
PA-RISC 1.1 I/O Firmware Architecture
Reference Specication

Version 1.0 Printed in U.S.A. August 22, 2001

Notice

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information that is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

Copyright 1983-2001 by HEWLETT-PACKARD COMPANY All Rights Reserved

TABLE OF CONTENTS

1. Introduction . 1-1
1.1 Objectives . 1-1
1.2 System Organization . 1-3
1.2.1 System Components . 1-3
1.2.2 System Topology . 1-3
1.2.3 Conguration Constraints . 1-4

1.3 System Address Space . 1-5
1.3.1 Memory Address Space . 1-5
1.3.2 PDC Address Space . 1-6
1.3.3 I/O Address Space . 1-6
1.3.4 Broadcast Address Space . 1-6

1.4 Modules . 1-7
1.4.1 Module Types . 1-7
1.4.2 Module Categories . 1-7

1.5 Software Types . 1-8
1.5.1 Generic Software . 1-8
1.5.2 Driver Software . 1-8
1.5.3 Diagnostic Software . 1-8

1.6 Physical Page Attributes . 1-9
Mapped Pages . 1-9
Existent and Nonexistent Pages 1-9
Implemented and Unimplemented Pages 1-9
Privileged and Unprivileged Pages 1-9
Cacheable and Uncacheable Pages 1-10

I/O Architecture, Ver 1.0 Contents iii

LIST OF FIGURES

Figure 1-1. System Address Space Layout . 1-5

iv Contents I/O Architecture, Ver 1.0

1. Introduction
1.1 Objectives

The following list summarizes the objectives used in developing the PA-RISC I/O Architecture.

Software Portability

The I/O Architecture must not impact the portability of software. Programs should be transportable from one
PA-RISC system to another of similar conguration without requiring modication.

High-Level Language I/O Drivers

The I/O Architecture must allow operating system I/O drivers to be written in high-level languages, with only
minor modications to the compilers.

Scalability

The I/O Architecture must permit implementations ranging from very low-cost, relatively low-performance
ones, to very capable, relatively expensive ones. To be competitive, it must do this without unduly constraining
any particular implementation. The module architectures dened for the PA-RISC I/O Architecture should
allow a module to be used on the full range of PA-RISC systems, from the lowest-cost computers to the
highest-performance scientic and commercial systems.

Multiprocessing

The I/O Architecture must allow for support of multiple PA-RISC processor congurations. Systems with
processors on separate busses as well as systems with all processors on a single bus must be supported.

Multiple Bus Specications

A high-performance PA-RISC system can be congured with high-, medium-, and low-performance I/O
modules. A single electrical/mechanical specication cannot provide high-end system performance and meet
low-end system cost objectives. The I/O Architecture supports the denition of multiple bus specications for
low-, medium-, and high-performance modules.

Transparent Access

The PA-RISC I/O Architecture uses bus converters to support scalable congurations of PA-RISC busses
without the use of architecturally visible channels or I/O processors.

Non-PA-RISC I/O Compatibility

The I/O Architecture must allow the construction of adapters which enable non-PA-RISC I/O systems to be
connected to a PA-RISC system.

Direct User Control of I/O

The operating system should be able to give users direct control over devices when appropriate, without
compromising system security. Direct control is important because it enhances efciency in some real-time
applications, and because it simplies the task of debugging new I/O drivers.

Fault-Tolerance

The I/O Architecture should make it possible to recover from device and path failures. Recovery should be
transparent to user programs.

Automatic Conguration

Software should be able to determine the system conguration automatically, regardless of the relative position
of cards in the system. This should not require manual adjustments, such as DIP switches on the cards or daisy
chaining between cards.

The system should be readily recongurable at power-up, when reset, and after device or path failures.

The addition of a new bootable device to a system should not require changes to the system initialization
software.

I/O Architecture, Ver 1.0 Introduction 1-1

Any system should be bootable from any device which contains enough non-volatile memory to hold the
necessary code.

