
H E W L E T T - P A C K A R D

A U G U S T 1 9 8 6

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D
[UI n j ~ \ j Z Ã € , August 1986 Volume 37 â€¢ Number 8

Articles

4 Hewle t t -Packard Prec is ion Arch i tec tu re : The Processor , by M ichae lJ . Mahon , Ruby
Bei-Loh Lee, Terrence C. Mi l ler , Jerome C. Huck, and Wil l iam R. Bryg. Here is the RISC-

l ike archi tecture that wi l l govern the design of HP computers for at least the next decade.

8 Float ing-point Coprocessor
16 HP Precis ion Archi tecture Caches and TLBs

Q O Hewle t t -Packa rd P rec i s ion A rch i tec tu re : The Inpu t /Ou tpu t Sys tem, by Dav id V . James ,
Â¿â€” O Stephen G. Burger , and Rober t D. Odinea l I t ach ieves goa ls o f sca lab i l i t y , leverage-
abi l i ty, and f lexibi l i ty.

3 0 H e w l e t t - P a c k a r d P r e c i s i o n A r c h i t e c t u r e P e r f o r m a n c e A n a l y s i s , b y J o s e p h A . L u k e s
H o w d i d u s e d ? a n a l y s i s i n f l u e n c e t h e a r c h i t e c t u r e ? W h a t m e t h o d s w e r e u s e d ?

The HP Prec is ion S imu la to r , by Dan ie l J . Magenhe imer In i t s ear ly days , i t had to ac -
commodate f requent ins t ruc t ion-se t changes and g ive t ime ly feedback to the a rch i tec

ture designers.

43 Remote Debugger

Departments

3 In this Issue
3 What 's Ahead

2 1 A u t h o r s
44 Reader Forum

Editor, Richard Supervisor, Wright â€¢ Associate Editor, Business Manager, Kenneth A Shaw â€¢ Assistant Editor, Nancy R. Tester â€¢ Art Director, Photographer. Arvid A. Danielson â€¢ Support Supervisor, Susan E Wright
I l l us t ra to r , Nancy Con t re ras â€¢ Admin is t ra t i ve Serv i ces . Typography , Anne S . LoPres t i â€¢ European Produc t ion Superv i so r , M ichae l Zandwi j ken

2 H E W L E T T - P A C K A R D J O U R N A L A U G U S T 1 9 8 6 Â© Hewlett-Packard Company 1986 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
/ / T h e H P P r e c i s i o n A r c h i t e c t u r e d e v e l o p m e n t p r o g r a m , k n o w n w i t h i n H P

as the Spectrum program, is the largest system development program ever
under taken by the Hewlet t -Packard Company. The program developed not
only a compo system architecture, but also al l hardware and software compo
n e n t s f a m i l y . t o c o n s t i t u t e a n e n t i r e l y n e w c o m p u t e r s y s t e m f a m i l y . I t
encompassed architecture, VLSI technology, the MPE XL commercial operat
ing sys tem, the HP-UX rea l - t ime s tandard UNIX opera t ing sys tem, a new
family of opt imizing compilers, a new data base faci l i ty, and integrat ion with

I t h e H P A d v a n c e N e t n e t w o r k i n g s t r a t e g y .
The papers publ ished in the August 1985 and January 1986 issues of the HP Journal out l ine

the reasons for the development of HP Precis ion Archi tecture and descr ibe the st ructure of the
nex t genera t ion comp i le r fami l y . I n th i s i ssue o f the HP Journa l , we a re happy to be ab le to
present the f i rs t of a p lanned set of papers that expla in key program elements in greater levels
o f de ta i l . We in tend these papers to be tu to r ia l in na tu re , descr ib ing and exp la in ing p rogram
elements and present ing the basic research and measurement resul ts that were achieved.

In th is (page we begin wi th papers cover ing an overv iew of the processor archi tecture (page
4) , a o f o f the I /O arch i tec ture (page 23) , a descr ip t ion o f the per formance ana lys is ac t iv i t ies
used throughout the program (page 30) , and a descr ip t ion of the s imulator too ls that grew in to
our general software diagnostic tools (page 40). In subsequent issues, we plan to present papers
descr ib ing hardware components, sof tware system components, sof tware engineer ing pract ices,
and performance resul ts . We expect that the col lected set of papers wi l l then const i tute a good
technical overv iew of the Spectrum program and the key research resul ts that emerged f rom i t .

-Wil l iam S. Worley, Jr.
Guest Edi tor

Cover
The cover photograph shows a "b lock d iagram" represent ing the HP Prec is ion Arch i tec tu re

execut ion engine, which is shown more convent ional ly in Fig. 3 on page 7.

What's Ahead
N e x t t h e i s s u e w i l l h a v e a s e r i e s o f a r t i c l e s o n t h e d e s i g n o f t h e H P 9 0 0 0 S e r i e s 3 0 0

m o d u l a r a w o r k s t a t i o n s , a n d a p a r t h i s t o r i c a l , p a r t t u t o r i a l t r e a t i s e o n i m p l e m e n t i n g a
wo r l dw ide e lec t ron i c ma i l sys tem, based on HP 's expe r i ence w i th i t s own HP DeskManager
product.

The HP Journal Letters technical discussion ol the topics presented in recent articles and wil l publish letters expected to be of interest toour readers. Letters must be brief and are subject
to ed i t ing. USA should be addressed to : Ed i tor , Hewlet t -Packard Journa l . 3000 Hanover St reet . Pa lo A l to . CA 94304. USA

AUGUST 1986 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

Hewlett-Packard Precision Architecture:
The Processor
This article describes the architecture's basic organization,
execut ion model , cont ro l f low model , address ing and
protect ion model , funct ional operat ions, and inst ruct ion
formats and encoding.

by Michael J . Mahon, Ruby Bei -Loh Lee, Terrence C. Mi l ler , Jerome C. Huck, and Wi l l iam R. Bryg

"Everything should be made as simple as possible, but not
simpler." Albert Einstein

THE HP PRECISION ARCHITECTURE development
program had the objective of designing a computer
architecture capable enough and versatile enough to

excel in all of Hewlett Packard's computer markets: com
mercial, engineering and scientific, and manufacturing.
Such an architecture would have to scale easily across a
broad performance range, provide for straightforward mi
gration of applications from existing systems, and serve as
the architectural foundation for at least the next decade of
product development.

To address this problem, an unusual group of people
was brought together, from within and outside Hewlett-
Packard, possessing unusually diverse experience and
training. Under the leadership of Bill Worley, this small
group of compiler designers, operating system designers,
performance analysts, hardware designers, microcoders,
and system architects was forged into a team. The intent
was to bring together many different perspectives, so that
the team could deal effectively with design trade-offs that
cross the traditional boundaries between disciplines.

The design methodology was as unusual as the team. It
was an iterative, closed-loop, measurement-oriented ap
proach to computer architecture. The process began with
data collection and analysis of what computers â€” Hewlett-
Packard's and others' â€” were actually doing during applica
tion execution. Early results validated the suggestions of
some RISC architecture researchers that simpler designs
were a better match to the actual behavior of machines,
and could substantially improve cost/performance.1 The
scalability and generality requirements provided further
incentives to reduce system complexity.

After a simple "core" architecture was postulated, the
team examined it intensively through simulation and mea
surement. We evaluated its suitability as a target for com
pilation and optimization, and as a host for modern operat
ing systems. Logic designs were done simultaneously in
several circuit and packaging technologies to evaluate the
implications of the architectural decisions on hardware
realizations.

After a round of evaluation, the results became the basis
for a series of proposed refinements to the architecture.
After critical study, the best proposals were incorporated

into the architecture, the simulator was updated, and the
evaluation process began again.

This process continued for four major (and many minor)
iterations over a period of 18 months. At each successive
iteration, the architecture and all proposed changes were
published internally for review by key technical people in
product divisions. As the project progressed, an increasing
proportion of the proposals and evaluations came from divi
sional participants.

The iterative design sometimes resulted in adding a func
tion. For example, the frequent requirement to shift index
registers to index to half words, words, or double words
in a byte-addressed machine led to the addition of a zero-to-
three-bit preshifter to scale one of the inputs to the adder.

More frequently, iteration resulted in deleting mechanisms
revealed as too onerous or too little used. An example is
the deletion of the STORE INDEXED instruction, because it
was the only instruction that would have required a register
file capable of reading three registers simultaneously. Com
piler strategies were found that all but eliminated the need
for the STORE INDEXED instruction, which in any case could
be simulated in two instructions. Another example was
the deletion of a rather irregular MULTIPLY STEP instruction,
when it was discovered that virtually all integer multipli
cations could be performed efficiently using SHIFT AND ADD
instructions, which were a natural byproduct of the index
preshifter described above.

The result of this process is an architecture honed by
data, tested against various implementation technologies,
and broadly tuned to a wide variety of system and applica
tion tasks.

Overview

An HP Precision processor is one element of a complete
system. The system also includes memory arrays, I/O de
vices, attached processors, and interconnection structures
such as buses and networks. Fig. 1 shows a typical system.
The processor interfaces to a central bus like any other
module and uses the bus to reference main memory and
I/O devices. External interrupts are also transmitted over
the buses.

4 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Special Funct ion
Unit

Coprocessor

C e n t r a l M e m o r y B u s

A d d i t i o n a l B u s (O p t i o n a l)

Bus Converter

Fig. 1 . HP Prec is ion Arch i tec ture
system organizat ion.

Processor Overview
The processor module is organized as instruction fetch

and execute units with a tightly coupled high-speed cache
system. While a cache is optional, it is such a cost-effective
component that nearly all processors will incorporate this
hardware. The processor module may also include a
hardware address translation table called a translation
lookaside buffer or TLB, and assist hardware for extra func
tions such as floating-point operations. The main data paths
are 32 bits wide, and the memory system is byte addressed.

The execution unit performs data transformations on
local registers and generates addresses to reference the
cache and main memory. It has a memory system interface
for moving data operands between the memory system and
the registers. The execution unit may be supplemented by
assist hardware â€” coprocessors or special function units â€”
to augment its capabilities for application-specific opera
tions or data types. This is discussed further in the sections
on the execution model.

The fetch unit calculates the instruction address, fetches
the instruction, decodes it, and sends information to the
execution unit. The fetch unit greatly benefits from a re
duced-complexity instruction set. Instructions are all fixed-
width 32-bit objects, simplifying decoding and calculation
of the next instruction address. The fetch unit is responsible
for the control flow in the processing of instructions. This
is discussed further in later sections on the control model.

HP Precision Architecture uses a memory hierarchy as
a cost-effective means of achieving nearly the speed of the
fastest (highest) memory level, with the capacity of the
largest (lowest) memory level. The highest level of the
hierarchy is the registers, followed by the caches. Main
memory is the next level and the I/O system provides the
largest and slowest level of storage. In HP Precision Ar
chitecture, the cache system is architecturally visible in
the sense that there are cache control instructions for cache
management. A virtual memory system is a characteristic
feature on all but the smallest HP Precision processors.
Virtual address protection and translation provide security
and a large, flat, global address space for all processes. This
is discussed further in the sections on the addressing and
protection model.

Provisions are made for attached processors, which inter
face to the system hierarchy at the memory bus level, and
typically have their own registers and local cache system.
Attached processors can provide such functions as I/O or
vector processing. Clustered and tightly coupled multipro
cessing are also supported for modular expansion of the
system.

Processing Resources
The processing resources are organized around three reg

ister arrays and a few specialized registers (see Fig. 2). The
general register array contains general-purpose registers
used for all computations. The space register array is used
to build virtual addresses. The control register array is a
collection of registers used for virtual address protection,
interruption processing, and other miscellaneous functions.

The general register array contains thirty-two 32-bit gen
eral-purpose registers. Register zero is special: it always
returns zero when read and discards any result when used
as a target register. This specialization is easily implemented
in hardware and eliminates the need for instructions for
unary or condition-testing operations. For example, a copy
operation is a logical OR with register zero and unary SUB
TRACT also uses register zero as a source. Registers 1 and
31 are also specialized as implied targets for a few instruc
tions that have no space in the instruction for target register
specifiers.

The space register array contains eight registers. When

General-
Purpose

Reg is te rs

Process
S ta tus Word

25
Control

Registers

I ns t ruc t ion
A d d r e s s

s
Space

Registers

Instruction
Register

S p a c e I D O f f s e t

Fig . 2 . HP Prec is ion Arch i tec ture process ing resources are
organized around three register arrays and a few special ized
registers.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

one of these is concatenated to a 32-bit address offset, a
virtual address is formed. Three levels of the architecture
are defined, according to the amount and degree of vir
tual addressing supported. The level-zero HP Precision pro
cessor does not support any virtual addressing and need
not implement the space registers. When building a proces
sor for a highly integrated, dedicated system, it is a consid
erable savings in hardware cost to eliminate the virtual
address hardware. General-purpose computers, however,
require virtual addressing. A level-one processor supports
16-bit space registers for a 48-bit virtual address space and
a level-two processor implements 32-bit space registers to
allow the full 64-bit virtual address space.

The control register array consists of twenty-five registers
which contain system state information. Four of these con
trol registers are used by the virtual address system to iden
tify protection groups for the current process. The shift
amount for instructions that perform variable-length shifts
is stored in a control register. An interval timer is included
as a control register. The configuration of coprocessors in
a system is also stored in a control register. The remaining
control registers are used as temporary registers and to
record the state of the machine at the time of an interrup
tion.

An HP Precision processor also maintains registers for
the current instruction address, the current instruction,
and the processor status word (PSW). The current instruc
tion address is divided into its virtual space identifier (IAS)
and its offset (IAO) within the space. The instruction regis
ter (IR) contains the current instruction. The PSW holds
various flags for enabling virtual addressing, protection,
interruptions, and other status information.

Fig. 2 shows the processing resources. A complete con
text switch only involves the saving of the general registers,
the space registers, and several of the control registers. The
instruction address registers and PSW are saved in control
registers by the hardware at the time of any interruption.
Since the process state is small and no extra manipulation
of cache or TLB (translation lookaside buffer) structures
is necessary, fast context switching is obtained. No addi
tional resources are needed to save intermediate machine
states, since interruptions are always taken at instruction
boundaries.

Data Types
HP Precision Architecture supports data types for arith

metic, logical, and field manipulation operations. All data
objects must be stored on their naturally aligned addresses,
that is, 32-bit data objects must start on word-aligned (four-
byte) addresses, 16-bit data objects must start on half-word-
aligned addresses, and 8-bit data objects must start on byte-
aligned addresses. This general alignment rule is easily
obeyed by software and significantly improves the cost and
speed of cache memory hardware. It also eliminates the
possibility of a cache miss or address translation fault in
the middle of a data or instruction reference, thereby
simplifying the processor control.

Signed and unsigned integers may be 8, 16, or 32 bits
long. Signed integers are represented in two's complement
form. Characters are 8 bits long and conform to the ASCII
standard. While bits are not directly addressable, efficient

support is provided to manipulate and test individual bits
and bit fields in general registers. Both packed and un
packed representations of decimal numbers are supported
by software. Packed data is always aligned on a word bound
ary and consists of 7, 15, 23, or 31 BCD digits, followed
by a sign digit.

Floating-point numbers are addressed as 32-bit (single-
precision) or 64-bit (double-precision) quantities. The co
processor interface allows this wider data path for loading
and storing double-precision floating-point operands. The
floating-point data format conforms to the ANSI/IEEE 754-
1985 standard.

Execution Model

HP Precision Architecture assumes a register-based
execution model, with all operands coming from registers
and all results going back into registers. The thirty-two
general-purpose registers are used for local storage of
operands, intermediate results, and addresses.

The execution engine for the basic HP Precision instruc
tion set consists of a simple arithmetic logic unit (ALU)
and a shift-merge unit (SMU), as shown in Fig. 3. The ALU
has a preshifter on one port and a complementer on the
other port. The SMU consists of a shifter and a mask-merger.
It is used for implementing field manipulation operations.
The shifter concatenates two 32-bit operands and performs
a right shift. The mask-merger selects a contiguous field of
bits from the output of the shifter and merges this with the
other bits from its second input source, forming a 32-bit
result. The second input source to the mask-merger may
be a mask of all zeros or all sign bits, or may come from a
general register.

The typical execution data flow consists of reading two
operands from general-purpose registers, routing these two
operands through the ALU or the SMU with the proper
function selected, and storing the result back into a general
register. This is the data flow for the basic three-register
model of execution, which facilitates single-cycle execu
tion, since no memory references are required.

Single-Cycle Execution
A primary design goal was that all functional computa

tions in the basic instruction set could execute in one
machine cycle in a pipelined implementation of the proces
sor architecture. Operations were selected for inclusion in
the basic instruction set only if they could be implemented
in a reasonably small number of logic levels, to guarantee
a short cycle time. This does not necessarily mean that the
operation performed had to be primitive in function. In
fact, rather sophisticated operations were allowed in the
architecture if they proved useful to the compilers, and
were implementable in a short machine cycle with rela
tively simple hardware.

Complex operations that are necessary to support re
quired software functions but cannot be implemented in a
single execution cycle are broken down into primitive op
erations, each of which can be executed in a single cycle.
Examples are the DECIMAL CORRECT operations which are
primitive operations for performing arithmetic on BCD
data, the SHIFT AND ADD operations which are primitives

6 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Instruction Bus (Immediates)

F ig . 3 . The execu t i on da ta pa th cons i s t s o f a s imp le a r i t h
met ic log ic uni t (ALU) and a shi f t -merge uni t (SMU).

for integer multiplication, and the DIVIDE STEP operation
which is a primitive for integer division.

Single-cycle execution was a design goal of the architec
ture, but is not a constraint on the implementations. For
example, an HP Precision microprocessor may operate with
slower memories, performing a load instruction in more
than one cycle.

Immediates
A notable aspect of HP Precision Architecture's register-

based model of execution is its heavy use of the instruction
register as a source for operands, in addition to the thirty-
two general-purpose registers. Many HP Precision instruc
tions have an immediate field embedded in the 32-bit fixed-
length instruction. These immediates are made maximal-
length, in the sense that they fill up all unassigned bits in
the given instruction. This maximizes the probability that
a constant can be represented in the instruction as im
mediate data. Although immediates come in various sizes
in different instruction classes, their sign bit is always in
a fixed position. An immediate operand is advantageous
since it does not have to be loaded to a general register and
therefore saves both a memory access and the use of a
general register.

Although maximal-length immediates in an instruction
are capable of representing most of the constant values that
are needed, it is desirable to have the capability of embed
ding full-length 32-bit immediates in the instruction
stream. HP Precision Architecture does this by means of a
pair is instructions. First, a long-immediate instruction is
used to load or add the most significant twenty-one bits of
the immediate value, padded on the right with eleven zeros,
into a general register. A subsequent instruction, using this
register as the base register, supplies the low-order bits to
complete the 32-bit immediate. In this way, a 32-bit con
stant value can be placed in a general register, or a load or
store instruction can be performed with a full 32-bit static
displacement. An alternative approach â€” creating a double-
word instruction â€” would have introduced the more com
plex possibility of a page fault occurring in the middle of
an instruction fetch.

Load and Store Operat ions
The general register array is the only level of the memory

hierarchy that interacts with the execution engine. The
general registers interact with the rest of the memory hierar
chy via the LOAD and STORE instructions.

The LOAD and STORE instructions are designed to execute
in a single cycle in a pipelined implementation of the ar
chitecture that includes a data cache memory that operates
at the speed of the processor. This immediately excludes
the specification of multiple loads and stores or levels of
address indirection in a single instruction.

Even with a fast cache memory, data may not be available
until one cycle after the memory access is initiated. There
fore, following a load instruction, the software tries to
schedule one or more instructions that do not use the target
register being loaded. However, the hardware must be able
to interlock the pipe if an instruction following a load
instruction uses the target register that has not yet been
loaded.

The size of the data item loaded or stored can be a byte,
a half word, or a full word. It is possible to store any con
tiguous sequence of bytes within a word, either starting
from the leftmost byte or ending with the rightmost byte,
using the STORE BYTES instruction. For example, it is pos
sible to store the leftmost three bytes or the rightmost three
bytes of a register into three contiguous bytes of memory.
This instruction is a useful primitive for moving unaligned
strings of bytes from one memory location to another.

All address calculation in the LOAD and STORE instruc
tions is based on the base register plus displacement ad
dressing mode. The displacement can be a long 14-bit
signed displacement, a short 5-bit signed displacement, or
an index register. An index register, if used, may optionally
be shifted left by 1, 2, or 3 bits to permit integer addressing
to half words, words, or double words, respectively. Both
the base register and the index register used in address
calculation can come from any of the general registers.
Flexible Address Modification Mechanisms. Automatic ad
dress modification mechanisms allow one to walk through
a data structure more efficiently, by updating the address
register to the next item in the data structure to be refer
enced while fetching the current item.

Flexible address modification mechanisms are included
in HP Precision Architecture, providing high-performance
functionality in a single cycle. For example, it is possible
to modify the base register for a subsequent load or store
instruction by adding to it the long or the short displace
ment value specified in the instruction itself, or the value
of an index register, optionally shifted to multiply by the
size of the object to be loaded or stored.

If address modification is specified, either premodifica-
tion or postmodif Â¡cation can be performed. Premodi/ica-
tion means that the address calculation is performed and
the result used as the address to initiate the memory access.
Postmodi/ication means that the original content of the
base register is used as the address to initiate the memory
access.

An unusual feature of this premodify or postmodify ad
dressing mode is that in the long-displacement instruc
tions, the sign bit of the displacement is also used as the
bit to select premodification or postmodification. This al-

AUGUST 1986 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

Floating-Point Coprocessor

HP Prec is ion Arch i tec ture genera l ly conforms to the concept
of a s imple instruct ion set real izable in cost-ef fect ive hardware.
However, certain algori thms l ike f loat ing-point operat ions real ize
substant ial performance gains when implemented on special ized
hardware. The f loat ing-point instruct ion set is an example of HP
Precis ion Archi tecture's instruct ion extension capabi l i t ies.

F loa t ing -po in t i ns t ruc t ions a re suppor ted th rough an ass is t
coprocessor to p rov ide h igh-per fo rmance numer ic p rocess ing .
As a coprocessor, the f loating-point unit contains i ts own register
f i l e a n d e x e c u t e s c o n c u r r e n t l y w i t h t h e b a s i c p r o c e s s o r .
O p e r a n d s f r o m t h e c a c h e s a r e l o a d e d o r s t o r e d f r o m a n y o f
twelve f loat ing-point reg is ters . The data format , a l l operat ions,
and excep t ions fu l l y con fo rm to the ANSI / IEEE 754-1985 s tan
dard. Very h igh-per formance coprocessors can be implemented
by combin ing hardware p ipe l in ing w i th the HP Prec is ion h igh-
level language opt imizer.

