

MPEX / 3000
User Manual

(Version 3.3)

Copyright (C) 1980–2017

Written by Eugene Volokh

Vice President, Research and Development

VESOFT, Inc.

9213 Warbler Place,

Los Angeles, CA 90069. USA

Phone (310) 282-0420

Fax (310) 785-9566

ii

Disclaimer
The information in this document is subject to change without notice. VESOFT, Inc. makes no
warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of MERCHANTABILITY and FITNESS FOR A PARTICULAR PURPOSE.

VESOFT, Inc. shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

You may obtain additional copies of the manual directly from VESOFT or VESOFT's
representatives.

Formatting
This manual was originally formatted on the HP3000 using PROSE, Robelle Solution
Technology Inc's excellent text formatter.

Corrections applied and Word/PDF conversion performed by Paul Taffel, using Bitstream
Charter, Source Sans Pro, and Source Code Pro open-source fonts. Updated August 2017.

CONTENTS

iii

TABLE OF CONTENTS
INTRODUCTION .. 1

Examples of MPEX commands .. 2
System management ... 2
Managing disk space ... 3
Program development ... 4
Database management .. 5
File system security ... 6
Job stream programming .. 6

RUNNING MPEX .. 8

Running MPEX interactively .. 8
Running MPEX in batch .. 9
Running MPEX with ;INFO= ... 10
Specifying commands to be executed each time MPEX is entered .. 10

Important security considerations for the MPEXMGR file ... 12
Speeding up MPEX start-up ... 13
CI.PUB.VESOFT (for MPEX/iX CI emulation) ... 15

USING MPEX ... 16

Changing the MPEX prompt .. 16
Running under MPEX/iX ... 16
Entering MPE commands in MPEX (':' and 'MPE' prefixes).. 17
YES/NO prompting ('?' prefix) .. 18
Batch execution ('$' prefix) ... 19
Implied run ... 21

Which program file is run? ... 22
Changing the search path ... 22
Specifying ;INFO= and ;PARM= .. 23

Command files .. 23
Special security note ... 25
Command files and "HPPATH" .. 25
ANYPARM and REST$ parameters .. 25
CS$ parameters ... 27
Determining whether you're in MPEX or not .. 27

Redirecting command input and output.. 28
Checking MPEX command success .. 29
Setting default parms for MPEX commands .. 30
Restricting MPEX commands to only work on certain files ... 31

MPEX VARIABLES ... 32

Using MPEX variables .. 32
Setting MPEX variables ... 34

Local variables .. 34
Other variable features .. 35
A few comments about the "!" character ... 37
Special variables used by MPEX .. 38

FILENAMES AND FILESETS ... 41

MPE filenames ... 41
MPE filesets ... 41

CONTENTS

iv

POSIX filenames .. 42
POSIX filesets .. 43
MPEX filesets ... 43

+ filesets .. 45
- filesets .. 45
Indirect files .. 46
Selection criteria ... 47
File ranges ... 48
Target filesets .. 50
POSIX Note: source and target filesets using HFS syntax ... 51

File attribute variables and functions .. 52
File attributes pertaining to IMAGE datasets .. 61
File attributes pertaining to programs .. 62
File attributes pertaining to SPOOL files ... 63
GROUP and ACCOUNT attributes of files ... 64
JOB/SESSION attributes ... 65
SECURITY/3000 user profile attributes .. 66

SPECIAL MPEX TOPICS: .. 67

Using MPEX to compile programs ... 67
GENERAL SYNTAX: .. 67
Compiling many sources into one program .. 68
Compiling without :PREPing... 69
Compiling with a COPYLIB ... 69
Specific differences between MPE and MPEX compiler commands .. 69
Using third party compilers with MPEX .. 70

MPEX HOOK ... 71
Executing MPEX and MPE commands, and UDCs from EDITOR, QUERY or any other utility 71
REDOing subsystem commands .. 73
Activating the father process ... 74
Building files in other accounts ... 75
MPEX HOOK preserves ACDs in EDITOR, TDP, etc. ... 76
How to %HOOK a program... 77
How to run a %HOOKed program .. 78

MPEX process handling ... 78
Managing suspended son processes .. 79

HOOKed programs ..79
A cautionary note ..80

Passing input to son processes .. 81
:WAKE, MPEX's improvement to [BREAK] and :ABORT/:RESUME .. 82
%RUN...;PRI=... ... 84
%RUN...;STDIN=...;STDLIST=... ... 84
%RUN...;GOON ... 84
%RUN...;NOACTIVATE, ;NEW, and ;KILL ... 85
The MPEXPIN JCW ... 86

MPEX and your system security .. 86
Removing "creator-only" restrictions ... 86
Copying files into other accounts .. 87
Working on databases ... 87
Spool files ... 87
Lockwords ... 88

GOD — gives SM capability and :ALLOWs all commands ... 89
MORTAL — undoes a previous "GOD" operation .. 90
VEMODIFY — line editing made easier ... 90

Callable VEMODIFY function for expression programs and command files .. 91

CONTENTS

v

Online notepad .. 93
Use the ; prefix to enter a note ... 93
Searching and printing notepad entries .. 94
Editing or deleting notepad entries ... 94
Multiple notepads — a mini-file cabinet ... 95
Notepad file names – naming using VESOFTNOTEFILE variable .. 95
Changing the notepad prefix character (;) .. 95

MPEX COMMAND REFERENCE ... 96

%ABORTJOB ... 98
ABORTJOB and STREAMX scheduled jobs ... 99

%ALARM, %SHOWALARM, %DELETEALARM ... 99
Repetitive alarms .. 101
Security considerations ... 101
Performance considerations .. 102
Viewing pending alarms (%SHOWALARM) .. 102
Deleting pending alarms (%DELETEALARM) ... 103

%ALIAS, %UNALIAS ... 103
%ALLOCATE ... 104
%ALTFILE .. 105

POSIX note: %ALTFILE security considerations .. 106
Changing file blocking factors (;BLKFACT=) ... 106

Saving disk space ..106
Speeding up file access ..107
WARNING ...108

Changing program file capabilities (;CAP=) ... 108
Related MPEX features ..109

Changing file codes (;CODE=) ... 110
Changing file ownership (;CREATOR= and ;GROUPID=) ... 111

Related POSIX features ...111
Related MPEX features ..113

Moving files from disk to disk (;DEV=) .. 113
What you should know about extents ..114
What you should know about non-system volumes ...115

Changing file maximum # of extents (;EXTENTS=) .. 116
Changing file flimits (;FLIMIT=) .. 118

Saving disk space ..118
What if a file overflows? ..118
WARNING ...120

Changing file initially allocated extents (;INITEXTENTS) .. 121
Preventing changes to file access/modify dates (;KEEPAMDATES) .. 121
Changing file lockwords (;LOCKWORD=) ... 122

Security considerations ...123
Related MPEX features ..123

Changing program file maxdata value (;MAXDATA=) ... 123
Related MPEX features ..124

Setting file flimits = to their eofs (;SQUEEZE) ... 124
Changing program file stack value (;STACK=) .. 124
Releasing file unused disk space on MPE/iX (;XLTRIM) ... 124
Changing the internal structure of a file ... 125

%ALTJOB .. 126
%ALTPROC ... 126
%ALTSCHED ... 126
%ALTSEC .. 128
%ALTSPOOLFILE .. 129

MPE/iX native mode spooler note: ... 130

CONTENTS

vi

%BACKG ... 130
%BACKG STARTJOB (requires SM or OP capability) .. 131
%BACKG STOPJOB ... 131
%BACKG START, taskname .. 132
%BACKG STOP, taskname... 132
%BACKG SHOW ... 132
BACKGINI.DATA configuration file ... 133
Setting execution priority for BACKG tasks ... 133
BACKG tasks ... 133

%BREAKJOB ... 135
%BYE ... 135
%CALC .. 136
%CALENDAR ... 137
%CHGROUP .. 137
%CHLOGON .. 138

Eliminating password prompts ($CHLOGON-NOPASS) ... 140
Restricting who may use %CHLOGON ($CHLOGON-FORBID|PERMIT) .. 141
Using abbreviated logons with %CHLOGON .. 142
Important note for MPE/iX users .. 142

%COPY .. 143
What if the "to-file" already exists? (;YES|NO|ASK) .. 144
How is the "to-file" built? .. 144
Special note on private volumes ... 145
Copying into other accounts ... 145
Copying databases .. 146
Copying KSAM files (;KEYFILE=) ... 146
Copying to other computers (;DEV=envid#) .. 147
Preserving last access/last modify dates (;KEEPAMDATES) ... 148
Preserving ACDs (;COPYACD) .. 148
The %COPY command's speed .. 149

Copying single files ...149
Lockwords and %COPY ... 149
Copying data into existing files ... 150

%DBxxxALT commands ... 150
%DBADGALT ... 151
%DBGENALT ... 151
%DEALLOCATE ... 151
%DELETEALARM .. 152
%DELETESPOOLFILE .. 152

MPE/iX native mode spooler note: ... 153
%DELETELVAR ... 153
%DELETEVAR ... 153
%DEMO ... 153
%DEVCONTROL .. 154
%DO .. 154
%DOSAVED ... 154
%ECHO ... 155
%EDIT ... 155

When will %EDIT "/KEEP" the file? .. 156
%EDITCHG .. 156
%EDITQUAD ... 157
%EDITTDP .. 158
%ERASE .. 158
%ERRCLEAR ... 159
%ESCAPE .. 159

CONTENTS

vii

%EXIT ... 159
%FCOPY .. 159
%FILTER ... 160
%GOON, %SHOWGOON .. 161

Checking status of %GOON processes (%SHOWGOON) .. 162
Setting %GOON process priority ... 162

%HELP .. 162
Getting help on SECURITY and VEAUDIT topics .. 164
Getting help on MPE CI, File, and Loader errors... 164

%HELPMAKE ... 165
%HOOK ... 166
%IDENTIFY ... 166

Security considerations ... 167
%IF...%ELSEIF...%ELSE...%ENDIF .. 167
%INITUDCS ... 168
%INPUT... 169
%KILL .. 170
%LISTF .. 171

%LISTF modes .. 172
%LISTF...,0 [FILES] .. 173
%LISTF...,1 [SUMMARY] .. 174
%LISTF...,2 [DISC] ... 174
%LISTF...,3 ... 175
%LISTF...,4 ... 177

What is the extent map? ..177
Related MPEX features ..178

%LISTF...,5 ... 178
Related MPEX features ..179

%LISTF...,6 [FILENAME, QUALIFY].. 179
%LISTF...,-1 [LABEL] .. 180
%LISTF...,-2 [ACD] ... 180
%LISTF...,-3 .. 181
%LISTF...,ACCESS .. 182

Databases ..183
Performance notes ...183

%LISTF...,DATES .. 184
%LISTF...,DB ... 185

Related MPEX features ..186
Notes on DBOPEN modes ..186

%LISTF...,DISCUSE ... 187
%LISTF...,ID .. 188
%LISTF...,SAVABLE .. 189
%LISTF...,SEC ... 190

Related MPEX features ..191
%LISTF...,POSIX ... 192
%LISTF...,XL3 [DETAIL] ... 192
%LISTF...,XL4 [SECURITY] ... 193
%LISTF — defining your own %LISTF formats .. 194
The full syntax of a flexible LISTF format file ... 198

%LISTJOB ... 202
%LISTREDO .. 204
%MANY ... 204
%MPEXSTORE .. 205
%NEWLINK ... 206
%NOMSG .. 207
%OPTION .. 207

CONTENTS

viii

%PAUSE .. 208
%PAUSEJOB, %SHOWPAUSED .. 208

Performance considerations (;CHECKEVERY=) ... 209
Viewing "paused" jobs (%SHOWPAUSED) .. 209

%PRINT ... 210
%PRINT keywords .. 212
Searching for strings (;SEARCH=) ... 217
String searches in fileset selections ... 220

%PRINTI, %PRINTO.. 221
Using ;WAIT, ;IFLOW, & ;SEARCH=... to view $STDLISTS ... 221

%PROGINFO ... 222
%PURGE.. 222

Automatic verification to avoid mistakes .. 223
%PURGELINK .. 225
%QEDIT .. 226

How it works ... 226
%QUIT .. 227
%REDO, %DO, %LISTREDO ... 227

Referring to saved commands ... 229
Editing the command being %REDOne... 230
Abbreviations for %REDO, %DO and %LISTREDO ... 231
%LISTREDO parameters ... 232
Saving your command history as a permanent file ... 233
Setting MPEX prompt to make %REDOing easier ... 233
:REDO, :DO and :LISTREDO in other programs ... 234
%REDO facility options ... 234

%RELEASE .. 235
%REMOTE HELLO .. 236
%RENAME .. 237

Lockwords and %RENAME ... 239
%REPEAT...%FOREACH .. 240
%REPEAT...%FORFILES .. 240

Accessing file information ... 241
"From" filesets and "To" filesets ... 242
Running programs and passing them input .. 243
Operating on spool filesets .. 243
Operating on temporary filesets .. 244

%REPEAT...%FORJOBS .. 245
%REPEAT...%FORNUM ... 245
%REPEAT...%FORPROFILES ... 246
%REPEAT...%FORRECS .. 246
%RESUMEJOB .. 247
%RETURN ... 247
%RUN .. 248
%RUNCREATE, %RUNINPUT, %RUNACTIVATE .. 249
%SAVEJOB, %SHOWSAVED, %DOSAVED ... 250

Viewing saved jobs (%SHOWSAVED) ... 252
Re-submitting saved jobs (%DOSAVED) ... 252

%SCHEDULE ... 253
%SEC ... 255
%SECURE .. 255

Vital for system security! .. 256
%SET CAPABILITY .. 256
%SET CREATORPROTECT .. 257
%SET DATE ... 258

CONTENTS

ix

%SET DEFAULT .. 259
%SET GOONMAXPRI .. 260
%SET [NO]CMDTRACECHECK ... 260
%SET [NO]VARTRACE ... 261
%SETLVAR .. 262
%SETVAR .. 262
%SHOW .. 263
%SHOWALARM .. 263
%SHOWGOON .. 263
%SHOWJOB .. 264
%SHOWLVAR.. 265
%SHOWME ... 265
%SHOWOUT ... 266

MPE/iX Native Mode Spooler note ... 267
%SHOWOUTJ ... 267
%SHOWPAUSED ... 268
%SHOWPROC ... 268

Showing which files a process has open (;FORMAT=FILES) .. 269
%SHOWSAVED ... 270
%SHOWTREE .. 270
%SHOWVAR ... 271
%SPOONFEED .. 272

How to use spoonfeeding .. 273
An important warning ... 275
Getting information on which programs you're spoonfeeding .. 275

%SPOONINIT .. 275
%SUBMIT .. 276
%SYNTAX .. 278
%TELL ... 278
%TRAPERROR .. 279
%CLEANUP ... 280
%UNALIAS .. 281
%VEAUDIT .. 282
%VECMDCH .. 282
%VEOPENCH .. 282
%WARN .. 283
%WARNF .. 283
%WHEREIS ... 284
%WHILE...%ENDWHILE ... 285
%WITHCAPS ... 286
%XEQ .. 289

APPENDIX A: POSIX COMPATIBILITY ISSUES .. A-1

Important note for users of MPEX/iX 4.5: .. A-1
Visual VEMODIFY (for %REDO) extends over 1 screen line .. A-1
Using the continue ("&") character ... A-1
"@.@.@" vs. "/" on systems that support POSIX ... A-2
LISTF format changes ... A-2

All %LISTF modes: ... A-2
%LISTF ,-1: .. A-3
%LISTF ,2: ... A-3
%LISTF ,-3 and %LISTF ,3: .. A-3

File attributes: CREATOR, CREATORACCOUNT, and OWNER .. A-3
Extended filesets using CREATOR= and CODE= .. A-4
Errors and warnings in STDLIST(...) honor I/O redirection ... A-4

CONTENTS

x

ISxxxCAP variables/functions fixed .. A-5
%ABORTJOB sched can abort STREAMX scheduled jobs ... A-5
%ALARM starts the BACKG job if it's not already running ... A-5
%ALTFILE program;CAP=-xx,yy,zz changed .. A-5
%ALTFILE ;CREATOR changes on POSIX systems ... A-6
%SET CREATORPROTECT now enforced on POSIX systems ... A-6
VEFxxx functions, changes for SM users ... A-6
MPE error messages down-shifted.. A-7
Expressions: TYPEOF() enhanced for special types .. A-7
QEDIT "jumbo" files supported by %PRINT & %LISTF,ID .. A-7
HPREDOSIZE variable changed to MPEXREDOSIZE .. A-7

APPENDIX B: VESOFT EXPRESSIONS ... B-1

Introduction ... B-1
Variables ... B-1
Data types .. B-2
Integer and boolean operators and functions ... B-4
String operators and functions ... B-7
Date operators and functions ... B-11
Real operators and functions .. B-13
Time operators and functions ... B-14
Special MPE access functions ... B-16
HP terminal manipulation functions .. B-19
SECURITY-related functions ... B-20
File attribute functions ... B-21

FINFO Function Attributes ... B-23
FILE I/O functions .. B-26
Database I/O functions... B-30

Opening a database for access ... B-30
Determining the status of a VEDBxxx call .. B-30

Trapping program output ($STDLIST) ... B-34
Terminal input ... B-35

Terminal input: VEMODIFY ... B-36
Output formatting .. B-37

String formatting ... B-37
Integer formatting .. B-38
Date formatting .. B-39
Time formatting ... B-40
Real number formatting ... B-40

Advanced expression programming ... B-41
IF ... THEN ... ELSE .. B-41
WHILE ... DO ... B-42
FOR stringvar IN FILE (fopenparms) DO .. B-43
TRY ... RECOVER and TRY ... CLEANUP .. B-44
Expression program variables .. B-44
Outputting data ... B-46
Comments .. B-47

Writing expression programs.. B-47
A very important disclaimer ... B-49

APPENDIX C: LOADER ERROR MESSAGES EXPLAINED ... C-1

APPENDIX D: CRYPTIC FILE SYSTEM ERROR MESSAGES DECRYPTED D-1

CONVENTIONS

xi

Printing Conventions
This section describes the various conventions used to describe MPEX ommand syntax.

