

North American Response Centers

HP 3000 APPLICATION NOTE #6

HP 3000
STACK OPERATION

a HEWLETT May 15, 1986
PACKARD Document P/N 5958-5824/2620

Keven
Rectangle

Keven
Rectangle

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS

MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be

liable for errors contained herein or for incidental or consequential damages in connection with the

furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.

Permission to copy all or part of this document is granted provided that the copies are not made or

distributed for direct commercial advantage; that this copyright notice, and the title of the publication

and its date appear; and that notice is given that copying is by permission of Hewlett-Packard Company.

To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard Company.

Copyright © 1986 by HEWLETT-PACKARD COMPANY

Keven
Rectangle

Keven
Rectangle

HP 3000 STACK OPERATION

The Response Centers receive many questions regarding the HP 3000's stack architecture and the
parameters which control it. This application note, written as a result of these questions, describes the
operation of the HP 3000 stack. ‘

Introduction

The HP 3000 is referred to as a "stack machine" because its design is centered around the concept of a
stack. A stack is a linear storage area for data, so named because data items can be placed on the “top,”
“pushing down" the data items already present. When they are no longer useful, data items are removed
from the "top," "popping up" those remaining. If you have ever worked with an HP calculator that has an

key, then you have worked with a stack.

The benefits of a stack architecture are numerous:

¢ Storage allocation is dynamic. Local storage is allocated only upon entry to a procedure and is
freed upon exit, allowing it to be used by other procedures.

e Temporary storage of intermediate values is automatically provided.

e Code is more compact, because many instructions can assume that their parameters exist at the
top of the stack. No extra registers are required for procedure parameters and temporary
variables.

* Recursion -- a procedure’s ability to call itself -- is possible because each call allocates a new
area at the top of the stack.

Stack Layout

Figure | shows the layout of the stack area and the way stack registers in the CPU delimit the various
parts. Each process has its own (private) stack, but the stack registers, of which there is only one set, point
to the currently active process’ stack.

Registers

The stack area is bounded on the low end by the DL register and at the high end by the Z register. (The
system reserves an area before DL and another area after Z; these will be mentioned later. They are
inaccessible in user mode.) A major division into two parts is delimited by the DB register, which points to
the "base" location of the stack. The area between DL and DB provides a dynamic area for such
applications as VPLUS screen information and the Pascal "heap.", but it is not accessed by MPE itself.

Just as the DB register points to the base location of the stack, so the S register points to the current
top-of-stack. The convention of drawing stack diagrams corresponds to the manner in which code is
written (or any written language), beginning at the top of the page and proceeding to the bottom. Thus
the stack appears inverted, with the last entry (top-of~stack) toward the bottom of the diagram.
Addresses increase in a downward direction.

Keven
Rectangle

Keven
Rectangle

 Start of region

PCBX area

DL register —>» .

DL area Auser managed) DL=

DB register —» 2

DB area
(globals, PARM, INFO)

 Q register —>» >» MAXDATA=

Current procedure’s
local storage

 S register —> STACK=

Available for new data

(unused) Z register —>»

Stack overflow area End of region

Figure 1. Current process’ stack.

Whereas the DB register and Z register contents are static, the S register content is constantly changing as

the program progresses, moving up and down the stack area. At all times, the area between DB and § is

filled with valid data, while the area between S and Z is available for additional data. Should the

quantity of data exceed the available space, the attempt to move S past Z will cause an interrupt to the

operating system, which may grant additional space (new Z value), one or more times -- within certain

limits.

Unlike the fluid cell-at-a-time movement of the S register, the Q register moves sporadically in jumps.

This register’s purpose is to retain the starting point of data relating to the current procedure. Thus, when

a new procedure begins, Q jumps ahead to establish a new starting point at the current top of the stack. —

Conversely, when a procedure ends, Q jumps back to the place it had marked earlier for the preceding

procedure.

As far as the current procedure is concerned, its data consists of locations from a base of Q to the current

top of stack, plus the parameters passed to it (located just before the current Q), plus locations in the

DB-~to-initial-Q (global) area.

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Stack Areas

Having discussed the registers which the system uses to delimit areas of the stack, we can now proceed toa
description of those areas. Throughout this section, you may wish to refer back to Figure 1.

PCBX

The Process Control Block Extension (PCBX) area contains information necessary for the system to control
process activity efficiently, such as register settings and file pointers. Initially, this area is %650 (424
decimal) words long, but it may be expanded by MPE as more files are opened.

DL-DB Area

The area from DL to DB is a user-managed global storage area and is not accessed by MPE. Certain
subsystems use the 10 words from DB-10 to DB-1, and VPLUS stores its screen buffers and control
information here also. BASIC uses the DL area for file buffer allocation and parameter passing.
Pascal/3000 also uses this area for its “heap."