The f loat ing-point coprocessor is organized l ike the basic pro
cesso r . A l l ope rands f rom ma in memory a re re fe renced us ing
coprocessor load and store instruct ions. Normal v i r tual address
t rans la t i on and p ro tec t i on checks a re made and da ta i s t rans
f e r red be tween the cache (o r memory) and t he f l oa t i ng -po in t
register f i le. Both single-precis ion (4-byte) and double-precis ion
(8 -by te) operands can be re ferenced w i th a s ing le ins t ruc t ion .
Quad-prec is ion (16-byte) operands are re ferenced us ing a pa i r
of double-precision coprocessor memory reference instruct ions.

The bas ic p rocessor per fo rms index and shor t -d isp lacement
address calcu lat ions for the coprocessor load and store inst ruc
tions. While STORE INDEXED instructions are not provided for the
bas i c a re COPROCESSOR STORE INDEXED ins t ruc t i ons a re
provided since only two general register reads and a nonconfl ict-
ing coprocessor reg is ter read are requi red.

Floating-Point Register Fi le
The register f i le contains twelve 64-bi t data registers, a 32-bi t

s ta tus reg is te r , and seven 32-b i t reg is te rs fo r repor t ing excep
t ional condi t ions, as shown in F ig . 1 . The twelve data reg is ters
also form six 1 28-bit quad-precision registers. The data registers
a re numbered f rom 4 th rough 15 . Reg is te r 0 ho lds the s ta tus
register . When register zero is used as the target or source of a
coprocessor load or store, the status register is referenced. But
when used as the source o f an operat ion, reg is ter zero re turns
a f loat ing-point zero. This is used for s imple assignments, ar i th
met ic negat ion, and compar isons wi th zero.

64 B i t s W ide

S t a t u s E x c e p t i o n R e g i s t e r 1

E x c e p t i o n R e g i s t e r 2 E x c e p t i o n R e g i s t e r 3

E x c e p t i o n R e g i s t e r 4 E x c e p t i o n R e g i s t e r 5

E x c e p t i o n R e g i s t e r 6 E x c e p t i o n R e g i s t e r 7

Data Register

Data Register

Fig. 1 . Float ing-point register f i le.

The status register holds informat ion on the current rounding
mode, the except ion f lags , and except ion t rap enab les fo r the
f ive IEEE exceptions: overf low, underf low, divide by ze>o, inval id
operat ion, and inexact. I f the exception trap is not enabled, then
a default result is returned and the corresponding except ion f lag
is set in the status register . I f the except ion t rap is enabled, an
in te r rup t ion to the ma in p rocessor occurs , w i th the excep t ion
and the instruct ion causing i t recorded in an except ion register .
On over f low, under f low, and inexac t excep t ions , the co r rec t l y
rounded result is del ivered to the destinat ion register. On inval id
opera t ion and d iv ide-by-zero except ions , the source reg is te rs
are preserved. Users can spec i fy a t rap hand ler fo r any o f the
f ive IEEE except ions, using the informat ion preserved.

The coprocessor uses an addi t ional nonmaskable except ion,
ca l led unimplemented, to pass of f to sof tware those operat ions
n o t i m p l e m e n t e d b y t h e c o p r o c e s s o r h a r d w a r e . T h e u n i m
p lemented t rap t r iggers a sof tware emulat ion of the des i red op
erat ion with the or iginal operands.

The Boolean resul t of a f loat ing-point compar ison is stored in
a bit the next status word. This bit can conditionally nullify the next
instruct ion when tested. No condit ional branch is al lowed. A con
di t ional branch would have increased the cr i t ical path for branch
determination.

Floating-Point Operations
The f loat ing-point coprocessor def ines eleven fundamental op

e ra t i ons i n th ree p rec i s ions . A l l o f t he ope ra t i ons , excep t f o r
conversions to f ixed-point formats, produce f loating-point results.
Source and dest inat ion formats are the same except for conver
sions that have explicit source and destination formats. Rounding
is specif ied by a mode f ield in the status register. The COPY and
ABSOLUTE VALUE operations are nonarithmetic and do not cause
except ions. The fo l lowing table summarizes the def ined ar i thme
t ic operat ions for s ingle, double, and quad formats.

FADD
FSUB
FMPY
FDIV
FREM
FSQRT
FRND
FCMP

Addit ion
Subtract ion
Mult ipl ication
Division
Remainder
Square Root
Round
Compare

CONVERSION instructions from f loating-point formats to f ixed-
po in t f o rma ts and be tween f l oa t i ng -po in t f o rma ts a re a l so i n
cluded. When converting from floating-point to f ixed-point format,
the current rounding mode can be temporari ly changed to round-
to -zero . Many programming languages de f ine convers ion to in
teger as rounding to zero. In accordance wi th the standard, the
defaul t rounding mode is rounding to the nearest in teger .

Scalabi l i ty and Performance
HP Precis ion Archi tecture is designed to adhere str ict ly to the

IEEE f loat ing-po in t s tandard. The s tandard does not , however ,
require that al l f loating-point operations be performed in high-per
formance hardware, and does not specify the instruction set level
p resen ta t i on o f t he ha rdware . Wheneve r t he re i s l i t t l e pe r fo r
mance advantage 10 be ga ined by per fo rming an opera t ion in
h a r d w a r e , c o n s i d e r a t i o n s h o u l d b e g i v e n t o s i m p l i f y i n g t h e
hardware and per fo rming the opera t ion in so f tware . The un im-

8 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

plemented except ion t rap mechanism is employed to avoid han
dl ing operat ions and except ional condi t ions in hardware.

The s imp les t HP Prec is ion sys tems may comple te ly exc lude
a f loa t ing-po in t un i t . Each f loa t ing-po in t ins t ruc t ion causes an
assist emulat ion t rap and system software completely s imulates
the func t ion Spec ia l con t ro l reg is te rs speed the s imu la t ion o f
load and s tore ins t ruc t ions. Some implementat ions can reduce
t he comp lex i t y o f ha rdwa re con t r o l by suppo r t i ng on l y t hose
operations that use available floating-point hardware. In this case,
except ional condi t ions ar ise that can require addi t ional process
ing or sof tware ass is tance For example, the un implemented ex
cept ion t rap mechanism can be used to handle the square root
operat ion and corner case operands l ike in f in i t ies. NaNs (not a
number) , and denormal ized numbers.

The f loat ing-po in t coprocessor is arch i tec ted to be p ipe l ined
to a l low very h igh-per formance numer ic process ing. Fundamen
tal to this is the delaying of exception reporting . If the coprocessor
mus t i n fo rm the bas ic p rocessor immed ia te l y tha t the cu r ren t
instruct ion overf lows, then l i t t le concurrent processing and pipe
l in ing is possible. In HP Precis ion Archi tecture, the coprocessor
can freely accept a non- load/store operat ion independent of any

ear l ier operat ions, prov ided space ex is ts in the except ion regis
t e r s be i n excep t i ons Th i s a l l ows seven i ns t ruc t i ons t o be i n
execut ion s imul taneous ly wh i le the bas ic processor cont inues
Load and s to re ins t ruc t ions to independent da ta reg is te rs can
a lso be fu l l y over lapped The coprocessor need on ly comple te
p ipe l ined inst ruct ions when the resul t is be ing requested Refer
ences to the status register are special and require al l operations
to be completed.

A m in ima l l y p i pe l i ned mach ine m igh t pe r fo rm on l y a s i ng le
f loat ing-po in t operat ion a t a t ime, but permi t load and s tore op
e r a t i o n s t o e x e c u t e c o n c u r r e n t l y . T h i s r e q u i r e s a n i n t e r l o c k
against stores of the single result register specif ied in the execut
ing opera t ion , and an in te r lock on the source reg is te rs dur ing
the period that the source exceptions are tested in the operations.
The second interlock may never occur in some implementations.

The f loat ing-point instruct ion set is designed to al low software
the opt ion o f per forming p ipe l ined operat ions wi thout the need
for complex hardware control . The high- level language opt imizer
p laces i ns t ruc t i ons i n a sequence to avo id t he mos t common
inter locks. The use of results is delayed as long as possible and
ef fect ive over lap wi th other integer operat ions is obtained.

lows the specification of premodification or postmodifica-
tion without using up a bit of the long displacement field.
Memory accesses with long displacement fields perform
predecrement or postincrement, depending on the sign of
their displacements. In theory, this is less general than
allowing the specification of premodification or post-
modification to be orthogonal to the sign of the displace
ment, as is true for the short-displacement load and store
instructions. In practice, however, the feature works very
well for maintaining stacks stored in the memory. For
example, for a stack growing in the direction of decreasing
memory addresses, pushing onto the stack from a register
is done by a store with predecrement and popping off the
stack is done by a load with postincrement.

Combined Instruct ions
The basic types of operations in most instruction sets

fall into three categories: data transformation operations,
data movement operations, and control operations. In gen
eral, one instruction performs one of these operations. A
combined instruction performs more than one of these op
erations in one instruction. In HP Precision Architecture,
almost every instruction performs a combination of two of
these operations in a single cycle, with relatively simple
hardware.

HP Precision Architecture has two types of data transfor
mation and control operation combinations. The first type
has a more general transformation operation combined
with a restricted control operation, whereas the reverse is
true for the second type. Examples of the first type are ADD
instructions that can conditionally skip the execution of
the following instruction. Examples of the second type are
COMPARE AND BRANCH instructions.

The LOAD and STORE instructions combine a data move
ment operation (moving data between a general register
and the memory system) with a transformation operation
(the accompanying address calculation and modification).

HP Precision Architecture's combined instructions allow
the execution engine to be used efficiently, since the data

transformation portion of a combined instruction is per
formed in the simple execution engine shown in Fig. 3.

Assist Instructions
The architecture allows for flexible instruction set exten

sions by means of assist instructions. Assist instructions
are instructions in which the data movement functions are
defined between the processor or the memory and the assist
hardware, but the data transformation functions are left un
specified. An extension instruction is defined by specifying
in an assist instruction the data transformation operations
to be performed by the assist hardware. Assist hardware
is optional hardware that accelerates the execution of a set
of assist instructions. In the absence of the assist hardware,
an extension instruction is emulated by software, using
a transparent assist emulation trap mechanism. Critical in
formation required for emulation is saved in control regis
ters, substantially reducing the emulation time.

HP Precision Architecture allows up to sixteen assists
in a system configuration, supporting sixteen logically dif
ferentiated sets of instruction set extensions. These are di
vided into two generic types of assists: the special function
units (SFUs) and the coprocessors (COPs).

Special function units use the general registers as sources
and targets of operations. They are coupled very closely to
the basic processor and its register buses.

Coprocessors provide functions that use either memory
locations or coprocessor registers as operands and targets
of operations. They are coupled less closely to the basic
processor. Coprocessors may also directly pass double-
word quantities between the coprocessor and the memory.
This is suited to the manipulation of quantities that are
too large to be handled directly in the general registers.

The HP Precision instruction set can be extended by
defining a set of assist instructions in applications where
specialized hardware is justified by its frequency of use or
by the resulting performance improvement. The architec
ture allows such instruction set extensions without com
promising software compatibility. An example of such an

AUGUST 1986 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

instruction set extension is the instruction set for the float
ing-point coprocessor (see box, page 8).

Control Flow Model

HP Precision Architecture defines a computer in which
the flow of control passes to the next sequential instruction
in the memory unless directed otherwise by branch instruc
tions, nullification of instructions, or interruptions. These
three mechanisms can potentially alter the sequential flow
of control in instruction processing.

Branching
The architecture has both unconditional and conditional

branch instructions. All branch instructions exhibit the
delayed branch feature.

In a pipelined processor, it is difficult to execute a branch
instruction in one cycle, since the branch target address
has to be calculated before the target instruction can be
fetched. Hence, taken branches frequently result in pipeline
interlocks, in the absence of other prefetch mechanisms.

To minimize such pipeline interlocks, HP Precision Ar
chitecture defines a one-instruction delayed branch. This
means that a delay instruction, which is the instruction
following a branch instruction, is executed before the pro
gram control flow passes to the target instruction of the
branch. The delay instruction is not executed when it is
explicitly nullified by its preceding branch instruction.
This branch nullification feature is explained later.

The delayed branch mechanism allows compilers to
schedule a useful instruction in the cycle during which the
branch target address is calculated. For example, this might
be an instruction that preceded the branch instruction.
Unconditional Branching. HP Precision Architecture de
fines iocal branches, where the control flow passes to
another location within the current virtual space and exter
nal branches, where instruction processing continues at a
location that may be in a different virtual space.

The design of high-speed pipelines is simplified if branch
target address calculations can be made before the execu
tion of the branch instruction itself. In HP Precision Ar
chitecture, the most common branch instructions have
branch targets calculated relative to the address of the
branch instruction itself, with displacements given in the
branch instruction. These are called relative branches with
static dispJacements, Unconditional branch instructions
have a 17-bit signed displacement field, and the conditional
branches have a 12-bit signed displacement field.

Although a 17-bit displacement will cover almost all
branch distances, it is insufficient in certain situations.
Furthermore, it is not always possible or convenient to
generate a static displacement at compile time for some
branches. Hence, the architecture includes branch instruc
tions with 32-bit dynamic dispJacements specified by the
contents of a general register.

Branches are also needed to locations that have no rela
tion to the address of the branch instruction â€” for example,
to independent relocatable modules. This is called absolute
branching, since the address of the target instruction can
be anywhere in the address space. HP Precision Architec

ture also allows absolute branches: the branch displace
ment is added to the contents of a general register called
the base register.
Subroutine Calls. The subroutine call primitives are
BRANCH AND LINK instructions, which save the return ad
dress of the calling routine in a general register before trans
ferring the control flow to the subroutine. Both local (intra-
space) and external (interspace) subroutine calls are de
fined. The external subroutine calls must save a larger re
turn pointer, indicating also the virtual space of the caller.

The external BRANCH AND LINK instruction uses implicit
link registers for saving both the caller's space identifier
and the offset within that space. Space register zero (SR 0)
is used for saving the space identifier and general register
thirty-one (GR 31) is used for saving the offset address.
This permits the maximum number of bits to be used for
encoding the static branch displacement.

Subroutine returns are accomplished by using an abso
lute used instruction, specifying the general register used
to save the link address in the BRANCH AND LINK calling
instruction. If appropriate software conventions are used,
a uniform subroutine return sequence can be used for both
local and external calls.
Inter-Ring Branches. Four hierarchical protection rings are
implemented in HP Precision Architecture. Each ring has
a privilege level associated with it, the innermost ring
(privilege level 0) being the most privileged ring and the
outermost ring (privilege level 3) being the least privileged
ring.

The architecture defines unconditional branch instruc
tions that perform inter-ring crossings in one instruction.
Three of these are outward branches, causing a decrease
in the process privilege level. Only one branch instruction
(GATEWAY) is an inward branch, causing an increase in
privilege level.
Conditional Branching. In many architectures, conditional
branching is accomplished by two separate instructions.
The first instruction calculates a condition, and saves the
result of this condition calculation in state flip-flops in the
processor called a condition code. A subsequent condi
tional branch instruction may alter the program's control
flow depending on the value of the condition code.

Statistics of instruction sequences show that in an over
whelming majority of cases, a conditional branch instruc
tion is immediately preceded by the instruction that sets
the condition tested by the branch. HP Precision Architec
ture capitalizes on that fact by combining the two instruc
tions into one instruction, thus achieving code compaction,
reduction of execution time, and elimination of condition
code flip-flops in the processor state. Each conditional
branch instruction includes a data transformation opera
tion, which generates a condition that is used immediately
to determine whether the branch is taken or not. Such
conditional branch instructions also provide greater oppor
tunities for an optimizer to reorder instructions, with less
bookkeeping.

There are four kinds of operations that can be executed
with a conditional branch instruction. The ADD AND BRANCH
instruction is useful for closing loops. The COMPARE AND
BRANCH instruction is useful for closing loops and for if-
then-else control structures. The BRANCH ON BIT instruction

10 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

allows branching on the value of any bit in a general regis
ter. The MOVE AND BRANCH instruction is useful for
reinitializing a register before branching away.

HP Precision Architecture also implements a special nul
lification scheme to optimize the use of the delay instruc
tion following a conditional branch instruction.

instruction WWW.
For forward branches, the nullification definition allows

shorter code sequences for if-then constructs, as shown in
the following example.

Nullification
HP Precision Architecture defines a control flow feature

called the nullification of the immediately following in
struction. When an instruction is nullified, it executes as
a no-operation (NOP), and the effect is as if it had never
been in the instruction stream. This means that no change
in any architecturally visible state, like general registers,
memory, control registers, or space registers occurs because
of a nullified instruction. A nullified instruction does not
cause any traps to be generated, and it does not cause its
successor instruction to be nullified. All branch instruc
tions and data transformation instructions have the ability
to nullify the instruction to be executed next.

All branch instructions have a single-bit nullification
field. An unconditional branch instruction can "always
nullify" or "never nullify" the execution of its delay in
struction by setting the value of the nullification field to
one or zero, respectively. A conditional branch instruction
can "conditionally nullify" or "never nullify" the execu
tion of its delay instruction in the same manner. The never
nullify feature is used whenever a delay instruction can
be found that can always be executed, regardless of whether
the branch is taken or not.

A conditional branch is taken when the condition it
specifies evaluates true. To optimize the use of the delay
instruction following the conditional branch, the delay in
struction is nullified for backward branches only if the
condition is false, and for forward branches only if the
condition is true. Since the compilers use the convention
that loops are closed with backward branches, the delay
instruction of this branch can now be "inside" the loop,
saving a cycle on each iteration. The following example
illustrates this.

X X X - > i
L O O P B : Y Y Y

Loop body

Z Z Z
C O M B T . C . n ,
X X X
W W W

r 1 , r 2 , L O O P B ;

As shown, the first instruction (XXX) of the loop body
can always be duplicated following the loop-closing
branch, COMBT. When the COMBT instruction is executed,
if condition C is true, then the XXX instruction is executed
and control passes back to LOOPB. Otherwise, the next in
struction (XXX) is nullified and processing continues with

"If"
Code

"Then"
Code

R R R

S S S
C O M B T . C . n r x . r y . T H R U ;

U U U
T H R U : W V

When the conditional branch instruction, COMBT, is exe
cuted, if condition C is true, the next instruction is nullified
and the branch is taken around the "Then" code to the
location THRU. Otherwise, the next instruction (TTT) is exe
cuted.

Every data transformation instruction has an implicit
conditional skip operation built into it. In a single cycle,
the function specified by the transformation instruction is
performed by the execution engine, and a condition
specified in the instruction is evaluated. If the condition
evaluates true, then the next instruction to be executed is
nullified. If the condition evaluates false, then the next
instruction is executed, or not nullified.

The following example shows the use of nullification in
an ALU instruction to implement a compact control se
quence for a high-level language construct.

High-level language:
if (a < b) then b = b + Â¡.

Equivalent HP Precision assembly language:

SUB,>= a,b,rO; Subtract [GRb] from [GR a], discarding
the result, and nullify next instruction if

ADDI 1,b,b; Add the immediate value \ to [GRb],
writing the result back to GRb.

Conditional Trap. In some instructions, the condition
specified in the instruction is used to cause a conditional
trap, rather than the nullification of the next instruction.
An advantage of taking a conditional trap rather than con
ditionally nullifying a branch to a trap routine is that the
majority of instructions do not incur the penalty of a nul
lified instruction. For example, when an add or subtract
instruction is used to perform range checking, the penalty
of a conditional trap is taken only in the rare cases where
the range check fails.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

While it is a common feature of other architectures to
have an ALU instruction trap on arithmetic error conditions
like overflow, it is a special feature of HP Precision Ar
chitecture to allow trapping on defined conditions that are
not arithmetic errors.
Assist Nullification. In assist nullification, the condition
upon which nullification is performed is generated by the
assist hardware rather than by the basic processor. Instead
of defining assist branch instructions, the processor's un
conditional branch instructions are used for control flow
changes in assist programs. The equivalent of conditional
branching is achieved using a pair of instructions: a data
transformation assist instruction with its nullification field
set to one, followed by an unconditional branch instruc
tion. The assist instruction generates a condition that deter
mines whether the following branch instruction should be
nullified.

An assist can be defined with the nullification oper
ation dependent upon the condition generated either in
the current assist instruction or in the previous assist in
struction. The latter is called delayed nullification.
Delayed nullification allows other instructions, executed
by the basic processor or other assists, to be scheduled
during the time the assist hardware is performing a lengthy
computation that generates the condition for determining
nullification.

Interruptions
Interruptions are anomalies that occur during instruction

processing, causing the control flow to be passed to an
interruption handling routine. In the process, certain pro
cessor state saves and changes are made automatically by
the hardware. Upon completion of interruption processing,
a RETURN FROM INTERRUPT instruction is executed, which
restores the saved processor state, and execution proceeds
with the interrupted instruction.

Traps, faults, checks, and interrupts are different anom
alies that may happen during instruction processing on a
computer. In HP Precision Architecture, they are all han
dled by the same basic mechanism. The term interruptions
is used in discussing these anomalies as a group.

The architecture implements a single-level interruption
system. This means that once an interruption is chosen for
service, it cannot be preempted for service by a higher-
priority interruption. It also implies that only one interrup
tion is serviced at a time. If an instruction raises multiple
interruptions, the highest-priority interruption is serviced,
and then the instruction is reexecuted, which causes the
other interruptions to be raised again. Then the next high
est-priority interruption is serviced, and so on.

The nesting of interruptions is not excluded, since the
interruption handling routine can choose to reenable other
interruptions once it has saved the appropriate state. Since
the machine state is saved in registers rather than in mem
ory when an interruption is serviced, interruption handlers
must leave interruptions disabled until they have saved
the machine state in memory.

In certain pipelined processors, interruptions are often
not precise, in the sense that they may not be serviced
immediately after the instruction that caused the interrup
tion. This is because in overlapped instruction processing,

several successive instructions may already have been par
tially or fully processed by the time the interruption caused
by an instruction is generated. This imprecision adds con
siderable complexity to interrupt handling routines.

In a nonoverlapped processor, precise interruptions are
easy to implement, since an instruction is fetched and com
pletely executed before the next instruction is fetched.
Hence, interruptions can be serviced between instructions,
that is, after the instruction causing the interruption and
before the next instruction's processing starts.