Notation Usage and examples

UPPERCASE Within syntax descriptions, characters in uppercase must be entered in
exactly the order shown, though you can enter them in either uppercase or
lowercase.

For example, valid variants of SHOWJOB command:

 ShowJob
 Showjob
 SHOWJOB

and invalid variants:

 Shojwob
 ShoJob
 SHOW JOB

Italics Within syntax descriptions, a word in italics represents a formal parameter or
argument that you must replace with an actual value. In the following
example, you must replace filename with the name of the file that you want
to release:

 RELEASE filename

Punctuation Within syntax descriptions, punctuation characters (other than brackets,
braces, vertical lines, and ellipses) must be entered exactly as shown.

Note that the "%" shown at the beginning of any command should NOT be
entered as part of the command, it is simply being included to remind you
that this is an enhanced MPEX command and not a normal MPE command.

{ } Within syntax descriptions, braces enclose required elements.

{item|item} When several elements are separated by vertical lines, you must select one
and only one of the items specified. In the following example, you must
select on or off:

 SETMSG { ON | OFF }

[] Within syntax descriptions, brackets enclose optional elements. In the
following example, brackets around ,TEMP indicate that the parameter and
its delimiter are optional:

 PURGE filename [,TEMP]

[...] Within syntax descriptions, a horizontal ellipsis enclosed in brackets indicates
that you can repeatedly select elements that appear within the immediately
preceding pair of brackets or braces. In the following example, you can

CONVENTIONS

xii

select itemname and its delimiter zero or more times. Each instance of
itemname must be preceded by a comma:

 [,itemname] [...]

If a punctuation character precedes the ellipsis, you must use that character
as a delimiter to separate repeated elements. However, if you select only one
element, the delimiter is not required. In the following example, the comma
should not precede the first instance of itemname:

 [itemname] [,...]

... Within examples, horizontal ellipsis indicate where portions of the example
are omitted.

INTRODUCTION: Examples of MPEX commands

1

INTRODUCTION
MPEX (MPE eXtended) is an extremely useful utility that improves the way you do your system
management, program development and console operations tasks.

• It lets you EXECUTE MPE COMMANDS (like :COPY, :COBOL, :PRINT, :RENAME, etc.) on
FILESETS. A single MPEX command can take the place of hundreds of MPE commands,
saving you time and reducing the possibility of error.

• Commands like :ABORTJOB, :BREAKJOB, etc. are executed on USERSETS.

• It lets you SELECT FILES by various attributes like disk space used, last access date, by file
owner, by disk number, etc. — something you just can't do without MPEX.

• It implements NEW COMMANDS like %ALTFILE that can do things no existing MPE
command can do, such as alter a file limit, change file's location, etc. %EDIT command will
execute several EDITOR commands on many files at once, and so on.

• With its MPEX HOOK feature, MPEX lets you execute REDO, :RUNs, UDCs, and MPEX
COMMANDS from within virtually any utility, such as EDITOR, QUERY, etc. And more non-
fileset-handling useful commands are available (FILTER, GOON, DEVCONTROL, ALARM, etc.)
- see the manual for details.

• MPEX implements virtually all of the MPE/iX user interface features (UDCs, variables,
command files, implied :RUN, :CALC, :COPY, :PRINT, etc.).

IMPORTANT: this feature lets you "live" in MPEX!

MPEX is not a replacement of or change to the existing operating system. It is a stand-alone
program (just like EDITOR, QUERY, etc.).

To use MPEX (see also Running MPEX in this manual), simply type:

:RUN MAIN.PUB.VESOFT

You should see the MPEX product banner and version number, a hint, and then you will be
prompted with MPEX's "%" prompt; you can then type in any MPEX command or MPE
command (including :RUN, UDCs, etc.).

To get help on any command or operation, type

:HELP

To see our "self-demo", just type

%DEMO

and the fundamental MPEX features will be explained with working examples.

To exit MPEX, simply type "E", "END", "EXIT" or "QUIT".

Note:

MPEX emulates the MPE/iX user interface. Because some of our users may not be familiar
with MPE/iX, we define all our MPE/iX-compatible features from scratch without requiring
any prior MPE/iX knowledge. However, even readers who are familiar with MPE/iX should
still read those sections as we often go beyond the standard MPE/iX features.

INTRODUCTION: Examples of MPEX commands

2

POSIX
note:

As of MPE/iX version 5.0, POSIX compatibility has been added to the MPE operating system.
Where appropriate, POSIX notes such as this one will be included in the text, pointing out
differences between normal MPE/MPEX commands and enhancements for POSIX.

Examples of MPEX commands
An example is worth a thousand syntax diagrams. Here are only a few of the things you can
do with MPEX. We won't discuss each one in too great a detail — see the appropriate manual
section for a complete explanation. (Remember also that these examples are only the tip of
the iceberg; there are many more features discussed further in the manual.)

System management

%ALTFILE @.@(OWNER="TOM.VESOFT"); OWNER=MANAGER.VESOFT

After you purge the user TOM.VESOFT, this command will change all of his files to have owner
ID MANAGER.VESOFT.

%ALTFILE @.DATA-CUST@.DATA(INTCODE=0); FLIMIT=EOF*1.5

Sets the file limit of the (MPE and KSAM) files in the DATA group (except for files that start
with CUST) to be 50% greater than the current EOF.

%ALTSPOOLFILE $STDLIST.@.@(SPOOL.JSNAME="MCOMPILE"); PRI=8

Changes to 8 the output priority of all $STDLISTs belonging to jobs that logged on with
job/session name MCOMPILE.

%COPY @.@.AP, @/=.@.APBACKUP; KEEPATTR

Copies all the files in the AP account into the APBACKUP account, preserving file attributes (e.g.
creator ID, file limit, lockword, etc.).

%COPY @.DATA, =.=; YES; DEV=ROBIN#

Copies all the files in the group DATA (including IMAGE databases and KSAM files!) over a
DSLINE (or NS LAN, etc.) to system ROBIN, purging any files that already exist with the same
name.

%DELETESPOOLFILE $STDLIST.@.@(SPOOL.OUTPRI<=2)

Deletes all the $STDLISTs that have output priority 2 or less.

%LISTF MYFILE, ACCESS

Shows all the accessors of MYFILE: accessing program name, access job number/name, current
record being accessed, etc.

INTRODUCTION: Examples of MPEX commands

3

%LISTF @.DATA, DISCUSE

Shows which devices the files in the "DATA" group reside on (invaluable if you're interested in
disk balancing).

%MPEXSTORE @.@.@ - @.@.SYS - @.@.VESOFT &
 (ACCDATE<TODAY-90 and NOT ISPRIV); *T; SHOW
%MPEXSTORE / - /SYS/ - @.@.VESOFT &
 (ACCDATE<TODAY-90 and NOT ISPRIV); *T; SHOW

Implements the sophisticated MPEX FILESETS (combining MPE and HFS syntax, selection
criteria, etc.) on the MPE :STORE command.

%REPEAT
%>ECHO -----Formatting !MPEXCURRENTFILE
%>RUN MYFMT;INFO="!MPEXCURRENTFILE"
%>FORFILES X@.SOURCE

Performs a user-specified set of commands (here ECHO and RUN) on a fileset.

%SHOWOUT $STDLIST.@.@(SPOOL.OUTPRI=1)

Shows information on all $STDLISTs with output priority 1 in the system, including job
number, job name, ready date, etc.

%SHOWOUTJ COMP010,@.PROD

Shows information on all the spool files created by a job that logged on with job name
COMP010 in the PROD account.

Managing disk space

%ALTFILE @.@.@(SAVABLESECTORS>0 and NOT OPENED);XLTRIM;KEEPAMDATES

On MPE/iX systems, this command releases a lot of currently unused disk space that has been
allocated to files, without changing the capacity (FLIMIT) of the files in any way. (The
";KEEPAMDATES" option tells MPEX not to change the last access/modify dates of any files it
alters, so they won't appear on your next partial backup.)

%COPY @.@.MFG, =.=.MFGBACK

Makes a backup copy of the MFG account to the MFGBACK account.

%LISTF @.DATA(ISASCII and SAVABLESECTORS>100),2

Lists all the ASCII files with part of the last extent unused. By XLTRIMing them one might save
more than 2000 sectors on some files.

INTRODUCTION: Examples of MPEX commands

4

%ALTFILE RPT@.DATA(ISASCII); SQUEEZE

"Squeezes out" all the unused space between EOF and file limit in all blank-code files that start
with RPT in the DATA group.

%EDIT @.SOURCE(CODE="EDTCT"), SET VARIABLE

Converts all EDITOR COBOL-format files in the SOURCE group to be variable record length
files, saving 30-50% of the disk space while still leaving them editable, compilable, etc.

%LISTF @.@.@(ACCDATE<TODAY-120), 3

Finds all the files that haven't been accessed in the last 120 days and lists their names, access
dates, modify dates, etc.; also shows total number of files and sectors.

%PURGE K#######.@.@+LOG####.@.@(CREDATE<TODAY-7)

Purges EDITOR K-files and system log files created more than a week ago. Prompts you for
confirmation before purging anything!

%PURGE @.@.@ - @.@.VESOFT(ACCDATE<TODAY-120 and NOT ISPRIV)
%PURGE / - @.@.VESOFT(ACCDATE<TODAY-120 and NOT ISPRIV)

Purges all the non-privileged (mostly non-IMAGE) files that haven't been accessed in the last
120 days.

Program development

%COBOL AP@.SOURCE,AP@.PUB,*LP

Compiles using COBOL and :PREPs all the AP@.SOURCE files into program files with the same
name in the PUB group. (Of course, the same works for FORTRAN, PASCAL, RPG, etc.

%PRINT @.SOURCE;SEARCH="ITEM-NUM" or "ITEM-NAME" or "ITEM-DESC";NUM

Finds all the occurrences of the strings "ITEM-NUM" or "ITEM-NAME" or "ITEM-DESC" in all files
in the SOURCE group.

%PRINT @.SOURCE;SEARCH=DELIM "MYVAR";PREV="PROCEDURE" or "FUNCTION"

Prints all occurrences of the string "MYVAR" — for each occurrence, also prints the last prior
occurrence of the line that contains the strings "PROCEDURE" or "FUNCTION"; in other words,
shows you all the lines that refer to "MYVAR" AND indicates what procedure they occur in!

DELIM means that "MYVAR" will be searched for as a delimited string, i.e. surrounded by special
characters (e.g. lines containing "TEMPMYVAR" or "MYVARIATION" will not be found).

INTRODUCTION: Examples of MPEX commands

5

%COBOL @.PRODSRC(FSEARCHEXP("'CUST-NO' or 'CUST-NAME'")>0), =.PUB

Recompiles all the files in PRODSRC that contain within them either the string CUST-NO or the
string CUST-NAME!

%EDITCHG @.SOURCE, "ITEM-NO", "ITEM-NUMBER"

Changes all occurrences of "ITEM-NO" to "ITEM-NUMBER" in all files in the SOURCE group,
/KEEPing only those files that were actually changed.

%LISTF @.PRODSRC(MODDATE>3/15/1991), 3

Finds all the files in PRODSRC that have been modified since 3/15/1991 (perhaps the last
production release date).

%PRINT @.SOURCE; OUT=*LP; PAGEHEAD; NUM

Prints all the SOURCE group files to the line printer (with page headers, nicely-formatted line
numbers, etc.).

%COBOL @.PRODSRC(MODDATETIME>VEFINFO(FILE+".PUB").MODDATETIME), =.PUB

Compiles all PRODSRC files whose modify dates and times are later than the modify dates and
times of files with the same name in the PUB group (VEFINFO(FILE+".PUB").MODDATETIME).

In other words, this recompiles all the programs that have been modified but not recompiled
into PUB.

Fancy, eh?

Database management

%ALTFILE CUST?#.DB(DBSETTYPE="D"); DEV=2
%ALTFILE CUST?#.DB(DBSETTYPE<>"D"); DEV=3

These two commands move all detail datasets of the CUST database to device 2 and all non-
detail datasets to device 3.

%ALTFILE @.@.AP(CREATOR<>"DBA" and ISPRIV); CREATOR=DBA

Changes the creator ID of all AP databases (ISPRIV) to be DBA, thus making sure that DBA —
and only DBA — can run DBUTIL, DBSTORE, etc. against all those databases.

%COPY APDB@, DBNEW@; DEV=3

Copies the APDB database into a new database called DBNEW, moving all the files onto disk
device 3.

INTRODUCTION: Examples of MPEX commands

6

%DBADGALT @.DB(DBSETFULLNESS>.8 and MODDATE>TODAY-30), 0.6
%DBGENALT @.DB(DBSETFULLNESS>.8 and MODDATE>TODAY-30), 0.6

Use ADAGER, DBGENERAL/BRADMARK, etc. to alter the capacity of all datasets in the DB
group that are currently more than 80% full (and have been modified within the last 30 days)
so that they will only be 60% full.

%LISTF @.@.AP(DBSETFULLNESS>.70 and MODDATE>TODAY-7), DB

Shows database information (dataset name, type, capacity, etc.) for all datasets in the AP
account that are more than 70% full and have been modified in the past week.

%RENAME MYDB@(ISPRIV), NEWDB@

Renames a database.

File system security

%LISTF @.@.@(PROG.PMCAP), 5

Finds all the privileged-mode program files in the system and lists their program file
information.

%LISTF @.@.PAYROLL(ACCDATE>=TODAY-2)

On Monday, this shows all files in the PAYROLL account that were accessed over the weekend.

%SECURE @.@.@(ISPROG and ISRELEASED and DIRGROUP.CAP("PM"))

Secures all the :RELEASEd program files in privileged groups (which are a SERIOUS THREAT
to system security).

%LISTF @,SEC

Shows the "true" access to the file, factoring in both the group- and account-level restrictions
as well as the file restrictions and the :RELEASE/:SECURE status.

Job stream programming

!JOB JOBA,MGR.PROD
!RUN MAIN.PUB.VESOFT;PARM=1
%WHILE JSCOUNT("JOBB,MGR.PROD&BATCH")>0 DO
% PAUSE 120
%ENDWHILE
%EXIT
...

If the job JOBB,MGR.PROD is logged on, JOBA waits until JOBB logs off before continuing
execution.

INTRODUCTION: Examples of MPEX commands

7

!JOB JOBA,MGR.PROD
...
!RUN MAIN.PUB.VESOFT;PARM=1
%WHILE VEFINFO("DATAFILE").OPENED DO
% PAUSE 120
%ENDWHILE
%EXIT
...

If the file DATAFILE is opened, JOBA waits until it is closed before continuing execution.

!JOB JOBA,MGR.PROD
...
!RUN MAIN.PUB.VESOFT;PARM=1
%SETVAR FNAME PRINTOPREPLY('Which file should we output to?')
%IF FEXISTS(FNAME) THEN
% IF PRINTOPREPLY('OK to purge file '+FNAME+'?')='Y' THEN
% PURGE !FNAME
% ENDIF
%ENDIF
%FILE MYOUTFIL=!FNAME,NEW;SAVE
%EXIT
...

JOBA asks the console operator for feedback via the :REPLY command and uses it to set up a
file equation and possibly purge the file (if it already exists).

RUNNING MPEX: Running MPEX interactively

8

RUNNING MPEX
There are several ways in which you can run MPEX:

• Interactively, by saying

:RUN MAIN.PUB.VESOFT

• In BATCH, by saying

!JOB MYJOB,USER.ACCOUNT
!RUN MAIN.PUB.VESOFT;PARM=1
%mpex commands...

• With an ;INFO= string containing a single MPEX command that is to be executed:

:RUN MAIN.PUB.VESOFT;INFO="LISTF @.@.AP,DB;*LP"

• Using the "MPEX HOOK" from within a program such as EDITOR, QUERY, etc.:

:RUN EDITOR.PUB.VESOFT;LIB=P
/TEXT MYFILE
...
/%COBOL MYFILE,MYPROG
<< MPEX executes the %-prefixed command >>

All of these ways of running MPEX are subject to the following features:

• You may specify commands that are to be executed every time a user enters MPEX. This
may be done on the system level, the account level, the group level or a combination of all
three.

