in the LNTT; but it can be seen globally,
then a K_SA will be emitted in the GNTT, with the functions name and a base_kind of
K_FUNCTION; the DNTT_XREF will follow the DNTT_SA, not the
DNTT_FUNCTION.

The DNTT_SA is also used for C macros.

The XREF DNTT can be used in both the GNTT and LNTT.

7.5 Source Line Table

7.5.1 SLT Entry Format

This table consists of a series of entries, each of which is either normal, special, or
assist according to the sltdesc field of the first word. Normal entries contain an address
(actually a code offset relative to the beginning of the current function) and a source/list-
ing line (by line number). Listing line numbers may be used in place of source line
numbers based upon a compiler option. This will also be reflected in the
DNTT_SRCFLE entries. Special entries also provide a line number (where something
was declared) and point back to the DNTT which references them. This is used for
quick determination of scope, including source/listing file, after an interrupt. Even if
there are multiple source/listing files, all source/listing line information is accumulated
in this one table.

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-209

The SLT was originally designed to be unnested, even for those languages whose LNTT
must reflect their nesting. The debuggers depend upon this. For those languages that
are nested the SLT must now be nested and an SLT_ASST must immediately follow
each SLT_SPEC of type FUNC. The "address" field will be filled in by the compiler
back-ends to point forward to the first SLT_NORM in the FUNC's scope. The "first-
norm" is set to one if this SLT_NORM is the first SLT_NORM looking sequentially for-
ward in the SLT.

The one exception to the normal/special/assist rule is the EXIT SLT. The EXIT SLT is
used to identify exit points for a routine. The EXIT SLT is a special only in the sense
that the sltdesc field is not equal to SLT_NORMAL. However, it contains a line number
and address like a normal SLT. The EXIT SLT is used in place of a NORMAL SLT for
all exit statements (such as "return" in C and FORTRAN, or the "end" of a procedure
body in Pascal).

The SLT_MARKER is for use in "Chunk-Per-Som". The address field contains a new
base address (replacing the current procedure's low-address field. This new base
address will be added to succeding SLT_NORMALs and SLT_EXITs to produce an
absolute address.

To distinguish prologue (function setup) code emitted at the END of a function from the
last line (normal SLT) of the function, a normal SLT entry with a line number of
SLT_LN_PRLOGUE is used. Such SLT entries are only emitted if there is trailing pro-
logue code, and they are always the last SLT emitted for the function except for the spe-
cial SLT entry for the function END. For compilers that emit the prologue code before
the main body, no special prologue SLT entry is required.

One SLT entry is emitted for (the FIRST physical line of) each executable statement,
for each construct that generates a DNTT entry which points to an SLT entry, and for
the prologue code, if any. The user cannot set a breakpoint without a corresponding
SLT entry. Compilers must emit multiple SLT entries for parts of a composite state-
ment (such as FOR) and for multiple statements appearing on one source line.

For compatibility, the high bits of DNTTPOINTERs in SLT entries are also set to 1,
even though they are not needed here.

The global bit on DNTTPOINTERs in SLT entries should always be 0, as the LNTT
contains all the scoping information.

7.5.2 SLT Types and Data Structure

 Sizeof SLTTYPE is 4 bits, for a maximum of 16 possible special slttypes.

Current available SLT types are:

#define SLT_NORMAL 0 /* note that the field is unsigned */

#define SLT_SRCFILE 1

#define SLT_MODULE 2

Symbol ic Debug Informat ion

7-210

#define SLT_FUNCTION 3

#define SLT_ENTRY 4

#define SLT_BEGIN 5

#define SLT_END 6

#define SLT_WITH 7

#define SLT_EXIT 8

#define SLT_ASSIST 9

#define SLT_MARKER 10

#define SLT_CLASS_SCOPE 11 /* For C++ use only */

struct SLT_NORM {

 SLTTYPE sltdesc: 4; /* always zero */

 BITS line: 28; /* where in source text */

 ADDRESS address; /* where in function */

}; /* two words */

struct SLT_SPEC {

 SLTTYPE sltdesc: 4; /* special entry type */

 BITS line: 28; /* where in source text */

 DNTTPOINTER backptr; /* where in DNTT */

}; /* two words */

struct SLT_ASST {

 SLTTYPE sltdesc: 4; /* always nine */

 BITS unused: 28;

 SLTPOINTER address; /* first SLT normal */

}; /* two words */

struct SLT_GENERIC {

 unsigned long word[2];

}; /* two words */

union sltentry {

 struct SLT_NORM snorm;

 struct SLT_SPEC sspec;

 struct SLT_ASST sasst;

 struct SLT_GENERIC sgeneric;

}; /* two words */

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-211

7.6 Value Table (VT)

This table contains symbol names plus values for DNTT_CONST entries of type
LOC_VT. All strings are null-terminated, as in C. There are no restrictions on the
lengths of values nor the order in which they may appear. All symbol names are exactly
as given by the user, e.g. there are no prepended underscores.

CONST values are not (and need not be) terminated in any way. They may be forced
to word boundaries if necessary, with resulting wasted bytes.

The first byte of the table must be zero (a null string terminator), so that the null
VTPOINTER results in a null name.

7.7 Ordering of Table Entries

LNTT and SLT entries must be emitted and kept in source file order wherever possi-
ble. As a minimum, named LNTT entries must be emitted and kept within the proper
scope, though some compilers may emit them at the end of a scope instead of the
beginning. In general, the debugger must know the emission rules for the language
it is dealing with, and search the LNTT accordingly, or else always search in both
directions.

Items in the GNTT are all global, so the public bit must always be set. Within the
LNTT, the public bit indicates that the item is exported by the module in which it
resides, and is visible within a module or procedure that imports the containing mod-
ule.

Compilers and linkers are encouraged to make multiple references to DNTT, SLT, and
VT entries (even chains of DNTT entries) where possible to reduce redundancy with
no loss of data. They are also encouraged to emit entries grouped so that related entries
are physically close, as long as no scope rules are violated.

SLT entries must be emitted in sorted line number order within each file, except for
special SLT entries for ENTRYs and FUNCTIONs only. They may be out of line
number order (due to nested functions, etc.) so long as the next normal SLT entry is the
proper place to breakpoint the entity. For example, there can be numerous ENTRY
types after a FUNCTION, all referring to the same code location. (If there are no nor-
mal SLT entries before the next FUNCTION or MODULE entry and a SLT_ASST
does not immediately follow the SLT_SPEC for a FUNC, the entity has no breakpoint-
able locations.)

Symbol ic Debug Informat ion

7-212

SLT entries must be sorted in ascending code address order WITHIN EACH MOD-
ULE or FUNCTION body. It is impossible to require that they be sorted both by file
line number and code address because function object code may be emitted or linked
out of source order in a segment.

It is reasonable to expect sequential SLT entries may have the same line numbers or
code locations (but not both, as that would be redundant). This might be due to multi-
ple statements on one source line or several scope levels starting at one place in the
code.

Thus, for nested languages like Pascal and Modcal, the LNTT entries must be nested
to reflect the program's scope. The SLT entries should also be nested with an
SLT_ASST entry following each SLT_SPEC of type FUNC.

7.8 Postprocessing

Linker postprocessing or XDB’s preprocessor (PXDB) must be run on the debug info in
the executable program file to massage the debug info so that the debugger may start up
and run more efficiently.

Some of the tasks performed by PXDB are: remove duplicate global type and variable
information from the GNTT, append the GNTT onto the end of the LNTT and place
both back in the LNTT section, build quick look-up tables for files, procedures, mod-
ules, and paragraphs (for Cobol), placing these in the GNTT section, and reconstruct the
header appearing in the header section to access this information.

• PXDB Header and Support Data Structures:

struct PXDB_header {

int pd_entries; /* # of entries in function look-up table */

int fd_entries; /* # of entries in file look-up table */

int md_entries; /* # of entries in module look-up table */

BITS pxdbed : 1; /* 1 => file has been preprocessed */

BITS bighdr : 1; /* 1 => this header contains 'time' word */

BITS sa_header : 1; /* 1 => created by SA version of pxdb */

/* used for version check in xdb */

#ifdef CPLUSPLUS

BITS inlined: 1; /* one or more functions have been inlined */

BITS spare:12;

short version; /* pxdb header version */

#else /* CPLUSPLUS */

BITS spare:29;

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-213

#endif /* CPLUSPLUS */

int globals; /* index into the DNTT where GNTT begins */

BITS time; /* modify time of file before being pxdbed */

int pg_entries; /* # of entries in label look-up table */

int functions; /* actual number of functions */

int files; /* actual number of files */

#ifdef CPLUSPLUS

int cd_entries; /* # of entries in class look-up table */

int aa_entries; /* # of entries in addr alias look-up table */

int oi_entries; /* # of entries in object id look-up table */

#endif

};

 Source File Descriptor:

 An element of the source file quick look-up table

typedef struct FDS {

long isym; /* first symbol for file */

ADRT adrStart; /* mem adr of start of file's code */

ADRT adrEnd; /* mem adr of end of file's code */

char *sbFile; /* name of source file */

BITS fHasDecl: 1; /* do we have a .d file? */

BITS fWarned: 1; /* have warned about age problems? */

unsigned short ilnMac; /* lines in file (0 if don't know) */

int ipd; /* first proc for file, in PD [] */

BITS *rgLn; /* line pointer array, if any */

} FDR, *pFDR;

Procedure Descriptor:

An element of the procedure quick look-up table

typedef struct PDS {

long isym; /* first symbol for proc*/

ADRT adrStart; /* memory adr of start of proc*/

ADRT adrEnd; /* memory adr of end of proc*/

char *sbAlias; /* alias name of procedure*/

char *sbProc; /* real name of procedure*/

ADRT adrBp; /* address of entry breakpoint */

ADRT adrExitBp; /* address of exit breakpoint */

#ifdef CPLUSPLUS

Symbol ic Debug Informat ion

7-214

int icd; /* member of this class */

#else /* CPLUSPLUS */

BITS inst; /* instruction at entry */

#endif /* CPLUSPLUS */

#ifdef TEMPLATES

BITS ipd; /* index of template for this function */

#else /* TEMPLATES */

BITS instExit; /* instruction at exit */

#endif /* TEMPLATES */

#ifdef CPLUSPLUS

#ifdef TEMPLATES

BITS unused: 6;

BITS fTemplate: 1; /* function template*/

BITS fExpansion: 1; /* function expansion*/

BITS linked : 1; /* linked with other expansions*/

#else /* TEMPLATES */

BITS unused: 9;

#endif /* TEMPLATES */

BITS duplicate: 1; /* clone of another procedure */

BITS overloaded:1; /* overloaded function */

BITS member: 1; /* class member function */

BITS constructor:1; /* constructor function */

BITS destructor:1; /* destructor function */

BITS Static: 1; /* static function */

BITS Virtual: 1; /* virtual function */

BITS constant: 1; /* constant function */

BITS pure: 1; /* pure (virtual) function */

BITS language: 4; /* procedure's language */

BITS inlined: 1; /* function has been inlined */

BITS Operator: 1; /* operator function */

BITS stub: 1; /* bodyless function */

#else

BITS unused1: 18;

BITS language: 4; /* procedure's language */

BITS unused2: 3;

#endif

BITS optimize: 2; /* optimization level */

BITS level: 5; /* nesting level (top=0)*/

} PDR, *pPDR;

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-215

Module Descriptor:

An element of the module quick reference table

typedef struct MDS {

long isym; /* first symbol for module*/

ADRT adrStart; /* adr of start of mod.*/

ADRT adrEnd; /* adr of end of mod.*/

char *sbAlias; /* alias name of module */

char *sbMod; /* real name of module*/

BITS imports: 1; /* module have any imports? */

BITS vars_in_front: 1; /* module globals in front? */

BITS vars_in_gaps: 1; /* module globals in gaps? */

BITS unused : 29;

BITS unused2; /* space for future stuff*/

} MDR, *pMDR;

Paragraph Descriptor:

An element of the paragraph quick look-up table

typedef struct PGS {

long isym; /* first symbol for label */

ADRT adrStart; /* memory adr of start of label */

ADRT adrEnd; /* memory adr of end of label */

char *sbLab; /* name of label */

BITS inst; /* Used in xdb to store inst @ bp */

BITS sect: 1; /* true = section, false = parag. */

BITS unused: 31; /* future use */

} PGR, *pPGR;

Class Descriptor:

An element of the class quick look-up table for C++ support.

typedef struct CDS {

char *sbClass; /* name of class */

long isym; /* class symbol (tag) */

BITS type : 2; /* 0=class, 1=union, 2=struct */

#ifdef TEMPLATES

BITS fTemplate : 1; /* class template */

Symbol ic Debug Informat ion

7-216

BITS expansion : 1; /* template expansion */

BITS unused :28;

#else /* TEMPLATES */

BITS unused : 30;

#endif /* TEMPLATES */

SLTPOINTER lowscope; /* beginning of defined scope */

SLTPOINTER hiscope; /* end of defined scope */

} CDR, *pCDR;

Address Alias Entry:

An element of the address alias quick look-up table for C++ support.

typedef struct AAS {

ADRT low;

ADRT high;

int index;

BITS unused : 31;

BITS alternate : 1; /* alternate unnamed aliases? */

} AAR, *pAAR;

Object Identification Entry

An element of the object identification quick look-up table for C++ support.

typedef struct OIS {

ADRT obj_ident; /* class identifie */

long isym; /* class symbol */

long offset; /* offset to object start */

} OIR, *pOIR;

7.9 Debug Format Changes for Debugging of
Optimized Code (DOC)

7.9.1 Debug Format Changes

The following describes the changes to the debug format for HP-UX 10.0. The primary
change to the debug format is the addition of a new debug space and debug subspaces.
For code compiled with -g and -O, the debug information will be generated into a new
space named $PINFO$ (after processing with pxdb -- prior to pxdb processing the

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-217

debug information will be generated into the $DEBUG$ space). All the standard xdb-
format subspaces will be placed into the $PINFO$ space along with the two new sub-
spaces: $LINE$, and LT_OFFSET.