Any system should be bootable over a network.

The boot sequence should be controllable by system managers.

The system conguration should be changeable without requiring that the operating system be terminated or
that the system be reinitialized.

A standard interface should exist between the boot code and the operating system.

Flexible Interrupt Scheme

Interrupt priorities should be software controllable.

The response time from the occurrence of an interrupt to entry of the appropriate I/O driver should be
signicantly shorter than the time necessary to perform a context switch.

Evolving HP I/O Standards

The architecture should support future HP attachment standards.

Forward Progress Guarantee

Deadlock and starvation on all PA-RISC busses are avoided by bus arbitration and slave service protocols.

Reduced Software Development Costs

By standardizing the software interface to modules with identical or similar functionality, the costs (in time,
dollars, and schedule) of new I/O driver software can be reduced.

High Performance

The architectural interface to modules should support high-performance applications. Performance is improved
by two approaches:

a. Performance data is used in the design phase of new modules.

b. The module architecture provides stability for tuning of the software (I/O driver) and hardware (module
design).

Compatibility

Separate module architectures should not be required in order to support different versions of operating system
software.

Memory Error Logging

The memory architecture should support the logging of recoverable (if ECC circuitry is present) and
unrecoverable errors.

Memory Cost

On limited congurations, an architectural option should be provided to minimize the cost of memory.

Open Systems Support

The architecture should provide the exibility for the development of modules outside and independent of HP.

1-2 Introduction I/O Architecture, Ver 1.0

1.2 System Organization

1.2.1 System Components

A module is an entity which is congured into the system address space and adheres to the PA-RISC I/O
Architecture. As the I/O system is memory-mapped, a module can be interrogated and controlled by software via
the standard load and store instructions rather than with special I/O instructions.

Section 1.4, Modules provides an introductory denition of the architecturally dened module types.

A card is a physical entity containing the components which are necessary for module operation. Cards are not
visible to software during normal system operation. Cards may become visible when special diagnostics are run or
when a module must be replaced due to component failure. A card has one and only one slot address. A module is
always implemented on a single card. During normal operation, the modules on a card must be architecturally
independent.

Multiple cards (slot addresses) cannot exist on a single printed circuit board unless at least one native processor
module is present. To identify the modules which exist on a board with a native processor, software must call the
"Return modules" option (ARG1=1) of PDC_HPA (see Chapter 4, PDC Procedures, for more details).

PROGRAMMING NOTE

These two requirements provide software with enough information to determine which modules are
physically associated, so that the appropriate modules can be notied when card or board-level
operations are performed (for example, card reset or board replacement).

ENGINEERING NOTE

A card may consist of one or more printed circuit boards.

A module set is a group of two or more modules completely contained on a single card. A card containing a
module set is a multi-module card.

Each bus specication denes the number of cards which can be supported and the number of modules per card.
For example, a bus might support up to 16 cards with up to 4 modules

The electrical and mechanical properties of busses are dened in separate bus specication documents. Three
examples of bus specications are: SMB, MID_BUS, and HP-PB.

A foreign bus is used to connect cards designed for some other I/O system to a PA-RISC system. A foreign bus
does not meet the requirements of the connect protocol.

A device is the object to which input and/or output operations are done. Devices are connected to but are not part
of an I/O module. They are accessed directly or indirectly through the address space of that I/O module, and they
may optionally be independently powered. Each I/O module may have any number of devices connected to it. For
the purposes of architectural discussion, the device includes all the entities (such as cables, controllers, link
adapters, etc.) between the module and the physical device. Examples of devices are terminals, disks, tape drives,
and network connections.

A system resource provides the same unique service to each native processor in a system. Examples of system
resources are the Time-Of-Day clock and Stable Storage. Each processor has its independent version of a
processor resource. Accesses to privileged processor/system resources are restricted to architected load and store
instructions, HVERSION-dependent mechanisms, and the DIAG instruction, each of which must be privileged.

