North American Response Centers

HP 3000 APPLICATION NOTE #7

COBOL Il / 3000 PROGRAMS:
TRACING ILLEGAL DATA
USING ERROR 710/711 DOCUMENTATION

[&] HEWLETT June 1, 1986
28 PACKARD Document P/N 5958-5824/2623

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material,

This document contains proprietary information which is protected by copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard Company.
To copy otherwise, or to republish, requires prior written consent of Hewlett~-Packard Company.

Copyright © 1986 by HEWLETT-PACKARD COMPANY

COBOL it 7 3000 Programs: Tracing lllegal Data
Using ERROR 710/711 Documentation

A number of calls received by the Response Centers invelve COBOLII programs encountering COBOL
run~time errors 710 (Illegal Decimal Digit) or 711 {Illegal ASCII Digit). This note, a revised version of an
article published in Communicator (Issue #28), explains these errors. It will show you how to track down
their source using the information in the error messages in conjunction with compiler MAP and VERBS
listings, and a Segmenter PMAP listing. Three examples are given to help you to locate such errors
whether in a main program, a non-dynamic subprogram, or a dynamic subprogram in a Segmented
Library (SL).

WHAT IS ILLEGAL DATA?

Simply stated, illegal data is any data which when operated upon by the object program code does not
conform to its defined type.

HOW IS IT DETECTED?

Illegal data is detected by the hardware trap system when executing some type of data conversion,
comparison, arithmetic, shift or move instruction which involves decimal or ASCII data. To be considered
legal, such data must be a digit between 0 and 9. In some special cases, such as conversion of ASCII data
to decimal (using the CVAD instruction), blank characters are also allowed provided they are leading
blanks. These operations are implemented by the Extended Instruction Set and Language Extension
Instructions which are part of the Decimal Firmware and Microcode hardware for COBOLIL. For more
detail on these instructions see the HP 3000 Machine Instruction Set Manual (P/N 30000-90022).

WHERE DOES ILLEGAL DATA OCCUR?

Actually illegal data can occur anywhere within the scope of the object program’s environment, and can
thus appear in an input file, working-storage, or linkage section data item which can itself be a part of a
main segmented main program, dynamic/non-dynamic subprogram, segmented dynamic/non-dynamic
subprogram and/or user’s group/public library.

ERROR 710/711 MESSAGE OUTPUT FORMATS:

There are three output formats that may be produced by 710/711 errors depending upon the type of
error and where it occurred. Figures 1, 2, and 3 show a typical message in each of the three formats.

w%# ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = %001034
SOURCE = “12=4’ |
STATUS = %060705 P REGISTER = %000112 INSTRUCTION = CVND

Figure I. Message Format 1

ERROR 710 ILLEGAL DECIMAL DIGIT
SOURCE ADDRESS = %000624
SOURCE "3F2F3D5+"
STATUS = %060310 P REGISTER = %000212 INSTRUCTION = CVDA

FIXUP, RESTART ATTEMPTED:
NEW SOURCE = “3020305+”

Figure 2. Message Format 2

##% ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = %00021S
SOURCE = "1A4E”
STATUS = %060627 P REGISTER = %000116 INSTRUCTION = CVAD

%#% STACK DISPLAY Mkt

$=001254 DL=177644 2=003252
Q=001260 P=001202 LCST= PO12 STAT=U,1,1,L,0,0,CCG X=000004

CCL X=000005

Q=001116 P=000115 LCST= GOO4 STAT= t,L,0
1,L,0,0,CCG X=000006

U, 1,
Q=000577 P=000126 LCST= 002 STAT=U,1,
FIXUP, RESTART ATTEMPTED:
NEW SOURCE = "114E~

Figure 3, Message Format 3

NOTES PERTINENT TO ALL FORMATS:

SOURCE ADDRESS - This field provides the octal byte address of the source field that contains the illegal
data. This address can be used to trace back to a data item via the compiler MAP listing.