• You may (if your system manager allows this) tell MPEX not to recognize UDCs — this will
substantially speed up entry into MPEX.

Running MPEX interactively
If you just say

:RUN MAIN.PUB.VESOFT

you'll enter MPEX's interactive mode (MPEX will prompt you with a "%").

In fact, many of our users like to "live" in MPEX — they just run MPEX when they log on (they
might even have an OPTION LOGON UDC to do this) and don't get out until they're ready to do
%BYE. This can be very useful because:

• Virtually every MPE command can be executed from within MPEX (so you almost never
need to exit into the Command Interpreter).

• MPEX's command history feature (%REDO, %LISTREDO and %DO) is so useful that you might
want to always have it available. With the MPEX HOOK, we make our powerful %REDO
available in virtually every program (EDITOR, QUERY, DBUTIL, etc.).

RUNNING MPEX: Running MPEX in batch

9

• MPEX is a very powerful process-handling environment, with which you can manage
multiple suspended processes, quickly pop into and out of programs, and so on.

(Alternatively, you might get all these features by "living" in the HOOKed EDITOR [or QUERY
or whatever], in which you'll also have the command history and the full power of MPEX
commands.)

Running MPEX in batch
If you :RUN MAIN.PUB.VESOFT in batch, MPEX will (just like MPE) abort after the first error
(unless you do a %CONTINUE before the command).

What constitutes an error?

• Any MPE command that gets a CIERROR.

• Any program run that aborts (or actually any time a program terminates with the JCW set
to FATAL).

• A fatal error on an MPEX command.

Not all MPEX commands that get an error cause a job stream to abort. What if you do a fileset
%COBOL compile and one of a hundred compiles fails? Is that an error because one compile
failed or a successful result because 99 compiles completed OK?

At the moment we don't treat this as an error, but we're considering changing it (if we decided
that we need to for greater MPE compatibility). Keep this in mind — if you want the job to
continue even though an error might occur in a particular command, always put a CONTINUE
in front of the command JUST IN CASE.

What if you always want the job to continue, even if an error occurs in any of the commands?

If you say

%SETVAR HPAUTOCONTTOPLEVEL TRUE

then MPEX will enter "auto-:CONTINUE" mode, in which command errors will NEVER cause
the entire MPEX run to abort. To change back to default mode, say

%SETVAR HPAUTOCONTTOPLEVEL FALSE

Note that if you run MPEX in batch and want to give MPEX commands that start with "!", e.g.

!JOB...
!RUN MAIN.PUB.VESOFT;PARM=1
%!LISTF @.@.@(ACCDATE<TODAY-120),3
...

you must prefix the MPEX command with either a "%" (as we do here) or with a space — if the
"!" is put in the first column, MPE automatically replaces it with a ":" behind our backs.

Commands that you don't prefix with a "!" need not have a leading space or "%"; however, it's
probably a good idea to always prefix MPEX commands in your job streams with a "%" — it'll
make it clear to anybody who's reading the stream that this is an MPEX command.

RUNNING MPEX: Running MPEX with ;INFO=

10

When you say

:ABC &
:DEF GHI

in a job stream, MPE executes the command as "ABC DEF GHI" — even though the job stream
does contain a leading ":" at the start of the "DEF GHI" line (or perhaps a leading "!"), it gets
stripped out when the two lines are merged together.

If you said

:ABC &
:DEF GHI

in older versions of MPEX, MPEX would NOT strip out the colon; instead, it would execute the
command as ":ABC :DEF GHI".

For the sake of compatibility with these older versions, MPEX leaves the continuation line's
colon in; however, if you set the JCW MPEXCONTINUECOLON to 1, MPEX will instead do the
same thing as MPE does (i.e. strip out the leading colon in the continuation line). We wish
that we could make this the normal behavior, but we feel that we need to remain compatible
with older versions of MPEX, especially in situations which might happen in production job
streams.

When you run CI.PUB.VESOFT, the leading colons in continuation lines will always be
stripped out (just like in MPE). This is because CI.PUB.VESOFT is intended to be as
compatible as possible with MPE.

Running MPEX with ;INFO=
If you say

:RUN MAIN.PUB.VESOFT;INFO="command"

MPEX will execute the command and return to MPE. This is the "immediate" mode, used when
you want to execute just one specific MPEX command (often from a UDC or a command file).

The only special things you need to know about immediate mode are:

• MPEX won't output the header before executing the command.

• If you want to speed up this operation (perhaps by turning off UDCs initialization, which
may not be needed if you know exactly what command you're executing), see the Speeding
Up MPEX Start-up section below.

Specifying commands to be executed each time MPEX is entered
MPE's OPTION LOGON UDCs let you define commands to be executed every time you log on —
MPEX also has a mechanism for specifying commands to be executed every time MPEX is
entered.

When MPEX is run, the first thing it does is execute the command file MPEXMGR.PUB.VESOFT.

RUNNING MPEX: Specifying commands to be executed each time MPEX is entered

11

For instance, if MPEXMGR.PUB.VESOFT contained the lines

INITUDCS
SET CAPABILITY,PURGE,AM
SET DEFAULT,PURGE,?

then these lines would be executed every time any user enters MPEX. UDCs would be
initialized (INITUDCS), the MPEX prompt would be changed (SETVAR MPEXPROMPT), and the
PURGE command would be additionally secured (SET CAPABILITY and SET DEFAULT).

The MPEXMGR.PUB.VESOFT file might contain, for example:

UNLESSFAST CALC READHINT('MPEXHINT.HELP.VESOFT')
INITUDCS
UNLESSFAST INITMPEXMGR
INITREDO

What does this mean?

• The UNLESSFAST CALC READHINT('MPEXHINT.HELP.VESOFT') prints a random "hint"
— one- or two-line message about a feature of MPEX that you may or may not be familiar
with (this is done essentially for educational purposes). The "UNLESSFAST" means that the
hint should not be printed if you're using the fast MPEX start-up option (see below).

• The INITUDCS command makes MPE UDCs accessible from MPEX.

• "UNLESSFAST INITMPEXMGR" says that MPEX should execute the "INITMPEXMGR"
command unless the fast MPEX start-up option (which will be explained shortly) has been
selected.

An INITMPEXMGR command tells MPEX to execute the contents of the MPEXMGR.PUB file in
your logon account and the MPEXMGR file in your logon group. If one or both of those files
doesn't exist, no problem; however, if they do, they'll be executed just like the
MPEXMGR.PUB.VESOFT file is.

Note that commands you put before the INITMPEXMGR command can be "overridden" by
commands in a user's own MPEXMGR file(s). The exception is "SET CAPABILITY" commands,
which CANNOT be removed by users at all (see "%SET CAPABILITY" in this manual). For
similar reasons, you should place any commands that MUST be executed prior to the
INITMPEXMGR command. If a user's own MPEXMGR file contains an error, processing of the
MPEXMGR file(s) will stop at that point.

Again, the reason that MPEX doesn't automatically execute the MPEXMGR and MPEXMGR.PUB
files is for speed of start-up — by having MPEXMGR and MPEXMGR.PUB execution controlled
from the MPEXMGR.PUB.VESOFT file, we let you omit it entirely or put an "UNLESSFAST" in
front of it.

• INITREDO is not documented elsewhere, since it is only really useful in the
MPEXMGR.PUB.VESOFT file. INITREDO simply initializes MPEX's %REDO, %DO and
%LISTREDO command handling structures.

The only reason that MPEX doesn't automatically do this (but rather requires an MPEXMGR
command to do it) is that this may take some time, and we want to allow you to make this
step (REDO initialization) optional. See "Speeding up MPEX start-up" below.

RUNNING MPEX: Specifying commands to be executed each time MPEX is entered

12

Other useful commands you might want to include into the MPEXMGR.PUB.VESOFT file:

• %SET CAPABILITY commands to restrict access to certain MPEX commands, e.g.

%SET CAPABILITY,PURGE,AM

• %SET DEFAULT commands to change the default execution mode for MPEX commands, e.g.

%SET DEFAULT,PURGE,?

to make sure that (by default) all purges will ask for yes/no verification.

• %SET DATE commands to change the input format for MPEX dates; our European
customers like to say

%SET DATE,DMY

• Various :SETJCW commands to control the behavior of MPEX's, like REDO command history
(see "%REDO Facility Options" in the %REDO chapter).

Your MPEXMGR.PUB and MPEXMGR.logongroup files are also executed at MPEX entry time,
but after the MPEXMGR.PUB.VESOFT file. (Note: you do not need Read access to the MPEXMGR
files, only execute). Therefore:

• If your MPEXMGR.PUB.VESOFT file already has an %INITUDCS command and an %INITREDO
command, there's no reason to put them into your own MPEXMGR files — the UDCs and the
redo facility are already initialized; reinitializing them would just waste time. (In fact,
under certain circumstances, it might actually give you some unpleasant error messages!)

• Never put an %INITMPEXMGR command into your MPEXMGR.PUB or MPEXMGR.logongroup
file. "%INITMPEXMGR" is essentially the same as "%XEQ MPEXMGR.PUB" and "%XEQ
MPEXMGR.logongroup"; if you put it into one of those files, it'll loop and eventually cause
a stack overflow.

• In general, do not copy the default MPEXMGR.PUB.VESOFT into your own group or PUB
group, since the commands that MPEXMGR.PUB.VESOFT usually contains — %INITMPEXMGR,
%INITREDO and %INITUDCS — are not appropriate in your own MPEXMGR files.

Other commands, though — %SETs, %SETVARs, etc. — can certainly be put into your
MPEXMGR.PUB and MPEXMGR.logongroup files. Remember that, in general,
MPEXMGR.PUB.VESOFT, MPEXMGR.PUB and MPEXMGR.logongroup can contain any MPEX
commands.

Important security considerations for the MPEXMGR file
As noted above, the MPEXMGR file is a great place to put %SET CAPABILITY commands.
However, anyone who has WRITE access to an "MPEXMGR" file could conceivably change it to
do something other than intended, such as removing those %SET CAPABILITY commands that
you put in the file. While the MPEXMGR.PUB.VESOFT file should remain secure if the group
and account attributes we set up during installation are not changed, your account level
MPEXMGR files might not be so safe.

For similar reasons, you should place any critical commands PRIOR to any INITMPEXMGR
command. Since INITMPEXMGR will execute the files MPEXMGR.PUB and MPEXMGR in the user's
account and group respectively, any commands that a user places in these files may be
executed BEFORE the appropriate %SET CAPABILITY command(s) in MPEXMGR.PUB.VESOFT.

RUNNING MPEX: Speeding up MPEX start-up

13

Also, careless or intentional mistakes in these files can stop the entire MPEXMGR start-up
sequence, leaving the system unprotected from the user.

One last thing to be aware of, although not specifically related to security, is that any
commands that appear AFTER the INITMPEXMGR command in MPEXMGR.PUB.VESOFT may
override commands and settings in the user's own MPEXMGR file. Sometimes this is desired,
but often it is not. So if some items should have a default, but individual users may be allowed
to change that default (such as the HPPATH or MPEXPROMPT variables), defaults should be
placed BEFORE the INITMPEXMGR command.

Speeding up MPEX start-up
Like so many good things, some of what MPEX does at start-up — before you type in your first
command — takes time. As a rule, MPEX must:

• Figure out what MPE UDCs you have set up; this includes:

o FOPENing COMMAND.PUB.SYS;

o Finding three directory entries to determine what UDC files you have set;
o Reading several COMMAND.PUB.SYS records to figure out all your UDC filenames;

o FCLOSEing COMMAND.PUB.SYS;

o FOPENing every one of those UDC files;

o Reading each UDC file to determine what UDC commands it contains (and remember
their names and record numbers).

(The CI has to do all the above when you log on — this is why logons can sometimes take a
while. We have to do this again since the CI's UDC tables are inaccessible to us.)

• Open your REDO command history file.

• Open your MPEXMGR.PUB and MPEXMGR files, and execute all the commands kept in each of
them. (Even if you don't have these files, the FOPEN attempts take time.)

• And many other things that can't be avoided in any case.

The MPEXMGR.PUB.VESOFT command file — which is executed whenever you enter MPEX —
lets you control which of the above operations are done and which are not.

What's more, it lets you have two modes of operation (which you can select at :RUN
MAIN.PUB.VESOFT time):

• A normal mode, which gives you the full power of UDCs, the REDO command history and
MPEXMGR files.

• A fast-start mode, which doesn't support some or all of the above, but is faster at start-up
time. To enter it, you say

:RUN MAIN.PUB.VESOFT;PARM=1

The ;PARM=1 indicates fast-start mode.

If you have no control over how MPEX.PUB.VESOFT will be run (e.g. if you're using the MPEX
HOOK facility, which runs MPEX for you), you can trigger fast-start mode by saying

:SETJCW MPEXFASTSTART=1

RUNNING MPEX: Speeding up MPEX start-up

14

before MPEX is run. (Remember that this will apply to all subsequent runs of MPEX in your
session until you say :SETJCW MPEXFASTSTART=0.)

For instance, say that your MPEXMGR.PUB.VESOFT file says the following:

UNLESSFAST :CALC READHINT('MPEXHINT.HELP.VESOFT')
UNLESSFAST :INITUDCS
UNLESSFAST INITMPEXMGR
:INITREDO

What does this mean?

• The random "hint" — one- or two-line description of some MPEX feature that we want to
make sure you know about — is output unless you are in fast-start mode.

• UDCs are to be initialized unless you are in fast-start mode. UDC initialization is the most
time-consuming of all the start-up tasks.

• MPEXMGR.PUB and MPEXMGR.yourgroup files are to be executed unless you are in fast-
start mode.

• REDO command history will always be initialized (even in fast-start mode). We recommend
this since initialization is so quick (just one FOPEN) and the command history is so useful.

(The ":"s were also put in front of INITREDO and INITUDCS [which are not MPE commands]
for speed reasons — using them prevents MPEX from trying to interpret them as "true" MPEX
commands, which would take a couple more disk I/Os. It's complicated — just trust us.)

The default MPEXMGR.PUB.VESOFT file that we give you says

IF HPINTERACTIVE THEN
 INITREDO
 CONTINUE
 NOMSG UNLESSFAST :CALC READHINT('MPEXHINT.HELP.VESOFT')
ENDIF
INITUDCS
UNLESSFAST INITMPEXMGR

We don't put an "UNLESSFAST" before the ":INITUDCS" for security reasons — some system
managers use UDCs to block out MPE commands (such as :SHOWCATALOG), and we don't want
to give everybody an easy way (running MPEX in fast-start mode) to avoid this restriction.

If, however, you have no security problems with allowing people to avoid UDCs, we suggest
that you put an UNLESSFAST in front of the :INITUDCS. This will make it easy for people to
get into MPEX very quickly (if they need to).

Let us point out, though, that the time it takes to get into MPEX isn't so long at all, and the
UDC support, REDO command history and MPEXMGR features are actually quite valuable.

We envision people using the fast-start option only selectively when they want to do one thing
with MPEX and want to do it quickly. For instance, if you have a UDC from which you want to
run MPEX with an ;INFO= string to execute a specific MPEX command, you might want to use
;PARM=1 because you know that you won't need UDCs, REDO, or local MPEXMGR files.

RUNNING MPEX: CI.PUB.VESOFT (for MPEX/iX CI emulation)

15

CI.PUB.VESOFT (for MPEX/iX CI emulation)
In MPE/iX, the command interpreter is implemented as a separate program named
CI.PUB.SYS. You can, for instance, say

:CI.PUB.SYS

and create a son CI process beneath your normal CI. :EXIT returns you to the father CI.

A typical use for this is when you want to run the CI with STDIN or STDLIST redirected:

:FILE MYFILE,NEW;SAVE
:RUN CI.PUB.SYS;INFO="SHOWOUT";PARM=3;STDLIST=*MYFILE

will make the CI do a SHOWOUT with output to the ;STDLIST= file. The ;INFO= string is the
command to be executed; the ;PARM= contains some flag settings we'll discuss shortly.

MPEX allows you to do something quite similar. At installation time, the MPEX program file is
copied into the file CI.PUB.VESOFT — when you run this program, MPEX will try to emulate
(even more closely than it normally does) the behavior of MPE/iX's CI.PUB.SYS.

In particular:

• The prompt will default to a ”:" (rather than a "%"); to change the prompt, you should set
the variable HPPROMPT (not MPEXPROMPT).

• Commands entered into CI.PUB.VESOFT will be executed as MPE or MPE/iX commands,
not as MPEX fileset handling commands. (This is the same behavior as if you had RUN
MAIN.PUB.VESOFT and prefixed each command you typed with a ":".) MPE/iX commands
(like :COPY, :PRINT, :INPUT, etc.) will still be available, but without fileset handling.

• Instead of looking at the MPEXCMDTRACE variable (to see if command tracing should be on),
CI.PUB.VESOFT looks at the HPCMDTRACE variable.