7.9.2 Object File Format Details

When a file is compiled with debug and optimization specified, the compilers build a
$DEBUG$ space and a LT_OFFSET subspace within the $DEBUG$ space. The
linker builds the $LINES$ subspace within the $DEBUG$ space when debug info is
seen in any object file being linked. When pxdb processes the executable file, the
$DEBUG$ space is renamed $PINFO$ if it detects DOC format debug info in the file.

The compilers supply line table information to the linker in the form of fixup requests.
Two new fixup requests have been defined to signal the building of DOC line tables
(which includes information to be included in the first entry of the line table) and to gen-
erate special line table escape entries. The information for the line number tables is sup-
plied by the fixup request, R_LINETAB.

The compilers generate the R_LINETAB fixup to request that DOC line tables be built.
This fixup passes in a version number and subspace index and subspace offset of a loca-
tion which must be patched with the offset of the line table which is about to be built.
The R_LINETAB fixup request is a 9-byte with the following fields:

The first parameter is a 1-byte version number which identifies the line table version
(format). The actual value is not important to the linker. The second parameter is a sym-
bol index to be used in conjunction with the third parameter, an offset, as a location
which is to be filled with the offset (relative to the $LINES$ subspace) of the line table
about to be built.

The line number information is passed to the linker via the R_STATEMENT fixup
request, which is embedded within the fixups for the code at statement boundaries. The
R_STATEMENT fixup has three variants to handle one, two and three byte statement of
line numbers as necessary. The actual meaning assigned to the number, whether it be
statement numbers of line numbers, is irrelevant to the linker, and needs to be agreed
upon only by the compiler and the end user of the line table information.

The R_LINETAB_ESC fixup is a 3-byte fixup defined as follows:

Offset Length Field

0 1 R_LINETAB

1 1 version number

2 3 symbol index (symbol-relative loc to patch w/line table
offset)

5 4 offset (symbol + offset = location to patch w/line table
offset)

Symbol ic Debug Informat ion

7-218

This fixup request is used to place escape entries into the line table. There are several
escape entries defined in the line table format which are used by the debugger and other
tools when processing the line table. Some of these escapes must be generated by the
linker, the others are generated by the compiler and the linker does not need to know the
details of these escapes. The escapes entries which are not generated by the linker are
entered into the line table via a combination of the R_LINETAB_ESC and
R_STATEMENT fixups.

The first parameter contains the actual escape code which is to be placed into a 1-byte
entry in the line table. The second parameter specifies how many of the following
R_STATEMENT entries contain data to be entered directly into the line table (these
statement fixups will not contain line numbers -- instead they hold data which is to be
placed directly into the line number table as part of the escape sequence). With the cur-
rently defined escapes, the value of the second parameter will be in the range [0,4].

7.9.3 Building the Line Tables

All line tables will be placed into the $LINES$ subspace of the executable file. The
linker must create a new line table each time an R_LINETAB fixup is processed. If a
line table is in progress then it must be completed by entering a dst_ln_end escape and
the final pc delta entry. Each line table is terminated when 1) a new R_LINETAB fixup
is seen or 2) when the end of the current code subspace is reached.

When a new line table is started the version number passed as a parameter to the fixup is
used as the first one-byte entry in the table. The symbol and offset parameters passed in
the R_LINETAB fixup must be saved along with the corresponding line table offset as
‘fixups’ to be applied to the symbol+offset location when that symbol’s subspace is pro-
cessed. The first R_STATEMENT entry processed after an R_LINETAB fixup will gen-
erate a four-byte entry containing the absolute code address associated with the fixup.

The size of the next entry (in bytes) is determined by the absolute line number value (the
value passed to the R_STATEMENT fixup). The linker must emit the absolute line num-
ber into the table using the minimum number of bytes required by the line number
value. For example, if the line number is less that 256, then the absolute line number
entry will be one byte; if the line number is greater than 255 and less that 65536, then
the line number entry will be 2 bytes, etc. Each subsequent R_STATEMENT entry will
cause one entry (consisting of one or more bytes) to be generated into the line table.

 The linker needs to be aware of, and generate, some of the escape codes defined for the
DOC line table. These escape codes are as follows:

Offset Length Field

0 1 R_LINETAB_ESC (oxDB)

1 1 escape code

2 1 number of following R_STATEMENT fixups containing
escape data.

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-219

The linkers must use the multi-byte line delta and pc-delta escapes whenever the line or
code delta values exceed the range that can be expressed in a 1-byte entry. There must
be one line table entry to express each R_STATEMENT fixup. For example, if either the
line number delta or code delta falls outside of the range [-8,7] (line delta) or [0,11]
(code delta), but is less than the byte-range [-127,128] (line delta) or [0,255] (code
delta) then adst_ln_dpc1_dln1must be generated. Similarly, if the delta range for
either line or code delta cannot be described in the 1-byte format, then a
dst_ln_dpc2_dln2 (two-byte line and pc delta escape format) must be used. Finally, if
the code and line deltas exceed the 2-byte format, then adst_ln_pc4_ln4 absolute line
number and code address must be used.

The R_LINETAB_ESC fixup directs the linker to treat <n> following R_STATEMENT
fixups as absolute data entries. The R_LINETAB_ESC causes the linker to generate a
one-byte entry into the table which contains the data value passed in as the first argu-
ment. The second R_LINETAB_ESC argument specifies the number of following
R_STATEMENT entries which contain data to be directly entered into the line-table.
These R_STATEMENT entries will not cause the normal pc-delta/line-delta entries to
be generated; Instead, the argument passed to the R_STATEMENT fixups will be used
as absolute data for a one-byte entry in the line table.

7.9.4 Debug Format Changes

The new subspace, LT_OFFSET, will be placed into the $DEBUG$ space by the
compilers when optimization is specified with debug (-g and -O). The format and the
LT_OFFSET table is a list of 1-word entries; each entry contains a line table offset

Table entry
for ESC ESC Name Description

dst_ln_end end escape; final entry follows. The
final entry contains the code size of
the last statement in high 4 bits (i.e.
the last PC delta); the low 4 bits are
0

dst_ln_pad This byte is padding

dst_ln_dpc1_dln1 The next table entry is a one byte pc
delta followed by a one byte line
delta.

dst_ln_dpc2_dln2 The next table entry is a two byte pc
delta followed by a two byte line
delta.

dst_ln_pc4_ln4 The next table entry is a four byte
absolute pc followed by a 4-byte
absolute line number.

dst_ln_dpc0_dln1 The next table entry is a one byte
line delta; the pc delta is zero.

Symbol ic Debug Informat ion

7-220

which corresponds to the beginning of each line table in the $LINES$ subspace (in
order). One line table will be emitted for each NTT_FUNC debug entry. This subspace
is temporary for UX10.0 xdb-DOC transition and will be obsoleted in post-UX10.0
releases.

Xdb-style $GNTT$, $LNTT$, SLT and VT will be placed into the $DEBUG$
space by the compilers when optimization and debug are specified together on the com-
mand line. If no optimization is requested (plain -g) then the standard xdb debug infor-
mation will be generated into the $DEBUG$ debug space.

The xdb-style $HEADER$ subspace will be modified to include new fields when both
debug and optimization are specified (the $DEBUG$ space and xdb format will be
unchanged when -g is used without optimization, or when static analysis (-y) is used).

The DOC information header is defined as follows:

struct DOC_info_header {

unsigned int xdb_header: 1; /* bit set if this is post-3.1 xdb */

unsigned int doc_header: 1; /* bit set if this is doc-style header */

unsigned int version: 8; /* version of debug/heaer format. For 10.0
the value will be 1 */

unsigned int reserved_for_flags: 20; /* for future use; -- must be set to 0 */

unsigned int has_lines_table: 1; /* space contains a $LINES$ subspace for
ine tables.*/

unsigned int has_lt_offset_map: 1; /* space contains an lt_offset subspace
for line table mapping */

long gntt_length;

long lntt_length;

long slt_length;

long vt_lenth;

long xt_length;

}

Similarly, the pxdb header must be modified to include the DOC fields when emitted
into the $PINFO$ space of an executable.

The DOC pxdb header is defined as follows:

struct DOC_info_PXDB_header {

unsigned int xdb_header: 1; /* bit set if this is post-3.1 xdb */

unsigned int doc_header: 1; /* bit set if this is doc-style header */

unsigned int version: 8; /* version of debug/heaer format. For 10.0
the value will be 1 */

unsigned int reserved_for_flags: 20; /* for future use; -- must be set to 0 */

unsigned int has_lines_table: 1; /* space contains a $LINES$ subspace for
ine tables.*/

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-221

unsigned int has_lt_offset_map: 1; /* space contains an lt_offset subspace
for line table mapping */

int pd_entries; /* # of entries in function look-up table */

int fd_entries; /* # of entries in file look-up table */

int md_entries; /* # of entries in module look-up table */

BITS pxdbed : 1; /* 1 => file has been preprocessed */

BITS bighdr : 1; /* 1 => this header contains 'time' word */

BITS sa_header : 1; /* 1 => created by SA version of pxdb */

/* used for version check in xdb */

BITS inlined: 1; /* one or more functions have been inlined */

BITS spare:12;

short version; /* pxdb header version */

int globals; /* index into the DNTT where GNTT begins */

BITS time; /* modify time of file before being pxdbed */

int pg_entries; /* # of entries in label look-up table */

int functions; /* actual number of functions */

int files; /* actual number of files */

int cd_entries; /* # of entries in class look-up table */

int aa_entries; /* # of entries in addr alias look-up table */

int oi_entries; /* # of entries in object id look-up table */

};

For example, the $PINFO$ debug space will contain the following subspaces when -g
and -O are specified together on the command line:

$PINFO$

$HEADER$

$GNTT$

$LNTT$

SLT

VT

$LINES$

$LT_OFFSETS$

Note: there will be no XT table for static analysis. Static analysis (-y) and optimiza-
tion is incompatible for UX10.0.

Symbol ic Debug Informat ion

7-222

7.9.5 Line Number Table Definition

The line number definition is based on the DST (Domain DDE Symbol Table) .lines
definition. Although there were changes to support additional escape codes, all existing
DST .lines escapes have been retained. The line table format is defined as a stream of
nibble pairs, where the first nibble represents a PC delta, and the second a line number
delta. The PC delta is unsigned, and runs from 0..15. The PC delta values 12..15 are
used for special escape handling. PC delta values 12 and 13 are used to signify short-
form context switches. PC delta values 14 and 15 are used to signify two sets of 16
escape codes in the line number delta field.

Note that it is possible to have entries with PC deltas of 0. This will be used to associate
multiple source lines to a single block of code.

The image table is a structure intended to be used in the presence of inlining. It defines
the full source file context of inlined code. It also provides a starting line number from
which subsequent line number deltas are applied, within the life of the run length. The
code which interprets the delta stream will obtain the starting line number for a context
from the image table at the first encounter of it’s index number. The interpreter must
then maintain a running count of the context’s current line number. Note that a context
switch does not signify creation of a line number table entry, but rather is used to set up
the context to which subsequent deltas are applied.

The PC and line number bases to which subsequent deltas are applied are set forth in the
table via special escapes. This escape and starting bases must appear prior to any appli-
cable delta pairs, and the bases may be reset at any time. Once the bases are set, the
interpreter will generate a line number table entry whenever it encounters a PC/number
delta pair (which may take 1, 2, 5 or 9-byte forms).

PC Delta
Line Delta
or Bit # Interpretation

0..11 -8..7 interpreted as line delta

12 4 bits - rrcc interpreted as context switch:

rr (0..3) is run length in entries, interpreted as
1..4.

cc (0..3) is context index number.

13 4 bits - rrdd interpreted as context switch:

rr (0..3) is run length in entries, interpreted as
1..4.

dd (0..3) is context index number minus 4, so
is interpreted as contexts 4..7.

14 0..15 interpreted as new escape codes (set #2)

15 0..15 interpreted as DST escape codes (set #1).

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-223

Set #1 Escape codes (same as DST)

decimal name function

0 dst_ln_pad pad type

1 dst_ln_file pad byte fill escape

2 dst_ln_dpc1_dln1 1 byte pc delta, 1 byte line delta

3 dst_ln_dpc2_dln2 2 byte pc delta, 2 byte line delta

4 dst_ln_pc4_ln4 4 byte absolute pc number, 4 byte abs.
line

5 dst_ln_dpc0_dln1 pc delta = 0, 1 byte line delta

6 dst_ln_ln_ff_1 statement escape, stmt # = 1

7 dst_ln_ln_off statement escape, stmt # = next byte

8 dst_ln_entry entry escape, next byte is entry number

9 dst_ln_exi exit escape

10 dst_ln_stmt_end gap escape, 4 bytes pc delta

11 dst_ln_escape_11 reserved

12 dst_ln_escape_12 reserved

13 dst_ln_escape_13 reserved

14 dst_ln_nxt_byte next byte contains real escape code

15 dst_ln_end end escape, final entry follows

Symbol ic Debug Informat ion

7-224

Set #2 Escape Codes (additional to DST ones)

7.9.6 View/modify globals and arguments when safe

Globals may be set and viewed safely at procedure entry and exit for C, C++ and FOR-
TRAN code. For Pascal, however, the Pascal front end is intelligent enough to recognize
some instances in which a global may be safely promoted across procedure boundaries.
Thus, viewing and setting of globals must be considered unsafe at all times for Pascal
code. Arguments may be viewed and set safely at procedure entry for C, C++, FOR-
TRAN and Pascal. The 10.0 functionality will permit setting and viewing of globals and
arguments at unsafe times, but DDE will generate a warning of unreliability for these

decimal name function

0 dst_ln_ctx_1 next byte describes context switch with
5-bit index into the image table and 3-bit
run length. If run length is 0, the context
is considered ative until context end
switch or new context switch are
encountered.