1.2.2 System Topology

A system consists of a collection of modules which share a single consistent view of the system address space.
That is, a given physical address accesses the same memory or register location in the same module no matter
which module is performing the access.

I/O Architecture, Ver 1.0 Introduction 1-3

1.2.3 Conguration Constraints

There are several conguration constraints for PA-RISC systems and they are listed here:

All processor and memory modules must reside on the central bus.

Each PA-RISC system must have at least one processor module, memory module, and I/O module.

The maximum number of processor modules that may be present in a PA-RISC system is 62.

The maximum number of memory modules that may be present in a PA-RISC system is 62.

Each PA-RISC system may have up to three levels of bus converters.

Only the central bus may be a category B bus.

A category A bus must have only category A modules. A category B bus can have category A and category B
modules.

All bus specications must provide support for all module types, with exactly one exception: support for Type-
A Direct modules is optional.

All bus specications must provide support for all SVERSIONs, with exactly one exception: support for
architected memory modules on category B busses is optional.

Individual products are free to establish their own conguration constraints above and beyond those established by
the architecture and their bus specication. These constraints must be published in the appropriate product
documentation and may be enforced by the number and types of slots provided in product boxes. The set of
allowable product conguration constraints is listed below:

The maximum number of modules per bus may be less than 64.

The product may limit the maximum number of modules of any given type, SVERSION, or HVERSION (as
long as there is still at least one each of processor, memory, and I/O module).

The product may restrict certain module HVERSIONs to specic slots.

1-4 Introduction I/O Architecture, Ver 1.0

1.3 System Address Space

The address space of a PA-RISC system uses 32-bit physical addresses. The system address space is partitioned
into three major sections, the memory address space, the PDC address space, and the I/O address space, which in
turn are divided into smaller subsections as shown in the following gure. The system address space is logically
subdivided into pages, each 4 Kbytes in size and aligned on a 4-Kbyte boundary. See Section 1.6, Physical Page
Attributes for a description of the various kinds of pages.

PROGRAMMING NOTE

Software should be aware that some PA-RISC systems have a 2-Kbyte page size and a 2-Kbyte
alignment restriction. The IT_conf return parameter in the PDC procedure PDC_CACHE provides the
page size of the system.

Memory
Address
Space

PDC
Address Space

I/O
Address Space

Page Zero

Local Broadcast
Address Space

Global Broadcast
Address Space

Central Bus Physical
Address Space

X’00000000

X’00001000

X’EF000000

X’F1000000

X’FFF80000

X’FFFC0000

X’FFFE0000

X’FFFFFFFF

0

4096

232 228 224

232 228+224

232 219

232 218

232 217

232 1

Figure 1-1. System Address Space Layout

1.3.1 Memory Address Space

The memory address space extends from address X’00000000 through X’EEFFFFFF. Instructions and data in the
memory address space can be cached.

I/O Architecture, Ver 1.0 Introduction 1-5

Addresses X’00000000 through X’EEFFFFFF are available only for assignment to memory modules.

ARCHITECTURAL NOTE

Whether other module types may use the memory address space is the subject of

The rst 4 Kbytes of memory is restricted for use by boot and initial program load (IPL) software. This area is
called Page Zero.

1.3.2 PDC Address Space

The PDC address space extends from address X’EF000000 through X’F0FFFFFF. It is restricted to use by
Processor-Dependent Code (PDC).

Depending on their HVERSION, native processors may optionally fetch instructions from the PDC address space.
The effect of such an instruction fetch depends on the HVERSION of the processor.

Depending on their HVERSION, native processors may optionally access the PDC address space via load
instructions, store instructions, load and clear instructions, and ush instructions. The effect of such instructions
depends on the HVERSION of the processor.

All pages in the PDC address space must be privileged.

1.3.3 I/O Address Space

The I/O address space extends from address X’F1000000 through X’FFFBFFFF and is allocated for the
conguration of modules only. The I/O address space is never cached.