SOURCE - This field gives the contents of the illegal data item between the single quotes. Unprintable
characters appear as blanks, Usually, by looking at this field you can see which characters are illegal, e. g.,
non-digits between 0~9 or leading blanks (in some cases).

STATUS - This field holds the value of the hardware Status Register. You can use this to determine the
segment number being executed at the time of the error trap. The format of the Status Register is:

M|]IJ{T|]R]|]O]|C cc Segment Number

Mode: User/Privileged

External Interrupts Enabled

User Traps Enabled

Right Stack Op Pending

Overflow

Carry

Condition Code {CCL=1; CCE=2; CCG=0)

OO0 A

c
SEGMENT NUMBER = Segment number of executing module

As you can see, the right half of the Status Register is used to hold the Segment Number, However, how
these 8 bits are interpreted is dependent on whether your system has mapping firmware installed (which
allows expanded tables on MPE versions V/E or later). Mapping firmware is standard on all Series 37 and
6x systems using MPE V/E or later. It is optional on Series 4x systems.

To obtain a program segment number for use with your PMAP listing, you must subtract | {(if your system
has mapping firmware) or %301 (if it does not) from the Status Register’s 8-bit value. Be careful to mask
off the Bit 7 from the octal value shown in the STATUS field before subtracting since it may be set
depending on fthe Condition Code.

If the segment is a library segment, COBOLII provides a stack display which indicates the specific Logical
Code Segment (LCST) and Segmented Library (G for Group SL; P for Account SL, in the PUB group; or S
for the System SL}. A PMAP of that library will be necessary to trace further, as you will see later in the
examples.

P REGISTER - This field gives the NEXT address to be executed when the trap occurred. Using this
address and the VERBS listing of the segment {obtained using the $CONTROL VERBS compiler option) you
can find the specific COBOL statement which tried to operate on the illegal data item,

To do this, you should subtract one from the address shown in the P REGISTER field to get the actual
address of the instruction that caused the trap. In addition, on systems with mapping firmware (see
above), the P REGISTER field will include a "M AP’ bit as shown below.

0 1 2 =mmmeemeeeeeeeemmemeemmmmeaeoaoo oo 15

MAP Instruction Address

So, on systems with mapping firmware, you must also subtract 040000 to eliminate this MAP bit.

Example:
If the P REGISTER field in the error message shows %071234 subtract | giving
#%071233 (the address of the instruction which caused the trap) and then, if the system
has mapping firmware, subtract %040000 to get the correct address of %031233.

INSTRUCTION -~ This field displays the particular machine instruction which is
operating on the illegal data. The instructions which can result in illegal data traps
are: : : '

Extended Instruction Set

CVAD - ASCII to decimal conversion

CVDA - Decimal to ASCII conversion

CVDB - Decimal to binary conversicn

ADDD - Decimal add operation

SUBD - Decimal subtract operation

CMPD - Decimal compare operation

SLD - Decimal shift left operation

NSLD - Decimal normalizing shift left operation
SRD - Decimal shift right operation

MPYD - Decimal multiply operation

Language Extension Instructions

EDIT Subinstructions;

MA - Move alphabetic operation

MN - Move numeric operation

MNS - Move numeric with zero suppression operation
MFL -~ Move numeric with floating insertion operation
MODWO - Move digit with overpunch operation

Numeric Conversion Operations:

ALGN - Align numeric
CVND ~ Convert numeric display
ABSN ~ Absolute numeric

NOTES PERTINENT TO FORMAT 1 MESSAGES:

This message indicates that the illegal source data could not be fully processed by the instrection and the
results of the operation are unpredictable. Data errors of this type must be corrected and the program
re-run for valid results,

NOTES PERTINENT TO FORMAT 2 MESSAGES:

This message indicates that the operation has performed a FIXUP of the illegal data and the NEW SOURCE
field shows the result of the fixup. The fixup operation occurs in a temporary area so it only affects the
target location and not the source data. If you decide the fixup result is not acceptible, the data should be
corrected and the program re-run.