1 dst_ln_ctx_2 next 2 bytes describe context switch with
13-bit index and 3-bit run length. If run
length is 0, the context is considered
active until context and switch or new
context switch are encountered.

2 dst_ln_ctx_4 next 4 bytes describe context switch with
29-bit index and 3-bit run length. If run
length is 0, the context is considered
active until context and switch or new
context switch are encountered.

3 dst_ln_ctx_end end current context.

4 dst_ln_col_run_1 next byte is a column position marking
the beginning of the next statement, fol-
lowing byte is length of statement.

5 dst_ln_col_run_2 next 2 bytes are a column position mark-
ing the beginning of the next statement,
following two bytes are length of a state-
ment.

6 dst_ln_init_base1 next 4 bytes are an absolute PC base
address. Immediately following is a 1-
byte starting line number.

7 dst_ln_init_base2 next 4 bytes are an absolute PC base
address. Immediately following is a 2-
byte starting line number.

8 dst_ln_init_base3 next 4 bytes are an absolute PC base
address. Immediately following is a 3-
byte starting line number.

9-15 reserved for future use.

Symbol ic Debug Informat ion

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 7-225

operations. Further, setting of locals will also be allowed, but will always cause a warn-
ing.

Symbol ic Debug Informat ion

7-226

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-227

CHAPTER 8

Stack Unwind Library

8.1 Overview

Stack unwinding refers to the processes of procedure trace-back and context restoration,
both of which have several possible system and user-level applications. A software stack
unwinding convention is necessary on PA-RISC because in the event of an interruption
of execution, there is insufficient information directly available to perform a compre-
hensive stack trace. The stack trace is the basic operation performed in context restora-
tion.

Some important tools are heavily dependent on the presence of the stack unwinding
facility. For example, system dump analysis tools examine all system processes that
were running at the time of a system crash, an operation which involves multiple stack
traces. Symbolic debuggers require the ability to display the state of the call stack at any
point during a program’s execution. Many language-specific features such as the
ESCAPE mechanism in HP Pascal,C ++ exception handling also require stack unwind-
ing capabilities.

The stack unwind information is generated once at compile time via fixups and stored in
a static data structure called theunwind table. An unwind table is automatically built
into each program file by the linker.

Each entry in the unwind table contains two addresses which describe a region of code,
typically the starting and ending address of a procedure. Each entry also contains an
unwind descriptorwhich holds information about the frame and register usage of that
region. When an unwind operation is required, the unwind table is searched to find the
region containing the instruction where the exception or interrupt occurred.

Stack Unwind Library

8-228

8.2 Requirements for Stack Unwinding

Unwind depends crucially on the ability to determine, for any given instruction, the state
of the stack and whether that instruction is part of a procedure entry or exit sequence. In
particular, instructions that modify SP or RP must be made known to the unwind rou-
tines. Furthermore, it is necessary that all the callee-saves registers be saved at the dedi-
cated locations on the stack following the procedure calling conventions.

To guarantee that a routine is unwindable, the assembly programmer should strictly
adhere to the stack and register usage conventions described in the Run-time Architec-
ture document. It is mandatory that the procedure entry and exit sequences conform to
the standard specifications. All procedures generated by HP’s compilers will automati-
cally meet all these requirements and hence will be unwindable.

The assembler provides several directives that help in making routines completely
unwindable. The ‘‘.ENTER’’ and ‘‘.LEAVE’’ directives will automatically generate the
standard entry and exit sequences. The code sequences generated by these directives are
determined by the options specified in the ‘‘.CALLINFO’’ directive. In rare cases, it
may be necessary to generate non-standard stack frames or to create multiple unwind
regions for the same routine. These cases can be handled with proper use of the
‘‘.CALLINFO’’, ‘‘.ENTRY’’, ‘‘.EXIT’’, ”.PROC’’ and ‘‘.PROCEND’’ directives as
documented in the PA-RISC Assembly Language Reference Manual.

To successfully perform a stack trace from any given instruction in a program, the fol-
lowing requirements must be met:

• The specified instruction must lie within a standard code sequence, as specified
above.

• Caller-save registers must be saved and restored across a call (if their contents are
live across a call).

• Unwind table entries must be generated for each routine, and for any discontinuous
regions of code.

• The frame size for each routine must be the same as is stated in the unwind descrip-
tor for that routine.

• The use of RP (or MRP) in each routine must conform to the specifications stated in
the unwind descriptor for the specifications stated in the unwind descriptor for that
routine.

The minimum requirements for a successful context restoration are:

• All requirements for a stack trace (as above) must be met.

• The use of the callee-saves registers in each routine must conform to the specifica-
tions given in the unwind descriptor for that routine.

The assembler generates fixup requests for the linker based on the information made
available to it by the programmer in the various procedure entry, exit, and call directives.
The linker builds the unwind descriptors based on these fixup requests. The unwind
descriptors describe the stack and register usage information for a particular address

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-229

range and the length of the entry and exit sequences. The unwind descriptors are four
word entities with the following format:

The linker sorts all the unwind descriptors according to the address range they refer to
and places them in a separate subspace. Most stack unwind functions depend on the
unwind entries being sorted properly.

8.2.1 Unwinding Across an Interrupt Marker

Information such as machine state (i.e., register contents) are pushed on stack when
interrupt or trap occurs. This area of stack is called the interrupt marker and is different
from the normal stack marker. The routine_sigreturn() marks the interrupt marker by
having the HP_UX_interrupt_marker bit of its unwind descriptor set. Unwind tool must
check this bit when unwinding through each frame. When the
HP_UX_interrupt_marker bit is set, register contents must be restored from the interrupt
marker. The interrupt marker is defined in thesigcontext structure.

8.2.2 Unwinding from Stubs on HP-UX

A few HP-UX specific stubs have been designed to support the shared library mecha-
nism. Calls to external routines in HP-UX will return via an export stub. The call itself
will go through an import stub as described in Section 6.3.16 on page 167.

In the HP-UX shared library implementation, GR 19 points to a shared library descrip-
tor. This descriptor contains a pointer to the location where the unwind tables and the
stub tables are located. Each shared library has its own tables.

When unwinding through the HP-UX export stub, the PC return register (RP) and GR
19 are restored from the stack (SP-24 for RP and SP-32 for GR 19).

8.2.3 Unwinding from Millicode

The one type of standard call from which unwindability cannot be guaranteed is the mil-
licode call. This is because the assembler cannot automatically generate the standard
entry and exit sequences for millicode routines that allocate additional stack space. For-
tunately, relatively few millicode routines require the creation of a stack frame. It is pos-
sible, however, to support unwinding from such routines (i.e., nested millicode calls),
provided that the millicode routine which allocates the stack space is written so that it

.CALLINFO (unwind descriptor)

word #1

word #2

word #3

word #4

.PROC (start address of the procedure)

.PROCEND (end address of the procedure)

Stack Unwind Library

8-230

uses the correct entry and exit sequences. It is the responsibility of the author of the spe-
cific routine to incorporate these provisions into the actual code.

8.2.4 Instances in Which Unwinding May Fail

A successful stack trace may not be possible in the following situations:

• Procedures that have multiple (secondary) entry points.

• Code sequences in which DP (GR 27) is modified. Note that DP should never be
altered by user code, only by system code as is absolutely necessary.

8.2.5 Callee-Saves Register Spill

For a procedure to be unwindable, the callee-saves registers must be stored in the cor-
rect location within the stack frame. The registers will be stored in the correct locations
when the standard entry and exit sequences generated by the .ENTER and .LEAVE are
used. The stack unwinding utilities may fail if an interrup t occurs on an instruction in a
non-standard entry or exit sequence. For this reason, it is advisable that assembly pro-
grammers use .ENTER and .LEAVE rather than create their own entry and exit
sequences.

If you do not use the .ENTER and .LEAVE directives, then callee-saves registers should
be saved within the procedure’s stack frame as follows:

• Any floating-point registers are saved starting at the double-word at the bottom of
the current stack frame, the address in SP on entry to the procedure. Register fr12
should be stored at this location, with subsequent callee-saves registers saved in
numeric order in the double-words immediately following.

• Any general registers are saved starting at the first word after the last callee-saves
floating-point register is saved. Register gr3 should be stored first, with subsequent
registers saved in numeric order in the words immediately following.

• Callee-saves space register sr3 is saved by moving its contents to a general register
with an MFSP instruction and then storing it in the first double-word aligned word
immediately following the last callee-saves general register.

8.2.6 Sample entry and exit code

This example illustrates how the stack gets laid out at the entry code with the callee-
saves registers. Note that the .CALLINFO requests that gr3 .. gr5 and fr12 .. fr15 get
stored in the stack. It also allocates 24 bytes of space for local variables. The entire
frame size including the frame marker is 128 bytes. Note that this is the exact sequence
of code that should be happening for procedure entry and exit, the unwinding utilities
may fail if an interrupt occurs on an instruction in a non-standard entry or exit sequence.

 .SPACE $TEXT$

 .SUBSPA $CODE$,QUAD=0,ALIGN=4,ACCESS=44,CODE_ONLY,SORT=24

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-231

initboard

 .PROC

 .CALLINFO CALLER,FRAME=24,ENTRY_FR=15,ENTRY_GR=5,SAVE_RP

 .ENTRY

 STW rp,-20(sp)

 FSTDS,MA fr12,8(sp)

 FSTDS,MA fr13,8(sp)

 FSTDS,MA fr14,8(sp)

 FSTDS,MA fr15,8(sp)

 STWM r3,96(sp)

 STW r4,-92(sp)

 STW r5,-88(sp)

 ;; procedure body

 LDW -88(sp),r5

 LDW -92(sp),r4

 LDWM -96(sp),r3

 FLDDS,MB -8(sp),fr15

 FLDDS,MB -8(sp),fr14

 FLDDS,MB -8(sp),fr13

 BV r0(rp)

 .EXIT

 FLDDS,MB -8(sp),fr12

Stack Unwind Library

8-232

 .PROCEND ;

8.3 Role of Stubs in Unwinding

The stub unwind region (also called the linker stub table) contains unwind descriptors
for linker-generated stubs. Stubs are usually generated by the linker when a procedure
makes an external call. Although there are various kinds of stubs, all of them save some
data about the current location and then branch to some other location. Since it is neces-
sary to unwind from stubs, it is necessary to describe these regions in the unwind table.
To do this, the linker generates two-word unwind descriptors for stubs. If a procedure
needs to return through a parameter relocation stub, the unwind mechanism needs to
know that the extra rp value is saved in the stack marker. If execution is stopped in the
middle of a stub, unwind needs to know that, especially if inside a parameter relocation
stub, where the stack pointer may have been bumped by 8 bytes to create a temporary
storage area. The stub-unwind descriptors have the following format:

struct stub_desc {

unsigned int addr; /* address of the first instruction of the stub */

unsigned int mbz1: 4; /* must be zero - reserved */

unsigned int type: 4; /* stub type */

unsigned int mbz2: 3: /* must be zero - reserved */

unsigned int reloclen: 5; /* used only for parameter relocation stubs;

contains the number of the instruction which

stores RP on the stack in the stub. */

unsigned int length: 16; /* length (# of words) of stub area */

};

In some cases, a contiguous sequence of calling, called, or long branch stubs or milli-
code long branch can be covered by a single unwind descriptor.

The UNWIND and RECOVER subspaces point to the unwind, stub, and recover tables.
These tables are arranged in code space as follows:

$UNWIND_START$ at beginning of unwind table

$UNWIND_END$ at beginning of stub table

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-233

The three tables mentioned above, namely the unwind, stub and recover tables, are
required to be contiguous. In a shared library, the DLT slot at 0 (gr 19) contains a self-
relative pointer to a four-word descriptor containing the four pointers to the unwind
tables corresponding to the four symbols above.

8.3.1 The Stub Unwind Types

The following table describes the stub-unwind types in bits 4..7 of the second word of
the two-word unwind descriptors for stubs:

$RECOVER_START$ at beginning of recover table

$RECOVER_END$ at end of recover table

Stub Names Value Description

NULL 0 not used

LONG_BRANCH_STUB 1 stubs generated for branches beyond
256K-bytes offset.

LOCAL_RELOC_STUB 2 parameter relocation stub

EXTERN_IMPORT_STUB 3 MPE shared library import stub

EXTERN_EXPORT_STUB 4 calls entry point, handles inter-quad
return; deposits caller’s exec level in
rp

LONG_LOAD_STUB 5 not used

HPUX_IMPORT_STUB_NO_RP 6 signal to the unwind library and all
other unwind users that this is an
HP-UX shared library import stub
(in either a program file or a shared
library) that does not save RP before
branching to the callee.

MILLILONG_BRANCH_STUB 7 like LONG_BRANCH_STUB,
used to reach millicode routines

INTERQUAD_IMPORT_STUB 8 loads r22 with address of routine in
quad0 and branches to _sr4export

HPUX_EXPORT_STUB_NO_RP 9 signal to the unwind library and all
other unwind users that this is an
HP-UX shared library export stub
(in either a program file or a shared
library) that does not save RP before
branching to the entry point; and in
fact does not trap the return from the
entry before control passes back to
the caller.