• Instead of executing MPEXMGR.PUB.VESOFT, CI.PUB.VESOFT executes
CIMGR.PUB.VESOFT. If CIMGR.PUB.VESOFT has an INITMPEXMGR command, it executes
CIMGR.PUB.logonaccount and CIMGR.logongroup.logonaccount.

If CI.PUB.VESOFT is run with an ;INFO= parameter, the ;INFO string will be executed.

Precise behavior depends on whether ;PARM= is also specified, and the value supplied:

;PARM= Display CI
Header?

EXIT after executing
;INFO= string?

0 (default) Yes No

1 Yes Yes

2 No No

3 No Yes

CI.PUB.VESOFT will emulate the behavior of MPE/iX even more closely than MPEX normally
does; however, MPEX fileset handling commands will not be available.

Using MPEX: Changing the MPEX prompt

16

USING MPEX

Changing the MPEX prompt
One of the things that MPEX lets you do is change the MPEX prompt from its default value of
"%". By setting the MPEX variable MPEXPROMPT you can set the prompt to whatever you
please. For instance, you might say

%SETVAR MPEXPROMPT "!!HPCMDNUM/!!HPUSER/!!HPTIMEF %"

then MPEX will prompt you with something like:

182/EUGENE/10:15 AM %

Now, whenever you look at the prompt, you'll see the current command number (useful for
future %REDOs), your user name (good for reminding you which computer or logon you are
using if you connect to multiple CPUs), and the current time of day.

As you see, the MPEXPROMPT may include MPEX variables that are substituted for when the
prompt is printed. HPCMDNUM and HPTIMEF are common examples of what people might put
into their prompts, but you can actually include any variable or constant you want.

Note that we use two "!" characters in this particular %SETVAR command. This is because
when MPEX sees the "!" character, it tries to evaluate the variable before executing the
command, so your MPEXPROMPT will not be dynamically evaluated. Seeing two "!" characters
in the command, MPEX translates this into a single "!" character in your prompt variable
which causes MPEX to evaluate it AGAIN when displaying your prompt. See the A few
comments about the "!" character section of the MPEX VARIABLES chapter.

Running under MPEX/iX
MPE/iX (formerly known as MPE/XL) is the version of the MPE operating system created for
the HP3000 series 9xx (aka SPECTRUM, RISC, HPPA or PA-RISC) systems. While the MPE/iX
Command Interpreter (the "CI") provides a number of enhancements to the old MPE/V CI, it
still does not address any of the fundamental improvements MPEX has made available to
HP3000 users for many years, helping them save time and improving the reliability of their
work.

MPEX eXtends MPE/iX in several ways:

• MPEX lets you execute MPE commands — like :COPY, :COB85XLK, :RENAME, :PRINT, etc.
— on entire filesets (including temporary filesets, IMAGE db filesets, and — for commands
like :ALTSPOOLFILE, :DELETESPOOLFILE, etc. — on spool filesets)!

• MPEX also lets you execute MPE job-handling commands — like :ABORTJOB, :BREAKJOB,
:RESUMEJOB, etc. — on entire usersets.

• MPEX's selection conditions allow you to:

o select files by hundreds of different attributes such as "disk space used", "last access
date", "file creator", etc.;

Using MPEX: Entering MPE commands in MPEX (':' and 'MPE' prefixes)

17

o select program files by attributes like "has PM capability", "number of code segments", "is
OCTCOMPed", etc.;

o select database files by attributes like "dbset name", "dbset fullness", "dbset block
wastage", etc.;

o select spoolfiles by attributes like "state (active, ready, opened, locked)", "job number",
"job aborted", etc.;

o select jobs by attributes like "jobname", "intro time", "state (EXEC, SUSP, WAIT, INIT,
SCHED)", etc.

• MPEX implements entirely new commands that do things no existing MPE/iX command
does; for example:

o %ALTFILE (which lets you change attributes of files, and gives you the very useful
;XLTRIM disk-space-saving option);

o %CHLOGON (which lets you switch to another logon without doing a :HELLO);

o %PAUSEJOB (which suspends jobs until a future time or condition).

• It also implements new control structures like

o %REPEAT...%FORFILES (which lets you execute arbitrary commands against MPEX
filesets).

• MPEX HOOK gives you:

o a REDO facility that lets you redo up to the last 1000 (or more) commands that you've
typed into EDITOR, TDP — virtually any program;

o the ability to execute any MPEX command directly within HOOKed utilities.

• MPEX greatly enhances the MPE/iX user interface by providing:

o new functions and variables, including hundreds of file attribute variables and functions;
integer, boolean, string, real, date and time functions; file and database I/O functions;
special MPE access functions; terminal manipulation functions; and security-related
functions (see Appendix B for details); and

o enhancements to existing commands, like %PRINT...;SEARCH=... (to search for text
within filesets), new %LISTF modes, and %COPY (which allows you to copy IMAGE
databases, copy files across NS, etc.).

Entering MPE commands in MPEX (':' and 'MPE' prefixes)
Syntax: %[:] command or UDC [command parameter(s)...]

%MPE command or UDC [command parameter(s)...]

Examples: %PURGE @.DATA(ACCDATE<TODAY-120 and NOT ISPRIV)
%:FILE X;REC=-80,,F,ASCII;NOCCTL;SAVE
%MYPROG;PARM=123;MAXDATA=30000;LIB=G
%S J << where S is a valid UDC >>
%MPE LISTF MYFILE,3

MPE commands can be executed from within MPEX by just typing them. Even though most
MPEX commands have the same name as their corresponding MPE command, they are still

Using MPEX: YES/NO prompting ('?' prefix)

18

being interpreted and executed by MPEX; you can speed up some of these commands by
prefixing them with a ":" or the word "MPE".

Also, most MPEX commands are upwardly-compatible with MPE in that MPEX implements
some EXTRA features while supporting the normal MPE syntax; however, some commands are
not upwardly-compatible with MPE — for instance, the second parameter in the %COBOL
command is the program filename, not the USL file name.

(This way seemed more convenient, but if we had to do it over again, we'd have called the
command %COBOLPREP to make everything perfectly compatible.) If you run into one of these
incompatible commands and want to execute the MPE version of it rather than the MPEX
version, you can either type a leading ":" like this:

%:COBOL MYSOURCE,MYUSL

or preface the entire command with "MPE" like this:

%MPE COBOL MYSOURCE,MYUSL

The difference between these two forms is that the colon prefix indicates to MPEX that the
command does not contain a fileset (you will get an error if you supply one), and the "MPE"
prefix causes MPEX to pass the command directly to the COMMAND intrinsic.

For example, prefacing a %PRINT command with a ":" will speed up the execution of the
command (since MPEX does not have to do any fileset processing), while still allowing the use
of our extensions to the :PRINT command (such as ;SEARCH=... or ;FORMAT=...). However,
prefacing a %PRINT command with "MPE" will generate an error if you try to use any extended
feature of the %PRINT command.

YES/NO prompting ('?' prefix)
Syntax: %?command

Examples: %?PURGE @.DATA(ACCDATE<TODAY-120 and NOT ISPRIV)
OK to process ABACUS.DATA (y/n)? Y
-----Purging ABACUS.DATA
OK to process ABIGAIL.DATA (y/n)? N
OK to process ABRACADA.DATA (y/n)? << [Return] is pressed >>
OK to process BANANA.DATA (y/n)? Y
-----Purging BANANA.DATA
...

If you prefix an MPEX fileset-handling command with a "?", MPEX will prompt you with

OK to process filename (y/n)?

If you type N or press [RETURN], the file will be skipped. Only if you type Y will the command
be executed against the file.

This can be very useful if you know you want to do something to a somewhat ill-defined set of
files (not something that can be exactly specified with +filesets, - filesets and selection

Using MPEX: Batch execution ('$' prefix)

19

conditions). You could specify a fileset that contains all the files you want to work on, and
then just type N when prompted for any of the files you don't want.

Naturally, this can also be particularly good for commands such as %PURGE, in which you want
to be doubly sure before going ahead with the operation. This is why many of our users add to
their MPEXMGR.PUB.VESOFT file (see "Specifying commands to be executed each time MPEX is
entered" in the Running MPEX section of this manual).

%SET DEFAULT,PURGE,?

This means that whenever somebody types

%PURGE...

MPEX will act as if he had typed

%?PURGE...

If he doesn't want yes/no prompting, he'll have to explicitly specify this by saying

%!PURGE...

The "!" says "execute this in standard online mode", as opposed to "?" (with yes/no
verification) or "$" (in batch — see below).

Batch execution ('$' prefix)
Syntax: %$command

Examples: %$COBOL AP@.SOURCE,AP@.PUB
%$DELETESPOOLFILE $STDLIST.@.@(SPOOL.OUTPRI<=3)
%$RUN MYPROG;LIB=G;PARM=100

Whenever you prefix a command (an MPE command or an MPEX command) with a "$", that
command will be executed OFFLINE, in a specially created job stream with the following
characteristics:

• It will log on with a job name equal to the first 8 characters of the command you typed.
This can be overridden by setting the variable MPEXDEFAULTJOBNAME to a specific job
name.

• The job stream will log on with the same user, account and group names that you logged
on with.

• It will log on with job parameters ";OUTCLASS=,1" — thus the $STDLIST will go to the
spooler but will not print since it will be deferred. You can alter this using the SUBMIT
command or by setting the variable MPEXDEFAULTJOBPARMS to the desired default job
parameters, e.g.

%SETVAR MPEXDEFAULTJOBPARMS "OUTCLASS=,2;PRI=ES"

Using MPEX: Batch execution ('$' prefix)

20

For instance, if you're logged on as "JANE.AP,DEV" and you execute the %$COBOL command
shown above, the job will log on as "COBOL,JANE.AP,DEV;OUTCLASS=,1" if no overriding
variables have been set.

• When MPEX builds the job stream, it will copy into it all the file equations that are then set
in the session — thus, if you say

%FILE LISTFILE;DEV=LP
%FILE COPYLIB=MYCOPY.SOURCE
%$COBOL AP###S,AP###P,*LISTFILE

then the generated job stream will inherit the file equations for LISTFILE and COPYLIB (as
well as any other file equations you might have in your session).

• MPEX will also copy your current HPPATH variable to the job.

• With the %SCHEDULE and %SUBMIT commands, you can also submit jobs that:

o log on as some other user ID,

o with some other job name,

o with some other :JOB card parameters,

o at some other time (i.e. with scheduling parameters).

Normally, whenever you do a $command, a %SUBMIT or a %SCHEDULE, MPEX will prompt you
with "OK to stream (Y/N)?" to verify that you really want to submit the job. If you don't
want this, just say

:SETJCW MPEXSTREAMNOVERIFY=1

before you enter your "$", "%SUBMIT" or "%SCHEDULE" command — MPEX will then submit the
jobs without prompting for verification.

If you have run GOD.PUB.VESOFT (documented elsewhere in this manual) in your session and
you do a

:SETJCW MPEXSTREAMGOD=1

before you enter your "$", "%SUBMIT" or "%SCHEDULE" command, the job stream created by
MPEX will automatically run GOD.PUB.VESOFT as well. If, however, you have not run GOD in
your session or you haven't set MPEXSTREAMGOD to 1, GOD will not be run in the job stream.

After the job has completed, it will attempt to do a :TELL to your session to let you know
either that the job is done or that an error occurred.

The message will include, if possible:

• the name of the system (if the variable HPSYSNAME is set — useful if you have multiple
REMOTE sessions and jobs running);

• the job name (usually the first 8 characters of the command you typed — see above);

• the output spool file number of the job's $STDLIST (this lets you read the $STDLIST
without having to do a %SHOWOUTJ to find it);

• the text of the error message (if there was an error); and the name of the file on which the
error occurred (if appropriate).

Using MPEX: Implied run

21

Normally, this :TELL is done to the job/session number that issued the $, %SUBMIT or
$SCHEDULE command, but you can change this using the variable MPEXTELLBACK. Setting
MPEXTELLBACK to "!!HPJOBNAME,!!HPUSER.!!HPACCOUNT" makes MPEX jobs send the
message to all sessions logged on with your job/session name, your user ID and your account
name. Setting it to "#S!!HPJOBNUM" (the default) makes MPEX jobs send the message to your
session specifically (if you log off and log back on, no message will arrive). You can set this
variable to anything you please — e.g. you might set it to "MANAGER.SYS" to make all jobs
send messages to MANAGER.SYS.

If you like, you can replace the :TELL command in the job with either a :TELLOP or MPEX's
%WARNF command by setting the MPEXTELLBACKCMD variable. For example:

%SETVAR MPEXTELLBACKCMD "WARNF"

(Note, of course, that you must be :ALLOWed the :WARN command in order to use %WARNF).

You can use MPEX's %PRINTO to view the $STDLIST of the last job you submitted via "$",
"%SUBMIT", "%SCHEDULE" or using SECURITY's STREAMX (see the SECURITY User Manual for
details on STREAMX) without having to specify the job number or spool file number! %PRINTO
is documented in the MPEX Commands section of this manual.

Sometimes, you might decide that you'd normally want all, say, %COBOL commands or %EDIT
commands to be done off-line. If you say

%SET DEFAULT,COBOL,$
%SET DEFAULT,EDIT,$

you're telling MPEX "the default mode of execution for the %COBOL and %EDIT commands is '$'
(i.e. offline) mode". Then, whenever you say

%COBOL...

this command will be executed just as if it was prefixed with a "$". If you want to do it online
(which would normally be the default), you'd have to say

%!COBOL...

telling MPEX to do the command in "!" (online) mode.

If you want to do %SET DEFAULTs, you probably want to include them into your
MPEXMGR.PUB.VESOFT, MPEXMGR.PUB.youracct or MPEXMGR.yourgroup.youracct files
— for more information, see the section "Specifying commands to be executed every time
MPEX is entered".

Implied run
Syntax: %programfile [.group [.account]]

 [[;INFO=] infostring]
 [[;PARM=] parmvalue]
 [;ENTRY=entrypoint]
 [;mperunparms] [...]

Using MPEX: Implied run

22

Examples: %DBUTIL << perhaps to run DBUTIL.PUB.SYS... >>
%AP010.PUB << run a specific program >>
%MYPROG << look in your own group first >>
%MYPROG TESTING << pass an INFO= string >>
%MYPROG "X Y Z",10 << pass both an INFO= and a PARM= >>
 << note ";PARM=" may be replaced by "," >>
%MYPROG LIB=P;INFO="FOO";PRI=DS

If you type a command that is not a valid MPE/MPEX command or UDC, MPEX will then try to
find a program or command file with that name and execute it as if you had typed :RUN or
:XEQ at the beginning of the line. Say that you type:

%DBUTIL

(and presuming you do not have a UDC called "DBUTIL") MPEX will find the HP supplied
program DBUTIL.PUB.SYS and evaluate the command as if you'd entered:

%DBUTIL.PUB.SYS

Which program file is run?
What do we mean by "try to find a program file with that name"? Well, if you specify a
qualified filename, e.g.

%DBUTIL.PUB.SYS or
%AP010.PUB

then MPEX will simply run the program with that name (just as if you'd put "RUN " at the
beginning of your command).

Now, say that you specify a filename without a group or account, e.g.

%DBUTIL or
%MYPROG

MPEX will then try to find a program with that name

• first in your logon group,

• then in the PUB group of your logon account,

• and finally in PUB.SYS.

If DBUTIL is found in your logon group, it'll be run; if DBUTIL is not found in your logon group
or in your PUB group, but is found in PUB.SYS, then DBUTIL.PUB.SYS will be run.

Changing the search path
Of course, your natural question at this point must be "what if I want to always search some
other groups as well?". What if you want to look in PUB.SYS, then in UTIL.SYS, and then in
PUB.PROD?

Using MPEX: Command files

23

No problem! Just say

%SETVAR HPPATH "!!HPGROUP,PUB,PUB.SYS,UTIL.SYS,PUB.PROD"

The HPPATH variable contains a list of groups to be searched, separated by commas.

The first parameter is "!!HPGROUP", which refers to the logon group (see the MPEX Variables
section — it'll also explain why we put two "!"s instead of just one). The second parameter is
PUB — the PUB group of the logon account; then come PUB.SYS, UTIL.SYS and PUB.PROD.
The default setting of HPPATH is

%SETVAR HPPATH "!!HPGROUP,PUB,PUB.SYS"

Needless to say, you could delete some of these items as well as add new ones — saying

%SETVAR HPPATH "UTIL.SYS,PUB.PROD"

tells MPEX to search only in the UTIL.SYS and PUB.PROD groups.

Specifying ;INFO= and ;PARM=
Simply saying

%MAIN.PUB.VESOFT

is the same as saying

%RUN MAIN.PUB.VESOFT

Similarly, saying

%MAIN.PUB.VESOFT HELP,1

or

%MAIN.PUB.VESOFT INFO="HELP";PARM=1

is the same as saying

%RUN MAIN.PUB.VESOFT;INFO="HELP";PARM=1

If you want to specify an entrypoint, simply use the ;ENTRY= keyword. You may also specify
any other parameters — ;LIB=, ;MAXDATA=, ;STDIN=..., etc. — that you can specify on the
%RUN command. (Note that this is different from the MPE/iX CI, which only lets you specify
;INFO= and ;PARM=.)