The 256 Kbyte (218-byte) space from X’FFF80000 through X’FFFBFFFF is called the Central Bus Physical
Address Space. This space is restricted for use by modules on the central bus.

1.3.4 Broadcast Address Space

The 256 Kbyte (218 -byte) space from X’FFFC0000 through X’FFFFFFFF is called the Broadcast Physical
Address Space. The broadcast space is split into two portions, the local broadcast address space and the global
broadcast address space.

A write to the broadcast space is received by all modules on the same bus as the bus requestor of the transaction,
and forwarded from the lower port to the upper port by bus converters. It is also received by every module on every
bus to which the transaction has been forwarded.

Three functions require the use of the broadcast address space:

1. Broadcast interrupts can be sent to all processors (on the local bus or in the entire system).

2. A global broadcast reset command can be used to reboot the system by resetting all the processors in the
system.

3. A local broadcast can be used to assign a portion of the system address space to each of the modules on the
local bus.

1-6 Introduction I/O Architecture, Ver 1.0

1.4 Modules

Each module in a PA-RISC system has a type associated with it. This type is stored in the module’s IODC ROM in
the IODC_TYPE byte. (See Chapter 5, IODC, for details concerning the format and contents of IODC.)

1.4.1 Module Types

A Native Processor module executes the Precision instruction set and can execute the standard operating system
software (i.e., HP-UX and MPE-iX). For a complete description of the internal processor architecture and
instruction set, refer to the Precision Architecture and Instruction Set Reference Manual.

AMemory module provides directly accessible storage for instructions and data.

1.4.2 Module Categories

The I/O Architecture denes two module categories to describe the module participation in the software-
independent coherence algorithms.

Module categories apply to modules as bus requestors, modules which are bus responders only do not have a
dened module category.

The two module categories are the following:

Category A modules do not participate in any software-independent coherence algorithm. As bus requestors
category A modules may only issue transaction modes supported by category A busses. As bus responders,
category A modules are required to alias all transaction variants to the corresponding default transaction
variant.

Category B modules participate in the software-independent coherence algorithms in a coherence prodocol
dened on its category B bus. As bus requestors, category B modules are allowed to issue the set of transaction
modes supported by their coherence protocol. As bus responders, category B modules are required to
implement the transaction mode functionality specied for their cohrence protocol.

Part of the SVERSION number identies the category of a module (see the description of IODC_SVERSION in
Section 5.1, IODC Data Bytes, and Appendix B, Version and Identication Numbers).

I/O Architecture, Ver 1.0 Introduction 1-7

1.5 Software Types

The I/O Architecture recognizes three classes of software: generic software, driver software, and diagnostic
software.

1.5.1 Generic Software

Generic software is software which is expected to communicate with a wide variety of module types. Generic
software uses IODC data and entry points to determine the specic characteristics of a module. Generic software
need only be changed when some drastic change in the I/O Architecture occurs, such as the addition of a new
module type or the addition of fault tolerance. Examples of generic software functions are interrupt handling,
powerfail preparation and recovery, error handling, and system initialization and conguration.

Generic software may access architected registers of a module and may also write to registers in the BPA space.
Generic software is required to specify the value 0 in SVERSION-dependent or HVERSION-dependent elds when
writing to an architected register. Architected registers in the broadcast address space do not contain SVERSION-
dependent or HVERSION-dependent elds.

Generic software should use only the module capabilities described by the module-type documentation appropriate
for the module’s type and SVERSION[opt] (recognizing, however, that sometimes hardware incompatibilities will
be worked around in software instead of updating the hardware, thereby requiring the generic software to look at
other SVERSION and/or HVERSION-dependent information).

1.5.2 Driver Software

Driver software should use only the module capabilities described by the module-type and SVERSION
documentation appropriate for the module’s type and SVERSION (recognizing, however, that sometimes hardware
incompatibilities will be worked around in software instead of updating the hardware, thereby requiring the driver
software to look at HVERSION-dependent information).

1.5.3 Diagnostic Software

Diagnostic software can use any module capability described by the documentation appropriate for the module’s
type, SVERSION, and HVERSION.

