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In this Issue 
/ /  T h e  H P  P r e c i s i o n  A r c h i t e c t u r e  d e v e l o p m e n t  p r o g r a m ,  k n o w n  w i t h i n  H P  

as the Spectrum program, is  the largest  system development program ever 
under taken by the Hewlet t -Packard Company.  The program developed not  
only a compo system architecture, but also al l  hardware and software compo 
n e n t s  f a m i l y .  t o  c o n s t i t u t e  a n  e n t i r e l y  n e w  c o m p u t e r  s y s t e m  f a m i l y .  I t  
encompassed architecture, VLSI technology, the MPE XL commercial operat 
ing  sys tem,  the  HP-UX rea l - t ime s tandard  UNIX opera t ing  sys tem,  a  new 
family of opt imizing compilers, a new data base faci l i ty,  and integrat ion with 

I  t h e  H P  A d v a n c e N e t  n e t w o r k i n g  s t r a t e g y .  
The papers publ ished in  the August  1985 and January 1986 issues of  the HP Journal  out l ine 

the reasons for  the development  of  HP Precis ion Archi tecture and descr ibe the st ructure of  the 
nex t  genera t ion  comp i le r  fami l y .  I n  th i s  i ssue  o f  the  HP Journa l ,  we  a re  happy  to  be  ab le  to  
present  the f i rs t  of  a p lanned set  of  papers that  expla in key program elements in greater  levels 
o f  de ta i l .  We in tend  these  papers  to  be  tu to r ia l  in  na tu re ,  descr ib ing  and exp la in ing  p rogram 
elements and present ing the basic research and measurement resul ts  that  were achieved.  

In  th is  (page we begin wi th papers cover ing an overv iew of  the processor  archi tecture (page 
4) ,  a  o f  o f  the  I /O arch i tec ture  (page 23) ,  a  descr ip t ion  o f  the  per formance ana lys is  ac t iv i t ies  
used throughout  the program (page 30) ,  and a descr ip t ion of  the s imulator  too ls  that  grew in to 
our general software diagnostic tools (page 40). In subsequent issues, we plan to present papers 
descr ib ing hardware components,  sof tware system components,  sof tware engineer ing pract ices,  
and performance resul ts .  We expect  that  the col lected set  of  papers wi l l  then const i tute a good 
technical  overv iew of  the Spectrum program and the key research resul ts  that  emerged f rom i t .  

-Wil l iam S. Worley, Jr.  
Guest Edi tor  

Cover 
The cover  photograph shows a  "b lock  d iagram"  represent ing  the  HP Prec is ion  Arch i tec tu re  

execut ion engine,  which is  shown more convent ional ly  in  Fig.  3 on page 7.  

What's Ahead 
N e x t  t h e  i s s u e  w i l l  h a v e  a  s e r i e s  o f  a r t i c l e s  o n  t h e  d e s i g n  o f  t h e  H P  9 0 0 0  S e r i e s  3 0 0  

m o d u l a r  a  w o r k s t a t i o n s ,  a n d  a  p a r t  h i s t o r i c a l ,  p a r t  t u t o r i a l  t r e a t i s e  o n  i m p l e m e n t i n g  a  
wo r l dw ide  e lec t ron i c  ma i l  sys tem,  based  on  HP 's  expe r i ence  w i th  i t s  own  HP DeskManager  
product. 

The HP Journal Letters technical discussion ol the topics presented in recent articles and wil l publish letters expected to be of interest toour readers. Letters must be brief and are subject 
to  ed i t ing.  USA should  be addressed to :  Ed i tor ,  Hewlet t -Packard Journa l .  3000 Hanover  St reet .  Pa lo  A l to .  CA 94304.  USA 
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Hewlett-Packard Precision Architecture: 
The Processor 
This article describes the architecture's basic organization, 
execut ion model ,  cont ro l  f low model ,  address ing and 
protect ion model ,  funct ional  operat ions,  and inst ruct ion 
formats and encoding.  

by Michael  J .  Mahon,  Ruby Bei -Loh Lee,  Terrence C.  Mi l ler ,  Jerome C.  Huck,  and Wi l l iam R.  Bryg 

"Everything should be made as simple as possible, but not 
simpler." Albert Einstein 

THE HP PRECISION ARCHITECTURE development 
program had the objective of designing a computer 
architecture capable enough and versatile enough to 

excel in all of Hewlett Packard's computer markets: com 
mercial, engineering and scientific, and manufacturing. 
Such an architecture would have to scale easily across a 
broad performance range, provide for straightforward mi 
gration of applications from existing systems, and serve as 
the architectural foundation for at least the next decade of 
product development. 

To address this problem, an unusual group of people 
was brought together, from within and outside Hewlett- 
Packard, possessing unusually diverse experience and 
training. Under the leadership of Bill Worley, this small 
group of compiler designers, operating system designers, 
performance analysts, hardware designers, microcoders, 
and system architects was forged into a team. The intent 
was to bring together many different perspectives, so that 
the team could deal effectively with design trade-offs that 
cross the traditional boundaries between disciplines. 

The design methodology was as unusual as the team. It 
was an iterative, closed-loop, measurement-oriented ap 
proach to computer architecture. The process began with 
data collection and analysis of what computers â€” Hewlett- 
Packard's and others' â€” were actually doing during applica 
tion execution. Early results validated the suggestions of 
some RISC architecture researchers that simpler designs 
were a better match to the actual behavior of machines, 
and could substantially improve cost/performance.1 The 
scalability and generality requirements provided further 
incentives to reduce system complexity. 

After a simple "core" architecture was postulated, the 
team examined it intensively through simulation and mea 
surement. We evaluated its suitability as a target for com 
pilation and optimization, and as a host for modern operat 
ing systems. Logic designs were done simultaneously in 
several circuit and packaging technologies to evaluate the 
implications of the architectural decisions on hardware 
realizations. 

After a round of evaluation, the results became the basis 
for a series of proposed refinements to the architecture. 
After critical study, the best proposals were incorporated 

into the architecture, the simulator was updated, and the 
evaluation process began again. 

This process continued for four major (and many minor) 
iterations over a period of 18 months. At each successive 
iteration, the architecture and all proposed changes were 
published internally for review by key technical people in 
product divisions. As the project progressed, an increasing 
proportion of the proposals and evaluations came from divi 
sional participants. 

The iterative design sometimes resulted in adding a func 
tion. For example, the frequent requirement to shift index 
registers to index to half words, words, or double words 
in a byte-addressed machine led to the addition of a zero-to- 
three-bit preshifter to scale one of the inputs to the adder. 

More frequently, iteration resulted in deleting mechanisms 
revealed as too onerous or too little used. An example is 
the deletion of the STORE INDEXED instruction, because it 
was the only instruction that would have required a register 
file capable of reading three registers simultaneously. Com 
piler strategies were found that all but eliminated the need 
for the STORE INDEXED instruction, which in any case could 
be simulated in two instructions. Another example was 
the deletion of a rather irregular MULTIPLY STEP instruction, 
when it was discovered that virtually all integer multipli 
cations could be performed efficiently using SHIFT AND ADD 
instructions, which were a natural byproduct of the index 
preshifter described above. 

The result of this process is an architecture honed by 
data, tested against various implementation technologies, 
and broadly tuned to a wide variety of system and applica 
tion tasks. 

Overview 

An HP Precision processor is one element of a complete 
system. The system also includes memory arrays, I/O de 
vices, attached processors, and interconnection structures 
such as buses and networks. Fig. 1 shows a typical system. 
The processor interfaces to a central bus like any other 
module and uses the bus to reference main memory and 
I/O devices. External interrupts are also transmitted over 
the buses. 
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Special  Funct ion 
Unit 

Coprocessor  

C e n t r a l  M e m o r y  B u s  

A d d i t i o n a l  B u s  ( O p t i o n a l )  

Bus Converter  

Fig.  1 .  HP Prec is ion Arch i tec ture  
system organizat ion. 

Processor Overview 
The processor module is organized as instruction fetch 

and execute units with a tightly coupled high-speed cache 
system. While a cache is optional, it is such a cost-effective 
component that nearly all processors will incorporate this 
hardware. The processor module may also include a 
hardware address translation table called a translation 
lookaside buffer or TLB, and assist hardware for extra func 
tions such as floating-point operations. The main data paths 
are 32 bits wide, and the memory system is byte addressed. 

The execution unit performs data transformations on 
local registers and generates addresses to reference the 
cache and main memory. It has a memory system interface 
for moving data operands between the memory system and 
the registers. The execution unit may be supplemented by 
assist hardware â€” coprocessors or special function units â€” 
to augment its capabilities for application-specific opera 
tions or data types. This is discussed further in the sections 
on the execution model. 

The fetch unit calculates the instruction address, fetches 
the instruction, decodes it, and sends information to the 
execution unit. The fetch unit greatly benefits from a re 
duced-complexity instruction set. Instructions are all fixed- 
width 32-bit objects, simplifying decoding and calculation 
of the next instruction address. The fetch unit is responsible 
for the control flow in the processing of instructions. This 
is discussed further in later sections on the control model. 

HP Precision Architecture uses a memory hierarchy as 
a cost-effective means of achieving nearly the speed of the 
fastest (highest) memory level, with the capacity of the 
largest (lowest) memory level. The highest level of the 
hierarchy is the registers, followed by the caches. Main 
memory is the next level and the I/O system provides the 
largest and slowest level of storage. In HP Precision Ar 
chitecture, the cache system is architecturally visible in 
the sense that there are cache control instructions for cache 
management. A virtual memory system is a characteristic 
feature on all but the smallest HP Precision processors. 
Virtual address protection and translation provide security 
and a large, flat, global address space for all processes. This 
is discussed further in the sections on the addressing and 
protection model. 

Provisions are made for attached processors, which inter 
face to the system hierarchy at the memory bus level, and 
typically have their own registers and local cache system. 
Attached processors can provide such functions as I/O or 
vector processing. Clustered and tightly coupled multipro 
cessing are also supported for modular expansion of the 
system. 

Processing Resources 
The processing resources are organized around three reg 

ister arrays and a few specialized registers (see Fig. 2). The 
general register array contains general-purpose registers 
used for all computations. The space register array is used 
to build virtual addresses. The control register array is a 
collection of registers used for virtual address protection, 
interruption processing, and other miscellaneous functions. 

The general register array contains thirty-two 32-bit gen 
eral-purpose registers. Register zero is special: it always 
returns zero when read and discards any result when used 
as a target register. This specialization is easily implemented 
in hardware and eliminates the need for instructions for 
unary or condition-testing operations. For example, a copy 
operation is a logical OR with register zero and unary SUB 
TRACT also uses register zero as a source. Registers 1 and 
31 are also specialized as implied targets for a few instruc 
tions that have no space in the instruction for target register 
specifiers. 

The space register array contains eight registers. When 

General- 
Purpose 

Reg is te rs  

Process  
S ta tus  Word  

25 
Control 

Registers 

I ns t ruc t ion  
A d d r e s s  

s 
Space 

Registers 

Instruction 
Register 

S p a c e  I D  O f f s e t  

Fig .  2 .  HP Prec is ion  Arch i tec ture  process ing  resources  are  
organized around three register arrays and a few special ized 
registers. 
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one of these is concatenated to a 32-bit address offset, a 
virtual address is formed. Three levels of the architecture 
are defined, according to the amount and degree of vir 
tual addressing supported. The level-zero HP Precision pro 
cessor does not support any virtual addressing and need 
not implement the space registers. When building a proces 
sor for a highly integrated, dedicated system, it is a consid 
erable savings in hardware cost to eliminate the virtual 
address hardware. General-purpose computers, however, 
require virtual addressing. A level-one processor supports 
16-bit space registers for a 48-bit virtual address space and 
a level-two processor implements 32-bit space registers to 
allow the full 64-bit virtual address space. 

The control register array consists of twenty-five registers 
which contain system state information. Four of these con 
trol registers are used by the virtual address system to iden 
tify protection groups for the current process. The shift 
amount for instructions that perform variable-length shifts 
is stored in a control register. An interval timer is included 
as a control register. The configuration of coprocessors in 
a system is also stored in a control register. The remaining 
control registers are used as temporary registers and to 
record the state of the machine at the time of an interrup 
tion. 

An HP Precision processor also maintains registers for 
the current instruction address, the current instruction, 
and the processor status word (PSW). The current instruc 
tion address is divided into its virtual space identifier (IAS) 
and its offset (IAO) within the space. The instruction regis 
ter (IR) contains the current instruction. The PSW holds 
various flags for enabling virtual addressing, protection, 
interruptions, and other status information. 

Fig. 2 shows the processing resources. A complete con 
text switch only involves the saving of the general registers, 
the space registers, and several of the control registers. The 
instruction address registers and PSW are saved in control 
registers by the hardware at the time of any interruption. 
Since the process state is small and no extra manipulation 
of cache or TLB (translation lookaside buffer) structures 
is necessary, fast context switching is obtained. No addi 
tional resources are needed to save intermediate machine 
states, since interruptions are always taken at instruction 
boundaries. 

Data Types 
HP Precision Architecture supports data types for arith 

metic, logical, and field manipulation operations. All data 
objects must be stored on their naturally aligned addresses, 
that is, 32-bit data objects must start on word-aligned (four- 
byte) addresses, 16-bit data objects must start on half-word- 
aligned addresses, and 8-bit data objects must start on byte- 
aligned addresses. This general alignment rule is easily 
obeyed by software and significantly improves the cost and 
speed of cache memory hardware. It also eliminates the 
possibility of a cache miss or address translation fault in 
the middle of a data or instruction reference, thereby 
simplifying the processor control. 

Signed and unsigned integers may be 8, 16, or 32 bits 
long. Signed integers are represented in two's complement 
form. Characters are 8 bits long and conform to the ASCII 
standard. While bits are not directly addressable, efficient 

support is provided to manipulate and test individual bits 
and bit fields in general registers. Both packed and un 
packed representations of decimal numbers are supported 
by software. Packed data is always aligned on a word bound 
ary and consists of 7, 15, 23, or 31 BCD digits, followed 
by a sign digit. 

Floating-point numbers are addressed as 32-bit (single- 
precision) or 64-bit (double-precision) quantities. The co 
processor interface allows this wider data path for loading 
and storing double-precision floating-point operands. The 
floating-point data format conforms to the ANSI/IEEE 754- 
1985 standard. 

Execution Model 

HP Precision Architecture assumes a register-based 
execution model, with all operands coming from registers 
and all results going back into registers. The thirty-two 
general-purpose registers are used for local storage of 
operands, intermediate results, and addresses. 

The execution engine for the basic HP Precision instruc 
tion set consists of a simple arithmetic logic unit (ALU) 
and a shift-merge unit (SMU), as shown in Fig. 3. The ALU 
has a preshifter on one port and a complementer on the 
other port. The SMU consists of a shifter and a mask-merger. 
It is used for implementing field manipulation operations. 
The shifter concatenates two 32-bit operands and performs 
a right shift. The mask-merger selects a contiguous field of 
bits from the output of the shifter and merges this with the 
other bits from its second input source, forming a 32-bit 
result. The second input source to the mask-merger may 
be a mask of all zeros or all sign bits, or may come from a 
general register. 

The typical execution data flow consists of reading two 
operands from general-purpose registers, routing these two 
operands through the ALU or the SMU with the proper 
function selected, and storing the result back into a general 
register. This is the data flow for the basic three-register 
model of execution, which facilitates single-cycle execu 
tion, since no memory references are required. 

Single-Cycle Execution 
A primary design goal was that all functional computa 

tions in the basic instruction set could execute in one 
machine cycle in a pipelined implementation of the proces 
sor architecture. Operations were selected for inclusion in 
the basic instruction set only if they could be implemented 
in a reasonably small number of logic levels, to guarantee 
a short cycle time. This does not necessarily mean that the 
operation performed had to be primitive in function. In 
fact, rather sophisticated operations were allowed in the 
architecture if they proved useful to the compilers, and 
were implementable in a short machine cycle with rela 
tively simple hardware. 

Complex operations that are necessary to support re 
quired software functions but cannot be implemented in a 
single execution cycle are broken down into primitive op 
erations, each of which can be executed in a single cycle. 
Examples are the DECIMAL CORRECT operations which are 
primitive operations for performing arithmetic on BCD 
data, the SHIFT AND ADD operations which are primitives 
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Instruction Bus (Immediates) 

F ig .  3 .  The  execu t i on  da ta  pa th  cons i s t s  o f  a  s imp le  a r i t h  
met ic  log ic  uni t  (ALU) and a shi f t -merge uni t  (SMU).  

for integer multiplication, and the DIVIDE STEP operation 
which is a primitive for integer division. 

Single-cycle execution was a design goal of the architec 
ture, but is not a constraint on the implementations. For 
example, an HP Precision microprocessor may operate with 
slower memories, performing a load instruction in more 
than one cycle. 

Immediates 
A notable aspect of HP Precision Architecture's register- 

based model of execution is its heavy use of the instruction 
register as a source for operands, in addition to the thirty- 
two general-purpose registers. Many HP Precision instruc 
tions have an immediate field embedded in the 32-bit fixed- 
length instruction. These immediates are made maximal- 
length, in the sense that they fill up all unassigned bits in 
the given instruction. This maximizes the probability that 
a constant can be represented in the instruction as im 
mediate data. Although immediates come in various sizes 
in different instruction classes, their sign bit is always in 
a fixed position. An immediate operand is advantageous 
since it does not have to be loaded to a general register and 
therefore saves both a memory access and the use of a 
general register. 

Although maximal-length immediates in an instruction 
are capable of representing most of the constant values that 
are needed, it is desirable to have the capability of embed 
ding full-length 32-bit immediates in the instruction 
stream. HP Precision Architecture does this by means of a 
pair is instructions. First, a long-immediate instruction is 
used to load or add the most significant twenty-one bits of 
the immediate value, padded on the right with eleven zeros, 
into a general register. A subsequent instruction, using this 
register as the base register, supplies the low-order bits to 
complete the 32-bit immediate. In this way, a 32-bit con 
stant value can be placed in a general register, or a load or 
store instruction can be performed with a full 32-bit static 
displacement. An alternative approach â€” creating a double- 
word instruction â€” would have introduced the more com 
plex possibility of a page fault occurring in the middle of 
an instruction fetch. 

Load and Store Operat ions 
The general register array is the only level of the memory 

hierarchy that interacts with the execution engine. The 
general registers interact with the rest of the memory hierar 
chy via the LOAD and STORE instructions. 

The LOAD and STORE instructions are designed to execute 
in a single cycle in a pipelined implementation of the ar 
chitecture that includes a data cache memory that operates 
at the speed of the processor. This immediately excludes 
the specification of multiple loads and stores or levels of 
address indirection in a single instruction. 

Even with a fast cache memory, data may not be available 
until one cycle after the memory access is initiated. There 
fore, following a load instruction, the software tries to 
schedule one or more instructions that do not use the target 
register being loaded. However, the hardware must be able 
to interlock the pipe if an instruction following a load 
instruction uses the target register that has not yet been 
loaded. 

The size of the data item loaded or stored can be a byte, 
a half word, or a full word. It is possible to store any con 
tiguous sequence of bytes within a word, either starting 
from the leftmost byte or ending with the rightmost byte, 
using the STORE BYTES instruction. For example, it is pos 
sible to store the leftmost three bytes or the rightmost three 
bytes of a register into three contiguous bytes of memory. 
This instruction is a useful primitive for moving unaligned 
strings of bytes from one memory location to another. 

All address calculation in the LOAD and STORE instruc 
tions is based on the base register plus displacement ad 
dressing mode. The displacement can be a long 14-bit 
signed displacement, a short 5-bit signed displacement, or 
an index register. An index register, if used, may optionally 
be shifted left by 1, 2, or 3 bits to permit integer addressing 
to half words, words, or double words, respectively. Both 
the base register and the index register used in address 
calculation can come from any of the general registers. 
Flexible Address Modification Mechanisms. Automatic ad 
dress modification mechanisms allow one to walk through 
a data structure more efficiently, by updating the address 
register to the next item in the data structure to be refer 
enced while fetching the current item. 

Flexible address modification mechanisms are included 
in HP Precision Architecture, providing high-performance 
functionality in a single cycle. For example, it is possible 
to modify the base register for a subsequent load or store 
instruction by adding to it the long or the short displace 
ment value specified in the instruction itself, or the value 
of an index register, optionally shifted to multiply by the 
size of the object to be loaded or stored. 

If address modification is specified, either premodifica- 
tion or postmodif Â¡cation can be performed. Premodi/ica- 
tion means that the address calculation is performed and 
the result used as the address to initiate the memory access. 
Postmodi/ication means that the original content of the 
base register is used as the address to initiate the memory 
access. 

An unusual feature of this premodify or postmodify ad 
dressing mode is that in the long-displacement instruc 
tions, the sign bit of the displacement is also used as the 
bit to select premodification or postmodification. This al- 
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Floating-Point Coprocessor 

HP Prec is ion Arch i tec ture  genera l ly  conforms to  the concept  
of  a s imple instruct ion set  real izable in cost-ef fect ive hardware.  
However, certain algori thms l ike f loat ing-point operat ions real ize 
substant ial  performance gains when implemented on special ized 
hardware. The f loat ing-point  instruct ion set  is an example of  HP 
Precis ion Archi tecture's instruct ion extension capabi l i t ies.  

F loa t ing -po in t  i ns t ruc t ions  a re  suppor ted  th rough  an  ass is t  
coprocessor  to  p rov ide  h igh-per fo rmance numer ic  p rocess ing .  
As a coprocessor, the f loating-point unit  contains i ts own register 
f i l e  a n d  e x e c u t e s  c o n c u r r e n t l y  w i t h  t h e  b a s i c  p r o c e s s o r .  
O p e r a n d s  f r o m  t h e  c a c h e s  a r e  l o a d e d  o r  s t o r e d  f r o m  a n y  o f  
twelve f loat ing-point  reg is ters .  The data format ,  a l l  operat ions,  
and  excep t ions  fu l l y  con fo rm to  the  ANSI / IEEE 754-1985  s tan  
dard.  Very h igh-per formance coprocessors can be implemented 
by  combin ing  hardware  p ipe l in ing  w i th  the  HP Prec is ion  h igh-  
level  language opt imizer.  