Command files
Syntax: %cmdfile [.group [.acct]]

 [parmvalue] [,...]
 [parmname=parmvalue] [;...]

Using MPEX: Command files

24

Examples: %MYFILE 10, 20, 30
%MYFILE FRAMASTATS=40;THINGAMABOBS=10

In the "Implied run" discussion above, we said that if you enter a command that's not a valid
MPE or MPEX command (or UDC), MPEX will look for a file with that name in

• your logon group,

• the PUB group of your logon account,

• and PUB.SYS.

If MPEX finds a program file, it'll :RUN it (just as if you'd entered a %RUN command). What if
it finds a non-program file?

Well, if MPEX finds a normal ASCII file, it will assume that it is a COMMAND FILE, and will
execute all the MPE commands stored in this command file. For instance, if you create a file
called SCHEMA.PUB.SYS that contains the lines

PARM TEXTFILE, LISTFILE="$STDLIST"
FILE DBSTEXT=!TEXTFILE
FILE DBSLIST=!LISTFILE
RUN DBSCHEMA.PUB.SYS;PARM=3

and you then type

%SCHEMA APBASESC,*LP

MPEX will execute the commands

%FILE DBSTEXT=APBASESC
%FILE DBSLIST=*LP
%DBSCHEMA.PUB.SYS;PARM=3

In other words, a command file is very much like a UDC; it may have parameters, OPTIONs,
defaults, etc.

The only differences are:

• The command file need not be :SETCATALOGed. Any command file that is in your search
path (see the discussion of the HPPATH variable below) is available to you.

• The %SCHEMA command is implemented by the very existence of the command file
SCHEMA.PUB.SYS.

• The header line (if any) should start with "PARM", e.g.

PARM TEXTFILE, LISTFILE="$STDLIST"

• rather than with the UDC name — the name of the command is already defined by the
name of the command file. (The "PARM" line is not required. If you don't intend to pass any
parameters to the command file, don't include a "PARM" line.) You can have multiple "PARM"
lines, rather than trying to squeeze all of your parameters into one line.

• Naturally, each command file can define only one command (as opposed to UDC files, each
of which may define many commands).

Using MPEX: Command files

25

The advantages of UDCs are

• They support OPTION LOGON (both command files and UDCs support all the other
options).

• They may be used for security purposes to block out some MPE commands.

• They are somewhat faster at command execution time, since they don't require a file open;
on the other hand, they slow logon time.

Special security note
MPEX allows a user to execute a command file even if he only has eXecute (not Read) access
to it. This way, you can create a command file that may contain sensitive information (such as
lockwords) that you don't want a user to see. Although this is technically incompatible with
MPE/iX, we believe that it is substantially more useful.

Command files and "HPPATH"
As we mentioned above, command files (just like program files or implied run commands) are
looked for

• first in your logon group,

• then in the PUB group of your logon account,

• and then in PUB.SYS.

If you want to change this search sequence, you can use the same HPPATH variable used for the
IMPLIED RUN searching, described earlier in this chapter.

ANYPARM and REST$ parameters
Consider this: how would you implement the MPE :FCOPY command as a UDC (command
files being pretty similar to UDCs)?

You might say

FCOPY !CMD
RUN FCOPY.PUB.SYS;INFO="!CMD"

but then if you type

:FCOPY FROM=A;TO=B;NEW

MPE will reject it — the FCOPY UDC (or command file) was declared with only one
parameter, but you entered three ("FROM=A", "TO=B", and "NEW"). Since ";" (as well as ",", " "
and to some extent "=") are considered by MPE to be delimiters, the parameter to the FCOPY
UDC must not include any of these delimiters or else it must be enclosed in quotes.

What you need is some way of saying "consider the rest of this command to be a single
parameter". For instance, you might say

FCOPY REST$CMD
RUN FCOPY.PUB.SYS;INFO="!CMD"

Using MPEX: Command files

26

The "REST$" prefix in the parameter name indicates that this is a "rest-of-the-line" parameter.
Note that the REST$ is only specified in the header record, not every time !CMD is mentioned.

When you type

%FCOPY FROM=A;TO=B;NEW

MPEX will consider the entire parameter string — "FROM=A;TO=B;NEW" — to be a single
parameter (CMD).

The REST$ parameter must obviously be the last parameter of the command, but need not be
the only one. You might, for instance, want to define a UDC such as

PROCESS FROMFILE, TOFILE, REST$PARMS
FILE MYFROM=!FROMFILE
FILE MYTO=!TOFILE
RUN MYPROG;INFO="!PARMS"

Now, when you say

PROCESS A, B, C, D, E

the "FROMFILE" parameter will be set to "A", the "TOFILE" parameter to "B", and the "PARMS"
parameter to "C, D, E". The REST$ parameter is set to the REMAINDER of the command
string after all the other parameters have been assigned.

Of course, this is available only in UDCs and command files that are executed from MPEX.
Naturally, if you try to execute from MPE a UDC that includes a REST$ parameter, you won't
get very far.

Unfortunately, MPE/iX won't even let :SETCATALOG a UDC that has "REST$" in the first line.
However, MPE/iX has a feature (fully supported in MPEX) ANYPARM, that is quite similar to
REST$.

Note: While REST$ can be the last parameter on the last PARM line, ANYPARM must be the last PARM
line, all by itself.

For example:

PARM A, B, C
ANYPARM D
...

means that parameter "D" is to be set to the rest of the command line (just like "REST$") —
thus, if the above command file is passed a parameter string of "ALPHA, BETA, GAMMA,
DELTA, EPSILON, ZETA", parm A will have the value "ALPHA", B will be "BETA", C will be
"GAMMA" and D will be "DELTA, EPSILON, ZETA" (with the commas!).

Of course, like any other parameter, both REST$ and ANYPARM parameters allow defaults
(which makes them "optional"). However, if you want them to default to a null string (""),
you must do one of the following:

PARM REST$FOOBAR=![""]

Using MPEX: Command files

27

or

ANYPARM FOOBAR=![""]

If you just say 'FOOBAR=""', the variable FOOBAR will actually contain the quote characters.

Another feature that you may find essential when using ANYPARM and/or REST$ is our
CMDPARM(…) function. Please see Appendix B for details.

CS$ parameters
One other option we have for UDCs and command files is the CS$ option:

PARM CS$FILESET, NEWDEV
ALTFILE !FILESET; FLIMIT=EOF*2; DEV=!NEWDEV

What does this command file (let's call it MOVETHEM) do? (We know that it's a command file
because its header starts with "PARM".)

Well, it takes two parameters — an MPEX fileset and a new device name – and %ALTFILEs all
the files in the fileset to

• have a file limit that's double their current number of records, and

• reside on the device indicated by NEWDEV.

So what's all this CS$ stuff? Well, say that we type

%MOVETHEM @.DATA(CODE="PRIV" and SECTORS>1000), 3

We're asking MPEX to move to device 3 the files in the DATA group that have code "PRIV" and
use more than 1000 sectors.

This seems like a reasonable enough command; unfortunately, both "=" and " (quote) are
considered by MPE to be parameter delimiters. If %MOVETHEM were a normal MPE UDC (or a
normal MPE/iX command file), MPEX would reject the command we just showed unless the
entire fileset parameter was enclosed in quotes.

The CS$ before the FILESET parameter in the command file header stands for
"Comma/Semicolon". It says that the only delimiters that should be recognized for the
parameter are Comma and Semicolon, not space or the equal sign. It also indicates that any
delimiters inside parentheses (e.g. in selection conditions) are to be ignored.

As you can see, this feature was designed especially for MPEX filesets, and is most useful when
you're passing MPEX fileset parameters.

Determining whether you're in MPEX or not
Sometimes, you may want to write a command file or UDC that works successfully from MPEX
and in MPE/iX, but, when executed from MPEX, uses some special MPEX feature.

MPEX treats the JCW "INSIDEMPEX" as a special sort of JCW. When you enter MPEX, MPEX
does a ":SETJCW INSIDEMPEX=0", but whenever you try to reference INSIDEMPEX from an
MPEX command, MPEX will always return the value 1 (even though its "true" value is 0). This

Using MPEX: Redirecting command input and output

28

way, a command file or a UDC that is executed from within MPEX will see INSIDEMPEX as
being equal to 1, but when executed from MPE, will see INSIDEMPEX as being equal to 0.
Thus, the command file or UDC can say "IF INSIDEMPEX=1 THEN" or "IF INSIDEMPEX=0
THEN" to tell if it's in MPEX or not.

The only possible problem arises if the command file or UDC is executed from within MPE
before the first run of MPEX in the session, in which case the INSIDEMPEX JCW will not be set,
and an IF INSIDEMPEX=1 THEN will get a CI error. You can solve this by adding a :SETJCW
INSIDEMPEX=0 to the beginning of the command files/UDCs that you wish to test
INSIDEMPEX within, either at the beginning or right before you test it. Then, when you test it
in MPEX, MPEX will tell you it is 1. If you test it outside of MPEX, MPE will tell you it is 0.

Redirecting command input and output
MPEX lets you very easily redirect the input and output of any MPEX command, including
command file execution, %RUN, etc.

Simply specify in the command

<infile, e.g. %RUN MYPROG;INFO="XYZ" <DATAFIL
>outfile, e.g. %SHOWOUT JOB=@;SP >OUTDATA
>>outfile (to append), e.g. %ECHO Execute step 5 >>LOGFILE

This is thus both a convenient shorthand for ;STDIN=... and ;STDLIST=... on :RUN
commands and implied RUN, and a way of redirecting commands (like %SHOWOUT and %ECHO)
and command files output that could not have been easily redirected before.

• The <, > and >> can be specified anywhere in the command, so long as the filename is
followed by a blank or some such delimiter.

• If you specify "<infile", MPEX will first try to use the temporary file with that name, and
if that doesn't exist, then the permanent file. If you specify ">outfile" or ">>outfile",
MPEX will try to write to or append to the temporary file with that name, and if that doesn't
exist, will create a new temporary file. If you want to output to a permanent file, you must
use a :FILE equation with ",OLD" (for old files) or ";SAVE" (for new files). This might be
somewhat inconvenient, but we have to do this to be compatible with MPE/iX.

• This syntax may present some problems, e.g. if you have existing commands that contain <,
> or >> followed by valid-seeming filenames (which shouldn't be very common; we've
noticed it most often in ECHO commands). The MPE/iX implementation of this feature
suffers from similar problems.

o To make it less likely that problems will occur, the commands CALC, COMMENT, ELSEIF,
IF, SETJCW, SETVAR, TELL, TELLOP, WARN, WARNF, WHILE and such do not allow input
or output redirection (which wouldn't make sense for them anyway).

o Also, <, > and >> are not resolved inside quoted strings, ![…] constructs or (this is
specific to MPEX, not MPE/iX) inside parentheses.

Note that the apostrophe is considered a quote character, so if you use a contraction in
an echo statement, it won't work the way you might expect — MPEX sees the
apostrophe as an opening quote, so everything until the next apostrophe or the end of
the line is treated as "inside" a quoted string.

Using MPEX: Checking MPEX command success

29

For example:

%ECHO This won't work >>workfile

will display everything to the screen and will not put the string "This won't work" into
the workfile. In order to avoid this problem, MPEX allows you to specify the output file
anywhere in the line, even as the first item, so to actually put a string with just one
quote character into a file, use the following:

:ECHO >>workfile This will work, even with a ' character.

o If you need to embed a <, > or >> into a command, you may prefix them with a "!", e.g.
"ECHO VAR1!>VAR2".

• By default (unless overridden with a file equation), the output files are built with variable-
length records, no carriage control, and a file limit of 10,000 (which practically means that
more than 10,000 variable-length records will fit into the file).

• By default, any command execution errors for an output-redirected command (except
errors in opening the redirection files) will be sent to the output file. If you want them to
go to the terminal, set the variable HPERRSTOLIST to TRUE (see also Errors and warnings
in Appendix A).

Checking MPEX command success
Note:

If you are interested in error-handling, you should also look at the MPEX %TRAPERROR
command. It provides an advanced, easy to use, mechanism for handling errors in jobs,
command files, etc.

How can you tell — in a job stream, in a command file or in a UDC – whether an MPEX
command succeeded?

Well, if it is a normal MPE command (like :BUILD or :FILE) or one of our advanced fileset
handling commands (like %RENAME or %PURGE) in which only a single file was specified, we'll
set the CIERROR JCW as MPE normally would; we'll even set two JCWs:

• FSERROR, which indicates the file system error (if any) encountered while executing the
command.

• CIERRORISWARN, which is 1 if the CI error was a warning and 0 if it was a true error.

Similarly, if we encounter a truly global error in one of MPEX's own commands — e.g. you
specified a syntactically invalid fileset — we set the CIERROR JCW to one of our own error
numbers (largely 30,000 and above). At the very least it will abort the execution of the
command file, UDC or job; and, if you do an :IF CIERROR<>0 THEN or something like that,
you'll see that an error occurred.

Now, say that you're doing a fileset %ALTFILE. 67 files were successfully altered but 4
couldn't, because of file system errors (security, file in use, etc.). What should we do?

Well, on "file-level errors" — errors that occur on a specific file — we do not abort the
command file, UDC or MPEX job; in fact, we usually won't even set the above JCWs.

Using MPEX: Setting default parms for MPEX commands

30

However, we do provide you with two JCWs that tell you in great detail how successful the
command was:

• MPEXNUMSUCCEEDED is set to the number of files successfully processed.

• MPEXNUMFAILED is set to the number of files on which errors were encountered.

With these two JCWs, you can do all the checking you want. You might say (in your job):

%IF MPEXNUMFAILED>0 THEN
% TELLOP AT LEAST ONE ERROR OCCURRED!
%ENDIF

(to check if there was at least one failure) or

%LISTF @.@(CREATOR<>"MANAGER")
%IF MPEXNUMSUCCEEDED=0 THEN
% TELLOP NO FILES CREATED BY NON-MANAGER USERS
%ENDIF

or even (if you want to get really fancy)

%COBOL AP@.SOURCE,AP@.PUB
%IF MPEXNUMFAILED>(MPEXNUMFAILED+MPEXNUMSUCCEEDED)/10 THEN
% TELLOP COMPILE MORE THAN 10% BAD, CALL THE PROGRAMMER
% TELLOP AND TELL HIM TO COME IN THIS WEEKEND.
%ENDIF

Setting default parms for MPEX commands
You can set any default parameters you want to for the %ABORTJOB, %ALTFILE, %ALTSCHED,
%ALARM, %ALTJOB, %BREAKJOB, %BYE, %CALENDAR, %CHLOGON, %COPY, %DEVCONTROL,
%DOSAVED, %IDENTIFY, %LISTJOB, %NEWLINK, %PAUSEJOB, %PREP, %PREPRUN, %PRINT,
%PRINTO, %PURGE, %PURGELINK, %RENAME, %RESUMEJOB, %RUN (and implied RUN),
%SAVEJOB, %SHOWALARM, %SHOWJOB, %SHOWME, %SHOWPROC, %SHOWSAVED, %SPOONFEED, and
%SPOONINIT commands — e.g.:

%SETVAR VESOFTDEFAULTALTFILE ";KEEPAMDATES;XLTRIM"
%SETVAR VESOFTDEFAULTCOPY ";KEEPAMDATES;KEEPATTR"
%SETVAR VESOFTDEFAULTPRINT ";KEEPAMDATES;PAGEHEAD"
%SETVAR VESOFTDEFAULTCHLOGON ";KEEPCAPS"

To automatically kill any son processes that might suspend instead of terminating, set the
following default:

%SETVAR VESOFTDEFAULTRUN ";KILL"

Warning:

Setting this variable to this value globally (in MPEXMGR.PUB.VESOFT, for instance) will have
adverse side effects on the operation of our software.

Using MPEX: Restricting MPEX commands to only work on certain files

31

%SETVAR VESOFTDEFAULTPREP ";CAP=PH,DS;MAXDATA=30000;FPMAP"
%SETVAR VESOFTDEFAULTPREPRUN VESOFTDEFAULTRUN+VESOFTDEFAULTPREP

Sets %PREPRUN defaults to be same as %PREP defaults concatenated with the %RUN defaults.

%SETVAR VESOFTDEFAULTIMPRUN ";LIB=P;MAXDATA=30000"

For any programs run via implied :RUN, i.e. by just specifying the name of the program.

%SETVAR VESOFTDEFAULTBREAKJOB ";NOVERIFY"
%SETVAR VESOFTDEFAULTRESUMEJOB ";NOVERIFY"

So that %BREAKJOB and %RESUMEJOB don't ask for verification.

The values of the VESOFTDEFAULTxxx variables must start with ";"s, as shown above.

If you want to use non-default settings, you certainly can — for instance, if
VESOFTDEFAULTPREP is set to ";CAP=PH,DS;MAXDATA=30000;FPMAP" and you do a
:PREP...;CAP=PM, it will do the prep with PM capability and without PH and DS (since your
;CAP= overrides the default ;CAP=), but will still use the ;MAXDATA=30000 and ;FPMAP.

