
Cognos(R)

Application Development Tools
PowerHouse(R) 4GL

PRIMER

Primer

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

PRIMER

Product Information

This document applies to PowerHouse(R) 4GL Version 8.4E and may also apply to subsequent releases. To check for newer versions of this
document, visit the Cognos support Web site (http://support.cognos.com).

Copyright
Copyright © 2007, Cognos Incorporated. All Rights Reserved

Printed in Canada.

This software/documentation contains proprietary information of Cognos Incorporated. All rights are reserved. Reverse engineering of this
software is prohibited. No part of this software/documentation may be copied, photocopied, reproduced, stored in a retrieval system,
transmitted in any form or by any means, or translated into another language without the prior written consent of Cognos Incorporated.

Cognos, the Cognos logo, Axiant, PowerHouse, QUICK, and QUIZ are registered trademarks of Cognos Incorporated.

QDESIGN, QTP, PDL, QUTIL, and QSHOW are trademarks of Cognos Incorporated.

OpenVMS is a trademark or registered trademark of HP and/or its subsidiaries.

UNIX is a registered trademark of The Open Group.

Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corporation.

FLEXlm is a trademark of Macrovision Corporation.

All other names mentioned herein are trademarks or registered trademarks of their respective companies.

All Internet URLs included in this publication were current at time of printing.

While every attempt has been made to ensure that the information in this document is accurate and complete, some typographical or
technical errors may exist. Cognos does not accept responsibility for any kind of loss resulting from the use of the information contained in
this document.

This page shows the publication date. The information contained in this document is subject to change without notice. Any improvements or
changes to either the product or the publication will be documented in subsequent editions.

U.S. Government Restricted Rights. The software and accompanying materials are provided with Restricted Rights. Use, duplication, or
disclosure by the Government is subject to the restrictions in subparagraph (C)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, or subparagraphs (C) (1) and (2) of the Commercial Computer Software - Restricted Rights at
48CFR52.227-19, as applicable. The Contractor is Cognos Corporation, 15 Wayside Road, Burlington, MA 01803.

Information about Cognos Products and Accessibility can be found at www.Cognos.com.

http://support.cognos.com

Primer 3

Chapter 1: PowerHouse Means Productivity 5

Industrial Strength Power 5
Multiple End-User Interfaces 5
Power to Integrate 7
Building Applications with PowerHouse 7
About this Primer 7
What’s Ahead? 8
Conventions Used in this Book 8
Cognos PowerHouse 4GL Documentation Set 9
Cognos PowerHouse Web Documentation Set 10
Cognos Axiant 4GL Documentation Set 11
Getting Help 12

Chapter 2: A Different Kind of Dictionary 13
Planning Your System 13
Files for Your Records 15
Online Editing 15
Getting Started 15
Defining Your Elements 16
Defining Your Files 17
Creating a Record-Structure 18
Working with Indexes 18
Creating Your Data Files 19
Refining Your Dictionary 20
A Review of PowerHouse Entities 21
What’s Next 21

Chapter 3: QUICK and Easy 23
QUICK Tricks 25
Entering Data 27
Quick Can Help 29
Finding and Modifying Data 29
Deleting Records 29
QUICKer and Better 30
Advanced Quick 30
The QUICK User Interface 30
For Example 31
The Web Made Easy 31

Chapter 4: QUIZ Has the Answers 33
Building Your Report 33
Some Basic QUIZ Rules 36
QUIZ Tips 36
More About QUIZ Statements 37
What’s Ahead 39

Chapter 5: QTP — Powerful Processor 41
QTP Output 42
 The QTP Edit 42
More QTP Power 43
What’s Ahead 43

Table of Contents

4 PowerHouse(R) 4GL

Chapter 6: The Finishing Touches 45
A Simple Menu 45
Enhancing the User Interface 46
What’s Ahead 47

Chapter 7: Ideas Unlimited 49
The End of the Beginning 49

Glossary 51

Index 55

Primer 5

Chapter 1: PowerHouse Means Productivity

Cognos PowerHouse 4GL is a server-based, fourth-generation application development
environment. PowerHouse 4GL gives you the power to design, create, and manage complex yet
easy-to-use business applications that are integrated with your existing environment, data, and
applications. It makes you a more productive developer and gives you reliable, flexible,
distributed, and scalable deployment options.

Industrial Strength Power
You can develop an application with PowerHouse 4GL considerably faster than with a
third-generation language such as Cor COBOL. PowerHouse 4GL simplifies operations that
might take dozens of lines of 3GL code into a single instruction.

With PowerHouse 4GL, the power is ready when you need it. The smooth, incremental learning
curve of PowerHouse 4GL means you get an immediate return on your investment. When you
first start to use PowerHouse, many of your basic requirements are handled by its default features.
As you become more familiar with PowerHouse, you can add your own specifications to the
default application. Finally, you can take full control and make use of PowerHouse’s powerful
procedural constructs.

Commercial applications contain common elements that 3GL programmers find themselves
coding repeatedly. Basic validation functions such as data input, entire screen-handling routines,
file I/O, and concurrency controls are all problems that 3GL programmers encounter.
PowerHouse, however, provides such functions automatically and intelligently, while still allowing
programmers to customize standard operations, without having to resort to 3GL coding.

With PowerHouse, you have the power to develop systems with features like these:
• sophisticated menus that tie processes together into user-friendly applications
• production reporting applications that combine data from multiple sources
• complex, multi-step volume processing tasks such as rollups, resets, and bulk file edits

With its English-like commands, PowerHouse can easily be used by data processing professionals
and novice users alike.

Multiple End-User Interfaces
PowerHouse helps you develop applications that are easy to learn and intuitive to operate.
QUICK, the interactive end-user component of PowerHouse, allows you to deploy data entry and
inquiry applications to terminals. This is the traditional terminal interface.

6 PowerHouse(R) 4GL

Chapter 1: PowerHouse Means Productivity

On Windows you can use the traditional terminal interface in a Command Prompt window, or
you can use the QKView interface.

But there’s more. Cognos Axiant 4GL is a visual Windows-based development environment for
creating PowerHouse applications. With Axiant, you can build applications that can be deployed
in a variety of thin-client, fat-client, mobile, stand-alone, and server-only architectures. Axiant
4GL gives PowerHouse a Windows-like user interface.

Chapter 1: PowerHouse Means Productivity

Primer 7

PowerHouse Web enables Web deployment of applications built with PowerHouse 4GL. You can
use a standard Web browser to search, add, change, and delete data using screens and pages
developed using the same high-productivity tool - PowerHouse.

For more information about Axiant 4GL and PowerHouse Web, please visit our Web site at
http://powerhouse.cognos.com.

Power to Integrate
PowerHouse uses your existing data files and database management systems without requiring
costly data conversion. You can enhance and integrate existing applications with new applications
you build in PowerHouse.

Building Applications with PowerHouse
Building an application with PowerHouse is easy. Once you determine the information you need,
simply
• Build your data dictionary
• Define your data and build your files
• Generate, test, and refine your screens

Once you have a working system, you can
• create reports
• add power with high-volume processing
• integrate the system with menus and screens
• fine-tune your applications
• build in security

With the help of this primer, you can start developing your total solution right now.

About this Primer
This primer has two objectives: it gives you an overview of the PowerHouse language and it gives
you a hands-on demonstration of just how easy it is to use PowerHouse.

8 PowerHouse(R) 4GL

Chapter 1: PowerHouse Means Productivity

Using this primer, even a novice computer user can create a simple but complete working
application in a short time. For some users, this primer may be all that is needed to make
productive use of PowerHouse for some time to come.

This primer provides only a glimpse of PowerHouse’s potential. However, it will give you a feel
for what PowerHouse can do.

What’s Ahead?
The following chapters introduce you to PowerHouse. In about half a day, you’ll create a practical
PowerHouse business application: a working purchase order tracking system.

The sample application uses an indexed file system to make it as universal as possible. However, it
could also be built with a relational database system since PowerHouse effectively integrates with
the most popular relational databases. For the benefit of relational users, notes are provided
throughout the primer to indicate where the use of a relational database would make a difference.

In Chapter 2, you’ll learn how to create a practical framework for your application by defining
your data using PDL (PowerHouse Definition Language) to create a data dictionary. PDL is the
foundation on which PowerHouse applications are built. Once you have built your dictionary, the
other PowerHouse components automatically use the definitions you have created.

In Chapter 3, you’ll learn how to design and build screens using QDESIGN, the QUICK screen
builder. You’ll discover the simplicity of using PowerHouse QUICK screens for online interactive
transaction processing. You’ll also see how easy it is to create and use a Web page with
PowerHouse Web.

In Chapter 4, you’ll learn to use QUIZ, the PowerHouse report writer. You’ll find out how quickly
you can put your data to work. With QUIZ, you can turn data into organized information,
producing simple or complex reports in just minutes.

In Chapter 5, you’ll learn to use QTP, the PowerHouse volume transaction processor. QTP gives
you the ability to update large batches of data automatically.

In Chapter 6, you’ll put the finishing touches on your application and add a user-friendly menu.

In Chapter 7, you’ll find a springboard to new ideas for application development.

That’s PowerHouse, a remarkable computer language that combines simplicity and sophistication
in a way that will both satisfy the most demanding professional requirements, and allow novice
users to benefit from their computers as never before. And that means increased productivity in
any language.

Conventions Used in this Book
When this book tells uses the term "enter", type the entry and then press [Return] or [Enter]. An
entry is not recognized until you press the [Return] or [Enter] key.

In this book, PowerHouse code is shown in uppercase type (for example, SCREEN). When you
enter code, however, you may use uppercase, lowercase, or mixed case type with the exception of
case-sensitive file names on UNIX.

For all operating systems, we assume that PowerHouse commands have been set up during
product install. If commands such as "pdl" or "quiz", do not work correctly, check with your
system manager.

This book describes PowerHouse on four platforms – MPE/iX, OpenVMS, UNIX and Windows.
The only differences in the PowerHouse code used are physical file names that are operating
system dependent. This gives you a vivid example of how portable PowerHouse can be.

On OpenVMS, UNIX, and Windows, PowerHouse uses file extensions to identify the type of file.
For example, a compiled screen file would have an extension of QKC, as in PURCHASE.QKC,
while the source file would have an extension of QKS, as in PURCHASE.QKS. PowerHouse
automatically adds the extensions. This means that you can create a screen and its source using
the same root name.

Chapter 1: PowerHouse Means Productivity

Primer 9

On MPE/iX, file names are a maximum of eight characters long and there are no extensions. This
means that a compiled screen name and the source file name must be different or be located in a
different group. There are a number of places in this book where operating system differences are
highlighted when naming files.

The UNIX operating system is case-sensitive. For example, PDL is not the same as pdl. Make sure
you use the appropriate case when you enter UNIX commands and file names that are passed to
the operating system; for most UNIX commands, this is lowercase. Once you're inside
PowerHouse, you can use either case for PowerHouse keywords and names, but physical file
names will retain the case you use. Relational database table or column names may be case-
sensitive.

For convenience, this book shows operating system and shell commands in lowercase, and
PowerHouse code in uppercase.

Cognos PowerHouse 4GL Documentation Set
PowerHouse 4GL documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Objective Document

Install
PowerHouse 4GL

Cognos PowerHouse 4GL & PowerHouse Web Getting Started book. This
document provides step-by-step instructions on installing and licensing
PowerHouse 4GL.

Available in the release package or from the following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web Release and Install Notes.
This document provides information on supported environments, changes,
and new features for the current version.

Available in the release package or from the following website:

http://support.cognos.com

Get an
introduction to
PowerHouse 4GL

Cognos PowerHouse 4GL Primer. This document provides an overview of
the PowerHouse language and a hands-on demonstration of how to use
PowerHouse.