HPUX_EXPORT_STUB 10 HP-UX shared library export stub,
like DL_EXPORT_STUB

Stack Unwind Library

8-234

8.3.2 Unwinding from Parameter Relocation Stub

A parameter relocation stub creates its own temporary 8-byte stack frame while it’s exe-
cuting, so the stack unwind mechanism needs to understand where the stack pointer gets
incremented and decremented. There are two forms of parameter relocation stub. The
first form saves rp and catches the return path so it can relocate the return value; the sec-
ond form is one way, so it does not have to save rp.

In the following two examples, assembly code are shown to handle arg1/arg0 to farg1
and arg3/arg2 to farg3 parameter relocation.

HPUX_IMPORT_STUB 11 HP-UX shared library import stub
used in an incomplete executable.
Loads r19 required by callee, makes
inter-quad branch, stores rp at -24
(sp).

SHLIB_IMPORT_STUB 12 HP-UX shared library import stub
used in a shared library, see
HPUX_IMPORT_STUB.

LONG_SHLIB_IMPORT_STUB 13 like SHLIB_IMPORT_STUB
except PLT entry is too far from r19.

SHL_LONG_BRANCH_STUB 14 PC-relative long branch stub used in
a shared library.

FDP_COUNTING_STUB 15 Stub generated to count branches for
feedback directed positioning.

Stub Names Value Description

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-235

With return relocation :

Without return relocation :

a:

b:

c:

d:

e:

stws,ma

stws

fldds

stws

stws

fldds,mb

stw

bl,n

nop

fstds, ma

ldws

ldws, mb

ldw

bv,n

arg1, 8(sp)

arg0, -4(sp)

-8(sp), farg1

arg3, -8(sp)

arg2, -4(sp)

-8(sp),farg3

rp, -8(sp)

func,rp

fret0, 8(sp)

-4(sp), ret1

-8(sp), ret0

-8(sp), rp

0(rp)

; relocate parameters

; create temporary stack frame

; destroy temporary frame

; save rp and call the function

; function returns here

; relocate the return value

; create temporary stack frame

;destroy temporary frame

a:

b:

c:

d:

e:

stws,ma

stws

fldds

stws

stws

fldds,mb

b,n

arg1, 8(sp)

arg0, -4(sp)

-8(sp), farg1

arg3, -8(sp)

arg2, -4(sp)

-8(sp),farg3

.+8

; relocate parameters

; create temporary stack frame

; destroy temporary frame

; branch to the function

Stack Unwind Library

8-236

For parameter relocation stubs (type 2) and export stubs (types 9 and 10), the size (in
instructions) of the argument relocation code ((b - a)/4) is recorded in thereloclenfield,
and the total size (in instructions) of the stub ((e - a)/4) in thelength field.

If there is no return relocation path, the value (length - reloclen) will be 1.

If (length - reloclen) is greater than 1, the relative positions of the labels c and d can be
inferred from the values ofreloclen andlength as follows:

c = b + 12 = a + (reloclen*4) + 12

d = e - 8 = a + (length*4) - 8

When unwinding, use the following table to determine how to find the next frame, based
on the current pc:

For export stubs (types 9 and 10), the calculations of positions c and d are different
because the stubs are different:

c = b + 8 = a + (reloclen*4) + 8

d = e -16 = a + (length*4) - 16

8.4 External Interface

8.4.1 The Unwind Descriptor

When the assembler sees procedure directives such as ‘‘.ENTER’’ or ‘‘.LEAVE’’, it
builds fixup requests for the linker. Using the information in these fixup requests, the
linker builds a 4-word unwind descriptor for each unwind region. These descriptors
monitor a particular code address range, typically an entire procedure. The unwind
descriptors provide information about the stack size, registers usage, and the lengths of
the entry and exit sequences. The linker sorts these entries in the increasing order of
code addresses and places them in a separate subspace.

Following is a C language declaration of the unwind descriptor:

struct unwind_table_entry {
 unsigned int region_start; /* Word 1 */

pc return ptr psp

pc == a rp sp

a < pc < b rp sp -8

pc == b rp sp

b < pc <= c -8(sp) sp

c < pc < d -8(psp) sp -8

d <= pc < e -8(sp) sp

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-237

 unsigned int region_end; /* Word 2. */
 unsigned int Cannot_unwind:1; /* Word 3. */
 unsigned int Millicode:1;
 unsigned int Millicode_save_sr0:1;
 unsigned int Region_description:2;
 unsigned int reserved:1;
 unsigned int Entry_SR:1;
 unsigned int Entry_FR:4;
 unsigned int Entry_GR:5;
 unsigned int Args_stored:1;
 unsigned int Variable_Frame:1;
 unsigned int Separate_Package_Body:1;
 unsigned int Frame_Extension_Millicode:1;
 unsigned int Stack_Overflow_Check:1;
 unsigned int Two_Instruction_SP_Increment:1;
 unsigned int sr4export:1;
 unsigned int cxx_info:1;
 unsigned int cxx_try_catch:1;
 unsigned int sched_entry_seq:1;

 unsigned int reserved1:1;
 unsigned int Save_SP:1;
 unsigned int Save_RP:1;
 unsigned int Save_MRP_in_frame:1;
 unsigned int save_r19:1;
 unsigned int Cleanup_defined:1;
 unsigned int MPE_XL_interrupt_marker:1; /* Word 4 */
 unsigned int HP_UX_interrupt_marker:1;
 unsigned int Large_frame_r3:1;
 unsigned int alloca_frame:1;

unsigned int reserved2:1;
 unsigned int Total_frame_size:27;

};

region_start

This is the starting address of the unwind region.

region_end

This is the end address of the unwind region.

word # 3 and word #4: Flags

The 3rd and the 4th word of the unwind descriptor contains bit flags and stack frame
size that are used by the unwind utility routines. The number in the following brackets
are only used for identifying purpose.

Stack Unwind Library

8-238

1. Cannot_unwind (bit 0): One (1) if this region does not follow unwind conventions
and is therefore not unwindable; zero otherwise. (Creation of non-unwindable
assembly code is strongly discouraged.)

2. Millicode (bit 1): One if this region is a millicode routine; zero otherwise.

3. Millicode_save_sr0 (bit 2): One if this (millicode) routine saves sr0 in its frame (at
current_SP - 16); zero otherwise.

4. Region_description(bits 3-4): Describes the code between the starting and ending
offsets of this region:

 00: Normal (entry point at start of region, exit point at end; contains no other
entry/exit points)

 01: Entry point only (contains no exit point)

 10: Exit point only (contains no entry point)

 11: Discontinuous (contains no entry or exit point)

Normalcontext is code that falls between the last entry point and first exit point of a
routine.

Entry point only context is code that makes up an alternate entry point. It consists of
entry code inserted by the assembler or compiler as well as user code. It does not
contain exit code.

Exit point only context is code that makes up an alternate exit point. It consists of exit
code inserted by the assembler or compiler as well as user code. It does not contain
entry code.

Discontinuous context is code within an assembled or compiled routine that is either
not preceded by some entry point or not followed by some exit point.

One unwind table entry is generated per routine, plus one for each additional entry
point, exit point, and discontinuous region. Normally, all unwind descriptors are
identical except for the Region_description field. The entry and exit points to any
region are marked using the ‘‘.ENTRY’’ and ‘‘.EXIT’’ assembler directives.

5. Entry_SR (bit 6): One if the sole entry-save space register sr3 is saved/restored by
the associated entry/exit code sequence; zero otherwise.

6. Entry_FR (bit 7-10): The number of entry-save floating-point registers saved/
restored by the associated entry/exit code sequence.

7. Entry_GR (bit 11-15): The number of entry-save general registers saved/restored by
the associated entry/exit code sequence. Note that the semantics of this field are dif-
ferent from those of the similarly named field of the .CALLINFO directive to the
assembler. For example, a value of 5 in this field would mean that gr3 through gr7
(inclusive) have been saved in the entry save code.

8. Args_stored (bit 16): One if this region’s prologue includes storing any arguments to
the routine in memory in the architected locations; zero otherwise. (Note: this bit

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-239

may not be correct if the associated routine was compiled with optimization, as the
optimizer may remove initial stores of arguments, but will never clear this bit.)

9. Variable_Frame(bit 17): Indicates that this region’s frame may be expanded during
the region’s execution (using the Ada dynamic frame facility). Such frames require
different unwinding techniques.

10. Separate_Package_Body (bit 18): Indicates the associated region is an Ada separate
package body. It has no frame of its own, but uses space in a parent frame to save RP
and spill any entry save registers.

11. Frame_Extension_Millicode (bit 19): Indicates the associated region is a special
millicode routine which implements the Ada frame extension operation.

12. Stack_Overflow_Check (bit 20): Indicates the associated region has an Ada stack
overflow check in its entry sequence(s).

13. Two_Instruction_SP_Increment (bit 21): Indicates the associated (Ada) region had
a large frame such that two instructions were necessary to produce that portion of
the frame increment which cannot be deduced from the frame size field in the
unwind descriptor.

14. sr4export(bit 22): Indicates hand written sr4 export stub.

15. cxx_info (bit 23): This bit is used to indicate one or both of the followings:

(a) the associated function or region has a C++ exception specification.

(b) the associated function or region has objects which might require
cleanup (destruction).

16. cxx_try_catch (bit 24): This bit is used to indicate that the associated function or
region has one or more C++ try/catch constructs.

17. sched_entry_seq (bit 25): This bit indicates optimizer may have scheduled entry
code. U_get_previous frame emits a warning message in this case indicating that
context restoring unwind is not possible.

18. Save_SP (bit 27): One if the entry value of SP is saved by this region’s entry
sequence in the current frame marker (current_SP - 4); zero otherwise.

19. Save_RP (bit 28): For non-millicode, one if the entry value of RP is saved by the
entry sequence in the previous frame (at previous_SP - 20); zero otherwise. For mil-
licode, one if the entry values of MRP and sr0 are saved by the entry sequence in the
current frame (at current_SP - 20 and current_SP - 16, respectively); zero otherwise.
If this bit is one, the Save_MRP_in_frame and Millicode_save_sr0 bits are ignored.

20. Save_MRP_in_frame (bit 29): One if the entry value of MRP is saved by the entry
code in the current frame (at current_SP - 20); zero otherwise. Applies only to milli-
code.

21. Save_r19 (bit 30): One if gr19 is saved for shared library tables.

22. Cleanup_defined (bit 31): The interpretation of this field is dependent upon the lan-
guage processor which compiled the routine.

23. MPE_XL_interrupt_marker (bit 32): One if the frame layout corresponds to that of
an MPE XL interrupt marker.

24. HP_UX_interrupt_marker (bit 33): One if the frame layout corresponds to that of
an HP-UX interrupt marker.

Stack Unwind Library

8-240

25. Large_frame_r3 (bit 34): One if gr3 is changed during the entry sequence to contain
the address of the base of the (new) frame.

26. alloca_frame (bit 35): This bit is set if alloca() is used and has been inlined. This
indicates gr3 or gr4 may contain the previous sp value.

27. Total_frame_size (bit 37-63): The amount of space, in 8-byte units, added to SP by
the entry sequence of this region. This space includes register save and spill areas, as
well as padding. This quantity is needed during unwinding to locate the entry-save
register save area. It is also used to determine the value of previous_SP if it was not
saved in the stack marker.

8.4.2 Unwind Utility Routines

The unwind utility routines currently reside in the libcl.a (libcl.sl for shared library).
The following section describes these routines and their interfaces.

• U_get_unwind_table

struct utable {
unsigned unwind_table_start;
unsigned unwind_table_end;

};

struct utable U_get_unwind_table(unsigned int dp_value);

This routine returns the code offsets of the start and end of the unwind table of a given
object module. The unwind table is word-aligned. It takes the DP value for the object
module where the unwind table is stored. It returns the offset of the start of the unwind
table, and the offset of the first word beyond the unwind table.

ARG0: DP value of routine being unwound to. (only used on MPE/iX)

RET0: Offset (in space of routine being unwound to) of start of unwind table.

RET1: Offset (in space of routine being unwound to) of first word beyond end of
unwind table.

• U_get_unwind_entry

int U_get_unwind_entry(
 unsigned int PC;
 unsigned int Space_id;
 unsigned int table_start;
 unsigned int table_end);

Given the PC_offset value of interest and the start and end of the associated unwind
table, this routine returns the code offset (in PC_space) of the associated unwind table
entry. If no unwind table entry exists, -1 is returned. Typically the table_start and
table_end is found using theU_get_unwind_table routine.

ARG0: PC value to look up.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-241

ARG1: Space id of table.

ARG2: Offset of start of unwind table.

ARG3: Offset of first word beyond end of unwind table.

RET0: Offset of unwind table entry associated with PC value; -1 if none exists.

This routine requires that the unwind table is sorted in increasing order of starting
addresses. It does a binary search of the table to get to the entry corresponding to the
input PC value.