The f loat ing-point  coprocessor is  organized l ike the basic pro 
cesso r .  A l l  ope rands  f rom ma in  memory  a re  re fe renced  us ing  
coprocessor load and store instruct ions.  Normal  v i r tual  address 
t rans la t i on  and  p ro tec t i on  checks  a re  made  and  da ta  i s  t rans  
f e r red  be tween  the  cache  (o r  memory )  and  t he  f l oa t i ng -po in t  
register f i le.  Both single-precis ion (4-byte) and double-precis ion 
(8 -by te)  operands can be re ferenced w i th  a  s ing le  ins t ruc t ion .  
Quad-prec is ion (16-byte)  operands are re ferenced us ing a  pa i r  
of double-precision coprocessor memory reference instruct ions. 

The bas ic  p rocessor  per fo rms index  and shor t -d isp lacement  
address calcu lat ions for  the coprocessor  load and store inst ruc 
tions. While STORE INDEXED instructions are not provided for the 
bas i c  a re  COPROCESSOR STORE INDEXED ins t ruc t i ons  a re  
provided since only two general register reads and a nonconfl ict- 
ing coprocessor  reg is ter  read are requi red.  

Floating-Point Register Fi le 
The register f i le contains twelve 64-bi t  data registers,  a 32-bi t  

s ta tus  reg is te r ,  and  seven 32-b i t  reg is te rs  fo r  repor t ing  excep 
t ional  condi t ions,  as shown in  F ig .  1 .  The twelve data reg is ters  
also form six 1 28-bit quad-precision registers. The data registers 
a re  numbered  f rom 4  th rough  15 .  Reg is te r  0  ho lds  the  s ta tus  
register .  When register  zero is  used as the target  or  source of  a 
coprocessor load or  store,  the status register  is  referenced. But  
when used as the source o f  an operat ion,  reg is ter  zero re turns 
a f loat ing-point  zero.  This  is  used for  s imple assignments,  ar i th  
met ic  negat ion,  and compar isons wi th  zero.  

64  B i t s  W ide  

S t a t u s  E x c e p t i o n  R e g i s t e r  1  

E x c e p t i o n  R e g i s t e r  2  E x c e p t i o n  R e g i s t e r  3  

E x c e p t i o n  R e g i s t e r  4  E x c e p t i o n  R e g i s t e r  5  

E x c e p t i o n  R e g i s t e r  6  E x c e p t i o n  R e g i s t e r  7  

Data Register 

Data Register 

Fig. 1 .  Float ing-point register f i le. 

The status register  holds informat ion on the current  rounding 
mode,  the  except ion  f lags ,  and except ion  t rap  enab les  fo r  the  
f ive IEEE exceptions: overf low, underf low, divide by ze>o, inval id 
operat ion, and inexact.  I f  the exception trap is not enabled, then 
a default  result  is returned and the corresponding except ion f lag 
is  set  in  the status register .  I f  the except ion t rap is  enabled,  an 
in te r rup t ion  to  the  ma in  p rocessor  occurs ,  w i th  the  excep t ion  
and the instruct ion causing i t  recorded in an except ion register .  
On  over f low,  under f low,  and  inexac t  excep t ions ,  the  co r rec t l y  
rounded result  is del ivered to the destinat ion register.  On inval id 
opera t ion  and d iv ide-by-zero  except ions ,  the  source  reg is te rs  
are  preserved.  Users  can spec i fy  a  t rap  hand ler  fo r  any  o f  the  
f ive IEEE except ions,  using the informat ion preserved. 

The coprocessor  uses an addi t ional  nonmaskable except ion,  
ca l led unimplemented,  to  pass of f  to  sof tware those operat ions 
n o t  i m p l e m e n t e d  b y  t h e  c o p r o c e s s o r  h a r d w a r e .  T h e  u n i m  
p lemented t rap t r iggers a sof tware emulat ion of  the des i red op 
erat ion with the or iginal  operands. 

The Boolean resul t  of  a f loat ing-point  compar ison is  stored in 
a bit the next status word. This bit can conditionally nullify the next 
instruct ion when tested. No condit ional  branch is al lowed. A con 
di t ional branch would have increased the cr i t ical  path for branch 
determination. 

Floating-Point Operations 
The f loat ing-point  coprocessor def ines eleven fundamental  op 

e ra t i ons  i n  th ree  p rec i s ions .  A l l  o f  t he  ope ra t i ons ,  excep t  f o r  
conversions to f ixed-point formats, produce f loating-point results. 
Source and dest inat ion formats are the same except  for  conver  
sions that have explicit  source and destination formats. Rounding 
is specif ied by a mode f ield in the status register. The COPY and 
ABSOLUTE VALUE operations are nonarithmetic and do not cause 
except ions.  The fo l lowing table summarizes the def ined ar i thme 
t ic  operat ions for  s ingle,  double,  and quad formats.  

FADD 
FSUB 
FMPY 
FDIV 
FREM 
FSQRT 
FRND 
FCMP 

Addit ion 
Subtract ion 
Mult ipl ication 
Division 
Remainder  
Square Root 
Round 
Compare  

CONVERSION instructions from f loating-point formats to f ixed- 
po in t  f o rma ts  and  be tween  f l oa t i ng -po in t  f o rma ts  a re  a l so  i n  
cluded. When converting from floating-point to f ixed-point format, 
the current rounding mode can be temporari ly changed to round- 
to -zero .  Many programming languages de f ine  convers ion  to  in  
teger  as rounding to zero.  In  accordance wi th the standard,  the 
defaul t  rounding mode is  rounding to  the nearest  in teger .  

Scalabi l i ty and Performance 
HP Precis ion Archi tecture is designed to adhere str ict ly to the 

IEEE f loat ing-po in t  s tandard.  The s tandard does not ,  however ,  
require that al l  f loating-point operations be performed in high-per 
formance hardware, and does not specify the instruction set level 
p resen ta t i on  o f  t he  ha rdware .  Wheneve r  t he re  i s  l i t t l e  pe r fo r  
mance advantage  10  be  ga ined  by  per fo rming  an  opera t ion  in  
h a r d w a r e ,  c o n s i d e r a t i o n  s h o u l d  b e  g i v e n  t o  s i m p l i f y i n g  t h e  
hardware  and per fo rming the  opera t ion  in  so f tware .  The un im-  
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plemented except ion t rap mechanism is  employed to  avoid han 
dl ing operat ions and except ional  condi t ions in hardware.  

The s imp les t  HP Prec is ion  sys tems may comple te ly  exc lude 
a  f loa t ing-po in t  un i t .  Each f loa t ing-po in t  ins t ruc t ion  causes an 
assist  emulat ion t rap and system software completely s imulates 
the  func t ion  Spec ia l  con t ro l  reg is te rs  speed  the  s imu la t ion  o f  
load and s tore  ins t ruc t ions.  Some implementat ions can reduce 
t he  comp lex i t y  o f  ha rdwa re  con t r o l  by  suppo r t i ng  on l y  t hose  
operations that use available floating-point hardware. In this case, 
except ional  condi t ions ar ise that  can require addi t ional  process 
ing or  sof tware ass is tance For  example,  the un implemented ex 
cept ion t rap mechanism can be used to  handle  the square root  
operat ion and corner  case operands l ike in f in i t ies.  NaNs (not  a  
number) ,  and denormal ized numbers.  

The f loat ing-po in t  coprocessor  is  arch i tec ted to  be p ipe l ined 
to  a l low very  h igh-per formance numer ic  process ing.  Fundamen 
tal to this is the delaying of exception reporting . If the coprocessor 
mus t  i n fo rm the  bas ic  p rocessor  immed ia te l y  tha t  the  cu r ren t  
instruct ion overf lows, then l i t t le concurrent  processing and pipe 
l in ing is possible.  In HP Precis ion Archi tecture,  the coprocessor 
can freely accept a non- load/store operat ion independent of  any 

ear l ier  operat ions,  prov ided space ex is ts  in  the except ion regis  
t e r s  be  i n  excep t i ons  Th i s  a l l ows  seven  i ns t ruc t i ons  t o  be  i n  
execut ion  s imul taneous ly  wh i le  the  bas ic  processor  cont inues 
Load and s to re  ins t ruc t ions  to  independent  da ta  reg is te rs  can 
a lso  be  fu l l y  over lapped  The  coprocessor  need  on ly  comple te  
p ipe l ined inst ruct ions when the resul t  is  be ing requested Refer  
ences to the status register are special and require al l  operations 
to  be completed.  

A  m in ima l l y  p i pe l i ned  mach ine  m igh t  pe r fo rm  on l y  a  s i ng le  
f loat ing-po in t  operat ion a t  a  t ime,  but  permi t  load and s tore  op 
e r a t i o n s  t o  e x e c u t e  c o n c u r r e n t l y .  T h i s  r e q u i r e s  a n  i n t e r l o c k  
against stores of the single result register specif ied in the execut 
ing  opera t ion ,  and  an  in te r lock  on  the  source  reg is te rs  dur ing  
the period that the source exceptions are tested in the operations. 
The second interlock may never occur in some implementations. 

The f loat ing-point instruct ion set is designed to al low software 
the opt ion o f  per forming p ipe l ined operat ions wi thout  the need 
for complex hardware control .  The high- level  language opt imizer 
p laces  i ns t ruc t i ons  i n  a  sequence  to  avo id  t he  mos t  common  
inter locks. The use of results is delayed as long as possible and 
ef fect ive over lap wi th other integer operat ions is  obtained. 

lows the specification of premodification or postmodifica- 
tion without using up a bit of the long displacement field. 
Memory accesses with long displacement fields perform 
predecrement or postincrement, depending on the sign of 
their displacements. In theory, this is less general than 
allowing the specification of premodification or post- 
modification to be orthogonal to the sign of the displace 
ment, as is true for the short-displacement load and store 
instructions. In practice, however, the feature works very 
well for maintaining stacks stored in the memory. For 
example, for a stack growing in the direction of decreasing 
memory addresses, pushing onto the stack from a register 
is done by a store with predecrement and popping off the 
stack is done by a load with postincrement. 

Combined Instruct ions 
The basic types of operations in most instruction sets 

fall into three categories: data transformation operations, 
data movement operations, and control operations. In gen 
eral, one instruction performs one of these operations. A 
combined instruction performs more than one of these op 
erations in one instruction. In HP Precision Architecture, 
almost every instruction performs a combination of two of 
these operations in a single cycle, with relatively simple 
hardware. 

HP Precision Architecture has two types of data transfor 
mation and control operation combinations. The first type 
has a more general transformation operation combined 
with a restricted control operation, whereas the reverse is 
true for the second type. Examples of the first type are ADD 
instructions that can conditionally skip the execution of 
the following instruction. Examples of the second type are 
COMPARE AND BRANCH instructions. 

The LOAD and STORE instructions combine a data move 
ment operation (moving data between a general register 
and the memory system) with a transformation operation 
(the accompanying address calculation and modification). 

HP Precision Architecture's combined instructions allow 
the execution engine to be used efficiently, since the data 

transformation portion of a combined instruction is per 
formed in the simple execution engine shown in Fig. 3. 

Assist Instructions 
The architecture allows for flexible instruction set exten 

sions by means of assist instructions. Assist instructions 
are instructions in which the data movement functions are 
defined between the processor or the memory and the assist 
hardware, but the data transformation functions are left un 
specified. An extension instruction is defined by specifying 
in an assist instruction the data transformation operations 
to be performed by the assist hardware. Assist hardware 
is optional hardware that accelerates the execution of a set 
of assist instructions. In the absence of the assist hardware, 
an extension instruction is emulated by software, using 
a transparent assist emulation trap mechanism. Critical in 
formation required for emulation is saved in control regis 
ters, substantially reducing the emulation time. 

HP Precision Architecture allows up to sixteen assists 
in a system configuration, supporting sixteen logically dif 
ferentiated sets of instruction set extensions. These are di 
vided into two generic types of assists: the special function 
units (SFUs) and the coprocessors (COPs). 

Special function units use the general registers as sources 
and targets of operations. They are coupled very closely to 
the basic processor and its register buses. 

Coprocessors provide functions that use either memory 
locations or coprocessor registers as operands and targets 
of operations. They are coupled less closely to the basic 
processor. Coprocessors may also directly pass double- 
word quantities between the coprocessor and the memory. 
This is suited to the manipulation of quantities that are 
too large to be handled directly in the general registers. 

The HP Precision instruction set can be extended by 
defining a set of assist instructions in applications where 
specialized hardware is justified by its frequency of use or 
by the resulting performance improvement. The architec 
ture allows such instruction set extensions without com 
promising software compatibility. An example of such an 
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instruction set extension is the instruction set for the float 
ing-point coprocessor (see box, page 8). 

Control Flow Model 

HP Precision Architecture defines a computer in which 
the flow of control passes to the next sequential instruction 
in the memory unless directed otherwise by branch instruc 
tions, nullification of instructions, or interruptions. These 
three mechanisms can potentially alter the sequential flow 
of control in instruction processing. 

Branching 
The architecture has both unconditional and conditional 

branch instructions. All branch instructions exhibit the 
delayed branch feature. 

In a pipelined processor, it is difficult to execute a branch 
instruction in one cycle, since the branch target address 
has to be calculated before the target instruction can be 
fetched. Hence, taken branches frequently result in pipeline 
interlocks, in the absence of other prefetch mechanisms. 

To minimize such pipeline interlocks, HP Precision Ar 
chitecture defines a one-instruction delayed branch. This 
means that a delay instruction, which is the instruction 
following a branch instruction, is executed before the pro 
gram control flow passes to the target instruction of the 
branch. The delay instruction is not executed when it is 
explicitly nullified by its preceding branch instruction. 
This branch nullification feature is explained later. 

The delayed branch mechanism allows compilers to 
schedule a useful instruction in the cycle during which the 
branch target address is calculated. For example, this might 
be an instruction that preceded the branch instruction. 
Unconditional Branching. HP Precision Architecture de 
fines iocal branches, where the control flow passes to 
another location within the current virtual space and exter 
nal branches, where instruction processing continues at a 
location that may be in a different virtual space. 

The design of high-speed pipelines is simplified if branch 
target address calculations can be made before the execu 
tion of the branch instruction itself. In HP Precision Ar 
chitecture, the most common branch instructions have 
branch targets calculated relative to the address of the 
branch instruction itself, with displacements given in the 
branch instruction. These are called relative branches with 
static dispJacements, Unconditional branch instructions 
have a 17-bit signed displacement field, and the conditional 
branches have a 12-bit signed displacement field. 

Although a 17-bit displacement will cover almost all 
branch distances, it is insufficient in certain situations. 
Furthermore, it is not always possible or convenient to 
generate a static displacement at compile time for some 
branches. Hence, the architecture includes branch instruc 
tions with 32-bit dynamic dispJacements specified by the 
contents of a general register. 

Branches are also needed to locations that have no rela 
tion to the address of the branch instruction â€” for example, 
to independent relocatable modules. This is called absolute 
branching, since the address of the target instruction can 
be anywhere in the address space. HP Precision Architec 

ture also allows absolute branches: the branch displace 
ment is added to the contents of a general register called 
the base register. 
Subroutine Calls. The subroutine call primitives are 
BRANCH AND LINK instructions, which save the return ad 
dress of the calling routine in a general register before trans 
ferring the control flow to the subroutine. Both local (intra- 
space) and external (interspace) subroutine calls are de 
fined. The external subroutine calls must save a larger re 
turn pointer, indicating also the virtual space of the caller. 

The external BRANCH AND LINK instruction uses implicit 
link registers for saving both the caller's space identifier 
and the offset within that space. Space register zero (SR 0) 
is used for saving the space identifier and general register 
thirty-one (GR 31) is used for saving the offset address. 
This permits the maximum number of bits to be used for 
encoding the static branch displacement. 

Subroutine returns are accomplished by using an abso 
lute used instruction, specifying the general register used 
to save the link address in the BRANCH AND LINK calling 
instruction. If appropriate software conventions are used, 
a uniform subroutine return sequence can be used for both 
local and external calls. 
Inter-Ring Branches. Four hierarchical protection rings are 
implemented in HP Precision Architecture. Each ring has 
a privilege level associated with it, the innermost ring 
(privilege level 0) being the most privileged ring and the 
outermost ring (privilege level 3) being the least privileged 
ring. 

The architecture defines unconditional branch instruc 
tions that perform inter-ring crossings in one instruction. 
Three of these are outward branches, causing a decrease 
in the process privilege level. Only one branch instruction 
(GATEWAY) is an inward branch, causing an increase in 
privilege level. 
Conditional Branching. In many architectures, conditional 
branching is accomplished by two separate instructions. 
The first instruction calculates a condition, and saves the 
result of this condition calculation in state flip-flops in the 
processor called a condition code. A subsequent condi 
tional branch instruction may alter the program's control 
flow depending on the value of the condition code. 

Statistics of instruction sequences show that in an over 
whelming majority of cases, a conditional branch instruc 
tion is immediately preceded by the instruction that sets 
the condition tested by the branch. HP Precision Architec 
ture capitalizes on that fact by combining the two instruc 
tions into one instruction, thus achieving code compaction, 
reduction of execution time, and elimination of condition 
code flip-flops in the processor state. Each conditional 
branch instruction includes a data transformation opera 
tion, which generates a condition that is used immediately 
to determine whether the branch is taken or not. Such 
conditional branch instructions also provide greater oppor 
tunities for an optimizer to reorder instructions, with less 
bookkeeping. 

There are four kinds of operations that can be executed 
with a conditional branch instruction. The ADD AND BRANCH 
instruction is useful for closing loops. The COMPARE AND 
BRANCH instruction is useful for closing loops and for if- 
then-else control structures. The BRANCH ON BIT instruction 
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allows branching on the value of any bit in a general regis 
ter. The MOVE AND BRANCH instruction is useful for 
reinitializing a register before branching away. 

HP Precision Architecture also implements a special nul 
lification scheme to optimize the use of the delay instruc 
tion following a conditional branch instruction. 

instruction WWW. 
For forward branches, the nullification definition allows 

shorter code sequences for if-then constructs, as shown in 
the following example. 

Nullification 
HP Precision Architecture defines a control flow feature 

called the nullification of the immediately following in 
struction. When an instruction is nullified, it executes as 
a no-operation (NOP), and the effect is as if it had never 
been in the instruction stream. This means that no change 
in any architecturally visible state, like general registers, 
memory, control registers, or space registers occurs because 
of a nullified instruction. A nullified instruction does not 
cause any traps to be generated, and it does not cause its 
successor instruction to be nullified. All branch instruc 
tions and data transformation instructions have the ability 
to nullify the instruction to be executed next. 

All branch instructions have a single-bit nullification 
field. An unconditional branch instruction can "always 
nullify" or "never nullify" the execution of its delay in 
struction by setting the value of the nullification field to 
one or zero, respectively. A conditional branch instruction 
can "conditionally nullify" or "never nullify" the execu 
tion of its delay instruction in the same manner. The never 
nullify feature is used whenever a delay instruction can 
be found that can always be executed, regardless of whether 
the branch is taken or not. 

A conditional branch is taken when the condition it 
specifies evaluates true. To optimize the use of the delay 
instruction following the conditional branch, the delay in 
struction is nullified for backward branches only if the 
condition is false, and for forward branches only if the 
condition is true. Since the compilers use the convention 
that loops are closed with backward branches, the delay 
instruction of this branch can now be "inside" the loop, 
saving a cycle on each iteration. The following example 
illustrates this. 

X X X  - > i  
L O O P B :  Y Y Y  

Loop body 

Z Z Z  
C O M B T . C . n ,  
X X X  
W W W  

r 1 , r 2 ,  L O O P B ;  

As shown, the first instruction (XXX) of the loop body 
can always be duplicated following the loop-closing 
branch, COMBT. When the COMBT instruction is executed, 
if condition C is true, then the XXX instruction is executed 
and control passes back to LOOPB. Otherwise, the next in 
struction (XXX) is nullified and processing continues with 

"If" 
Code 

"Then" 
Code 

R R R  

S S S  
C O M B T . C . n  r x . r y . T H R U ;  

U U U  
T H R U :  W V  

When the conditional branch instruction, COMBT, is exe 
cuted, if condition C is true, the next instruction is nullified 
and the branch is taken around the "Then" code to the 
location THRU. Otherwise, the next instruction (TTT) is exe 
cuted. 

Every data transformation instruction has an implicit 
conditional skip operation built into it. In a single cycle, 
the function specified by the transformation instruction is 
performed by the execution engine, and a condition 
specified in the instruction is evaluated. If the condition 
evaluates true, then the next instruction to be executed is 
nullified. If the condition evaluates false, then the next 
instruction is executed, or not nullified. 

The following example shows the use of nullification in 
an ALU instruction to implement a compact control se 
quence for a high-level language construct. 

High-level language: 
if (a < b) then b = b + Â¡. 

Equivalent HP Precision assembly language: 

SUB,>= a,b,rO; Subtract [GRb] from [GR a], discarding 
the result, and nullify next instruction if 

ADDI 1,b,b;  Add the immediate value \  to [GRb],  
writing the result back to GRb. 

Conditional Trap. In some instructions, the condition 
specified in the instruction is used to cause a conditional 
trap, rather than the nullification of the next instruction. 
An advantage of taking a conditional trap rather than con 
ditionally nullifying a branch to a trap routine is that the 
majority of instructions do not incur the penalty of a nul 
lified instruction. For example, when an add or subtract 
instruction is used to perform range checking, the penalty 
of a conditional trap is taken only in the rare cases where 
the range check fails. 
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While it is a common feature of other architectures to 
have an ALU instruction trap on arithmetic error conditions 
like overflow, it is a special feature of HP Precision Ar 
chitecture to allow trapping on defined conditions that are 
not arithmetic errors. 
Assist Nullification. In assist nullification, the condition 
upon which nullification is performed is generated by the 
assist hardware rather than by the basic processor. Instead 
of defining assist branch instructions, the processor's un 
conditional branch instructions are used for control flow 
changes in assist programs. The equivalent of conditional 
branching is achieved using a pair of instructions: a data 
transformation assist instruction with its nullification field 
set to one, followed by an unconditional branch instruc 
tion. The assist instruction generates a condition that deter 
mines whether the following branch instruction should be 
nullified. 