Available from the PowerHouse 4GL documentation CD or from the
following website:

http://powerhouse.cognos.com

10 PowerHouse(R) 4GL

Chapter 1: PowerHouse Means Productivity

 Cognos PowerHouse Web Documentation Set
PowerHouse Web documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Get detailed
reference
information for
PowerHouse 4GL

Cognos PowerHouse 4GL Reference documents. They provide detailed
information about PowerHouse rules and each PowerHouse component.

The documents are
• Cognos PowerHouse 4GL PowerHouse Rules
• Cognos PowerHouse 4GL PDL and Utilities Reference
• Cognos PowerHouse 4GL PHD Reference
• Cognos PowerHouse 4GL PowerHouse and Relational Databases
• Cognos PowerHouse 4GL QDESIGN Reference
• Cognos PowerHouse 4GL QUIZ Reference
• Cognos PowerHouse 4GL QTP Reference

Available from the PowerHouse 4GL documentation CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Objective Document

Objective Document

Start using
PowerHouse Web

Cognos PowerHouse Web Planning and Configuration book. This
document introduces PowerHouse Web, provides planning information and
explains how to configure the PowerHouse Web components.

Important: This document should be the starting point for all PowerHouse
Web users.

Also available from the PowerHouse Web Administrator CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Install
PowerHouse Web

Cognos PowerHouse 4GL & PowerHouse Web Getting Started book. This
document provides step-by-step instructions on installing and licensing
PowerHouse Web.

Available in the release package or from the following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web Release and Install Notes.
This document provides information on supported environments, changes,
and new features for the current version.

Available in the release package or from the following website:

http://support.cognos.com

Chapter 1: PowerHouse Means Productivity

Primer 11

Cognos Axiant 4GL Documentation Set

Axiant 4GL documentation includes planning and configuration advice, detailed information
about statements and procedures, installation instructions, and last minute product information.

Get detailed
information for
developing
PowerHouse Web
applications

Cognos PowerHouse Web Developer’s Guide. This document provides
detailed reference material for application developers.

Available from the Administrator CD or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Administer
PowerHouse Web

The PowerHouse Web Administrator Online Help. This online resource
provides detailed reference material to help you during PowerHouse Web
configuration.

Available from within the PowerHouse Web Administrator.

Objective Document

Objective Document

Install Axiant 4GL Cognos Axiant 4GL Web Getting Started book. This document provides
step-by-step instructions on installing and licensing Axiant 4GL.

Available in the release package or from the following website:

http://support.cognos.com

Review changes
and new features

Cognos Axiant 4GL Release and Install Notes. This document provides
information on supported environments, changes, and new features for the
current version.

Available in the release package or from the following website:

http://support.cognos.com

Get an
introduction to
Axiant 4GL

A Guided Tour of Axiant 4GL. This document contains hands-on tutorials
that introduce the Axiant 4GL migration process and screen customization.

Available from the Axiant 4GL CD or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Get detailed
reference
information on
Axiant 4GL

Axiant 4GL Online Help. This online resource is a detailed reference guide
to Axiant 4GL.

Available from within Axiant 4GL or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

12 PowerHouse(R) 4GL

Chapter 1: PowerHouse Means Productivity

Getting Help
For more information about using this product or for technical assistance, visit the Cognos Global
Customer Services Web site (http://support.cognos.com). This site provides product information,
services, user forums, and a knowledge base of documentation and multimedia materials. To
create a case, contact a support person, or provide feedback, click the Contact Us link at the
bottom of the page. To create a Web account, click the Web Login & Contacts link. For
information about education and training, click the Training link.

Primer 13

Chapter 2: A Different Kind of Dictionary

In the world of electronic information handling, a data dictionary is quite different from the
dictionary you find on a bookshelf. A data dictionary is like a rule book in which you write the
rules.

In your data dictionary, you describe your records by assigning names to the categories of
information you will store in your files. You specify how much space each category needs, and
you specify formats for things like dates, cash amounts, and so on. What you are doing is building
a framework to organize and control your data.

In this chapter, you'll use PDL (the PowerHouse Definition Language) to create a data dictionary
that is the base on which you'll build your purchase order tracking application.

Unlike a conventional dictionary, your PowerHouse PDL data dictionary isn't just a passive
storehouse of words and data definitions. PDL also helps QUICK, QUIZ, and QTP to interpret
your instructions and present information the way you want it— automatically. And once you've
created your data dictionary, you can use it again and again as the basis for other PowerHouse
applications.

Planning Your System
To introduce you to PowerHouse, we have invented a company called Future Industries. The
entire purchasing operation at Future Industries uses purchase orders based on standard business
forms. For each purchase made, one copy of the form goes to the supplier, one goes into a filing
cabinet, one goes to Accounts Payable, and yet another goes to the purchasing department. When
Future Industries receives goods, someone retrieves the filed copies and marks the order as filled.

To maintain paper records and extract statistics from them is a time- consuming and tedious
task—and one that is particularly vulnerable to human error. With PowerHouse, you can develop
an application enabling Future Industries to establish an efficient purchase-order tracking system
that reduces the paperwork and speeds up operations.

Consider the Future Industries paper order form, which contains the elements of a new tracking
system:

Relational?

In this chapter we describe how to build a PowerHouse dictionary for use with an indexed file
system. Much of the information also applies to relational systems but there are significant
differences.

In an indexed system, you create elements that must then be associated with either a
record-structure or an index, and stored in files, all of which are explained in this chapter.

A relational database is structured quite differently, consisting of tables that contain rows and
columns of data. So when you create a dictionary to access a relational database, you are
describing an existing set of data. We’ll point out specific differences as we proceed.

14 PowerHouse(R) 4GL

Chapter 2: A Different Kind of Dictionary

The first step is to take a good look at the information contained in the company’s paper-based
system. You can break it down into its basic elements and use them to design the structure of your
records. With the help of PDL, you can use these simple record-structures to create a
computerized purchase-order tracking system.

The backbone of the old system is the purchase order form. Each purchase order is a record of a
transaction. It will be the basic record in our system, too. Begin by making a list of the elements
that the purchase order form contains.

The first element is the order number. Every record needs a different number, so the
ORDERNUMBER element is an essential one in your system. The computer can find any data
record by its unique order number.

The next element is the name of the department placing the order. We’ll abbreviate it to DEPT.
This, too, is key information, as you want to be able to trace the purchases made by a particular
department.

Next, you need to add an element identifying suppliers; let’s call it SUPPLIER. Following this are
two date elements: the date the order is placed and the date the goods are delivered. We’ll name
these DATEORDERED and DATEDELIVERED. The original purchase order form also has spaces
for the actual goods ordered and the cost — add GOODS and COST to complete your list of
elements. You have now covered all of the basic elements on the form.

Your list now looks like this:
ORDERNUMBER
DEPT
SUPPLIER
DATEORDERED
DATEDELIVERED
GOODS
COST

By creating a record-structure using these elements you will produce an electronic version of the
order form. We’ll add one more element to make the electronic version more efficient.

For data entry purposes, you could save a lot of time by abbreviating the names of your regular
suppliers, giving each a brief code name. That gives you one more element — call it SUPPCODE.
You can use it in this record-structure instead of SUPPLIER.

The purchasing department also needs to keep track of its suppliers. You need a second
record-structure, separate from the one just outlined, containing just SUPPCODE and SUPPLIER.

Chapter 2: A Different Kind of Dictionary

Primer 15

Files for Your Records
Once you start adding records of actual transactions to your system, you will need files to contain
them. You’ll need two files: one for data records based on the ORDERS record-structure and one
for data records based on the SUPPLIERS record-structure. Let’s give each file the same name as
its record-structure.

This is how the outline of your system looks now:

In an actual system, you would probably need more files, and some of your files might contain
multiple record-structures, but this simplified model will provide a working application.

Online Editing
As you work through the next few pages you'll be entering the statements that create your data
dictionary. If you make a typing mistake you can type CANCEL CLEAR and reenter your
statements from the beginning.

If you're familiar with your system's text editor, you can use it to make corrections much more
efficiently. You call up the editor by entering
> REVISE

The REVISE statement also works the same way in QDESIGN, QUIZ, and QTP.

When you finish your editing session, you're automatically returned to the PowerHouse
component you were in when you began the session. A "save" file is created to contain all of your
edited statements. To safeguard against losing your edits in a revised file, PowerHouse checks for
unsaved changes in your save file when you try to exit PDL. If unsaved changes exist, PowerHouse
prompts you to save the changes.

To edit an existing file, type that file's name after the REVISE statement, as in
> REVISE ORDERS

PowerHouse supplies the named file to the editor automatically. When you exit from the editor,
you re-enter PDL and your edited statements from the revised file are processed automatically.

Getting Started
So far, you’ve just outlined what you want to do; now, let’s do it. First, log on to your computer
system. If you’re using Windows, open a Command prompt window and navigate to a working
directory.

When you see the operating system or Shell prompt, activate the data dictionary program by
entering
pdl

When you see the PowerHouse prompt (>), PDL is ready to accept your dictionary statements.

The first step is to create your data dictionary. Since this is a dictionary for a purchase order
tracking system, enter
> CREATE DICTIONARY PODICT

ORDERS file:
contains one record structure, ORDERS

SUPPLIERS file:
contains one record structure,
SUPPLIERS

ORDERNUMBER
DEPT
SUPPCODE
DATEORDERED
DATEDELIVERED
GOODS
COST

SUPPCODE
SUPPLIER

16 PowerHouse(R) 4GL

Chapter 2: A Different Kind of Dictionary

Now, enter a name for a title that prints on all your QUIZ and QSHOW reports. It should be
something descriptive, such as "P.O. Tracking System". You’ll also want to set the default century
to 20. Enter
> SYSTEM OPTIONS TITLE "P.O. TRACKING SYSTEM" DEFAULT CENTURY 20

Defining Your Elements
Once you've named your data dictionary, you must describe each of the elements on your list in
separate ELEMENT statements. Each element in your dictionary needs a unique name, a type
(numeric, character, or date), and a size.

You have already identified all the basic elements on the Future Industries' purchase order form.
Use these names as the names for the elements in your data dictionary. The order in which you list
the elements isn't important. We’ll start with the supplier name. Enter the following statement:
> ELEMENT SUPPLIER CHARACTER SIZE 25

This tells PDL that SUPPLIER is a character element of size 25. That means the name can consist
of up to 25 letters, digits, or other symbols.

Now we’ll define the COST element. If you had to describe the type, size, and other attributes of
the COST element in full, as you did with SUPPLIER, it could be a complex element to define. But
you can use a usage to set these characteristics automatically. PowerHouse includes a set of usages
in the dictionary when you enter the CREATE DICTIONARY statement.

Some of these usages are:

ID identifies character elements, such as the supplier name, that contain indexes in your system
• NUMERIC-ID identifies character items, such as ORDERNUMBER, that are key items in

your system
• MONEY provides a 9-digit format, including two decimal places, for currency elements
• NAME provides a 20-character format suitable for a name
• PHONE provides a format for 7 or 10-digit phone numbers

Cost is always monetary, therefore use the usage MONEY as in
> ELEMENT COST USAGE MONEY

The next two elements are dates. PDL automatically assigns the format for you when the type is
DATE. You don't have to include a usage. However, you must tell PDL what size you want the
dates to be. Dates in PowerHouse can be either six or eight digits.

The six-digit date format puts the year (yy) first, the month (mm) second, and the day (dd) last.
The eight- digit format adds the century (in this case, 20) onto the year portion, so that the date is
displayed as yyyymmdd.

In order for your application to handle multiple centuries without any extra work on your part,
you should always use eight-digit dates that incorporate the century.

Enter these two statements:
> ELEMENT DATEORDERED DATE SIZE 8
> ELEMENT DATEDELIVERED DATE SIZE 8

The next element is DEPT, a character element. The usage ID is appropriate for this element. The
type is automatically set to character, but you must specify the size. Abbreviating the department
names to four letters makes entering the names easier, so specify a size of 4, by entering

Relational?