A fixup operation is not always performed because of ’bad’ data that needs to be corrected, In fact, the
program may actually depend on a fixup happening. Such is the case where programs have been written
to conform to the COBOL 68 ANSI Standard and deliberately use overpunch characters within numeric
fields, for some type of program data control and wish to have the overpunch ignored when the data is
processed numerically. These programs are considered in violation of the COBOL 74 ANSI Standard, but

the compiler allows them {with an appropriate error message} so that such COBOL 68 programs may still
be compiled using the COBOLII compiler. It is not recommended that new application designs use such
‘features’, however, because they do viclate the ANSI 74 standard.

The algorithm used for the fixup operation is:

1) If the illegal character is a lower case alphabetic character, it is upshifted before continuing with the
algorithm.

2) The resulting character is converted as follows:

0 thru @ =+ No conversion

Athru I =» 1 thru 8

J thru R = t thru 8

S thru 2 = 2 thru 9
/> 1

All other characters are replaced by a zero.

NOTES PERTINENT TO FORMAT 3 MESSAGES:

A stack display has been added to this message, as of library version A.00.035, to facilitate tracing errors
which are detected within segmented library procedures. It is anly provided for traps which occur within
segmented libraries.

The information in the stack display is as follows;
The first line indicates the top of stack and stack boundary when the trap occurred.

The second line indicates the location of Q after the four—word marker has been placed at the top
of the stack. Note that Q is four words greater than S. This line reflects the call to the
STACKDUMP procedure by C"TRAP.

The third line identifies the procedure which was executing when the illegal data trap occurred
and is the key line of information needed when fracing the error source segment, as you will see
later. '

Any additional lines shown in the stack display can be used to follow a series of segment calls
leading to the detection of the illegal data. In the stack display shown in Figure 3, you can see
that a calt was made from LCST 002 (the user program) to LCST G004 (logical segment in a group
library) to LCST PO12 (logical segment in a public library), where the COBOL LIBRARY existed.

TRACING EXAMPLES

The following examples show how to locate an illegal data item by tracing through a main program, a
non-dynamic subprogram, and a dynamic subprogram residing within a Segmented Library (SL). The
partial MAP, VERBS, & PMAP listings are provided for reference purposes in the analysis of each trace.

Example 1: A Simple Trace - A Non-Segmented Main Program

00008 01
Goo0e 01
00010 01
co011 01

LINE #
00013
00014

00015
00016

NAME

QUIT

DEBUG

LINE# LVL

SYMBOL MAP (MAIN PROGRAM)
BASE DISPL

OO w>

SOURCE NAME

WORKING-STORAGE SECTION

Q+2;
Q+2:
G+2:
Q+2:

PROCEDURE /VERB MAP
PROCEDURE NAME/VERB

PB-LOC

000003
000003
000012
0000231

START-IT

MOVE
MOVE
STOP

PROGRAM PMAP

STARTITOQ”

STARTITOO’
TERMINATE’

COBTEST

COBOLTRAP
SEGMENT LENGTH

0

000010
000014
000020
000024

STT CODE ENTRY SEG

DU DWW -

0

34

144

]

34

)

SIZE

000004
000004
000004
000004

USAGE

DISP
DIsP
COMP-3
DISP

INTERNAL NAME

STARTITOO”

Figure 4. Symbol Map, Procedure/Verb Map, & PMAP for Example 1

Given the following error 711 message and the information in Figure 4:

##% ERROR 711

STATUS = %060701 P REGISTER = %000012 INSTRUCTION

Analysis and Trace:

1. Since no fixup information is shown in the error message you know immediitely the resulting target

TLLEGAL ASCII DIGIT
SOURCE ADDRESS = %000014
SOURCE = “1/5A°

= CVND

field is undefined and therefore the illegal data must be corrected and the program re-run.