An assist can be defined with the nullification oper 
ation dependent upon the condition generated either in 
the current assist instruction or in the previous assist in 
struction. The latter is called delayed nullification. 
Delayed nullification allows other instructions, executed 
by the basic processor or other assists, to be scheduled 
during the time the assist hardware is performing a lengthy 
computation that generates the condition for determining 
nullification. 

Interruptions 
Interruptions are anomalies that occur during instruction 

processing, causing the control flow to be passed to an 
interruption handling routine. In the process, certain pro 
cessor state saves and changes are made automatically by 
the hardware. Upon completion of interruption processing, 
a RETURN FROM INTERRUPT instruction is executed, which 
restores the saved processor state, and execution proceeds 
with the interrupted instruction. 

Traps, faults, checks, and interrupts are different anom 
alies that may happen during instruction processing on a 
computer. In HP Precision Architecture, they are all han 
dled by the same basic mechanism. The term interruptions 
is used in discussing these anomalies as a group. 

The architecture implements a single-level interruption 
system. This means that once an interruption is chosen for 
service, it cannot be preempted for service by a higher- 
priority interruption. It also implies that only one interrup 
tion is serviced at a time. If an instruction raises multiple 
interruptions, the highest-priority interruption is serviced, 
and then the instruction is reexecuted, which causes the 
other interruptions to be raised again. Then the next high 
est-priority interruption is serviced, and so on. 

The nesting of interruptions is not excluded, since the 
interruption handling routine can choose to reenable other 
interruptions once it has saved the appropriate state. Since 
the machine state is saved in registers rather than in mem 
ory when an interruption is serviced, interruption handlers 
must leave interruptions disabled until they have saved 
the machine state in memory. 

In certain pipelined processors, interruptions are often 
not precise, in the sense that they may not be serviced 
immediately after the instruction that caused the interrup 
tion. This is because in overlapped instruction processing, 

several successive instructions may already have been par 
tially or fully processed by the time the interruption caused 
by an instruction is generated. This imprecision adds con 
siderable complexity to interrupt handling routines. 

In a nonoverlapped processor, precise interruptions are 
easy to implement, since an instruction is fetched and com 
pletely executed before the next instruction is fetched. 
Hence, interruptions can be serviced between instructions, 
that is, after the instruction causing the interruption and 
before the next instruction's processing starts. 

HP Precision Architecture requires that interruption ser 
vicing appear the same for both overlapped and nonover 
lapped processors. Hence, all implementations must pro 
vide precise interruptions, and resume execution at the 
same instruction as a nonoverlapped implementation. 
Traps and Faults. Traps and faults are synchronous inter 
ruptions, meaning that they are caused by the processing 
of an instruction or a sequence of instructions. A trap oc 
curs when the function requested by the current instruction 
cannot or should not be carried out, or system intervention 
is desired by the user before or after the instruction is 
executed. A fault occurs when the current instruction re 
quests a legitimate action that cannot be carried out because 
of a system problem, such as the absence of a page from 
main memory. After the system problem has been corrected 
the faulting instruction will execute normally. 

In HP Precision Architecture, the overflow trap and the 
conditional trap occur for arithmetic instructions. The 
privileged operation or privileged register traps occur when 
certain system management instructions or control regis 
ters are accessed by a process with insufficient privilege. 
An illegal instruction trap is generated for undefined oper 
ation codes, or illegal instruction sequences which could 
otherwise cause security breaches. The assist exception 
and emulation traps allow assist hardware to request the 
processor to service assist-generated traps, or to emulate 
assist instructions not supported by hardware. 

Virtual memory faults and traps may also be generated 
for instruction fetches or data fetches in virtual mode. For 
example, if the virtual-to-physical address translation is 
not found in the hardware translation lookaside buffer, a 
TLB miss fault is generated. If a virtual memory access fails 
the protection checking required for the access, then a 
memory protection trap is generated. These traps are gen 
erated independently for instruction and data virtual ac 
cesses. The first time a page is written, a TLB dirty-bit trap 
occurs, which is used by the system to distinguish unmod 
ified pages from modified (dirty) pages at page replacement 
time. 

HP Precision Architecture also has a rich set of debugging 
support traps. A BREAK instruction is defined in the ar 
chitecture to allow the insertion of software breakpoints. 
Whenever such an instruction is executed, a break trap 
occurs. Any store instruction to a virtual address may also 
generate a data memory break trap, if this trap is enabled 
by a bit in the TLB entry. This allows the tracing of all data 
updates to a given page. A similar facility traps on any 
reference whatsoever to a given virtual page. Traps may 
also be generated, if enabled, after a branch is taken, or 
when the privilege level of the running process is promoted 
or demoted. Architectural support for software rollback 
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schemes is also implemented by means of a recovery 
counter trap. A 32-bit control register, the recovery counter, 
can be initialized to any integer value. If enabled, the 
counter is decremented for every nonnullified instruction 
that is executed, and a recovery counter trap is generated 
when a zero value is reached. The recovery counter can be 
used in fault recovery, to permit an exact reexecution of 
the instruction stream since the last checkpoint. 
Checks and Interrupts. A check occurs when a hardware 
malfunction is detected. Depending on the nature of the 
malfunction, checks may be synchronous or asynchronous 
with respect to the instruction stream. HP Precision Ar 
chitecture defines two types of machine checks: a high- 
priority machine check and a low-priority machine check. 

An interrupt occurs when an external entity, like an I/O 
device or the power supply, requires attention. Interrupts 
are asynchronous with respect to the instruction stream. 

There are thirty-two external interrupt classes, each of 
which can be individually masked by privileged software. 
The architecture defines two control registers specifically 
for handling these external interrupts. The external inter 
rupt request (EIR) register and the external interrupt enable 
mask (EIEM) register each have thirty-two bits, one for each 
external interrupt class. A privileged instruction allows 
the writing of any set of mask bits to the EIEM register and 
the clearing of any selected bits in the EIR register. When 
an external interrupt of any class occurs, its corresponding 
interrupt pending bit is set in the EIR register. If the corre 
sponding mask bit in the EIEM register is also one, then 
an external interrupt is taken. An EIR register bit remains 
set, leaving the external interrupt pending, until explicitly 
reset by an interruption handler. 

Relative priority of these thirty-two external interrupt 
classes is not assigned by the architecture or by the hard 
ware. When multiple unmasked external interrupts occur 
simultaneously, or when there are multiple external inter 
rupts pending in the EIR register, the external interrupt 
handler selects the order of service. 
Interruption Parameters and Servicing. Six control regis 
ters are defined to save interruption parameters and expe 
dite the processing of interruptions. The collection of infor 
mation in these interruption parameter registers occurs 
only when the interruption state collection enable flag (Q 
bit) in the processor status word (PSW) is set. 

These interruption parameter registers save the processor 
status word of the interrupted process, the instruction that 
is interrupted, and the data address (space and offset por 
tions) for memory reference instructions. Two other register 
pairs form two queues, saving the space and offset portions 
of the addresses of the first two instructions to be processed 
upon returning from the interruption. 

The two queues are necessary because in an architecture 
with delayed branching, at least two return addresses must 
be saved before jumping to the interruption handler. Two 
are necessary because the last instruction to be completed 
before the interruption may be a taken branch. In this case 
the next two instructions to be executed may not be contigu 
ous, since one is the delay instruction and the other is the 
target instruction. These queues are constantly updated by 
the hardware whenever interruption parameter collection 
is enabled. When an interruption is taken, the queues and 

other interruption parameters are preserved by disabling 
further interruption collection. 

Interruption servicing is implemented as a fast context 
switch, which is much simpler than a complete process 
swap. When an interruption occurs, the current processor 
status, represented by the PSW, is saved. Then, the PSW 
is cleared to zeros to disable further interruptions, to enable 
real-mode addressing, and to freeze the information col 
lected in the interruption parameter registers. The current 
privilege level is set to the highest privilege level. The 
control flow then passes to a vectored location in an inter 
rupt vector table, which is dynamically relocatable. This 
simple set of architecturally defined operations facilitates 
a fast and uniform switch to interruption servicing for all 
implementations. 

Addressing and Protection Model 

HP Precision processors access memory using byte ad 
dresses. Larger addressable units include half words, 
words, and double words. An address is either physical or 
virtual. All load and store instructions can be used in either 
virtual or physical mode. Virtual mode is enabled sepa 
rately for instruction fetches and data accesses by two flags 
in the processor status word. 

A pointer to physical memory is a 32-bit unsigned integer 
whose value is the address of the first byte of the operand 
it designates. Physical addresses are used directly, with no 
protection or access rights checking performed. Virtual ad 
dresses are translated to physical addresses and undergo 
protection and access rights checking as part of the trans 
lation. This allows the hardware support for access control 
to be built into the storage unit. 

The input/output (I/O) architecture is memory mapped. 
That is, complete control of all system components (of 
which I/O attachments are a special case) is exercised by 
the execution of load and store instructions to virtual or 
physical addresses. This approach permits I/O drivers to 
be written in high-level languages. Furthermore, since the 
usual page-level protection mechanism is applied during 
virtual-to-physical address translation, user programs can 
be granted direct control over particular I/O devices with 
out compromising system integrity. 

Virtual  Memory Addressing 
A virtual address is defined globally and has the same 

meaning when used by any process. This is in contrast to 
other architectures, which permit use of the same address 
for different objects by different processes. The virtual ad 
dress space is so large that processes can be assigned sepa 
rate address ranges for private data. Address translation 
information does not need to change upon a process switch 
and the information needed for address translation can be 
represented more compactly. Global virtual addressing 
therefore allows closely coupled processes to accumulate 
a stable working set of address translations in spite of fre 
quent process switching. 

Virtual memory is structured as a set of address spaces, 
each containing 232 bytes. A level-one processor imple 
ments 216 spaces (16-bit space registers), and a level-two 
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processor implements 232 spaces (32-bit space registers). 
A space is specified by a space identifier, and is divided 
into pages, each 2048 bytes in length. 

For a level-two processor, the concatenation of a 32-bit 
space identifier and a 32-bit offset within the space forms 
a virtual address. Alternatively, a virtual address may be 
viewed as the concatenation of a 53-bit virtual page number 
and an 11 -bit offset within the page. 

For virtual addressing, space identifiers are specified in 
space addressing registers. These include the space portion 
of the instruction address register and the eight space regis 
ters SR 0 through SR 7 (see Fig. 4). One such register is 
implicitly or explicitly selected by every instruction that 
generates a virtual address. 

SR 0 is used as an implied target by the interspace pro 
cedure call instruction. SR 1 through SR 7 have no architec 
turally defined functions, but it is expected that their use 
will be constrained by the following software conventions. 
SR 1 through SR 3 are used as scratch registers for the 
manipulation of 64-bit virtual pointers. SR 4 tracks the 
current program's space and provides access to literal data 
contained in the current code space. SR 5 points to a space 
containing process private data, SR 6 to a space containing 
data shared by a group of processes, and SR 7 to a space 
containing the operating system's code, literals, and data. 
The conventions for SR 4 through SR 7 were chosen to 
permit use of 32-bit virtual address pointers (see below) 
for almost all data references. 

SR 5 through SR 7 can be modified only by code execut 
ing at the most privileged level. SR 0 through SR 4 can be 
changed by an unprivileged user. Shared libraries or sub 
systems will be assigned individual code spaces, and 
branching into those other spaces will involve changing 
SR4. 
Instruction and Data Addressing. Instruction addresses are 
computed for instruction fetch, instruction cache flush in 
structions, instruction TLB instructions, and branch target 
calculations. Instructions that explicitly reference a space 
register use the 3-bit S field, located in the instruction, to 
designate one of the eight space registers. 

Data addresses are computed for load, store, semaphore, 
probe, data cache, and data TLB instructions. Data addresses 
specify one of the eight space registers in an interesting 
way: only a 2-bit S field in the instruction is used. When 
the 2-bit S field is nonzero, it selects the corresponding 

Instruction 
Address 

Space Current  Code Space ID 

Link Code Space ID 

64-Bit Pointers 

64-Bit Pointers 

64-Bit Pointers 

Tracks IA Space 

Process Private Data 

Job Common Data  
OS and Subsystem Code,  
Literals, and Data 

Fig.  4 .  Space reg is ter  convent ions.  

space registers 1, 2, or 3. When the S field is zero, the space 
register is designated by adding four to the two high-order 
bits of the base register specified in the instruction. This 
allows the selection of space registers 4 through 7. 

Data references with the S field equal to zero allow 
addressing of four distinct spaces selected by the high-order 
bits of a 32-bit pointer. This is called short-pointer address 
ing (Fig. 5), since a 32-bit value both specifies an offset 
and selects a space register. Only one fourth of each space 
is directly addressable with short pointers. This region corre 
sponds to the quadrant selected by the upper two bits. For 
example, if a base register contains the hex value 80001000, 
the content of space register 6 is the space identifier and 
the third quadrant of the space is directly addressable. 

Short-pointer addressing allows the pointer data type of 
conventional languages to be 32 bits in length. Therefore, 
such pointers can be handled efficiently in the general-pur 
pose registers. Also, pointers are the same length as the 
standard integer data type, a situation assumed by a number 
of existing high-level langauge programs. Long pointers are 
48 bits or 64 bits in length, consisting of a 16-bit or 32-bit 
space identifier together with a 32-bit byte offset within 
the space, for level-one and level-two processors, respec 
tively. 

Software Virtual  Address Translat ion 
TLBs (see box, page 16) do not contain the translations 

for all pages in memory simultaneously. When they do not 
have the desired translation, a TLB miss occurs. In many 
architectures, TLB misses are handled in microcode. In HP 
Precision Architecture, they may be handled in software. 
When a TLB miss is detected, the hardware does not have 
sufficient information to complete the instruction being 
executed. Instead, an interruption is generated to invoke 
the appropriate TLB miss handler. One miss handler handles 
misses during instruction fetch, and another handles misses 
during data access. The virtual address causing the miss is 
directly available to the TLB miss handler in interruption 
parameter control registers to expedite miss handling. 

Because of the critical effect on system performance of 
the speed of address translation, all information required 
to translate the virtual address of a page that is actually 
present in physical memory must be permanently resident 
in memory. Because of the size of the virtual address space, 
tables describing all virtual pages cannot be kept perma 
nently in memory. Thus the data structures used to trans 
late valid virtual addresses (no page fault) describe only 
physically present pages and have a size proportional to 
the size of physical memory, consuming less than 2% of 
the available memory. The information represents a one-to- 
one mapping between physical and virtual pages. Thus it 
cannot support memory aliasing (see box, page 16) or pro 
cess-specific address translation. A desire to use these ef 
ficient structures was an important motivation for disallow 
ing both features. 

This address translation information resides in a physical 
page directory (PDIR). The physical-to-virtual address 
translation is obtained by using the physical address as a 
direct index into the PDIR. The translation of a virtual 
address to a physical address is accomplished using two 
tables, the hash table and the PDIR. Each table is located 
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by a pointer which defines its absolute starting address. 
For efficiency, these pointers are kept in control registers 
(assumed to be CR 24 for the PDIR address and CR 25 for 
the hash table address). 

The purpose of the hash algorithm is to map virtual ad 
dresses to a smaller, denser name space. The number of 
entries in the hash table is typically a multiple of the 
number of entries in the PDIR, rounded up to the nearest 
power of two. Since multiple virtual addresses can map 
into the same hash table entry, they are linked together as 
a chain of PDIR entries. The TLB miss handler hashes the 
virtual address, looks up the start of the chain in the hash 
table, and looks through the chain in the PDIR until it finds 
either the match or the end of the chain. If it finds the 
match, it puts the information from the PDIR into the TLB 
and retries the instruction. If it finds the end of the chain, 
the page is not in memory and a page fault is signaled by 
the software. 

The physical page directory (PDIR) contains one entry 
for each page of physical memory, plus one for each phys 
ical or virtual I/O device. The entries for physical pages 
are at nonnegative offsets from the location pointed to by 
CR 24, and the I/O entries are at negative offsets. This 
arrangement corresponds to the layout of the 32-bit phys 
ical address space which places physical memory at the 
lower end of the space and memory mapped I/O devices 
at the upper end. 

The design of the hash table and PDIR are such that later 
implementations can service TLB misses in hardware, with 
a reduction in the time spent servicing TLB misses. Control 
registers have been reserved to contain the hash table ad 
dress and PDIR address. 
Paging Management. One function of an operating system 
is to swap out pages that have not been accessed recently, 
to make room for pages being accessed that are still on 
disc. To help implement this, there is a reference bit for 
each page, within the PDIR entry, even though there is no 
hardware bit corresponding to it in the TLB. Instead, the 
entry is only allowed to be in the TLB if the reference bit 
is set. When the reference bit is cleared, the TLB entry is 
also purged by software. The next time there is a TLB miss, 

Fig.  5 .  Shor t -po in ter  space se lec 
t ion a l lows address ing of  four  d is  
t inc t  spaces se lected by program 
data. 

the miss handler will also set the reference bit in the PDIR. 
Thus, the operating system can clear the reference bit, and 
if the bit is still clear sometime later when it examines it 
again, it knows that the page has not been accessed in the 
meantime. 

Each entry of the PDIR (and the TLB) has a dirty bit that 
tells whether the page has been modified since it was 
brought in from disc. When the page is first brought in, 
the dirty bit is clear. As long as only reads are done to the 
page, the bit will remain clear. However, the first time a 
program tries to store data to that page, the TLB causes a 
dirty bit update trap, which sets the bit to one in both the 
PDIR and the TLB. This provides information to the operat 
ing system so that it can avoid writing out unmodified 
pages, since the copy on disc is still valid. 

Access Control  
Access rights checking is based on the access rights and 

access ID fields in the TLB entry used to perform the trans 
lation. Access rights checking occurs with virtual address 
translation, unless disabled by the P flag in the PSW. There 
is no access control when using physical addressing. 

Fields in the TLB entry for a particular page permit con 
trol of access to the page in three dimensions: 
â€¢ Which of data read, data write, instruction execute, and 

the privilege level change function of the GATEWAY in 
struction are permitted (What) 

â€¢ The privilege level at which the process must be execut 
ing (When) 

â€¢ The process or group of processes allowed to access the 
page (Who). 
These three dimensions are provided by two indepen 

dent, simple mechanisms that combine to provide the re 
quired protection which can be evaluated in parallel to 
provide efficient access control. The combination is de 
signed to support both conventional and virtual machine 
operating systems. 
Access Rights. The first two dimensions of access control 
are provided using the access rights field of the TLB entry 
and the process privilege level. There are four levels (0 to 
3), with 0 being the most privileged. Associated with each 
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HP Precision Architecture Caches and TLBs 

An HP Precis ion processor typical ly  in ter faces to the memory 
system via the t ranslat ion lookaside buf fer  (TLB) and the cache 
m e m o r y .  T h e  a r c h i t e c t u r e  i s  d e s i g n e d  t o  a l l o w  s i m p l e ,  h i g h  
speed implementat ions by making the TLB and cache v is ib le  to  
sof tware,  and by  p lac ing const ra in ts  on sof tware.  The arch i tec  
tu re  a lso  exp l ic i t l y  separates  ins t ruc t ion  and data  caches,  and 
ins t ruc t ion  and data  TLBs,  a l though th is  is  not  a  res t r ic t ion  on 
hardware implementat ions.  

A  cache  i s  a  sma l l ,  h i gh -speed  memory  tha t  sho r tens  ma in  
memory  access  t imes  by  keep ing  cop ies  o f  t he  mos t  recen t l y  
accessed  da ta .  The  cache  i s  d i v ided  i n to  b locks  o f  da ta ,  and  
each b lock has an address tag that  speci f ies the corresponding 
b lock of  memory.  When the processor  accesses data,  the b lock 
i s  cop ied  f r om ma in  memory  i n to  t he  cache .  I f  t he  p rocesso r  
mod i f ies  the  da ta  (by  do ing  s to res) ,  the  copy  in  the  cache w i l l  
be more up- to-date  than the copy in  memory.  The s ta le  data  in  
the  memory  a t  the  p lace  spec i f i ed  by  the  tag  i s  even tua l l y  up  
dated to  cor respond to  the new data  in  the cache,  us ing e i ther  
the copy-back or  the wr i te- through update s t ra tegies.  

Simi lar ly ,  a TLB speeds up v i r tual  address t ranslat ions by act  
i n g  a s  a  c a c h e  f o r  r e c e n t  t r a n s l a t i o n s .  W h e n  t h e  p r o c e s s o r  
accesses memory wi th a v i r tual  address,  the TLB checks for  an 
en t ry  w i th  tha t  v i r tua l  page number .  I f  i t  i s  p resent ,  the  cor res  
ponding physical  page number is  used to generate the physical  
address. Otherwise, there is a TLB miss, which must be serviced 
before the v i r tua l  memory access can be f in ished.  

To a l low the implementat ion of  large,  h igh-speed caches,  the 
archi tecture disal lows address al ias ing,  the capabi l i ty  of  having 
two d i f fe rent  v i r tua l  pages mapped to  the same phys ica l  page.  
Whi le address al iasing is of  some use to sof tware,  i t  has severe 
i m p a c t  o n  c a c h e  d e s i g n .  N o r m a l l y ,  a  p o r t i o n  o f  t h e  a d d r e s s  

ca l led  the  index  is  used to  spec i fy  a  b lock  o r  a  smal l  g roup o f  
b locks to be examined for  a matching tag,  instead of  examining 
a l l  b locks  i n  the  cache .  Address  a l i as ing  p rec ludes  us ing  the  
v i r t ua l  page  as  pa r t  o f  t he  i ndex .  O the rw ise ,  a  v i r t ua l  access  
cou ld  pu t  da ta  i n to  t he  cache  based  on  i t s  i ndex ,  and  a  l a te r  
v i r tual  access,  using the other (a l iased) address,  would not  f ind 
it  in the cache because the index was different in the virtual page 
p o r t i o n .  T h e  s e c o n d  a c c e s s  w o u l d  t h e n  g o  t o  m a i n  m e m o r y ,  
where i t  would get  an inconsis tent  or  s ta le copy.  