Defining elements for PowerHouse is exactly the same whether you’re using an indexed file
system or a relational database. The difference is in how the element definitions are used.

When you add an element to a dictionary working with a non- relational file system, you’re
actually designing a new unit of data. But with a relational system what you’re doing is
customizing the attributes of existing columns in a database table. The database definition for
the column is unchanged. In a relational system, the ELEMENT statement determines how the
data will be used in PowerHouse applications.

Chapter 2: A Different Kind of Dictionary

Primer 17

> ELEMENT DEPT USAGE ID SIZE 4

Since PowerHouse accepts both uppercase and lowercase entries, an entry of "acct" and an entry
of "ACCT" are different. This could make entering department names confusing, but the usage ID
takes care of that with the UPSHIFT option, which stores values in uppercase. So, for example,
"acct" will always appear as "ACCT". And that makes looking up and entering values much
easier.

The GOODS element is also a character element. Use the usage NAME to define it by entering
> ELEMENT GOODS USAGE NAME

The next element to define is ORDERNUMBER. The NUMERIC-ID usage works well here.
You’ll need to specify the element size—six digits allows for as many orders as you'll ever need, so
enter
> ELEMENT ORDERNUMBER USAGE NUMERIC-ID SIZE 6

For the abbreviated supplier names, use four characters and the usage ID, just as you did for the
department names. Enter
> ELEMENT SUPPCODE USAGE ID SIZE 4

Because the application you're building is a prototype, you've given each element only the
minimum definition needed to get the application running. There are many more attributes you
could add to improve both the appearance and the operation of your system.

For example, element definitions can include patterns and values (or ranges of values) that other
PowerHouse components check to ensure that all entries match your specifications. You can
customize your screens and reports by including your own labels and headings to override PDL's
defaults. You can control how an element is displayed by specifying details such as currency
symbols and leading or trailing signs. You can also use different "fill" characters such as asterisks
(*) to fill the blanks in elements such as monetary amounts.

For more information on elements and their attributes, see the section on the ELEMENT
statement in the Cognos PowerHouse 4GL PDL and Utilities Reference.

Defining Your Files
Now that you've described all the elements in your purchase order tracking system, you need to
describe the files. A file is a collection of records that use the same record-structure. You need one
FILE statement for each of the two files in your application: ORDERS and SUPPLIERS. Each file
must be given a name and an organization.

The order in which you enter PDL statements is important. The FILE, RECORD, ITEM, INDEX,
and SEGMENT statements for each record-structure must be kept together. You must define all
the characteristics of one file first, then all the characteristics of the other.

You've already decided on the file names SUPPLIERS and ORDERS. As for file organizations,
there are several available to you. For this application we'll be using indexed files.

Let's start with the ORDERS file. Enter

Relational?

If you’re working with a relational database, you don’t have to be concerned with the steps
described on the next few pages as they relate specifically to an indexed file system. The FILE,
INDEX, ITEM, RECORD and SEGMENT statements are not used with relational databases.

To create a PowerHouse dictionary for a relational system, you only need one statement:
DATABASE. You use the DATABASE statement to attach a database to the dictionary. The
DATABASE statement names the type of relational database you’re using.
> DATABASE PODB TYPE ORACLE

You would also provide the open name and password. For more information, see the Cognos
PowerHouse 4GL PDL and Utilities Reference.

You can also use the ELEMENT statement to customize the formatting and editing of database
columns.

18 PowerHouse(R) 4GL

Chapter 2: A Different Kind of Dictionary

> FILE ORDERS ORGANIZATION INDEXED

Creating a Record-Structure
Next you’re going to describe the record-structure for the ORDERS file before you move on to the
SUPPLIERS file. To create a record- structure, simply state which elements you want to include in
it, and in what order.

PDL uses the element descriptions you already entered to create your record-structures. The same
element can be used in many different record-structures; each repetition of an element is called an
item. The ITEM statement creates an item in its particular record- structure that is based on the
element that you defined with an ELEMENT statement. For example, the item ORDERNUMBER
describes an actual order number in an ORDERS record.

To create the items you need, enter the following statements:
> RECORD ORDERS
> ITEM ORDERNUMBER
> ITEM DEPT
> ITEM SUPPCODE
> ITEM GOODS
> ITEM COST
> ITEM DATEORDERED
> ITEM DATEDELIVERED

You can begin a line in any column after the PowerHouse prompt, but indentation makes your
ITEM statements easier to read.

You have now defined a record-structure for the ORDERS file. Before you define the SUPPLIERS
file, you need to declare the index items for the ORDERS record-structure.

Working with Indexes
An index in a record-structure works much like the index in a book. If a book has no index, you
have to leaf through each page looking for the information that you want. If a record-structure
has no index, PowerHouse has to look at each record until it finds the one that you want. With an
index, it can search on just one item (for example, ORDERNUMBER) until it finds the value (for
example, ORDERNUMBER 1404660) that matches.

Indexes also allow you to link two different record-structures by a particular item, such as
SUPPCODE. This index lets you look up record-structures for any particular supplier without
having to enter the company’s full name. Later you’ll also see how this lets you cross- reference
record-structures.

Defining the indexes in a record-structure is an important part of creating a data dictionary. Every
record-structure that belongs to an indexed file must have at least one index.

You always use two statements to create an index: INDEX and SEGMENT.
• The INDEX statement actually declares the index. PowerHouse lets you identify two kinds of

indexes. The REPEATING and UNIQUE options describe whether or not the index can
contain duplicate values. For example, an index of surnames is repeating because there is
always the possibility that several people have the same last name. A unique index, however,
describes an index where it's essential that no duplicate values exist, for example,
ORDERNUMBER.

• The SEGMENT statement names a record item to be used in the index. Complex applications
often have more than one SEGMENT statement (creating what's called a multi-segment
index), but for your application, a single SEGMENT statement for each INDEX statement is
enough.

For ORDERS choose an item that you are likely to use to look up
information—ORDERNUMBER, for example.

You'll also need to be able to check information against the department number. Because the same
department can have many orders, we'll make DEPT a repeating index. Enter

Chapter 2: A Different Kind of Dictionary

Primer 19

> INDEX ORDERNUMBER UNIQUE
> SEGMENT ORDERNUMBER
> INDEX DEPT REPEATING
> SEGMENT DEPT

You need to repeat this process in order to create the SUPPLIERS record-structure.

Remember, the first statement must be the FILE statement. Enter
> FILE SUPPLIERS ORGANIZATION INDEXED

On MPE/iX, file names can only be eight characters long, so enter
> FILE SUPPLIER ORGANIZATION INDEXED

There are only two items in this record-structure—SUPPCODE and SUPPLIER. It will be much
easier to look up records using the SUPPCODE, so create an index for SUPPCODE. Enter
> RECORD SUPPLIERS
> ITEM SUPPCODE
> ITEM SUPPLIER
> INDEX SUPPCODE UNIQUE
> SEGMENT SUPPCODE

You've now entered all the statements to define your data dictionary. All that remains is to load
these statements into PDL. Enter
> LOAD

If you've entered the statements correctly, PDL displays the following message:
0 ERRORS 0 WARNINGS

If the message indicates that there are errors, you have two choices: either enter CANCEL CLEAR
then re-enter your statements from the beginning, or use the REVISE statement to call up the
system text editor, and edit online. (See "Online Editing" earlier in this chapter.)

You should save a copy of your correct data dictionary statements in a file, in case you want to
make some additions or changes later. On OpenVMS, UNIX, and Windows, use the same name
that you gave the data dictionary in the CREATE DICTIONARY statement.
> SAVE PODICT

On MPE/iX, use
> SAVE PODICTS

Now, any time you want to use these statements in PDL, enter the USE statement followed by the
dictionary name, as in
> USE PODICT

On MPE/iX, enter
> USE PODICTS

You've just created a simple data dictionary. As you develop other parts of your application, all
the other PowerHouse components can refer to this data dictionary as a blueprint.

If you try to create another data dictionary file with the same name, PowerHouse warns you that
you are about to delete the original file.

If you want to delete the original file, enter Y at the warning. If you don't, enter N. Then enter the
CREATE DICTIONARY statement again, using a different dictionary name.

Creating Your Data Files
There's one more task to perform before you move on: you need to create the data files you've just
defined. To do this, you will leave PDL and use QUTIL, the PowerHouse file creation utility.

To leave PDL, enter
> EXIT

When the operating system prompt appears, activate QUTIL and tell it what data dictionary files
you wish to create by entering
qutil dict=podict

When the PowerHouse prompt (>) appears, enter

20 PowerHouse(R) 4GL

Chapter 2: A Different Kind of Dictionary

> CREATE ALL

QUTIL builds your two files. You'll see several messages on your screen while this is happening.
Depending on your operating system, the file type may be different, but you will shortly see
messages telling you that the files have been created.

To leave QUTIL, enter
> EXIT

Here's what you've just created:

Refining Your Dictionary
Now that you have built a simple dictionary and created the data files, you can begin using other
PowerHouse components to enter, manipulate, or retrieve information. For simple applications,
this may be all you need. However, PDL offers many more features to enhance your application,
or to enable the computer professional to build advanced applications. Here are a few of these
features:
• centralized data definition
• full commercial data formatting
• a wide range of datatypes
• complex input editing rules
• file and element security
• application-wide standards

All data management functions are controlled through the data dictionary. PDL also includes a
comprehensive set of utilities that enable you to
• show the contents of your data dictionary, online or through reports
• investigate the impact of changes before they're implemented
• manage the creation and deletion of files

Chapter 2: A Different Kind of Dictionary

Primer 21

A Review of PowerHouse Entities

What’s Next
You are now ready to take the next step in building your application. In Chapter 3, you will learn
how to use QDESIGN and QUICK to create your own screens and to add information to your
files.

PDL provides the definitions
for all entities the PowerHouse
building blocks. The most
basic building blocks are
elements. Elements are
combined into groups called
record-structures. Files store
records that have a particular
record-structure. As you will
see in the following chapters,
QUICK and QTP can be used
to add data to files.

There are essentially two types
of entities in PowerHouse:
logical and physical. Logical
entities describe such things as
how to present data. Physical
entities describe how and
where the data in your
application is stored in the
computer. In most cases, once
you’ve described the logical
entities, PDL can take care of
the physical entities for you.
You always have the option of
specifying them yourself.

The main logical entities are:

Element

A category of data that
represents many individual
values. For example, the
element ORDERNUMBER
represents all order numbers
and the element SUPPLIER
represents all of Future
Industries’ suppliers.

Record-Structure

An ordered collection of
elements that pertain to a
particular object or activity.
For example, the
record-structure of a file used
to store a mailing list of Future
Industries’ suppliers might
consist of several elements,
including Lastname,
Firstname, Streetaddress, City,
and Prov/State.

The main physical entities are:

File

A collection of records using
the same record-structure. For
example, a mailing list file
typically contains one record
for each of your customers.
Each record in the file has the
same set of items, but the item
value in each is different.

Record

One complete set of the items
in a record-structure, in which
each item has a value.

Item

An element as it occurs in a
particular record-structure.
Each element can occur in any
number of record-structures,
and in many different
applications, but in each one it
forms a different item.

Index

One or more items whose
values identify individual
records or groups of records.
The items appearing in an
index are called segments.

22 PowerHouse(R) 4GL

Chapter 2: A Different Kind of Dictionary

Primer 23

Chapter 3: QUICK and Easy

Each QUICK data entry screen is like a page in an electronic record book or a ledger that has been
custom-designed to meet your information storage needs. Using a QUICK screen is like filling out
a form, but faster and easier because of QUICK’s many automatic features. Once you have
designed your screen, you can use it over and over again to enter and file your data—what’s more,
it’s a quick and easy job to create as many screens as you need.