The size of this area can be changed dynamically by calling the DLSIZE intrinsic.

Global Area

This area is used for global variables, declared within the data group of the main program and usable by
any procedure within that program. It also contains global arrays and pointers to those arrays. The size
of this area is computed by the segmenter at Program preparation time and is stored in the program file.
This size, and the content of the global area, are determined by the number of global variables and their
initialization as specified by the programmer. This area is delimited by the DB register and the (initial) Q
register.

At run time, the loader stores the PARM value and INFO string and length in the global area, increasing
its size as determined by the length of the INFO string.

Working Stack

From the standpoint of user programs, this is the most active area of the stack -- it is the area where the
user’s temporary data is stored and manipulated. It is bounded by the addresses contained in Q (initial)
and Z. Its size (stacksize) is specified on the :RUN command, the :PREP command, or from a value
computed by the segmenter, in that order. The value thus derived is compared with the value configured
for STANDARD STACK SIZE, and the larger of these is chosen.

Procedure Local area

Within the working stack, this area contains data relating only to the procedure currently executing. The
current setting of Q denotes the beginning of this area and S indicates the end, pointing to the last valid
item of data in the stack.

Keven
Rectangle

Available area

Also within the working stack, this area is the space that remains available for new data. It is bounded by

the addresses in the S register and the Z register. Z indicates the last main-memory location that can be

used by user data in the stack.

The size of this area can be changed dynamically with the ZSIZE intrinsic.

Stack overflow area

This area is available for stack overflow, a condition that occurs when S must be moved beyond Z and

space must be provided for certain end-of-stack information. This buffer area lies between Z and the

end of the data segment, and is currently 128 words long.

How Procedures Use the Stack

Central to the idea of modular, structured programming is the concept of the procedure. This section

describes how the stack is affected by procedure calls and exits.

Process initiation

Figure 2A shows how a stack is set up when a process begins execution. Space is first reserved for global

data, beginning at the DB address and ending at the Q address, which denotes the beginning of the

dynamic working stack. At this time, no data is stored beyond the Q address, so the S register also points

to this location. However, as the process continues executing, data is added to the top of the stack and the

S register moves away from the location pointed to by Q. See figure 2B.

Procedure cal]

If the process executes a procedure call (PCAL instruction), a new area for data local to that procedure

must be defined. Therefore, the hardware places a group of four words called a stack marker on the top

of the stack; this information defines the current environment and will be used to reestablish it later,

when the called procedure ends. The Q and § registers are then pointed to the top word of this stack

marker, and so delimit the beginning of a new, fresh, and unique local storage area for the called

procedure (figure 2C). As data is added to the stack during execution of the new procedure, 5 moves away

from (the new) Q, reflecting the latest data added (figure 2D).

Exit to caller

When this procedure returns to its caller, the new local data area is deleted from the stack, and the stack

marker is used to restore the previous environment, including the settings for 5 and Q. This results in a

"clean" stack from which storage local to the called procedure is eliminated because it is no longer needed.

This space will be reused when the program calls other procedures. See figure 2E.

Keven
Rectangle

Keven
Rectangle

DL

DB

as

DL DL
DL DL OL

Area Area Area
DB dB

Global! Area Global Area Global Area

oO - > Q(old) KF-—-~-—-—-~-—
Main Program ! Main Program
Local Area Local Area

S \ Slotd)

| Stack
| Marker

Q(new),S(new)

Zz Zz
A B Cc

DL DL

DL OL
Area Area

DB DB

Global Area Global Area

r= Olold) F—~——-—-—- =~ Q
| Main Program Main Program

Local Area Local Area
S(old) l i Stack 5 New Data

! Marker

& Qinew)

Procedure’s
Local Data

Sinew)

Zz Zz
D E

Figure 2. Stack operation.

Keven
Rectangle

Summary

Whenever a procedure is called, the Q and S registers are manipulated as described above. Q changes with

each procedure call and exit, and S may change when an instruction references data. Thus, when a

process executes a main program that calls three procedures (main calls A which calls B which calls C),

there will be a maximum of four local areas (one for the main and one each for the procedures) on the

stack. Each procedure’s local area is delimited at its base by a stack marker pointing to the procedure’s

caller. These markers serve to form a logical chain, from most recent to oldest, that links the current Q

register setting back to its initial value.

Stack overflow

If a procedure allocates enough local storage, or many nested procedure calls occur, S may move past Z.

