

North American Response Centers

HP 3000 APPLICATION NOTE

KSAM TOPICS:

Using Cobol Il’s Indexed I/O Module
and

Data Integrity & KSAM Files

HEWLETT June 15, 1986 GD PACKARD Document P/N 5958-5824/2625

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS

MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be

liable for errors contained herein or for incidental or consequential damages in connection with the

furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.

Permission to copy all or part of this document is granted provided that the copies are not made or

distributed for direct commercial advantage; that this copyright notice, and the title of the publication

and its date appear; and that notice is given that copying is by permission of Hewlett-Packard Company.

To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard Company.

Copyright © 1986 by HEWLETT-PACKARD COMPANY

Two common KSAM topics, that result from questions received by the Response Centers, involve accessing
KSAM files from COBOL II programs and dealing with data integrity problems in KSAM files. This
Application Note will discuss both issues.

Using COBOL II’s Indexed I/O Module
There are three ways to access KSAM files from COBOL. You can call the file system intrinsics such as
FOPEN and FREADBYKEY directly; you can use the "CK" intrinsics, such as CKOPEN and
CKREADBYKEY; or you can use COBOL II’s Indexed I/O Module as described in this section.

When accessing KSAM files using the Indexed I/O Module, you use COBOL II statements instead of
intrinsics, and the COBOL II compiler translates the statements into intrinsic calls for you.

The use of the Indexed I/O Module is discussed in the COBOL II manual. Note however that KSAM files
are referred to there as COBOL Indexed Files (not as KSAM files).

Defining Indexed Files

In COBOL II, all files must be defined in the FILE-CONTROL paragraph within the INPUT-OUTPUT
SECTION of the ENVIRONMENT DIVISION. The format for defining indexed files is as follows:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT file-name

ASSIGN to "file-info-1" [,"file-info-2"] ...

sORGANIZATION IS INDEXED

[{ SEQUENTIAL }]
[;ACCESS MODE IS { RANDOM} J
[{ DYNAMIC }]

;RECORD KEY IS data-name-1 [WITH DUPLICATES]

[;ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]...

[;FILE STATUS IS stat-item].

All files defined in COBOL II must also have an FD file description within the FILE SECTION of the
DATA DIVISION which contains the record description entry for the file. The record description entry
defines the record to be associated with the file. Something to note here is that COBOL II does not have a
data type which corresponds to KSAM key fields defined as REAL or LONG.

To give you an idea of what all of this looks like, here is an example of the ENVIRONMENT and DATA

DIVISION constructs which define a KSAM file. (Included in the DATA DIVISION are the FILE

STATUS data items which will be discussed later.)

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE ASSIGN TO "EMPFILE.PUB.EMPACCT"’;

ORGANIZATION IS INDEXED;
ACCESS MODE IS DYNAMIC;
RECORD KEY IS EMPLOYEE-NUM;

ALTERNATE RECORD KEY IS LAST-NAME WITH DUPLICATES;

FILE STATUS IS KSAM-STATUS.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE.
01 EMPLOYEE-RECORD.

OS FILLER PIC Xx.

0S EMPLOYEE-NUM PIC X(9). record description entry

0S FILLER PIC X.

0S LAST-NAME PIC X(16).

WORKING-STORAGE SECTION.
01 KSAM-STATUS. ‘

05 KSTAT-1 PIC X.
0S KSTAT-2 PIC X.

Now let’s take a look at each of the clauses of the FILE-CONTROL paragraph.

The SELECT clause is used to identify the KSAM file to be accessed and to assign it the file name by

which it will be accessed in the program.

The ORGANIZATION clause is used to specify that the file is an INDEXED file, that is, a KSAM file.

The ACCESS MODE clause is used to specify how the file is to be accessed. SEQUENTIAL access is

assumed if the ACCESS MODE clause is omitted. The three access modes will be described in the next

section.

The RECORD KEY clause is used to name the data item within the file’s record description entry which
corresponds to the primary key. The ALTERNATE RECORD KEY clause is used to name the record
descroption entry data item which corresponds to an alternate key; there is one ALTERNATE RECORD
KEY clause per alternate key.