S ince HP Prec is ion Arch i tecture prohib i ts  the use of  address 
aliasing, the cache can use the virtual page portion of the address 
as  pa r t  o f  t he  i ndex ,  w i t hou t  caus ing  t he  s t a l e  da ta  p rob lem 
described above. This allows the cache to be accessed in parallel 
w i th  o f  TLB w i thou t  res t r i c t ing  the  s ize  o f  the  cache  to  tha t  o f  
t he  page  s i ze  mu l t i p l i ed  by  the  se t -assoc ia t i v i t y  o f  t he  cache  
organization. 

I f  an object is to be referenced by both i ts v ir tual  address and 
i t s  c o r r e s p o n d i n g  p h y s i c a l  a d d r e s s ,  s o f t w a r e  m u s t  f l u s h  t h e  
cache  be fo re  access ing  t he  da ta  i n  t he  o the r  mode .  The  one  
except ion is  i f  the phys ica l  and v i r tua l  addresses are ident ica l ,  
namely, the vir tual address is in space zero and the offset within 
t h e  s p a c e  i s  t h e  s a m e  a s  t h e  p h y s i c a l  a d d r e s s .  S i n c e  t h e  
addresses  are  ident ica l ,  the  index  chosen by  the  cache wou ld  
be  ident ica l ,  thus  avo id ing  the  above s ta le  da ta  prob lem.  Th is  
case is  ca l led equiva lent  mapping.  

Uniprocessor  Cache Management  
HP Prec is ion Arch i tec ture makes caches v is ib le  to  sof tware,  

and suppor ts  separate  ins t ruc t ion  and data  caches when des i r  
able for extra bandwidth, or a unif ied cache for reduced expense. 
I t  wi l l  a lso support  very low-cost systems without caches, where 

process is a current privilege level. 
The access rights information is encoded in seven bits 

divided into three fields: type, first privilege level (PL1), 
and second privilege level (PL2) fields. The type field de 
fines the use of the page (data or code) and, for privilege 
promotion instructions, the privilege level to which the 
process will be promoted. PL1 and PL2 define the privilege 
levels required for read, write, or execute access to the 
page. The meaning of the type field and the interpretation 
of PL1 and PL2 are given in Fig. 6. Read and write fields 
specify the least privileged levels allowed to read or write 
the page, respectively. Xleast gives the least privileged level 
allowed to execute instructions from that page. Xmost gives 
the most privileged level allowed to execute instructions 
from the page and is used to prevent privileged code from 
inadvertently branching onto a page that cannot be trusted. 

The privilege level mechanism allows a process to have 
different access rights over time without the overhead of 
changing TLB entries when access changes or at process 
switch. Thus user programs (privilege level 3) can invoke 
the services of an operating system supervisor (privilege level 
1) or kernel (privilege level 0) using an efficient procedure 
call and no interruption or process switch is required. 

The entry to a more privileged routine can be im 
plemented as a procedure call to a GATEWAY instruction 
that branches to the body of the routine. If a GATEWAY 
instruction is fetched from a proprietary code page, then 
when it executes it changes the privilege level to that 

specified by the low-order two bits of the type field for 
that page (if that level is more privileged than the current 
level). The GATEWAY instruction stores the caller's privilege 
level in the return address register so that it cannot be 
"forged" by the caller. 

The architecture defines two trap conditions (higher and 
lower privilege transfer traps) that can be enabled to allow 
an operating system to intercept privilege level changes. 
These are provided to support languages that allow multi 
ple processes to share a single stack with different access 
rights. 
Access ID. A second field in the TLB entry, the 15-bit 
access ID, provides the third dimension of access control. 
It allows each process sharing memory to access different 
domains in memory without the overhead of changing 
fields in the TLB (and associated data in memory) on pro 
cess switch. 

T y p e  ( 3 )  P L 1  ( 2 )  P L 2  ( 2 )  

Type  PL1 P L 2  U s e  

Fig.  6.  In terpretat ion of  access r ights f ie lds.  
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the cache control  instruct ions are treated as MOPS 
F L U S H  D A T A  C A C H E  a n d  F L U S H  I N S T R U C T I O N  C A C H E  i n s t r u c t i o n s  

remove a cache b lock and update memory i f  necessary PURGE 
DATA CACHE removes a cache b lock wi thout  update The la t ter  
is  used only when the data can be destroyed, for  example when 
the page is  removed a t  the  conc lus ion o f  a  program 

The archi tecture puts the responsibi l i ty of  uniprocessor cache 
consistency on sof tware,  based on the assumpt ion that  the sof t  
ware knows when special action is needed to ensure consistency 
Sof tware must  take specia l  act ion when i t  is  changing a page s 
v i r tual  address,  when i t  is  modi fy ing the instruct ion stream (sel f  
modi fy ing code) ,  and when i t  is  per forming I /O.  

When the operat ing system changes a page's v i r tual  address,  
i t  must f lush the range of addresses for that page, to ensure that 
there are no b locks in  the cache us ing the o ld v i r tua l  address.  

I f  software stores into the instruct ion stream, the modif icat ion 
wou ld  occur  i n  the  da ta  cache ,  wh i le  i ns t ruc t ions  a re  fe tched  
out of the instruction cache. Rather than have the cache somehow 
figure out that software is doing this, software is required to f lush 
the data f rom both the data cache ( to update main memory) and 
the ins t ruc t ion  cache ( to  fo rce the next  fe tch  to  go to  memory)  
a f te r  mod i f i ca t ion .  S ince  se l f -mod i fy ing  code is  so  in f requent ,  
the extra t ime required is negl ig ib le.  

From the standpoint of the cache, I /O is l ike another processor 
reading or  modi fy ing memory.  I f  the I /O system is  reading data 
f rom memory that  is  current ly in the cache, i t  is  reading a stale,  
out -o f -date copy.  Other  arch i tectures have so lved th is  prob lem 
e i ther  by  hav ing I /O go through the cache,  or  by  hav ing a l l  I /O 
t ransact ions interrogate the cache to see whether i t  has a more 
up-to-date copy. This ei ther uses up avai lable cache bandwidth,  
depriv ing the processor,  or lengthens the cache cycle t ime, slow 
ing down the entire computer. HP Precision Architecture requires 
sof tware to  f lush the address range involved in  the I /O t ransfer  
b e f o r e  i t  o c c u r s ,  s o  t h a t  t h e  c a c h e  d o e s  n o t  n e e d  t o  d o  a n y  

checking. The overhead of f lushing for I /O is a very small amount 
and less than the impact  on per formance incur red by the o ther  
schemes 

HP Precision instruct ions include a nondivisible load and store 
zero instruction. LOAD AND CLEAR WORD, which is similar to the 
tes t  and  se t  opera t ion  in  o the r  a rch i tec tu res .  Th is  ins t ruc t ion  
reads is  word f rom main memory,  f lushing the cache f i rs t  i f  i t  is  
present,  then c lears the word in memory,  in one indiv is ib le oper 
at ion. I t  is  used to implement semaphores to synchonize access 
to  data s t ructures that  are shared between the processors  and 
the I /O modules,  or  for  data s t ructures that  can be modi f ied by 
two or  more processes operat ing asynchronous ly .  

Mult iprocessor  Cache Management  
For  HP Prec is ion  un ip rocessors ,  so f tware  is  respons ib le  fo r  

cache cons is tency .  For  mul t ip rocessors ,  however ,  hardware is  
respons ib le  fo r  cache  cons is tency  s ince  the  mode l  p resen ted  
to  so f twa re  i s  one  i n  wh i ch  a l l  t he  p rocesso rs  sha re  a  s i ng le  
instruct ion cache, a s ingle data cache, a s ingle instruct ion TLB, 
and  a  s ing le  da ta  TLB .  Th i s  i s  because  i t  may  be  d i f f i cu l t  f o r  
sof tware to  recognize a l l  data cons is tency s i tuat ions in  a  mul t i  
p rocessor  and  hand le  these  s i tua t ions  e f f i c ien t l y  fo r  bo th  un i  
processor  and mul t iprocessor  systems.  Sof tware is  s t i l l  respon 
sible for maintaining consistency for I /O, for instruct ion modif ica 
t ion,  and for  v i r tual  address mapping.  

In an actual  mult iprocessor system, each processor may have 
i ts own cache and TLB. To maintain the model of a single shared 
cache and TLB among processors,  s tandard cache consis tency 
methods are used.  In addi t ion,  the expl ic i t  cache and TLB f lush 
and purge ins t ruct ions are broadcast  to  a l l  p rocessors ,  so that  
a  f l u s h  p r o  e x e c u t e d  b y  o n e  p r o c e s s o r  w i l l  a f f e c t  a l l  p r o  
cessor caches or TLBs in the system. The broadcast f lushes and 
purges s t i l l  do not  a f fec t  I /O modules,  a l lowing them to  remain 
simple. 

An access ID of zero defines a page with public access 
allowed, subject only to access rights checking. A nonzero 
access ID permits access to the corresponding page only 
when one of the four protection IDs in control registers 
matches the access ID. 

The four protection IDs designate up to four groups of 
pages that are accessible to the currently executing process. 
Four are provided to facilitate the controlled transfer of 
information between logical environments. The low-order 
bit of each of the four protection IDs is the write disable 
(WD) bit. When the WD bit is set to 1, writing is disallowed 
for all privilege levels to the pages so protected. For exam 
ple, the WD bit allows a single writer and multiple readers 
for a group of processes. 

Privileged software needs a mechanism by which it can 
avoid performing, on behalf of a less privileged caller, ac 
tions not permitted the caller. This is provided by the 
PROBE instructions, which test the caller's ability to read 
or write a particular page of memory. 

Functional Operations 

The data transformation instructions provide all of the 
common arithmetic and logical functions. There are also 
several uncommon functions that provide building block 
instructions for complex operations and functions for effi 
cient high-level language optimizations. The transforma 

tion instructions form a powerful resource for compilers 
to generate efficient code while defining an easily im 
plemented hardware execution engine. 

Each transformation instruction also specifies the condi 
tional occurrence of either a skip or a trap, based on its 
opcode and the condition field. An immediate source can 
also be specified. The arithmetic/logical instructions are 
not completely orthogonal. Only those operations and op 
tions considered useful were defined. 

Arithmetic Operations 
Addition and subtraction instructions offer the widest 

flexibility in operand specification, condition formation, 
and testing. The two operands can come from two general 
registers, or from one general register and an 11-bit signed 
immediate. The SUBTRACT IMMEDIATE instruction is a re 
verse subtraction to allow subtraction of a variable from 
an immediate. Subtraction of an immediate from a variable 
is performed with an ADD IMMEDIATE instruction. The carry 
or borrow bit can be included in the addition or subtraction. 

Software will be able to construct any often needed func 
tion in a single instruction. Since a conditional trap or an 
overflow trap can optionally be specified, many range vio 
lations and overflow checks required by high-level lan 
guages can be performed without extra instructions. For 
some checks an additional instruction might be needed, 
but generally the architecture provides for the optimization 
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of the high-frequency execution path. 
Studies of large collections of programs show that integer 

multiply and divide operations are infrequently used. Fur 
thermore, when multiply is used, one of the operands is 
usually a constant known at compile time. Hence, instead 
of implementing a general multiply or divide instruction, 
HP Precision Architecture implements multiply and divide 
primitives, which do not require additional execution 
hardware. 

The SHIFT AND ADD instructions are used as building block 
multiply instructions. They specify a one, two, or three-bit 
shift of one of the source registers before adding it to the 
other source. By combining a short sequence of these in 
structions, multiplication by a constant can be done quickly. 
The SHIFT AND ADD instructions are performed by the basic 
execution engine, and share the use of the preshifter multi 
plexers in the ALU data path with the address calculation 
for the load and store instructions. These easily im 
plemented multiply primitives are used effectively by the 
software for a variety of constructs. 

Multiplication by the constants 3, 5, 9, and any power 
of 2 can be done in one instruction. Multiplication by other 
small constants can be performed in two or three instruc 
tions. When it is necessary to perform multiplication by a 
variable, a specialized subroutine breaks the multiplier into 
four-bit pieces and forms the complete product in an aver 
age of twenty instructions.2 

Division by small constants is handled as special cases 
by the compilers, while for general cases, the DIVIDE STEP 
instruction implements a single-bit nonrestoring division 
operation. A specialized subroutine uses thirty-two of these 
instructions, in combination with SHIFT DOUBLE instruc 
tions, to produce the quotient and remainder. 

The added hardware cost and potential increase in basic 
machine cycle time, coupled with infrequent use, ruled 
out the inclusion of division and multiplication in the basic 
instruction set. The architected assist instruction exten 
sions include integer multiply and divide functions for 
applications requiring higher frequencies of multiplication 
and division. 

Logical  and Field Operat ions 
Logical operations are fundamental instructions for data 

manipulation. OR, XOR, AND, and AND COMPLEMENT instruc 
tions provide a full range of logical operations. The AND 
COMPLEMENT instruction ANDs a register with the comple 
ment of a second register. This operation reduces the num 
ber of masks required for carrying out bit manipulation. 

Boolean values are easily generated using the COMPARE 
AND CLEAR instructions. This instruction first assumes a 
Boolean value of false by always storing a zero in the target 
register, and specifies the negation of the desired Boolean 
condition for the conditional nullification of the following 
instruction. The following instruction, if not nullified, will 
set the target register to true. Other architectures often re 
quire branch instructions to implement an equivalent func 
tion. 

The field manipulation instructions, like EXTRACT, DE 
POSIT, SHIFT DOUBLE, and BRANCH ON BIT, are implemented 
by the shift-merge unit of the basic execution engine (Fig. 
3). 

An EXTRACT instruction takes a field from any portion 
of a word and creates a result with the field right-justified. 
The remainder of the target register is filled with zeros or 
sign-extended, supporting both logical and arithmetic right 
shifts as special cases. 

A DEPOSIT instruction takes a right-justified field and 
puts it into any portion of the target word, thus merging 
the selected field with data in the rest of the word. DEPOSIT 
IMMEDIATE deposits a sign-extended five-bit immediate into 
the target register, which is perfect for setting or clearing 
a small number of bits in a register. ZERO AND DEPOSIT 
clears the remainder of the target, which is useful when 
the original target information is not wanted. DEPOSIT in 
structions can easily implement left shift operations and 
multiplications by a power of two. 

Fig. 7 illustrates the movement of an arbitrary field, A, 
from general register x to another arbitrary field position 
in general register y, using a pair of extract and deposit 
instructions. General register z is used as a temporary regis 
ter for this operation. 

SHIFT DOUBLE instructions concatenate two registers, 
shift them 0 to 31 bits, and store the 32 rightmost bits into 
the target. If one of the source registers is general register 
zero, a left shift or right shift is performed. If both source 
registers are the same, a rotate operation is performed. SHIFT 
DOUBLE instructions are useful for unaligned byte moves 
or bit-block transfers, and for extracting data fields span 
ning word boundaries from packed records. 

The fields for these operations are specified by position 
and length. The length is always an immediate in the in 
struction, but the position may be either an immediate or 
the contents of a control register called the shift amount 
register. This allows dynamically generated shift amounts. 
Unlike other architectures that specify the field position 
by encoding the leftmost bit in the field, HP Precision Ar 
chitecture specifies the rightmost bit position. This was 
done to simplify the control logic for the shifter by making 
the number of bits of right shift depend only on field posi 
tion, not on both position and length. 

Unit  Operations 
HP Precision Architecture includes a set of five instruc 

tions designed to support the parallel processing of small 
units (digits, bytes, and half words) within a word. These 
instructions make use of the seven low-order PSW carry/ 
borrow bits. They are included in the architecture primarily 
to facilitate string search (byte and half word units) and 
decimal arithmetic (digit units). The half word units sup 
port the processing of 16-bit international character sets. 

T h e  U N I T  X O R  a n d  U N I T  A D D  C O M P L E M E N T  i n s t r u c t i o n s  

G R x  

G R z  

G R y  

1.  Extract A from GR x into GR z.  

2 .  Deposit  A from GR z into GR y.  

Fig .  7 .  Movement  o f  an  abr i t ra ry  f ie ld  us ing  ex t rac t  and de  
posit  instruct ions. 
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can be used to compare corresponding subunits of two 
words for equality or a less-than relationship. These oper 
ations are particularly useful for scanning for byte or half- 
word values a full word at a time. 

Packed decimal numbers represent each decimal digit 
in a 4-bit field. When these numbers are to be added to 
gether, 6 must be added to each digit of one operand so 
that carries will propagate properly during binary addition. 
After addition, each result digit must have 6 subtracted 
from it unless the addition for that digit generated a carry. 
Also, when a repeated sequence of additions is to be per 
formed, the bias must be restored to the result by adding 
6 to each digit from which a carry was generated. These 
correction steps are performed by the DECIMAL CORRECT 
and INTERMEDIATE DECIMAL CORRECT instructions, respec 
tively. 

Assuming that the bias value and operands are in general 
registers, BCD additions and subtractions require three in 
structions to retire each 8-digit word. 

Instruction Formats and Encoding 

In HP Precision Architecture, all instructions have a fixed 
length of thirty-two bits, which is one word of memory. 
Time-critical functions are placed in fixed-position fields, 
so that they can proceed with minimal or no decoding. 
Since all instructions are word-aligned, an instruction 
never crosses a page boundary. 

The addresses of the two general register source operands 
for the execution engine are placed in fixed-position fields 
(bits <6:10> and bits <11:15>), so that registers can be 
read before or during the decode phase of the instruction. 
If an immediate operand is required rather than a general 
register operand, the selection is done by a multiplexer in 
front of the appropriate port of the ALU or shift-merge unit. 

In instructions with three register specifiers, the third 
register specifier is placed in the last five bits of the instruc 
tion, bits <27:31>. However, any registers to be used as 
source operands must be specified in the first two register 
specifier fields. A register used as the target register for a 
data transformation or data movement operation can be 
specified in any of the three register specifier fields. Decod 
ing the address of a target register is not time critical, since 
the writing of a result occurs later than the reading of 
operands. 

The space register specifier field is also placed in a fixed- 
position field, since it is also used to supply an operand for 
virtual memory addressing. 

The major operation code field (opcode) is placed in a 
6-bit fixed-position field. The operations are divided into 
subclasses, each subclass occupying one point in the code 
space of the major opcode. Each operation in a subclass 
occupies one point in its suboperation (subop) code space. 
The size of the subop field depends on the particular sub 
class of operations. The placement of the subop field is 
done to minimize the impact on the fixed fields of more 
time-critical operations. The encoding of the subop field 
is done to minimize decoding within a subclass. Often, 
bits in the subop field can be wired directly to control 
points in the particular portion of the processor implement 

ing this subclass of instructions. 
In the case of a subclass of operations with a relatively 

long immediate field in the instruction format, a subop 
field would take away bits from the long immediate field. 
So, each of these long-immediate instructions is assigned 
a point in the major opcode space. Examples are the load 
and store instructions with long displacements and the 
ALU instructions with long immediates. 

Immediates embedded in an instruction are sometimes 
broken up into different fields so as not to impact the place 
ment of fixed fields, and to minimize the multiplexing 
required for assembling immediates of different lengths. 

Although immediates come in various sizes, their sign 
bit is always in a fixed position: the rightmost bit position 
of the immediate. This aspect of the instruction encoding 
enables immediate sign extension to proceed without 
lengthy decoding and selection from various bit positions, 
which would happen if the sign bit were placed in the 
customary leftmost position of the variable-length im 
mediate fields. 

Formats 
Fig. 8 shows the instruction formats used to encode all 

HP Precision Architecture instructions. The first three for 
mats are for load and store instructions, followed by the 
instruction formats for long immediate instructions, branch 
instructions, three types of ALU instructions, system man 
agement instructions, the DIAGNOSE instruction, special 
function unit instructions, and coprocessor instructions. 

The first format, for the long-displacement load and store 
instructions, essentially determined the positions of most 
of the major fixed-position fields like the opcode, the two 
source register specifier fields, and the space register 
specifier field. It also determined the right alignment of an 
immediate field, with the sign bit occupying the rightmost 
instruction bit. The ALL) 3R format, for the basic three-regis 
ter data transformation operations, determined the posi 
tions of other fixed-position fields like the third register 
specifier field, the condition field, and the falsify (condi 
tion negation) field. 

The last three formats show the instruction extension 
capabilities in the architecture. One major opcode is re 
served for the DIAGNOSE instruction, which can be used to 
define implementation dependent instructions. Only the 
major opcode of this instruction is defined. The next two 
are assist instruction formats, for the special function unit 
and coprocessor types of assists, respectively. For example, 
the floating-point coprocessor uses coprocessor unit iden 
tifier "zero" and encodes all its operations in the u fields. 
While DIAGNOSE instructions are not portable between im 
plementations, the assist instructions are fully portable, 
with transparent software emulation of these instructions 
in the absence of hardware support. 

Conclusion 

HP Precision Architecture is frequently referred to as a 
reduced instruction set computer (RISC) architecture. In 
deed, the execution model of the architecture is RISC- 
based, since it exhibits the features of single-cycle execu- 

AUGUST 1986  HEWLETT-PACKARD JOURNAL 19  

© Copr. 1949-1998 Hewlett-Packard Co.



0 1 2 3 4 5  

1  2  3  

6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

The Abbreviat ions for Field Names are:  

x 
cc 
e 
m 
n 

G e n e r a l  R e g i s t e r  S p e c i f i e r  c  
S p a c e  R e g i s t e r  S p e c i f i e r  f  
I m m e d i a t e  ( o r  D i s p l a c e m e n t  o r  O f f s e t )  i p t r  
P r e m o d i f y  v e r s u s  P o s t m o d i f y ,  H e n  
o r  I n d e x  S h i f t e d  b y  D a t a  S i z e  c r  
I n d e x e d  ( x = 0 )  v e r s u s  S h o r t  D i s p l a c e m e n t  ( x = 1  )  0  
C a c h e  H i n t s  u  
Subop (Opcode Extension) 
M o d i f i c a t i o n  S p e c i f i e r  s f u  
N u l l i f i c a t i o n  S p e c i f i e r  c o p  

copr 

Condition Specifier 
Falsify Condition c 
Immediate Pointer 
Immediate Length 
Control Register 
Not Used (Set to Zeros) 
Undefined (May Be Defined 
as Instruction Extension) 
Special Function Unit Identifier 
Coprocessor Unit Identifier 
Coprocessor Register 

Fig.  8 .  HP Prec is ion Arch i tec ture 
instruction formats. 

tion and register-based execution, where load and store 
instructions are the only instructions for accessing the 
memory system. The architecture also uses the RISC con 
cept of cooperation between software and hardware to 
achieve simpler implementations with better overall per 
formance. 