HP Precision Architecture requires that interruption ser
vicing appear the same for both overlapped and nonover
lapped processors. Hence, all implementations must pro
vide precise interruptions, and resume execution at the
same instruction as a nonoverlapped implementation.
Traps and Faults. Traps and faults are synchronous inter
ruptions, meaning that they are caused by the processing
of an instruction or a sequence of instructions. A trap oc
curs when the function requested by the current instruction
cannot or should not be carried out, or system intervention
is desired by the user before or after the instruction is
executed. A fault occurs when the current instruction re
quests a legitimate action that cannot be carried out because
of a system problem, such as the absence of a page from
main memory. After the system problem has been corrected
the faulting instruction will execute normally.

In HP Precision Architecture, the overflow trap and the
conditional trap occur for arithmetic instructions. The
privileged operation or privileged register traps occur when
certain system management instructions or control regis
ters are accessed by a process with insufficient privilege.
An illegal instruction trap is generated for undefined oper
ation codes, or illegal instruction sequences which could
otherwise cause security breaches. The assist exception
and emulation traps allow assist hardware to request the
processor to service assist-generated traps, or to emulate
assist instructions not supported by hardware.

Virtual memory faults and traps may also be generated
for instruction fetches or data fetches in virtual mode. For
example, if the virtual-to-physical address translation is
not found in the hardware translation lookaside buffer, a
TLB miss fault is generated. If a virtual memory access fails
the protection checking required for the access, then a
memory protection trap is generated. These traps are gen
erated independently for instruction and data virtual ac
cesses. The first time a page is written, a TLB dirty-bit trap
occurs, which is used by the system to distinguish unmod
ified pages from modified (dirty) pages at page replacement
time.

HP Precision Architecture also has a rich set of debugging
support traps. A BREAK instruction is defined in the ar
chitecture to allow the insertion of software breakpoints.
Whenever such an instruction is executed, a break trap
occurs. Any store instruction to a virtual address may also
generate a data memory break trap, if this trap is enabled
by a bit in the TLB entry. This allows the tracing of all data
updates to a given page. A similar facility traps on any
reference whatsoever to a given virtual page. Traps may
also be generated, if enabled, after a branch is taken, or
when the privilege level of the running process is promoted
or demoted. Architectural support for software rollback

12 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

schemes is also implemented by means of a recovery
counter trap. A 32-bit control register, the recovery counter,
can be initialized to any integer value. If enabled, the
counter is decremented for every nonnullified instruction
that is executed, and a recovery counter trap is generated
when a zero value is reached. The recovery counter can be
used in fault recovery, to permit an exact reexecution of
the instruction stream since the last checkpoint.
Checks and Interrupts. A check occurs when a hardware
malfunction is detected. Depending on the nature of the
malfunction, checks may be synchronous or asynchronous
with respect to the instruction stream. HP Precision Ar
chitecture defines two types of machine checks: a high-
priority machine check and a low-priority machine check.

An interrupt occurs when an external entity, like an I/O
device or the power supply, requires attention. Interrupts
are asynchronous with respect to the instruction stream.

There are thirty-two external interrupt classes, each of
which can be individually masked by privileged software.
The architecture defines two control registers specifically
for handling these external interrupts. The external inter
rupt request (EIR) register and the external interrupt enable
mask (EIEM) register each have thirty-two bits, one for each
external interrupt class. A privileged instruction allows
the writing of any set of mask bits to the EIEM register and
the clearing of any selected bits in the EIR register. When
an external interrupt of any class occurs, its corresponding
interrupt pending bit is set in the EIR register. If the corre
sponding mask bit in the EIEM register is also one, then
an external interrupt is taken. An EIR register bit remains
set, leaving the external interrupt pending, until explicitly
reset by an interruption handler.

Relative priority of these thirty-two external interrupt
classes is not assigned by the architecture or by the hard
ware. When multiple unmasked external interrupts occur
simultaneously, or when there are multiple external inter
rupts pending in the EIR register, the external interrupt
handler selects the order of service.
Interruption Parameters and Servicing. Six control regis
ters are defined to save interruption parameters and expe
dite the processing of interruptions. The collection of infor
mation in these interruption parameter registers occurs
only when the interruption state collection enable flag (Q
bit) in the processor status word (PSW) is set.

These interruption parameter registers save the processor
status word of the interrupted process, the instruction that
is interrupted, and the data address (space and offset por
tions) for memory reference instructions. Two other register
pairs form two queues, saving the space and offset portions
of the addresses of the first two instructions to be processed
upon returning from the interruption.

The two queues are necessary because in an architecture
with delayed branching, at least two return addresses must
be saved before jumping to the interruption handler. Two
are necessary because the last instruction to be completed
before the interruption may be a taken branch. In this case
the next two instructions to be executed may not be contigu
ous, since one is the delay instruction and the other is the
target instruction. These queues are constantly updated by
the hardware whenever interruption parameter collection
is enabled. When an interruption is taken, the queues and

other interruption parameters are preserved by disabling
further interruption collection.

Interruption servicing is implemented as a fast context
switch, which is much simpler than a complete process
swap. When an interruption occurs, the current processor
status, represented by the PSW, is saved. Then, the PSW
is cleared to zeros to disable further interruptions, to enable
real-mode addressing, and to freeze the information col
lected in the interruption parameter registers. The current
privilege level is set to the highest privilege level. The
control flow then passes to a vectored location in an inter
rupt vector table, which is dynamically relocatable. This
simple set of architecturally defined operations facilitates
a fast and uniform switch to interruption servicing for all
implementations.

Addressing and Protection Model

HP Precision processors access memory using byte ad
dresses. Larger addressable units include half words,
words, and double words. An address is either physical or
virtual. All load and store instructions can be used in either
virtual or physical mode. Virtual mode is enabled sepa
rately for instruction fetches and data accesses by two flags
in the processor status word.

A pointer to physical memory is a 32-bit unsigned integer
whose value is the address of the first byte of the operand
it designates. Physical addresses are used directly, with no
protection or access rights checking performed. Virtual ad
dresses are translated to physical addresses and undergo
protection and access rights checking as part of the trans
lation. This allows the hardware support for access control
to be built into the storage unit.

The input/output (I/O) architecture is memory mapped.
That is, complete control of all system components (of
which I/O attachments are a special case) is exercised by
the execution of load and store instructions to virtual or
physical addresses. This approach permits I/O drivers to
be written in high-level languages. Furthermore, since the
usual page-level protection mechanism is applied during
virtual-to-physical address translation, user programs can
be granted direct control over particular I/O devices with
out compromising system integrity.

Virtual Memory Addressing
A virtual address is defined globally and has the same

meaning when used by any process. This is in contrast to
other architectures, which permit use of the same address
for different objects by different processes. The virtual ad
dress space is so large that processes can be assigned sepa
rate address ranges for private data. Address translation
information does not need to change upon a process switch
and the information needed for address translation can be
represented more compactly. Global virtual addressing
therefore allows closely coupled processes to accumulate
a stable working set of address translations in spite of fre
quent process switching.

Virtual memory is structured as a set of address spaces,
each containing 232 bytes. A level-one processor imple
ments 216 spaces (16-bit space registers), and a level-two

AUGUST 1986 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

processor implements 232 spaces (32-bit space registers).
A space is specified by a space identifier, and is divided
into pages, each 2048 bytes in length.

For a level-two processor, the concatenation of a 32-bit
space identifier and a 32-bit offset within the space forms
a virtual address. Alternatively, a virtual address may be
viewed as the concatenation of a 53-bit virtual page number
and an 11 -bit offset within the page.

For virtual addressing, space identifiers are specified in
space addressing registers. These include the space portion
of the instruction address register and the eight space regis
ters SR 0 through SR 7 (see Fig. 4). One such register is
implicitly or explicitly selected by every instruction that
generates a virtual address.

SR 0 is used as an implied target by the interspace pro
cedure call instruction. SR 1 through SR 7 have no architec
turally defined functions, but it is expected that their use
will be constrained by the following software conventions.
SR 1 through SR 3 are used as scratch registers for the
manipulation of 64-bit virtual pointers. SR 4 tracks the
current program's space and provides access to literal data
contained in the current code space. SR 5 points to a space
containing process private data, SR 6 to a space containing
data shared by a group of processes, and SR 7 to a space
containing the operating system's code, literals, and data.
The conventions for SR 4 through SR 7 were chosen to
permit use of 32-bit virtual address pointers (see below)
for almost all data references.

SR 5 through SR 7 can be modified only by code execut
ing at the most privileged level. SR 0 through SR 4 can be
changed by an unprivileged user. Shared libraries or sub
systems will be assigned individual code spaces, and
branching into those other spaces will involve changing
SR4.
Instruction and Data Addressing. Instruction addresses are
computed for instruction fetch, instruction cache flush in
structions, instruction TLB instructions, and branch target
calculations. Instructions that explicitly reference a space
register use the 3-bit S field, located in the instruction, to
designate one of the eight space registers.

Data addresses are computed for load, store, semaphore,
probe, data cache, and data TLB instructions. Data addresses
specify one of the eight space registers in an interesting
way: only a 2-bit S field in the instruction is used. When
the 2-bit S field is nonzero, it selects the corresponding

Instruction
Address

Space Current Code Space ID

Link Code Space ID

64-Bit Pointers

64-Bit Pointers

64-Bit Pointers

Tracks IA Space

Process Private Data

Job Common Data
OS and Subsystem Code,
Literals, and Data

Fig. 4 . Space reg is ter convent ions.

space registers 1, 2, or 3. When the S field is zero, the space
register is designated by adding four to the two high-order
bits of the base register specified in the instruction. This
allows the selection of space registers 4 through 7.

Data references with the S field equal to zero allow
addressing of four distinct spaces selected by the high-order
bits of a 32-bit pointer. This is called short-pointer address
ing (Fig. 5), since a 32-bit value both specifies an offset
and selects a space register. Only one fourth of each space
is directly addressable with short pointers. This region corre
sponds to the quadrant selected by the upper two bits. For
example, if a base register contains the hex value 80001000,
the content of space register 6 is the space identifier and
the third quadrant of the space is directly addressable.

Short-pointer addressing allows the pointer data type of
conventional languages to be 32 bits in length. Therefore,
such pointers can be handled efficiently in the general-pur
pose registers. Also, pointers are the same length as the
standard integer data type, a situation assumed by a number
of existing high-level langauge programs. Long pointers are
48 bits or 64 bits in length, consisting of a 16-bit or 32-bit
space identifier together with a 32-bit byte offset within
the space, for level-one and level-two processors, respec
tively.

Software Virtual Address Translat ion
TLBs (see box, page 16) do not contain the translations

for all pages in memory simultaneously. When they do not
have the desired translation, a TLB miss occurs. In many
architectures, TLB misses are handled in microcode. In HP
Precision Architecture, they may be handled in software.
When a TLB miss is detected, the hardware does not have
sufficient information to complete the instruction being
executed. Instead, an interruption is generated to invoke
the appropriate TLB miss handler. One miss handler handles
misses during instruction fetch, and another handles misses
during data access. The virtual address causing the miss is
directly available to the TLB miss handler in interruption
parameter control registers to expedite miss handling.

Because of the critical effect on system performance of
the speed of address translation, all information required
to translate the virtual address of a page that is actually
present in physical memory must be permanently resident
in memory. Because of the size of the virtual address space,
tables describing all virtual pages cannot be kept perma
nently in memory. Thus the data structures used to trans
late valid virtual addresses (no page fault) describe only
physically present pages and have a size proportional to
the size of physical memory, consuming less than 2% of
the available memory. The information represents a one-to-
one mapping between physical and virtual pages. Thus it
cannot support memory aliasing (see box, page 16) or pro
cess-specific address translation. A desire to use these ef
ficient structures was an important motivation for disallow
ing both features.

This address translation information resides in a physical
page directory (PDIR). The physical-to-virtual address
translation is obtained by using the physical address as a
direct index into the PDIR. The translation of a virtual
address to a physical address is accomplished using two
tables, the hash table and the PDIR. Each table is located

14 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Base Reg is te r

S R 4

4 o f 2 ' 6 o r 2 3 2 S p a c e s

by a pointer which defines its absolute starting address.
For efficiency, these pointers are kept in control registers
(assumed to be CR 24 for the PDIR address and CR 25 for
the hash table address).

The purpose of the hash algorithm is to map virtual ad
dresses to a smaller, denser name space. The number of
entries in the hash table is typically a multiple of the
number of entries in the PDIR, rounded up to the nearest
power of two. Since multiple virtual addresses can map
into the same hash table entry, they are linked together as
a chain of PDIR entries. The TLB miss handler hashes the
virtual address, looks up the start of the chain in the hash
table, and looks through the chain in the PDIR until it finds
either the match or the end of the chain. If it finds the
match, it puts the information from the PDIR into the TLB
and retries the instruction. If it finds the end of the chain,
the page is not in memory and a page fault is signaled by
the software.

The physical page directory (PDIR) contains one entry
for each page of physical memory, plus one for each phys
ical or virtual I/O device. The entries for physical pages
are at nonnegative offsets from the location pointed to by
CR 24, and the I/O entries are at negative offsets. This
arrangement corresponds to the layout of the 32-bit phys
ical address space which places physical memory at the
lower end of the space and memory mapped I/O devices
at the upper end.

The design of the hash table and PDIR are such that later
implementations can service TLB misses in hardware, with
a reduction in the time spent servicing TLB misses. Control
registers have been reserved to contain the hash table ad
dress and PDIR address.
Paging Management. One function of an operating system
is to swap out pages that have not been accessed recently,
to make room for pages being accessed that are still on
disc. To help implement this, there is a reference bit for
each page, within the PDIR entry, even though there is no
hardware bit corresponding to it in the TLB. Instead, the
entry is only allowed to be in the TLB if the reference bit
is set. When the reference bit is cleared, the TLB entry is
also purged by software. The next time there is a TLB miss,

Fig. 5 . Shor t -po in ter space se lec
t ion a l lows address ing of four d is
t inc t spaces se lected by program
data.

the miss handler will also set the reference bit in the PDIR.
Thus, the operating system can clear the reference bit, and
if the bit is still clear sometime later when it examines it
again, it knows that the page has not been accessed in the
meantime.

Each entry of the PDIR (and the TLB) has a dirty bit that
tells whether the page has been modified since it was
brought in from disc. When the page is first brought in,
the dirty bit is clear. As long as only reads are done to the
page, the bit will remain clear. However, the first time a
program tries to store data to that page, the TLB causes a
dirty bit update trap, which sets the bit to one in both the
PDIR and the TLB. This provides information to the operat
ing system so that it can avoid writing out unmodified
pages, since the copy on disc is still valid.

Access Control
Access rights checking is based on the access rights and

access ID fields in the TLB entry used to perform the trans
lation. Access rights checking occurs with virtual address
translation, unless disabled by the P flag in the PSW. There
is no access control when using physical addressing.

Fields in the TLB entry for a particular page permit con
trol of access to the page in three dimensions:
â€¢ Which of data read, data write, instruction execute, and

the privilege level change function of the GATEWAY in
struction are permitted (What)

â€¢ The privilege level at which the process must be execut
ing (When)

â€¢ The process or group of processes allowed to access the
page (Who).
These three dimensions are provided by two indepen

dent, simple mechanisms that combine to provide the re
quired protection which can be evaluated in parallel to
provide efficient access control. The combination is de
signed to support both conventional and virtual machine
operating systems.
Access Rights. The first two dimensions of access control
are provided using the access rights field of the TLB entry
and the process privilege level. There are four levels (0 to
3), with 0 being the most privileged. Associated with each

AUGUST 1986 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

HP Precision Architecture Caches and TLBs

An HP Precis ion processor typical ly in ter faces to the memory
system via the t ranslat ion lookaside buf fer (TLB) and the cache
m e m o r y . T h e a r c h i t e c t u r e i s d e s i g n e d t o a l l o w s i m p l e , h i g h
speed implementat ions by making the TLB and cache v is ib le to
sof tware, and by p lac ing const ra in ts on sof tware. The arch i tec
tu re a lso exp l ic i t l y separates ins t ruc t ion and data caches, and
ins t ruc t ion and data TLBs, a l though th is is not a res t r ic t ion on
hardware implementat ions.

A cache i s a sma l l , h i gh -speed memory tha t sho r tens ma in
memory access t imes by keep ing cop ies o f t he mos t recen t l y
accessed da ta . The cache i s d i v ided i n to b locks o f da ta , and
each b lock has an address tag that speci f ies the corresponding
b lock of memory. When the processor accesses data, the b lock
i s cop ied f r om ma in memory i n to t he cache . I f t he p rocesso r
mod i f ies the da ta (by do ing s to res) , the copy in the cache w i l l
be more up- to-date than the copy in memory. The s ta le data in
the memory a t the p lace spec i f i ed by the tag i s even tua l l y up
dated to cor respond to the new data in the cache, us ing e i ther
the copy-back or the wr i te- through update s t ra tegies.

Simi lar ly , a TLB speeds up v i r tual address t ranslat ions by act
i n g a s a c a c h e f o r r e c e n t t r a n s l a t i o n s . W h e n t h e p r o c e s s o r
accesses memory wi th a v i r tual address, the TLB checks for an
en t ry w i th tha t v i r tua l page number . I f i t i s p resent , the cor res
ponding physical page number is used to generate the physical
address. Otherwise, there is a TLB miss, which must be serviced
before the v i r tua l memory access can be f in ished.

To a l low the implementat ion of large, h igh-speed caches, the
archi tecture disal lows address al ias ing, the capabi l i ty of having
two d i f fe rent v i r tua l pages mapped to the same phys ica l page.
Whi le address al iasing is of some use to sof tware, i t has severe
i m p a c t o n c a c h e d e s i g n . N o r m a l l y , a p o r t i o n o f t h e a d d r e s s

ca l led the index is used to spec i fy a b lock o r a smal l g roup o f
b locks to be examined for a matching tag, instead of examining
a l l b locks i n the cache . Address a l i as ing p rec ludes us ing the
v i r t ua l page as pa r t o f t he i ndex . O the rw ise , a v i r t ua l access
cou ld pu t da ta i n to t he cache based on i t s i ndex , and a l a te r
v i r tual access, using the other (a l iased) address, would not f ind
it in the cache because the index was different in the virtual page
p o r t i o n . T h e s e c o n d a c c e s s w o u l d t h e n g o t o m a i n m e m o r y ,
where i t would get an inconsis tent or s ta le copy.

S ince HP Prec is ion Arch i tecture prohib i ts the use of address
aliasing, the cache can use the virtual page portion of the address
as pa r t o f t he i ndex , w i t hou t caus ing t he s t a l e da ta p rob lem
described above. This allows the cache to be accessed in parallel
w i th o f TLB w i thou t res t r i c t ing the s ize o f the cache to tha t o f
t he page s i ze mu l t i p l i ed by the se t -assoc ia t i v i t y o f t he cache
organization.

I f an object is to be referenced by both i ts v ir tual address and
i t s c o r r e s p o n d i n g p h y s i c a l a d d r e s s , s o f t w a r e m u s t f l u s h t h e
cache be fo re access ing t he da ta i n t he o the r mode . The one
except ion is i f the phys ica l and v i r tua l addresses are ident ica l ,
namely, the vir tual address is in space zero and the offset within
t h e s p a c e i s t h e s a m e a s t h e p h y s i c a l a d d r e s s . S i n c e t h e
addresses are ident ica l , the index chosen by the cache wou ld
be ident ica l , thus avo id ing the above s ta le da ta prob lem. Th is
case is ca l led equiva lent mapping.

Uniprocessor Cache Management
HP Prec is ion Arch i tec ture makes caches v is ib le to sof tware,

and suppor ts separate ins t ruc t ion and data caches when des i r
able for extra bandwidth, or a unif ied cache for reduced expense.
I t wi l l a lso support very low-cost systems without caches, where

process is a current privilege level.
The access rights information is encoded in seven bits

divided into three fields: type, first privilege level (PL1),
and second privilege level (PL2) fields. The type field de
fines the use of the page (data or code) and, for privilege
promotion instructions, the privilege level to which the
process will be promoted. PL1 and PL2 define the privilege
levels required for read, write, or execute access to the
page. The meaning of the type field and the interpretation
of PL1 and PL2 are given in Fig. 6. Read and write fields
specify the least privileged levels allowed to read or write
the page, respectively. Xleast gives the least privileged level
allowed to execute instructions from that page. Xmost gives
the most privileged level allowed to execute instructions
from the page and is used to prevent privileged code from
inadvertently branching onto a page that cannot be trusted.

The privilege level mechanism allows a process to have
different access rights over time without the overhead of
changing TLB entries when access changes or at process
switch. Thus user programs (privilege level 3) can invoke
the services of an operating system supervisor (privilege level
1) or kernel (privilege level 0) using an efficient procedure
call and no interruption or process switch is required.

The entry to a more privileged routine can be im
plemented as a procedure call to a GATEWAY instruction
that branches to the body of the routine. If a GATEWAY
instruction is fetched from a proprietary code page, then
when it executes it changes the privilege level to that

specified by the low-order two bits of the type field for
that page (if that level is more privileged than the current
level). The GATEWAY instruction stores the caller's privilege
level in the return address register so that it cannot be
"forged" by the caller.

The architecture defines two trap conditions (higher and
lower privilege transfer traps) that can be enabled to allow
an operating system to intercept privilege level changes.
These are provided to support languages that allow multi
ple processes to share a single stack with different access
rights.
Access ID. A second field in the TLB entry, the 15-bit
access ID, provides the third dimension of access control.
It allows each process sharing memory to access different
domains in memory without the overhead of changing
fields in the TLB (and associated data in memory) on pro
cess switch.

T y p e (3) P L 1 (2) P L 2 (2)

Type PL1 P L 2 U s e

Fig. 6. In terpretat ion of access r ights f ie lds.

16 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

the cache control instruct ions are treated as MOPS
F L U S H D A T A C A C H E a n d F L U S H I N S T R U C T I O N C A C H E i n s t r u c t i o n s

remove a cache b lock and update memory i f necessary PURGE
DATA CACHE removes a cache b lock wi thout update The la t ter
is used only when the data can be destroyed, for example when
the page is removed a t the conc lus ion o f a program

The archi tecture puts the responsibi l i ty of uniprocessor cache
consistency on sof tware, based on the assumpt ion that the sof t
ware knows when special action is needed to ensure consistency
Sof tware must take specia l act ion when i t is changing a page s
v i r tual address, when i t is modi fy ing the instruct ion stream (sel f
modi fy ing code) , and when i t is per forming I /O.

When the operat ing system changes a page's v i r tual address,
i t must f lush the range of addresses for that page, to ensure that
there are no b locks in the cache us ing the o ld v i r tua l address.