• U_get_previous_frame

struct current_frame_def {

 unsigned curr_frame_size; /* Frame size of current routine. */
 unsigned curr_sp; /* The current value of stack pointer. */
unsigned curr_pcspace; /* PC-space of the calling routine. */
 unsigned curr_pcoffset; /* PC-offset of the calling routine. */
 unsigned curr_dp; /* Data Pointer of the current routine. */
 unsigned curr_rp; /* Initial value of RP. */
 unsigned curr_mrp; /* Initial value of MRP. */
 unsigned curr_sr0; /* Initial value of sr0. */
 unsigned curr_sr4; /* Initial value of sr4 */
 unsigned r3; /* Initial value of gr3 */
 unsigned cur_r19; /* GR19 value of the calling routine,

used only in shared library HP-UX. */
int r4; /* for alloca run-time stack memory

allocation */
reserved; /* may have values in future releases */

};

struct previous_frame_def {

 unsigned prev_frame_size; /* frame size of calling routine. */
 unsigned prev_sp; /* SP of calling routine. */
 unsigned prev_pcspace; /* PC_space of calling routine’s caller. */
 unsigned prev_pcoffset; /* PC_offset of calling routine’s caller. */
 unsigned prev_dp; /* DP of calling routine. */
 unsigned udescr0; /* low word of calling routine’s unwind */

/* descriptor. */
 unsigned udescr1; /* high word of calling routine’s unwind */

/* descriptor. */
 unsigned ustart; /* start of the unwind region. */
unsigned uend; /* end of the unwind region. */
unsigned uw_index; /* index into the unwind table. */

Stack Unwind Library

8-242

 unsigned prev_r19; /* GR19 value of the caller’s caller. */
 int r3; /* value for gr3, for run-time-stack

memory allocation */
int r4; /* value for gr4, for run-time-stack

memory allocatoin */

};

int U_get_previous_frame (
struct current_frame_def *curr_frame;
struct previous_frame_def *prev_frame);

Given a PC_space, a PC_offset value that is a return link to the caller, the frame size,
and the DP and SP values of the called routine, this routine returns the frame size, the
DP and SP values of the caller’s frame, and the (PC_space, PC_offset) value that is a
return link to the caller’s caller.

The return value of this function means:

0: normal;

Negative:

-1: if curr_pcspace, curr_pcoffset is nil, indicating stack was fully unwound;

-4: if error occurs during linker stub unwinding other negative values less than -1
may be used in the future to indicate additional unexpected (internal) errors.

Positive: The frame is not unwindable for some reason.

1: no unwind_descriptor

0x7fffffff: cannot_unwind bit on in previous unwind descriptor

Assembly interface:

ARG0: Pointer to an eleven-word area of memory that contains the current frame info.

ARG1: Pointer to an eleven-word area of memory defined on exit as per definition of
the previous_frame_info structure.

RET0: Return value defined on exit.

This routine is designed to enable access to the previous frame on the stack with input
information about the current state. You may call this iteratively by setting thecur fields
to the appropriate machine state, and then copying the frame size, current sp, current pc
offset, current dp, r3, and current r19 values from the prev_frame into the corresponding
fields in the curr_frame for successive calls, until end-of-stack is reached.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-243

When a nonzero value is returned, the fields that would normally get defined on exit are
undefined.

If the frame of the called routine is the topmost frame on the stack when unwinding
commences,curr_frame_size should be zero on the initial call.

• U_get_previous_frame_x

int U_get_previous_frame_x (
struct current_frame_def *curr_frame;
struct previous_frame_def *prev_frame;
int size);

The functionality of this routine is the same as U_get_previous_frame. The only differ-
ence is the addition of the third parameter. This routine is introduced to allow for new
fields to be added to the current_frame_def and previous_frame_def. With the alloca
support, the data structures have to be extended to include new fields for alloca run-time
stack memory information. The size field is used to specify the number of bytes used for
the previous_frame_def. Starting at 10.0, users should start using
U_get_previous_frame_x instead of U_get_previous_frame to access to the previous
frame on stack.

• U_get_recover_table

struct recover_table_entry {

unsigned TRY_start; /* Starting offset (from sr4) of TRY region.*/
unsigned TRY_end; /* Ending offset (from sr4) of the

instruction following TRY region. */
unsigned RECOVER_start; /* RECOVER block offset for associated

TRY region (execution resumes here). */
};

struct rtable {
unsigned recover_table_start;
unsigned recover_table_end;

};

struct rtable U_get_recover_table (unsigned int dp_value);

This function returns the code offsets of the start and end of the recover table of a given
object module.

This routine and the one describes below (U_get_recover_address) can be used to
resume execution at a specific point if something unexpected happens. The HP Pascal
run-time libraries use these routines to recover from traps and to execute non-local
ESCAPE statement.

Stack Unwind Library

8-244

The recover table has three word entries containing the beginning and the end addresses
of the unwind region and the resume address. It is word-aligned.

This function takes the DP value for the object module where the recover table is stored.
It returns the offset of the start of the recover table, and the offset of the first word
beyond the recover table.

This is the interface for assembly programmers:

ARG0: DP value of routine associated with PC value of interest.

RET0: Offset (in space of routine being unwound to) of start of recover table.

RET1: Offset (in space of routine being unwound to) of first word beyond end of
recover table.

• U_get_recover_address

Given the PC_offset value of interest and the location of the associated recover table,
returns the code offset (in PC_space) of the associated recover block. If the PC_offset
does not point to a try block, an -1 is returned.

int U_get_recover_address(unsigned int PC;

unsigned int Space_id;

unsigned int rtable_start;

unsigned int rtable_end);

This is the interface for assembly programmers:

ARG0: PC_offset to look up.

ARG1: Offset (in space of routine being unwound to) of start of recover table.

ARG2: Offset (in space of routine being unwound to) of first word beyond end of
recover table.

ARG3: Space id of recover table.

RET0: Recover address with actual execution level, or -1 if not found.

• U_STACK_TRACE

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-245

U_STACK_TRACE();

Applications can obtain stack traces easily using the U_STACK_TRACE() routine.
This routine can be called from any place without any arguments. It will print the
stack trace from the caller’s frame onwards onto the standard output stream.

• U_get_shLib_text_addr

int U_get_shLib_text_addr(int GR19);

Given the GR 19 value, this routine will return -1 if the corresponding code is not in the
HP-UX shared library, otherwise it will return the text address of the shared library.

• U_get_shLib_unw_tbl

struct utable U_get_shLib_unw_tbl(int GR19);

Given the GR 19 value, this routine will return -1 if the corresponding code is not in the
HP-UX shared library, otherwise it will return the address of unwind start and unwind
end of the shared library.

• U_get_shLib_recv_tbl

struct rtable U_get_shLib_recv_tbl(int GR19);

Given the GR 19 value, this routine will return -1 if the corresponding code is not in the
HP-UX shared library, otherwise it will return the address of recover start and recover
end of the shared library.

• U_init_frame_record

void U_init_frame_record(struct current_frame_def* cfi);

This routine initizlizes the fields in the current frame def as follows:

 cur_frsize this frame's size

 cursp this frame's sp

 currls this frame's space id (program counter's space)

 currlo this frame's pc offset (an instruction address within

 the routine U_init_frame_record.) This

 field is later set to the return link

Stack Unwind Library

8-246

 offset to the calling (or previous) frame

 by a call to U_prep_frame_rec_for_unwind.

 curdp this frame's data pointer

 toprp the value in rp

 topmrp this field is zeroed

 topsr0 not initialized

 topsr4 not initialized

 r3 the value in general register r3

 r19 the value in general register r19 (e.g. this frame's

 shared library table pointer). This field is later set

 to the calling frame's shared library table pointer by a

 call to U_prep_frame_rec_for_unwind.

 r4 the value in general register r4.

• U_prep_frame_rec_for_unwind

void U_prep_frame_rec_for_unwind(struct current_frame_def* cfi);

This routine initializes the curRLO and cur_r19 fields in the current_frame_def record
to the following:

curRLO: the return link offset into the calling routine.

cur_r19: the calling routines r19 (shared library table pointer) value

 if it is shared code.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-247

• copy_frame_info

void

copy_frame_info(struct current_frame_def *cfi, struct previous_frame_def *pfi)

This routine copies pertinent fields from the previous frame record to the current frame
record in preparation for the next call to U_get_previous_frame_x.

The parameters are:

 cur_frsize, cursp, currls, currlo, curdp, r3, r4, and cur_r19.

8.4.3 Initialize a Stack Unwind

The best way to initialize a Stack Unwind is the following

#include "unwind_headers.h"

main()

{

 struct current_frame_def cfd;

 struct previous_frame_def pfd;

 int condition;

 U_init_frame_record(&cfd)

 U_prep_frame_rec_for_unwind(&cfd)

 while (condition)

 {

 U_get_previous_frame_x(&cfd,&pfd,52);

 /* code for calculations, symbol lookups, etc. on info in &pfd */

 .

 .

 .

 copy_frame_info(&cfd,&pfd);

Stack Unwind Library

8-248

}

}

8.4.4 Unwind Examples: Using U_get_previous_frame

This following example illustrates how to make use of the U_get_previous_frame rou-
tine to write a stack trace into a character string. This example demonstrates that trace
mechanism works for both archived and shared library routines.

Since a full stack trace requires access to the symbol tables in the program file, we have
omitted the symbols from the output.

To try out the example, do:

make unwind_example

U_get_previous_frame is designed to enable access to the previous frame on the stack
with input information about the current state. You may call this iteratively by setting
the curr_frame to the appropriate machine state, and then copying the first five
prev_frame fields into the corresponding fields for successive calls, until end of stack is
reached. The initial set-up of curr_frame is done using a supported low-level routine
which HP has written. This assembly level routine MUST be in the same image as the
routine which uses it. This is the method we recommend using when priming the initial
curr_frame for U_get_previous_frame. NOTE: the curr_frame and prev_frame fields
are subject to change across releases. Thus, you should always extract the low-level
routine from the system on which the executable will be built for (the location of the
routine is explained in trace.c below).

=========
Makefile
=========

unwind_example: example.out example.sl trace.sl output.txt

output.txt: example.out
example.out 1>output.txt 2>&1

example.out: test_unwind.c example.sl trace.sl
cc -Aa -o example.out test_unwind.c example.sl trace.sl -lcl

example.sl: test_shl.c
cc -c -Ae +z test_shl.c
ld -o example.sl -b test_shl.o
rm test_shl.o

trace.sl: trace.c unwind.h ugetfram.s
cc -c -Aa +z trace.c ugetfram.s
ld -o trace.sl -b trace.o ugetfram.o
rm trace.o ugetfram.o

clean:
rm -f *.o *.out *.sl *.txt

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-249

=========
unwind.h
=========

#ifndef UNWIND_HEADER_FILE
#define UNWIND_HEADER_FILE

typedef struct cframe_info {
 unsigned cur_frsize; /* frame size */
 unsigned cursp; /* stack pointer */
 unsigned currls; /* PC-space of CALLING routine */
 unsigned currlo; /* PC-offset of CALLING routine */
 unsigned curdp; /* data pointer */
 unsigned toprp; /* return pointer */
 unsigned topmrp; /* millicode return pointer */
 unsigned topsr0; /* sr0 */
 unsigned topsr4; /* sr4 */
 unsigned r3; /* gr3 */
 unsigned cur_r19; /* linkage-table pointer (gr19) - for PIC code */

} cframe_info;

typedef struct pframe_info {
 unsigned prev_frsize; /* frame size */
 unsigned prevsp; /* stack pointer */
 unsigned prevrls; /* PC-space of CALLING routine */
 unsigned prevrlo; /* PC-offset of CALLING routine */
 unsigned prevdp; /* data pointer */
 unsigned udescr0; /* first half of unwind descriptor */
 unsigned udescr1; /* second half of unwind descriptor */
 unsigned ustart; /* start of the unwind region */
 unsigned uend; /* end of the unwind region */
 unsigned uw_index; /* index into the unwind table */
 unsigned prev_r19; /* linkage-table pointer (gr19) - for PIC code */

} pframe_info;

#endif /* UNWIND_HEADER_FILE */

=========
trace.c
=========

#include <stdio.h>
#include “unwind.h”

static void copy_prev_to_curr (cframe_info *curr_frame,
 pframe_info *prev_frame);

void unwind_trace (char *stack_trace)
{
 cframe_info curr_frame;
 pframe_info prev_frame;
 unsigned stack_ptr, space_reg, offset_reg;
 unsigned data_ptr, linkage_ptr;
 unsigned sp20, depth;
 unsigned status;

 /* set up a valid curr_frame by calling an assembly routine.
 * This assembly routine is not exported by HP, but can
 * be extracted from /usr/lib/libcl.a ... it is called

Stack Unwind Library

8-250

 * ugetfram.o. The U_get_frame_info routine MUST be put into
 * the same image as this routine. It can then set up a dummy
 * curr_frame that has the correct values set.
 */
 U_get_frame_info (&curr_frame);

/* U_get_frame_info doesn’t zero sr0 and sr4 ... so do them explicetly
*/

 curr_frame.topsr0 = 0;
 curr_frame.topsr4 = 0;

 /* throw away the first frame ... since its a dummy frame
 * created by the call to U_get_frame_info.
 */
 status = U_get_previous_frame (&curr_frame, &prev_frame);

 /* Check to make sure everything is okay */
 if (status)

{
 fprintf(stderr, “Stack_Trace: error while unwinding stack\n”);
 return;

}

 /* copy the prev_frame to the curr_frame */
 copy_prev_to_curr (&curr_frame, &prev_frame);

 /* Now for the real work. Initialize the trace string, and then
 * loop, unwinding a frame at a time until there are no more frames
 * to unwind (i.e. the offset portion of the return address is 0).
 */
 *stack_trace=0;

 for (depth = 0; curr_frame.currlo; depth++)
{

 status = U_get_previous_frame (&curr_frame, &prev_frame);

 /* Check to make sure everything is okay */
 if (status)

{
fprintf(stderr, “Stack_Trace: error while unwinding stack\n”);
return;

}

 /* Now, we’d like to print out the return pointer. However,
 * U_get_previous_frame returns the prev_frame for the 1st NON-STUB
 * frame in the call chain. It may be the case that the return

* pointer for this frame points into another stub. What we’d
* really like to see is the return point for all NON-STUBS.