HP Precision Architecture, however, goes beyond RISC 
in many ways, even in its execution model. For example, 
RISC machines emphasize reducing the number of instruc 
tions in the instruction set to simplify the implementation 
and improve execution time. Only the most frequently 
used, basic operations are encoded into instructions. How 
ever, frequency alone is not sufficient, since some instruc 
tions may occur frequently because of inefficient code gen 
eration, arbitrary software conventions, or an inefficient 
architecture. 

In designing the next-generation architecture for Hew 
lett-Packard computers, the intrinsic functions needed in 
different computing environments like data base, computa 
tion intensive, real-time, network, program development, 
and artificial intelligence environments were determined. 
These intrinsic functions are supported efficiently in the 
architecture. Minimizing the actual number of instructions 
is not as important as choosing instructions that can be 
executed in a single cycle with relatively simple hardware. 
Complex, but necessary, operations that take more than 
one cycle to execute are broken down into more primitive 
operations, each operation to be executed in one instruc 

tion. If it is not practical to break these complex operations 
into more primitive operations, they are defined as assist 
instructions, by means of the architecture's instruction ex 
tension capabilities. If more than one useful operation can 
be executed in one cycle, HP Precision Architecture defines 
combined operations in a single instruction, resulting in a 
more efficient use of the execution resources and in im 
proved code compaction. 

HP Precision Architecture's execution model has other 
noteworthy features like its heavy use of maximal-length 
immediates as operands for the execution engine, and its 
efficient address modification mechanisms for the rapid 
access of data structures. The architecture also includes 
some uncommon functions for efficiently supporting the 
movement and manipulation of unaligned strings of bytes 
or bits, and primitives for the optimization of high-level 
language programs. 

HP Precision Architecture has gone beyond RISC in its 
control flow model with its conditional branch optimiza 
tion features, its ring-crossing branch instructions, its nul 
lification features, its conditional trap feature, its debug 
ging support, and its efficient interruption mechanisms. 

The architecture's virtual memory addressing and protec 
tion mechanisms support a wide range of system needs, from 
the smallest controller to the largest multinetwork environ 
ment. Indeed, the HP Precision program was internally code- 
named Spectrum, since its objective was to serve the full 
spectrum of HP customers' information processing needs. 
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In summary. HP Precision Architecture represents an 
evolution of the more successful ideas in past computer 
architectures, combined with support for the anticipated 
needs of future computer systems. 
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C O R R E C T I O N  
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23.  and are 5 on page 24 were reproduced wi thout  any gray tones,  and therefore are 
not representat-ve of the display qual i ty of HP's Ultrasound Imaging System, Fig. 1 on 
page 45 is  much c loser  to what  the d isplay real ly  looks l ike 
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HP Precision Architecture:  The 
Input/Output System 
A simple,  uni form archi tecture sat is f ies the I /O needs of  
large and small systems, and provides flexibility f or future 
enhancements. 

by David V.  James,  Stephen G.  Burger ,  and Robert  D.  Odineal  

THE HP PRECISION I/O SYSTEM was defined to pro 
vide a flexible framework to leverage existing I/O card 
designs without restricting the capabilities of low- 

cost or high-performance I/O cards in the future. The HP 
Precision Architecture development program provided an 
opportunity to incorporate and achieve global objectives of 
scalability, leverageability, and flexibility in a corporate I/O 
strategy. These objectives have been met by basing the I/O 
system on the design strategies of simplicity and uniformity. 

Scalability is provided by a unified family of compatible 
buses. A basic single-bus configuration can be extended to 
include higher-performance or lower-performance buses, 
or expanded to include additional buses of the same perfor 
mance. 

Leverageability requires interchangeable parts. Hard 
ware interchangeability is achieved by using one physical 
component in systems having similar requirements for 
function and performance. Software interchangeability is 
achieved by using one version of I/O driver software for 
functionally equivalent hardware components that differ 
only in performance and capacity. 

Flexibility is more than the use of leveraged components. 
A system is flexible when it is implemented to meet existing 
needs and is alterable to match the changing needs of the 
future with minimal perturbation of a customer's existing 
system. A flexible I/O system allows the existing I/O card 
designs to be leveraged for the initial product shipment, 
while also allowing the I/O system to be upgraded to sup 
port more demanding I/O requirements in the future (e.g., 
multiprocessors, shared peripherals, and memory mapped 
graphics). Flexibility is also provided by minimizing con 
figuration restrictions in the I/O system. 

Levels of  Design 
The definition process for the I/O system included rigor 

ous documentation at all levels of the design. These design 
levels included the I/O architecture, the connect protocol, 
and multiple definitions of bus standards. The I/O architec 
ture defines the types of modules that connect to an HP 
Precision bus (including processors, memory, and I/O) and 
defines the memory mapped registers used by other mod 
ules to control or observe the module's activity. This ar 
chitectural interface is defined in sufficient detail to allow 
the hardware and software to be developed independently. 
HP Precision I/O Architecture includes the definition of 
simple instructions fetched from memory and executed by 
I/O modules with direct memory access (DMA) capabilities, 

but does not include the definition of instructions executed 
by the more general-purpose processor module. 

The connect protocol defines the standard set of bus 
transactions used to communicate between modules de 
fined by HP Precision I/O Architecture. This includes the 
definition of transaction functionality, transfer sizes, align 
ment restrictions, and returned status information. In addi 
tion to implementing the connect protocol, each HP Preci 
sion system bus definition includes the timing of signal 
transitions, voltage thresholds of transceivers, power re 
quirements, and other physical parameters. 

The HP Precision program provided a unique opportu 
nity to upgrade all levels of the I/O system definition simul 
taneously. The method used to develop the system was 
top-down definition coupled to bottom-up verification. 

The steps in top-down definition are architecture, pro 
tocol, standards, and design. The I/O architecture is defined 
around a model established to meet the objectives. The 
architectural concepts define the required connect pro 
tocol. The bus standards are defined based on that connect 
protocol, and the bus standards are used in the design of 
I/O cards. Fig. 1 illustrates the process. 

The simultaneous activity in the architecture and design 
phases of the definition were coordinated to provide con 
stant feedback between the intermediate levels. The initial 
designs revealed flaws or incompletely specified portions 
of the bus standards. These were corrected in the bus stan 
dards and the corrections were propagated up to the appro 
priate higher level. Feedback also occurred between the 
bus standards and the connect protocol, and between the 
connect protocol and the I/O architecture. This controlled 
feedback process provided the design evaluations required 
to update the initial drafts of the I/O architecture, connect 
protocol, and bus standards documents. These documents 
are the basis for the design of the system components, or 
modules. 

Documents 

Fig.  1  .  Feedback paths in  the def in i t ion process for  HP Pre 
cis ion I /O Archi tecture.  
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Bus Options 
HP Precision I/O Architecture is based on functional en 

tities called modules. The minimal system consists of a 
processor, memory, and I/O modules attached to a single 
system bus, as shown in Fig. 2. The single-bus configuration 
is sufficient to support low-range and midrange products. 

For high-end products, multiple buses are required, as 
shown in Fig. 3. The processor and memory are connected 
to a higher-performance HP Precision bus and the I/O mod 
ules are connected to other low-cost buses. In this example, 
I/O connections to a "foreign" bus and a "native" system 
bus are illustrated. The native system bus, or simply system 
bus, implements the HP Precision connect protocol; the 
foreign bus does not. The native and foreign buses are 
connected through a bus adapter module, and special soft 
ware is required to support the connection. The bus adapter 
architecture allows I/O cards developed for other buses to 
be leveraged in the HP Precision system products, as dis 
cussed later. 

Two native system buses can also be connected through 
a bus converter module. This connection is transparent to 
normal software operation. 

Based on the destination address of a transaction, the 
bus converter forwards the transaction to remote modules 
attached to a physically separate bus. The bus converter is 
not involved in local transactions between modules at 
tached to the same bus. Unless bus errors occur, the for 
warding of a remote transaction is transparent to the mod 
ule that originates the transaction. This allows the I/O 
driver software developed for a local module to be leveraged 
when the module is moved to a remote bus. Software 
changes are limited to the optional recovery of errors de 
tected on the remote bus (the bus converter logs and isolates 
system bus errors). 

The bus converter is implemented as a module pair; one 
module is attached to each of the two system buses. The 
module pair can be physically separated and connected 
with a high-speed link (e.g., fiber optics), as shown in Fig. 
3. This separation is required when the buses cannot be 
physically adjacent because of mechanical packaging con 
straints or customer requirements to support remotely lo 
cated peripherals. This would be the case for large I/O 
configurations, processor clusters, or remotely located 
graphics and data collection peripherals. 

Module Addressing 
When a system bus is initialized, each module initially 

responds to a 4K-byte "hard" physical address range. The 
module's 4K-byte address space is divided into 1024 32-bit 
I/O registers. Access to these I/O registers is provided by 
the read or write transactions defined by the connect pro 
tocol. For example, write transactions are used to reset the 
system or a card, interrupt the processor, and initiate I/O 
operations. The more common I/O registers, such as those 

I  I  Â »  

used for module identification and initialization, are stan 
dardized to support autoconfiguration and simplify operat 
ing system software. 

A 256K-byte address space, aligned to begin at a multiple 
of 256K bytes, is provided for each system bus; this is 
sufficient to support 64 modules. The physical properties 
of card connectors, backplanes, and transceivers normally 
limit the number of card slots on a bus to 16. Thus, to 
provide a complete set of 64 modules on a system bus, 
hardware designers would be required to implement four 
modules on each card. For example, a multifunction card 
might consist of a processor, memory, and two I/O modules. 
In general, not all cards have four modules and the bus 
address space is only partially used. 

The initial address space allocated to memory and I/O 
modules is not generally sufficient to support normal mod 
ule operation. For these modules, one of the registers in 
the initial address space is used for dynamically assigning 
an extended address space, as shown in Fig. 4. The ex 
tended address is always a power of two in size, and is 
aligned to a physical address that is a multiple of its size. 
To simplify configuration firmware and software, the ex 
tended address space can be assigned independently of the 
module's initial hard address space. 

The initial 4K-byte address space of an I/O module maps 
to the supervisor element. Additional register sets, or I/O 
elements, are required to communicate directly with the 
attached devices. These I/O element registers are typically 
located in an extended address space, which is dynamically 
assigned by a writing to a supervisor element I/O register. 

To simplify the I/O driver software, a single I/O element 
(register set) is allocated for each device to be controlled 
by the software. Multiple devices are supported through 
multiple I/O elements. The architecture provides the design 
freedom needed to achieve a good match between physical 
hardware implementation and logical software interfacing. 
For example, a disc controller implemented as a single 
physical device can interface to software through the ad 
dress space of a single I/O element. A full-duplex terminal 
controller can be assigned two I/O elements, one for data 
input and one for data output. The software can thus service 
the inbound and outbound data streams independently. A 
terminal multiplexer with eight full-duplex ports can be 
implemented as 16 I/O elements, allowing software to per 
form independent I/O operations on each data stream. 

System Bus 

F ig .  2 .  Sma l l  HP  Prec i s ion  sys tem con f i gu ra t i on  (up  to  64  
modules).  

F o r e i g n  B u s  S y s t e m  B u s  

Fig.  3 .  Large HP Prec is ion system conf igurat ion.  
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Fig. 4.  When the ini t ia l  address space al located to a memory 
module or an I /O module is too smal l ,  one of  the registers in 
the init ial  address space can be used for dynamic assignment 
o f  an  ex tended  add ress  space .  A  spec ia l  ROM,  IODC ( I /O  
dependent  code) ,  suppor ts  autoconf igurat ion.  

During normal operation, an I/O device is controlled by 
accessing I/O element registers directly. When DMA or 
similar hardware on the I/O module is shared by multiple 
devices, the use of this shared resource is scheduled by 
the I/O module hardware, not the I/O driver software. This 
simplifies software and generally provides a more efficient 
mechanism for scheduling shared hardware resources. The 
I/O registers in the supervisor element are only used for 
module identification, initialization, and error recovery. 

Two sizes of I/O elements are defined, 128 bytes and 4K 
bytes. The packed version (128 bytes) allows up to 16 I/O 
elements to be packed into a single 2K-byte page. In the 
unpacked 4K-byte version, two pages are provided for the 
support of privileged and unprivileged I/O registers. Un 
privileged registers are accessible through both pages; 
privileged registers are accessible only through the lower- 
addressed page. The higher-addressed page can be mapped 
directly into the user's virtual address space without com 
promising system security. This allows many of the I/O 
element registers to be accessed directly, without the over 
head of calling operating system software. 

On a memory module, the extended address space maps 
to the module's RAM. Because the extended address space 
is automatically assigned, hardware switches are not re 
quired to configure memory addresses. This improves the 
reliability of the card, and eliminates service calls caused 
by improperly selected switch settings. After initial config 
uration, the supervisor element registers are read periodi 
cally to update the system's memory error log. 

I /O Dependent  Code 
As illustrated in Fig. 4 for I/O and memory modules, 

each module contains card specific ROM called I/O depen 
dent code, or IODC, which is accessible through standard 
ized I/O registers. The content of the IODC is sufficient to 

identify the proper diagnostic and I/O driver software for 
the module. This is provided to support autoconfigurable 
operating system software. Operator intervention is not re 
quired to configure a new physical card. 

System initialization, or boot, involves the execution of 
firmware code to initiate an I/O operation on one of the 
boot devices, such as a disc. To minimize updates of pro 
cessor ROMs, this firmware is split between the processor 
and the I/O modules. The portion of the code shared by all 
I/O modules is located on the processor module. The primi 
tive I/O drivers are provided by the I/O modules, and are 
called to initialize, test, and read data from the selected 
boot device. A stable HP Precision instruction set simplifies 
the support of IODC on I/O modules; new ROMs are not re 
quired for each upgrade of the processor hardware. 

In addition to assisting system initialization, the IODC 
ROM is used to distribute module self-test code, and can 
be used to insulate standard I/O driver software from the 
implementation dependent features of module identifica 
tion, configuration, and error recovery. 

Address Space Al locat ion 
HP Precision I/O Architecture uses a single 32-bit phys 

ical address space. When a physical module is accessed 
through a virtual address, the translation to a physical ad 
dress is performed by the processor, and a physical address 
is used in the bus transaction. The physical address space 
is partitioned into two distinct spaces, the I/O address space 
and the memory address space, as shown in Fig. 5. 

Address space is dynamically assigned. I/O addresses 
are assigned from the high end of the physical address 
space and memory addresses are assigned from the low 
end of the physical address space. This generates a compact 
address space assignment that minimizes the page table 
resources required to map virtual memory accesses. 

Initially, only the broadcast address space is defined. A 
broadcast write transaction is used by a processor to in 
itialize the 256K bytes of address space for its bus. Addi 
tional address space is assigned to other buses and ex 
tended module address spaces as required. The extended 
address space for I/O modules and memory modules is 
allocated from the available I/O address space and memory 
address space, respectively. 

The words in the I/O address space correspond to I/O 
registers. Software references to these registers are pro 
cessed differently from memory transactions; the load or 
store instruction triggers a bus transaction rather than a 
data cache access. The fixed partitioning of I/O and memory 
addresses simplifies the processor hardware required to 
identify the I/O register accesses, which bypass the data 
cache. 

The dynamic allocation of the address space allows the 
address space to be assigned to additional buses or I/O 
elements as required to support the selected hardware con 
figuration. Although the total physical address space is 
limited, the number and size of modules that can be sup 
ported are quite large, as shown in the table on the next page. 
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HP Precision Architecture Configurat ion Limitat ions 
(Approximate) 

I /O Address Space 

Total I/O Address Space 
System Buses (256K bytes each) 
Processor Modules (4K bytes each) 
Packed I/O Elements ( 1 28 bytes each) 

Memory Address Space 

Total RAM Configured 

256M Bytes 
1024 
64K 
2 M  

3.75GBytes 

Connect Protocol  
HP Precision I/O Architecture defines a standard soft 

ware interface to module registers,  independent of the 
physical bus standard. To implement this interface, and to 
support transparent forwarding of transactions through bus 
converters, a single connect protocol is defined for all sys 
tem buses. 

The connect protocol defines the required and optional 
transactions for all system buses. These transactions are 
initiated by a master, and invoke a response from one or 
more slaves. For a read transaction, data is transferred from 
the slave to the master.  For a write transaction, data is 
transferred from the master to the slave. For a broadcast 
transaction , data is transferred from the master to all slaves. 

Although the data transfer sizes are different for I/O and 
memory transactions, the basic format of the transactions 
is maintained, as shown in Fig. 6. 

During the address phase, the address of the transaction 
is asserted on the bus. The bus address of the master (master 
ID) follows, and is sufficient to identify the module initiat 
ing the transaction. The master ID is transmitted while the 
slave is decoding its address, and generally has a minimal 
impact on system performance. 

The master ID field is required to resolve potential dead 
lock conflicts when transactions are forwarded through bus 
converters. The field is also used by the smart-cache pro 
tocols to maintain consistent copies of data in the cache 
lines of processors attached to separate buses. 

Only a small set of data transfer sizes is defined. The 

M e m o r y  
( 1 5 1 6 )  

I / O  
( 1  1 6 )  

T o t a l  A d d r e s s  S p a c e  
=  2 "  4 G  B y t e s  

2 3 2 - 1  

basic 4-byte and 1 6-byte sizes , and the larger optional trans 
fer sizes (32, 64, ...) are all powers of two in size, and are 
described later in this article. Support of additional transfer 
size options in the memory address space would have in 
creased the cost of memory modules, since they support 
all of the options. 

At the conclusion of the transfer, status is transferred 
from the slave (or slaves) to the transaction master. If the 
slave detects an error (such as a double-bit memory error), 
an error condition is reported to the master, to prevent the 
use of corrupted data. For transactions that are correctly 
specified, but cannot be completed immediately, a busy 
status is returned and the transaction is automatically re 
tried by the master. The busy status is required to avoid 
deadlocks in bus converters and is also used by the special 
transactions provided to maintain cache consistency in a 
multiprocessor environment. 

Parity or alternative forms of error checking protect the 
transaction and slave addresses, master ID, data, and status 
signals. When control signals cannot be parity protected, 
their values and timing are designed to simplify the detec 
tion of faults through alternative mechanisms (bus time 
outs, for example). 

Separate transaction types are provided in the I/O and 
memory address spaces. This allows the data transfer size 
to be optimized for its intended use. The read and write 
transactions in the I/O address space are designed to access 
I/O registers, which are words (four bytes in size and align 
ment). Simple cost-sensitive cards may implement only 
the least-significant byte of each I/O register. 

Transact ion Types 
Based on the requirements of processors and DMA-based 

I/O modules, transactions in the memory address space are 
optimized for burst data transfers. The CPUs use burst trans 
fers to read or write cache lines. The DMA-based I/O mod 
ules use burst transfers to process buffered data packets 
efficiently. Nibble-mode and static column RAM technol 
ogies have minimized the cost of supporting the high-per 
formance burst-mode transfers on memory modules. 

All buses support the smallest (16-byte) memory address 
space transaction. This quad-word transfer typically uses 
50% of the peak bus bandwidth. Larger burst transfers (e.g., 
32 and 64 data bytes) are options, and are not defined for 
all system buses. If the transfer size is defined in the bus 
standard,  i t  is  supported on all  modules responding as 
slaves in the memory address space, and is optionally used 
by the transaction masters (processors, the DMA-based I/O 
modules,  and bus converters).  In general ,  the low-cost 
DMA-based I/O module designs use 16-byte transfers, and 

S t a r t  -Time- -â€¢-End 

T r a n s a c t i o n  
T y p e  

M a s t e r  D a t a  T r a n s f e r  S t a t u s  

E r r o r  C h e c k i n g  

Fig.  5 .  Par t i t ion ing o f  the phys ica l  address space.  F ig .  6 .  Bas ic  format  o f  I /O and memory t ransact ions.  
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high-performance DMA I/O module designs use the largest 
transfer size defined by the bus standard. 

Two special types of transactions are defined by the con 
nect protocol: broadcast and semaphore. To simplify their 
implementation, the architecture constrains the use of 
these are transactions. Broadcast transactions are 
only used to update I/O registers in the supervisor element. 
A write to a register offset in the broadcast portion of the 
I/O address space is equivalent to a sequential set of writes 
to the same register offset in each of the supervisor ele 
ments. Broadcast transactions to I/O elements or to the 
memory address space are not defined. These and other 
generalized uses were not required; supporting them would 
have needlessly complicated the module designs. 

On many of the industry standard buses, semaphore op 
erations are implemented by the processor, which requires 
the definition of an indivisible read and write transaction 
pair. Although this transaction pair has been used success 
fully in previous designs, it is difficult to forward through 
bus converters, and increases the complexity of high- 
bandwidth pipelined bus standards. 

In the HP Precision connect protocol, the semaphore 
operation is implemented by memory module hardware, 
and has minimal impact on the complexity of bus stan 
dards. The semaphore transaction has a unique command 
code, but is otherwise identical to the quad-word read 
transaction defined in the memory address space. Like the 
read, the semaphore is recognized by the memory control 
ler, and four words of data are returned from RAM. The 
semaphore transaction is distinguished by an important 
side effect â€” the first word at the quad address in RAM is 
cleared as the transaction completes. This is sufficient to 
implement the semaphores defined by the HP Precision 
instruction set. 

Module Interrupts 
In any computer, when a module such as an I/O device 

requires special service from a processor, the other tasks 
must be interrupted. The interruption mechanism enables 
the processor to respond quickly to high-priority interrupts 
while queuing and eventually servicing large numbers of 
low-priority interrupts, all with minimal performance over 
head on the processor. 

HP Precision I/O Architecture defines a very simple in 
terrupt system that requires little special hardware and 
allows great flexibility in the processor's response to each 
interrupt. A key aspect of this interrupt system is the assign 
ment of interrupt control to software. The architecture gives 
software the power to assign arbitrary interrupt priorities 
to all modules, direct each module's interrupts to any pro 
cessor in the system, and selectively process or queue in 
dividual interrupts or priority levels. 