I f software stores into the instruct ion stream, the modif icat ion
wou ld occur i n the da ta cache , wh i le i ns t ruc t ions a re fe tched
out of the instruction cache. Rather than have the cache somehow
figure out that software is doing this, software is required to f lush
the data f rom both the data cache (to update main memory) and
the ins t ruc t ion cache (to fo rce the next fe tch to go to memory)
a f te r mod i f i ca t ion . S ince se l f -mod i fy ing code is so in f requent ,
the extra t ime required is negl ig ib le.

From the standpoint of the cache, I /O is l ike another processor
reading or modi fy ing memory. I f the I /O system is reading data
f rom memory that is current ly in the cache, i t is reading a stale,
out -o f -date copy. Other arch i tectures have so lved th is prob lem
e i ther by hav ing I /O go through the cache, or by hav ing a l l I /O
t ransact ions interrogate the cache to see whether i t has a more
up-to-date copy. This ei ther uses up avai lable cache bandwidth,
depriv ing the processor, or lengthens the cache cycle t ime, slow
ing down the entire computer. HP Precision Architecture requires
sof tware to f lush the address range involved in the I /O t ransfer
b e f o r e i t o c c u r s , s o t h a t t h e c a c h e d o e s n o t n e e d t o d o a n y

checking. The overhead of f lushing for I /O is a very small amount
and less than the impact on per formance incur red by the o ther
schemes

HP Precision instruct ions include a nondivisible load and store
zero instruction. LOAD AND CLEAR WORD, which is similar to the
tes t and se t opera t ion in o the r a rch i tec tu res . Th is ins t ruc t ion
reads is word f rom main memory, f lushing the cache f i rs t i f i t is
present, then c lears the word in memory, in one indiv is ib le oper
at ion. I t is used to implement semaphores to synchonize access
to data s t ructures that are shared between the processors and
the I /O modules, or for data s t ructures that can be modi f ied by
two or more processes operat ing asynchronous ly .

Mult iprocessor Cache Management
For HP Prec is ion un ip rocessors , so f tware is respons ib le fo r

cache cons is tency . For mul t ip rocessors , however , hardware is
respons ib le fo r cache cons is tency s ince the mode l p resen ted
to so f twa re i s one i n wh i ch a l l t he p rocesso rs sha re a s i ng le
instruct ion cache, a s ingle data cache, a s ingle instruct ion TLB,
and a s ing le da ta TLB . Th i s i s because i t may be d i f f i cu l t f o r
sof tware to recognize a l l data cons is tency s i tuat ions in a mul t i
p rocessor and hand le these s i tua t ions e f f i c ien t l y fo r bo th un i
processor and mul t iprocessor systems. Sof tware is s t i l l respon
sible for maintaining consistency for I /O, for instruct ion modif ica
t ion, and for v i r tual address mapping.

In an actual mult iprocessor system, each processor may have
i ts own cache and TLB. To maintain the model of a single shared
cache and TLB among processors, s tandard cache consis tency
methods are used. In addi t ion, the expl ic i t cache and TLB f lush
and purge ins t ruct ions are broadcast to a l l p rocessors , so that
a f l u s h p r o e x e c u t e d b y o n e p r o c e s s o r w i l l a f f e c t a l l p r o
cessor caches or TLBs in the system. The broadcast f lushes and
purges s t i l l do not a f fec t I /O modules, a l lowing them to remain
simple.

An access ID of zero defines a page with public access
allowed, subject only to access rights checking. A nonzero
access ID permits access to the corresponding page only
when one of the four protection IDs in control registers
matches the access ID.

The four protection IDs designate up to four groups of
pages that are accessible to the currently executing process.
Four are provided to facilitate the controlled transfer of
information between logical environments. The low-order
bit of each of the four protection IDs is the write disable
(WD) bit. When the WD bit is set to 1, writing is disallowed
for all privilege levels to the pages so protected. For exam
ple, the WD bit allows a single writer and multiple readers
for a group of processes.

Privileged software needs a mechanism by which it can
avoid performing, on behalf of a less privileged caller, ac
tions not permitted the caller. This is provided by the
PROBE instructions, which test the caller's ability to read
or write a particular page of memory.

Functional Operations

The data transformation instructions provide all of the
common arithmetic and logical functions. There are also
several uncommon functions that provide building block
instructions for complex operations and functions for effi
cient high-level language optimizations. The transforma

tion instructions form a powerful resource for compilers
to generate efficient code while defining an easily im
plemented hardware execution engine.

Each transformation instruction also specifies the condi
tional occurrence of either a skip or a trap, based on its
opcode and the condition field. An immediate source can
also be specified. The arithmetic/logical instructions are
not completely orthogonal. Only those operations and op
tions considered useful were defined.

Arithmetic Operations
Addition and subtraction instructions offer the widest

flexibility in operand specification, condition formation,
and testing. The two operands can come from two general
registers, or from one general register and an 11-bit signed
immediate. The SUBTRACT IMMEDIATE instruction is a re
verse subtraction to allow subtraction of a variable from
an immediate. Subtraction of an immediate from a variable
is performed with an ADD IMMEDIATE instruction. The carry
or borrow bit can be included in the addition or subtraction.

Software will be able to construct any often needed func
tion in a single instruction. Since a conditional trap or an
overflow trap can optionally be specified, many range vio
lations and overflow checks required by high-level lan
guages can be performed without extra instructions. For
some checks an additional instruction might be needed,
but generally the architecture provides for the optimization

AUGUST 1986 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

of the high-frequency execution path.
Studies of large collections of programs show that integer

multiply and divide operations are infrequently used. Fur
thermore, when multiply is used, one of the operands is
usually a constant known at compile time. Hence, instead
of implementing a general multiply or divide instruction,
HP Precision Architecture implements multiply and divide
primitives, which do not require additional execution
hardware.

The SHIFT AND ADD instructions are used as building block
multiply instructions. They specify a one, two, or three-bit
shift of one of the source registers before adding it to the
other source. By combining a short sequence of these in
structions, multiplication by a constant can be done quickly.
The SHIFT AND ADD instructions are performed by the basic
execution engine, and share the use of the preshifter multi
plexers in the ALU data path with the address calculation
for the load and store instructions. These easily im
plemented multiply primitives are used effectively by the
software for a variety of constructs.

Multiplication by the constants 3, 5, 9, and any power
of 2 can be done in one instruction. Multiplication by other
small constants can be performed in two or three instruc
tions. When it is necessary to perform multiplication by a
variable, a specialized subroutine breaks the multiplier into
four-bit pieces and forms the complete product in an aver
age of twenty instructions.2

Division by small constants is handled as special cases
by the compilers, while for general cases, the DIVIDE STEP
instruction implements a single-bit nonrestoring division
operation. A specialized subroutine uses thirty-two of these
instructions, in combination with SHIFT DOUBLE instruc
tions, to produce the quotient and remainder.

The added hardware cost and potential increase in basic
machine cycle time, coupled with infrequent use, ruled
out the inclusion of division and multiplication in the basic
instruction set. The architected assist instruction exten
sions include integer multiply and divide functions for
applications requiring higher frequencies of multiplication
and division.

Logical and Field Operat ions
Logical operations are fundamental instructions for data

manipulation. OR, XOR, AND, and AND COMPLEMENT instruc
tions provide a full range of logical operations. The AND
COMPLEMENT instruction ANDs a register with the comple
ment of a second register. This operation reduces the num
ber of masks required for carrying out bit manipulation.

Boolean values are easily generated using the COMPARE
AND CLEAR instructions. This instruction first assumes a
Boolean value of false by always storing a zero in the target
register, and specifies the negation of the desired Boolean
condition for the conditional nullification of the following
instruction. The following instruction, if not nullified, will
set the target register to true. Other architectures often re
quire branch instructions to implement an equivalent func
tion.

The field manipulation instructions, like EXTRACT, DE
POSIT, SHIFT DOUBLE, and BRANCH ON BIT, are implemented
by the shift-merge unit of the basic execution engine (Fig.
3).

An EXTRACT instruction takes a field from any portion
of a word and creates a result with the field right-justified.
The remainder of the target register is filled with zeros or
sign-extended, supporting both logical and arithmetic right
shifts as special cases.

A DEPOSIT instruction takes a right-justified field and
puts it into any portion of the target word, thus merging
the selected field with data in the rest of the word. DEPOSIT
IMMEDIATE deposits a sign-extended five-bit immediate into
the target register, which is perfect for setting or clearing
a small number of bits in a register. ZERO AND DEPOSIT
clears the remainder of the target, which is useful when
the original target information is not wanted. DEPOSIT in
structions can easily implement left shift operations and
multiplications by a power of two.

Fig. 7 illustrates the movement of an arbitrary field, A,
from general register x to another arbitrary field position
in general register y, using a pair of extract and deposit
instructions. General register z is used as a temporary regis
ter for this operation.

SHIFT DOUBLE instructions concatenate two registers,
shift them 0 to 31 bits, and store the 32 rightmost bits into
the target. If one of the source registers is general register
zero, a left shift or right shift is performed. If both source
registers are the same, a rotate operation is performed. SHIFT
DOUBLE instructions are useful for unaligned byte moves
or bit-block transfers, and for extracting data fields span
ning word boundaries from packed records.

The fields for these operations are specified by position
and length. The length is always an immediate in the in
struction, but the position may be either an immediate or
the contents of a control register called the shift amount
register. This allows dynamically generated shift amounts.
Unlike other architectures that specify the field position
by encoding the leftmost bit in the field, HP Precision Ar
chitecture specifies the rightmost bit position. This was
done to simplify the control logic for the shifter by making
the number of bits of right shift depend only on field posi
tion, not on both position and length.

Unit Operations
HP Precision Architecture includes a set of five instruc

tions designed to support the parallel processing of small
units (digits, bytes, and half words) within a word. These
instructions make use of the seven low-order PSW carry/
borrow bits. They are included in the architecture primarily
to facilitate string search (byte and half word units) and
decimal arithmetic (digit units). The half word units sup
port the processing of 16-bit international character sets.

T h e U N I T X O R a n d U N I T A D D C O M P L E M E N T i n s t r u c t i o n s

G R x

G R z

G R y

1. Extract A from GR x into GR z.

2 . Deposit A from GR z into GR y.

Fig . 7 . Movement o f an abr i t ra ry f ie ld us ing ex t rac t and de
posit instruct ions.

1 8 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

can be used to compare corresponding subunits of two
words for equality or a less-than relationship. These oper
ations are particularly useful for scanning for byte or half-
word values a full word at a time.

Packed decimal numbers represent each decimal digit
in a 4-bit field. When these numbers are to be added to
gether, 6 must be added to each digit of one operand so
that carries will propagate properly during binary addition.
After addition, each result digit must have 6 subtracted
from it unless the addition for that digit generated a carry.
Also, when a repeated sequence of additions is to be per
formed, the bias must be restored to the result by adding
6 to each digit from which a carry was generated. These
correction steps are performed by the DECIMAL CORRECT
and INTERMEDIATE DECIMAL CORRECT instructions, respec
tively.

Assuming that the bias value and operands are in general
registers, BCD additions and subtractions require three in
structions to retire each 8-digit word.

Instruction Formats and Encoding

In HP Precision Architecture, all instructions have a fixed
length of thirty-two bits, which is one word of memory.
Time-critical functions are placed in fixed-position fields,
so that they can proceed with minimal or no decoding.
Since all instructions are word-aligned, an instruction
never crosses a page boundary.

The addresses of the two general register source operands
for the execution engine are placed in fixed-position fields
(bits <6:10> and bits <11:15>), so that registers can be
read before or during the decode phase of the instruction.
If an immediate operand is required rather than a general
register operand, the selection is done by a multiplexer in
front of the appropriate port of the ALU or shift-merge unit.

In instructions with three register specifiers, the third
register specifier is placed in the last five bits of the instruc
tion, bits <27:31>. However, any registers to be used as
source operands must be specified in the first two register
specifier fields. A register used as the target register for a
data transformation or data movement operation can be
specified in any of the three register specifier fields. Decod
ing the address of a target register is not time critical, since
the writing of a result occurs later than the reading of
operands.

The space register specifier field is also placed in a fixed-
position field, since it is also used to supply an operand for
virtual memory addressing.

The major operation code field (opcode) is placed in a
6-bit fixed-position field. The operations are divided into
subclasses, each subclass occupying one point in the code
space of the major opcode. Each operation in a subclass
occupies one point in its suboperation (subop) code space.
The size of the subop field depends on the particular sub
class of operations. The placement of the subop field is
done to minimize the impact on the fixed fields of more
time-critical operations. The encoding of the subop field
is done to minimize decoding within a subclass. Often,
bits in the subop field can be wired directly to control
points in the particular portion of the processor implement

ing this subclass of instructions.
In the case of a subclass of operations with a relatively

long immediate field in the instruction format, a subop
field would take away bits from the long immediate field.
So, each of these long-immediate instructions is assigned
a point in the major opcode space. Examples are the load
and store instructions with long displacements and the
ALU instructions with long immediates.

Immediates embedded in an instruction are sometimes
broken up into different fields so as not to impact the place
ment of fixed fields, and to minimize the multiplexing
required for assembling immediates of different lengths.

Although immediates come in various sizes, their sign
bit is always in a fixed position: the rightmost bit position
of the immediate. This aspect of the instruction encoding
enables immediate sign extension to proceed without
lengthy decoding and selection from various bit positions,
which would happen if the sign bit were placed in the
customary leftmost position of the variable-length im
mediate fields.

Formats
Fig. 8 shows the instruction formats used to encode all

HP Precision Architecture instructions. The first three for
mats are for load and store instructions, followed by the
instruction formats for long immediate instructions, branch
instructions, three types of ALU instructions, system man
agement instructions, the DIAGNOSE instruction, special
function unit instructions, and coprocessor instructions.

The first format, for the long-displacement load and store
instructions, essentially determined the positions of most
of the major fixed-position fields like the opcode, the two
source register specifier fields, and the space register
specifier field. It also determined the right alignment of an
immediate field, with the sign bit occupying the rightmost
instruction bit. The ALL) 3R format, for the basic three-regis
ter data transformation operations, determined the posi
tions of other fixed-position fields like the third register
specifier field, the condition field, and the falsify (condi
tion negation) field.

The last three formats show the instruction extension
capabilities in the architecture. One major opcode is re
served for the DIAGNOSE instruction, which can be used to
define implementation dependent instructions. Only the
major opcode of this instruction is defined. The next two
are assist instruction formats, for the special function unit
and coprocessor types of assists, respectively. For example,
the floating-point coprocessor uses coprocessor unit iden
tifier "zero" and encodes all its operations in the u fields.
While DIAGNOSE instructions are not portable between im
plementations, the assist instructions are fully portable,
with transparent software emulation of these instructions
in the absence of hardware support.

Conclusion

HP Precision Architecture is frequently referred to as a
reduced instruction set computer (RISC) architecture. In
deed, the execution model of the architecture is RISC-
based, since it exhibits the features of single-cycle execu-

AUGUST 1986 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

0 1 2 3 4 5

1 2 3

6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

The Abbreviat ions for Field Names are:

x
cc
e
m
n

G e n e r a l R e g i s t e r S p e c i f i e r c
S p a c e R e g i s t e r S p e c i f i e r f
I m m e d i a t e (o r D i s p l a c e m e n t o r O f f s e t) i p t r
P r e m o d i f y v e r s u s P o s t m o d i f y , H e n
o r I n d e x S h i f t e d b y D a t a S i z e c r
I n d e x e d (x = 0) v e r s u s S h o r t D i s p l a c e m e n t (x = 1) 0
C a c h e H i n t s u
Subop (Opcode Extension)
M o d i f i c a t i o n S p e c i f i e r s f u
N u l l i f i c a t i o n S p e c i f i e r c o p

copr

Condition Specifier
Falsify Condition c
Immediate Pointer
Immediate Length
Control Register
Not Used (Set to Zeros)
Undefined (May Be Defined
as Instruction Extension)
Special Function Unit Identifier
Coprocessor Unit Identifier
Coprocessor Register

Fig. 8 . HP Prec is ion Arch i tec ture
instruction formats.

tion and register-based execution, where load and store
instructions are the only instructions for accessing the
memory system. The architecture also uses the RISC con
cept of cooperation between software and hardware to
achieve simpler implementations with better overall per
formance.

HP Precision Architecture, however, goes beyond RISC
in many ways, even in its execution model. For example,
RISC machines emphasize reducing the number of instruc
tions in the instruction set to simplify the implementation
and improve execution time. Only the most frequently
used, basic operations are encoded into instructions. How
ever, frequency alone is not sufficient, since some instruc
tions may occur frequently because of inefficient code gen
eration, arbitrary software conventions, or an inefficient
architecture.

In designing the next-generation architecture for Hew
lett-Packard computers, the intrinsic functions needed in
different computing environments like data base, computa
tion intensive, real-time, network, program development,
and artificial intelligence environments were determined.
These intrinsic functions are supported efficiently in the
architecture. Minimizing the actual number of instructions
is not as important as choosing instructions that can be
executed in a single cycle with relatively simple hardware.
Complex, but necessary, operations that take more than
one cycle to execute are broken down into more primitive
operations, each operation to be executed in one instruc

tion. If it is not practical to break these complex operations
into more primitive operations, they are defined as assist
instructions, by means of the architecture's instruction ex
tension capabilities. If more than one useful operation can
be executed in one cycle, HP Precision Architecture defines
combined operations in a single instruction, resulting in a
more efficient use of the execution resources and in im
proved code compaction.

HP Precision Architecture's execution model has other
noteworthy features like its heavy use of maximal-length
immediates as operands for the execution engine, and its
efficient address modification mechanisms for the rapid
access of data structures. The architecture also includes
some uncommon functions for efficiently supporting the
movement and manipulation of unaligned strings of bytes
or bits, and primitives for the optimization of high-level
language programs.

HP Precision Architecture has gone beyond RISC in its
control flow model with its conditional branch optimiza
tion features, its ring-crossing branch instructions, its nul
lification features, its conditional trap feature, its debug
ging support, and its efficient interruption mechanisms.

The architecture's virtual memory addressing and protec
tion mechanisms support a wide range of system needs, from
the smallest controller to the largest multinetwork environ
ment. Indeed, the HP Precision program was internally code-
named Spectrum, since its objective was to serve the full
spectrum of HP customers' information processing needs.

20 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

In summary. HP Precision Architecture represents an
evolution of the more successful ideas in past computer
architectures, combined with support for the anticipated
needs of future computer systems.

Acknowledgments
Many people made valuable contributions to HP Preci

sion Architecture. They are too many to list here, but the
architecture would not exist without their efforts. The orig
inal eight-person design team, which surveyed the ground
and laid the foundation for what was to come, included

the first three authors listed on the first page of this paper
and William VVorley, Allen Baum, Hans Jeans, Russell Kao,
and Steve Muchnick.

References
1. J.S. Birnbaum and W.S. Worley, Jr., "Beyond RISC: High-Preci
s i o n 8 . H e w l e t t - P a c k a r d J o u r n a l , V o l . 3 6 , n o . 8 . A u g u s t
1985.
2. D.S. Coutant, C.L. Hammond, and J.W. Kelley, "Compilers for
the New Generation of Hewlett-Packard Computers," Hewlett-
Packard Journal, Vol. 37, no. 1, January 1986.

Authors
August 1986

4 ~ P r o c e s s o r '
Wi l l i am R . B ryg

â€¢UMtiA with HP since 1979' Bl"
Bryg has been a l og i c de
s igner for the HP 3000
Ser ies 64 Computer and
has worked on the architec
ture and logic for HP Preci
s ion Archi tecture and for
the HP-UX system. His BS
and MS degrees in electr i
ca l engineer ing were both

awarded in 1979 by Stanford Univers i ty . Born in
Chicago. Il l inois, he now lives in Saratoga, Califor
nia. He's married and enjoys dancing, gardening,
sk i ing, and reading science f ic t ion.

Ruby Bei-Loh Lee
Ruby Lee is one of the orig
inal members of the HP Pre
c is ion Archi tecture design
team. With HP Laboratories
since 1981. she worked on
all aspects of the processor
architecture, did the ini t ial
per formance analys is, and
des igned the ass is t a r
chitecture. She also did the

systems design, performance analysis, control im-

plementation, and testabil i ty design for a VLSI mi
croprocessor for the prog ram. She is the holder of
a BA degree from Cornell University and an MS de
gree in computer sc ience and a PhD degree in
electr ical engineer ing f rom Stanford Universi ty
(1 980) She was also an assistant professor at Stan
ford She has writ ten several papers on paral lel pro
cessors, performance analysis, computer archi tec
ture, and VLSI structures and testing and is named
inventor on several patent appl icat ions re lated to
HP Precision Architecture. Ruby and her husband
and two chi ldren l ive in Cupert ino, Cal i fornia.

Michael J. Manon
Michael Manon was born in
Mt. Carmel, I l l inois and
studied physics at St. Louis
Universi ty. After receiving
h is BS degree in 1963, he
continued his studies at the
Cali fornia Insti tute of Tech
nology (MS 1965) . He has
been wi th HP since 1981
and has cont r ibuted to the

development of HP Precision Architecture, the HP-
UX sys tem, and var ious compi le rs . H is o ther pro
fess ional exper ience inc ludes work on computer
opera t ing sys tems, in terac t ive graph ics , compi l
ers, language design, and computer architecture.
He is the author of two papers on real-time data col
lec t ion and in te rac t ive graph ics and is named in
ventor on three patents re la ted to wafer -sca le in
tegration and an associative store. Michael l ives in
San Jose, Cal i fornia, is marr ied, and has f ive
daughters . He l ikes f ly ing, photography, and
microcomputers.

Jerome C. Huck
Jerome Huck has been with
HP s ince 1983 and is the
R&D sec t ion manager re
sponsib le for processor
and assist archi tecture in
the Information Technology
Group. He first worked with
hardware and sof tware im
plementat ion teams at HP
Labs on f loa t ing-po in t co

processor def in i t ion. He a lso worked on the f loat
ing-point emulation package for HP-UX and MPE XL.
Jerome at tended Marquet te Univers i ty , receiv ing
his BSEE degree in 1 975. He continued his studies
at Stanford University and completed work for his
MSEE degree in 1977 and for h is PhD degree in
1983. His profess ional in terests inc lude f loat ing
po in t p rocessors , para l le l and p ipe l ined proces
sors, and opt imiz ing compi lers.