2. The illegal data is the "/" character shown in the SOURCE field and the length of the field is 4 digits.
The STATUS field indicates a segment number of 0; therefore, the problem is within segment 0 of the
user program. The P REGISTER indicates the CVND instruction is located at P-relative address 11 in
segment 0. The CVND instruction itself indicates the problem occurred when converting a numeric

display item.

3. To locate the item:

a. The PMAP of the program indicates that the P REGISTER address 11 is within the CODE for
the relocatable binary module (RBM} STARTITO0 within segment 0.

b. The VERBS MAP from the source program compilation points to the COBOL MOVE statement,
at line # 14, within relocatable binary module (RBM) STARTITO0O’, in segment 0.

¢. The SYMBOL TABLE MAP from the source program compilation tells you the name of data
item by locating the SOURCE ADDRESS within the DISPL field.

In this example, the item is found to be "B” in the working-storage section displacement location 14.

Example 2: A Segmented Main and Segmented Subprograms

SYMBOL MAP (MAIN PROGRAM)
LINE# LVL SOURCE NAME BASE DISPL SIZE USAGE

WORKING-STORAGE SECTION

gonog 01 A Q+2: 000146 000004 DISP
00008 DOt B Q+2: 000152 000007 DISP
aooic o1 c Q+2: 000161 000004 DIsSP
00011y o1 D Q+2: 000165 000004 DISP
SYMBOL MAP (SUBA & SUBB SUBPROGRAMS)
LINE# LVL SOURCE NAME BASE DISPL SI1ZE USAGE
LINKAGE SECTION
00009 O A Q+21 Q00000 000004 DISP
00010 01 B Q+22 000000 Q00007 DisP
00011 01 c Q+23 000000 000004 DISP
ooo12 01 D Q+24 000000 000004 DISP
PROCEDURE/VERB MAP (SUBA)
LINE # PB-LOC PROCEDURE NAME/VERB INTERNAL NAME
00014 000070 SUBA-SEC1A SUBASEC1A01”
00015 000070 SUBA-PARA1TA
00018 Q00070 DISPLAY
00017 000003 SUBA-SEC2A SUBASEC2A02”
00018 000003 SUBA-PARAZA
Q0019 000003 DISPLAY
60020 000003 SUBA-SEC1B SUBASEC1BO1”
ogo21 000003 SUBA-PARAIB
oooz2 000003 ACCEPT
00023 000007 COMPUTE
00024 000003 SUBA-SEC2B SUBASEC2B02’
00025 000003 SUBA-PARAZB
00026 000003 CALL
60027 000010 EXIT PGM
PROGRAM PMAP
SUBA 4
NAME STT CODE ENYRY SEG
SUBASEC1BO1” i 0 0
C"ACCEPT 4 ?
SUBA 2 a7 52
SUBA’ 5 3
C DISPLAY <] ?
C"DISPLAY’FIN 7 ?
C'DISPLAY INIT 10 ?
SUBA’S 3 47 47
SEGMENT LENGTH 214

Figure 5. Symbol Map, Procedure/Verb Map, & PMAP for Example 2

Program Environment: A Main and two Non-Dynamic Subprograms

Given the following error 711 message and information in Figure 5:

#¥# ERROR 711 ILLEGAL ASCII DIGIT
SOURCE ADDRESS = %001426
SOURCE = "3243 1E”
STATUS = %060705 P REGISTER = %000022 INSTRUCTION = CVAD
FIXUP, RESTART ATTEMPTED:
NEW SOURCE = "324301E’

Analysis and Trace:

L.

Since a fixup has been done (as indicated in the error message), you immediately know the resulting
target field has been modified, as shown in the NEW SOURCE field. If, after looking at the results of
the fixup, you decide that it is appropriate, the resulting processing can be considered valid; otherwise
the data should be corrected and the program re-run.