The FILE STATUS clause is used to name the data item, defined in the DATA DIVISION, to which status
information regarding access to the files is to be returned. Whenever an operation is performed on the
file, information as to the success or failure of the operation is put in this data area. The meaning of this
status information is described in the FILE STATUS clause documentation in Section VI of the COBOL HI
manual.

Accessing and Modifying Indexed Files

The COBOL II statements which can be used to open and close indexed files are as follows:

{INPUT file-name-1 [,file-name-2] ...}
OPEN (OUTPUT file-name-3 [,file-name-4] ...}

{1-0 file-name-5 [,file-name-6] ...}

CLOSE file-1 [WITH Lock] [,file-2 [WITH LOCK]] ...

All COBOL II allows to be specified when an indexed file is opened is the type of access for which the file
is to be opened. INPUT indicates read only access; OUTPUT indicates write only access with all existing
records deleted; and [-O access indicates read, write, and update access.

Because all that can be specified in an OPEN statement is the type of access to be allowed, COBOL II’s
Indexed I/O Module cannot be used to create KSAM files. Also, file equations must be used in order to
override any defaults for where the file resides (,TEMP or SAVE), who may access the file (EXC or -EAR
or ;SEMI or ;SHR), and whether or not dynamic locking is allowed (LOCK or ;NOLOCK). Also note that
file equations can be used to override the type of access specified in the OPEN (IN or ;OUT or ;OUTKEEP
or ;APPEND or ;INOUT or ;UPDATE).

File equations can also be used in conjunction with the CLOSE statement because the CLOSE statement
’ closes files with the default disposition, unless a file equation specifies a different disposition (SAVE or
‘DEL).

The COBOL II statements which can be used to access indexed files are as follows:

[{IS EQUAL TO }]
[{IS = }]

START file-name [KEY {IS GREATER THAN } data-name]
[}]
[}]
[}]

{IS >
{IS NOT LESS THAN

{IS NOT <

[;INVALID KEY imperative-statement]

READ file-name RECORD [INTO identifier]

[;AT END imperative-statement]

READ file-name [NEXT] RECORD [INTO identifier]

[;AT END imperative-statement]

READ file-name RECORD [INTO identifier] [KEY IS data-name]

[; INVALID KEY imperative-statement]

The way in which these statements can be used to access and modify KSAM files depends on the type of

access -- SEQUENTIAL, RANDOM, or DYNAMIC -- for which the file was opened (as specified in the

ACCESS MODE clause of the FILE CONTROL paragraph). Note that on HP machines there are really

only two kinds of access -- sequential and dynamic -- because RANDOM is treated the same as

DYNAMIC.

The START statement works the same in sequential and dynamic mode, and is like the FFINDBYKEY

intrinsic. It positions the current record pointer within a specified key sequence, using full or generic

keys and exact or approximate matching. It does not read a record, but is does establish a current key

sequence. The KEY IS phrase allows you to specify a RECORD KEY or ALTERNATE RECORD KEY

data item or any data item subordinate to them (provided that it starts at the beginning of a key) to be

used for matching. If the KEY IS phrase is not used, the RECORD KEY data item is used.

The READ statement, as you can see, comes in three basic forms -- READ, READ...NEXT, and

READ...KEY IS. The first form, READ, is used only in sequential mode and is like the FREAD intrinsic.

If READ immediately follows OPEN, it will read the first record in primary key sequence. If READ

immediately follows START, it will read the record to which START positioned the current record

pointer. If READ follows another READ, it will read the next record in the current key sequence.

The second two forms of the READ statement, READ...NEXT and READ...KEY IS, are used only in

dynamic mode. READ...NEXT in dynamic mode works just like READ in sequential mode, that is, like

the FREAD intrinsic. READ...KEY IS, on the other hand, is equivalent to the FREADBYKEY intrinsic.

READ...KEY IS reads the first record in a particular key sequence which has a particular key value. The

KEY IS phrase allows you to specify which one of the RECORD KEY or ALTERNATE KEY data items is

to be used for matching. If you omit the KEY IS phrase, the RECORD KEY data item is used.