 * U_get_previous_frame updates curr_frame so that it contains
 * a frame whose return point is a NON-STUB. Print out this value
 * before copying over prev_frame into curr_frame.
 */
 sprintf(stack_trace + strlen(stack_trace),
 “ (%2d) 0x%x\n”, depth, (curr_frame.currlo & ~3));

 copy_prev_to_curr (&curr_frame, &prev_frame);
 }
}

static void copy_prev_to_curr (cframe_info *curr_frame,

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-251

 pframe_info *prev_frame)
{
 /* Update curr_frame with values returned in prev_frame */
 curr_frame->cur_frsize = prev_frame->prev_frsize;
 curr_frame->cursp = prev_frame->prevsp;
 curr_frame->currls = prev_frame->prevrls;
 curr_frame->currlo = prev_frame->prevrlo;
 curr_frame->curdp = prev_frame->prevdp;

 /* don’t update curr_frame.cur_r19 because U_get_previous_frame does
 * it directly.
 */
}

=========
test_shl.c
=========

#include <stdio.h>
#include <sys/signal.h>

/* This file is built into a shared library. Thus, any traces we
 * do in here should show that our trace routine does in fact
 * work across a shared library.
 */

/* This routine shows that our trace works across an interrupt */
void sig_hand (int sig, int subcode)
{
 char trace_string[1024];

 unwind_trace(trace_string);

 fprintf(stderr, “\n\n\nIn sig_hand, our trace gives: \n%s\n”,
trace_string);
 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();
 exit(0);
}

/* This routine shows that our trace works when in a shared library */
void foobar (void (*funcptr)(void))
{
 int x;
 char trace_string[1024];

 signal(SIGBUS, sig_hand);

 unwind_trace(trace_string);
 fprintf(stderr, “\n\n\nIn foobar, our trace gives: \n%s\n”,
trace_string);
 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();

 /* Call back out to an archived function */
 funcptr();

 /* Force a SIGBUS ... to test trace across interrupts */
 x = *(int *)0x0001;
}

Stack Unwind Library

8-252

=========
test_unwind.c
=========
#include <stdio.h>

/* This file is built into an archived executable. Traces in here
 * should prove that our trace mechanism works with archived routines.
 */

/* A prototype for a function that is in a shared library */
void foobar (void (* funcptr) (void));

/* This routine shows that our trace works when a shared library
 * routine calls back into the archived executable (2 levels deep)
 */
void foofoo (void)
{
 char trace_string[1025];

 unwind_trace (trace_string);

 fprintf(stderr, “\n\n\nIn foofoo, our trace gives: \n%s\n”,
trace_string);

 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();
}

/* This routine shows that our trace works when a shared library
 * routine calls back into the archived executable (1 levels deep)
 */
void barfoo (void)
{
 char trace_string[1025];

 unwind_trace (trace_string);

 fprintf(stderr, “\n\n\nIn barfoo, our trace gives: \n%s\n”,
trace_string);

 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();

 foofoo();
}

/* This routine shows that our trace works for archived functions */
void bar (void)
{
 char trace_string[1025];

 unwind_trace (trace_string);

 fprintf(stderr, “\n\n\nIn bar, our trace gives: \n%s\n”, trace_string);
 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();

 foobar(barfoo);
}

void foo (void)

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-253

{
 bar();
}

main()
{
 foo();
}

=========
Ugetfram.s
=========

.CODE
;--
; :
; U_get_frame_info :
; :
; U_get_frame_info loads the value of the caller’s SP, PCspace, PCOffset
:
; and DP into a record, a pointer to which has been passed into
; this routine in arg0. The format of this record is that required by the
; unwind routine :
; “U_get_previous_frame”.
:
; :
; offset contents :
; :
; 0 cur_frsize framesize of called routine :
; 4 curSP SP of called routine :
; 8 curRLS PC_space of calling routine :
; 12 curRLO PC_offset of calling
; routine :
; 16 curDP DP of called routine :
; 20 topRP RP (reg. 2) of called routine
:
; 24 topMRP MRP (reg. 31) of called routine
:
; 28 cuffSR0 :
; 32 cuffSR4 :
; 36 curR3 :
; 40 cur_r19(new offset) :
;endif :
; :
; INPUT PARAMETERS: :
; arg0 : pointer to a 11-word structure with the above
; layout :
; :
; OUTPUT PARAMETERS: :
; the fields curSP, curRLS, curRLO,curDP
:
;--
;
U_get_frame_info
 .PROC
 .CALLINFO
 .ENTRY
 stw sp,4(arg0) ; store caller’s SP
 mfsp sr4,r20
 stw r20,8(arg0) ; store caller’s PC space

Stack Unwind Library

8-254

 stw rp,12(arg0) ; store caller’s PC offset
 stw dp,16(arg0) ; store caller’s DP

stw r3,36(arg0) ; store caller’s R3
 stw r0,0(arg0) ; initialize rest of fields
 stw r0,20(arg0) ; -”-

stw r19,40(arg0) ; fetch r19
 bv r0(rp) ; return, after restoring SP

.EXIT
 stw r0,24(arg0) ; -”-
 .PROCEND

 .EXPORT U_get_frame_info,CODE,PRIV_LEV=3
 .END

=========
output.txt
=========

In bar, our trace gives:
 (0) 0x2044
 (1) 0x20c0
 (2) 0x20f8
 (3) 0x800419a4
 (4) 0x18fc

and U_STACK_TRACE gives:
(0) 0x0000208c bar + 0x60 [./example.out]
(1) 0x000020c0 foo + 0x14 [./example.out]
(2) 0x000020f8 main + 0x14 [./example.out]
(3) 0x800419a4 start + 0x70 [/lib/libc.sl]
(4) 0x000018fc $START$ + 0x9c [./example.out]

In foobar, our trace gives:
 (0) 0x8084844c
 (1) 0x20a0
 (2) 0x20c0
 (3) 0x20f8
 (4) 0x800419a4
 (5) 0x18fc

and U_STACK_TRACE gives:
(0) 0x808484d0 foobar + 0xe0 [/tmp/unwind_example/example.sl]
(1) 0x000020a0 bar + 0x74 [./example.out]
(2) 0x000020c0 foo + 0x14 [./example.out]
(3) 0x000020f8 main + 0x14 [./example.out]
(4) 0x800419a4 start + 0x70 [/lib/libc.sl]
(5) 0x000018fc $START$ + 0x9c [./example.out]

In barfoo, our trace gives:
 (0) 0x1fb4
 (1) 0x808484f4
 (2) 0x20a0
 (3) 0x20c0
 (4) 0x20f8
 (5) 0x800419a4

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-255

 (6) 0x18fc

and U_STACK_TRACE gives:
(0) 0x00001ffc barfoo + 0x60 [./example.out]
(1) 0x808484f4 foobar + 0x104 [/tmp/unwind_example/example.sl]
(2) 0x000020a0 bar + 0x74 [./example.out]
(3) 0x000020c0 foo + 0x14 [./example.out]
(4) 0x000020f8 main + 0x14 [./example.out]
(5) 0x800419a4 start + 0x70 [/lib/libc.sl]
(6) 0x000018fc $START$ + 0x9c [./example.out]

In foofoo, our trace gives:
 (0) 0x1f30
 (1) 0x2008
 (2) 0x808484f4
 (3) 0x20a0
 (4) 0x20c0
 (5) 0x20f8
 (6) 0x800419a4
 (7) 0x18fc

and U_STACK_TRACE gives:
(0) 0x00001f78 foofoo + 0x60 [./example.out]
(1) 0x00002008 barfoo + 0x6c [./example.out]
(2) 0x808484f4 foobar + 0x104 [/tmp/unwind_example/example.sl]
(3) 0x000020a0 bar + 0x74 [./example.out]
(4) 0x000020c0 foo + 0x14 [./example.out]
(5) 0x000020f8 main + 0x14 [./example.out]
(6) 0x800419a4 start + 0x70 [/lib/libc.sl]
(7) 0x000018fc $START$ + 0x9c [./example.out]

In sig_hand, our trace gives:
 (0) 0x8084830c
 (1) 0x800ab3e8
 (2) 0x808484fc
 (3) 0x20a0
 (4) 0x20c0
 (5) 0x20f8
 (6) 0x800419a4
 (7) 0x18fc

and U_STACK_TRACE gives:
(0) 0x8084838c sig_hand + 0xb4 [/tmp/unwind_example/example.sl]
(1) 0x800ab3e8 sigreturn [/lib/libc.sl]
(2) 0x808484fc foobar + 0x10c [/tmp/unwind_example/example.sl]
(3) 0x000020a0 bar + 0x74 [./example.out]
(4) 0x000020c0 foo + 0x14 [./example.out]
(5) 0x000020f8 main + 0x14 [./example.out]
(6) 0x800419a4 start + 0x70 [/lib/libc.sl]
(7) 0x000018fc $START$ + 0x9c [./example.out]

Stack Unwind Library

8-256

8.5 Setjmp and longjmp jmp_buf

Setjmp and longjmp functions are useful for dealing with errors and interrupts encoun-
tered in a low-level subroutine of a program. Setjmp saves its stack environment inenv
(jmp_buf type) for later use by longjmp. Longjmp restores the environment saved by the
last call of setjmp with the corresponding envargument. After longjmp is completed,
program execution continues as if the corresponding call of setjmp had just returned the
valueval.

#include <setjmp.h>

int setjmp (env)

jmp_buf env;

void longjmp (env, val)

jmp_buf env;

int val;

struct jump_buffer {

int jb_rp; /* Return Pointer */

int jb_sp; /* Marker SP */

int jb_sm; /* Signal Mask */

int jb_os; /* On Sigstack */

int jb_gr3; /* Entry Save General Registers */

int jb_gr4;

int jb_gr5;

int jb_gr6;

int jb_gr7;

int jb_gr8;

int jb_gr9;

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-257

int jb_gr10;

int jb_gr11;

int jb_gr12;

int jb_gr13;

int jb_gr14;

int jb_gr15;

int jb_gr16;

int jb_gr17;

int jb_gr18;

int jb_gr19;

int jb_sr3; /* Entry Save Space Register */

double jb_fr12; /* Entry Save Floating Point Registers */

double jb_fr13;

double jb_fr14;

double jb_fr15;

int jb_sm2; /* Second word for Signal Mask */

double jb_fr16;

double jb_fr17;

double jb_fr18;

double jb_fr19;

double jb_fr20;

double jb_fr21;

int jb_rp_prime; /* rp prime from frame marker */

int jb_ext_dp; /* external_dp from frame marker */

 };

Stack Unwind Library

8-258

typedef struct jump_buffer jmp_buf;

8.6 Process Context

This section discusses exception handling in Ada and C++.

8.6.1 Ada Exception handling

The exception handling semantics of the Ada/800 runtime are implemented in the pack-
age EXCEPTION_MANAGER, which is nested in the package ADA_RUNTIME, and
its subunits.

The code generator generates instructions to raise exceptions along with tables that
describe the actions to be taken when an exception is raised. There are two methods to
enter RAISE_EXCEPTION, the procedure that handles exceptions. One is through sys-
tem traps and the signal handler of the runtime system, the other one is by invoking
RAISE_EXCEPTION directly. The trap instructions are used for checks. When a check
fails, it will trap, and the signal catcher of the runtime system will receive a HP-UX sig-
nal. It then decodes the trap and calls
EXCEPTION_MANAGER.RAISE_EXCEPTION to treat the exception. For explicit
raise statements, the code generator will emit direct calls to RAISE_EXCEPTION. The
RAISE_EXCEPTION routine can also be called by other routines in the runtime sys-
tem.

RAISE_EXCEPTION takes two pieces of information from its caller: the exception
code and the program counter where the exception occurred.

Exception Through Traps and Signals

The operation to handle signals is as follows:

• exception occurs

• system trap occurs

• signal generated

• signal handler entered

• RAISE_EXCEPTION called

The exception manager looks up the exception in a set of tables, depending on the place
where the exception occurred and what exception it was, and tries to find a handler. If a
handler is found, the exception manager does all cleanups necessary (all cleanup actions
in scopes from the scope that raised the error down to, but not including the destination
scope) and then passes control to the handler. The necessary cleanups include waiting
for dependent tasks, freeing heap memory, and cutting back the stack to reclaim the
space for dynamic objects. If no handler is found, the exception is propagated.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-259

Exception Tables

The object code contains scope and handler tables which are searched by the exception
manager. The linker emits the scope table from information in the the relocatable object
(SOM) files. The code generator emits the handler table directly.

There is a scope table created by the linker for a program. The scope table consists of
scope entries. There are two symbols (beginning and ending symbols) provided by the
linker to delimit the scope entries. The beginning and ending symbols point to the first
entry and the entry past the last one (first byte not in the table) respectively. The struc-
tures of a scope table and a scope table entry are as follows:

Thescope_begin andscope_end are the beginning and ending offsets associated with
the current scope. Thehandler_tbl_addr is the code address of the handler table for this
scope.

 The scope entries need to be sorted in the order of the code generator encountering the
end of scope. This means that in the table, the "scope_end" values will be monotonically
increasing. The linker has to be changed to allow stacked scopes, i.e., an inner scope is
totally nested within an outer scope.