Building a working QUICK screen with QDESIGN requires only four simple statements, provided
you’ve specified a dictionary:

To start QDESIGN and tell it what dictionary you want to use, at the operating system or Shell
prompt enter
qdesign dictionary=podict

When you see the PowerHouse prompt (>), QDESIGN is ready to accept your screen design
statements. If you make a mistake while entering your statements, QDESIGN will give you an
error message. If you’re not using a text editor and you make a mistake, enter CANCEL CLEAR
and start again from the beginning.

You can use your text editor at any time without leaving PowerHouse simply by entering the
REVISE statement. Normally, you would prepare your design statements using your text editor,
then have QDESIGN check the statements for errors. For this prototype, however, start work
without the editor and enter your statements carefully.

Let’s start designing the screen you will use to enter data in the ORDERS file. This screen will
contain fields for all of your items in the ORDERS file. (Remember that you are only going to
record supplier "code names" on the ORDERS screen; the purchasing department will track the
suppliers and provide the correct code names on the SUPPLIERS screen you will create shortly.)

SCREEN names your screen

FILE indicates which file you want

GENERATE generates the fields that your screen will include

BUILD compiles your screen

Relational?

If you’re using a relational database with PowerHouse, you have a choice in how you declare
your data. One way is to use the CURSOR or FILE statement to specify the table that contains
the data, as in
> CURSOR ORDERS IN PODB
> FILE ORDERS IN PODB

If you use the subdict=search program parameter when starting QDESIGN, QDESIGN will
search the databases in your dictionary for the specified file. You do not need to specify the
database name, as in
qdesign subdict=search dictionary=podict
> SCREEN PURCHASE
> CURSOR ORDERS

You can also use an SQL DECLARE CURSOR statement containing SQL syntax before the
CURSOR statement. This creates a cursor containing the tables and columns you want to use.
For more information about using cursors, see the Cognos PowerHouse 4GL QDESIGN
Reference book and the Cognos PowerHouse 4GL PowerHouse and Relational Databases book.

24 PowerHouse(R) 4GL

Chapter 3: QUICK and Easy

First, name your screen. We’ll call it PURCHASE. Enter
> SCREEN PURCHASE

To tell QDESIGN that you want the ORDERS record structure, enter
> FILE ORDERS

Usually file and record structure names are identical. However, there may be times when you want
two record structures in one file. That’s why you must tell QDESIGN the name of the record
structure you want.

That’s all you really need before you can generate a screen, but let’s add two small refinements.
First, to allow QUICK to check entries on this screen against the SUPPLIERS file automatically,
enter
> FILE SUPPLIERS REFERENCE

Then give your screen a title and center it at the top by entering
> TITLE "PURCHASE MANAGEMENT SCREEN" CENTERED

Now tell QDESIGN to go to work. Enter
> GENERATE

PowerHouse generates
> FIELD ORDERNUMBER OF ORDERS REQUIRED NOCHANGE &
> LOOKUP NOTON ORDERS
> FIELD DEPT OF ORDERS REQUIRED NOCHANGE
> FIELD SUPPCODE OF ORDERS &
> LOOKUP ON SUPPLIERS
> FIELD GOODS OF ORDERS
> FIELD COST OF ORDERS
> FIELD DATEORDERED OF ORDERS
> FIELD DATEDELIVERED OF ORDERS

QDESIGN consults your dictionary for descriptions of the fields and makes several assumptions
that result in an automatically formatted screen.

In this example, fields representing index segments are classified as REQUIRED and
NOCHANGE. This means that you cannot skip any of these fields when entering data, nor can
you change the data once it has been put on file.

You made ORDERNUMBER a unique index, so QDESIGN has assigned it the LOOKUP
NOTON option. Now, each time you add a new record to the file, QUICK will look up existing
records in the ORDERS file to make sure the ORDERNUMBER is not on file already.

Because you declared the SUPPLIERS file as a REFERENCE file, QDESIGN added the option
LOOKUP ON SUPPLIERS to SUPPCODE, which is in both files named in the screen design. As a
result, QUICK checks each SUPPCODE entry made on this screen to see if that code actually
exists on the master list of suppliers.

To have QDESIGN build a screen based on these specifications, enter
> BUILD

You’ll see this

Chapter 3: QUICK and Easy

Primer 25

Notice that QDESIGN automatically created labels for each field based on its name. For example,
the label for the ORDERNUMBER field is Ordernumber.

QDESIGN displays the layout of your screen, complete with ID numbers and labels for each field,
and Xs to show the size of each field. If the message on the screen indicates there are errors, you
may have entered your statements incorrectly. If there’s an error, press Enter or Return, enter
CANCEL CLEAR, and enter your statements again from the beginning or use REVISE.

You can use the REVISE statement at any time to correct your statements in a text editor.

Before going any further, you should save a copy of the correct QDESIGN source statements in a
text file in case you want to change the statements later. You might want to build a similar screen
or modify the design. You can give this text file the same name as you gave the screen. Press Enter
or Return to continue, then on OpenVMS, UNIX, and Windows, enter
SAVE PURCHASE

On MPE/iX, the save file name must be different from the screen file name, so enter
SAVE PURCHASS

Any time you want QDESIGN to use these statements, enter USE, followed by the file name, as in
USE PURCHASE

or, for MPE/iX
USE PURCHASS

The next step is to build a screen for your other file, SUPPLIERS. Before you do that, clear
QDESIGN’s temporary save file. Enter
CANCEL CLEAR

QUICK Tricks
Following the steps outlined so far, you could easily build a second screen for your SUPPLIERS
file. Since the SUPPLIERS file contains only two items, the screen would have a lot of empty space.
It is much more efficient to group or "cluster" several records onto one screen. Clustering speeds
up the process of entering and finding data.

First, name your screen. This screen is really just a list of suppliers, but it might be confusing to
give it the same name as your SUPPLIERS file. Let’s call the screen SUPPLIST.
SCREEN SUPPLIST

Specify the record structure name, SUPPLIERS, and tell QDESIGN you want to put five copies of
this record structure’s items on one screen, by entering
FILE SUPPLIERS OCCURS 5

26 PowerHouse(R) 4GL

Chapter 3: QUICK and Easy

To be consistent, you should also give this screen a title. You could center it as you did on the last
screen. This time, however, position the title manually on the second line from the top of the
screen and 25 columns in from the left, by entering
TITLE "SUPPLIER LIST" AT 2,25

The next statement works with the OCCURS option, which tells QDESIGN to begin a cluster.
CLUSTER OCCURS WITH SUPPLIERS

A blank line between each group of fields would make the screen easier to read. Tell QDESIGN to
skip an extra line before starting the next group.
SKIP 1

Now, using the FIELD statements from the previous screen as models, enter
FIELD SUPPCODE REQUIRED NOCHANGE LOOKUP NOTON SUPPLIERS
FIELD SUPPLIER

To complete the process, enter
BUILD

You’ll see this:

Press Enter or Return to continue. Now you have two screens. To save this screen design the same
way that you saved the previous one, on OpenVMS, UNIX, and Windows, enter
SAVE SUPPLIST

On MPE/iX, enter
SAVE SUPPLISS

At this point you can call up QUICK and your current screen, SUPPLIST, simply by entering
GO

Your SUPPLIST screen appears as follows:

Chapter 3: QUICK and Easy

Primer 27

QUICK displays the screen with the cursor positioned in the Action field, which normally appears
at the top of every QUICK screen. When you’re ready to return to QDESIGN from the QUICK
screen, enter a caret (^). Using GO is an easy way to test a screen during development.

Entering Data
Now you’re ready to start data entry using QUICK. To leave QDESIGN, enter
EXIT

To activate QUICK and tell it what dictionary you want to use, enter
quick dictionary=podict

If QUICK does not recognize the terminal that you are working on, it prompts you to enter the
name of your terminal type. If you’re unsure of what to enter here, enter a question mark (?) to see
a list of acceptable terminal types. If you’re still not sure what to enter here, check with your
system manager.

QUICK prompts you for a screen name. Enter
SUPPLIST

To test your SUPPLIST screen, try entering some data from the list of suppliers.

Enter E in the Action field. The cursor moves to the first field, SUPPCODE

Enter the code for the first supplier on the list, ACME. Your entry remains on display and the
cursor moves to the next field, SUPPLIER. Enter the supplier’s full name, Acme Office Supplies
Ltd.

Future Industries Supplier Codes

Code Supplier

ACME Acme Office Supplies Ltd.

BEST Best Typewriter Repairs

FRST Firstclass Travel Agency

PERF Perfect Printing Inc.

WAKE Wake-up Coffee Caterers

28 PowerHouse(R) 4GL

Chapter 3: QUICK and Easy

Enter data for the remaining suppliers on this screen in the same way. When you’re finished, enter
// (two forward slashes) in a blank field to get back to the Action field. If you fill all the fields on
the screen, you’ll be returned to the Action field automatically. When you’re finished, enter UR
(Update Return) in the Action field to save your data and exit the SUPPLIST screen.

QUICK prompts you for a new screen name. Now you can call up your other screen. Enter
PURCHASE

You can start entering some sample data on this screen.

Use the codes for the suppliers and departments from the lists provided, then create some order
dates from before and after the end of Future Industries’ fiscal year, January 1, 1999. The default
format for dates is YYYYMMDD. You must enter a century, or use separators to identify the
components of the date, as in 99/01/01.

Since this information reflects the current records of your business, leave a few Received Date
fields blank. Use dates that are both before and after January 01, 1999.

Enter costs that will total a few thousand dollars for each department. You should enter at least
ten records to give QUIZ and QTP something to work with in the next two chapters. Before you
begin, let’s review how to move around in QUICK screens.

To leave a field blank, press Enter or Return to skip to the next field. If the field is a required field,
QUICK won’t let you skip it. You’ll get a message telling you that you have to enter something in
the field.

QUICK also notifies you if your entry doesn’t match the size or type you specified in your
dictionary, or if you enter an order number that is already on file. Under these circumstances, you
are prompted again for a valid entry.

QUICK won’t accept an incorrect supplier code. It checks each entry against the SUPPLIERS file
because you specified a LOOKUP ON option for this field. When you get to the SUPPCODE field,
try entering a code that isn’t on file and see how QUICK handles it.

Once you’ve entered your sample data and you’re back in the Action field, check your entries to
ensure they’re what you want. If you want to change a field, enter the ID number of the field into
the Action field. The ID number is the two-digit number beside the label. QUICK will prompt you
in the field. Once you enter the new value, you’re immediately returned to the Action field where
you can make more changes if needed.

When you’re ready to send the information on any screen to your files, you need to enter U
(Update) in the Action field. QUICK updates the data on the files, clears the fields, and moves the
cursor to the first field, ready for another record. When you are finished adding records and
you’ve done the final update, enter UR (Update Return) in the Action field to save your data and
exit the screen. If you entered U and are being prompted in a field, you can get back to the Action
field by entering a caret (^) in a blank field.

Future Industries Department Codes

Code Department

ACCT Accounting

ADMS Administration

DATA Data Processing

HRES Human Resources

MKTG Marketing

Chapter 3: QUICK and Easy

Primer 29

Quick Can Help
Suppose you don’t know or can’t remember what to enter in a particular field. Anytime you’re not
sure what to do, just enter a question mark (?) to get a brief help message or a list of abbreviated
commands at the bottom of the screen. If that’s not enough information, enter two question marks
(??). QUICK clears your screen and displays a more detailed explanation. You can add your own
help messages to the data dictionary for each element as a further aid to users.

Finding and Modifying Data

If you skip past all the fields that correspond to indexes, without making an entry (or if a screen
has no fields that correspond to an index), QUICK displays the first record it finds. Keep pressing
the Return key to see all of your remaining records sequentially, one at a time.