Terrence C. Mi l ler
Born in New Rochelle, New
York , Ter rence Mi l le r a t
tended Yale University. His
BS degree in engineer ing
and app l ied sc ience was
awarded in 1969 and h is
PhD degree in computer
sc ience was awarded in
1 978. He has been with HP
Laborator ies s ince 1979

and is currently the manager of the programming
environments department. He was a member of the
original HP Precision Architecture design team and
was a project manager for the HP Labs work on the
C compiler and code optimizer for the program. He
is named coinventor on several patent applications
re lated to HP Precis ion Archi tecture and is the
author or coauthor of three papers on compiler de
s ign and code opt imizat ion. Before jo in ing HP he
was a lieutenant in the U.S Navy and an assistant
professor at the Universi ty of Cal i fornia at San
Diego. Terrence l ives in Menlo Park. Cal i fornia.

23 HI Input /Output System :

David V. James
An a lumnus o f t he Mas
sachusetts Inst i tute of
Techno logy , Dave James
earned BS and MS degrees
in electr ical engineer ing
and computer sc ience in
1973 and a PhD degree in
e lectr ical engineer ing in
1 978. He has been with HP
Laborator ies s ince 1980

AUGUST 1986 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

and has worked on speech s igna l p rocess ing ,
graph ics and works ta t ion hardware des ign, and
the I /O system for HP Precis ion Archi tecture. His
prev ious professional exper ience was in d ig i ta l
audio s ignal processing. He has wr i t ten severa l
papers on FFT quantization errors and digital VLSI
circuits for music synthesis and is named inventor
on five patent applications related to the HP Preci
sion Architecture I/O system. His specialty is appli
cat ion of d ig i ta l s ignal processing to h igh-qual i ty
computer image generat ion. A nat ive Cal i forn ian,
Dave was born in Oakland and l ives in Palo Al to .
He's married and has two children. When not work
ing on a house-bu i ld ing pro jec t , he en joys swim
ming and running marathons.

Stephen G. Burger
Stephen Burger has been
w i th HP 's Compute r Sys
tems Divis ion s ince 1981.
He has developed software
for an I/O project and con
tributed to the design of the
MPE XL system and I /O
software def ini t ion for HP
Precis ion Archi tecture. He
is presently a project man

ager fo r MPE XL. S tephen comple ted h is BS de
gree in computer sc ience f rom the Univers i ty o f
Utah in 1981.

Robert D. Odineal
Bob Odineal is a Stanford
Univers i ty graduate wi th a
BS degree in b io logy and
an MSEE degree , bo th re
ceived in 1982. Wi th HP
s ince 1981, he 's an 1C de
s ign engineer and pro ject
manager . He has worked
on a number of ICs for HP
Prec is ion Arch i tec ture, in

c lud ing an I /O channel adapter , a bus conver ter ,
and a memory contro l ler . A res ident of Saratoga,
California, he's on the board of directors for a theater
organization and is on the board of trustees for his
church. His outside interests include waterski ing,
hang gl iding, photography, and Shakespeare.

30 ^Z Performance Analysis ;

Tony Lukes first came to HP
in 1 965 from SCM Corpora
tion, and worked on the HP
9 1 0 0 A C o m p u t i n g C a l
culator , leaving HP two
years later. He then worked
for the IBM Corporation on
dig i ta l c i rcui t design, logic
des ign o f la rge computer

/ s y s t e m s , d e s i g n a u t o m a
t ion, f i le and memory systems, data base manage
ment systems, off load engines for data bases, and
fi le systems. He rejoined HP in 1982 and managed

'

performance analysis of HP Precision Architecture.
He 's now an R&D laboratory manager for data
bases in the Information Technology Group. Tony
studied electr ical engineering at Oregon State Uni
versity (BSEE 1 961), at the University of California
at Berkeley (MSEE 1 963), and at Stanford Univer
s i ty (PhD 1972). He's a specia l is t in per formance
analysis and data base management subsystems
and is interested in artif icial intell igence, distributed
da ta bases , and opera t ing sys tems. Tony i s mar
r ied and is the father of two daughters.

4 0 S i m u l a t o r ;

Dan ie l J . Magenhe imer
I Dan Magenheimer has

worked on the HP Precision
Archi tecture pro ject s ince
i t s incept ion . He has con
tributed to the design of the
inst ruct ion set , the s imu
lator and remote debugger,
the ob ject code emulator /

' compi ler , the HP-UX sys-
tem l inker, and mi l l icode.

He's now a project manager for software architec
ture at HP's In format ion Technology Group. Born
in Milwaukee, Wisconsin, he attended the Univer
sity of California at Santa Barbara, completing work
for a BA degree in computer science in 1 981 . He
earned his MSEE degree from Stanford University
in 1 985. Dan and his wife and daughter live in Union
City, California. He sings in the choir at his church
and enjoys playing vol leybal l .

C O R R E C T I O N

In pr int ing the June 1986 issue, the photographs in Fig 3 on page 22, Fig. 4 on page
23. and are 5 on page 24 were reproduced wi thout any gray tones, and therefore are
not representat-ve of the display qual i ty of HP's Ultrasound Imaging System, Fig. 1 on
page 45 is much c loser to what the d isplay real ly looks l ike

22 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

HP Precision Architecture: The
Input/Output System
A simple, uni form archi tecture sat is f ies the I /O needs of
large and small systems, and provides flexibility f or future
enhancements.

by David V. James, Stephen G. Burger , and Robert D. Odineal

THE HP PRECISION I/O SYSTEM was defined to pro
vide a flexible framework to leverage existing I/O card
designs without restricting the capabilities of low-

cost or high-performance I/O cards in the future. The HP
Precision Architecture development program provided an
opportunity to incorporate and achieve global objectives of
scalability, leverageability, and flexibility in a corporate I/O
strategy. These objectives have been met by basing the I/O
system on the design strategies of simplicity and uniformity.

Scalability is provided by a unified family of compatible
buses. A basic single-bus configuration can be extended to
include higher-performance or lower-performance buses,
or expanded to include additional buses of the same perfor
mance.

Leverageability requires interchangeable parts. Hard
ware interchangeability is achieved by using one physical
component in systems having similar requirements for
function and performance. Software interchangeability is
achieved by using one version of I/O driver software for
functionally equivalent hardware components that differ
only in performance and capacity.

Flexibility is more than the use of leveraged components.
A system is flexible when it is implemented to meet existing
needs and is alterable to match the changing needs of the
future with minimal perturbation of a customer's existing
system. A flexible I/O system allows the existing I/O card
designs to be leveraged for the initial product shipment,
while also allowing the I/O system to be upgraded to sup
port more demanding I/O requirements in the future (e.g.,
multiprocessors, shared peripherals, and memory mapped
graphics). Flexibility is also provided by minimizing con
figuration restrictions in the I/O system.

Levels of Design
The definition process for the I/O system included rigor

ous documentation at all levels of the design. These design
levels included the I/O architecture, the connect protocol,
and multiple definitions of bus standards. The I/O architec
ture defines the types of modules that connect to an HP
Precision bus (including processors, memory, and I/O) and
defines the memory mapped registers used by other mod
ules to control or observe the module's activity. This ar
chitectural interface is defined in sufficient detail to allow
the hardware and software to be developed independently.
HP Precision I/O Architecture includes the definition of
simple instructions fetched from memory and executed by
I/O modules with direct memory access (DMA) capabilities,

but does not include the definition of instructions executed
by the more general-purpose processor module.

The connect protocol defines the standard set of bus
transactions used to communicate between modules de
fined by HP Precision I/O Architecture. This includes the
definition of transaction functionality, transfer sizes, align
ment restrictions, and returned status information. In addi
tion to implementing the connect protocol, each HP Preci
sion system bus definition includes the timing of signal
transitions, voltage thresholds of transceivers, power re
quirements, and other physical parameters.

The HP Precision program provided a unique opportu
nity to upgrade all levels of the I/O system definition simul
taneously. The method used to develop the system was
top-down definition coupled to bottom-up verification.

The steps in top-down definition are architecture, pro
tocol, standards, and design. The I/O architecture is defined
around a model established to meet the objectives. The
architectural concepts define the required connect pro
tocol. The bus standards are defined based on that connect
protocol, and the bus standards are used in the design of
I/O cards. Fig. 1 illustrates the process.

The simultaneous activity in the architecture and design
phases of the definition were coordinated to provide con
stant feedback between the intermediate levels. The initial
designs revealed flaws or incompletely specified portions
of the bus standards. These were corrected in the bus stan
dards and the corrections were propagated up to the appro
priate higher level. Feedback also occurred between the
bus standards and the connect protocol, and between the
connect protocol and the I/O architecture. This controlled
feedback process provided the design evaluations required
to update the initial drafts of the I/O architecture, connect
protocol, and bus standards documents. These documents
are the basis for the design of the system components, or
modules.

Documents

Fig. 1 . Feedback paths in the def in i t ion process for HP Pre
cis ion I /O Archi tecture.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

Bus Options
HP Precision I/O Architecture is based on functional en

tities called modules. The minimal system consists of a
processor, memory, and I/O modules attached to a single
system bus, as shown in Fig. 2. The single-bus configuration
is sufficient to support low-range and midrange products.

For high-end products, multiple buses are required, as
shown in Fig. 3. The processor and memory are connected
to a higher-performance HP Precision bus and the I/O mod
ules are connected to other low-cost buses. In this example,
I/O connections to a "foreign" bus and a "native" system
bus are illustrated. The native system bus, or simply system
bus, implements the HP Precision connect protocol; the
foreign bus does not. The native and foreign buses are
connected through a bus adapter module, and special soft
ware is required to support the connection. The bus adapter
architecture allows I/O cards developed for other buses to
be leveraged in the HP Precision system products, as dis
cussed later.

Two native system buses can also be connected through
a bus converter module. This connection is transparent to
normal software operation.

Based on the destination address of a transaction, the
bus converter forwards the transaction to remote modules
attached to a physically separate bus. The bus converter is
not involved in local transactions between modules at
tached to the same bus. Unless bus errors occur, the for
warding of a remote transaction is transparent to the mod
ule that originates the transaction. This allows the I/O
driver software developed for a local module to be leveraged
when the module is moved to a remote bus. Software
changes are limited to the optional recovery of errors de
tected on the remote bus (the bus converter logs and isolates
system bus errors).

The bus converter is implemented as a module pair; one
module is attached to each of the two system buses. The
module pair can be physically separated and connected
with a high-speed link (e.g., fiber optics), as shown in Fig.
3. This separation is required when the buses cannot be
physically adjacent because of mechanical packaging con
straints or customer requirements to support remotely lo
cated peripherals. This would be the case for large I/O
configurations, processor clusters, or remotely located
graphics and data collection peripherals.

Module Addressing
When a system bus is initialized, each module initially

responds to a 4K-byte "hard" physical address range. The
module's 4K-byte address space is divided into 1024 32-bit
I/O registers. Access to these I/O registers is provided by
the read or write transactions defined by the connect pro
tocol. For example, write transactions are used to reset the
system or a card, interrupt the processor, and initiate I/O
operations. The more common I/O registers, such as those

I I Â »

used for module identification and initialization, are stan
dardized to support autoconfiguration and simplify operat
ing system software.

A 256K-byte address space, aligned to begin at a multiple
of 256K bytes, is provided for each system bus; this is
sufficient to support 64 modules. The physical properties
of card connectors, backplanes, and transceivers normally
limit the number of card slots on a bus to 16. Thus, to
provide a complete set of 64 modules on a system bus,
hardware designers would be required to implement four
modules on each card. For example, a multifunction card
might consist of a processor, memory, and two I/O modules.
In general, not all cards have four modules and the bus
address space is only partially used.

The initial address space allocated to memory and I/O
modules is not generally sufficient to support normal mod
ule operation. For these modules, one of the registers in
the initial address space is used for dynamically assigning
an extended address space, as shown in Fig. 4. The ex
tended address is always a power of two in size, and is
aligned to a physical address that is a multiple of its size.
To simplify configuration firmware and software, the ex
tended address space can be assigned independently of the
module's initial hard address space.

The initial 4K-byte address space of an I/O module maps
to the supervisor element. Additional register sets, or I/O
elements, are required to communicate directly with the
attached devices. These I/O element registers are typically
located in an extended address space, which is dynamically
assigned by a writing to a supervisor element I/O register.

To simplify the I/O driver software, a single I/O element
(register set) is allocated for each device to be controlled
by the software. Multiple devices are supported through
multiple I/O elements. The architecture provides the design
freedom needed to achieve a good match between physical
hardware implementation and logical software interfacing.
For example, a disc controller implemented as a single
physical device can interface to software through the ad
dress space of a single I/O element. A full-duplex terminal
controller can be assigned two I/O elements, one for data
input and one for data output. The software can thus service
the inbound and outbound data streams independently. A
terminal multiplexer with eight full-duplex ports can be
implemented as 16 I/O elements, allowing software to per
form independent I/O operations on each data stream.

System Bus

F ig . 2 . Sma l l HP Prec i s ion sys tem con f i gu ra t i on (up to 64
modules).

F o r e i g n B u s S y s t e m B u s

Fig. 3 . Large HP Prec is ion system conf igurat ion.

24 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

In i t i a l Hard
Address Space

E x t e n d e d S o f t
Address Space

(Device 0) â€¢ â€¢ â€¢ (Device N-1)

t
IÃ“

Module R O M i I Ã “
Element

S u p e r v i s o r 0
Element

I O
Element

N - 1

System Bus

Memory
Module

Supervisor
Element

Random Access Memory
(RAM)

System Bus
"*â€¢

Fig. 4. When the ini t ia l address space al located to a memory
module or an I /O module is too smal l , one of the registers in
the init ial address space can be used for dynamic assignment
o f an ex tended add ress space . A spec ia l ROM, IODC (I /O
dependent code) , suppor ts autoconf igurat ion.

During normal operation, an I/O device is controlled by
accessing I/O element registers directly. When DMA or
similar hardware on the I/O module is shared by multiple
devices, the use of this shared resource is scheduled by
the I/O module hardware, not the I/O driver software. This
simplifies software and generally provides a more efficient
mechanism for scheduling shared hardware resources. The
I/O registers in the supervisor element are only used for
module identification, initialization, and error recovery.

Two sizes of I/O elements are defined, 128 bytes and 4K
bytes. The packed version (128 bytes) allows up to 16 I/O
elements to be packed into a single 2K-byte page. In the
unpacked 4K-byte version, two pages are provided for the
support of privileged and unprivileged I/O registers. Un
privileged registers are accessible through both pages;
privileged registers are accessible only through the lower-
addressed page. The higher-addressed page can be mapped
directly into the user's virtual address space without com
promising system security. This allows many of the I/O
element registers to be accessed directly, without the over
head of calling operating system software.

On a memory module, the extended address space maps
to the module's RAM. Because the extended address space
is automatically assigned, hardware switches are not re
quired to configure memory addresses. This improves the
reliability of the card, and eliminates service calls caused
by improperly selected switch settings. After initial config
uration, the supervisor element registers are read periodi
cally to update the system's memory error log.

I /O Dependent Code
As illustrated in Fig. 4 for I/O and memory modules,

each module contains card specific ROM called I/O depen
dent code, or IODC, which is accessible through standard
ized I/O registers. The content of the IODC is sufficient to

identify the proper diagnostic and I/O driver software for
the module. This is provided to support autoconfigurable
operating system software. Operator intervention is not re
quired to configure a new physical card.

System initialization, or boot, involves the execution of
firmware code to initiate an I/O operation on one of the
boot devices, such as a disc. To minimize updates of pro
cessor ROMs, this firmware is split between the processor
and the I/O modules. The portion of the code shared by all
I/O modules is located on the processor module. The primi
tive I/O drivers are provided by the I/O modules, and are
called to initialize, test, and read data from the selected
boot device. A stable HP Precision instruction set simplifies
the support of IODC on I/O modules; new ROMs are not re
quired for each upgrade of the processor hardware.

In addition to assisting system initialization, the IODC
ROM is used to distribute module self-test code, and can
be used to insulate standard I/O driver software from the
implementation dependent features of module identifica
tion, configuration, and error recovery.

Address Space Al locat ion
HP Precision I/O Architecture uses a single 32-bit phys

ical address space. When a physical module is accessed
through a virtual address, the translation to a physical ad
dress is performed by the processor, and a physical address
is used in the bus transaction. The physical address space
is partitioned into two distinct spaces, the I/O address space
and the memory address space, as shown in Fig. 5.

Address space is dynamically assigned. I/O addresses
are assigned from the high end of the physical address
space and memory addresses are assigned from the low
end of the physical address space. This generates a compact
address space assignment that minimizes the page table
resources required to map virtual memory accesses.

Initially, only the broadcast address space is defined. A
broadcast write transaction is used by a processor to in
itialize the 256K bytes of address space for its bus. Addi
tional address space is assigned to other buses and ex
tended module address spaces as required. The extended
address space for I/O modules and memory modules is
allocated from the available I/O address space and memory
address space, respectively.

The words in the I/O address space correspond to I/O
registers. Software references to these registers are pro
cessed differently from memory transactions; the load or
store instruction triggers a bus transaction rather than a
data cache access. The fixed partitioning of I/O and memory
addresses simplifies the processor hardware required to
identify the I/O register accesses, which bypass the data
cache.

The dynamic allocation of the address space allows the
address space to be assigned to additional buses or I/O
elements as required to support the selected hardware con
figuration. Although the total physical address space is
limited, the number and size of modules that can be sup
ported are quite large, as shown in the table on the next page.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

HP Precision Architecture Configurat ion Limitat ions
(Approximate)

I /O Address Space

Total I/O Address Space
System Buses (256K bytes each)
Processor Modules (4K bytes each)
Packed I/O Elements (1 28 bytes each)

Memory Address Space

Total RAM Configured

256M Bytes
1024
64K
2 M

3.75GBytes

Connect Protocol
HP Precision I/O Architecture defines a standard soft

ware interface to module registers, independent of the
physical bus standard. To implement this interface, and to
support transparent forwarding of transactions through bus
converters, a single connect protocol is defined for all sys
tem buses.

The connect protocol defines the required and optional
transactions for all system buses. These transactions are
initiated by a master, and invoke a response from one or
more slaves. For a read transaction, data is transferred from
the slave to the master. For a write transaction, data is
transferred from the master to the slave. For a broadcast
transaction , data is transferred from the master to all slaves.

Although the data transfer sizes are different for I/O and
memory transactions, the basic format of the transactions
is maintained, as shown in Fig. 6.

During the address phase, the address of the transaction
is asserted on the bus. The bus address of the master (master
ID) follows, and is sufficient to identify the module initiat
ing the transaction. The master ID is transmitted while the
slave is decoding its address, and generally has a minimal
impact on system performance.

The master ID field is required to resolve potential dead
lock conflicts when transactions are forwarded through bus
converters. The field is also used by the smart-cache pro
tocols to maintain consistent copies of data in the cache
lines of processors attached to separate buses.

Only a small set of data transfer sizes is defined. The

M e m o r y
(1 5 1 6)

I / O
(1 1 6)

T o t a l A d d r e s s S p a c e
= 2 " 4 G B y t e s

2 3 2 - 1

basic 4-byte and 1 6-byte sizes , and the larger optional trans
fer sizes (32, 64, ...) are all powers of two in size, and are
described later in this article. Support of additional transfer
size options in the memory address space would have in
creased the cost of memory modules, since they support
all of the options.

At the conclusion of the transfer, status is transferred
from the slave (or slaves) to the transaction master. If the
slave detects an error (such as a double-bit memory error),
an error condition is reported to the master, to prevent the
use of corrupted data. For transactions that are correctly
specified, but cannot be completed immediately, a busy
status is returned and the transaction is automatically re
tried by the master. The busy status is required to avoid
deadlocks in bus converters and is also used by the special
transactions provided to maintain cache consistency in a
multiprocessor environment.

Parity or alternative forms of error checking protect the
transaction and slave addresses, master ID, data, and status
signals. When control signals cannot be parity protected,
their values and timing are designed to simplify the detec
tion of faults through alternative mechanisms (bus time
outs, for example).

Separate transaction types are provided in the I/O and
memory address spaces. This allows the data transfer size
to be optimized for its intended use. The read and write
transactions in the I/O address space are designed to access
I/O registers, which are words (four bytes in size and align
ment). Simple cost-sensitive cards may implement only
the least-significant byte of each I/O register.

Transact ion Types
Based on the requirements of processors and DMA-based

I/O modules, transactions in the memory address space are
optimized for burst data transfers. The CPUs use burst trans
fers to read or write cache lines. The DMA-based I/O mod
ules use burst transfers to process buffered data packets
efficiently. Nibble-mode and static column RAM technol
ogies have minimized the cost of supporting the high-per
formance burst-mode transfers on memory modules.

All buses support the smallest (16-byte) memory address
space transaction. This quad-word transfer typically uses
50% of the peak bus bandwidth. Larger burst transfers (e.g.,
32 and 64 data bytes) are options, and are not defined for
all system buses. If the transfer size is defined in the bus
standard, i t is supported on all modules responding as
slaves in the memory address space, and is optionally used
by the transaction masters (processors, the DMA-based I/O
modules, and bus converters). In general , the low-cost
DMA-based I/O module designs use 16-byte transfers, and

S t a r t -Time- -â€¢-End

T r a n s a c t i o n
T y p e

M a s t e r D a t a T r a n s f e r S t a t u s

E r r o r C h e c k i n g

Fig. 5 . Par t i t ion ing o f the phys ica l address space. F ig . 6 . Bas ic format o f I /O and memory t ransact ions.

26 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

high-performance DMA I/O module designs use the largest
transfer size defined by the bus standard.

Two special types of transactions are defined by the con
nect protocol: broadcast and semaphore. To simplify their
implementation, the architecture constrains the use of
these are transactions. Broadcast transactions are
only used to update I/O registers in the supervisor element.
A write to a register offset in the broadcast portion of the
I/O address space is equivalent to a sequential set of writes
to the same register offset in each of the supervisor ele
ments. Broadcast transactions to I/O elements or to the
memory address space are not defined. These and other
generalized uses were not required; supporting them would
have needlessly complicated the module designs.

On many of the industry standard buses, semaphore op
erations are implemented by the processor, which requires
the definition of an indivisible read and write transaction
pair. Although this transaction pair has been used success
fully in previous designs, it is difficult to forward through
bus converters, and increases the complexity of high-
bandwidth pipelined bus standards.

In the HP Precision connect protocol, the semaphore
operation is implemented by memory module hardware,
and has minimal impact on the complexity of bus stan
dards. The semaphore transaction has a unique command
code, but is otherwise identical to the quad-word read
transaction defined in the memory address space. Like the
read, the semaphore is recognized by the memory control
ler, and four words of data are returned from RAM. The
semaphore transaction is distinguished by an important
side effect â€” the first word at the quad address in RAM is
cleared as the transaction completes. This is sufficient to
implement the semaphores defined by the HP Precision
instruction set.