If the default value that you want to override doesn't have an option that can turn it off (e.g.
;KEEPAMDATES), and you don't want to use this default in a particular command, you must
delete the appropriate VESOFTDEFAULTxxx variable and then re-set it later.

Restricting MPEX commands to only work on certain files
Sometimes you know that certain MPEX fileset-handling commands don't make any sense (or
can even do damage) when performed on certain types of files. For instance, the %EDIT
command can't work on binary files because EDITOR can only handle ASCII files;
furthermore, you might not want it to operate on KSAM files, since a /KEEP of a KSAM file will
keep it as a "flat" file, which will preserve the data but destroy the KSAM file structure.

To implement such restrictions, just say

%SETVAR MPEXCRITRESTRICTEDIT "ISASCII AND NOT ISKSAM"

and the %EDIT command will behave as if you included the selection condition (ISASCII AND
NOT ISKSAM) — i.e. select only ASCII files that aren't KSAM files — on the fileset. (Of course,
this will also work if you explicitly specified a selection condition on the fileset; both
conditions would then be used.)

If you want this sort of restriction to work for all users all the time, you can just put the
%SETVAR into the MPEXMGR.PUB.VESOFT file; needless to say, a similar %SETVAR would work
to impose selection conditions for other commands — just use %SETVAR
MPEXCRITRESTRICTcmdname.

If you want to temporarily turn off this restriction, you can just %DELETEVAR the appropriate
variable. If the %SETVAR is in MPEXMGR.PUB.VESOFT, the variable will be reinitialized the
next time you enter MPEX.

MPEX VARIABLES: Using MPEX variables

32

MPEX VARIABLES
%SETVAR FNAME "MYFILE.PUB.TEST"

%SHOWVAR F@
FLUGELHORN = 172345
FNAME = MYFILE.PUB.TEST
FUNNY = TRUE

%CALC STR(FNAME,3,6)
FILE.P

%ECHO FILE = !FNAME.
FILE = MYFILE.PUB.TEST.

%DELETEVAR FNAME
%SHOWVAR F@
FLUGELHORN = 172345
FUNNY = TRUE

An MPEX variable — just like a COBOL or PASCAL variable — stores data.

MPEX variables:

• Are similar to JCWs, but may contain strings, boolean (true/false) values or 32-bit integers.

• Are set with the %SETVAR command.

• Can have their values input interactively using the %INPUT command.

• May be looked at with the %SHOWVAR command.

• Can be used in any MPEX expression, including:

o %CALC/%SETVAR expressions,

o %IF/%WHILE expressions,

o and MPEX selection conditions.

• Can be substituted into any MPEX command file much like UDC parameters can be
substituted into commands within UDCs.

• Stay around for the duration of your job or session (not just while you're running MPEX).

Using MPEX variables
MPEX variables, once they're set using the %SETVAR or %INPUT commands (which are
documented in more detail elsewhere in this manual) can be used in one of several ways:

• MPEX variables can be used whenever MPEX expects an expression – in

o %IF statements,

o %CALC statements,

o %WHILE statements,

o %SETVAR statements,

o MPEX fileset selection criteria, etc.

MPEX VARIABLES: Using MPEX variables

33

For instance, if CMDPARMS is a string variable, you might say

%IF STR(CMDPARMS,1,1)="X" THEN

thus using CMDPARMS as an element in the expression STR(CMDPARMS,1,1)="X".

• When MPEX does not expect an expression, you can substitute the value of a variable by
prefixing it with an "!":

%:BUILD !FNAME;REC=4095,,,ASCII

Here, if FNAME is a variable, its value is textually substituted in place of the string "!FNAME".
If FNAME's value is XYZZY, the above %:BUILD command is exactly identical to the
command

%:BUILD XYZZY;REC=4095,,,ASCII

Of course, this is very much like the way UDC parameter substitution has always worked in
MPE.

• Instead of saying !VARNAME, you might also say !"VARNAME", e.g.

%:BUILD Y!"MODULE"DAT;CODE=123;REC=-64,,,ASCII

As you see, the !"MODULE" is immediately followed by the alphanumeric string DAT — if
we had said

%:BUILD Y!MODULEDAT;CODE=123;REC=-64,,,ASCII

MPEX would have tried to find the value of the variable MODULEDAT rather than of MODULE.
!"VARNAME" is thus identical to !VARNAME except that it can be used even if it's followed
by an alphabetic or numeric character.

• An even more powerful construct is ![expression], e.g.

%:BUILD !FNAME;DISC=![4*MAXUSERS+MAXPROGS]

The expression between the ![and the] — 4*MAXUSERS+MAXPROGS — is evaluated and is
substituted for the entire ![4*MAXUSERS+MAXPROGS] construct. If FNAME were MYFILE,
MAXUSERS were 100, and MAXPROGS were 25, the above command would be equivalent to

%:BUILD MYFILE;DISC=425

The !xxx, !"xxx", and ![xxx] constructs are some of the most powerful features of MPEX
variables, since they let you very easily parameterize MPEX commands — in UDCs, in
command files or in jobs — to do exactly what you want them to do.

They make MPEX programming very easy and very powerful.

MPEX VARIABLES: Setting MPEX variables

34

Setting MPEX variables
Of course, before an MPEX variable is used, it must first be set. Several ways are available for
doing this:

• The %SETVAR command, which stores the value of an expression (or of a constant) in an
MPEX variable, e.g.

%SETVAR MYFILE "XYZ.PUB.DEV"

or

%SETVAR MYFILE "S"+MODULENAME+".DEV.VESOFT"

(the second %SETVAR, as you see, sets MYFILE to the value of an expression that involves
MODULENAME, another variable).

• The %INPUT command, which prompts the user for input, e.g.

%INPUT MODULENAME; PROMPT="Enter module name: "

• A number of MPEX variables are predefined; these include:

o HPUSER, a string containing the logon user ID;

o HPLDEVIN, an integer containing the device number of the logon terminal;

o HPINTERACTIVE — TRUE in a session, FALSE in a job;

o HPUSERCAPF, a string containing a list of all the capabilities a user possesses;

o and many more.

• Some other variables are specially defined for MPEX purposes, and may be set and/or
looked at by MPEX — see the Special variables used by MPEX section in this chapter.

Local variables
Often, within a command file, you will create variables that are only intended for use within
that particular command file. You don't want these variables to conflict with existing, global
variables you may have set (or with predefined HP or VESOFT variables), and you want to
delete these variables after the command file is done executing. One way to do this is to
precede the variable name with the name of the command file; i.e. in a command file named
"FIDGET", you might use variables names FIDGET_NAME, FIDGET_ADDRESS, FIDGET_PARM,
etc. Then, at the end of the command file, you could delete all of these variables with the
command:

DELETEVAR FIDGET_@

But what you really want are local variables; and MPEX has them!

Local variables are quite similar to "regular", global variables; you create them with the
"%SETLVAR" command (instead of "%SETVAR" — notice the "L"), delete them with
"%DELETELVAR" (instead of "%DELETEVAR" — again, notice the "L"), and view them with
"%SHOWLVAR" (instead of "%SHOWVAR" — there's that "L" again). Like global variables, local
variables can be of type string, integer or boolean.

MPEX VARIABLES: Other variable features

35

Local variables have three important properties:

• Unlike global variables, they are automatically deleted when the command file within
which they were created terminates! (If you create a local variable by typing "%SETLVAR"
directly within MPEX instead of in a command file, the variable will last until you exit
MPEX).

• Local variables created in one command file are not accessible within any other command
file! (Local variables created "directly" within MPEX do not exist within any command file
at all.)

• When both a local and a global variables exist with the same name, the local variable will
be used, e.g. the result of

%SETVAR MYVAR "global"
%SETLVAR MYVAR "local"
%ECHO the !MYVAR variable will be used.
The local variable will be used.

Note that this can be quite useful for testing. Say you have a command file that behaves
differently in batch than it does online, by testing the variable HPJOBTYPE, and you want to
observe the batch behavior while running it online.

If you try to SETVAR HPJOBTYPE "J", you'll get to see this error message:

ASSIGNMENT TO VARIABLE NOT ALLOWED: READONLY. (CIERR 8115)

But, if you add the line SETLVAR HPJOBTYPE "J" to the beginning of the command file,
you can perform your test! And you don't have to worry about forgetting to delete the
variable later so that it won't interfere with other command files — local variables (as we
said above) are deleted automatically!

Other variable features
Other variable-handling commands — remember, all of them are documented in the MPEX
COMMANDS section — include:

• %DELETEVAR, which deletes a variable or a set of variables.

• %SHOWVAR, which shows the values of a set of variables.

• %SET VARTRACE (and %SET NOVARTRACE), which shows all changes to the values of
variables (useful in debugging).

Some other things you might want to know about variables are:

• If you're trying to look at the value of a variable (in an expression — e.g. in a %CALC
command — or when you're substituting with ! or ![...]), and a JCW with that name
exists, the value of that JCW will be used.

MPEX VARIABLES: Other variable features

36

For instance, if you say

%SETVAR TEMPERR CIERROR

or

%ECHO CI error #!CIERROR

then MPEX will retrieve and substitute the CIERROR JCW just as if it were an MPEX
variable.

On MPE/iX, if you do an %INPUT or a %SETVAR into a variable whose name is that of an
existing JCW, the JCW will be "changed" into a variable. On MPE/V the JCW will be set unless
you are attempting to set it to a string, boolean or a value >65535, in which case you will get
CIERR 8135. This is because MPEX variables are more flexible than JCWs, and may contain
strings, 32-bit integers, and boolean values, where MPE JCWs can only contain 16-bit integers.

• Say that an MPEX string variable (one whose value is a string rather than an integer or a
boolean) contains in its value an !, e.g.

%SHOWVAR FNAME
FNAME = MYFILE.!HPGROUP.SYS

Then, whenever you substitute the variable with an ! or a !"..." (but not a ![…]), the
variable will be recursively substituted. Say that your logon group is JACK (which means
that the predefined variable HPGROUP would be set to JACK); when you say

%ECHO Filename = !FNAME

you won't just see

Filename = MYFILE.!HPGROUP.SYS

(which would be the case if MPEX merely substituted the value of FNAME for the string
!FNAME), but will instead see

Filename = MYFILE.JACK.SYS

Instead of just having variables substituted once, variables were substituted repeatedly until
no more substitutions were possible. Another example might be:

%SHOWVAR
A = ABACUS
B = B[!A]
C = C/!B\
D = D(!C)
%ECHO D is !D
D is D(C/B[ABACUS]\)

As you see, !D was recursively substituted until all the variable references — !C, !B and !A
— were satisfied.

MPEX VARIABLES: A few comments about the "!" character

37

As you can also see, %SHOWVAR command does not do recursive substitution — neither do
the ![…] construct or any expression evaluation commands (e.g. %CALC). Only ! and
!"…" do recursive substitution.

(If this confuses you, it's OK — it confuses me, too. I'm sure it could be quite useful in some
cases, but it's pretty complicated. I really only put it in for compatibility with MPE/iX.)

A few comments about the "!" character
The fact that ! is a special prefix character (which causes a substitution of the expression that
follows) creates some problems. If you say

%ECHO !HPUSER

then MPEX will output your user name (the value of the variable HPUSER). But, what if you
really want to output the string "!HPUSER" — an exclamation mark followed by "HPUSER"?

To do this, we use the old MPE UDC convention of doubling the exclamation mark:

%ECHO !HPUSER
MANAGER
%ECHO !!HPUSER
!HPUSER

When MPEX reads a command and substitutes variables, it replaces all "!!"s by "!"s and does
not substitute for whatever variable follows it.

This may seem simple enough, but it can cause a few interesting quirks. For instance, say that
you enter

%TELLOP PLEASE MOUNT THE TAPE!!!!!

The message that the operator will see is

FROM/.../PLEASE MOUNT THE TAPE!!!

It includes only THREE exclamation marks. When you input "!!!!!", MPEX replaced each
pair of exclamation marks by a single exclamation mark, thus changing exclamation marks 1
and 2 into a single "!", changing exclamation marks 3 and 4 into a single "!", and leaving
exclamation mark 5 as a single "!" (since it is neither doubled nor has a variable name
following it).

Got all that? Well, if you think you did, explain what is wrong with the command

%SETVAR MPEXPROMPT "!HPTIMEF: "

On the surface, it seems that you're setting the MPEXPROMPT variable so that MPEX will always
prompt you with the current time — that way, at 1:35 PM, MPEX will prompt you with

1:35 PM:

MPEX VARIABLES: Special variables used by MPEX

38

and at 2:02 PM, MPEX will prompt you with

2:02 PM:

It seems that this should happen, but it won't. The first thing that MPEX does when executing
a command is resolve all the "!"s. Thus, right after you enter (say, at 12:29 PM) the command

%SETVAR MPEXPROMPT "!HPTIMEF: "

MPEX will resolve the "!"s and turn the command into

%SETVAR MPEXPROMPT "12:29 PM: "

The variable "MPEXPROMPT" will be set to the constant string "12:29 PM: ". Thus, for the rest
of day you'll be prompted with "12:29 PM: ".

What you should say instead is

%SETVAR MPEXPROMPT "!!HPTIMEF: "

Now, when MPEX resolves the "!"s, it'll translate the command into

%SETVAR MPEXPROMPT "!HPTIMEF: "

The variable MPEXPROMPT will be set to the string "!HPTIMEF: ". Then, when MPEX actually
prints the variable, it'll resolve the "!"s again, prompting you with

1:35 PM:

Because the MPEXPROMPT variable was set to the literal string "!HPTIMEF: ", the HPTIMEF
resolution isn't done until the prompt is actually printed (which is exactly the right time for it
to be done).

Special variables used by MPEX
There are a number of very useful predefined variables (such as HPUSER, HPDATEF,
HPINTERACTIVE, etc.) that are described in great detail in Appendix. They are largely read-
only and return information about your current session or about the system environment.

There are a few other predefined variables that are specific to MPEX. Some of them are set by
MPEX, but others can be set by you to control MPEX's behavior. Here they are:

Variable Type Usage

MPEXCMDTRACE [INT] (may be either a JCW or a variable).

If this is set to 1, all commands that MPEX executes (including
those that come from UDCs, from command files, from :WHILE
loops, etc.) will be output to the terminal. This can be quite
useful if you have some mysterious 'bug' in one of your
complicated command files and you want to know exactly
what's going on.

MPEX VARIABLES: Special variables used by MPEX

39

Variable Type Usage

 MPEXCMDTRACE is not checked if a %SET NOCMDTRACECHECK is
in effect (see the "%SET [NO]CMDTRACECHECK" command).

Note: This JCW/variable can also be used to debug STREAMX
 jobs and SECURITY/3000 MENUs.

MPEXPROMPT [STR] Indicates how MPEX is to prompt you for a command (default
"%"). For more information, see "Changing the MPEX prompt"
in the Running MPEX section.

HPSYSNAME [STR] Supplies a "system name" to include in the heading of all MPEX
%LISTF output. Also used by SECURITY/3000's LISTLOG and
LISTUSERS reports, and on VEAUDIT reports.

MPEXQEDITFILE [STR] If you use MPEX's %QEDIT command (which executes an
operation on a fileset using ROBELLE's popular QEDIT text
editor), MPEX will try to run QEDIT.PUB.ROBELLE.

If you've moved QEDIT out of PUB.ROBELLE, set the
MPEXQEDITFILE variable to the location of QEDIT, e.g.

 %SETVAR MPEXQEDITFILE "QEDIT.PUB.UTIL"

MPEXDBADGFILE [STR] If you use MPEX's %DBADGALT command (which alters IMAGE
database capacity on a fileset using the popular ADAGER
program), MPEX will try to run ADAGER.PUB.REGO.

If you've moved ADAGER to another group.account, set the
MPEXDBADGFILE variable to the location of ADAGER, e.g.

 %SETVAR MPEXDBADGFILE "ADAGER.PUB.TOOLS"

MPEXDBGENFILE [STR] If you use MPEX's %DBGENALT command (which alters IMAGE
database capacity on a fileset using BRADMARK's popular
DBGENERAL program), MPEX will try to run
DBGENRL.PUB.BRADMARK.

If you've moved DBGENERAL to another group.account, set the
MPEXDBGENFILE variable to the location of DBGENERAL, e.g.

 %SETVAR MPEXDBGENFILE "DBGENRL.PUB.TOOLS"

MPEXTELLBACK [STR] Tells MPEX who to inform when MPEX-created jobs (created
with $, %SUBMIT or %SCHEDULE) complete (or encounter
errors).

Setting this variable to "!!HPJOBNAME,!!HPUSER.!!HPACCOUNT"
makes MPEX jobs send the message to all sessions logged on
with your job/session name, your user ID and your account
name.

MPEX VARIABLES: Special variables used by MPEX

40

Variable Type Usage
Setting it to "#S!!HPJOBNUM" (the default) makes MPEX jobs
send the message to your session specifically (if you log off and
log back on, no message will arrive).

If you want to, you can set this variable to anything you please
– you might set it to "MANAGER.SYS" to make all jobs send
messages to MANAGER.SYS.