The illegal data is the space or unprintable character shown in the SOURCE field and the length of the
field is 7 digits. The STATUS field indicates 2 segment number of 4; therefore, the problem is in
segment 4 of the user’s program file. The P REGISTER gives the location of the CVAD instruction as P
Relative address 21 and the instruction indicates the problem occurred when trying to convert an
ASCII value to decimal.

To locate the item:

Tracing the illegal item in this environment is quite similiar to the simple main program trace. You
need to be aware, however, of the non-dynamic subprograms and whether the data item is within the
working-storage area of the module causing the trap message or is being passed, as a parameter, via the
linkage section.

a. The PMAP of the program indicates that the P REGISTER address 21 (22-1) is within the code
for the relocatable binary module SUBASEC1BO1” within segment 4.

b. The VERBS MAP of the source program compilation for the SUBA subprogram peints to the
COBOL statement COMPUTE, within the RBM named SUBASEC1801".

¢. The SYMBOL TABLE MAP of the source program compilation tells you the name of the data
item by locating the SOURCE ADDRESS within the DISPL field, provided that the item is in
that module’s working storage area. If the address is not shown on the MAP, it indicates the
item has an origin elsewhere and has most probably been passed, as a parameter, to the
detecting module. In this example, the MAP for SUBA does not show any working storage area;
hence, the bad data is coming from another area.

d. In order to determine the actual item address from the logical linkage address you must
compute it using information from the PMAP and the source listing "DATA AREA IS
Znnnnnn WORDS." for each module. An example of this computation is as follows, given the
information:

PMAP PGM SEQ PGM DATA AREA (%WORDS) W-S MAP ADDRESS (%BYTE)

SUBP B 260 X 2 = 540 %BYTES 1426
SUBP A 2496 X 2 = 514 %BYTES 1426 - 5S40 = 666
MAIN 252 X 2 = 524 %BYTES 666 - 514 = 152

By using the SOURCE ADDRESS = %1426 in the above error message and the PMAP sequence of the
main and subprogram modules along with the DATA AREA values for each program unit you can
calculate the possible W-5 MAP ADDRESS for each program unit for the item you are looking for
e.g., address 1426 for SUBP, 666 for SUBA and 152 for MAIN. By looking at the MAP for each
program module you should now be able to identify what the item is, and the program module where
it was defined by locating the working storage area containing the matching calculated address.

In this example, the item is found within working storage of the MAIN program, as item "B".

10

Example 3: A Segmented Main and Segmented Library

SYMBOL MAP (MAIN PROGRAM)
LINE# LVL SOURCE NAME BASE DISFL SIZE USAGE

WORKING-STORAGE SECTION

00008 01 A Q+2: 000370 000004 DISP
0008 01 B Q+2: 000374 000004 PISP
00010 01 c Q+2: 000400 000004 PISP
o011 01 D +2: 000404 00DG10 DISP
SYMBOL MAP (SUBA & SUBB DYNAMIC SUBPROGRAMS)
LINE# LVE SOURCE NAME BASE DISPL SIZE USAGE
LINKAGE SECTION -
cocog 01 A Qt+21 0000CC 0QGOO04 DISP
00010 01 B Q+22 000000 000004 DisP
00011 01 c Q+23 000000 000004 DISP
oo012 01 D Q+24 000000 000010 DISP
PROCEDURE /VERB MAP ({SUBB)
LINE # PB-LOC PROCEDURE NAME/VERB INTERNAL NAME
00014 000102 SUBB-SEC1 SUBBSEC101”
00015 oooto2 SUBB-PARA1
00016 000102 DISPLAY
00017 000003 SUBB-SEC2 SUBBSEC202"
00018 000003 SUBB-PARA2
60018 000003 DISPLAY
60020 ogoo42 SUBB-PARAZA
oooz21 0goo042 DISPLAY
coozz 000076 ACCEPT
gooz3 000003 SUBB-SEC3 SUBBSEC303”
cgoz4 000003 SUB-PARA3
0002s 000003 COMPUTE
00026 0000586 EXIT PGM
SEGMENTER SL PMAP

SUBBSEC303’ 2

NAME STT CODE ENTRY SEG

SUBBSEC303” 1 0 0

QUIT 3 ?