When a module needs attention or service from a proces 
sor, the module communicates its need to the processor's 
external interrupt request register by using the same single- 
word, memory mapped write transaction used for all other 
intermodule communication. This ensures interrupt re 
quests can be passed from any module in the system to 
any processor in the system without requiring specialized 
interrupt hardware. Also, since the connect protocol de 
fines broadcast transactions to be a special case of single- 

word write transactions, a module can broadcast its inter 
rupt request simultaneously to all processors in the system. 
Like the other transactions defined by the connect protocol, 
the interrupts propagate transparently through bus convert 
ers, and can be sent to a processor on any system bus. 

Interrupts in HP Precision I/O Architecture differ from 
most other designs, which interlock the low-priority de 
vices while the high-priority tasks are being executed. This 
interlock was discovered to be inefficient for uniprocessors 
and unreliable for multiprocessors. For uniprocessor con 
figurations, this interlock would require that the interrupt 
ing module retry the write to the processor's interrupt reg 
ister until it is completed successfully. The repeated trans 
actions are an inefficient use of bus bandwidth. For a two- 
processor configuration, this interlock generates a potential 
hardware deadlock. For example, when two processors are 
executing separate high-priority tasks, and software on each 
processor sends a lower-priority interrupt to the other, both 
processors become deadlocked. 

Interrupt  Groups Hardware 
HP Precision processor interrupts are based on hardware 

support of 32 interrupt groups. Software assigns one of 
these groups to an I/O element before an I/O operation is 
initiated. The value of the interrupt group is returned to 
the processor when an interrupt occurs. Software can inde 
pendently disable any one or more of the interrupt groups, 
delaying their processing to a more convenient time. This 
is simpler and more flexible than architectures that set the 
interrupt priority in special-purpose hardware, restricting 
the ability of software to modify the order in which inter 
rupts are processed. 

Fig. 7 shows the functionality of the interrupt hardware 
that supports the interrupt groups. The interrupt system 
hardware consists of one register (the external interrupt 
message or EIM register) on each I/O element that generates 
interrupts, and two registers (the external interrupt enable 
mask or EIEM register and the external interrupt request 
or EIR register) on each processor. Before an I/O operation 
is initiated, software writes a 32-bit value to the EIM register 

P r o c e s s o r  M o d u l e  

I  O Element  

EIM Regis ter  I  
2 7 - B i t  5 - B i t  

A d d r e s s  G r o u p  *  

S y s t e m  B u s  

Iware Sof twai  
In te r rup t  

Fig.  7 .  HP Prec is ion in ter rupt  hardware.  
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of the I/O element. This value includes both the address 
of the processor to be interrupted and a five-bit encoding 
of the interrupt group assigned to the I/O element. When 
an element needs service, the single word in its EIM register 
provides both address and data for a single-word write 
transaction. The address determines the processor to be 
interrupted, and five bits of the data specify the interrupt 
group bit to be set in the processor's 32-bit EIR register. 
Each bit of the EIR register is continuously ANDed with the 
corresponding bit of the EIEM register, and if any bit of the 
result is true, the processor is interrupted. Software has 
complete control of the EIEM register to specify the inter 
rupt groups that are recognized. As software services each 
interrupt, it clears the associated bit of the EIR register to 
prepare for the next interrupt. Software running on one 
processor is able to interrupt another processor simply by 
writing the appropriate data value to the processor's EIR 
register. 

Although the architected interrupt system is fast and 
flexible, the information provided to software is minimal 
(only the interrupt group is known). In a system with many 
I/O elements, each of which must interrupt the processor 
to signal its completion of an assigned task, many of the 
interrupt group bits in the EIR register are shared. Unless 
an alternative mechanism is provided, the processor soft 
ware would be burdened by the overhead of polling the 
I/O registers on I/O elements to resolve the source of inter 
rupts that map to a shared interrupt group bit. A more 
efficient mechanism is the status chain feature, which is 
associated with DMA modules and is described below. 

DMA Module Capabi l i t ies 
Direct memory access, or DMA, is defined as an optional 

feature of an I/O element in HP Precision I/O Architecture. 
DMA is simply the transfer of data between the I/O element 
and system memory without intervention by a processor. 
The primary objective of DMA is to minimize the effort 
required of the processor to support I/O transfers. A high- 
performance DMA model allows the data to be transferred 
efficiently to system memory, minimizing the need to pro 
vide operating system specific data processing hardware 
or firmware on the I/O card. 

A uniform DMA model is defined by the I/O architecture 
and supported by the connect protocol. The DMA modules 
access system memory using the same bus transactions that 

processors use. All DMA elements present the same mem 
ory mapped register interface to software, and software com 
munication to initiate DMA activity uses the single-word 
memory mapped transactions defined for communication 
with other I/O registers. A uniform definition of the I/O 
registers in the DMA hardware interface simplifies the soft 
ware interface, since many of the DMA software utilities 
can be shared by all of the DMA-based I/O software drivers. 

To simplify the connect protocol and processor cache 
designs, all DMA transfers are performed directly to mem 
ory, and are not affected by the contents of the instruction 
or data caches. Shared utilities in the I/O driver software 
use the cache flush and purge instructions to maintain 
consistent copies of data in the processor caches and mem 
ory module RAM. 

The DMA element activity is initiated by writes to two 
of the I/O registers on the DMA element. The first I/O regis 
ter holds the address of the DMA command data structure 
in memory. The write to the second I/O register triggers 
the fetching of these DMA commands from memory for 
execution by the DMA element. The command data struc 
tures in memory are organized as a sequence of DMA re 
quests, as shown in Fig. 8. Each DMA request is organized 
as a sequence of four-word data structures, or quads. The 
quads are aligned to an address that is a multiple of their 
size. 

The data structures are based on linked lists of quads, 
rather than a less flexible set of sequential table entries. 
The four words of the quad include a pointer to the next 
quad in the chain, a command for the DMA element and 
two arguments for the command. The DMA element exe 
cutes the successive commands in the chain of quads, au 
tomatically advancing from one quad to the next without 
processor intervention. The quad chains can be of arbitrary 
length, and can be dynamically extended as required to 
queue additional DMA requests. This is accomplished by 
changing the pointer in the final quad from its previously 
null value to the address of the first quad in the chain to 
be appended. 

Each quad chain consists of one or more DMA requests. 
In general, each request corresponds to a separate call of 
the I/O driver software. For shared I/O devices, such as a 
file system disc, the I/O driver software is expected to ap 
pend multiple requests for sequential processing by the 
DMA element. Each request is typically partitioned into 

Request 1 Request 2 Request 3 Request N 

F ig .  8 .  Da ta  s t r uc tu res  f o r  DMA 
commands are organized as a se 
quence of  four -word quads.  
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three phases. The quads in the initialize phase provide the 
parameters for the following data transfer, such as the 
media address and length of the total disc transfer. The 
quads in the data transfer phase define the physical memory 
addresses involved in the DMA data transfer. The quad in 
the status phase is used to inform the processor when the 
request completes. 

The chaining of quads in the data transfer phase allows 
the data to be transferred to noncontiguous ranges of phys 
ical addresses in the memory address space. This is useful 
in the virtual memory environment provided by HP Preci 
sion Architecture. An I/O request processed by the I/O 
driver software typically involves a transfer to or from a 
contiguous range of virtual addresses. Software converts 
the virtual address range into a set of noncontiguous phys 
ical addresses, and generates the corresponding chain of 
quads for use in the data transfer phase of an operation. 
Only data transfers to or from the memory address space 
are defined, and DMA input is aligned to a multiple of 64 
bytes. Arbitrarily aligned DMA data transfers and transfers 
to the I/O address space are not required, and would have 
complicated the hardware design of DMA modules. 

The status phase of a DMA request returns a summary 
of the DMA element's status to an entry stored in memory. 
The status information is sufficient for software to complete 
the processing of successful DMA requests. Unless errors 
occur, this summary is sufficient to allow a DMA element 
to continue processing additional requests without soft 
ware intervention. The status phase generally consists of 
a single quad, called the link status quad. The link status 
quad instructs the DMA module to write its own status to 
a completion entry in system memory (the entry address 
is specified by Arg2). The completion entry is inserted into 
a linked list in memory (the value of Arg1 specifies the 
address of the list head), and a processor interrupt is option 
ally generated. The linked list of completion entries is 
called the completion list. The ordering of entries in the 
completion list is LIFO (last in, first out) to minimize the 
complexity of the hardware implementation. By software 
convention, each of the completion lists is assigned to a 
unique processor interrupt group. 

Hardware updates four words of the completion entry, 
and software conventions define additional words of data 
in the entry, such as the address and arguments for the 
interrupt service routine. Before the DMA request is ini 
tiated, these parameters are saved in the space reserved for 
the completion entry. When an interrupt is received, soft 
ware decodes the interrupt group to select the completion 
list to be processed. The data saved by software in the 
completion entry is used to dispatch quickly to the proper 
interrupt service routine. 

Bus Adapters 
Foreign buses are buses that do not conform to the specifi 

cation of the HP Precision connect protocol. They can be 
connected to a system bus through a bus adapter. The bus 
adapter allows HP to preserve the investment in previously 
developed products when migrating to the HP Precision 
I/O system. Cards developed for the proprietary HP-CIO 
backplane are used in the first HP Precision products. By 
allowing the use of proven I/O technologies and systems, 

the bus adapter has accelerated the design cycle of the 
initial HP Precision Architecture implementations. 

The first bus adapter to be developed for the HP Precision 
I O system is the HP-CIO channel adapter (see Fig. 9). This 
adapter is fully compatible with all existing HP-CIO I/O 
cards, and with HP-CIO cards currently in development. 
Although the HP-CIO protocol differs from the HP Precision 
connect protocol in many ways, the bus adapter maps all 
of the necessary HP-CIO functions into the standard register 
interface through which it communicates with the HP Pre 
cision I/O system. In accordance with the HP-CIO protocol, 
the channel adapter serves as a central time-shared DMA 
controller on the HP-CIO bus. The adapter is the initiator 
of all HP-CIO bus transactions, and it is the arbitrator that 
manages the allocation of the HP-CIO bus bandwidth. As 
a bus adapter, the HP-CIO channel adapter provides data 
buffering and address generation as it transfers data be 
tween the I/O modules on the HP-CIO bus and the memory 
modules on other buses within the HP Precision I/O system. 
The adapter also translates interrupts and error messages 
into the protocol used by the HP Precision I/O system. By 
handling all normal DMA transfers and the majority of 
error conditions in complete autonomy, the HP-CIO chan 
nel adapter can greatly reduce the processor overhead re 
quired to operate the HP-CIO bus. Except in the rare error 
case that requires software intervention, the HP-CIO chan 
nel adapter appears to the HP Precision I/O system as a set 
of DMA I/O elements that conform to most of the specifica 
tions of HP Precision I/O Architecture. 

In the future, the bus adapter module can also be used 
to support other foreign buses, such as VME. To support 
these cards, bus adapter hardware and I/O driver software 
are required to convert between the HP Precision I/O Ar 
chitecture and connect protocol and the conventions of the 
foreign bus. For example, interrupts and DMA transfer pro 
tocols are usually different, and need to be converted. Al 
though other foreign buses share many properties, their 
features require special considerations in the design of each 
bus adapter. 

The leverage of foreign I/O card designs is not achieved 
without cost. Special bus adapter hardware is required, 
autoconfiguration capabilities are reduced, and software 
complexity is increased. Autoconfiguration features are 
generally not available on foreign buses. This typically 
limits the assignment of boot devices to preallocated slots 
on the bus, or requires a bus adapter ROM update to support 
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Fig. 9. HP-CIO bus adapter with central ized DMA protocols. 
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new boot devices. Access to foreign I/O cards is indirect, 
and involves software interactions with shared bus adapter 
resources to initiate an I/O operation, implement the DMA 
transfer to memory, or convert between interrupt protocols. 
This overhead increases the complexity of I/O driver soft- 

I /O System Summary 
By adhering to the strategies of simplicity and unifor 

mity, many benefits were realized. 
Simplicity is illustrated by the alignment of addresses 

and address ranges, the minimal number of transactions 
defined in a single connect protocol, and the implementa 
tion of processor interrupts (the EIR and EIEM registers). 
Uniformity is illustrated by the transfer of interrupts be 
tween modules (an existing word write transaction is used), 
the definition of standard module I/O registers for identifi 
cation and configuration of modules (including processors 
and memory), and the use of a single connect protocol for 
all bus standards. 

The verification of the architecture through actual de 
signs has shown the benefits of meeting the original objec 
tives. Scalability is achieved through simplicity, and the 
architecture makes things "as simple as possible, but not 
simpler." "Not simpler" means that concepts and compo 

nents are designed to meet the global objectives, rather 
than only the needs of a local design center. Components 
in the system are interchangeable, so the cost of developing 
them is amortized by their use on many different systems. 

The biggest benefit HP's customers will see comes from 
the flexibility and the identical support of common compo 
nents. Identical support for common components provides 
transparent migration to faster components, and more or 
faster buses. This migration can be accomplished with min 
imal perturbation of the customer's software and/or work 
ing environment. 
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HP Precision Architecture Performance 
Analysis 
Performance analys is  was crucia l  to  inst ruct ion set  
se lect ion,  CPU design,  MIPS determinat ion,  and system 
per formance measurement .  

by Joseph A.  Lukes 

HEWLETT-PACKARD PRECISION ARCHITECTURE 
is a key component in Hewlett-Packard's computer 
strategy for systems well into the next decade. This 

article is intended to be a brief overview of the contribu 
tions of a collection of people from HP's performance evalu 
ation community in the evolution of this strategy. It de 
scribes the role of these performance groups in the design 
and measurement of the architecture, and in the CPU design 
and systems measurement techniques that have led to the 
computer systems based on this architecture. Presentation 
of measured performance data will not be done in this 
article, but will be left to later papers in this and other 
journals. 

Select ion of  the Instruct ion Set 
The creation of HP Precision Architecture combined the 

expertise of highly experienced specialists in computer 
hardware design, compilers, operating systems, architec 
ture, and performance analysis. The architecture team had 
investigated a number of papers on reduced instruction set 
computers1 and the general conclusion was that a reduced 
instruction set computer was a feasible vehicle with which 
to migrate HP from its HP 1000, HP 3000, and HP 9000 
Computers to a common architecture. The purpose of this 
section is to describe the efforts of the HP Laboratories 
performance analysis team in creating the data used to 
select the instruction set of the new architecture. 

A team of performance analysts was chartered to extend 
the studies described in reference 2. To achieve these ob 
jectives, an Amdahl V6 computer was acquired and an 
interpretive instruction tracer program similar to that de 
scribed in reference 2 was created. This program operated 
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Distr ibut ion of  IBM 370 Instruct ions by Frequency 

Language 

I n s t r u c t i o n  C O B O L  F o r t r a n  P a s c a l  

Branch 
Logical Operation 
Load Store 
Storage-Storage Move 
Integer Math 
Floating-point Math 
Decimal Math 
Other 

18.4% 
9.9 

54.0 
3.8 
7.0 
6.8 
0.0 
0.1 

F ig .  1 .  An  examp le  o f  t he  t ype  o f  da ta  ga the red  to  a id  HP 
Precis ion Archi tecture instruct ion set select ion. 

under the IBM VM/CMS operating system and gathered 
raw data from a variety of benchmark programs run on the 
V6 by interpreting and simulating each instruction. Spe 
cifically, we gathered the following data: 
â€¢ Instructions executed and sequence in which executed 
â€¢ Virtual address of instructions 
â€¢ Virtual address of each operand 
â€¢ Identification of registers used by the operation 
â€¢ Contents of each operand for certain operations. 

This basic data allowed us to derive valuable statistics, 
among which the following were of greatest value: 
â€¢ Dynamic frequency of instruction occurrences 
â€¢ Address traces for instruction sequences and for data 

referenced by these instructions 
â€¢ Characteristics of operations such as the number of 

characters used in a move operation, operand values in 
arithmetic operations, distances branched, etc. 

â€¢ Frequency of operation pairs. 
Fig.l illustrates the type of data gathered. Here the distri 

bution of classes of instructions for COBOL, Fortran, and 
Pascal benchmarks is shown. Fig. 2 shows the distribution 
of time spent in these benchmarks per instruction class. 
Note that the bulk of the operations are simple loads, stores, 
and branches. Other operations occur relatively infrequently 
but can take a much larger amount of time. By distribution 
in time, floating-point operations for Fortran and Pascal, 
and storage-to-storage move operations for COBOL are im 
portant instructions. (Storage-to-storage moves can be 
simulated by a sequence of load/store instructions). 

Most of the programs we tested exhibited these charac- 

Distr ibut ion of  IBM 370 Instruct ions by Time 
Language 

I n s t r u c t i o n  C O B O L  F o r t r a n  

Branch 
Logical Operations 
Load Store 
Storage-Storage Move 
Integer Math 
Floating-Point  Math 
Decimal Math 
Other 

Pascal 

1 8.4% 
9.9 

54.0 
3.8 
7.0 
6.8 
0.0 
0.1 

teristics. The bulk of operations, both in frequency of use 
and time, are simple and dominated by the load, store, and 
branch operations. Since simple operations appear to domi 
nate the frequency of instructions in a computer, the con 
cept of cycle-per-instruction architectures has arisen. 

Such information is just beginning to appear in computer 
science literature.1 Reference 3 points out that the fairly 
complex instruction sets of most computers are really not 
as helpful to the compiler writer as might be thought. In 
structions such as the IBM 370 MVC (move character) and 
MVCL (move character long) are examples of instructions 
that might profitably have been left to a simple set of load 
and store operations. These instructions move any number 
of contiguous bytes (from one to sixteen million). However, 
Fig. 3, derived from our benchmark studies, shows that 
storage-to-storage moves really only move a small quantity 
of data. Reference 2 found the same central truth. Why 
bother with really sophisticated movers of characters like 
MVC and MVCL when a simple load/store combination in a 
small loop can outperform the more sophisticated move 
instructions? 

Another interesting observation made from looking at 
the instruction mixes of a variety of benchmarks is that the 
typical mix does not seem to be much a function of the 
type of work that is being done. For example, technical 
work (such as large Fortran simulations or CAD/CAM) and 
commercial work (such as old master in, new master out 
or data base work) show the same characteristics: loads, 

Long Move (MVCL, CLCL) Operations 

Q. 
O  

8  1 6  3 2  6 4  1 2 8  > 1 2 8  

Bytes Moved 

Short Move (MVC. MVZ, .  .  . )  Operations 

Fig .  2 .  More  da ta  ga thered  to  suppor t  ins t ruc t ion  se t  se lec  
t ion.  Load,  s tore,  and branch instruct ions dominate.  

6((Â« 80 Bytes) 
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Fig .  3 .  S to rage- to -s to rage  moves  were  found  to  move  on ly  
a few bytes in  most  cases.  
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stores and branches make up the bulk of operations. 
Fig. 4 shows the instruction mix from an HP 3000 Com 

puter during a peak period (predominantly data base inten 
sive). Compare this with Fig. 2 and you will find that, other 
than the extensive use of floating-point operations in scien 
tific work, they are very similar. One myth that did not 
seem to be borne out by the benchmark work that we did 
is that commercial (COBOL) jobstreams require a large 
amount of decimal arithmetic. We cannot find any evidence 
to back this assertion. 

Another rather nonintuitive result of the early bench 
mark measurements is that a specialized integer multiply/ 
divide coprocessor, unlike the results for floating-point, is 
probably not worth the extra expense. Fig. 5 shows the 
results of the measurement of a large Fortran program's 
use of multiply operations and the associated operand 
value distributions. At least one operand in the vast major 
ity of cases is small (less than 500), making the techniques 
mentioned in reference 3 quite feasible with a net improve 
ment in performance. 

As a result of these studies and a variety of others, the 
compiler, architecture, hardware, and operating system 
teams established and refined the architecture to a set of 
instructions for HP Precision Architecture. The architec 
ture, since it was based on measurements of a large sample 
of workloads, evolved from a simple RISC machine to the 
far more sophisticated operation set and computer organi 
zation outlined in reference 1. In summary, the conclusions 
drawn by the team selecting the instructions for HP Preci 
sion Architecture were: 
â€¢ Simple instructions are most of what is executed in a 

wide variety of work. 
â€¢ There are complex instructions that occur frequently 

enough (e.g., floating-point) to justify a special set of 
hardware to execute them. In HP Precision Architecture 
CPUs these are known as coprocessors or special func 
tional units.4 

â€¢ Load/store (move a 32-bit word) architectures make sense 
since they permit high-speed general registers to be used 
effectively as the first level of the storage hierarchy. 

â€¢ Simulate complex but infrequent operations so that the 
underlying instruction set can be as simple as practica 
ble. 
The next section describes the efforts involved in select 

ing the parameters associated with the family of central 
processing units based on HP Precision Architecture. 

Distr ibut ion of  HP 3000 Instruct ions by Time 

Percent 
I n s t r u c t i o n  o f  W o r k  

B r a n c h  1 9 . 9 %  
L o g i c  O p e r a t i o n s  1 8 . 9  
L o a d  S t o r e  4 5 . 0  
S t o r a g e - S t o r a g e  M o v e  4 . 9  
I n t e g e r  M a t h  8 . 7  
F l o a t i n g - P o i n t  M a t h  0 . 0  
D e c i m a l  M a t h  0 . 0  
O t h e r  2 . 9  

F ig .  4 .  I ns t r uc t i on  m i x  f o r  an  HP  3000  Compu te r  du r i ng  a  
peak per iod.  

HP Precision Archi tecture Computers 
The previous section outlined how a set of instructions 

was chosen, each of which, with few exceptions, executes 
in one major cycle of the central processing unit's clock. 
For example, a central processing unit (CPU) with a 10-MHz 
clock would be a 10-million-instruction-per-second (MIPS) 
processor with a cycle-per-instruction architecture. This, 
of course, assumes no delays as a result of cache or TLB 
(translation lookaside buffer) misses. Complex instruction 
set computers (CISC), on the other hand, sacrifice cycles 
of the CPU to execute more functionally complex instruc 
tions sets, generally through the aid of microcode. 