MPEXTELLBACKCMD [STR] Normally, MPEX does a :TELL to notify you when your MPEX-
created jobs (created with $, %SUBMIT or %SCHEDULE) finish or
encounter errors. You may use this variable if you would
prefer a :TELLOP, %WARNF, or even have MPEX execute your
own command file by setting it to something like "XEQ MYCMD".

MPEXPREFIXDEFnn [STR] "nn" is the ASCII code for any character (except for the
reserved characters "%", "!", "?", "$", ":" and ","). Setting one
of the variables lets you redefine special characters so that,
when they are used as the first character of an MPEX
command, they are replaced with a string.

This feature is used primarily for "%SPOONFEEDing" (see
%SPOONFEED in the commands reference section), but another
useful example is

 %SETVAR MPEXPREFIXDEF![ORD('=')] "CALC "

which allows you to say things like

 %=52*40
 %=TODAY+30
 %=VEFINFO("FOOBAR").CREDATE

etc.

MPEXALARMPREFIX [STR] Set this variable to a string that you want prefixed to all
%ALARM messages you set.

MPEXWARNFPREFIX [STR] Set this variable to a string that you want prefixed to all
%WARNF messages you send.

VESOFTDEFAULTxxx [STR] A group of variables that set defaults for certain MPEX
commands. For more information, see "Setting default PARMS
for MPEX commands" in the Using MPEX section.

VECURRFILENAME [STR] (read-only).

This variable contains the name of the currently executing
command file (in MPEX), job stream or ::USE file (in
STREAMX) or menu file (in a SECURITY/3000 menu).

FILENAMES AND FILESETS: MPE filenames

41

FILENAMES AND FILESETS

MPE filenames
Syntax: filename [/lockword][.groupname [.accountname]]

Examples: MYFILE
JAN93.DATA
MAINPROG.SOURCE.DEVELOP
LOCKED/TIGHT.DATA.PROD

Nearly all MPEX commands deal with files and filenames in some manner, so a basic
understanding of what defines a filename is needed in order to utilize our software in the best
possible manner. Detailed information on files and filenames can be found in HP's manuals, so
our discussion here will be very brief.

An MPE filename consists of file, group and account names. These names MUST begin with a
letter and are followed by up to 7 letters or digits. No special characters are allowed, and the
"." (dot) character separates file, group and account names. Group and account are optional;
if not specified, they default to the user's logon group and account. Although you may use
upper or lowercase letters, MPE translates MPE filenames to uppercase.

Lockwords are file access passwords. If you don't specify the lockword of a file when referring
to it (such as when TEXTing in a source file in EDITOR), MPE will prompt you for the
lockword. If you don't enter the correct lockword, access to the file will be denied.

MPE filesets
Syntax: filespec [.groupspec [.accountspec]]

Examples: @.@.@
@.@.ACCOUNT
??@.GROUP.ACCOUNT
K#######.VER@.DOCUMENT
@ABC@.@DEF@

An MPE fileset is a simply an MPE filename with optional wildcard characters. (Note that the
LOCKWORD of the file is not specified for a fileset.)

These wildcard characters may be used:

Wildcard Interpretation

@ Zero or more characters, either letters or digits

? Exactly one character, either a letter or a digit

Exactly one digit

FILENAMES AND FILESETS: POSIX filenames

42

Wildcard Interpretation

[…] Exactly one character taken from the set of characters given between the
square brackets. For example, "[123ASDF]" means any one of the characters
"1", "2", "3", "A", "S", "D" or "F".

A character range can be specified using the "-" (hyphen) character: "[A-C]"
means either the letter "A", "B" or "C". Of course, these two can be combined,
so "[A-HO-Z]" means any letter except "I", "J", "K", "L", "M" or "N".

POSIX filenames
Syntax: .[/]posixfilename

/posixfilename

Examples: .MYFILE
.myfile
/accounting/93_04_22_datafile
./subdir/ACTUAL_filename
/a_posix_file/with_a_very_long.but_still-legal.filename
/MPEACCT/MPEGROUP/MPEFILE

With the introduction of version 5.0 of the MPE/iX operating system, you are allowed to
specify files using what is known as HFS syntax. "HFS" stands for "Hierarchical File System"
and is often referred to as "POSIX", although "POSIX", as such, actually encompasses a lot more
than the way you specify filenames. In this manual, you may see references to either HFS or
POSIX, you can consider them the same unless noted otherwise. Of course, if you are not
using a system that supports POSIX, then you cannot specify files using HFS syntax.

A POSIX filename, unlike an MPE filename:

• may contain upper AND lowercase letters (which are significant, /FILE is not the same as
/file).

• may contain these special characters: "-" (hyphen), "_" (underscore), and "." (dot).

• may begin with any character except "-", which allows digits, ".", and the "_".

• may be up to 16 characters in length if the file is built in the root directory (beginning with
just "/") or if is it built in any MPE group (usually anything beginning with "./" if you have
not changed your current working directory to a POSIX directory).

• may be up to 255 characters in length if the file is built anywhere else.

• can not have a lockword since the "/" character is used to delimit subdirectories.

Since MPE filenames are always in uppercase, MPE will automatically upshift any filename
beginning with a letter from "a" to "z". In order to specify a POSIX filename to MPEX or any
other MPE utility, the filename is prefaced with either a period, a forward slash or both.

POSIX files that begin with the forward slash character (/) are considered to be in the root
directory, files that begin with a period (.) are in your current directory, and files that begin
with two periods and a forward slash (../) are in your parent directory.

FILENAMES AND FILESETS: POSIX filesets

43

Forward slashes in the rest of a POSIX filename are used to delimit subdirectories, which are
logically equivalent to MPE groups in an MPE account. (In fact, files in the MPE directory can
be referred to using POSIX notation as shown in the last example.)

POSIX filesets
A POSIX fileset, like an MPE fileset, is an explicit filename that may contain wildcard
characters. In MPE, POSIX filesets ending with a forward slash will include subdirectories
recursively, so the POSIX fileset of "/" is equivalent to "@.@.@" for MPE files. POSIX filesets
ending with an "@" character will not search any subdirectories for files, so the POSIX fileset of
"/@" is the list of files, directories and accounts that are ONLY in the root directory.

The same wildcard rules apply for POSIX filesets as for MPE filesets with one notable
exception. Since the "-" character is a legal character in a filename, and when specifying a
range of characters such as "[I-N]" you have to use the "-" character as part of the syntax and
not a legal character, it would seem impossible to specify a "-" character in a "[…]" range set.

As it turns out, if the "-" character is the first or last character in a range set, then it is treated
as "one of the characters to allow" instead of indicating "a range of characters to allow". For
example, to indicate that any letter from "I" to "N" OR the "-" character may be used, you can
specify this range set as follows:

[-I-N]

or

[I-N-]

MPEX filesets
Syntax: mpefileset [{+|-} mpefileset] [...] [(selectioncondition)]

posixfileset [{+|-} posixfileset] [...] [(selectioncondition)]
eitherfileset [{+|-} eitherfileset] [...] [(selectioncondition)]

Examples: @.@.MYACCT
/posixdir/mydir/(SECTORS>1023)
@.@.SYS + @.@.TELESUP
/SYS/ + @.@.TELESUP - /@/PUB/@/
@.@.@(SAVABLESECTORS>100)
@.MYGROUP.MYACCT (ISHIDDEN)

@.@.@-@.PUB.SYS-@.@.VESOFT(ACCDATE<TODAY-120 and NOT ISPRIV)
/ - /SYS/ -/VESOFT/(ACCDATE<TODAY-120 and NOT ISPRIV)

One of the most important features of MPEX — probably the most important – is its ability to
work on filesets. You can compile filesets, edit them, copy them, purge them, rename them,
print them, etc.

FILENAMES AND FILESETS: MPEX filesets

44

However, the filesets MPEX can operate on aren't just ordinary MPE or POSIX filesets. They
are a vastly enhanced superset of MPE and POSIX filesets, which includes features like:

• The ability to specify several filesets in one command, e.g.

%PURGE K#######.@.@ + LOG####.PUB.SYS
%PURGE K#######.@.@ + /SYS/PUB/LOG####

The "+" sign means "use all files in fileset 1 and all files in fileset 2". On systems that
support POSIX, MPE filesets and POSIX filesets may be intermixed in the same command.

• The ability to exclude filesets, e.g.

%COPY @.DATA+@.SOURCE - MYDB@.DATA - COPY@.SOURCE, @.@.NEWDEV
%COPY ../DATA/+../SOURCE/ - ../DATA/MYDB@ - ../SOURCE/COPY@,&
 @.@.NEWDEV

The "-" sign means "use all files in the + filesets except for those files after the -".

POSIX
note:

Since "-" characters may form part of a POSIX filename, there must be a leading space
before the "-" character if the preceding fileset is a POSIX fileset. You may find it
convenient to always insert spaces around the "-" character in a fileset.

• The ability to select files by their file code, their last access date, the disk space they use,
etc. — by virtually any file attribute you can think of. (This "selectioncondition" is a
boolean expression; please see Appendix B for more details on expressions.)

For instance,

%PURGE @.@.@ - @.@.VESOFT(ACCDATE<TODAY-120 and NOT ISPRIV)
%PURGE / - /VESOFT/ (ACCDATE<TODAY-120 and NOT ISPRIV)

will purge all the files in the system (except those in the VESOFT account) that haven't been
accessed in the last 120 days and have a filecode that's not "PRIV".

Other examples of this extraordinarily powerful feature include:

%LISTF @.@(ONDEVICE(1)), 4

which finds all the files that are at least partially on disk device 1, and:

%LISTF @.@.@(ISPRIV and (DBSETTYPE="A" or DBSETTYPE="M") and DBSETFULLNESS>.75),DB

which shows information on all the IMAGE Automatic or Manual master datasets
(DBSETTYPE="A" or DBSETTYPE="M") that are more than 75% full (DBSETFULLNESS>.75).

%LISTF @.MYGROUP.MYACCT (ISHIDDEN), 2

The ISHIDDEN attribute will select only those files that are "hidden" from MPE's :LISTF
output. Files that are "hidden" are files that begin with either a "/" or "." and contain
characters that cannot be used in an MPE filename. (in other words, all of the files that can
ONLY be specified using HFS notation.) This would include files that have more than 8
characters in the filename, contain lowercase letters or the "_","-" or "." characters, or
reside in a SUBDIRECTORY instead of a GROUP. Remember, MPEX's %LISTF...,2 will
display all MPE and HFS named files that qualify, even if only given an MPE fileset. Some

FILENAMES AND FILESETS: MPEX filesets

45

attributes that are only available on POSIX systems, such as BYTE STREAM files, can still
have MPE-compliant names and therefore will not be "hidden" files.

+ filesets
"+ filesets" — filesets that are combined using the + operator are quite straightforward. A
command such as

%PURGE K#######.@.@ + LOG####.PUB.SYS

simply operates on all the files in the first fileset (in this case, all EDITOR's K-files in the
system) and on all the files in the second fileset (in this case, all the system log files). Other
examples might include

%PRINT AP010.SOURCE + AP030.SOURCE + AP175.SOURCE + AP250.SOURCE; &
 OUT=*LP; PAGEHEAD

(which simply saves you having to type four separate %PRINT commands), or

%EDIT AP@.SOURCE + GL@.SOURCE, SET VARIABLE;LIST 1/2

which performs the given EDITOR command(s) on all the files in the SOURCE group that start
with AP or GL.

The operations on the files are performed one fileset at a time, each fileset in the order
specified. In other words, if you say

%LISTF @.SOURCE+@.DEV, 3

then the SOURCE files will be output first and the DEV files after them (even though the files
within each fileset will be output in alphabetical order).

Similarly, if a file is included in more than one of the "+"ed filesets, it'll be processed each time
it appears.

- filesets
"- filesets" allow you to EXCLUDE files from an MPEX fileset. For instance,

%COPY @.DATA+@.SOURCE - MYDB@.DATA - COPY@.SOURCE, =.=.NEWDEV

will copy into the NEWDEV account all the DATA and SOURCE group files (@.DATA+@.SOURCE)
EXCEPT for those in the filesets MYDB@.DATA and COPY@.SOURCE.

Note that - filesets apply to the ENTIRE MPEX fileset, not just to the + fileset immediately
preceding.

For instance, if you say

%LISTF A@+B@-@X-@Y

then ALL files that end with X or Y will be excluded (the "-@X-@Y" applies to "A@+B@", not just
to B@).

FILENAMES AND FILESETS: MPEX filesets

46

Indirect files
MPEX lets you select files by their filenames (with wildcards, + filesets, and - filesets) and by
various other attributes. What if, however, you want to operate on a list of files, which don't
necessarily have much in common?

For instance, say that the source files for one of your programs are stored in the files
MAINLINE.SOURCE.AP, UTILSUBS.SOURCE.AP, XFILE.INCLUDE.AP, and
DECLS.SOURCE.AP. You might want to be able to compile them all, edit them all, copy them
all, etc., without having to specify the fileset MAINLINE.SOURCE.AP +
UTILSUBS.SOURCE.AP + XFILE.INCLUDE.AP + DECLS.SOURCE.AP on each %COBOL,
%EDIT, %COPY, etc. command (imagine what the fileset would look like if these weren't just
four files, but 40 or 400!).

Instead, you can build an editor file that contains 4 lines:

MAINLINE.SOURCE.AP
UTILSUBS.SOURCE.AP
XFILE.INCLUDE.AP
DECLS.SOURCE.AP

Say that you call this file FILELIST.SOURCE.AP; you could now say

%COBOL ^FILELIST.SOURCE.AP (MODDATE>TODAY-3), MYPROG

or

%PRINT ^FILELIST.SOURCE.AP;OUT=*LP;PAGEHEAD

or

%EDITCHG ^FILELIST.SOURCE.AP, "ITEM-NO", "ITEM-NUMBER"

Note the "^" before "FILELIST.SOURCE.AP". This tells MPEX that this command (%COBOL,
%PRINT, %EDIT or whatever) should not be executed on the file FILELIST.SOURCE.AP itself
(which is what would happen if you'd omitted the "^"). Instead, it should be executed on the
files listed in the file FILELIST.SOURCE.AP.

This "indirect file" can contain either filenames or filesets; it might, for instance, say

MAINLINE.SOURCE.AP
UTILSUBS.SOURCE.AP
X@.INCLUDE.AP
DECLS.SOURCE.AP

which means that it includes the three explicitly specified files (MAINLINE, UTILSUBS, and
DECLS) but also all the files in the fileset X@.INCLUDE.AP. In general, you should think of an
indirect file as just a single MPEX fileset with all the component files "+"ed together.

Each line of this file may be a filename or fileset, with @, # or ? wildcards and [...] range sets.
On systems that support POSIX filenames, POSIX filesets may be included as well (in fact, both
types of filesets may be in the file at the same time). However, it may not include "+"s, "-"s

FILENAMES AND FILESETS: MPEX filesets

47

(except as part of a POSIX filename) or selection criteria — features which are not normally
present in ordinary MPE filesets.

You may also specify an indirect file as a "-" fileset, e.g.

%PURGE @.SOURCE-^FILELIST.SOURCE.AP

This is the same thing as specifying each line in the FILELIST file as a separate "-" fileset on
the %PURGE command, i.e.

%PURGE @.SOURCE-MAINLINE.SOURCE.AP-UTILSUBS.SOURCE.AP- &
 X@.INCLUDE.AP-DECLS.SOURCE.AP

Note that although you can have many hundreds of lines in an indirect fileset used for "+"
purposes, you can have only up to about 80 lines in an indirect fileset being "-"d (the exact
maximum depends on the length of each line).

If you like, you can include comments in indirect files by putting a "#" in column one (this
feature was added for compatibility with the MPE/iX Link Editor). For example:

#This indirect file lists all of the NMOBJ files that need to be
#included in the production RL.
LIB1OBJ
LIB2OBJ
LIB3OBJ
LIB4OBJ
LIB5OBJ

Selection criteria
Probably the most useful aspect of MPEX filesets is the ability to select files based on some file
attribute(s). For instance, you might say

%PURGE @.@.@ - @.@.VESOFT(ACCDATE<TODAY-120 AND NOT ISPRIV)
%PURGE / - /VESOFT/ (ACCDATE<TODAY-120 AND NOT ISPRIV)

to purge all the files that match the selection criteria ACCDATE<TODAY-120 AND NOT ISPRIV
(i.e. they haven't been accessed in 120 days AND their filecodes are not "PRIV").

Other examples include:

%LISTF @.@.@ - @.@.VESOFT&
 - @.PUB.SYS(PROG.PMCAP),5
%LISTF / - /VESOFT/&
 - @.PUB.SYS(PROG.PMCAP),5

which finds all the program files that have PM capability (PROG.PMCAP) except those that are
in the VESOFT account or in the PUB.SYS group.

FILENAMES AND FILESETS: MPEX filesets

48

%ALTFILE @.@(CREATOR="JOHN"); CREATOR=MANAGER

which changes to MANAGER the creator ID of all the files in the logon account that were created
by JOHN (CREATOR="JOHN").

%LISTF CUST?#.DB(DBSETTYPE<>"D" AND DBSETFULLNESS>.65),DB

which shows all the CUST database datasets (CUST?#.DB) that are not details
(DBSETTYPE<>"D") and are more than 65% full (DBSETFULLNESS>.65).