SUBB’ 2 72 72

SUBB’S 4 ?

SUBBSEC202° 5

SEGMENT LENGTH 350

Figure 6. Symbol Map, Procedure/Verb Map, & PMAP for Example 3

11

Program Environment: A Main and two Dynamic Subprograms in a SL

Given the following error 711 message and information in Figure 6&:

ERROR 711 ILLEGAL ASCII DIGIT

SOURCE ADDRESS = %000374

SOURCE = “123 -

STATUS = %060627 .P REGISTER = %000016 INSTRUCTION = CVAD

Hin STACK DISPLAY .
$=Q01254 DL=177644 Z2=003252

Q=001260 P=001202 LCST= P004 STAT=U,1,1,L,0,0,CCG X=000004
G=001116 P=00001S5 LCST= GQO2 STAT=U,%,1,L,0,0,CCL X=000005
Q=000577 P=000007 LCST= GOOO STAT=U,1,1,L,0,0,CCG X=000008
Q=000306 P=000013 LCST= 001 STAT=U,1,1,L,0,0,CCG X=000006

FIXUP, RESTART ATTEMPTED:
NEW SOURCE = “123{~

Analysis and Trace:

1. Since a fixup has been done (as shown in the error message), you must either accept its results or

re-run the program, after correcting the data item.

The illegal data is the trailing space or unprintable character and the length of the field is 4 digits.
The STATUS field indicates a segment number of 227 which, on a system without mapping firmware,
immediately indicates the segment is within some segmented library. The P REGISTER indicates the
CVAD instruction is at P Relative address 15 and the instruction itself indicates the problem occurred

when trying to convert an ASCII value to decimal.

To locate the item in this environment you can use the STACK DISPLAY information to identify the
dynamic subprogram where the error was detected and then use similiar procedures as described above,

to Jocate the data item and location source address.

a.

The top entry in the stack display (LCST=) field indicates the C“TRAP procedure is in segment 4
of the PUBLIC LIBRARY of the account (LCST= P004) and the dynamic subprogram, causing
the trap, is in segment 2 of the GROUP LIBRARY of the account (LCST= G002).

The S1. PMAP of the library for segment 2, indicates that the P REGISTER address 15{16-1)is
within the code for the RBM named SUBBSEC302".

The VERBS MAP of the source dynamic subprogram points to the COBOL statement COMPUTE,
within the RBM SUBBSEC303".

The SYMBOL TABLE MAP of the source program compilation indicates the name of the data
item by locating the SOURCE ADDRESS within the DISPL field, provided that the item belongs
to that module’s working storage area. If the address is not locatable on the MAP it indicates
the item has an origin elsewhere and has most probably been passed, as a parameter, to the
detecting library module.

In order to determine the actual item address we can refer to the STACK DISPLAY:

12

The stack trace indicates a main program {(LCST= 001) called a procedure in a group SL (LCST=
G000) which called another procedure within the group SE {LLCST= G002), in which the trap
procedure C " TRAP was called from the pub SL (LCST= P0O04), :

Examination of the Q= values (base word address of the next procedures data area, if dynamic)
indicates the SOURCE ADDRESS = %000374 (source byte address = word address %176) falls

inside the data area for the Main procedure, since %176 is less than %306, This defines the
illegal data as & passed parameter.

The actual data item can now be determined by locating the source address within the working
storage section, of the main program’s source compilation.

In this example, the item is "B" at displacement location %374,

13

	Application Note 7
	COBOL II / 3000 Programs