We only need a scope entry for the statement region of a scope that has a handler. This is
a great simplification from previous schemes. We do not need scope entries for separate
package bodies, since unwind will be able to unwind through a separate package body
and find the invocation location.

When an exception is raised in a block which is nested in another block, if the handler
of the inner scope doesn’t handle it, it will be propagated to the outer scope. It means
that the "scope_begin" and "scope_end" of the outer scope has to enclose those of the
inner scope. The current UCODE implementation unnests scope entries such that
entries do not have overlapping "scope_begin" and "scope_end". An Ada option will be
added to the UCODE such that entries will not be unnested. It also has the advantage of
having less scope entries than entries which are unnested.

Scope Table

entry #1

entry #2

...

Scope Table Entry

scope_begin

scope_end

handler_tbl_addr

Stack Unwind Library

8-260

The exception parts are placed in line, to follow immediately after the statement part of
the scopes. While this introduces a branch over the exception part in the normal case, it
makes the tables simpler, because a table entry is not needed to know how to propagate
out of the exception scope. This decision was also necessary due to the requirements
imposed by existing HP-PA utilities that demand that a procedure have only one exit,
and this exit must be the last instruction in the procedure. This requirement precludes
putting exception parts in the "dead space" after the procedure exit.

There is a one-to-one correspondence between scope table entries and handler tables.
This means that the handler table is basically an extension of the information in the
scope table entry. It would be possible to merge the two tables, and eliminate the word
necessary for the "handler_tbl_addr". For now, the tables are kept separate, to be consis-
tent with Pascal’s method of handling try/recover information, which uses a similar 3
word scheme to describe try/recover scopes. Pascal does not need the handler table
information, so their 3rd word is simply the code address of the recover part. In order to
stop Pascal from executing code in the handler table, a special trap instruction is needed
at the beginning of the handler table and its trap handler will stop the program. The spe-
cial trap instruction is necessary because the handler table is not in the unwind region.
The handler table is put in the code space and is right after the code for a procedure. As
unwind regions only cover code and the handler table is between the code for different
procedures, the handler table is not in the unwind region.

A handler table consists of a header and an array of handler entries. The code address in
the scope table entry points to the handler table header. This header describes the scope
which has an exception part. Following this header are entries which describe each indi-
vidual exception which has a handler, and the code address of that handler.

The structures of a handler table, a handler table header and a handler entry are as fol-
lows:

Handler Table

handler_table_header

handler_table_entry #1

handler_table_entry #2

...

Handler Table Header

trap_instruction

number_of_entries

scope_kind

anonymous_raise_save_offset

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-261

Thenumber_of_entries field simply denotes how many handler table entries follow this
header.

Thescope_kind denotes the kind of scope we have, such as procedure, function, pack-
age, accept body, etc. This is necessary in the case where we have an exception occur-
ring in the statements covered by these handlers, but the exception we have is not
handled here. We therefore need to propagate, and the propagation is different depend-
ing on the scope_kind. If the scope is an inline package or block, we simply need to look
for a handler in the scope tables immediately following the current scope table entry. We
continue this linear search till we either find an enclosing entry or we get to a subpro-
gram type entry which starts after the exception raising offset. The scope_kind field is
necessary to terminate this search. If the scope is a subprogram or separate package
body, we need to call unwind to determine the call or invocation location.

Theanonymous_raise_save_offset is an offset to a frame location used to save the cur-
rent exception code before giving control to the handler. It is also used to restore the
exception code when any anonymous raise is executed. It has the value of undefined off-
set unless one of the handlers contains an anonymous raise.

Thesp_save_location is an offset to a frame location used to restore the stack pointer
before transferring control to one of the handlers. The object code stored the stack
pointer into this frame location at entry to the statement region covered by this excep-
tion part. It has the value of an invalid frame offset if the unit does not contain further
blocks which have dynamic variables. If it is the invalid frame offset, no stack cut back
is necessary. Thecleanup_stop_point is an offset to a frame location that describes
where to stop the process of tasking and heap cleanups. Before transferring control to
one of the handlers, we need to wait for all dependent tasks on the chain above
cleanup_stop_point, and after that, free all heap objects on the chain above
cleanup_stop_point. The code generator will set cleanup_stop_point to be the top of the
logical frame for the block that has the handler. This will cause cleanup of all objects on
the chain above those of this particular block (and NOT including this block). Note that
is doesn’t matter if the block has cleanups or not, since we have only a top of frame
point, and not the location of the cleanup list entries for the block. All the offsets in the
handler table header (anonymous_raise_save_offset, sp_save_location, and
cleanup_stop_point) are always offsets from PSP even on static frames.

Theexception_code is the value of an exception handled here, or a special value to rep-

sp_save_location

cleanup_stop_point

Handler Table Entry

exception_code

handler_code_addr

Handler Table Header

Stack Unwind Library

8-262

resent a "when others". Thehandler_code_addr is a subprogram symbol plus an offset
which points to the handler code area for the particular exception code. As the handler
table is put in the code space and is right after the end of a procedure,
handler_code_addr is relocation fixup. In the case of nested blocks, the handler code is
inline but the handler table is moved out of the line (to right after the end of a proce-
dure). The reason for this is that the unwind regions delimit the "begin" and "end" of
code which should not have any data, otherwise, the linker may do undesired fixups.
Here is an example of code layout :

begin
statements #1
begin

statements #2
exception

handlers # 2
end;

exception
handlers #1

end;

The layout of generated code and table is as follow:

code for statements #1
code for statements #2
code for handlers #2
code for handlers #1
handler table for the inner scope
handler table for the outer scope

When RAISE_EXCEPTION is called, it calls various routines to perform the following
operations:

1. FIND_SCOPE_ENTRY routine uses two steps to locate the desired scope entry. It
first does a binary search to find the first entry that ends on or after the raising offset, and
then a linear search from there to find the first entry including the raising offset. This
algorithm works because the entries are emitted in order of the code generator encoun-
tering the end-of-scopes. This means that entries from inner blocks will come before
entries from outer blocks.

2. If no scope entry is found, then there is no local handler within the current scope, and
we need to propagate by calling unwind to go back one scope, and then repeat step 1.

3. If the scope entry is found, FIND_HANDLER_TABLE routine finds the handler
table based on the handler table offset in the scope entry.

4. The FIND_HANDLER routine loops through the handler table to search for the han-
dler entry whose exception code matches with the exception raised.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-263

5. If a handler is found, save the current exception at the handler table’s
anonymous_raise_save_offset if necessary, do any necessary cleanups, and pass control
to the handler; otherwise, propagate the exception. If we need to propagate, and the
scope kind is either a procedure or a separate package body, then call unwind to go back
one scope, and then start this entire search process again. If we need to propagate from a
block or inline package, simply keep searching forward in the scope table starting with
the next entry after the current one. In this way, if there is an enclosing block or proce-
dure with a handler, we will find it based on the original offset.

Unwind Mechanism

The exception handling routines need to call lower level utilities to unwind through a
scope. The existing unwind mechanism for Spectrum is used for this purpose, with
some extensions to allow handling of variable sized scopes and separate packages. The
primary routine provided by the unwind utilities is the u_get_previous_frame routine.
Given a PC value, this routine gets the appropriate unwind entry for this scope from the
unwind table. If a scope is a subprogram, then its previous scope is its call; if a scope is
a separate package body, then its previous scope is its invocation point. The information
kept and updated by the unwind routines reflects the program state in that scope. This
information consists of the SP, DP, PC space, PC offset and the size of the current scope.
When running under HP-UX, DP and the PC space values do not change.

The unwind utilities find out the scope size of any scope by looking at the unwind
descriptor for that scope. In Ada, the scope size is not known at compile time for proce-
dures that either allocate dynamic objects or have separate packages. Thus, the scope
size cannot be looked up in the unwind descriptor. A boolean flag will be set in the
unwind descriptor to indicate a variable sized scope. For such procedures, the previous
stack pointer (PSP) will be stored in the frame marker upon entry to a procedure. This
stored PSP will be used to get the SP for the previous (caller’s) frame.

When a procedure allocates a dynamic object, the size of the frame is increased at that
point. The frame marker is also moved out. This extension of the frame is done by a spe-
cial millicode routine. Within this routine the SP changes in value. The unwind descrip-
tor of the frame extension millicode routine is specially marked, so that the unwind
utilities can recognize the fact that SP changes value within the routine and can unwind
appropriately. This implies that the unwind utilities have to know about the sequence of
instructions in the millicode routine completely.

On exit from a block that allocates dynamic objects, the frame has to be shrunk to the
correct size. This is again done through a special millicode routine. However, no special
treatment is needed to unwind through this frame size reduction millicode. The SP and
the frame marker are in a valid state at each instruction in the routine.

The elaboration code of a separate package is in the same frame as the parent unit. The
entry and exit sequences of this code are different from ordinary procedures. The
unwind descriptor for a separate package elaboration has to indicate that it is part of a
parent frame. However, the base of the frame contribution of the package must be stored

Stack Unwind Library

8-264

in the descriptor so that the spill locations for the separate package can be identified.

There is one thing we have to be extremely careful about while propagating exceptions.
The meaning of offsets into the code may be different depending on the situation. If we
are starting to unwind from a trap, we will have the actual trapping offset. If we are
unwinding through a procedure call, the return point is two instructions past the call
branch. The reason it is two past and not one past is that the instruction immediately fol-
lowing the call branch is executed before the call actually occurs, in the delay slot of the
branch.

Cleanups for Dependent Tasks, Heap Objects, and Stack Space

There are three separate cleanups necessary before transferring control to any handler.
These are for tasks, heap objects, and stack space used by dynamic variables. For tasks
and heaps, there are two chains that contain cleanup information. The cleanups neces-
sary are for entries on these lists above the frame contribution for the scope of the desti-
nation exception handler. This assumes that frame contributions are sorted, in that a
nested scope’s frame contribution will always be above the contributions of scopes that
it is nested within. This scheme is described in detail in another memo.

To cut the stack back to reclaim space used for dynamic variables, use sp_save_location
field as the offset to a frame location containing the value of SP that we need to restore.
This is necessary only for scopes that contain blocks with dynamic variables. If
sp_save_location contains the invalid_offset then we do not need to restore SP. Note that
we must change SP and then copy the frame marker back to correspond to the new SP
value. This means that we need to modify the value of SP in our saved register image
and also move the stack marker. Note that this cleanup scheme only handles cleaning up
dynamic variables in the frame of the handler. This works since the unwind procedure
will get rid of dynamic objects in frames above the destination, since their dynamic
objects will disappear when their frame disappears.

Note that we must do the tasking cleanups before the heap cleanups or stack reclama-
tion, since the tasks may be using the heap objects or dynamic variables.

Procedure Traceback Tables and Mechanism

When an exception is raised but not handled, we want to give a stack traceback, which
provides information about the path of exception propagation through active scopes.
The traceback routine prints the exception name, followed by the stack trace which
prints the compilation unit name(s), scope name(s), scope kind(s), and line number(s) of
each scope it encounters. This information all comes from the unwind and auxiliary
unwind tables (generated by the linker), the name tables (generated for each compilation
unit by code generator), and the exception name table (generated for the entire program
by the binder). For traceback, we do not use information from the exception tables
themselves. The scope part is not printed, since it would take more space in the auxiliary
unwind table to support it, and we are unsure that the user really wants to see it. Also,
we decided to suppress the tracing of blocks and local packages, so there will be no
entries in the unwind tables for them. There will, however, be entries for separate pack-
ages, so the user will see trace propagation through separate packages.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-265

When the exception manager goes all the way to the base of the stack and cannot find
any applicable handler, then it knows that the current task will terminate. At this point,
we will print a traceback. The exception manager will call the traceback routine, passing
the original raising offset.

The linker generates the unwind and auxiliary unwind tables, and these two tables are
parallel. For each entry in the unwind table, there is a corresponding entry in the auxil-
iary unwind table. Their structures are as follows:

The unwind table is similar to the scope table for exception handling, except that the
unwind table has more entries and entries are unnested. It has an entry for each subpro-
gram level scope as well as library level packages and separate packages. There are no
entries for local packages as it would require multiple unwind entries for a subprogram
level scope. In other words, we forgo having traceback for any scopes smaller than sub-
programs (ie: blocks and local packages). Thescope_begin andscope_end have the
same meaning as the exception tables, and are sorted in the same order. Theflags can
include a boolean indicating the presence of a variable sized frame.

Bothcu_name_ptr andscope_name_ptr point to the name table which contains the
string literals emitted by code generator. A null pointer for cu_name_ptr or

Unwind Table

unwind entry #1

unwind entry #2

...

Unwind entry

scope_begin

scope_end

flags

frame_size

aux_unwind_table

aux unwind entry #1

aux unwind entry #2

...

aux unwind entry

cu_name_ptr

scope_name_ptr

scope_kind

line_number_tbl_ptr

Stack Unwind Library

8-266

scope_name_ptr indicates "unknown" which may occur when units are compiled with
traceback off. If the value of scope_name_ptr is 1, it indicates that it is a "<type support
subprogram>". Theline_number_tbl_ptr points to the line number table generated by
the linker. The linker uses the information from the start of statement fixups to emit the
line number table. The code generator provides cu_name_ptr, scope_name_ptr and
scope_kind to let the linker emit the auxiliary unwind table. Ada will use an option to
pass these to Ucode, and there is a new fixup called R_AUX_UNWIND that Ucode will
use to communicate these items to the linker.

The traceback routine callsu_get_previous_frame which takes an offset to get the
appropriate unwind entry from the unwind table. Once the unwind entry is located, the
corresponding entry in the auxiliary unwind table can be located easily as both tables
consist of parallel arrays of entries. A unwind utility routine will return either an index
or offset from the beginning of the unwind table such that the runtime routine can find
the associated auxiliary unwind entry.