Before describing how the CPU family associated with 
HP Precision Architecture was designed, a few words need 
to be said about computer system performance. A very 
popular measure of the power of a computer system is to 
specify the number of MIPS (millions of instructions per 
second) that the system's central processing unit(s) can 
execute. This measure is an estimate of the capacity of the 
CPU to execute the work asked of it. The higher the MIPS 
value, the faster the work is done by the CPU. However, 
computer systems are not just CPUs. Indeed, they consist 
of peripherals, interconnections, main storage, applica 
tions, operating systems, data communications subsys 
tems, data base subsystems, compilers, and an entire set 
of policies for scheduling and billing that affect the perfor 
mance of the computer system. Because of this plethora of 
variables in the equation that determines the performance 
of a given computer system, people have tended to concen 
trate on the relative simplicity of MIPS. 

The customer who purchases a computer system is gen 
erally not really interested in the capacity of any one com 
ponent of that system, such as the CPU, to do work. The 
customer is concerned with the response time with which 
work is completed, the throughput in jobs per unit of time, 
the number of active terminals connected to the system, 

Range of  Absolute  Values of  the 
Smal ler  Operand in Mult ip ly  Operat ions 

d! 
Q .  

O  

B 
0 Â °  

01 

512 

Fig.  5.  Distr ibut ion of  operand values for  mul t ip ly operat ions 
in a large Fort ran program. 
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and so on. 
The next section will describe how we extended the 

metrics used to evaluate the HP Precision Architecture CPU 
family to systems performance. The rest of this section will 
concentrate on how we determined the MIPS performance 
of the first members of the HP Precision Architecture CPU 
family. 

In creating a new architecture, the engineers and scien 
tists charged with its development are faced with a large 
problem â€” how do you measure the effects of the architec 
ture on MIPS, system throughput, response time, working 
set size, etc., when you do not have a CPU built from the 
architecture? To be sure, one can prototype the architec 
ture, but the cost becomes prohibitive for all but a small 
number of prototypes. What follows in this section is a 
description of the hierarchical approach taken to develop 
the HP Precision Architecture processor family with mini 
mum possible cost and maximum performance. 

Let us first examine the MIPS value. It is relatively easy 
to calculate: 

MIPS = [(cycles per instruction) x (CPU cycle time)]"1 

The CPU cycle time is the period of the major clock in 
the CPU. This value varies from 100 to 200 nanoseconds 
for transistor-transistor (TTL) logic, and from 20 to 80 ns 
for emitter-coupled (ECL) or HP NMOS-III logic. The MIPS 
capacity of a CPU can be increased by reducing the CPU 
clock time by means of new technologies. Many examples 
of this trend are seen in the current offerings of many com 
puter vendors, including HP. 

The other variable in the MIPS equation is the number 
of cycles per CPU instruction. The lower this number, the 
higher the MIPS value will be. As obvious as this seems, 
there is still raging controversy over the efficacy of the 
cycle-per-instruction architectures (i.e., RISC architec 
tures), since critics of the reduced-complexity approach 
claim that numerous things can happen that tend to lower 
systems performance when one attempts to reduce the cy 
cles per instruction (CPI) to one. It is not the purpose of 
this paper to argue either side. All of our work at HP so 
far, however, has pointed out that the HP Precision Ar 
chitecture does not appear to limit the ability to make very 
high-MIPS computers from existing technologies through 
reductions in the CPI (cycles per instruction) and that such 
CPUs are capable of offering systems performance compar 
able with CISC machines of the same MIPS rating. Details 
of this work will accompany specific product announce 
ments. 

Simulator  and Prototype 
An earlier section described in part how the instruction 

set was chosen. At first, a proposed set of instructions was 
chosen from the collection of written data on cycle-per-in 
struction architectures. Then experiments were run on in 
struction mixes derived from other architectures that could 
be measured (i.e., the IBM 370 set on the Amdahl V6 and 
the HP 3000). Finally, analyses were done to select the 
instruction and register sets. 

Since analysis alone could not take into account the ef 
fects of various design alternatives of the architecture and 

the CPUs designed to implement it, a simulator was written 
(see article, page 40). The simulator extended our ability 
to evaluate design trade-offs by allowing the user to pro 
gram simple kernel programs, either by hand or through 
the use of a portable C compiler. These kernels were chosen 
for their lack of I/O ( no operating system existed) and for 
their simplicity of compilation (only primitive compilers 
existed). A number of invaluable experiments were run on 
the simulator and continue to be run on it even today. 

However, a simulator is relatively slow and expensive 
to use and the number of experiments involved in choosing 
the parameters of the CPU family became too much for the 
simulator alone. Another problem with simulators is that 
they do not convince the skeptical that a revolutionary new 
architecture can actually be implemented in existing 
technologies such as CMOS, TTL, ECL, or NMOS. As a 
consequence, a prototype HP Precision Architecture CPU 
was built. It was named the LESS (low-end Spectrum sys 
tem) and, although very simple compared to the products 
recently announced, it was a fully functioning HP Precision 
Architecture CPU that achieved about 0.8 MIPS. 

The LESS prototype gave software developers very early 
access to the architecture, and served as a vehicle for ex 
perimentation for the architecture, hardware, compiler, 
operating system, and performance teams. An interesting 
and useful tool that came out of the LESS prototype was 
an analyzer board that could be connected to the HP 64000 
Logic Development System (more about this later). 

As useful as the simulator and the LESS prototype were, 
there were parameters of the CPU designs that these tech 
niques could not determine without untoward expense and 
time. Only very simple jobs could be run through the 
simulator and prototype since there were no operating sys 
tems or product-level compilers available. Consequently, 
the technique used in selecting the instruction set for HP 
Precision Architecture was used again, that is, traces on 
the Amdahl V6 and on HP 9000 and HP 3000 Computers. 
The instruction mixes for these computer systems were 
measured and used to simplify the CPU designs for 
minimum cycles per instruction. In addition, address traces 
were used to generate families of cache and translation 
lookaside buffer (TLB) statistics.5 These measurements 
were then used to calculate the cycles per instruction for 
a proposed CPU design. 

The cycles per instruction (CPI) value is, in simple terms, 
a function of the instruction mix, the parameters of the 
cache and TLB, and the CPU design: 

CPI = basic instruction time + f , (cache, TLB) + f2(interlocks) 

where the basic instruction time is 1 cycle for most HP 
Precision Architecture instructions, f , (cache, TLB) is the 
contribution to CPI of cache and TLB misses, and f2(inter- 
locks) is the contribution to CPI of the CPU design. CISC 
machines tend to have basic instruction times of 4 to 10 
cycles for the average instruction. The cache and TLB penal 
ties and interlock penalties are not really affected by the 
architecture to any great extent. 

MIPS Model  
We have developed a relatively simple model of the MIPS 
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performance of HP Precision Architecture CPU implemen 
tations based upon the mixture of instructions and miss 
rates of the different cache and TLB sizes and organizations. 
Fig. 6 illustrates the instruction mix and Fig. 7 the cache 
and TLB curves for one benchmark measured on the Am 
dahl V6. Before fully functioning HP Precision Architecture 
systems were available, such curves were used to design 
the CPUs. 

For example, let the cache and TLB designs be such that 
the cost of a cache miss is 20 cycles and that of a TLB miss 
is 100 cycles. Assume that we are calculating the MIPS of 
a processor whose basic instruction times are 10 cycles for 
floating-point operations and 1 cycle for all other opera 
tions. Moreover, the pipeline design dictates a load/use 
penalty of 1 cycle per occurrence (here a load/use pair 
consists of a load followed by either a load or a store oper 
ation). 

Using the workload characteristics of the Fortran pro 
gram depicted in Fig. 6, the basic instruction time is 
10(0.126) + 1(1-0.126) or 2.13 cycles per instruction for 
instructions alone. 

From Fig. 7, the cache and TLB misses, assuming the 
memory system designs depicted in Fig. 7, are 

Cache miss rate = 3.5% (for an 8K-byte cache) 

TLB miss rate = 0.2% (for a 512-entry TLB) 

Consequently, the cache contribution to fj (cache, TLB) is 
(0.035)(1 + 0.348 + 0.154)(20), where the first factor is the 
miss ratio of this particular cache, the second is the number 
of instruction and data references per instruction (one for 
the instruction itself and a probability of 0.348 of the in 
struction's being a load or 0.154 of its being a store), and 
the third factor is the penalty of a miss, or 20 cycles. Thus 
the contribution of cache misses to the number of cycles 
per instruction is 1.05 cycles per instruction. 

In like manner, the contribution to the CPI of the TLB 
misses is 0.3 cycles per instruction. 

Finally, for this very simple model of the components 
of MIPS, the contribution of interlocks to the CPI consists 
of the above-mentioned load/use interlock, (0.06)(1 cycle 
per instruction), plus the penalty paid for no-op (no oper 
ation) instructions,4 or (0.02)(1 cycle per instruction), for 
a total contribution of f2 (interlocks) = 0.08. 

The value of CPI, the cycles per instruction for this 
m a c h i n e  d e s i g n  a n d  t h i s  b e n c h m a r k ,  i s  C P I  =  
2.13 + 1.05 + 0.30 + 0.08 = 3.56 cycles per instruction. Note 
that this workload has a very high-floating point content, 
so the CPI value is larger than for most workloads. 

Instruction 

Store 
Floating-Point 
Load Use 
Branch 
No-Op 

% Occurrence 

34.8 
15.4 
12.6 

6.0 
12.3 

2.0 

The MIPS value for a 100-ns clock implementation of 
this design and benchmark would be (100 ns per cycle x 
3.56 cycles per instruction)""1 = 2.81 million instructions 
per second. 

If one could replace the floating-point operations with 
integer operations, and if each integer operation took 1 
cycle per instruction, the MIPS value of this design would 
be 4.10 million instructions per second, since the CPI in 
this case would be 2.44 cycles per instruction instead of 
3.56. 

The ideal RISC-design processor would have a MIPS rat 
ing of 10 or more, assuming one cycle or less per instruc 
tion. 

Measurements on Actual  Processors 
Today we base our instruction mixes, cache and TLB 

curves, and other CPU parameters on measurements made 
on the HP 3000 Series 930 and HP 9000 Model 840 proces 
sors. Figs. 8 and 9 are examples of these measurements. 
Future HP Precision Architecture machines are being de 
signed with this data. The logic analyzer board mentioned 
above and the HP 64000 Logic Development System have 
been invaluable tools in debugging, analyzing, and tuning 
the new HP 3000 and HP 9000 processors. Fig. 10 shows 
a curve of MIPS versus time for the HP 9000 Model 840 
derived using the logic analyzer board. Figs. 8 and 9 were 
also measured by the analyzer board. 

In practice, the MIPS performance of a CPU varies with 
time and workload. HP has used heavily loaded values, as 

2-Way Associat iv i ty  
Single Instruct ion and Data Cache 
Cache  LRU Replacement  
B lock  S ize  =  8  Words  
10,000 Instruct ions/Task Switch 

4  8  

Cache Size (K Bytes)  

16 3 2  

0 .7  

0 .6  

C.5 

0 .4  

0 .3  

0 .2  

0.1 

2-Way Associat iv i ty  
Single Instruct ion and Data Cache 
TLB LRU Replacement  
10.000 Instruct ions Task Switch 

16 32 64 128 256 5 1 2  

Fig.  6 .  Inst ruct ion mix  for  a  large For t ran benchmark run on 
the Amdahl  V6 wi th HP Precis ion instruct ions.  

TLB Entries 

Fig. 7. Cache and TLB miss ratios for the benchmark of Fig. 6. 
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measured with the analyzer, for the specifications for the 
ne\v HP 3000 and HP 9000 CPUs. However, a computer 
system consists of far more than the central processing 
unit. The next section will describe how the entire com 
puter system is tracked through its design with extensions 

of the techniques used in designing the architecture and 
processors. 

Systems Performance 
The previous section emphasized the estimation and op- 

HP 9000/840 INSTRUCTION CACHE MISS RATE 
H P - U X  M u l t i p r o g r a m m i n g  W o r k l o a d  

. m i s s  r a t e  ( X )  

1 â€¢ 

100 
time (seconds) 

150 200 

HP 9000/840 DATA CACHE MISS RATE 
H P - U X  M u l t i p r o g r a m m i n g  W o r k l o a d  

miss rate (X) 

(b) 

5 0  1 0 0  
t i m e  ( s e c o n d s )  

150 200 

F ig .  8 .  Examp le  o f  a  cache  m iss  
rate measurement for the HP 9000 
Mode l  840 ,  an  HP  P rec i s i on  p ro  
cessor,  (a) Instruct ions, (b) Data.  
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timization of the CPU capacity as measured in millions of 
instructions executed per second. As pointed out in that 
section, an increase in MIPS does not necessarily guarantee 
a similar increase in system performance measures, such 
as an increase in system throughput or a decrease in user 

response time. Examples of reasons why system perfor 
mance may not increase proportionally to MIPS are seriali 
zation on software queues created to guarantee data consis 
tency (locking or latching), or an input/output subsystem 
not designed to support the increased number of users that 

H P  9 0 0 0 / 8 4 0  I N S T R U C T I O N  T L B  M I S S  R A T E  
HP-UX Multiprogramming Workload 

.1 

. 0 8  

.06 

. 0 4  

. 0 2  

0 . 0 0  

(a) 

miss rate (X) 

in. H 
5 0  1 0 0  

t i m e  ( s e c o n d s )  
150 2 0 0  

HP 9000/840 DATA TLB MISS RATE 
HP-UX Multiprogramming Workload 

miss rate (X) 

. 8  

. 6  

. 4  

0 . 0  

(b) 
5 0  1 0 0  

time (seconds) 
150 200 

Fig. 9. Example of a TLB miss rate 
m e a s u r e m e n t  f o r  t h e  H P  9 0 0 0  
Model  840 processor ,  (a )  Ins t ruc  
t ions, (b) Data. 
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HP 9000/840 MIPS 
HP-UX Multiprogramming workload 

.mips 

5 0  1 0 0  

time (seconds) 
150 ^00 

F i g .  1 0 .  A n  H P  9 0 0 0  M o d e l  8 4 0  
MIPS performance measurement. 

an increase in the capacity of the central processing unit 
would dictate. 

It has been pointed out that something in a computer 
system has to be a bottleneck since a perfectly balanced 
computer system is probably impossible to achieve.6 It 
would seem to be common sense that the best choice of 
the component of the computer system selected to be the 
bottleneck would be the most expensive component. To 
choose any other would be to waste the most expensive 
component and would not maximize performance and 
minimize cost. Usually, the most expensive component of 
the computer system is the CPU, hence the choice of MIPS 
as the metric of computer system performance. But, it 
should be realized that it takes a lot of hard work to make 
the CPU the bottleneck in all but the simplest systems. 
This situation presumes a highly-tuned operating system, 
data communication system, data base management sys 
tem, and set of applications. Therefore, although it can be 
understood why MIPS is so often used as the performance 
metric of choice, this measure must be tempered by other 
measures. 

An effort was begun in HP Laboratories in 1982 to charac 
terize the environment in which HP computer systems were 
operating. This study concentrated on the characterization 
of HP 3000 and HP 1000 installations, since the HP 9000 
was too new at the time to characterize clearly. Fig. 11 is 
a synopsis of the type of data gathered by measurements 
of actual HP customer installations (in this case an HP 3000 
installation). From this data, HP engineers have created a 
set of workloads used to characterize the high end of the 
HP 3000 and HP 1000 environments. From these model 
workloads, benchmarks have been created to study system 
performance by measurements of the new software compo 

nents of the computer systems based on HP Precision Ar 
chitecture. Fig. 12 is a high-level view of this process. 

It must be mentioned that by "workloads" is meant writ 
ten descriptions of snapshots of actual installations. Fig. 
11 is such a snapshot. This form of description of a com 
puter system is useful for analytic and simulative modeling 
of possible future alternatives based on this computing 
environment. Reference 6 further describes the process of 
gathering and using workloads in systems performance 
studies. Reference 7 is excellent in its depiction of system 
models. 

Est imat ion Using Workload Data 
A very simple example of how systems throughput can 

be estimated using data from workloads is as follows. 
Let us predict the throughput of a proposed computer 

system with a new COBOL compiler and a data base man 
agement and file system redesigned for increased system 
throughput. Assume that the current DBMS (data base man- 

Site:  Sample 

Data Base: 
File System: 
I/O: 

Total I/O: 
Disc I/O: 
Non-Disc: 

Period of  Observation 3600 seconds 
T o t a l  C P U  1 9 7 1  s e c o n d s  
Transact ions 

Percent  of  Dynamic Path Length 

10.43 
12.82 
33.76 

OS Kernel: 
Mise: 
User: 

I /O Information 

1 34940 

91238 

43702 

Data Base I /O: 
Non Data Base I /O:  

3105 

26.48 
6.11 

10.4 

39611 
51627 

Fig.  11.  Data gathered f rom an actua l  HP 3000 insta l la t ion.  
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agement system) has an emerging bottleneck for systems 
with increased CPU power because of serialization on its 
buffer pool, and that the new design alleviates this 
bottleneck, but costs more in instructions. Assume that the 
computer system that this system is to replace has the 
workload characteristics shown in Fig. 11 and that the 
central processing unit of the current system has one fourth 
the processing ability (MIPS) of the new system's CPU. 
Estimates show that the new DBMS and file system must 
execute approximately twice the number of instructions 
(dynamic path length) to achieve the same transaction rate 
as the current DBMS and file system. Also, the new COBOL 
compiler is assumed to have a 10% reduction in dynamic 
path length. What is the throughput of the new system 
relative to the current system? 

The following simple model is indicative of the tech 
niques HP design engineers are using to evaluate the kinds 
of options depicted above. Using Fig. 11, let us define sev 
eral terms (using the techniques outlined in reference 6): 

P = time of observation of the system under measurement 
C = seconds the CPU is active during the measurement 

period P 
T = number of completed transactions observed during 

period P 
 = transactions per second = T/P 
6 = seconds of CPU time per transaction = C/T. 

System Per formance Cycle  

Create /Update  Measurement  Tools  

Obta in  Customer  Data  for  Current  Systems 

Create  or  Update  Market  Ce l l  Work loads 

Create  or  Update  Market  Ce l l  Benchmarks  

Establ ish  Basel ine  f rom Current  Systems 

Establ ish Subsystem Performance Object ives 
fo r  New Subsystems and  Products  

Model  (wi th  Object ives)  New Systems 

Pro ject  System Per formance 
Based  upon Objec t ives  and  Measurements  

Measure  New System 

Track  Actua l  Per formance 
vs.  Object ives 

Object ives Not  Met:  

Redes ign  and Recode  

Object ives Met:  

Update  Benchmarks  for  New Products  

Run  Benchmarks  on  New Sys tem 

Update  Capaci ty  P lanning Support  Tools  

  S h i p  P r o d u c t s  
(wi th Performance Speci f icat ions)  

Prov ide  Customer  Suppor t  
(Tuning and Capaci ty  P lanning)  

Fig. 1 2. The process used to determine system performance. 

If we assume that we have a uniprocessor CPU system, 
then pcpu = \6 = C/P = CPU utilization. 

If we assume that the new system is operated at the same 
CPU utilization as the old one (to keep response times 
roughly the same, for example) then 

That is, the ratio of transaction throughput of the new to 
the old system is equal to the ratio of the old CPU seconds 
to execute T transactions to the new CPU seconds to execute 
T transactions, or the throughput ratio of the new system 
to the old (for approximately the same response time) is 
inversely related to the ratio of CPU times to execute the 
same number of transactions. The value of the original CPU 
seconds to execute the observed T transactions in P seconds 
is made up of the components shown in Fig. 11. 

For example, the data base component from Fig. 11 is 
205.6 seconds, or 10.43% of the 1971 seconds that the CPU 
is active during the observation period P. In like manner, 
the file system component in the current system of Fig. 11 
is 252.7 seconds. The 1971 seconds of active CPU time 
during the sample period of 3600 seconds recorded in Fig. 
11 is therefore made up of six component parts: the DBMS 
subsystem, the file system, the low-level I/O subsystem, 
the operating system kernel, the user application code 
{which we know is written in COBOL), and the effect of 
direct terminal connection, which, although not shown in 
Fig. 11, is represented in the I/O counts shown in Fig. 11 
as "non data base." 

If the system software making up the current system were 
perfect and allowed increasing levels of multiprogramming 
and multiprocessing without penalty, then the new com 
puter system under consideration would have four times 
the throughput for a comparable response time as the old, 
since the only limiting factor in this "perfect" computer 
system is the power (MIPS) of the system CPU. However, 
an increase in CPU power of a factor of four from the current 
system would, for this example, allow an increase in data 
base throughput of only 10% because of the serious seriali 
zation mentioned above. The factor of two increases in 
dynamic path length for the new DBMS and file system 
seem to be a high price to pay for increased throughput, 
however. Let us use the data in Fig. 11 to test the sensitivity 
to this supposition. 

For the new CPU and software, the 1971 seconds is re 
duced to 1971 seconds H- 4 = 492. 8 seconds because of the 
increased processing power of the new CPU. However, the 
COBOL compiler costs less in computer time and the DBMS 
and file system cost more. So, the actual figure is 492.8 + 
(205.6 + 252.7)/4 - (0.1)(205)/4 = 612.5 seconds. 

Consequently, the new system has a throughput relative 
to the old of 1971 seconds/612.5 seconds or 3.22:1 instead 
of the expected 4.0:1. However, the current design of the 
DBMS and file system would evolve into an increase of 
only 10% for an increase of 400% in CPU power, whereas 
the new system design allows 3.22/4.0 or 81% of the raw 
CPU power to be realized. This particular example points 
out some not so obvious factors in computer system de 
signs: 
â€¢ Transaction throughput may not track linearly with the 
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power of the system CPU. 
â€¢ One may have to execute more instructions in some com 

ponents of the software system to realize the power of 
an enhanced processor's capacity. 

â€¢ Don't spend disproportionate time in tuning a compo 
nent that doesn't have much affect on system perfor 
mance (such as the COBOL compiler in the above exam 
ple). 