From this description of indexed file access capabilities you can see that the Indexed I/O Module has some

limitations when compared to the file system intrinsics. The main difference between the Indexed I/O

Module and the intrinsics is that the Indexed I/O Module does not allow chronological access. That is,

there are no equivalents to the FREADDIR, FPOINT, and FREADC intrinsics. The other difference is

that the Indexed 1/O Module does not allow access by logical record number because there is no equivalent

to the FFINDN intrinsic.

The COBOL II statements which can be used to modify KSAM files are as follows:

WRITE record-name [FROM identifier-1]

[;INVALID KEY imperative-statement]

DELETE file-name RECORD

[;INVALID KEY imperative-statement]

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative-statement]

The WRITE, DELETE, and REWRITE statements can all be used in sequential or dynamic mode, but they
work differently in the two modes.

The WRITE statement is like the FWRITE intrinsic, and is used to write a new record. When the access
mode is sequential, records must be added in order of ascending primary key values, but when the access
mode is dynamic, records may be added in any order.

The DELETE statement is used to delete a record. In sequential mode, a call to DELETE must be
preceded by a call to READ, and DELETE will delete the record read by the READ statement. In
dynamic mode, DELETE does not need to be preceded by READ. You specify the record you want
deleted by putting its primary key value in the RECORD KEY data item of the file’s record description
entry. DELETE will delete the first record (in primary key sequence) which has that primary key value.
DELETE does not affect the position of the current record pointer.

The REWRITE statement is used to update a record. In sequential mode, a call to REWRITE must be
preceded by a call to READ, and REWRITE updates the record just read by the READ statement. The
updated record is named in the FROM phrase and may contain modified alternate keys but not a modified
primary key. In dynamic mode, REWRITE does not need to be preceded by READ. The record which
gets updated is the first record (in primary key sequence) which has the same primary key value as the
updated record passed to REWRITE in the FROM phrase. Again, the updated record is named in the
FROM phrase and may contain modified alternate keys but not a modified primary key. REWRITE does
not affect the position of the current record pointer.

As you can see from the discussion of WRITE and REWRITE, access must be sequential and not dynamic
in order to delete or update records with duplicate primary keys, because in dynamic access only the first
record (in primary key sequence) which has a particular primary key value can be deleted or updated.

The COBOL II statements which can be used to lock and unlock indexed files age gs follows:

EXCLUSIVE file-name [CONDITIONALLY]

Just like with the intrinsics, locking is required for making modifications to a file in shared access. This
does not mean, however, that EXCLUSIVE and UN-EXCLUSIVE should just bracket modification
operations. If a file is being shared in any way, it should be locked whenever pointer~dependent
operations are being executed so that the file does not change unbeknownst to the current record pointer.
The locking scheme should be to lock the file before a pointer-independent operation, and to unlock it
after all pointer-dependent operations which depend on that pointer positioning have completed.

Note that you do not have to put "LOCK" on a file equation in order to lock a file with EXCLUSIVE.
This is because the COBOL II compiler automatically sees to it that a file is opened with dynamic locking
allowed if the EXCLUSIVE statement is used to lock it.

Error handling with COBOL II's Indexed I/O Module can take several different forms. First of all, if no
error handling is done, a program will abort with a file information display when an input-output error
occurs. Error handling will allow the program to retain control after an input-error rather than
automatically aborting.

One way of handling certain errors is by using the INVALID KEY or AT END clauses which can be

specified as part of the access and modification statements. If an INVALID KEY or AT END condition

arises when a statement is executed, control is transferred to the imperative statement in the INVALID

KEY or AT END clause if the statement has such a clause. The situations which cause this to happen are

documented for each of the access and modification statements individually in Section XI of the COBOL

I] manual.

Another input-output error handling technique involves a USE procedure. If a USE procedure is

provided for a particular file, control will automatically be transferred to the USE procedure when an

input-output error occurs on the file. The only exception to this would be if the error is an INVALID

KEY or AT END error and the INVALID KEY or AT END clause was specified on the statement which

failed. In that case, control would be transferred to the imperative statement in the INVALID KEY or

AT END clause rather than the USE procedure.

The action taken by an INVALID KEY or AT END clause or by a USE procedure will in most cases

involve checking the FILE STATUS data area to obtain more detailed information as to what type of

error occurred. The meaning of the status information is described in the FILE STATUS clause

documentation in Section III of the COBOL II manual. Note that FILE STATUS checking can also be

used in lieu of or outside of the INVALID KEY or AT END clauses or USE procedure.