The name table generated by the code generator consists of compilation unit names and
scope names pointed by cu_name_ptr and scope_name_ptr in the auxiliary unwind
table. The string literals in the name table end with a null character. There is one name
table for each compilation unit (not just a single one for the entire program). There is no
need to ever traverse the name tables, so we do not need pointers or symbols to the start
of them. The only action supported by these tables is direct access to a name pointed to
by an entry in the auxiliary unwind table.

The structure of a name table is as follows:

The exception names table has a different format, however. We need to be able to search
this table, looking for an entry with a given exception value. We do not have direct
pointers into entries in this table. The binder will write out a single exception names
table for the entire program, using information provided by the code generator. Note
that if we are suppressing traceback, we do not need to produce either the exception
names table or the names tables.

The structure of the exception names table is as follows:

 Name Table of a cu

cu_name

scope_names

Exception names table

exception name entry #1

exception name entry #2

...

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-267

The exception names table is thus a table containing entries of varying lengths. Each
entry starts with an exception value, and then supplies the length and the characters of
the name of that exception. All exceptions will have entries in this table, including the
predefined and I/O exceptions.

The structure of line_number_table is as follows:

The line_number_table starts with a header that contains three words of information:
version_number, start_code_offset and start_line_number. The first word contains the
version number, as a 32-bit integer. It is initially 1 (one), and is here to support the pos-
sibility of changing the table format sometime in the future. If we ever change the for-
mat, the runtime would have to look at the version number, and interpret the tables
based on the format that corresponded to that version. This would allow the intermixing
of old format and new format SOMs into one executable.

The second word gives the offset (in BYTES) from the beginning of the unwind region
to the start of the code for the first numbered line in the region. The third word gives the
line number of that first line of code. After that, the line_number_table contains any
number of elements, each of which has a pair of code_diff and line_diff which are usu-
ally the differences of code offsets and line numbers between the previous and current
elements. The code_diff values are word offsets (not byte offsets), and are unsigned
(range 0 .. 255). The line_diff values are signed, range (-128 .. 127). Both entries in this
pair (code_diff and line_diff) occupy only one byte each. For entries with too large a
span to fit into one byte fields, the table simply uses additional entries, in the standard
format. Note that since the first line of code is covered by the information in the two-
word header, the first pair of (code_diff, line_diff) gives the information for the second
line of code.

Exception names entry

exception_value

exception_name_length

exception_name_text

Line Number Table

version_number

start_code_offset

start_line_number

code_diff line_diff code_diff line_diff

code_diff line_diff code_diff line_diff

...

Stack Unwind Library

8-268

The meaning of each pair in the table is determined by the value of code_diff, as shown
in the table below.

The special code value of 251 means that a secondary line number follows in the next
three bytes. These entries give an extra line number for lines that are the result of instan-
tiations or inlinings. In this case, the regular table entries give the line number of the
inlining or instantiation, and the secondary line number gives the original line number
of the source (before it was inlined or instantiated).

The special code value of 252 is the short form of the above. Instead of taking three
bytes to give the absolute value of a secondary line number, this form gives one byte
which when added to the value of the last secondary line number, gives the value of this
secondary line number. The following byte is signed, so the secondary line number can
go either up or down. The following byte can be zero, which means this secondary line
number is exactly the same as the last one. Note that the previous secondary line number
(that we base the value on) can be either a short form or a long form).

The special code value of 253 is an absolute line number. When encountering one of
these, we disregard our line number value we have built using the line_diffs, and use this
new value. From then on, new line_diffs apply to the new value. Note that since this
form does not have a code_diff field, it is equivalent to a (code_diff, line_diff) pair with
a code_diff value of zero. Entries like this have the effect of hiding the line that comes
before it. To prevent this, before the code 253 special entry, we need a regular entry with
a zero value for line_diff, and a code_diff value giving the length of the previous line
(see example).

Because a code 253 entry takes up 6 extra bytes, we should only use it when we would
otherwise have to use more than 4 regular entries to span a large gap in line numbers.

Code_diff_value Meaning

0 to 250 Normal entry, representing differences.

251
The next 3 bytes (the line_diff, and the following code_diff and
line_diff) contain a secondary line number.

252

This is the short form of a secondary line number. The following
(signed) line_diff gives the difference between the last secondary
line number and the value of the current one.

253

The next 3 bytes (the line_diff, and the following code_diff and
line_diff) contain an absolute line number. This is used in place of
many difference entries, when the difference between two line
numbers is large. This must follow an entry with a line_diff of zero
(see below).

254

Ignore this pair and the following two pairs (the 254 and the
following line_diff, code_diff, line_diff, code_diff, and line_diff).
This is for future expansion.

255
End of the table. Stop searching. On this entry, the value of
line_diff is meaningless

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-269

During the traversal of the table, we do not use the secondary line number entries (with
codes of 251 or 252) as we attempt to find the line number for a given code offset. After
we find the line number, we look at the following entry, to see if it is a secondary line
number entry. If so, it applies to the line we just found. If not, there is no secondary line
number for that line, which means the line was not involved in inlining or generic
instantiation.

This line number table, and the associated auxiliary unwind tables are now a CLL stan-
dard, and will be produced by the linker. So far, Ada is the only language to use the sec-
ondary line numbers, and no language uses the special code 254. Code 253 can be used
by any language, but BASIC is the language that will probably use it the most. The
design of the tables is such that when there are no secondary line numbers (such as for
the other languages), there is very little overhead to support them.

It is likely that any future use of the code 254 would have to change the number of bytes
to skip. This is OK, since if we made that change we would also change the version
number, so the runtime could use the new method.

The best way to demonstrate this method is by example. Suppose you have some code
with the following characteristics (all starting positions and sizes in the following table
are in WORDS):

Note that the above example has line numbers which are not monotonically increasing.
The line numbers are also not very regular. There is some code at lines 1, 2, 3, and 4,
and then a lot of comments, so the next line of code is at line 200. Furthermore, after
line 205, we have some unnested exception handlers, with lines at 180 and then at 30.

Line #
Secondary
Line #

Start
at: Size

1 - 0 10

2 - 10 20

3 30 400

4 - 430 10

200 - 440 10

205 - 450 10

180 - 460 300

30 4000 760 10

30 4001 770 20

30 4005 790 15

3000 - 805 22

3010 - 827 25

Stack Unwind Library

8-270

Finally, we have lots of comments, followed some final lines at line numbers 3000 and
3010. Line 3 is an inlining of a single-line subprogram (originally at line 95), and line
30 is an instantiation of a 3 line generic (originally at line 4000 to 4005). The code off-
sets are monotonically increasing, as you would expect.

Here is the line number table that would represent the above situation. The picture
below shows the actual table content in the first two columns only. The last columns
indicate the meaning of that entry.

start_code_offset start_line_number Means Actual Offset Line #

0 1 = > 0 1

code_diff line_diff Means Actual Offset Line #

10 1 = > 10 2

20 1 = > 30 3

code_diff extra info Means secondary line number

251 0, 0, 95 = > 95

code_diff line_diff Means Actual Offset Line #

250 0 = > 280 3

code_diff extra info Means secondary line number

252 0 = > 95

code_diff line_diff Means Actual Offset Line #

150 1 = > 430 4

10 127 = > 440 131

 0 69 = > 440 200

10 5 = > 450 205

10 -25 = > 460 180

250 0 = > 710 180

50 -128 = > 760 52

0 -22 = > 760 30

code_diff extra info Means secondary line number

251 0, 15, 160 = > 4000

code_diff line_diff Means Actual Offset Line #

10 0 = > 770 30

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-271

The algorithm for traversing the tables is as follows. You start with the offset of code
that was active at the time of the traceback. The goal is to find the line number whose
code contains this offset. As you traverse the table, you start with Start_code_offset and
Start_line_number. When you encounter a regular table entry pair (one with a code_diff
in the range 0 .. 250), add its code offset difference to your code offset counter, and its
line number difference to your line number counter. When you encounter a code 253
entry, update your line number from the next three bytes in the table. The last two col-
umns of the table above shows the value of these two counters after encountering each
such entry in the table.

The algorithm stops when it finds the last actual code offset (the one furthest along in
the table) that is less than or equal to the offset you are looking for. In practical terms,
this means find the first actual code offset bigger than the one you are looking for, and
then back up one entry in the table.

Let’s look at a few examples:

Example 1. If you are looking for offset 90, you find line 3, since 30 is the last offset <=
90. You then notice that this piece of line 3 has a (long form) secondary line number of
95.

Example 2. If you are looking for offset 300, you also find line 3, but you find its sec-
ond entry, since 280 is the last offset <= 300. Here also, this piece of line 3 has a (short
form) secondary line number of 95.

Example 3.If you are looking for offset 440, you find line 200, since its offset of 440 is
the last offset <= 440. Note that the entry for line 131 (there really is no line 131) is not

code_diff extra info Means secondary line number

252 1 = > 4001

code_diff line_diff Means Actual Offset Line #

20 0 = > 790 30

code_diff extra info Means secondary line number

252 4 = > 4005

code_diff line_diff Means Actual Offset Line #

15 0 = > 805 30

code_diff extra info Means Actual Offset Line #

253 0, 11, 184 = > 805 3000

code_diff line_diff Means Actual Offset Line #

22 10 = > 827 3010

255 0 = > stop stop

Stack Unwind Library

8-272

reachable, since its actual offset of 440 is the same as the next entry’s actual offset. Note
that there is no secondary line number on this line.

Example 4.If you are looking for offset 805, you find line 3000, since its offset of 805
is the last offset <= 805. Once again, there is a hidden line before it, also with an offset
of 805, which is just necessary to establish the code offset for the absolute line entry for
line 3000. Since line 3000 shares the same code offset as the last entry for line 3, that
last entry for line 3 is not reachable. This unreachable entry must exist, to establish the
starting offset for the line 3000 entry.

This method uses only two bytes per line in most cases. If the size of an individual line
is bigger than 250 words, or the difference in line numbers is not in the range -128 ..
127, then you will end up with extra regular entries in the table. You may end up with
many extra regular entries on unusual cases. For example, a line containing 1100 words
of object code would need five regular table entries.

Any line with a secondary line number will also use more space, to hold the extra infor-
mation.

Any extra regular entries inserted in the table will be of one of two types:

1. A duplicate entry for a given line number, to get around the limit of 250 words of
object code per line (as shown by lines 3 and 180 in the example). Note that if the long
line also has a secondary line number, we need a secondary line number entry to follow
each piece of the original line in the table (as shown by line 3 in the example). Note that
after the first secondary line number entry, the duplicate ones can be the short form
(code 252) with a difference value of 0.

2. A hidden entry with an unused line number, to either get around the limit on the span
between line numbers (as shown by lines 131 and 52 in the example), or to precede an
absolute line number entry (as shown by the last entry for line 3 in the example). These
entries can never show up in a traceback because they share the same actual offset with
the entry that follows them. Note that in this case we do not need secondary line num-
bers on these hidden lines.

Note that if any line needs both classes of extra regular entries (if it has more than 250
words of code AND has a line number that differs from the next one by an amount other
than -128 .. 127), then all the class 1 extra entries must precede the class 2 ones. This is
necessary, since you must first take into account all the offsets for the given line number,
before you start changing the line number for the next line. This is shown by line 180 in
the example.

The advantages of this method are that it is very compact, in that most lines will have
only one entry, occupying 2 bytes total, and that the necessary extensions are simple,
and don’t effect the processing speed very much.

Stack Unwind Library

32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11.0 version 1.0 8-273

8.6.2 C++ Exception handling

The C++ exception handling can be broken down into four functional areas:

1. Transfer of Control

When an exception is encountered, the exception handling mechanism must suspend
execution at the throw point, and resume execution at the appropriate catch point. When
execution is resumed, global and local variables must have correct values.

1. Exception Identification

The exception handling run-time support (henceforth simply the “run-time”) must have
type information available which describes various characteristics of a type; for exam-
ple, this information is used to determine if a thrown exception is handled by a catch
clause. The mechanism for emitting and utilizing this information is called “Exception
Identification”.

1. Object Cleanup

When an exception occurs, the exception handling mechanism should attempt to destroy
all fully and partially constructed automatic objects between the throw point and the
catch point. If an exception occurs in the construction of a heap object, the heap object
should be destroyed and any memory allocated for the object should be deallo-
cated.Whenexit is called, fully and partially constructed static objects should be
destroyed.

1. Storage Management

The run-time must maintain a copy of a thrown object. There can be multiple thrown
objects which are simultaneously active, and the run-time must manage the memory
necessary to store such objects.

Implementation Scheme

The exception handling scheme can be summarized as follows:

• Use setjmp/longjmp to transfer control from athrow to the appropriatecatch clause.

• Use a linked list of “markers” running through the stack to record the execution of try blocks, functions with
exception specifications, and functions which require object cleanup.

• The translator emitstypeinfo objects to store useful information about a type (such as the list of base classes).
This information is used by the exception mechanism to determine if a catch clause can handle the thrown object,
and to check for exception specification violations. Thetypeinfo information is also used to determine how to
destroy partially constructed objects.

• Upon entry into a function which requires object cleanup in the event of an exception, a “cleanup marker” is
chained into the chain of markers. This cleanup marker will point to a statically generated table which describes
the cleanup actions required by this function.

• The chain of markers is also used to handle functions with exception specifications; this is done by adding a
“specification marker” to the marker chain upon entry to a function with an exception specification.

Stack Unwind Library

8-274