Estimat ion Using Benchmarks 
The benchmark, as distinguished from the workload is 

a set of programs, data, and user interactions with the sys 
tem that simulates an actual computing environment. The 
simpler benchmarks, such as Whetstones or Unpacks,8 at 
tempt with one batch program to depict a diverse multiuser 
environment with possibly hundreds of active users. We 
have felt that such benchmarks are unrealistic and have 
extended benchmarking to include realistic benchmarks 
that model actual computer installations. These benchmarks 
are driven by test setups that use terminal simulators, and 
a system executing interactive and batch benchmarks. 

Two benefits have been derived from the HP Laboratories 
study of customers' use of HP computer systems. One is a 
data base of customer measurements like those shown in 
Fig. 1 1 upon which we can base workloads and benchmarks, 
and the other is the formalization of the tools gathered to 
create this data base into tools and services that are being 
sold today, such as HP CapPlan, HP Snapshot, and HP 
Trend. The invaluable information gathered by this effort 
has allowed us to profile a large portion of HP's customer 
set. Our workloads and benchmarks, as a consequence, are 
much more complex than the industry standards such as 
Whetstones and Linpacks. To measure system perfor 
mance, HP development engineers have had to integrate 
performance measurement tools into the software and 

hardware of the HP Precision Architecture family. The 
analyzer board and the HP 64000 are examples of such 
instrumentation. Further examples include software in 
strumentation that parallels but extends that familiar to 
the users of HP 3000 systems and new instrumentation for 
the HP 1000 and HP 9000 user. 
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The HP Precision Simulator 
Designed for  f lex ib i l i ty ,  por tab i l i ty ,  speed,  and accuracy,  
the s imulator  is  usefu l  for  both hardware and sof tware 
development.  

by Daniel  J .  Magenheimer 

THE HP PRECISION SIMULATOR is an internal tool 
used heavily throughout the research, design, and 
development stages of HP Precision Architecture and 

its systems software. In addition to functionally simulating 
the architecture at the instruction set level, the simulator 
provides an interactive screen-oriented machine state dis 
play and user interface, a combination that makes it particu 
larly useful in compiler and operating system development. 
The simulator can also be used as a performance evaluation 
tool, since it can easily model different hardware imple 
mentations and record statistical results for comparison. 
Finally, the ability to set code and data breakpoints, change 
registers and memory locations, and record branch his 
tories makes it an effective assembly-level debugger. 

Development  
The goals in the development of the simulator were four: 

flexibility, portability, speed, and accuracy. Flexibility was 
truly a requirement â€” in the early research phases of the 
architecture, instructions were added and deleted nearly 
on a weekly basis and bit fields were shuffled frequently. 
Timely results were necessary to evaluate the new instruc 
tion sets, so changes to the simulator were frequent. Porta 
bility was also needed, because simulations were done by 
design engineers in their daily work environment as well 
as batched on powerful mainframes. To this end, all coding 
was done in the high-level C language and use of library 
routines was limited to those present in the portable C 
library. This design choice allowed ports to several HP 
machines, two Digital Equipment Corporation machines, 
and an Amdahl mainframe, and even allowed the simulator 

to simulate itself. 
Speed and accuracy were the most important require 

ments. Simulation speeds of thousands of instructions per 
second were necessary to provide timely feedback for per 
formance measurement, but since the simulator was the 
only implementation of the instruction set before hardware 
prototypes became available, complete and accurate simu 
lation of each instruction was mandatory. Of course, these 
goals often conflicted. For example, top speed can be ob 
tained by coding in assembly language, but then portability 
is lost. Nonetheless, a reasonable simulator was created 
which has all of the desired characteristics and satisifies 
the needs of a large class of design and development en 
gineers. 

User Interface 
The simulator presents a screen containing four nonover- 

lapping windows (see Fig. 1). One of these windows is 
used for user command entry and message reporting. The 
three other windows contain useful machine state informa 
tion as follows: 
â€¢ The register window shows the contents of either of two 

sets of registers â€” the general registers or the space and 
system control registers â€” all in eight-digit hexadecimal 
format. 

â€¢ The program window provides a nine-instruction view 
into the program space. Each line of the window contains 
the address of a word, both in hex and symbolically, the 
word itself (in hex), and a symbolic disassembly of the 
instruction. The first two columns indicate whether a 
breakpoint is set at that instruction and where the pro- 

R e g i s t e r  G e n e r a l  
rO / 00000000 00000000 00000000 00000000 

r8 / 00000000 00000000 00000000 00000000 

r 16 / 00000000 00000000 00000000 00000000 

r24 / 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

PC = 00000000.00000000 priv = 0 psw = 0004000Ã¨ sar = 0 

40000000/00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

40000020/00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

Command 

* pj $START$ 

Fig. 1 . The HP Precision simulator 

screen has four windows showing 

commands and messages, regis 

ters, program lines, and data. 
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gram counter is currently positioned. 
â€¢ Sixteen words are presented in hexadecimal format in 

the data window. Each line is preceded by an address, 
possibly symbolic. 
When the four-window format is too restrictive, for exam 

ple when displaying lists or tables of information, the screen 
is cleared and information is presented a screen at a time, 
prompting the user to hit a carriage return to see the next 
screenful. 

The screen and windows can be manipulated for fine 
adjustments or major changes of context with simple com 
mands given in the simulator command language. The com 
mand language is simple enough that a beginner can pick 
up the essentials quickly, but extensible so that the ad 
vanced user can accomplish tasks with a minimum of key 
strokes. Each command is given with a set of arguments 
(sometimes optional). Frequent commands can be ab 
breviated, and a command can be repeated easily. For 

ar 

bs 

bD 

bd 

blist 

contin 

cd 

dj 

db 

df 

dbD 

dbd 

dblist 

dbs 

disasm 

do 

dascii 

dstack 

gr 

grclr 

jnl 

load 

macro 

macdel 

maclist 

memdump 

pj 

pb 

pf 

page 

quit 

run 

redraw 

reglist 

step 

save 

space 

sr 

stack 

stats 

stop 

symbol 

symdel 

symlist 

tblist 

trace 

update 

! 

# 

> 

.goto 

.if 

assign value to register/data address 

display assist registers 

set breakpoint 

delete all breakpoints 

delete breakpoint n 

list breakpoints 

continue program 

get indirect files from given directory 

jump to specified address in data window 

move data window backward n words 

move data window forward n words 

delete all data breakpoints 

delete data breakpoint n 

list data breakpoints 

set data breakpoint 

dump memory disassembled as instructions 

execute indirect command file 

enter/exit ascii mode in data window 

enter/exit stack mode in data window 

display general registers 

clear all general registers 

open journal file 

load executable file from dis 

define macro 

delete (pop) macro definition 

list macros 

dump memory in hex format to file 

jump to specified address in program window 

move program window backward n words 

move program window forward n words 

create/change access protection for page 

q u i t  ( ? !  )  
r u n  p r o g r a m  
redraw screen 

list registers to file 

execute single (or n) instruction (s) 

save simulator status in file 

create/change bounds/protect of specified space 

display special registers 

display stack trace 

print statistics for most recent run 

stop execution of program 

define symbol 

delete (pop) symbol definition 

list symbols 

list last few taken branches 

generate address trace to file 

update screen 

pass command string to system 

convert hex to decimal 

take application input from file 

write application output to file 

goto label 

conditionally execute rest of line 

target of goto (and else in .if-else) 

ignore line (comment) 

Fig.  2 .  The s imulator  prov ides a he lp  fac i l i ty  for  qu ick  re fer  
ence. 

example, 

displays the space and system control registers in the regis 

ter window, while 

* pj @(%main̂ 0.4) 

repositions (jumps) the program window to the first word 
(four bytes) following the symbol main. 

A help facility is also provided for quick reference (see 
Fig. 2). 

Program Simulat ion 
As the name implies, the primary function of the 

simulator is to simulate HP Precision Architecture instruc 
tions and programs built from these instructions. To ac 
complish this function, several commands and features 
provide the ability to load and execute programs. These 
capabilities are complemented by a full statistics gathering 
mechanism. 

Although small programs can be entered entirely by 
hand, it is much more efficient to be able to load a binary 
program from the underlying file system. The binary object 
file contains sufficient information to allow the simulator 
not only to load the program and its data, but also to build 
a symbol table and initialize the screen and program 
counter properly. 

There is an additional problem: when an operating sys 
tem loads a program and prepares it to run, it must map 
the virtual addresses of the program to physical memory 
locations, determine program protection, and enter this 
information in internal data structures. On the simulator, 
there is no operating system to perform these tasks. It must 
do the mapping and information storage itself by making 
assumptions about the program it is loading. These assump 
tions can be overridden or completely determined by the 
user, but reasonable defaults are selected which are gener 
ally sufficient. 

Programs can be run from start to finish without interrup 
tion, stopped at appropriate places and continued, or 
single-stepped for debugging or educational purposes. In 
any case, the effect of each instruction is completely and 
accurately simulated and statistics are gathered. For exam 
ple, 

invalidates entries in the cache and TLB (translation 
lookaside buffer), resets statistical counters, and starts 
execution of the program, and 

* contin 

starts the program without any initialization (for example, 
after encountering a breakpoint). 

* step 100 update 

single-steps 100 instructions, updating the screen follow 
ing each, while 
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*  s t e p  0  . i f  ! % r 1  s t o p  

continues stepping forever until general register 1 is equal 
to 0. 

In addition to virtual memory mapping, the simulator 
must also provide other functionality normally associated 
with an operating system. All interruptions must be ap 
propriately handled. For some, such as the TLB miss faults, 
reasonable action takes place to correct the problem and 
program execution continues. For many others, such as 
insufficient privilege traps, a program bug is indicated. The 
simulator notifies the user with a descriptive message and 
stops the program. 

Another example of required functionality beyond direct 
instruction simulation is I/O. Even the simplest bench 
marks require reading from a file or writing to the screen. 
To support this, the simulator recognizes certain pseudo- 
instructions as HP-UX system calls. By recoding the system 
library to use these pseudoinstructions, it is possible to 
run many large programs (including the simulator itself) 
and measure the user component of their performance. 

Debugging Features 
To be able to observe changes in machine state as one 

steps through a program is often sufficient to debug a pro 
gram, but more sophisticated features are always helpful. 
The simulator allows assignment to any register or memory 
location at any point in the program execution. This can 
be used to patch or skip portions of code, change data or 
parameters to procedures, and simulate external events 
(e.g., interrupts). In addition, a large set of internal simu 
lator variables can be changed to modify the behavior of 
the simulator or remember important values. 

Another useful feature is the ability to set code and data 
breakpoints. Code breakpoints are marks within the execut 
able code of a program that cause execution to be halted 
when they are encountered in the normal flow of a running 
program. When a breakpoint is hit, the program stops and 
control is returned to the user at command level. Data 
breakpoints can be viewed as temporary access restrictions 
on a region of data. Access of data within the region causes 
a running program to halt at the instruction that attempted 
the access. The region can vary in size from one byte to an 
entire space and can be specified to cause a break either 
on writes or on both reads and writes. Commands are pro- 

â € ”  L a s t  1 0  t a k e n  b r a n c h e s    
D e l a y  s l o t  a d d r e s s  B r a n c h  t a r g e t  a d d r e s s  

00000000.00000854 
00000000. 00000858 
00000000. OOOOOSab 
00000000.00000923 
00000000.00000957 
00000000. 0000092f 
00000000. 000008b7 
00000000.00000863 
00000000.00000973 
00000000. OOOOOSab 

RETURN to continue. . 

F ig .  3 .  Wi ld  b ranches  can  be  de tec ted  w i th  the  he lp  o f  the  
t a k e n  b r a n c h  l i s t ,  a  l i s t  o f  u p  t o  t w e n t y  o f  t h e  l a s t  t a k e n  
branches. 

vided to set, delete, and list current code and data break 
points. For example, 

*  b s  % p r i n t  

sets a code breakpoint at the memory location associated 
with the symbol print. 

'  b s  % f o o  5 0  . i f  ! % r 2  =  % u O  % u O  +  1  

sets a code breakpoint such that the program will stop only 
on the 50th time that the instruction at the beginning of 
the too procedure is executed and will count how many 
times (out of 50) that general register 2 is equal to 0 at that 
point, recording the result in a user temporary register. 
Another common bug that can be detected with the help 
of the simulator is the wild branch, a branch that has a 
false target far outside the program, or worse, a target at a 
random place within the program. When this happens, the 
simulator can provide a list of up to the last twenty taken 
branches to assist in determining what went awry (see Fig. 
3). The simulator can also display the current stack trace, 
a list showing what procedures called the current proce 
dure, along with parameters and local variables. Finally, a 
command can be given to dump a region of memory to a 
file, either in hex or in disassembled instruction format. 

Performance Analysis 
Before hardware became available, the simulator was the 

only tool capable of analyzing performance on a native 
instruction stream. As mentioned above, statistics are col 
lected during program execution to provide cycle count 
and instruction distributions. Often, however, performance 
issues go well beyond the instruction set. To this end, the 
simulator is equipped with a large set of parameters and 
flags which allow a performance engineer to analyze differ 
ent cache and TLB sizes. Operational characteristics such 
as cache and TLB miss overhead and replacement al 
gorithms can be analyzed, and various memory delays and 
interlocks can be modeled. 

Using these parameters, studies were done to estimate 

Measured Simulated 

Q .  
U  

140- - 

100 - 

1  2 3 4 5 6 7 8 9  

B e n c h m a r k  

F ig .  4 .  S imu la to r  es t ima tes  compared  w i th  ac tua l  mach ine  
measurements.  
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the benefits of cache control hints, critical-word-first cache 
algorithms, and two-level TLBs and to compare the perfor 
mance of a small instruction cache against an instruction 
lookahead buffer. Other studies accurately estimated the 
performance of different implementations before they were 
built. Fig. 4 compares simulator estimates with actual 
machine measurements. 

Lastly, the simulator can provide instruction execution 
traces to feed into other present and future performance 
analysis tools. 

Miscellaneous Features 
Many features are provided to assist the advanced 

Remote Debugger 

RDB i s  a  remote  debugger ,  a  too l  t ha t  runs  on  an  HP 9000  
Model 220 Computer ( the host machine) but al lows manipulat ion 
o f  programs on a d i f ferent  ( remote)  machine.  Th is  capabi l i ty  is  
especial ly important in the early stages of test ing a new machine 
imp lemen ta t i on  and  deve lop ing  and  b r ing ing  up  an  opera t i ng  
system on i t .  The too l  has been used extens ive ly  for  these pur  
poses. RDB consists of three major components: a user interface, 
an Â¡ntermachine in ter face ( inc lud ing hardware and sof tware) ,  
and a small software monitor which runs on the remote machine. 

T h e  u s e r  i n t e r f a c e  w a s  e x t r a c t e d  f r o m  t h e  H P  P r e c i s i o n  
s imu la tor  and,  except  fo r  a  few minor  d i f fe rences  in  the  l i s t  o f  
commands ,  an  i nexpe r i enced  use r  wou ld  be  ha rd -p ressed  t o  
te l l  them apar t .  Bes ides leveraging thousands of  l ines of  code,  
t h i s  w h o  m i n i m i z e d  t h e  l e a r n i n g  e f f o r t  f o r  e n g i n e e r s  w h o  
used  bo th  too l s .  As  w i th  the  s imu la to r ,  reg i s te rs  and  memory  
l o c a t i o n s  c a n  b e  c h a n g e d  a n d  c o d e  b r e a k p o i n t s  c a n  b e  s e t  
( d a t a  h a n  a r e  n o t  s u p p o r t e d ) .  T h e  s a m e  i n t e r r u p t i o n  h a n  
d l i ng  and  HP-UX  sys tem ca l l  suppo r t  as  i n  t he  s imu la to r  a re  
used,  thus a l lowing large programs to  be run and measured on 
new hardware wi thout  operat ing system suppor t .  

The intermachine interface consists of  two I /O dr ivers,  one on 
the host system and one on the remote system, that communicate 
through a GPIO 16-b i t  para l le l  card.  The host  cont ro ls  the com 
munication by issuing a small  set of commands: READ a variable 
amount  o f  da ta  f rom a  phys ica l  address ,  WRITE data  to  an  ad  
dress,  and lock and re lease semaphores.  The remote processor 
i s  s ta r ted  by  wr i t i ng  to  a  con t i nua t i on  f l ag  a t  a  f i xed  memory  
locat ion,  and is  stopped by assert ing an external  in terrupt .  

The moni tor  is  a smal l  ( less than 1K bytes)  operat ing system 
subset  the catches in terrupts,  t raps,  and faul ts  and not i f ies the 
host processor of  the type of interrupt ion. Since the host proces 
sor  can on ly  read f rom and wr i te  to  memory ,  no t  reg is ters ,  the  
monitor is also responsible for  saving the machine state in mem 
ory and restor ing i t  on cont inuat ion. 
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= $u29 0 ; Put stack marker unwind back to Q. 
.if $u28'dOdOcaca .goto trans 

= $u5 ((rl2-r!3)/2) ; Delta P. 
= $u31 $u5 ; P for display. 

. goto stat 
: trans 

= $u5 pc ; translator pc. 

: stat 
= $u4 rS&ffff ; STATUS. 
= $u30 $u4 ; STATUS for display. 
dj â€” sr5.(r3-6) db ; Show stack around Q. 

.if $u28"dOdOcaca .goto m2 

= $cmdfecho$ 1 ; Emulator 
do crncurm.ss 

.goto showem 

: m2 
= $cmdfecho$ 1 ; Translator 
do cmcurtm.ss 

: showem 

# $u30 
.if $u28AdOdOcaca .goto done : # $u31 

: done 

Fig.  5 .  An example o f  a  s imula tor  command program.  (Cour  
tesy of  Tony Hunt. )  

simulator user. Indirect command files can be executed to 
avoid repetitive command sequences. These files can be 
nested, can be commented, and can contain if statements 
and goto statements which raise the command language to 
the power of any high-level programming language (Fig. 
5). Other commands provide for saving and restoring of 
the simulator's state (so a session can be resumed at a later 
time), recording of command sequences in a journal file, 
macro definition and use, and an HP-UX shell escape. 

Progeny 
Work on the simulator influenced the development of 

several other tools. Foremost among these is RDB (see box), 
a remote debugger, which is still being used for low-level 
operating system and I/O development and booting of newly 
developed hardware implementations. The instruction dis 
assembler component of the simulator has been extracted 
and used in HP-UX's assembly language debugger adb and 
in the high-level language debugger xdb. The user interface 
has been borrowed for a hardware support monitor and for 
the MPE-XL native and compatibility mode debuggers. 
Other work is in progress to extend the simulator to handle 
multiprocessing configurations. 
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Reader Forum 
The HP Journal  encourages technica l  d iscuss ion of  the top ics presented 
in recent  ar t ic les and wi l l  publ ish let ters expected 
to be ot interest to our readers. 
Let ters must  be br ief  and are subject  to edi t ing.  
Let ters should be addressed to:  

Edi tor.  Hewlett-Packard Journal ,  3000 Hanover Street,  
Pa lo  A l to ,  CA 94304 ,  USA.  

Editor: 

I read about the Spectrum program in a recent issue of the 
HP Journal ("Compilers for the New Generation of Hewlett- 
Packard Computers," January 1986). In that article you talked 
about the primitive instructions that will be accepted. You 
wrote that the instructions that reference only registers are 
faster than those that imply access to memory. 

You said that among the instructions that take more than 
one cycle in their execution are the loads. The order of execu 
tion of an operation, such as addition, might be: 

1. Load first operand, a, in register p; 
2. Load second operand, b, in register r; 
3. Perform the operation between registers p and r; 
4. Store the result if necessary. 
Why is it not possible to have an instruction that loads both 

operands at the same time, in one step? This implies a dual 
access to memory in reading only. (The cases that would imply 
dual writing to memory are very rare.) With such an instruction, 
the order of execution now is: 

1 . Load, by dual access, the two operands a and b in registers 
p and r; 

2. Perform the operation between registers p and r; 
3. Store the result if necessary. 
This way the computer saves a step, since it takes only a 

single step to load the operands in the two registers. 

D. ing.  Dejan Claud 
Maramures,  Romania 

As you noted, some instructions are permitted to take longer 
than one cycle to complete. In most implementations, however, 
LOAD executes in a single cycle. Additional cycles may be 
required if the next sequential instruction refers to the register 
loaded by the LOAD. This is an "interlock" situation that could 
take between one cycle (if the data is already in the cache] 
and many cycles (if the data must be /etched from main mem- 
oryj. The /aster case is usually scheduled by the optimizing 
compilers in such a way that the register loaded is not refer 
enced by the immediately /allowing instruction. In this way, 
the interlock is avoided, and useful computation is performed 
in parallel with completion of the LOAD. 

You ask why it is not possible to implement an instruction 
that loads two operands to two registers at the same time. In 
/act, LOADs are Â¡ess frequent than your example suggests. Fre 
quently one or more operands are already present in registers, 
and do not require access to memory. 

To carry out simultaneously all of the actions required to 
implement a "double load," considerable additional hardware 
would be required. Providing/or dual access to the cache would 
require the duplication of essentially the entire cache and vir 
tual address translation hardware. Memory systems are inher 
ently serial devices, because all memory elements share com 
mon addressing, checking, and control hardware. It is possible 
to design memory systems that are truly dual-ported (not just 
a "multiplexed" single port], but the cost in decreased speed or 
capacity is considerable. 

Of course, to fully support "double load," the address and 
data buses, the effective address adder, and the data-address 
ing and register-speci/ying content of the instruction itself 
would all have to be duplicated. In short, the architecture 
supports the highest-performance LOAD that is commensurate 
with as high-speed implementation. Any additional /unction as 
sociated with LOAD would increase cost more than it increased 
performance, and so would be inadvisable. 

A key characteristic of HP Precision Architecture is that, 
unlike most microcoded machines, the performance of im 
plementations is limited by the hardware's ability to per/arm 
the requested operation, not by the control unit's ability to 
decode instructions, specify registers, and sequence signals. 
The best that one can hope for is that all (or much) of the 
machine's hardware can be kept busy on each cycle by most 
programs. In general, this objective is better served by simpler 
hardware configurations than by complex ones. 

Michae l  J .  Mahon 
Manager ,  Computer  Languages Labora tory  

In format ion Technology Group 
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