Data Integrity & KSAM Files

There are two basic ways that a KSAM file’s integrity can be compromised. First, by a system failure;

secondly as a result of improper locking strategy in a multi-user environment. To better understand all

the aspects of such problems, it is necessary to briefly review KSAM file structures and look at some
KSAM system internals.

KSAM File Structures

KSAM files have two components; a key file and a data file. The key file is maintained by KSAM itself
and is not directly accessible by the user. Within the key file, KSAM maintains numerous maintenance

pointers as well as modified B-TREE structures for every key field. Whenever a record is added or
deleted, these structures must be updated.

The KSAM data file contains maintenance pointers as well as the user data. It also contains a user label in

which the name of the key file is stored.

If either one of these files is purged, KSAM will return a "NON-EXISTENT PERMANENT FILE (FSERR
52)" message when trying to access the remaining file.

Both the key and data files are built by the KSAM system using standard MPE file structures. The user

specifies the file record structure with the BUILD command in KSAMUTIL which is much like the
BUILD command in MPE with regards to record format and extent allocation. KSAM automatically

specifies and executes the BUILD command for the key file based on its own internal needs regarding key
structures and pointers. Therefore, the MPE file system is responsible for updating file EOFs, allocating

new extents, and updating file labels.

KSAM System Internals

KSAM makes use of an extra data segment with which it maintains dynamic information such as internal

pointers, key information, and data. Asusers access the KSAM file, the KSAM system updates the extra
data segment to reflect whatever changes have been made to the pointers and data. KSAM determines,

based on the number of changes, when to write the updated pointers or data to disc. When the last user

closes the KSAM file, all information in the extra data segment is written to disc. Pointers may be written
before the data, or data may be written before the pointers. Therefore, at any given time, the linkages
between the key and data files on disc may be out of sync pending an update from information in the
extra data segment.

Since MPE is responsible for updating file EOFs, KSAM maintains its own internal EOF pointers in the
extra data segment for both the key and data files so that it may know whether the amount of
information in either file will actually fit on disc. As we will see, KSAM uses this EOF pointer when in
recovery mode.

Example:

Say a program adds several records to a KSAM file. The KSAM software will write
those records into its extra data segment. It will also alter the key information placing

the new key values in sorted order. At this time, the data is still in memory although
KSAM itself is aware of the changes. All users will see the updated chain pointer

information.

Let’s say that the amount of updated key information in memory will not fit into
current size of the key file on disc. KSAM’s internal key file EOF pointer then exceeds

the physical file EOF as maintained by MPE.

Another transaction occurs and KSAM decides to post the key structures to disc. The

file system takes the key information and decides that the key file will have to have

another extent allocated to fit the data. MPE increments the key file size, writes the

new key information from memory onto disc, and updates its EOF. MPE’s file EOF

now equals or exceeds the KSAM internal EOF for the key file.

Now, the key information is updated on disc. However the data records associated with

the new key values are still in memory and therefore potentially lost if a system failure
occurs.

Data Integrity and System Failures

IF a KSAM file is open when a system failure occurs, KSAM will not allow the KSAM file to be used until
a KSAMUTIL recover is invoked. Attempts to use it will result in the message "SYSTEM FAILURE
OCCURRED WHILE THE KSAM FILE WAS OPENED (FSERR 192)".

KSAM knows the failure has occurred because when it opens its files for access, it saves the system Cold

Load ID (a unique number for each system restart). In addition, it keeps a running count of the number
of processes which are accessing the file. After a system failure, when an attempt is made to open the
KSAM file, KSAM will compare the Cold Load ID in the file to that of the system. If they are different,

or if the accessor count is greater than 0, it will not allow the file to be accessed.

There are four types a damage that KSAM file can incur as a result of a failure:

a) Key file information has been written to disc, but data file records have not. In this case, the key file
will contain pointers which have no corresponding data records.

When a KSAMUTIL recover is done, it will delete those key pointers.

b) Data file information has been updated to disc, but the system crashed before MPE could update the
physical EOF, and as a result, the KSAMs logical EOF data file pointer is greater than the physical
EOF. This means that key file pointers will point to records past the physical EOF.