Module Interrupts
In any computer, when a module such as an I/O device

requires special service from a processor, the other tasks
must be interrupted. The interruption mechanism enables
the processor to respond quickly to high-priority interrupts
while queuing and eventually servicing large numbers of
low-priority interrupts, all with minimal performance over
head on the processor.

HP Precision I/O Architecture defines a very simple in
terrupt system that requires little special hardware and
allows great flexibility in the processor's response to each
interrupt. A key aspect of this interrupt system is the assign
ment of interrupt control to software. The architecture gives
software the power to assign arbitrary interrupt priorities
to all modules, direct each module's interrupts to any pro
cessor in the system, and selectively process or queue in
dividual interrupts or priority levels.

When a module needs attention or service from a proces
sor, the module communicates its need to the processor's
external interrupt request register by using the same single-
word, memory mapped write transaction used for all other
intermodule communication. This ensures interrupt re
quests can be passed from any module in the system to
any processor in the system without requiring specialized
interrupt hardware. Also, since the connect protocol de
fines broadcast transactions to be a special case of single-

word write transactions, a module can broadcast its inter
rupt request simultaneously to all processors in the system.
Like the other transactions defined by the connect protocol,
the interrupts propagate transparently through bus convert
ers, and can be sent to a processor on any system bus.

Interrupts in HP Precision I/O Architecture differ from
most other designs, which interlock the low-priority de
vices while the high-priority tasks are being executed. This
interlock was discovered to be inefficient for uniprocessors
and unreliable for multiprocessors. For uniprocessor con
figurations, this interlock would require that the interrupt
ing module retry the write to the processor's interrupt reg
ister until it is completed successfully. The repeated trans
actions are an inefficient use of bus bandwidth. For a two-
processor configuration, this interlock generates a potential
hardware deadlock. For example, when two processors are
executing separate high-priority tasks, and software on each
processor sends a lower-priority interrupt to the other, both
processors become deadlocked.

Interrupt Groups Hardware
HP Precision processor interrupts are based on hardware

support of 32 interrupt groups. Software assigns one of
these groups to an I/O element before an I/O operation is
initiated. The value of the interrupt group is returned to
the processor when an interrupt occurs. Software can inde
pendently disable any one or more of the interrupt groups,
delaying their processing to a more convenient time. This
is simpler and more flexible than architectures that set the
interrupt priority in special-purpose hardware, restricting
the ability of software to modify the order in which inter
rupts are processed.

Fig. 7 shows the functionality of the interrupt hardware
that supports the interrupt groups. The interrupt system
hardware consists of one register (the external interrupt
message or EIM register) on each I/O element that generates
interrupts, and two registers (the external interrupt enable
mask or EIEM register and the external interrupt request
or EIR register) on each processor. Before an I/O operation
is initiated, software writes a 32-bit value to the EIM register

P r o c e s s o r M o d u l e

I O Element

EIM Regis ter I
2 7 - B i t 5 - B i t

A d d r e s s G r o u p *

S y s t e m B u s

Iware Sof twai
In te r rup t

Fig. 7 . HP Prec is ion in ter rupt hardware.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

of the I/O element. This value includes both the address
of the processor to be interrupted and a five-bit encoding
of the interrupt group assigned to the I/O element. When
an element needs service, the single word in its EIM register
provides both address and data for a single-word write
transaction. The address determines the processor to be
interrupted, and five bits of the data specify the interrupt
group bit to be set in the processor's 32-bit EIR register.
Each bit of the EIR register is continuously ANDed with the
corresponding bit of the EIEM register, and if any bit of the
result is true, the processor is interrupted. Software has
complete control of the EIEM register to specify the inter
rupt groups that are recognized. As software services each
interrupt, it clears the associated bit of the EIR register to
prepare for the next interrupt. Software running on one
processor is able to interrupt another processor simply by
writing the appropriate data value to the processor's EIR
register.

Although the architected interrupt system is fast and
flexible, the information provided to software is minimal
(only the interrupt group is known). In a system with many
I/O elements, each of which must interrupt the processor
to signal its completion of an assigned task, many of the
interrupt group bits in the EIR register are shared. Unless
an alternative mechanism is provided, the processor soft
ware would be burdened by the overhead of polling the
I/O registers on I/O elements to resolve the source of inter
rupts that map to a shared interrupt group bit. A more
efficient mechanism is the status chain feature, which is
associated with DMA modules and is described below.

DMA Module Capabi l i t ies
Direct memory access, or DMA, is defined as an optional

feature of an I/O element in HP Precision I/O Architecture.
DMA is simply the transfer of data between the I/O element
and system memory without intervention by a processor.
The primary objective of DMA is to minimize the effort
required of the processor to support I/O transfers. A high-
performance DMA model allows the data to be transferred
efficiently to system memory, minimizing the need to pro
vide operating system specific data processing hardware
or firmware on the I/O card.

A uniform DMA model is defined by the I/O architecture
and supported by the connect protocol. The DMA modules
access system memory using the same bus transactions that

processors use. All DMA elements present the same mem
ory mapped register interface to software, and software com
munication to initiate DMA activity uses the single-word
memory mapped transactions defined for communication
with other I/O registers. A uniform definition of the I/O
registers in the DMA hardware interface simplifies the soft
ware interface, since many of the DMA software utilities
can be shared by all of the DMA-based I/O software drivers.

To simplify the connect protocol and processor cache
designs, all DMA transfers are performed directly to mem
ory, and are not affected by the contents of the instruction
or data caches. Shared utilities in the I/O driver software
use the cache flush and purge instructions to maintain
consistent copies of data in the processor caches and mem
ory module RAM.

The DMA element activity is initiated by writes to two
of the I/O registers on the DMA element. The first I/O regis
ter holds the address of the DMA command data structure
in memory. The write to the second I/O register triggers
the fetching of these DMA commands from memory for
execution by the DMA element. The command data struc
tures in memory are organized as a sequence of DMA re
quests, as shown in Fig. 8. Each DMA request is organized
as a sequence of four-word data structures, or quads. The
quads are aligned to an address that is a multiple of their
size.

The data structures are based on linked lists of quads,
rather than a less flexible set of sequential table entries.
The four words of the quad include a pointer to the next
quad in the chain, a command for the DMA element and
two arguments for the command. The DMA element exe
cutes the successive commands in the chain of quads, au
tomatically advancing from one quad to the next without
processor intervention. The quad chains can be of arbitrary
length, and can be dynamically extended as required to
queue additional DMA requests. This is accomplished by
changing the pointer in the final quad from its previously
null value to the address of the first quad in the chain to
be appended.

Each quad chain consists of one or more DMA requests.
In general, each request corresponds to a separate call of
the I/O driver software. For shared I/O devices, such as a
file system disc, the I/O driver software is expected to ap
pend multiple requests for sequential processing by the
DMA element. Each request is typically partitioned into

Request 1 Request 2 Request 3 Request N

F ig . 8 . Da ta s t r uc tu res f o r DMA
commands are organized as a se
quence of four -word quads.

28 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

three phases. The quads in the initialize phase provide the
parameters for the following data transfer, such as the
media address and length of the total disc transfer. The
quads in the data transfer phase define the physical memory
addresses involved in the DMA data transfer. The quad in
the status phase is used to inform the processor when the
request completes.

The chaining of quads in the data transfer phase allows
the data to be transferred to noncontiguous ranges of phys
ical addresses in the memory address space. This is useful
in the virtual memory environment provided by HP Preci
sion Architecture. An I/O request processed by the I/O
driver software typically involves a transfer to or from a
contiguous range of virtual addresses. Software converts
the virtual address range into a set of noncontiguous phys
ical addresses, and generates the corresponding chain of
quads for use in the data transfer phase of an operation.
Only data transfers to or from the memory address space
are defined, and DMA input is aligned to a multiple of 64
bytes. Arbitrarily aligned DMA data transfers and transfers
to the I/O address space are not required, and would have
complicated the hardware design of DMA modules.

The status phase of a DMA request returns a summary
of the DMA element's status to an entry stored in memory.
The status information is sufficient for software to complete
the processing of successful DMA requests. Unless errors
occur, this summary is sufficient to allow a DMA element
to continue processing additional requests without soft
ware intervention. The status phase generally consists of
a single quad, called the link status quad. The link status
quad instructs the DMA module to write its own status to
a completion entry in system memory (the entry address
is specified by Arg2). The completion entry is inserted into
a linked list in memory (the value of Arg1 specifies the
address of the list head), and a processor interrupt is option
ally generated. The linked list of completion entries is
called the completion list. The ordering of entries in the
completion list is LIFO (last in, first out) to minimize the
complexity of the hardware implementation. By software
convention, each of the completion lists is assigned to a
unique processor interrupt group.

Hardware updates four words of the completion entry,
and software conventions define additional words of data
in the entry, such as the address and arguments for the
interrupt service routine. Before the DMA request is ini
tiated, these parameters are saved in the space reserved for
the completion entry. When an interrupt is received, soft
ware decodes the interrupt group to select the completion
list to be processed. The data saved by software in the
completion entry is used to dispatch quickly to the proper
interrupt service routine.

Bus Adapters
Foreign buses are buses that do not conform to the specifi

cation of the HP Precision connect protocol. They can be
connected to a system bus through a bus adapter. The bus
adapter allows HP to preserve the investment in previously
developed products when migrating to the HP Precision
I/O system. Cards developed for the proprietary HP-CIO
backplane are used in the first HP Precision products. By
allowing the use of proven I/O technologies and systems,

the bus adapter has accelerated the design cycle of the
initial HP Precision Architecture implementations.

The first bus adapter to be developed for the HP Precision
I O system is the HP-CIO channel adapter (see Fig. 9). This
adapter is fully compatible with all existing HP-CIO I/O
cards, and with HP-CIO cards currently in development.
Although the HP-CIO protocol differs from the HP Precision
connect protocol in many ways, the bus adapter maps all
of the necessary HP-CIO functions into the standard register
interface through which it communicates with the HP Pre
cision I/O system. In accordance with the HP-CIO protocol,
the channel adapter serves as a central time-shared DMA
controller on the HP-CIO bus. The adapter is the initiator
of all HP-CIO bus transactions, and it is the arbitrator that
manages the allocation of the HP-CIO bus bandwidth. As
a bus adapter, the HP-CIO channel adapter provides data
buffering and address generation as it transfers data be
tween the I/O modules on the HP-CIO bus and the memory
modules on other buses within the HP Precision I/O system.
The adapter also translates interrupts and error messages
into the protocol used by the HP Precision I/O system. By
handling all normal DMA transfers and the majority of
error conditions in complete autonomy, the HP-CIO chan
nel adapter can greatly reduce the processor overhead re
quired to operate the HP-CIO bus. Except in the rare error
case that requires software intervention, the HP-CIO chan
nel adapter appears to the HP Precision I/O system as a set
of DMA I/O elements that conform to most of the specifica
tions of HP Precision I/O Architecture.

In the future, the bus adapter module can also be used
to support other foreign buses, such as VME. To support
these cards, bus adapter hardware and I/O driver software
are required to convert between the HP Precision I/O Ar
chitecture and connect protocol and the conventions of the
foreign bus. For example, interrupts and DMA transfer pro
tocols are usually different, and need to be converted. Al
though other foreign buses share many properties, their
features require special considerations in the design of each
bus adapter.

The leverage of foreign I/O card designs is not achieved
without cost. Special bus adapter hardware is required,
autoconfiguration capabilities are reduced, and software
complexity is increased. Autoconfiguration features are
generally not available on foreign buses. This typically
limits the assignment of boot devices to preallocated slots
on the bus, or requires a bus adapter ROM update to support

Logical
Channel 0

Logical
C h a n n e l N - 1

n C o n t r o l 4 A

 C I O B u s I T

Control

CIO
Bus

Adapter

Supervisor
Element

I/O
Element

0

I/O
Element

N - 1

System Bus

Fig. 9. HP-CIO bus adapter with central ized DMA protocols.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

new boot devices. Access to foreign I/O cards is indirect,
and involves software interactions with shared bus adapter
resources to initiate an I/O operation, implement the DMA
transfer to memory, or convert between interrupt protocols.
This overhead increases the complexity of I/O driver soft-

I /O System Summary
By adhering to the strategies of simplicity and unifor

mity, many benefits were realized.
Simplicity is illustrated by the alignment of addresses

and address ranges, the minimal number of transactions
defined in a single connect protocol, and the implementa
tion of processor interrupts (the EIR and EIEM registers).
Uniformity is illustrated by the transfer of interrupts be
tween modules (an existing word write transaction is used),
the definition of standard module I/O registers for identifi
cation and configuration of modules (including processors
and memory), and the use of a single connect protocol for
all bus standards.

The verification of the architecture through actual de
signs has shown the benefits of meeting the original objec
tives. Scalability is achieved through simplicity, and the
architecture makes things "as simple as possible, but not
simpler." "Not simpler" means that concepts and compo

nents are designed to meet the global objectives, rather
than only the needs of a local design center. Components
in the system are interchangeable, so the cost of developing
them is amortized by their use on many different systems.

The biggest benefit HP's customers will see comes from
the flexibility and the identical support of common compo
nents. Identical support for common components provides
transparent migration to faster components, and more or
faster buses. This migration can be accomplished with min
imal perturbation of the customer's software and/or work
ing environment.

Acknowledgments
As one of the initial designers for the I/O architecture,

Mike Fremont provided invaluable guidance in the de
velopment of the initial drafts of the I/O architecture docu
ment. Major proposals and feedback on the initial versions
of the bus standards were provided by Dave Fotland and
Steve Chorak. We would like to thank Bill Worley and
Michael Mahon, who provided the initial directions, re
sources, and design freedom required to develop a new I/O
system.

This is only a small portion of the contributors to the
I/O system design. Many hardware and software engineers
participated in the process.

HP Precision Architecture Performance
Analysis
Performance analys is was crucia l to inst ruct ion set
se lect ion, CPU design, MIPS determinat ion, and system
per formance measurement .

by Joseph A. Lukes

HEWLETT-PACKARD PRECISION ARCHITECTURE
is a key component in Hewlett-Packard's computer
strategy for systems well into the next decade. This

article is intended to be a brief overview of the contribu
tions of a collection of people from HP's performance evalu
ation community in the evolution of this strategy. It de
scribes the role of these performance groups in the design
and measurement of the architecture, and in the CPU design
and systems measurement techniques that have led to the
computer systems based on this architecture. Presentation
of measured performance data will not be done in this
article, but will be left to later papers in this and other
journals.

Select ion of the Instruct ion Set
The creation of HP Precision Architecture combined the

expertise of highly experienced specialists in computer
hardware design, compilers, operating systems, architec
ture, and performance analysis. The architecture team had
investigated a number of papers on reduced instruction set
computers1 and the general conclusion was that a reduced
instruction set computer was a feasible vehicle with which
to migrate HP from its HP 1000, HP 3000, and HP 9000
Computers to a common architecture. The purpose of this
section is to describe the efforts of the HP Laboratories
performance analysis team in creating the data used to
select the instruction set of the new architecture.

A team of performance analysts was chartered to extend
the studies described in reference 2. To achieve these ob
jectives, an Amdahl V6 computer was acquired and an
interpretive instruction tracer program similar to that de
scribed in reference 2 was created. This program operated

30 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Distr ibut ion of IBM 370 Instruct ions by Frequency

Language

I n s t r u c t i o n C O B O L F o r t r a n P a s c a l

Branch
Logical Operation
Load Store
Storage-Storage Move
Integer Math
Floating-point Math
Decimal Math
Other

18.4%
9.9

54.0
3.8
7.0
6.8
0.0
0.1

F ig . 1 . An examp le o f t he t ype o f da ta ga the red to a id HP
Precis ion Archi tecture instruct ion set select ion.

under the IBM VM/CMS operating system and gathered
raw data from a variety of benchmark programs run on the
V6 by interpreting and simulating each instruction. Spe
cifically, we gathered the following data:
â€¢ Instructions executed and sequence in which executed
â€¢ Virtual address of instructions
â€¢ Virtual address of each operand
â€¢ Identification of registers used by the operation
â€¢ Contents of each operand for certain operations.

This basic data allowed us to derive valuable statistics,
among which the following were of greatest value:
â€¢ Dynamic frequency of instruction occurrences
â€¢ Address traces for instruction sequences and for data

referenced by these instructions
â€¢ Characteristics of operations such as the number of

characters used in a move operation, operand values in
arithmetic operations, distances branched, etc.

â€¢ Frequency of operation pairs.
Fig.l illustrates the type of data gathered. Here the distri

bution of classes of instructions for COBOL, Fortran, and
Pascal benchmarks is shown. Fig. 2 shows the distribution
of time spent in these benchmarks per instruction class.
Note that the bulk of the operations are simple loads, stores,
and branches. Other operations occur relatively infrequently
but can take a much larger amount of time. By distribution
in time, floating-point operations for Fortran and Pascal,
and storage-to-storage move operations for COBOL are im
portant instructions. (Storage-to-storage moves can be
simulated by a sequence of load/store instructions).

Most of the programs we tested exhibited these charac-

Distr ibut ion of IBM 370 Instruct ions by Time
Language

I n s t r u c t i o n C O B O L F o r t r a n

Branch
Logical Operations
Load Store
Storage-Storage Move
Integer Math
Floating-Point Math
Decimal Math
Other

Pascal

1 8.4%
9.9

54.0
3.8
7.0
6.8
0.0
0.1

teristics. The bulk of operations, both in frequency of use
and time, are simple and dominated by the load, store, and
branch operations. Since simple operations appear to domi
nate the frequency of instructions in a computer, the con
cept of cycle-per-instruction architectures has arisen.

Such information is just beginning to appear in computer
science literature.1 Reference 3 points out that the fairly
complex instruction sets of most computers are really not
as helpful to the compiler writer as might be thought. In
structions such as the IBM 370 MVC (move character) and
MVCL (move character long) are examples of instructions
that might profitably have been left to a simple set of load
and store operations. These instructions move any number
of contiguous bytes (from one to sixteen million). However,
Fig. 3, derived from our benchmark studies, shows that
storage-to-storage moves really only move a small quantity
of data. Reference 2 found the same central truth. Why
bother with really sophisticated movers of characters like
MVC and MVCL when a simple load/store combination in a
small loop can outperform the more sophisticated move
instructions?

Another interesting observation made from looking at
the instruction mixes of a variety of benchmarks is that the
typical mix does not seem to be much a function of the
type of work that is being done. For example, technical
work (such as large Fortran simulations or CAD/CAM) and
commercial work (such as old master in, new master out
or data base work) show the same characteristics: loads,

Long Move (MVCL, CLCL) Operations

Q.
O

8 1 6 3 2 6 4 1 2 8 > 1 2 8

Bytes Moved

Short Move (MVC. MVZ, . . .) Operations

Fig . 2 . More da ta ga thered to suppor t ins t ruc t ion se t se lec
t ion. Load, s tore, and branch instruct ions dominate.

6((Â« 80 Bytes)

- I 1 l - l â € ” I 1 â € ” Â » â € ¢
1 2 4 8 1 6 3 2 6 4 1 2 8 > 1 2 8

Bytes Moved

Fig . 3 . S to rage- to -s to rage moves were found to move on ly
a few bytes in most cases.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

stores and branches make up the bulk of operations.
Fig. 4 shows the instruction mix from an HP 3000 Com

puter during a peak period (predominantly data base inten
sive). Compare this with Fig. 2 and you will find that, other
than the extensive use of floating-point operations in scien
tific work, they are very similar. One myth that did not
seem to be borne out by the benchmark work that we did
is that commercial (COBOL) jobstreams require a large
amount of decimal arithmetic. We cannot find any evidence
to back this assertion.

Another rather nonintuitive result of the early bench
mark measurements is that a specialized integer multiply/
divide coprocessor, unlike the results for floating-point, is
probably not worth the extra expense. Fig. 5 shows the
results of the measurement of a large Fortran program's
use of multiply operations and the associated operand
value distributions. At least one operand in the vast major
ity of cases is small (less than 500), making the techniques
mentioned in reference 3 quite feasible with a net improve
ment in performance.

As a result of these studies and a variety of others, the
compiler, architecture, hardware, and operating system
teams established and refined the architecture to a set of
instructions for HP Precision Architecture. The architec
ture, since it was based on measurements of a large sample
of workloads, evolved from a simple RISC machine to the
far more sophisticated operation set and computer organi
zation outlined in reference 1. In summary, the conclusions
drawn by the team selecting the instructions for HP Preci
sion Architecture were:
â€¢ Simple instructions are most of what is executed in a

wide variety of work.
â€¢ There are complex instructions that occur frequently

enough (e.g., floating-point) to justify a special set of
hardware to execute them. In HP Precision Architecture
CPUs these are known as coprocessors or special func
tional units.4

â€¢ Load/store (move a 32-bit word) architectures make sense
since they permit high-speed general registers to be used
effectively as the first level of the storage hierarchy.

â€¢ Simulate complex but infrequent operations so that the
underlying instruction set can be as simple as practica
ble.
The next section describes the efforts involved in select

ing the parameters associated with the family of central
processing units based on HP Precision Architecture.

Distr ibut ion of HP 3000 Instruct ions by Time

Percent
I n s t r u c t i o n o f W o r k

B r a n c h 1 9 . 9 %
L o g i c O p e r a t i o n s 1 8 . 9
L o a d S t o r e 4 5 . 0
S t o r a g e - S t o r a g e M o v e 4 . 9
I n t e g e r M a t h 8 . 7
F l o a t i n g - P o i n t M a t h 0 . 0
D e c i m a l M a t h 0 . 0
O t h e r 2 . 9

F ig . 4 . I ns t r uc t i on m i x f o r an HP 3000 Compu te r du r i ng a
peak per iod.

HP Precision Archi tecture Computers
The previous section outlined how a set of instructions

was chosen, each of which, with few exceptions, executes
in one major cycle of the central processing unit's clock.
For example, a central processing unit (CPU) with a 10-MHz
clock would be a 10-million-instruction-per-second (MIPS)
processor with a cycle-per-instruction architecture. This,
of course, assumes no delays as a result of cache or TLB
(translation lookaside buffer) misses. Complex instruction
set computers (CISC), on the other hand, sacrifice cycles
of the CPU to execute more functionally complex instruc
tions sets, generally through the aid of microcode.