Deleting Records

To leave QUICK and return to the operating system or Shell prompt, enter two carets (^^) in the
Action field.

Find Mode (F) Finding your records again is easy. Call up the screen you want, and enter
F (Find) in the Action field. This puts the screen in Find mode. QUICK
moves the cursor to the field that corresponds to the index you defined
first. On your PURCHASE screen, that’s ORDERNUMBER. You can
either enter an order number to tell QUICK to display the record on file
for that number, or press Return to skip to the next index field, which is
DEPT. Enter a department code in the DEPT field, and QUICK displays
all of the records containing that code.

Select Mode (S) Enter S in the Action field to find records using Select mode. In this mode,
QUICK again prompts you first for fields that correspond to indexes, and
then returns you to the Action field. You can now move to any data field
you want by typing the ID-number of that field in the Action field. Enter a
value that you want QUICK to select. Press Return in the Action field to
start QUICK searching for records with matching item values.

Whichever method you use to find the records you need, you can make
any changes you want by following the same procedure as you used to
correct data. Don’t forget to update your file by entering U once you
finish making changes to your data.

You cannot change an entry that has the NOCHANGE option on its
FIELD statement. On the PURCHASE screen, such entries are
ORDERNUMBER and DEPT—the two items for which you declared
indexes.

Delete (D) To delete a record from your screen, use the D (Delete) command. As
protection against accidental deletion, the record isn’t actually deleted
from the file until you enter U or UR.

30 PowerHouse(R) 4GL

Chapter 3: QUICK and Easy

QUICKer and Better
That’s all you need to know to design and use basic QUICK screens. But that’s not all there is to
QDESIGN. Programmers can use QDESIGN to build sophisticated systems of screens (and save
months of programming time in the process). There are many QUICK features that you can use to
make your screens operate more efficiently.

You can position labels and fields where you want them and draw lines to make it easier to
identify groupings of fields. You can also highlight fields in different ways based on their status
and value.

When you are creating a new screen, it’s a good idea to write your design statements first using the
text editor. To test your design, simply tell QDESIGN to use your text file by entering USE
followed by the name you gave the file. It’s equally easy to first access QDESIGN and then use the
REVISE statement to access your text editor without leaving PowerHouse. When you finish
editing your statements, QDESIGN compiles them automatically.

You can also make QUICK do some of the entry work for you. For example, if the item
DATEORDERED always starts out as today’s date on a new record, you could have QUICK enter
this for you automatically. You can add options to prevent users from changing data in important
fields or from deleting records from files.

Advanced Quick
QUICK is extremely flexible. At a more advanced level, QUICK enables you to modify the
procedures that accept, update, find, and delete data. With QUICK you can also
• perform and display calculations before a record is updated.
• perform summing and balancing.
• specify security.
• highlight important fields.
• perform value editing based on values for other fields.
• skip data entry fields if a predetermined condition is not met.
• design screen systems for entry of multiple-file transactions.
• build screens that are called up automatically when the entry sequence reaches a certain field

on the active screen.
• design menu screens to access all of your screens, and to connect QUICK to the other

PowerHouse 4GL components, QUIZ and QTP.

For more information on these and other features, refer to the Cognos PowerHouse 4GL
QDESIGN Reference manual.

The QUICK User Interface
The screens you've built so far are based on the simplest QUICK statements. However, QUICK
has many advanced features that allow screen designers to create superior and intuitive user
interfaces.

These features help increase data entry accuracy and ease of use through QUICK. For example,
you can
• create Action bars with pull-down menus.
• specify pop-up selection boxes.
• change the appearance of a field based on its value (for example, an invalid data entry can be

set to blink).
• design pop-up windows that facilitate data entry in long text fields.

Chapter 3: QUICK and Easy

Primer 31

For Example
The following page shows how the QUICK User Interface can streamline the data entry process.
Explaining how to implement most of the features illustrated is beyond the scope of this
introductory manual, but we’ll show you the end results that you can achieve with QUICK.

As you can see, the QUICK User Interface provides powerful options that enable screen designers
to dramatically affect the QUICK user interface.

QDESIGN’s advanced features are covered in the Cognos PowerHouse 4GL QDESIGN Reference
manuals.

The Web Made Easy
PowerHouse Web lets you deploy screens built using QDESIGN as Web browser pages. All you
need to do is add HTML to the SCREEN statement as in
> SCREEN PURCHASE HTML

Or you can use the more Web-like form
> PAGE PURCHASE HTML

Action Bars are a convenient
way to enter QUICK Action
commands. Commands can be
divided into logical groups,
simplifying the end-user
interface.

Dynamic Field Highlighting is
used to draw the user’s
attention to unusual
conditions — for example, a
request for more of an item
that is not on hand
in inventory.

Programmable Function Keys
are an ideal method of
providing commands that are
available throughout the entire
application — you could, for
example, define a function key
to provide context-sensitive
help.

Pop-up Selection Boxes allow
the user to choose from a list
of acceptable values — this
simplifies the data entry
process, and improves
accuracy.

Multiline Data Entry Fields are
ideal for allowing the QUICK
screen user to enter detailed
information — such as
additional comments on a
backordered item — without
tying up large amounts of
screen space.

Field Marking allows the user
to quickly enter Action
commands, including field ID
numbers, without having to
return to the Action field.

32 PowerHouse(R) 4GL

Chapter 3: QUICK and Easy

When you enter BUILD, QDESIGN generates an HTML template as well as building the screen.
You can now use this page from a Web browser to add, search, change, and delete data over the
Internet. Here’s what the default page looks like.

The Cognos PowerHouse Web Planning and Configuration book and the Cognos PowerHouse
Web Developer’s Guide describe in detail how to set up the various PowerHouse Web components
and how to create PowerHouse Web applications.

For the moment, though, let’s get back to PowerHouse. You have all your information on file. You
can put it to use with QUIZ, the PowerHouse 4GL report writer.

Primer 33

Chapter 4: QUIZ Has the Answers

When information is well-organized it is easily accessible. Access is the key to QUIZ, the
PowerHouse 4GL report writer. QUIZ puts all the answers right at your fingertips.

QUIZ has access to all the information you entered using your QUICK screens, as well as access to
the rules you wrote in the dictionary. Now you can use QUIZ to analyze, organize, and synthesize
this information.

You can produce a simple QUIZ report with only three statements:

QUIZ automatically formats the report for you, or you can customize it with additional
statements. For instance, you can add a title page and specify your own headings, footings, and
spacing. You can also include subtotals or running totals in the report.

Here’s an example. Assume that the Vice-President of Finance at Future Industries is preparing
budgets for the next fiscal year. Many purchase orders have been issued for goods that won’t be
delivered or paid for until sometime in the new fiscal year. To budget accurately, the Vice-President
must know how much money this involves. You’ve been asked to produce a report on unfilled
orders that should include the order number, the department, the date the goods were ordered, a
description of the goods, the supplier code, the cost of each order, and a subtotal for each
department.

To get started, at the operating system or shell prompt enter
quiz dictionary=podict

When the PowerHouse prompt (>) appears, QUIZ is ready for you to begin.

Building Your Report
First, use the ACCESS statement to tell QUIZ which file you want to draw your information from.
Enter
> ACCESS ORDERS

If you make a mistake, just re-enter the line, and the previous line is automatically canceled.

If you wanted to see a report of all of the purchase orders, you could simply enter the following
statements
> REPORT ALL
> GO

QUIZ would provide a default layout and list all of the items in the ORDERS record structure
horizontally across the page. It would even wrap automatically if there were too many items to fit
on one line. Each record would start on a new line.

However, we’ll create a more targeted report using the SELECT statement. Instruct QUIZ to select
only those purchase orders that haven’t yet been received, that is, orders with no delivery date
> SELECT IF DATEDELIVERED = 0

ACCESS names the files to be read

REPORT lists the items to be included in the report

GO produces the report

34 PowerHouse(R) 4GL

Chapter 4: QUIZ Has the Answers

Your next statement tells QUIZ to sort the information in the ORDERS file by department. This
makes DEPT your sort-item for this report. You can specify more than one sort-item if you want.
Without a SORT statement, your report would simply list the records in the order they were
retrieved from the file, so tell QUIZ to
> SORT ON DEPT

You don’t need all of the information on each record in the file, so tell QUIZ which items you
want reported and in what order by entering
> REPORT DEPT ORDERNUMBER SUPPCODE DATEORDERED &
> TAB 43 COST

You use an ampersand (&) to continue a statement that is too long for one line. We’ve also added
a TAB setting to position the COST column to the right of the others.

For the next statement, try something a little more sophisticated. Tell QUIZ to skip two lines,
write "Department Total:" at the end of each department’s listing, then to tab across to the COST
column and put in a subtotal for that department. For readability, tell QUIZ to leave a blank line
before starting on the next department. Enter
> FOOTING AT DEPT SKIP 2 TAB 35 "Department Total:" &
> COST SUBTOTAL SKIP 2

The last statement in building any QUIZ report is the shortest. To see how your report looks,
enter
> GO

Here is what your report might look like:

Your own report will vary depending on the data you entered on your QUICK screens, but the
format should be the same. To exit the report, press Return.

QUIZ provides you with a brief report summary:

Chapter 4: QUIZ Has the Answers

Primer 35

Because you didn’t specify column headings or spacing, QUIZ used information from your
dictionary to provide them. The date, title, page number, commas, and decimal points were all
added automatically too.

If QUIZ displays a question mark (?) at the bottom of the screen, it indicates that your report fills
more than one screen. To see the next screen "page" press Return. To rerun your report, enter GO
again.

If your report didn’t turn out as you expected, you’ll want to review your report statements. Enter
> SHOW COMMANDS

The SHOW statement displays your statements so you can check them. The statements should
look like this:
> ACCESS ORDERS
> SELECT IF DATEDELIVERED = 0
> SORT ON DEPT
> REPORT DEPT ORDERNUMBER SUPPCODE DATEORDERED &
> TAB 35 COST
> FOOTING AT DEPT SKIP 2 TAB 35 "Department Total:" &
> COST SUBTOTAL SKIP 2
> GO

In just a few minutes, you produced a report listing all the requested information using QUIZ. In
a few more minutes you can learn how to improve your report’s appearance and readability, and
how to prepare much more sophisticated reports. And, of course, you probably want that report
on paper. We’ll get to that, too, in a moment.

First, save this report so that you can use it again. Name the file BACKORD, since this is a report
on goods ordered, but not yet received. Enter
>SAVE BACKORD

Any time you want QUIZ to produce this report, just enter USE and the file name:
> USE BACKORD

36 PowerHouse(R) 4GL

Chapter 4: QUIZ Has the Answers

With QUIZ, you can learn very quickly to manipulate the data in your files to get the information
needed for decision-making, when and how you need it.

Some Basic QUIZ Rules
When you start building QUIZ reports on your own, keep these simple rules in mind:
• ACCESS is always the first statement in a QUIZ report. The last statement is usually GO.
• You can save a "compiled" version of your report that runs faster using the BUILD statement.
• Most QUIZ statements can appear only once. With few exceptions, repeating a statement

cancels a previous statement of the same type. For example, a second REPORT statement
cancels a previous REPORT statement. A second ACCESS statement, however, cancels all
previous QUIZ statements. In effect, it tells QUIZ to start over.

• You must leave at least one space between each word in a statement.
• You can begin a line in any column after the prompt character (>), but it’s a good idea to use

indentation, as we have done in our examples, to make your statements more readable.

QUIZ Tips
If you don’t like the way your report looks on the screen, or you make a mistake, you don’t have
to retype all the statements. Just add what’s needed at the end of the statements. Once you’ve
checked over your report on the screen and are satisfied with it, you may want to print a copy.
Simply add this statement
> SET REPORT DEVICE PRINTER

followed by another GO statement to print the report. (You must repeat GO every time you want
to re-execute your QUIZ report.)