This condition is known as stack overflow and may or may not cause the program to abort. The operating

system will attempt to increase Z, but can only do so as long as the number of words from DL to (the new)

Z is less than or equal to MAXDATA (see below). If MAXDATA would be exceeded, MPE aborts the

program with a STACK OVERFLOW error message.

Since expanding Z may require that the stack be swapped out to disc, MPE tries to expand it more than

necessary to rectify the overflow. This reduces the number of times that this overflow processing needs to

be performed. MPE never decreases Z; so if a program calls a procedure which allocates a great deal of

local storage, and then this procedure exits, there will be a large amount of unused space from S to Z. If

the space will not be reused by other procedures, it can be returned to the system by calling ZSIZE to

decrease Z; this may result in a small improvement in overall system throughput.

Stack parameters

This section describes how the system determines stack size, and what parameters are available to you to

modify this value.

The total size of the data segment occupied by a stack can be expressed with the following equation:

totalsize := pcbxsize + dlsize + globsize + stacksize + storsize

In other words, the size of the stack segment is simply the sum of the sizes of its components. MPE

ensures that total size is less than 32,764 words.

Initial pebusize is fixed at 4650 (424) words. dl size is computed as stated above and the rounded up

so that the sum of it and pebzsize is an exact multiple of 128 words.

globsize is simply the segmenter-computed size of the initial DB area. At run time, the three words for

the PARM, INFO string length, and INFO string pointer, plus the INFO string itself, are added to

globsize to arrive at the final value.

stacksize is the number of words from Q (initial) to Z (initial). Note that this does not include the DB

area: instead, it is storage for the working stack.

storsize is the size of the area reserved for stack overflow processing. This is a fixed value in MPE and

is currently set at 128 words.

Keven
Rectangle

DL

This parameter specifies the initial size of the DL area. It can be used on -RUN and ‘PREP, the value
given on :RUN (if any) has precedence. If no DL size is specified anywhere, the system assigns a value of
zero. In any case, the system grants sufficient DL area (always rounding up) to assure that the size of the
area from the beginning of the PCBX to DB is an exact multiple of 128.

This parameter should not be used to attempt to allocate DL space for VPLUS, because VPLUS always
allocates DL space in addition to that already in use.

STACK

This parameter is used to control the initial size of stacksize. It can be used on :RUN or :PREP (RUN
has precedence); if not specified there, the value computed by the segmenter when the program was
prepared is used. This value (from :RUN, :PREP, or the segmenter) is then compared against the system’s
STANDARD STACK SIZE as configured in ‘SYSDUMP and the larger of the two is used.

Typically, the stacksize computed by the segmenter is sufficient and this parameter need not be
specified. If, however, your program allocates large amounts of local storage when it begins, you may be
able to avoid some of the overhead caused by stack overflow processing (see above) by using this
parameter.

MAXDATA

This parameter, unlike STACK=, does not affect the amount of memory occupied by the stack. Instead, it
is used to limit the size of the DL to Z portion of the stack segment and, as a result, controls the amount
of Virtual Memory reserved for the stack.

MAXDATA must be specified if your program, or anything called by your program, uses the DLSIZE or
ZSIZE intrinsics. For example, VPLUS uses DLSIZE to allocate DL space for the Comarea Extension, and
programmatic SORT uses ZSIZE to allocate buffer space. MAXDATA may be required if the segmenter’s
“guesstimate" is not sufficient for a particular program; this is usually uncovered during testing, when the
program aborts with a STACK OVERFLOW not attributable to a program bug. In any case, MAXDATA
must be specified large enough to accomodate the largest difference between DL and Z.

Why not just set MAXDATA to its maximum for every program? For a couple of reasons: 1) This wastes
Virtual Memory, which may require a RELOAD (at least a COOLSTART) to reconfigure; and 2)
Depending on the circumstances, the File System may not be able to acquire space in the PCBX, which
will cause FOPEN to fail with NO MORE ROOM LEFT IN STACK SEGMENT FOR ANOTHER FILE ENTRY
(FSERR 74). This last is true because under many conditions, the maximum size of the PCBX is function
of MAXDATA: the larger the MAXDATA, the smaller the PCBX.

NOCB

This parameter, specified on ‘RUN (only), tells MPE to mimimize its use of the PCBX for file information.
This may permit the DL to Z portion of the stack to be somewhat larger, and it may also avoid the
FSERR 74 problem mentioned above. The disadvantage is that the File System may need to use more
data segments; this may have a minor negative effect on performance.

Keven
Rectangle

Keven
Rectangle

	Application Note 6
	HP 3000 STACK OPERATION
	Introduction
	Stack Layout
	Stack Areas
	How Procedures Use the Stack
	Stack parameters