Before describing how the CPU family associated with
HP Precision Architecture was designed, a few words need
to be said about computer system performance. A very
popular measure of the power of a computer system is to
specify the number of MIPS (millions of instructions per
second) that the system's central processing unit(s) can
execute. This measure is an estimate of the capacity of the
CPU to execute the work asked of it. The higher the MIPS
value, the faster the work is done by the CPU. However,
computer systems are not just CPUs. Indeed, they consist
of peripherals, interconnections, main storage, applica
tions, operating systems, data communications subsys
tems, data base subsystems, compilers, and an entire set
of policies for scheduling and billing that affect the perfor
mance of the computer system. Because of this plethora of
variables in the equation that determines the performance
of a given computer system, people have tended to concen
trate on the relative simplicity of MIPS.

The customer who purchases a computer system is gen
erally not really interested in the capacity of any one com
ponent of that system, such as the CPU, to do work. The
customer is concerned with the response time with which
work is completed, the throughput in jobs per unit of time,
the number of active terminals connected to the system,

Range of Absolute Values of the
Smal ler Operand in Mult ip ly Operat ions

d!
Q .

O

B
0 Â °

01

512

Fig. 5. Distr ibut ion of operand values for mul t ip ly operat ions
in a large Fort ran program.

32 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

and so on.
The next section will describe how we extended the

metrics used to evaluate the HP Precision Architecture CPU
family to systems performance. The rest of this section will
concentrate on how we determined the MIPS performance
of the first members of the HP Precision Architecture CPU
family.

In creating a new architecture, the engineers and scien
tists charged with its development are faced with a large
problem â€” how do you measure the effects of the architec
ture on MIPS, system throughput, response time, working
set size, etc., when you do not have a CPU built from the
architecture? To be sure, one can prototype the architec
ture, but the cost becomes prohibitive for all but a small
number of prototypes. What follows in this section is a
description of the hierarchical approach taken to develop
the HP Precision Architecture processor family with mini
mum possible cost and maximum performance.

Let us first examine the MIPS value. It is relatively easy
to calculate:

MIPS = [(cycles per instruction) x (CPU cycle time)]"1

The CPU cycle time is the period of the major clock in
the CPU. This value varies from 100 to 200 nanoseconds
for transistor-transistor (TTL) logic, and from 20 to 80 ns
for emitter-coupled (ECL) or HP NMOS-III logic. The MIPS
capacity of a CPU can be increased by reducing the CPU
clock time by means of new technologies. Many examples
of this trend are seen in the current offerings of many com
puter vendors, including HP.

The other variable in the MIPS equation is the number
of cycles per CPU instruction. The lower this number, the
higher the MIPS value will be. As obvious as this seems,
there is still raging controversy over the efficacy of the
cycle-per-instruction architectures (i.e., RISC architec
tures), since critics of the reduced-complexity approach
claim that numerous things can happen that tend to lower
systems performance when one attempts to reduce the cy
cles per instruction (CPI) to one. It is not the purpose of
this paper to argue either side. All of our work at HP so
far, however, has pointed out that the HP Precision Ar
chitecture does not appear to limit the ability to make very
high-MIPS computers from existing technologies through
reductions in the CPI (cycles per instruction) and that such
CPUs are capable of offering systems performance compar
able with CISC machines of the same MIPS rating. Details
of this work will accompany specific product announce
ments.

Simulator and Prototype
An earlier section described in part how the instruction

set was chosen. At first, a proposed set of instructions was
chosen from the collection of written data on cycle-per-in
struction architectures. Then experiments were run on in
struction mixes derived from other architectures that could
be measured (i.e., the IBM 370 set on the Amdahl V6 and
the HP 3000). Finally, analyses were done to select the
instruction and register sets.

Since analysis alone could not take into account the ef
fects of various design alternatives of the architecture and

the CPUs designed to implement it, a simulator was written
(see article, page 40). The simulator extended our ability
to evaluate design trade-offs by allowing the user to pro
gram simple kernel programs, either by hand or through
the use of a portable C compiler. These kernels were chosen
for their lack of I/O (no operating system existed) and for
their simplicity of compilation (only primitive compilers
existed). A number of invaluable experiments were run on
the simulator and continue to be run on it even today.

However, a simulator is relatively slow and expensive
to use and the number of experiments involved in choosing
the parameters of the CPU family became too much for the
simulator alone. Another problem with simulators is that
they do not convince the skeptical that a revolutionary new
architecture can actually be implemented in existing
technologies such as CMOS, TTL, ECL, or NMOS. As a
consequence, a prototype HP Precision Architecture CPU
was built. It was named the LESS (low-end Spectrum sys
tem) and, although very simple compared to the products
recently announced, it was a fully functioning HP Precision
Architecture CPU that achieved about 0.8 MIPS.

The LESS prototype gave software developers very early
access to the architecture, and served as a vehicle for ex
perimentation for the architecture, hardware, compiler,
operating system, and performance teams. An interesting
and useful tool that came out of the LESS prototype was
an analyzer board that could be connected to the HP 64000
Logic Development System (more about this later).

As useful as the simulator and the LESS prototype were,
there were parameters of the CPU designs that these tech
niques could not determine without untoward expense and
time. Only very simple jobs could be run through the
simulator and prototype since there were no operating sys
tems or product-level compilers available. Consequently,
the technique used in selecting the instruction set for HP
Precision Architecture was used again, that is, traces on
the Amdahl V6 and on HP 9000 and HP 3000 Computers.
The instruction mixes for these computer systems were
measured and used to simplify the CPU designs for
minimum cycles per instruction. In addition, address traces
were used to generate families of cache and translation
lookaside buffer (TLB) statistics.5 These measurements
were then used to calculate the cycles per instruction for
a proposed CPU design.

The cycles per instruction (CPI) value is, in simple terms,
a function of the instruction mix, the parameters of the
cache and TLB, and the CPU design:

CPI = basic instruction time + f , (cache, TLB) + f2(interlocks)

where the basic instruction time is 1 cycle for most HP
Precision Architecture instructions, f , (cache, TLB) is the
contribution to CPI of cache and TLB misses, and f2(inter-
locks) is the contribution to CPI of the CPU design. CISC
machines tend to have basic instruction times of 4 to 10
cycles for the average instruction. The cache and TLB penal
ties and interlock penalties are not really affected by the
architecture to any great extent.

MIPS Model
We have developed a relatively simple model of the MIPS

AUGUST 1986 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

performance of HP Precision Architecture CPU implemen
tations based upon the mixture of instructions and miss
rates of the different cache and TLB sizes and organizations.
Fig. 6 illustrates the instruction mix and Fig. 7 the cache
and TLB curves for one benchmark measured on the Am
dahl V6. Before fully functioning HP Precision Architecture
systems were available, such curves were used to design
the CPUs.

For example, let the cache and TLB designs be such that
the cost of a cache miss is 20 cycles and that of a TLB miss
is 100 cycles. Assume that we are calculating the MIPS of
a processor whose basic instruction times are 10 cycles for
floating-point operations and 1 cycle for all other opera
tions. Moreover, the pipeline design dictates a load/use
penalty of 1 cycle per occurrence (here a load/use pair
consists of a load followed by either a load or a store oper
ation).

Using the workload characteristics of the Fortran pro
gram depicted in Fig. 6, the basic instruction time is
10(0.126) + 1(1-0.126) or 2.13 cycles per instruction for
instructions alone.

From Fig. 7, the cache and TLB misses, assuming the
memory system designs depicted in Fig. 7, are

Cache miss rate = 3.5% (for an 8K-byte cache)

TLB miss rate = 0.2% (for a 512-entry TLB)

Consequently, the cache contribution to fj (cache, TLB) is
(0.035)(1 + 0.348 + 0.154)(20), where the first factor is the
miss ratio of this particular cache, the second is the number
of instruction and data references per instruction (one for
the instruction itself and a probability of 0.348 of the in
struction's being a load or 0.154 of its being a store), and
the third factor is the penalty of a miss, or 20 cycles. Thus
the contribution of cache misses to the number of cycles
per instruction is 1.05 cycles per instruction.

In like manner, the contribution to the CPI of the TLB
misses is 0.3 cycles per instruction.

Finally, for this very simple model of the components
of MIPS, the contribution of interlocks to the CPI consists
of the above-mentioned load/use interlock, (0.06)(1 cycle
per instruction), plus the penalty paid for no-op (no oper
ation) instructions,4 or (0.02)(1 cycle per instruction), for
a total contribution of f2 (interlocks) = 0.08.

The value of CPI, the cycles per instruction for this
m a c h i n e d e s i g n a n d t h i s b e n c h m a r k , i s C P I =
2.13 + 1.05 + 0.30 + 0.08 = 3.56 cycles per instruction. Note
that this workload has a very high-floating point content,
so the CPI value is larger than for most workloads.

Instruction

Store
Floating-Point
Load Use
Branch
No-Op

% Occurrence

34.8
15.4
12.6

6.0
12.3

2.0

The MIPS value for a 100-ns clock implementation of
this design and benchmark would be (100 ns per cycle x
3.56 cycles per instruction)""1 = 2.81 million instructions
per second.

If one could replace the floating-point operations with
integer operations, and if each integer operation took 1
cycle per instruction, the MIPS value of this design would
be 4.10 million instructions per second, since the CPI in
this case would be 2.44 cycles per instruction instead of
3.56.

The ideal RISC-design processor would have a MIPS rat
ing of 10 or more, assuming one cycle or less per instruc
tion.

Measurements on Actual Processors
Today we base our instruction mixes, cache and TLB

curves, and other CPU parameters on measurements made
on the HP 3000 Series 930 and HP 9000 Model 840 proces
sors. Figs. 8 and 9 are examples of these measurements.
Future HP Precision Architecture machines are being de
signed with this data. The logic analyzer board mentioned
above and the HP 64000 Logic Development System have
been invaluable tools in debugging, analyzing, and tuning
the new HP 3000 and HP 9000 processors. Fig. 10 shows
a curve of MIPS versus time for the HP 9000 Model 840
derived using the logic analyzer board. Figs. 8 and 9 were
also measured by the analyzer board.

In practice, the MIPS performance of a CPU varies with
time and workload. HP has used heavily loaded values, as

2-Way Associat iv i ty
Single Instruct ion and Data Cache
Cache LRU Replacement
B lock S ize = 8 Words
10,000 Instruct ions/Task Switch

4 8

Cache Size (K Bytes)

16 3 2

0 .7

0 .6

C.5

0 .4

0 .3

0 .2

0.1

2-Way Associat iv i ty
Single Instruct ion and Data Cache
TLB LRU Replacement
10.000 Instruct ions Task Switch

16 32 64 128 256 5 1 2

Fig. 6 . Inst ruct ion mix for a large For t ran benchmark run on
the Amdahl V6 wi th HP Precis ion instruct ions.

TLB Entries

Fig. 7. Cache and TLB miss ratios for the benchmark of Fig. 6.

34 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

measured with the analyzer, for the specifications for the
ne\v HP 3000 and HP 9000 CPUs. However, a computer
system consists of far more than the central processing
unit. The next section will describe how the entire com
puter system is tracked through its design with extensions

of the techniques used in designing the architecture and
processors.

Systems Performance
The previous section emphasized the estimation and op-

HP 9000/840 INSTRUCTION CACHE MISS RATE
H P - U X M u l t i p r o g r a m m i n g W o r k l o a d

. m i s s r a t e (X)

1 â€¢

100
time (seconds)

150 200

HP 9000/840 DATA CACHE MISS RATE
H P - U X M u l t i p r o g r a m m i n g W o r k l o a d

miss rate (X)

(b)

5 0 1 0 0
t i m e (s e c o n d s)

150 200

F ig . 8 . Examp le o f a cache m iss
rate measurement for the HP 9000
Mode l 840 , an HP P rec i s i on p ro
cessor, (a) Instruct ions, (b) Data.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

timization of the CPU capacity as measured in millions of
instructions executed per second. As pointed out in that
section, an increase in MIPS does not necessarily guarantee
a similar increase in system performance measures, such
as an increase in system throughput or a decrease in user

response time. Examples of reasons why system perfor
mance may not increase proportionally to MIPS are seriali
zation on software queues created to guarantee data consis
tency (locking or latching), or an input/output subsystem
not designed to support the increased number of users that

H P 9 0 0 0 / 8 4 0 I N S T R U C T I O N T L B M I S S R A T E
HP-UX Multiprogramming Workload

.1

. 0 8

.06

. 0 4

. 0 2

0 . 0 0

(a)

miss rate (X)

in. H
5 0 1 0 0

t i m e (s e c o n d s)
150 2 0 0

HP 9000/840 DATA TLB MISS RATE
HP-UX Multiprogramming Workload

miss rate (X)

. 8

. 6

. 4

0 . 0

(b)
5 0 1 0 0

time (seconds)
150 200

Fig. 9. Example of a TLB miss rate
m e a s u r e m e n t f o r t h e H P 9 0 0 0
Model 840 processor , (a) Ins t ruc
t ions, (b) Data.

36 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

HP 9000/840 MIPS
HP-UX Multiprogramming workload

.mips

5 0 1 0 0

time (seconds)
150 ^00

F i g . 1 0 . A n H P 9 0 0 0 M o d e l 8 4 0
MIPS performance measurement.

an increase in the capacity of the central processing unit
would dictate.

It has been pointed out that something in a computer
system has to be a bottleneck since a perfectly balanced
computer system is probably impossible to achieve.6 It
would seem to be common sense that the best choice of
the component of the computer system selected to be the
bottleneck would be the most expensive component. To
choose any other would be to waste the most expensive
component and would not maximize performance and
minimize cost. Usually, the most expensive component of
the computer system is the CPU, hence the choice of MIPS
as the metric of computer system performance. But, it
should be realized that it takes a lot of hard work to make
the CPU the bottleneck in all but the simplest systems.
This situation presumes a highly-tuned operating system,
data communication system, data base management sys
tem, and set of applications. Therefore, although it can be
understood why MIPS is so often used as the performance
metric of choice, this measure must be tempered by other
measures.

An effort was begun in HP Laboratories in 1982 to charac
terize the environment in which HP computer systems were
operating. This study concentrated on the characterization
of HP 3000 and HP 1000 installations, since the HP 9000
was too new at the time to characterize clearly. Fig. 11 is
a synopsis of the type of data gathered by measurements
of actual HP customer installations (in this case an HP 3000
installation). From this data, HP engineers have created a
set of workloads used to characterize the high end of the
HP 3000 and HP 1000 environments. From these model
workloads, benchmarks have been created to study system
performance by measurements of the new software compo

nents of the computer systems based on HP Precision Ar
chitecture. Fig. 12 is a high-level view of this process.

It must be mentioned that by "workloads" is meant writ
ten descriptions of snapshots of actual installations. Fig.
11 is such a snapshot. This form of description of a com
puter system is useful for analytic and simulative modeling
of possible future alternatives based on this computing
environment. Reference 6 further describes the process of
gathering and using workloads in systems performance
studies. Reference 7 is excellent in its depiction of system
models.

Est imat ion Using Workload Data
A very simple example of how systems throughput can

be estimated using data from workloads is as follows.
Let us predict the throughput of a proposed computer

system with a new COBOL compiler and a data base man
agement and file system redesigned for increased system
throughput. Assume that the current DBMS (data base man-

Site: Sample

Data Base:
File System:
I/O:

Total I/O:
Disc I/O:
Non-Disc:

Period of Observation 3600 seconds
T o t a l C P U 1 9 7 1 s e c o n d s
Transact ions

Percent of Dynamic Path Length

10.43
12.82
33.76

OS Kernel:
Mise:
User:

I /O Information

1 34940

91238

43702

Data Base I /O:
Non Data Base I /O:

3105

26.48
6.11

10.4

39611
51627

Fig. 11. Data gathered f rom an actua l HP 3000 insta l la t ion.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

agement system) has an emerging bottleneck for systems
with increased CPU power because of serialization on its
buffer pool, and that the new design alleviates this
bottleneck, but costs more in instructions. Assume that the
computer system that this system is to replace has the
workload characteristics shown in Fig. 11 and that the
central processing unit of the current system has one fourth
the processing ability (MIPS) of the new system's CPU.
Estimates show that the new DBMS and file system must
execute approximately twice the number of instructions
(dynamic path length) to achieve the same transaction rate
as the current DBMS and file system. Also, the new COBOL
compiler is assumed to have a 10% reduction in dynamic
path length. What is the throughput of the new system
relative to the current system?

The following simple model is indicative of the tech
niques HP design engineers are using to evaluate the kinds
of options depicted above. Using Fig. 11, let us define sev
eral terms (using the techniques outlined in reference 6):

P = time of observation of the system under measurement
C = seconds the CPU is active during the measurement

period P
T = number of completed transactions observed during

period P
 = transactions per second = T/P
6 = seconds of CPU time per transaction = C/T.

System Per formance Cycle

Create /Update Measurement Tools

Obta in Customer Data for Current Systems

Create or Update Market Ce l l Work loads

Create or Update Market Ce l l Benchmarks

Establ ish Basel ine f rom Current Systems

Establ ish Subsystem Performance Object ives
fo r New Subsystems and Products

Model (wi th Object ives) New Systems

Pro ject System Per formance
Based upon Objec t ives and Measurements

Measure New System

Track Actua l Per formance
vs. Object ives

Object ives Not Met:

Redes ign and Recode

Object ives Met:

Update Benchmarks for New Products

Run Benchmarks on New Sys tem

Update Capaci ty P lanning Support Tools

 S h i p P r o d u c t s
(wi th Performance Speci f icat ions)

Prov ide Customer Suppor t
(Tuning and Capaci ty P lanning)

Fig. 1 2. The process used to determine system performance.

If we assume that we have a uniprocessor CPU system,
then pcpu = \6 = C/P = CPU utilization.

If we assume that the new system is operated at the same
CPU utilization as the old one (to keep response times
roughly the same, for example) then

That is, the ratio of transaction throughput of the new to
the old system is equal to the ratio of the old CPU seconds
to execute T transactions to the new CPU seconds to execute
T transactions, or the throughput ratio of the new system
to the old (for approximately the same response time) is
inversely related to the ratio of CPU times to execute the
same number of transactions. The value of the original CPU
seconds to execute the observed T transactions in P seconds
is made up of the components shown in Fig. 11.

For example, the data base component from Fig. 11 is
205.6 seconds, or 10.43% of the 1971 seconds that the CPU
is active during the observation period P. In like manner,
the file system component in the current system of Fig. 11
is 252.7 seconds. The 1971 seconds of active CPU time
during the sample period of 3600 seconds recorded in Fig.
11 is therefore made up of six component parts: the DBMS
subsystem, the file system, the low-level I/O subsystem,
the operating system kernel, the user application code
{which we know is written in COBOL), and the effect of
direct terminal connection, which, although not shown in
Fig. 11, is represented in the I/O counts shown in Fig. 11
as "non data base."

If the system software making up the current system were
perfect and allowed increasing levels of multiprogramming
and multiprocessing without penalty, then the new com
puter system under consideration would have four times
the throughput for a comparable response time as the old,
since the only limiting factor in this "perfect" computer
system is the power (MIPS) of the system CPU. However,
an increase in CPU power of a factor of four from the current
system would, for this example, allow an increase in data
base throughput of only 10% because of the serious seriali
zation mentioned above. The factor of two increases in
dynamic path length for the new DBMS and file system
seem to be a high price to pay for increased throughput,
however. Let us use the data in Fig. 11 to test the sensitivity
to this supposition.

For the new CPU and software, the 1971 seconds is re
duced to 1971 seconds H- 4 = 492. 8 seconds because of the
increased processing power of the new CPU. However, the
COBOL compiler costs less in computer time and the DBMS
and file system cost more. So, the actual figure is 492.8 +
(205.6 + 252.7)/4 - (0.1)(205)/4 = 612.5 seconds.

Consequently, the new system has a throughput relative
to the old of 1971 seconds/612.5 seconds or 3.22:1 instead
of the expected 4.0:1. However, the current design of the
DBMS and file system would evolve into an increase of
only 10% for an increase of 400% in CPU power, whereas
the new system design allows 3.22/4.0 or 81% of the raw
CPU power to be realized. This particular example points
out some not so obvious factors in computer system de
signs:
â€¢ Transaction throughput may not track linearly with the

38 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

power of the system CPU.
â€¢ One may have to execute more instructions in some com

ponents of the software system to realize the power of
an enhanced processor's capacity.

â€¢ Don't spend disproportionate time in tuning a compo
nent that doesn't have much affect on system perfor
mance (such as the COBOL compiler in the above exam
ple).

Estimat ion Using Benchmarks
The benchmark, as distinguished from the workload is

a set of programs, data, and user interactions with the sys
tem that simulates an actual computing environment. The
simpler benchmarks, such as Whetstones or Unpacks,8 at
tempt with one batch program to depict a diverse multiuser
environment with possibly hundreds of active users. We
have felt that such benchmarks are unrealistic and have
extended benchmarking to include realistic benchmarks
that model actual computer installations. These benchmarks
are driven by test setups that use terminal simulators, and
a system executing interactive and batch benchmarks.

Two benefits have been derived from the HP Laboratories
study of customers' use of HP computer systems. One is a
data base of customer measurements like those shown in
Fig. 1 1 upon which we can base workloads and benchmarks,
and the other is the formalization of the tools gathered to
create this data base into tools and services that are being
sold today, such as HP CapPlan, HP Snapshot, and HP
Trend. The invaluable information gathered by this effort
has allowed us to profile a large portion of HP's customer
set. Our workloads and benchmarks, as a consequence, are
much more complex than the industry standards such as
Whetstones and Linpacks. To measure system perfor
mance, HP development engineers have had to integrate
performance measurement tools into the software and

hardware of the HP Precision Architecture family. The
analyzer board and the HP 64000 are examples of such
instrumentation. Further examples include software in
strumentation that parallels but extends that familiar to
the users of HP 3000 systems and new instrumentation for
the HP 1000 and HP 9000 user.

Acknowledgments
A number of people who contributed to the processes

described in this article need special mention. The first
performance team at HP Labs consisted of Mike Gardner
(who also ran the hardware group), Lillian Yee, and Dan
O'Brien. Others who joined later were Ron Kliesch, Paul
Dembry , Paul Primmer, Jeff Dielle, Tom Gefell, Tony Engberg,
Tom Spuhler, Dave Hood, and a host of others, too numer
ous to mention, from HP product divisions.