To reset your report to display on your terminal, enter
> SET REPORT DEVICE TERMINAL

You can also use the SHOW command to list your files if you forget which files in your system are
available to you. To see your files, enter
> SHOW FILES

QUIZ displays a list of file names on the screen. If you want to see the items in the file ORDERS,
enter
> ACCESS ORDERS
> SHOW ITEMS

QUIZ displays them like this:

Relational?

Relational database users can enter an SQL DECLARE CURSOR statement containing SQL
syntax before the ACCESS statement. This creates a cursor containing the tables and columns
that hold the information you want. In effect, it creates a customized view of your database that
QUIZ can use to produce your reports. The ACCESS statement that follows names the cursor
and any other data sources to be used in your report.

Alternatively, you can name the tables within the ACCESS statement by adding the database
containing the table. For example, if ORDERS were in the PODB relational database, you would
use
> ACCESS ORDERS IN PODB

If you use the subdict=search program parameter when starting QUIZ, QUIZ will search the
databases in your dictionary for the specified file. You will not need to specify the database
name, as in
quiz subdict=search dictionary=podict
 >ACCESS ORDERS

Chapter 4: QUIZ Has the Answers

Primer 37

Asterisks (*) indicate that indexes have been declared for the items.

More About QUIZ Statements
Let’s try another report using the same data. Assume that you’ve been asked to produce a list of
suppliers that shows how much each has been paid in the current year. The report should include
each supplier’s full name, the purchase order numbers, the order and received dates, the amounts,
subtotals for each supplier, and an overall total. Using the traditional paper-based system, this task
could take days. With QUIZ, it’s a matter of minutes.

Before starting, let’s clear the slate so that you can preserve the new report when you’re finished.
Enter
> CANCEL CLEAR

For simplicity’s sake, the preceding QUIZ example dealt with only one file. In reality, you will
probably have many files in your system. You can design a QUIZ report that draws information
from several files using the LINK TO option of the ACCESS statement, as in
> ACCESS ORDERS &
> LINK TO SUPPLIERS

QUIZ establishes linkage to the SUPPLIERS file by name matching. It examines the files
previously declared in the ACCESS statement, seeking items that match an index by name in the
"linked to" file. In this case, the index to the SUPPLIERS file has a single segment item named
SUPPCODE, and the ORDERS file contains an identically- named item. Therefore, QUIZ links
the two files via SUPPCODE and allows you to use information from both files in a single QUIZ
report.

The SELECT statement allows you to specify groups or ranges of information to report. For
example,
> SELECT IF DATEORDERED > 19990101 &
> AND DATEDELIVERED > 0

This statement tells QUIZ to report only purchases that have been ordered and received after the
first day of January 1999.

The greater than (>) and less than (<) symbols, are called "comparison operators". You can also
use the abbreviations "GT" and "LT". Other comparison operators include

EQ or = equal to

GE or >= greater than or equal to

LE or <= less than or equal to

38 PowerHouse(R) 4GL

Chapter 4: QUIZ Has the Answers

You can use comparison operators in both QUIZ and QTP statements.

You can sort on any item in any file linked by the ACCESS statement. QUIZ automatically sorts in
ascending alphabetical or numeric order. If you want items sorted in descending order instead, just
include the letter D after the sort-item, as in
> SORT ON SUPPCODE &
> ON DATEDELIVERED D

Your first report repeated the department for each order it printed. That report would look a lot
cleaner if each department was printed only when it first appeared. In this report you can use the
PRINT AT option, which uses the sort-item to tell QUIZ to print each supplier code only the first
time it appears:
> REPORT SUPPCODE PRINT AT SUPPCODE ORDERNUMBER &
> DATEORDERED DATEDELIVERED GOODS COST

In your last QUIZ report, you used a FOOTING statement to show the subtotals. In this one, you
can use a FINAL FOOTING statement to total all the amounts given in the report.
> FOOTING AT SUPPCODE &
> SKIP 2 &
> TAB 23 "Total paid to:" SUPPLIER &
> COST SUBTOTAL &
> SKIP 3
> FINAL FOOTING &
> TAB 51 "Final Total:" &
> COST SUBTOTAL

Now your report statements look like this:
> ACCESS ORDERS &
> LINK TO SUPPLIERS
> SELECT IF DATEORDERED > 20060101 &
> AND DATEDELIVERED > 0
> SORT ON SUPPCODE &
> ON DATEDELIVERED D
> REPORT SUPPCODE PRINT AT SUPPCODE ORDERNUMBER &
> DATEORDERED DATEDELIVERED GOODS COST
> FOOTING AT SUPPCODE &
> SKIP 2 &
> TAB 23 "Total paid to:" SUPPLIER &
> COST SUBTOTAL &
> SKIP 3
> FINAL FOOTING &
> TAB 51 "Final Total:" &
> COST SUBTOTAL
> GO

Try this QUIZ report for yourself. When you’re done, save the report as your payments report.
Enter
> SAVE PAYMENTS

There is one more statement that you should know. EXIT tells QUIZ to end the program. When it
does, you return to the operating system.

You now have the knowledge you need to create fairly complex QUIZ reports. With a little
practice, you can put this knowledge to work and you will find that QUIZ is a remarkably
versatile tool.

Like all the PowerHouse components, QUIZ has progressively more complex features for more
sophisticated applications. For example, with the SET SUBFILE statement, you can create
self-describing files that can be used later, but that don’t have to be entered in the dictionary.
QUIZ also has the math skills to perform a variety of calculations, and include them in your
report.

Summary operations, the DEFINE and SET SUBFILE statements, and other advanced features are
covered in greater detail in the Cognos PowerHouse 4GL QUIZ Reference manual.

NE or <> not equal to

Chapter 4: QUIZ Has the Answers

Primer 39

What’s Ahead
In the next chapter, you’ll get an introduction to subfiles where you’ll discover the volume
transaction processing capabilities of QTP.

40 PowerHouse(R) 4GL

Chapter 4: QUIZ Has the Answers

Primer 41

Chapter 5: QTP — Powerful Processor

QTP is the PowerHouse high-volume transaction processor. It gives you the power to change the
data in your files in one sweep. For example, you can use a single QTP run to increase the prices
of your entire inventory list by six percent, or to change all your stock numbers.

QTP is easy to use because it employs much of the same vocabulary as QUIZ. Familiar statements
such as ACCESS, SELECT, SORT, USE, GO, and EXIT perform the same functions in QTP as
they do in QUIZ. And, of course, QTP works closely with the dictionary.

It is precisely because it is both powerful and easy to use that QTP must be treated with respect.
Carelessly used, QTP could wipe out your files and records in the time it takes you to read this
sentence.

With that word of warning, let’s take a closer look at what QTP does, and then try a few QTP
runs.

We’ve already mentioned how to use REVISE to make corrections in your system editor. You can
also use a text editor to prepare your statements and then test them in QTP with the USE
statement. Any errors are highlighted automatically by QTP. In fact, it’s a good idea to create all
your QTP runs this way, and try them out on test files before you use them on the real thing. You
won’t need to do that here, though. Our example has been well tested already.

Let’s assume that it’s the start of the fiscal year for Future Industries. You want to archive all old
records by transferring them to a subfile. You can keep this subfile as a permanent archive for old
records and add to it as you need to. It takes only minutes with QTP. (QUIZ and QTP subfiles
work the same way; the subfile you’re about to create can be used by QUIZ.)

At the operating system or shell prompt, enter
qtp dictionary=podict

When the PowerHouse prompt (>) appears, QTP is ready. To begin, give your QTP run a name by
entering:
> RUN YEAREND

A run can consist of many tasks. Each task is called a request and should have a name for easy
identification. Enter
> REQUEST ARCHIVE

Next, tell QTP which file you want to use by entering
> ACCESS ORDERS

This is your "input" file.

To select all orders received prior to the new fiscal year, enter
> SELECT IF DATEDELIVERED < 19990101 &
> AND DATEDELIVERED NE 0

Now tell QTP to create a subfile. Since it’s a subfile of ORDERS, let’s call it OLDORD:
> SUBFILE OLDORD KEEP INCLUDE ORDERS

The KEEP option tells QTP to retain the subfile for later use. You’ve also instructed QTP to
include the records from the ORDERS file.

Finally, tell QTP you want to delete the selected records from the ORDERS file:
> OUTPUT ORDERS DELETE

There’s your QTP run. Now enter
> GO

At this point, QTP displays information about the run, such as the number of records read, the
number of transactions processed, and so on. The message "Finished" tells you that the run is
complete.

42 PowerHouse(R) 4GL

Chapter 5: QTP — Powerful Processor

QTP Output
The previous QTP request used only one of QTP’s output functions, DELETE. There are three
others:

 The QTP Edit
You can use the QTP EDIT statement to find errors in your data. Suppose you’ve received a bulk
data input from another computer system. You want to make sure that it won’t introduce errors
into your system.

An EDIT statement tells QTP to check records in any files you access to make certain that the
values were entered correctly. QTP does this for you, using either editing criteria in your
dictionary or values specified in the EDIT statement itself.

If you regularly receive this kind of input, you should probably include value checking in your
dictionary so that this job is done automatically.

In the following request, EDIT ALL tells QTP to edit all the data in the input file according to
element definitions in the dictionary. The second EDIT statement tells QTP which department
names are correct:
> RUN NEWDATA
> REQUEST TWO
> ACCESS ORDERS
> EDIT ALL
> EDIT DEPT &
> VALUES "ACCT", "ADMS", "DATA", "HRES", "MKTG"
> GO

QTP searches the file for any items that don’t meet the data dictionary specifications and any
department names not matching the five you specified, then lists any errors on your screen. To get
a printout of the incorrect records, add the following statement to your request.
> SET REPORT PRINTER

You can create many such runs using the system text editor and use them periodically to check
that no errors have crept into your files.

If you didn’t use the editor to create your run, you can still keep it for future use. The SAVE
statement puts a copy of your QTP run on file under any name you choose. The BUILD statement
saves a "compiled" version of your run that executes faster.

UPDATE changes the information on existing records

ADD adds a new record, or records, to the file

ADD UPDATE adds a new record or changes the record if it already exists

Relational?

As in QUIZ, you can enter an SQL DECLARE CURSOR statement containing SQL syntax
before the ACCESS statement. When you enter an SQL DECLARE CURSOR statement, QTP
creates a cursor and opens a relational database for read access. QTP can also use three SQL
statements to change data in the relational database: SQL INSERT, SQL UPDATE, and SQL
DELETE.

Alternatively, you can name the tables within the ACCESS or OUTPUT statement by adding the
database containing the table. For example, if ORDERS were in the PODB relational database,
you could use
> ACCESS ORDERS IN PODB

or
> OUTPUT ORDERS IN PODB UPDATE

Chapter 5: QTP — Powerful Processor

Primer 43

More QTP Power
The subfile is another QTP feature for the advanced user. You’ve already seen one use for it, but it
can also be used to simplify complex QTP and QUIZ tasks by breaking them down into several
parts, and to do part of the sorting or summarizing of information.

We’ve examined only a few of QTP’s features in this primer. There’s a lot more QTP can do to
help you keep your files in order and up to date. Like QUIZ, QTP can subtotal, count records,
calculate averages, and find maximum and minimum values.

For more information on these and other powerful high volume transaction features, refer to the
Cognos PowerHouse 4GL QTP Reference manual.

You leave QTP the same way you leave QUIZ — just enter
> EXIT

What’s Ahead
That completes the components of your purchase order tracking system. It’s ready to go to work.
But that doesn’t mean there’s nothing more to do. In the next chapter you’ll learn how to put the
finishing touches to the system by adding a menu screen that allows the system’s users to select the
functions they want to use.