When recover is executed, KSAM will set the MPE EOF to equal the KSAM EOF such that no

information is lost.

c) Key file information had been written to disc, but the system crashed before MPE could update the

physical EOF on the key file. As a result, there are valid key blocks on disc, but past the file’s EOF.

When recover is executed, the KEY file physical EOF is set to KSAMs logical EOF for that file. In this

case, no data is lost.

d) The KSAM data file has been updated, but the key file has not. Therefore, data records exist with no

corresponding key values.

KSAMUTIL cannot recover in this situation. It will issue the message, "THERE ARE SOME RECORD(S)
WITH KEY VALUE(S) MISSING THE KSAM FILE HAS TO BE RELOADED".

To reload the KSAM file, use FCOPY:

RUN FCOPY.PUB.SYS

>from=DATAF ILE; to=(NEWDATA,NEWKEYS)

After reloading the file, KSAMUTIL’s purge and rename commands can be used to restore the file to
its original name. Do not use the MPE purge and rename commands as they do not logically link the
key and data files.

Of course, if a system failure damages the MPE file structure of the data file, the KSAM file will have
to be reloaded from tape. Barring this catastrophic occurrence, KSAM offers reliable and safe
recovery mechanisms in the event of a system failure.

Data Integrity Problems Due To Locking Strategy

Some of the most common KSAM problems involve data integrity problems that result from using KSAM
in a multi-user environment without a proper locking strategy. If locking is not used, or it is not used
correctly, data may be overwritten or damaged accidentally.

Locking

Locking can prevent such data integrity problems. When one user locks a file and accesses it, pointers are
preserved, chains are maintained, data records changes are known. Then when the user unlocks the file, all
the information contained in memory is written to disc so the next user, upon accessing the file, will work
with a ‘clean’ set of data and pointers. Locking can be invoked through the FOPEN intrinsic AOPTIONS,
as described in the MPE File System Reference Manual (P/N 30000-90236), or through the use of the
MPE FILE command.

When a file has been locked by the user, KSAM will prevent another user from executing any file
modifying intrinsics. Once one user opens the KSAM file for dynamic locking, all other users must do so as
well. However users need not lock the file to execute the read intrinsics. This can cause potential
problems. Consider the following example:

User ’A’ does locks the file and read a record. User ’B’ does not lock the file, but reads the same record.
User ’A’ now updates that record with a new value and unlocks the file. User ’B’ decides based on the
value he has read to update the record, HOWEVER HE DOES NOT REALIZE THAT THE VALUE HAS
BEEN CHANGED BY PROCESS ’A’. In this case, process ’A’s values will be overwritten. This can be
especially dangerous in the case where the values being updated are running totals.

The Worst Case

User ’A’ locks the file, reads a record. User ’B’ reads the same record. User ’A’ now DELETES that record
thereby changing the KEY structures and current record pointers for the file. Process ’A’ unlocks the file
and those changes are posted to disc. Process ’B’ now decides to lock the file and delete what it believes to
be the SAME record. Because of ’A’s updates, process ’B’ pointers may now be pointing to a different
record than the one it has read. In this case,a DIFFERENT record may be deleted unintentionally!

Correct Locking Strategy

a) Have each user lock the KSAM file when accessing it in a multi-user environment whether reading or
writing.

b) Make sure that locks occur around logical transactions:

FLOCK

FREADBYKEY

FUPDATE/FREMOVE

FUNLOCK

This sequence is adequate unless there is a user prompt after the FREADBYKEY. In that case, the

KSAM file will be unaccessible to other users while they wait for the locker to decide to update or not.

If a user prompt is needed after the read then this is a better locking strategy:

FLOCK

FREADBYKEY

FUNLOCK

<<decide to update the data or not>>

FLOCK

FREADBYKEY

FUPDATE/FREMOVE

FUNLOCK

Remember, locking must be explicit invoked. Readers should lock, as well as writers, and they should

not read a record until they can get exclusive access to the KSAM file.

10

	Application Note 8
	COBOL II's Indexed I/O Module
	Data Integrity & KSAM Files