References
1. J.S. Birnbaum and W.S. Worley, Jr., "Beyond RISC: High Preci
s i o n 8 , H e w l e t t - P a c k a r d J o u r n a l , V o l . 3 6 , n o . 8 ,
August 1985.
2. LJ. Shustek, Analysis and Performance of Computer Instruc
tion Sets, PhD thesis, Stanford University, January 1978.
3. D.S. Coutant, C.L. Hammond, and J.W. Kelly, "Compilers for
the New Generation of Hewlett-Packard Computers," Hewlett-
Packard Journal, Vol. 37, no. 1, January 1986.
4. M.J. Mahon, et al, "Hewlett-Packard Precision Architecture:
The Processor," this issue.
5. A.J. Smith, "Cache Memories," ACM Computing Surveys, Vol.
14, no. 3, September 1982.
6. P.J. Denning and J.P. Buzen, "The Operational Analysis of
Queueing Network Models," ACM Computing Surveys, Vol. 10,
no. 3, September 1978.
7. H. Kobayashi, Modeling and Analysis, Addison-Wesley, 1981.
8. J.J. Dongarra, "Performance of Various Computers Using Stan
dard ACM Equations Software in a Fortran Environment," ACM
SIGARC, January 1985.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

The HP Precision Simulator
Designed for f lex ib i l i ty , por tab i l i ty , speed, and accuracy,
the s imulator is usefu l for both hardware and sof tware
development.

by Daniel J . Magenheimer

THE HP PRECISION SIMULATOR is an internal tool
used heavily throughout the research, design, and
development stages of HP Precision Architecture and

its systems software. In addition to functionally simulating
the architecture at the instruction set level, the simulator
provides an interactive screen-oriented machine state dis
play and user interface, a combination that makes it particu
larly useful in compiler and operating system development.
The simulator can also be used as a performance evaluation
tool, since it can easily model different hardware imple
mentations and record statistical results for comparison.
Finally, the ability to set code and data breakpoints, change
registers and memory locations, and record branch his
tories makes it an effective assembly-level debugger.

Development
The goals in the development of the simulator were four:

flexibility, portability, speed, and accuracy. Flexibility was
truly a requirement â€” in the early research phases of the
architecture, instructions were added and deleted nearly
on a weekly basis and bit fields were shuffled frequently.
Timely results were necessary to evaluate the new instruc
tion sets, so changes to the simulator were frequent. Porta
bility was also needed, because simulations were done by
design engineers in their daily work environment as well
as batched on powerful mainframes. To this end, all coding
was done in the high-level C language and use of library
routines was limited to those present in the portable C
library. This design choice allowed ports to several HP
machines, two Digital Equipment Corporation machines,
and an Amdahl mainframe, and even allowed the simulator

to simulate itself.
Speed and accuracy were the most important require

ments. Simulation speeds of thousands of instructions per
second were necessary to provide timely feedback for per
formance measurement, but since the simulator was the
only implementation of the instruction set before hardware
prototypes became available, complete and accurate simu
lation of each instruction was mandatory. Of course, these
goals often conflicted. For example, top speed can be ob
tained by coding in assembly language, but then portability
is lost. Nonetheless, a reasonable simulator was created
which has all of the desired characteristics and satisifies
the needs of a large class of design and development en
gineers.

User Interface
The simulator presents a screen containing four nonover-

lapping windows (see Fig. 1). One of these windows is
used for user command entry and message reporting. The
three other windows contain useful machine state informa
tion as follows:
â€¢ The register window shows the contents of either of two

sets of registers â€” the general registers or the space and
system control registers â€” all in eight-digit hexadecimal
format.

â€¢ The program window provides a nine-instruction view
into the program space. Each line of the window contains
the address of a word, both in hex and symbolically, the
word itself (in hex), and a symbolic disassembly of the
instruction. The first two columns indicate whether a
breakpoint is set at that instruction and where the pro-

R e g i s t e r G e n e r a l
rO / 00000000 00000000 00000000 00000000

r8 / 00000000 00000000 00000000 00000000

r 16 / 00000000 00000000 00000000 00000000

r24 / 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

PC = 00000000.00000000 priv = 0 psw = 0004000Ã¨ sar = 0

40000000/00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

40000020/00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Command

* pj $START$

Fig. 1 . The HP Precision simulator

screen has four windows showing

commands and messages, regis

ters, program lines, and data.

40 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

gram counter is currently positioned.
â€¢ Sixteen words are presented in hexadecimal format in

the data window. Each line is preceded by an address,
possibly symbolic.
When the four-window format is too restrictive, for exam

ple when displaying lists or tables of information, the screen
is cleared and information is presented a screen at a time,
prompting the user to hit a carriage return to see the next
screenful.

The screen and windows can be manipulated for fine
adjustments or major changes of context with simple com
mands given in the simulator command language. The com
mand language is simple enough that a beginner can pick
up the essentials quickly, but extensible so that the ad
vanced user can accomplish tasks with a minimum of key
strokes. Each command is given with a set of arguments
(sometimes optional). Frequent commands can be ab
breviated, and a command can be repeated easily. For

ar

bs

bD

bd

blist

contin

cd

dj

db

df

dbD

dbd

dblist

dbs

disasm

do

dascii

dstack

gr

grclr

jnl

load

macro

macdel

maclist

memdump

pj

pb

pf

page

quit

run

redraw

reglist

step

save

space

sr

stack

stats

stop

symbol

symdel

symlist

tblist

trace

update

!

>

.goto

.if

assign value to register/data address

display assist registers

set breakpoint

delete all breakpoints

delete breakpoint n

list breakpoints

continue program

get indirect files from given directory

jump to specified address in data window

move data window backward n words

move data window forward n words

delete all data breakpoints

delete data breakpoint n

list data breakpoints

set data breakpoint

dump memory disassembled as instructions

execute indirect command file

enter/exit ascii mode in data window

enter/exit stack mode in data window

display general registers

clear all general registers

open journal file

load executable file from dis

define macro

delete (pop) macro definition

list macros

dump memory in hex format to file

jump to specified address in program window

move program window backward n words

move program window forward n words

create/change access protection for page

q u i t (? !)
r u n p r o g r a m
redraw screen

list registers to file

execute single (or n) instruction (s)

save simulator status in file

create/change bounds/protect of specified space

display special registers

display stack trace

print statistics for most recent run

stop execution of program

define symbol

delete (pop) symbol definition

list symbols

list last few taken branches

generate address trace to file

update screen

pass command string to system

convert hex to decimal

take application input from file

write application output to file

goto label

conditionally execute rest of line

target of goto (and else in .if-else)

ignore line (comment)

Fig. 2 . The s imulator prov ides a he lp fac i l i ty for qu ick re fer
ence.

example,

displays the space and system control registers in the regis

ter window, while

* pj @(%main̂ 0.4)

repositions (jumps) the program window to the first word
(four bytes) following the symbol main.

A help facility is also provided for quick reference (see
Fig. 2).

Program Simulat ion
As the name implies, the primary function of the

simulator is to simulate HP Precision Architecture instruc
tions and programs built from these instructions. To ac
complish this function, several commands and features
provide the ability to load and execute programs. These
capabilities are complemented by a full statistics gathering
mechanism.

Although small programs can be entered entirely by
hand, it is much more efficient to be able to load a binary
program from the underlying file system. The binary object
file contains sufficient information to allow the simulator
not only to load the program and its data, but also to build
a symbol table and initialize the screen and program
counter properly.

There is an additional problem: when an operating sys
tem loads a program and prepares it to run, it must map
the virtual addresses of the program to physical memory
locations, determine program protection, and enter this
information in internal data structures. On the simulator,
there is no operating system to perform these tasks. It must
do the mapping and information storage itself by making
assumptions about the program it is loading. These assump
tions can be overridden or completely determined by the
user, but reasonable defaults are selected which are gener
ally sufficient.

Programs can be run from start to finish without interrup
tion, stopped at appropriate places and continued, or
single-stepped for debugging or educational purposes. In
any case, the effect of each instruction is completely and
accurately simulated and statistics are gathered. For exam
ple,

invalidates entries in the cache and TLB (translation
lookaside buffer), resets statistical counters, and starts
execution of the program, and

* contin

starts the program without any initialization (for example,
after encountering a breakpoint).

* step 100 update

single-steps 100 instructions, updating the screen follow
ing each, while

AUGUST 1986 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

* s t e p 0 . i f ! % r 1 s t o p

continues stepping forever until general register 1 is equal
to 0.

In addition to virtual memory mapping, the simulator
must also provide other functionality normally associated
with an operating system. All interruptions must be ap
propriately handled. For some, such as the TLB miss faults,
reasonable action takes place to correct the problem and
program execution continues. For many others, such as
insufficient privilege traps, a program bug is indicated. The
simulator notifies the user with a descriptive message and
stops the program.

Another example of required functionality beyond direct
instruction simulation is I/O. Even the simplest bench
marks require reading from a file or writing to the screen.
To support this, the simulator recognizes certain pseudo-
instructions as HP-UX system calls. By recoding the system
library to use these pseudoinstructions, it is possible to
run many large programs (including the simulator itself)
and measure the user component of their performance.

Debugging Features
To be able to observe changes in machine state as one

steps through a program is often sufficient to debug a pro
gram, but more sophisticated features are always helpful.
The simulator allows assignment to any register or memory
location at any point in the program execution. This can
be used to patch or skip portions of code, change data or
parameters to procedures, and simulate external events
(e.g., interrupts). In addition, a large set of internal simu
lator variables can be changed to modify the behavior of
the simulator or remember important values.

Another useful feature is the ability to set code and data
breakpoints. Code breakpoints are marks within the execut
able code of a program that cause execution to be halted
when they are encountered in the normal flow of a running
program. When a breakpoint is hit, the program stops and
control is returned to the user at command level. Data
breakpoints can be viewed as temporary access restrictions
on a region of data. Access of data within the region causes
a running program to halt at the instruction that attempted
the access. The region can vary in size from one byte to an
entire space and can be specified to cause a break either
on writes or on both reads and writes. Commands are pro-

â € ” L a s t 1 0 t a k e n b r a n c h e s
D e l a y s l o t a d d r e s s B r a n c h t a r g e t a d d r e s s

00000000.00000854
00000000. 00000858
00000000. OOOOOSab
00000000.00000923
00000000.00000957
00000000. 0000092f
00000000. 000008b7
00000000.00000863
00000000.00000973
00000000. OOOOOSab

RETURN to continue. .

F ig . 3 . Wi ld b ranches can be de tec ted w i th the he lp o f the
t a k e n b r a n c h l i s t , a l i s t o f u p t o t w e n t y o f t h e l a s t t a k e n
branches.

vided to set, delete, and list current code and data break
points. For example,

* b s % p r i n t

sets a code breakpoint at the memory location associated
with the symbol print.

' b s % f o o 5 0 . i f ! % r 2 = % u O % u O + 1

sets a code breakpoint such that the program will stop only
on the 50th time that the instruction at the beginning of
the too procedure is executed and will count how many
times (out of 50) that general register 2 is equal to 0 at that
point, recording the result in a user temporary register.
Another common bug that can be detected with the help
of the simulator is the wild branch, a branch that has a
false target far outside the program, or worse, a target at a
random place within the program. When this happens, the
simulator can provide a list of up to the last twenty taken
branches to assist in determining what went awry (see Fig.
3). The simulator can also display the current stack trace,
a list showing what procedures called the current proce
dure, along with parameters and local variables. Finally, a
command can be given to dump a region of memory to a
file, either in hex or in disassembled instruction format.

Performance Analysis
Before hardware became available, the simulator was the

only tool capable of analyzing performance on a native
instruction stream. As mentioned above, statistics are col
lected during program execution to provide cycle count
and instruction distributions. Often, however, performance
issues go well beyond the instruction set. To this end, the
simulator is equipped with a large set of parameters and
flags which allow a performance engineer to analyze differ
ent cache and TLB sizes. Operational characteristics such
as cache and TLB miss overhead and replacement al
gorithms can be analyzed, and various memory delays and
interlocks can be modeled.

Using these parameters, studies were done to estimate

Measured Simulated

Q .
U

140- -

100 -

1 2 3 4 5 6 7 8 9

B e n c h m a r k

F ig . 4 . S imu la to r es t ima tes compared w i th ac tua l mach ine
measurements.

42 HEWLETT-PACKARD JOURNAL AUGUST 1986

© Copr. 1949-1998 Hewlett-Packard Co.

the benefits of cache control hints, critical-word-first cache
algorithms, and two-level TLBs and to compare the perfor
mance of a small instruction cache against an instruction
lookahead buffer. Other studies accurately estimated the
performance of different implementations before they were
built. Fig. 4 compares simulator estimates with actual
machine measurements.

Lastly, the simulator can provide instruction execution
traces to feed into other present and future performance
analysis tools.

Miscellaneous Features
Many features are provided to assist the advanced

Remote Debugger

RDB i s a remote debugger , a too l t ha t runs on an HP 9000
Model 220 Computer (the host machine) but al lows manipulat ion
o f programs on a d i f ferent (remote) machine. Th is capabi l i ty is
especial ly important in the early stages of test ing a new machine
imp lemen ta t i on and deve lop ing and b r ing ing up an opera t i ng
system on i t . The too l has been used extens ive ly for these pur
poses. RDB consists of three major components: a user interface,
an Â¡ntermachine in ter face (inc lud ing hardware and sof tware) ,
and a small software monitor which runs on the remote machine.

T h e u s e r i n t e r f a c e w a s e x t r a c t e d f r o m t h e H P P r e c i s i o n
s imu la tor and, except fo r a few minor d i f fe rences in the l i s t o f
commands , an i nexpe r i enced use r wou ld be ha rd -p ressed t o
te l l them apar t . Bes ides leveraging thousands of l ines of code,
t h i s w h o m i n i m i z e d t h e l e a r n i n g e f f o r t f o r e n g i n e e r s w h o
used bo th too l s . As w i th the s imu la to r , reg i s te rs and memory
l o c a t i o n s c a n b e c h a n g e d a n d c o d e b r e a k p o i n t s c a n b e s e t
(d a t a h a n a r e n o t s u p p o r t e d) . T h e s a m e i n t e r r u p t i o n h a n
d l i ng and HP-UX sys tem ca l l suppo r t as i n t he s imu la to r a re
used, thus a l lowing large programs to be run and measured on
new hardware wi thout operat ing system suppor t .

The intermachine interface consists of two I /O dr ivers, one on
the host system and one on the remote system, that communicate
through a GPIO 16-b i t para l le l card. The host cont ro ls the com
munication by issuing a small set of commands: READ a variable
amount o f da ta f rom a phys ica l address , WRITE data to an ad
dress, and lock and re lease semaphores. The remote processor
i s s ta r ted by wr i t i ng to a con t i nua t i on f l ag a t a f i xed memory
locat ion, and is stopped by assert ing an external in terrupt .

The moni tor is a smal l (less than 1K bytes) operat ing system
subset the catches in terrupts, t raps, and faul ts and not i f ies the
host processor of the type of interrupt ion. Since the host proces
sor can on ly read f rom and wr i te to memory , no t reg is ters , the
monitor is also responsible for saving the machine state in mem
ory and restor ing i t on cont inuat ion.

Acknowledgments
RDB was t ru ly a team ef fo r t . Mar t in L iu des igned and coded

the sof tware por t ion o f the in termachine component and the re
mote monitor. J im Hul l designed and bui l t the paral le l card. Dan
Hach ig ian wro te the dev ice dr iver fo r the card . Thanks a lso to
Bruce Thompson, Lamont Jones, Tom McNeal , and Chr is Mayo
w h o e x t e n d e d t h e t o o l t o h a n d l e n e w m a c h i n e s a n d e n v i r o n
ments.

Dan Magenhe imer
Project Manager

In format ion Technology Group

= $u29 0 ; Put stack marker unwind back to Q.
.if $u28'dOdOcaca .goto trans

= $u5 ((rl2-r!3)/2) ; Delta P.
= $u31 $u5 ; P for display.

. goto stat
: trans

= $u5 pc ; translator pc.

: stat
= $u4 rS&ffff ; STATUS.
= $u30 $u4 ; STATUS for display.
dj â€” sr5.(r3-6) db ; Show stack around Q.

.if $u28"dOdOcaca .goto m2

= $cmdfecho$ 1 ; Emulator
do crncurm.ss

.goto showem

: m2
= $cmdfecho$ 1 ; Translator
do cmcurtm.ss

: showem

$u30
.if $u28AdOdOcaca .goto done : # $u31

: done

Fig. 5 . An example o f a s imula tor command program. (Cour
tesy of Tony Hunt.)

simulator user. Indirect command files can be executed to
avoid repetitive command sequences. These files can be
nested, can be commented, and can contain if statements
and goto statements which raise the command language to
the power of any high-level programming language (Fig.
5). Other commands provide for saving and restoring of
the simulator's state (so a session can be resumed at a later
time), recording of command sequences in a journal file,
macro definition and use, and an HP-UX shell escape.

Progeny
Work on the simulator influenced the development of

several other tools. Foremost among these is RDB (see box),
a remote debugger, which is still being used for low-level
operating system and I/O development and booting of newly
developed hardware implementations. The instruction dis
assembler component of the simulator has been extracted
and used in HP-UX's assembly language debugger adb and
in the high-level language debugger xdb. The user interface
has been borrowed for a hardware support monitor and for
the MPE-XL native and compatibility mode debuggers.
Other work is in progress to extend the simulator to handle
multiprocessing configurations.

Acknowledgments
I am indebted to Richard Steiger, whose design principles

and work on a microprocessor debugger called MUD (actu
ally /xD), heavily influenced the design and user interface
of the simulator. Many thanks to Carol Hammond Thompson
for her patience in debugging the simulator with her ar
chitectural verification programs. Thanks also to Michael
Mahon, Steve Muchnick, Terry Miller, Steve Boettner, and
Jerry Huck for their help and suggestions in designing the
simulator.

AUGUST 1986 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

Reader Forum
The HP Journal encourages technica l d iscuss ion of the top ics presented
in recent ar t ic les and wi l l publ ish let ters expected
to be ot interest to our readers.
Let ters must be br ief and are subject to edi t ing.
Let ters should be addressed to:

Edi tor. Hewlett-Packard Journal , 3000 Hanover Street,
Pa lo A l to , CA 94304 , USA.

Editor:

I read about the Spectrum program in a recent issue of the
HP Journal ("Compilers for the New Generation of Hewlett-
Packard Computers," January 1986). In that article you talked
about the primitive instructions that will be accepted. You
wrote that the instructions that reference only registers are
faster than those that imply access to memory.

You said that among the instructions that take more than
one cycle in their execution are the loads. The order of execu
tion of an operation, such as addition, might be:

1. Load first operand, a, in register p;
2. Load second operand, b, in register r;
3. Perform the operation between registers p and r;
4. Store the result if necessary.
Why is it not possible to have an instruction that loads both

operands at the same time, in one step? This implies a dual
access to memory in reading only. (The cases that would imply
dual writing to memory are very rare.) With such an instruction,
the order of execution now is:

1 . Load, by dual access, the two operands a and b in registers
p and r;

2. Perform the operation between registers p and r;
3. Store the result if necessary.
This way the computer saves a step, since it takes only a

single step to load the operands in the two registers.

D. ing. Dejan Claud
Maramures, Romania

As you noted, some instructions are permitted to take longer
than one cycle to complete. In most implementations, however,
LOAD executes in a single cycle. Additional cycles may be
required if the next sequential instruction refers to the register
loaded by the LOAD. This is an "interlock" situation that could
take between one cycle (if the data is already in the cache]
and many cycles (if the data must be /etched from main mem-
oryj. The /aster case is usually scheduled by the optimizing
compilers in such a way that the register loaded is not refer
enced by the immediately /allowing instruction. In this way,
the interlock is avoided, and useful computation is performed
in parallel with completion of the LOAD.

You ask why it is not possible to implement an instruction
that loads two operands to two registers at the same time. In
/act, LOADs are Â¡ess frequent than your example suggests. Fre
quently one or more operands are already present in registers,
and do not require access to memory.

To carry out simultaneously all of the actions required to
implement a "double load," considerable additional hardware
would be required. Providing/or dual access to the cache would
require the duplication of essentially the entire cache and vir
tual address translation hardware. Memory systems are inher
ently serial devices, because all memory elements share com
mon addressing, checking, and control hardware. It is possible
to design memory systems that are truly dual-ported (not just
a "multiplexed" single port], but the cost in decreased speed or
capacity is considerable.

Of course, to fully support "double load," the address and
data buses, the effective address adder, and the data-address
ing and register-speci/ying content of the instruction itself
would all have to be duplicated. In short, the architecture
supports the highest-performance LOAD that is commensurate
with as high-speed implementation. Any additional /unction as
sociated with LOAD would increase cost more than it increased
performance, and so would be inadvisable.

A key characteristic of HP Precision Architecture is that,
unlike most microcoded machines, the performance of im
plementations is limited by the hardware's ability to per/arm
the requested operation, not by the control unit's ability to
decode instructions, specify registers, and sequence signals.
The best that one can hope for is that all (or much) of the
machine's hardware can be kept busy on each cycle by most
programs. In general, this objective is better served by simpler
hardware configurations than by complex ones.

Michae l J . Mahon
Manager , Computer Languages Labora tory

In format ion Technology Group

Address Correct ion Requested
Hewlet t -Packard Company, 3000 Hanover

Street, Palo Alto, Cal i fornia 94304

H E W L E T T - P A C K A R D J O U R N A L
August 1986 Volume 37 â€¢ Number 8

T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f
H e w l e t t - P a c k a r d C o m p a n y

Hewlet t -Packard Company. 3000 Hanover St reet
Pa lo A l to , Cal i fo rn ia 94304 u SA

Hewlet t -Packard Centra l Mai l ing Department
P O Box 529. S tar tbaan 16

1 180 AM Amstelveen. The Nether lands
Yokogawa-Hewlet t -Packard L td , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd
6877 Goreway Dr ive, Miss issauga. Ontar io L4V 1M8 Canada

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

/â€¢> I your A delete our send |~ /"N |~~ A r> |â€”\ [*"\ l~~ O O . To subscribe, change your address, or delete your name from our mailing list, send your request to Hewlett-Packard
^_/ I I r \ your labe l , L l \J I f \ ÃJ LJ f i tZL O O . . Journa l . SOOO Hanover St reet , Pa lo A l to , CA 94304 USA Inc lude your o ld address labe l , i f any A l low 60 days.

5953-8551

© Copr. 1949-1998 Hewlett-Packard Co.

	Hewlett-Packard Precision Architecture: The Processor
	Floating-Point Coprocessor
	HP Precision Architecture Caches and TLBs
	Hewlett-Packard Precision Architecture: The Input/Output System
	HP Precision Architecture Performance Analysis
	The HP Precision Simulator
	Remote Debugger
	Reader Forum