44 PowerHouse(R) 4GL

Chapter 5: QTP — Powerful Processor

Primer 45

Chapter 6: The Finishing Touches

Now that you’ve finished all the pieces of your purchase order tracking system, this chapter will
show you how to put them together. You’ll create a menu that automates the start-up of each part
of the application to give your application a truly professional look.

This chapter also involves a little experimenting with screen design. At this stage of application
development, you’ll find the REVISE statement to be an invaluable tool. With REVISE, you can
access the text editor and add or edit QDESIGN statements without leaving QDESIGN.

A Simple Menu
A menu offers users a set of choices. To create a menu for your purchase order tracking system,
you must determine what choices will appear on the menu. Your purchase order tracking system
currently consists of two screens (PURCHASE and SUPPLIST) and two standard reports
(BACKORD and PAYMENTS). These screens and reports will be the four options on your menu.
Your menu options will give users the ability to call up the PURCHASE or SUPPLIST screens to
enter data, and the ability to produce the BACKORD or PAYMENTS reports in QUIZ.

To create the menu, you’ll use QDESIGN. At the operating system or shell prompt, enter
qdesign dictionary=podict

When the PowerHouse prompt (>) appears, QDESIGN is ready. First, name the screen and
designate it as a menu screen.
> SCREEN POMENU MENU

Next, tell QDESIGN to skip two lines and give the menu a title. Enter
> SKIP 2
> TITLE "Purchase Order Tracking System" CENTERED

The CENTERED option centers the title on the screen. Before you begin identifying the menu
options, leave another blank line after the title. Enter
> SKIP 1

To set up your menu screen’s first option, which calls up the Purchase Order screen, enter
> SUBSCREEN PURCHASE LABEL "Purchase Order Screen"

The SUBSCREEN statement tells QUICK to load a new screen from the current screen. In this
case, the current screen is POMENU. When you exit from the subscreen, you’ll return to the
menu. The LABEL option determines what appears on the screen. The text for the label must be
included in single or double quotation marks.

To set up the suppliers list screen as the second option on the menu, use the SUBSCREEN
statement as you did to create the first option.
> SUBSCREEN SUPPLIST LABEL "Suppliers Screen"

That’s all you need to do to create option 2.

The third and fourth menu options identify your QUIZ reports. You want option 3 to call up
QUIZ and run the BACKORD report.

To do this, you need to use the COMMAND statement. Enter
> COMMAND "quiz dictionary=podict auto=backord" LABEL &
> "Back Order Report" CLEAR ALL

The operating-system command, quiz dictionary=podict auto=backord, tells QUICK to start
QUIZ using the podict dictionary and immediately execute the BACKORD report when a user
selects option 3 from the menu. You must put operating system commands in quotation marks
when you use them in a COMMAND statement.

46 PowerHouse(R) 4GL

Chapter 6: The Finishing Touches

CLEAR ALL tells QUICK to clear the terminal memory before invoking a command. When you
call a command or program from a higher-level screen such as the menu, QUICK does not
automatically clear or rewrite terminal memory.

Repeat this procedure to have option 4 call up the PAYMENTS report. Enter
> COMMAND "quiz dictionary=podict auto=payments" LABEL &
> "Supplier Payments Report" &
> CLEAR ALL

Now all that’s left is to tell QDESIGN to build the screen:
> BUILD

Your initial version of the menu is finished. Press Return to continue. To test it, enter
> GO

Choose option 1 from your new menu and the PURCHASE screen appears. To return to the menu,
enter a caret (^) in the Action field.

Now, try the other options. When you choose either of the reports, option 3 or 4, PowerHouse
loads QUIZ and displays the report on the screen. Enter EXIT to return to the Purchase Order
Tracking System menu.

When you’re finished with the menu, enter a caret (^) in the Action field to return directly to
QDESIGN. At this point, it is a good idea to save your new menu screen. On OpenVMS, UNIX,
and Windows, enter
> SAVE POMENU

On MPE/iX enter
> SAVE POMENUS

You have now created a functional prototype menu which ties together all the components of the
Purchase Order Tracking System. In the rest of this chapter, we’ll add some new features to the
user interface, making it more convenient to use.

Enhancing the User Interface
The most efficient way to edit your QDESIGN statements is to use the REVISE statement to
activate the system text editor. Enter
> REVISE

With three simple options to the SCREEN statement, you can completely change the way the
menu screen operates. In the original menu screen, to select a menu item, you entered the
ID-number in the Action field. With PowerHouse’s powerful user interface features, you can select
a menu item by highlighting it with the cursor keys and pressing Return to take action.

Change your screen statement to look like this:
SCREEN POMENU MENU NOMODE NOACTION FIELDMARK

Chapter 6: The Finishing Touches

Primer 47

That’s all there is to it. Now, return to QDESIGN. Your edited statements from the revised file are
parsed. When you are prompted to create a new POMENU file, enter Y to save your new
compiled screen.

To test how your menu works now, activate QUICK by entering GO at the QDESIGN prompt.

Try moving between the menu options with the up and down arrow keys. Each selection is
highlighted when you move to it. To select an item, highlight it and press Return.

On MPE/iX, UNIX, and Windows, pressing F8 will return you to QDESIGN. On OpenVMS,
press PF4. EXIT returns you to the operating system or shell prompt.

Congratulations! Your purchase order tracking system is finished.

What’s Ahead
That’s the end of the beginning. In the final chapter, we’ll introduce some ideas that will expand
and enhance your abilities with PowerHouse in the future.

48 PowerHouse(R) 4GL

Chapter 6: The Finishing Touches

Primer 49

Chapter 7: Ideas Unlimited

The application that you developed through the last six chapters isn’t a production system. As a
working purchase order tracking system it has some shortcomings, but the intention was not to
build a perfect purchase order tracking system. Rather, this prototype was designed to
demonstrate just how easy it is to create a useful, working application in a short time using
PowerHouse. In a word, productivity.

With more time and practice, you can further develop this system by adding refinements to
improve the operation of the screens and the appearance of the reports. Your purchase order
tracking system is, however, a working system that could well have been developed by anyone,
with only a limited knowledge of PowerHouse.

PowerHouse is not just an application generator. Like any language, it’s an idea generator too.
Once you’re familiar with its many uses, you’ll quickly learn to develop your own applications.
You’ll find new ways to make your work more efficient, perhaps even do things you couldn’t do
before.

PowerHouse has the potential to increase your productivity many times over. To write an
application using PowerHouse takes, on average, only one-tenth of the time that the same job
would require if written in one of the traditional programming languages such as COBOL or
RPG. Because you spend less time on routine assignments, you have more time for the more
creative and productive parts of your job.

PowerHouse is an ideal system for producing applications quickly. For an urgent one-time job, for
instance, you don’t have to worry about formatting or the physical appearance of the work,
because PowerHouse always produces results that are presentable.

PowerHouse is designed to work the way an application developer works. It’s especially helpful in
situations where the people asking for the application really aren’t sure what they want in the
early stages. With PowerHouse you can modify the application and have it back to the user in
hours, not days or weeks.

The End of the Beginning
PowerHouse has been used for a remarkably wide variety of applications. It is used by airline
companies and advertising agencies, by hospitals and government, by scientific research
organizations—even by other software companies to develop their own products.

In fact, we like to think that the only real limitation on PowerHouse is the user’s imagination. So
be creative. You have nothing to lose, and a lot to gain.

In this brief introductory guide, you have seen only a glimpse of PowerHouse. There is a
comprehensive documentation covering each PowerHouse component. The manuals are written
and designed to meet the needs of computer users at all levels, and are extensively indexed. For a
complete list of the Cognos PowerHouse 4GL documentation, see Chapter 1 of this book.

50 PowerHouse(R) 4GL

Chapter 7: Ideas Unlimited

Primer 51

Glossary

Action bar An alternative to the traditional Action field entry mechanisms.

Action field A special field in the top left-hand corner of every PowerHouse screen
created with default user interface options. Commands entered here
control what the QUICK-screen user can do on the screen.

allowed syntax The syntax PowerHouse allows you to enter.

application A set of programs designed to solve a specific problem or meet a
specific need.

attribute A characteristic or property (such as size) that you assign to a
particular entity.

cluster A group of fields that repeats on one screen.

cursor A cursor is the name of a set of data declared on a DECLARE
CURSOR statement.

compile In PowerHouse, the actions required to transform a source statement
file into the compiled file containing the tables that control processing.

compiled file An executable PowerHouse file.

component Refers to one of the PowerHouse programs: PDL, QDESIGN, QUICK,
QUIZ, and QTP.

data definition The characteristics of an application's data, which is stored in the data
dictionary. The data definitions determine how PowerHouse accesses
data for the application.

data dictionary A storehouse of information about the data that you use in your
applications.

data file The characteristics of an application's data as stored in the data
dictionary. The data definition determines how the data is accessed and
formatted by the application.

data item See item.

data record See record.

datatype The way an item is stored in a record.

default An automatic response built into a program to ensure that appropriate
actions are performed or that acceptable values are provided. Defaults
can be overridden by the user if desired.

dictionary See data dictionary.

dictionary
definition

The data definition, security specification, system-wide standards, and
other information stored in a data dictionary.

52 PowerHouse(R) 4GL

element The smallest category of data described in the data dictionary.
Elements are the basic building blocks of a PowerHouse application
since they represent many individual values. It is physically represented
in a record-structure by a record item. It is physically represented in an
index structure by a segment. (See also item and segment.)

entity The building blocks of a PowerHouse application. Entities include files,
elements, items, records, and record-structures. They are described in
the data dictionary.

field An item declared in a FIELD statement in QDESIGN. It becomes a
location on a QUICK screen used for entering, finding, changing, and
deleting data. (See also required field.)

file Declares a relation, table, or view on a screen, run, or report.

ID-number A number identifying a field or group of fields on a PowerHouse
screen.

index A data structure used by relational systems or indexed file systems to
locate records quickly. The index for each record contains an index
value and the address for the rest of the information associated with
that index value.

indexed file A type of file organization in which all the information in a record is
associated with the value of the index or segment of an index in the
record. For an indexed file, the operating system automatically creates
and maintains an index.

item An entity in a record-structure that holds a value.

menu screen Serves as a table of contents for other screens, programs, or commands.

Mode field A special field found in the top left-hand corner of every PowerHouse
screen with default user interface options. The Mode field indicates the
current mode: E (Enter), F (Find), or S (Select).

option In syntax, refers to features of a particular statement that a user can
select.

primary file See primary record-structure.

primary record-
structure

A record-structure whose information is most important to the screen,
report, or request. In QUIZ and QTP, the primary record-structure is
the first record-structure named in the ACCESS statement. In
QDESIGN, it is either the first record-structure named in a screen
design (that is not received from a higher-level screen) or the record-
structure labeled primary.

record One set of the items in a record-structure and their values. A record is
stored in a file.

record-structure An ordered collection of items. Each record-structure is associated with
exactly one file. For example, the record-structure of a file used to store
a mailing list of your customers might consist of several items,
including NAME, ADDRESS, POSTALCODE, and
PHONENUMBER.

relational
database

Data in a relational database is organized into tables which are made
up of rows and columns. No physical linkages between tables are
specified.

Primer 53

required field A field on a PowerHouse screen in which an entry is required.

segment An item that's part of an index. Each index is composed of one or more
segments.

statement A line of instructions to one of the PowerHouse components that can
either be entered in response to the PowerHouse prompts or entered
into a text editor file.

subfile A self-describing data file; that is, it's a file that contains both data and
the information that describes the data. A subfile is not described in a
PowerHouse dictionary.

syntax PowerHouse language, statements and commands, containing specific
rules and conventions (for example, the use of case, brackets, slashes)
that enable communication to take place between the user and the
computer.