1-8 Introduction I/O Architecture, Ver 1.0

1.6 Physical Page Attributes

Each page in the system’s address space can be characterized by a set of attributes which hold for each addressable
unit in the page. It should be stressed that these attributes are on a per page basis. For example, either all registers
in a page of an I/O module exist, or they are all nonexistent. Likewise, if an I/O module has a privileged register in
a page, the remaining registers in that page are also privileged.

Mapped Pages

A page is considered mapped to a module if it lies within a module’s broadcast, hard, or soft physical address
space. Note that the pages in a bus converter port’s I/O and memory range spaces are not considered to be mapped
to that bus converter port, but are mapped to the modules which lie on the other side of that bus converter.

Existent and Nonexistent Pages

All pages which are not mapped to any module are dened to be nonexistent pages. Attempting to access a
location in a nonexistent page will be signalled as an error. Similarly, all pages which are mapped to some module
are dened to be existent.

Implemented and Unimplemented Pages

Both implemented and unimplemented pages are existent pages; however, an implemented page has some
hardware storage associated with its addresses while an unimplemented page does not. Attempting to access a
location in an unimplemented page must be signalled as an error. Accesses to implemented pages must not
generate an error, unless there is a hardware fault. For modules which signal an error on accesses to
unimplemented pages, all unimplemented pages must be privileged (see the description of privileged pages below).

A module with both implemented and unimplemented pages is called partially populated.

Privileged and Unprivileged Pages

The architecture requires that modules map sensitive addresses (i.e., those that can affect system security) to
privileged pages. Modules must be designed so that no access to an unprivileged page can result in a security
violation. In particular, this implies that commands written to I/O registers or attempts to access
SVERSION/HVERSION-dependent I/O registers in unprivileged pages must not cause an access to a privileged
page nor cause a bus error. In this way, all module actions which can produce security violations are restricted to
privileged pages.

It is the responsibility of the operating system to set the access rights appropriate for each kind of page and to
ensure that privileged pages are not mapped to the virtual address space of an unprivileged user. Permission to
access the system address space is given on a page basis and is a function of virtual address translation (privilege
levels and protection ids). Permission to access a page can only be granted to an unprivileged user if it is
guaranteed that reads and writes of the page cannot compromise system security (e.g., corrupt another user or
system process). Therefore, the following pages must always be privileged:

A module’s hard physical address space.

All pages in the broadcast physical address space.

Any page which, when accessed, might cause the module to become a bus master, except to send an interrupt
which is either broadcast to EIR {3} or sent to an address specied in a privileged page.

Any page which, when accessed, might cause a register in another privileged page to change, except for the the
following registers:

— the IO_STATUS register in the SRS, which may be updated to report errors.

— the IO_ERR_RESP, IO_ERR_REQ, and IO_ERR_INFO registers in the ARS, which may be updated to
report errors.

Any page which, when accessed, might cause a bus error, except those due to hardware faults.

I/O Architecture, Ver 1.0 Introduction 1-9

Cacheable and Uncacheable Pages

Cacheable pages must be accessed only with burst (multiple of 16 bytes) operations, and data from these pages may
be placed in caches within processor modules. Uncacheable pages must be accessed only with non-burst (1,2, or 4
bytes) operations, and data from these pages must not be placed in caches within processor modules.

All pages in the I/O address space are uncacheable.

Normally, all pages in the memory address space are cacheable. However some processors may support
uncacheable pages in the memory address space on a per page basis. Memory modules and busses designed to be
used in systems with these processors must support non-burst accesses to these pages.

The cacheability of pages in the PDC address space is HVERSION dependent.

1-10 Introduction I/O Architecture, Ver 1.0

	Cover Page
	Table of Contents
	1. Introduction
	1.1 Objectives
	1.2 System Organization
	1.3 System Address Space
	1.4 Modules
	1.5 Software Types
	1.6 Physical Page Attributes