54 PowerHouse(R) 4GL

Primer 55

A
ACCESS statement

in QTP, 41
in QUIZ, 35, 36, 37
LINK TO option, 37

Action bar
definition, 51

Action field
definition, 51

ADD
output function, 42

ADD UPDATE
output functions, 42

ALL option
EDIT statement, 42

allowed syntax
definition, 51

analyzing
information in QUIZ, 33

application
building with PowerHouse, 5, 7
definition, 51
enhancing with PowerHouse, 7

attribute
definition, 51

B
blank fields

in QUICK, 28
BUILD statement, 23

in QDESIGN, 24
in QTP, 42

building
applications with PowerHouse, 5, 7
QDESIGN screens, 24

C
CANCEL CLEAR statement

in QDESIGN, 23, 25
in QUIZ, 37

CENTERED option
in TITLE statement, 24

CLEAR option
CANCEL statement, 23, 25

clearing
QDESIGN’ s temporary save file, 25

cluster
definition, 51
in QDESIGN, 25

CLUSTER statement
in QDESIGN, 26

commands
Delete, 29
Update, 29
Update Return, 29

compile
definition, 51

compiled file
definition, 51

compiling
screens, 23

component
definition, 51

Copyright, 2
correcting errors

using CANCEL CLEAR, 23
creating

data dictionary, 15
QUICK screens with QDESIGN, 23
screens, 23

cursor
definition, 51

D
data

definition, 51
dictionary, 51
entering in QUICK, 29
file, 51
finding in QUICK, 29
item, 51
modifying in QUICK, 29
record, 51

data dictionary
creating, 15

datatype
definition, 51

default
definition, 51

default features
of PowerHouse, 5

DELETE
output function, 42

Delete command
in QUICK, 29

DELETE option
OUTPUT statement, 41

deleting
records in QUICK, 29

deploying screens
PowerHouse Web, 31

descriptions of
PowerHouse, 5

Index

56 PowerHouse(R) 4GL

Index

dictionaries
modifying, 20

dictionary
definition, 51

dictionary definition
definition, 51

document
version, 2

E
EDIT statement

ALL option, 42
in QTP, 42

editing
in QTP, 42
online, 15

element
definition, 52

ELEMENT statement, 16
elements

defining, 17
end-user interfaces

superior, 5
enhancing

applications with PowerHouse, 7
entering data

in QUICK, 29
entities

PowerHouse, summary, 20
entity

definition, 52
EXIT statement

in QTP, 41, 43
in QUIZ, 38

exiting
QUICK, 29

F
field

definition, 52
FIELD statement

in QDESIGN, 24
LOOKUP NOTON option, 24
LOOKUP option, 24
NOCHANGE option, 24, 29
REQUIRED option, 24

fields
generating in QDESIGN, 23
leaving blank in QUICK, 28

file
definition, 52

FILE statement
in QDESIGN, 23, 24, 25
OCCURS option, 25
REFERENCE option in QDESIGN, 24

files
defining, 17
specifying, 23
storing records, 15

FINAL FOOTING statement
in QUIZ, 38

Find mode
in QUICK, 29

finding
data in QUICK, 29
records in QUICK, 29

FOOTING AT statement
in QUIZ, 34, 35

formatting
reports in QUIZ, 33

fourth-generation languages (4GL), 5
functions

ADD, 42
ADD UPDATE, 42
DELETE, 42
output, 42
QDESIGN, 8
QTP, 8
QUICK, 8
QUIZ, 8
UPDATE, 42

G
GENERATE statement

in QDESIGN, 23, 24
generating

fields in QDESIGN, 23
getting help

in QUICK, 29
GO statement

in QTP, 41
in QUIZ, 34, 35, 36

H
help

in QUICK, 29

I
ID usage, 16
ID-number

definition, 52
INCLUDE option

SUBFILE statement, 41
index

definition, 52
indexed file

definition, 52
indexes

record-structures, 19
information

analyzing and organizing in QUIZ, 33
interfaces

end-user, 5
item

definition, 52

K
KEEP option

SUBFILE statement, 41

Index

Primer 57

L
LINK TO option

ACCESS statement, 37
logging on, 15
LOOKUP NOTON option

FIELD statement, 24
LOOKUP ON option

FIELD statement, 24

M
menu

enhancing, 46
revising, 46

menu screen
definition, 52

Mode field
definition, 52

modes
Find in QUICK, 29
Select in QUICK, 29

modifying
data in QUICK, 29
dictionary, 20
records in QUICK, 29

MONEY usage, 16

N
NAME usage, 16
naming

screens, 23, 24, 25
NOCHANGE option

FIELD statement, 29
NUMERIC-ID usage, 16

O
OCCURS option

FILE statement, 25
online

editing, 15
option

definition, 52
options

ALL, 42
DELETE, 41
INCLUDE, 41
KEEP, 41
LOOKUP NOTON, 24
LOOKUP ON, 24
OCCURS, 25
REFERENCE, 24

organizing
information in QUIZ, 33

output functions
ADD, 42
ADD UPDATE, 42
DELETE, 42
UPDATE, 42

OUTPUT statement
DELETE option, 41

OUTPUT statement (cont'd)
in QTP, 41

P
PHONE usage, 16
PowerHouse

comparisons with 3GL, 5
description, 5
entities, 20

PowerHouse Web
deploying screens, 31

primary file
definition, 52

primary record-structure
definition, 52

PRINT AT option
REPORT statement, 38

producing
reports in QUIZ, 33

prompt character (>), 23

Q
QDESIGN

BUILD statement, 23, 24
building screens, 24
CANCEL CLEAR statement, 23, 25
clusters, 25
creating QUICK screens with, 23
deploying screens in PowerHouse Web, 31
FIELD statement, 24
FILE statement, 23, 24, 25
function, 8
GENERATE statement, 23, 24
PowerHouse component, 23
SCREEN statement, 23, 24, 25
TITLE statement, 24, 26

QTP
ACCESS statement, 41
BUILD statement, 42
EDIT statement, 42
editing, 42
EXIT statement, 41, 43
function, 8
GO statement, 41
output functions, 42
OUTPUT statement, 41
QUIT statement, 43
REVISE statement, 41
SAVE statement, 42
SELECT statement, 41
SORT statement, 41
starting, 41
SUBFILE statement, 41
subfiles, 43
USE statement, 41

QUICK
blank fields, 28
Delete command, 29
deleting records, 29
entering data, 29
exiting, 29

58 PowerHouse(R) 4GL

Index

QUICK (cont'd)
Find mode, 29
finding data, 29
finding records, 29
function, 8
help, 29
modifying data, 29
modifying records, 29
PowerHouse component, 23
Select mode, 29
Update command, 29
Update Return command, 29

QUICK screens
creating, 23

QUIT statement
in QTP, 43
in QUIZ, 38

QUIZ
ACCESS statement, 35, 36, 37
analyzing information, 33
CANCEL CLEAR statement, 37
customizing reports, 33
DEFINE statement, 38
EXIT statement, 38
FINAL FOOTING statement, 38
FOOTING AT statement, 34, 35, 38
function, 8
GO statement, 34, 35, 36
leaving, 38
organizing information, 33
QUIT statement, 38
REPORT statement, 34, 35, 36, 38
rules, 36
SAVE statement, 35, 38
SELECT statement, 33, 35, 37
SET REPORT statement, 36
SHOW statement, 35
SORT statement, 34, 35, 38
starting, 33
USE statement, 35

R
record

definition, 52
records

deleting in QUICK, 29
finding in QUICK, 29
modifying in QUICK, 29
selecting in QUICK, 29
storing files, 15

record-structure
definition, 52

record-structures
indexes, 19

REFERENCE files
description, 24

REFERENCE option
of FILE statement in QDESIGN, 24

REFERENCE option of FILE statement
in QDESIGN, 24

refining(see modifying), 20

relational database
definition, 52

REPORT statement
in QUIZ, 33, 34, 35, 36, 38
PRINT AT option, 38

reports
customizing in QUIZ, 33
formatting in QUIZ, 33
producing in QUIZ, 33

required field
definition, 53

REVISE statement, 15
in QTP, 41

rules
QUIZ, 36

S
SAVE statement

in QDESIGN, 25
in QTP, 42
in QUIZ, 35, 38

SCREEN statement, 46
screens

building with QDESIGN, 24
compiling, 23
creating, 23
deploying in PowerHouse Web, 31
naming, 23, 24, 25

segment
definition, 53

Select mode
in QUICK, 29

SELECT statement
in QTP, 41
in QUIZ, 33, 35, 37

selecting
records in QUICK, 29

SET REPORT statement
in QUIZ, 36

SHOW statement
in QUIZ, 35

SORT statement
in QTP, 41
in QUIZ, 34, 35, 38

starting
QTP, 41
QUIZ, 33

statement
definition, 53

statements
ACCESS, 35, 36, 37, 41
BUILD, 23, 24, 42
CANCEL CLEAR, 23, 25, 37
CLUSTER, 26
DECLARE CURSOR, 23
DEFINE, 38
EDIT, 42
EXIT, 38, 41, 43
FIELD, 24, 29
FILE, 23, 24, 25
FINAL FOOTING, 38

Index

Primer 59

statements (cont'd)
FOOTING AT, 34, 35, 38
GENERATE, 23, 24
GO, 34, 35, 36, 41
OUTPUT, 41
QUIT, 38, 43
QUIZ, 36
REPORT, 34, 35, 38
REVISE, 41
SAVE, 35, 38, 42
SCREEN, 23, 24, 25
SELECT, 33, 35, 37, 41
SET REPORT, 36
SET SUBFILE, 38
SHOW, 35
SORT, 34, 35, 38, 41
SUBFILE, 41
TITLE, 24, 26
USE, 35, 41

storing
records in files, 15

subfile
definition, 53

SUBFILE statement
in QTP, 41
INCLUDE option, 41
KEEP option, 41

subfiles
in QTP, 41, 43
in QUIZ, 41

syntax
definition, 53

T
temporary save file

saving in QDESIGN, 25
text editor

using, 42
TITLE statement

CENTERED option, 24
in QDESIGN, 24, 26

U
UPDATE

output function, 42
Update command

in QUICK, 29
Update Return command

in QUICK, 29
usages, 16
USE statement

in QDESIGN, 25
in QTP, 41
in QUIZ, 35

using
QUICK screens, 23
text editor, 42

V
version

document, 2

60 PowerHouse(R) 4GL

Index

	Primer
	Table of Contents
	Chapter 1: PowerHouse Means Productivity
	Industrial Strength Power
	Multiple End-User Interfaces
	Power to Integrate
	Building Applications with PowerHouse
	About this Primer
	What’s Ahead?
	Conventions Used in this Book
	Cognos PowerHouse 4GL Documentation Set
	Cognos PowerHouse Web Documentation Set
	Cognos Axiant 4GL Documentation Set
	Getting Help

	Chapter 2: A Different Kind of Dictionary
	Planning Your System
	Files for Your Records
	Online Editing
	Getting Started
	Defining Your Elements
	Defining Your Files
	Creating a Record-Structure
	Working with Indexes
	Creating Your Data Files
	Refining Your Dictionary
	A Review of PowerHouse Entities
	What’s Next

	Chapter 3: QUICK and Easy
	QUICK Tricks
	Entering Data
	Quick Can Help
	Finding and Modifying Data
	Deleting Records
	QUICKer and Better
	Advanced Quick
	The QUICK User Interface
	For Example
	The Web Made Easy

	Chapter 4: QUIZ Has the Answers
	Building Your Report
	Some Basic QUIZ Rules
	QUIZ Tips
	More About QUIZ Statements
	What’s Ahead

	Chapter 5: QTP - Powerful Processor
	QTP Output
	The QTP Edit
	More QTP Power
	What’s Ahead

	Chapter 6: The Finishing Touches
	A Simple Menu
	Enhancing the User Interface
	What’s Ahead

	Chapter 7: Ideas Unlimited
	The End of the Beginning

	Glossary
	Index