%ALTFILE @.DATA(DEVICESECTORS(1)>=SECTORS/10); DEV=2

which moves to device 2 all the DATA files that have at least 1/10th of their disk space on
device 1.

As you can see, the selection criteria can be arbitrary MPEX expressions, involving:

• File attribute variables and file attribute functions, which contain information about the
current file.

For instance,

o CREATOR is a string variable containing the file's creator ID;

o ACCDATE is a date variable containing the file's last access date;

o SECTORS is an integer variable containing the number of disk sectors the file occupies;

o PROG.PMCAP is a boolean (TRUE/FALSE) variable that's TRUE if the current program
file has PM capability;

o ONDEVICE(ldev) is a function that returns TRUE if at least one extent of the current
file is located on the specified ldev;

Note that these variables and functions refer to attributes of the current file being processed
(the file for which selection criteria are being checked). This should be distinguished from
ordinary MPEX variables (set with %SETVAR) or operators/functions (like +, -, UPS, STR,
etc.) that don't care about what the current file is.

• Standard MPEX variables, operators, and functions, such as +, -, AND, OR, HPUSER,
HPGROUP, etc. These are all discussed in Appendix, and are the same in selection
conditions, in the %IF statement, in the %CALC command, etc.

With all the operators and file attribute variables that are defined, you can select files on
virtually any basis you can think of.

File ranges
What if you want to find all the files whose filenames are in a range; e.g. all the files that start
with "K" through "P" in the DATA group? Well, you could say %LISTF K@.DATA + L@.DATA +
M@.DATA + N@.DATA + O@.DATA + P@.DATA but (of course) there is an easier way.

FILENAMES AND FILESETS: MPEX filesets

49

In addition to the old MPE wildcards @, ?, and #, MPEX supports a file range wildcard, best
described by example:

[ABC] exactly one character, an A, B or C
[A-M] exactly one character, an A, B, C, ..., L or M
[A-EP-SZ] exactly one character, an A, B, C, D, E, P, Q, R, S or Z
[A-M]@ any number of characters that start with an A through M
@[05]@ any number of characters that contain a 0 or a 5

As you see, a "[...]" construct matches exactly one character, which must be one of the ones
listed inside the brackets; saying "[x-y]" indicates a range of characters, and several ranges
and/or single characters may be included in one "[...]" construct. So, for the example above,
you would use the following command:

%LISTF [K-P]@.DATA

POSIX
note:

Since the "-" character is a legal character in a filename, but in the above syntax a "-" indicates
a range of characters, it would seem impossible to indicate that a "-" is simply "one of the
allowed characters". However, if the "-" is the first or last character in the set, then it means
that the "-" character is one of the allowable characters and not an indication of a range of
allowable characters.

POSIX
note:

Since POSIX filesets are case sensitive, [a-z] is not the same as [A-Z]. To select a single
alphabetic character, without regard to case, use [a-zA-Z].

This syntax makes it easy for patterns you enter as parts of filesets, usersets, and MPE account-
/user-/group-sets to exceed 8 characters; therefore, we've increased the maximum length of
any part of such an object (i.e. the file, group or account part of a fileset), when used as part of
a pattern, to 16 characters.

What if you want to find all the files whose filenames are in a range like AP050 through
AP230? This is a commonly asked-for feature, and one that ordinary MPE wildcards can't
handle (AP@ refers to all files that start with AP, and AP[0-2]@ isn't quite right, either, since it
would include filenames like AP023 and AP256 — you just want those from AP050 to AP230).

MPEX's powerful selection conditions do the trick. Just say

%PRINT @(BETWEEN(FILE,"AP050","AP230"))

This selects all the files in your group (@) whose filenames (the file attribute variable FILE)
are between "AP050" and "AP230". The BETWEEN function (documented in Appendix) will, in
general, check to see if the value of its first parameter is between the values of its second and
third parameters; file ranges are just a special case.

Of course, you can do this for any command, not just %PRINT... Also, in this command you
could have said

%PRINT AP@(BETWEEN(FILE,"AP050","AP230"))

since all the files you want are also in the fileset AP@.

FILENAMES AND FILESETS: MPEX filesets

50

Target filesets
The filesets we've just been describing — the ones with +, -, and selection criteria — are called
SOURCE FILESETS, filesets that can be specified as the first parameter of a fileset-handling
command. A TARGET fileset is a fileset that is specified as the second or last parameter of a
fileset-handling command. For instance, you might say

%COPY @.SOURCE(ACCDATE>=TODAY-2),@.CHANGED

in which case @.SOURCE(ACCDATE>=TODAY-2) is the source fileset, and @.CHANGED is the
target.

What if you were to type this instead:

%COPY @.SOURCE, @.CHANGED-X@.CHANGED(ACCDATE>=TODAY-2)

Does this make any sense? Not really. The second parameter — the "target" of the %COPY
command — doesn't specify which files are to be copied, but rather what the new names of the
copied files will be. What does it mean when we put an "(ACCDATE>=TODAY-2)" selection
condition on the target fileset? The object files need not even exist (they probably don't) —
how can we select based on their last access date? And what about the "-X@.CHANGED" —
what if one of the files in SOURCE starts with X? If we can't copy it into a file that starts with X
in the CHANGED group, what could we do?

What this all means is that + filesets, - filesets, and selection conditions work only on source
filesets (the first fileset on each fileset-handling command). Target filesets, with one minor
exception, must be simple MPE or HFS style filesets.

The exception for target filesets is the "=" wildcard character. Say that you type

%COPY AP@.SOURCE+GL@.SOURCE, =.BACKUP

The "=" sign means "make the filename of the target file be the same as the filename of the
source file". (If you'd put the "=" in the group, account or lockword position, it would make
the group,account and lockword of the target be the same as the group,account and lockword
of the source.)

How is an "=" different from an "@"? Well, "=" refers to the ENTIRE source file part (or group
or account) — "@" refers only to that part which corresponds to an "@" in the source fileset. In
other words, saying

%COPY S@.DEV.AP, B@.DEV.AP

will copy the file STEST.DEV.AP into the file BTEST.DEV.AP — the "@" in the target fileset
was replaced by "TEST". Saying

%COPY S@.DEV.AP, B=.DEV.AP

will copy the file STEST.DEV.AP into the file BSTEST.DEV.AP — the "=" in the target fileset
was replaced by "STEST", the entire file portion of the source file name.

FILENAMES AND FILESETS: MPEX filesets

51

"=" is most useful in cases like those shown in the first example:

%COPY AP@.SOURCE+GL@.SOURCE, =.BACKUP

Here, the target filename is defined to be the SAME as the source filename, regardless of
which fileset (AP@.SOURCE or GL@.SOURCE) the source file came from. If the source fileset
didn't have a "+", e.g.

%COPY AP@.SOURCE, =.BACKUP

then we could easily do the same thing without an "=":

%COPY AP@.SOURCE, AP@.BACKUP

Another important application of "=" is to preserve file lockwords on a %COPY, %FCOPY or
%RENAME:

%COPY @.SOURCE, @/=.BACKUP

The "=" in the lockword part of the target fileset means that the target file should be built with
the same lockword (if any) as the source file. Otherwise, if you don't specify a lockword,
MPEX will assume (just like MPE) that the target file should be unlockworded.

POSIX Note: source and target filesets using HFS syntax
On systems that support POSIX, certain changes have to be made for special characters in a
source or target fileset. For instance, we have already mentioned that the "/" character is used
to delimit directories and subdirectories and therefore cannot be used to indicate a lockword
in a POSIX fileset. Likewise, since the "-" character is a legal character in filenames, (but not
as the first character of a filename), you must insert a space before a file or fileset that is to be
subtracted if the previous file is specified using HFS syntax.

The "@" character still means "zero or more characters", but it will not go beyond a "/"
character (which, in this case, is the same as the "." character used to separate the file, group
and account parts of an MPE filename). Like the "@", the "=" character in a target fileset will
replace the current element with the complete corresponding element from the source fileset.
This is fine in most cases, but could be a bit tedious if you are renaming or copying a file that
is several directory levels deep. In this case, the shorthand notation of "==" in a TARGET
fileset means "use the same path as the source" (see below for an example).

While the standard wildcard characters will let you specify nearly any fileset that you are likely
to ever use, there are still some filesets that cannot be specified easily. For instance, the
fileset:

/A@/B@/C@

is fairly straightforward — it selects any file that begins with the letter "C", residing in any
subdirectory beginning with a "B", located in any directory beginning with an "A".

FILENAMES AND FILESETS: File attribute variables and functions

52

However, the file:

/ARIZONA/BUSINESS/TAXES/COLLECTIONS

will not qualify since "COLLECTIONS" is in the fourth level while "/A@/B@/C@" only has three
levels.

In order to select files in any sub-level, you can use "//" to mean "any number of directories
and subdirectories". So, in order to qualify "COLLECTIONS" in the above example, use:
/A@/B@//C@

However, the "//" may not be followed by another "/" or in other words, the only thing that
can follow a "//" is a wild-carded FILE specification, not a wild-carded DIRECTORY
specification.

In both of these examples, the last element of the source fileset was "C@", which will only select
files and directories that start with "C" in the directory specified. If the last character of a
POSIX source fileset is a "/", then MPEX will include all the files in each subdirectory that
matches the last directory level specified. For example, let's say you have a directory called
"/source", with several subdirectories of "project-01", "project-02", and so on. In each
"project-##" directory, the actual source code, "include" files, libraries, notes, and any other
related files are stored in one or more subdirectories. In order to specify "everything related to
project 11", you could use the fileset:

/source/project-11/

To specify all files for all projects, you would use:

/source/project-@/

Since an HFS pathname can contain several levels, it could be a bit tedious to have to type
"/=/=/=/=/=/=/=/NEWTARGETNAME" when renaming or copying files within the same
directory, so for POSIX target filesets, the shorthand notation of "==" means "the same path as
the source". For example, to rename a file that is buried several levels deep (keeping the file in
the same directory) the following syntax can be used:

%RENAME /level1/level2/level3/level4/level5/filename, ==/newfilename

If the TARGET of a copy or rename operation is a directory, then all the files from the source
fileset are copied or renamed into the directory (This is similar to other operating systems such
as UNIX or MS-DOS).

File attribute variables and functions
As we mentioned before, a selection criterion is an expression that can include some FILE
ATTRIBUTE VARIABLES AND FUNCTIONS that contain information about the current file.

In general, whenever MPEX operates on a fileset, it makes these file attribute
variables/functions available to you so that you can make decisions based on the attributes of
the current file.

FILENAMES AND FILESETS: File attribute variables and functions

53

This includes:

• Selection criteria,

• %LISTF command flexible template files,

• the VEFINFO(...).attrvar function, and

• %REPEAT/%FORFILES statements, in which you can refer to file attribute variables and
functions by using the ![xxx] variable syntax and prefixing each file attribute variable
name with "RFILE." — e.g.

%REPEAT
%>FILE MYINFILE=!MPEXCURRENTFILE
%>RUN MYPROG;INFO="![RFILE.CREATOR]";PARM=![RFILE.INTCODE]
%>FORFILES @.DATA

Each file attribute variable — like all MPEX variables — has a data type (INTEGER, REAL,
STRING or BOOLEAN). Unlike MPEX variables but like some MPEX operators (see Appendix
B), some attribute variables might also be of type DATE or type TIME.

It's important to know the variable's type because the type controls what operators you can use
on the variable — for instance, if you say %LISTF @.@.@(ACCDATE<CODE),3 you'll get an
error — ACCDATE is of type DATE, CODE is of type STRING, and you can't compare dates and
strings. On the other hand,

%LISTF @.@.@(ACCDATE<TODAY-120),3

is quite valid:

• ACCDATE is a file attribute variable of type DATE.

• TODAY is an MPEX function (see Appendix B) of type DATE.

• The - operator can take a date (TODAY) and an integer (120), and will return another date.

• Finally, you'll be comparing ACCDATE (a date) against TODAY-120 (also a date), which is
perfectly legal.

• With all that said, here are the file attribute variables and file attribute functions that MPEX
defines.

• Remember, you can use them directly in selection criteria and %LISTF template files — in
%REPEAT...%FORFILES constructs they have to be prefixed with "RFILE.".

• Also remember that all of these attribute variables/functions apply to THE FILE BEING
CURRENTLY PROCESSED. Thus, when we say that "ACCOUNT" refers to "Account name",
we mean the account name of the current file.

• Each variable is marked [STR] if it's a string, [INT] if an integer, [BOOL] for boolean,
[DATE] for date, [TIME] for time, and [REAL] for real.

• [STR] variables always have trailing blanks removed.

• For your convenience, the file attribute functions and variables are roughly categorized by
the LISTF mode (if any) that shows them — all the things shown by %LISTF...,2 first, then
those shown by %LISTF...,XL3, etc. Of course, each file attribute can be used in any MPEX
command, not just %LISTF.

FILENAMES AND FILESETS: File attribute variables and functions

54

:LISTF MYFILE.PUB.SYS,2
ACCOUNT= SYS GROUP= PUB

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE * EDTCT 80B FA 14100 18901 32 5930 27 29

Attribute Type Returns Example

FILE [STR] Filename "MYFILE"

GROUP [STR] Group name "PUB"

ACCOUNT [BOOL] Account name "SYS"

OPENED [BOOL] TRUE if file currently FOPENed TRUE

FMTOPENED [STR] "*" if FOPENed, " " if not "*"

INTCODE [INT] Filecode as an integer 1052

CODE [STR] Filecode as a string "EDTCT"

RECSIZE [INT] Record size in bytes 80

FMTRECSIZE [STR] Record size 80B

FMTTYPE [STR] File type "FA"

EOF [INT] Number of records in file 14100

FLIMIT [INT] File limit 18901

BLOCKFACTOR [INT] Blocking factor 32

BLOCKSIZE [INT] Block size, in bytes 2580 (80*32)

SECTORS [INT] # of sectors used by file 5930

NUMEXTENTS [INT] Current number of extents 27

MAXEXTENTS [INT] Maximum number of extents 29

ISFIXED [BOOL] TRUE if fixed length records TRUE

ISVARIABLE [BOOL] TRUE if variable records FALSE

ISUNDEFINED [BOOL] TRUE if undefined records FALSE

ISASCII [BOOL] TRUE if file is ASCII TRUE

ISBINARY [BOOL] TRUE if file is BINARY FALSE

ISCCTL [BOOL] TRUE if file has CCTL FALSE

ISNOCCTL [BOOL] TRUE if file has NOCCTL TRUE

ISSTD [BOOL] TRUE if not MSG/CIR/RIO/KSAM file TRUE

FILENAMES AND FILESETS: File attribute variables and functions

55

Attribute Type Returns Example

ISRIO [BOOL] TRUE if type RIO file FALSE

ISKSAM [BOOL] TRUE if KSAM (or KSAMXL) key/data file FALSE

ISKSAMXL [BOOL] TRUE if KSAMXL file FALSE

ISKSAM64 [BOOL] TRUE if KSAMXL64 file FALSE

ISMSG [BOOL] TRUE if MSG file FALSE

ISCIR [BOOL] TRUE if CIRcular file FALSE

ISCMPROG [BOOL] TRUE for PROG files only FALSE

ISNMPROG [BOOL] TRUE for NMPRG files only FALSE

ISPROG [BOOL] TRUE for both PROG and NMPRG files FALSE

ISEXECUTABLE [BOOL] TRUE for PROG, NMPRG, SL, XL files FALSE

ISENCRYPTED [BOOL] TRUE for files encrypted by %SEC ENCRYPT FALSE

ISQEDIT [BOOL] TRUE if the file code=111 (QEDIT) FALSE

ISJUMBO [BOOL] TRUE if the file is a QEDIT "Jumbo" file FALSE

ISPRIV [BOOL] TRUE if the file is PRIVileged FALSE

ISDIR [BOOL] TRUE if a directory or account FALSE

ISHIDDEN [BOOL] TRUE if file is not shown by :LISTF FALSE

ISLINK [BOOL] TRUE if linked to another file FALSE

ISBYTESTREAM [BOOL] TRUE if BYTE STREAM file FALSE

ISXLSPOOLFILE [BOOL] TRUE if NM SPOOL file FALSE

%LISTF MYFILE.PUB.SYS,XL3

FILE: MYFILE.PUB.SYS

FILE CODE : 0 FOPTIONS: BINARY,FIXED,NOCCTL,STD
BLK FACTOR: 1 CREATOR : MANAGER.VESOFT
REC SIZE: 256(BYTES) LOCKWORD: **
 GROUP ID: VESOFT
BLK SIZE: 256(BYTES) SECURITY--READ: ANY
EXT SIZE: 0(SECT) WRITE: ANY
NUM REC: 0 APPEND: ANY
NUM SEC: 0 LOCK: ANY
NUM EXT: 0 EXECUTE: ANY
MAX REC: 1023 **SECURITY IS ON
 FLAGS : NO ACCESSORS

FILENAMES AND FILESETS: File attribute variables and functions

56

NUM LABELS: 0 CREATED : SUN, AUG 11, 1991, 1:55 PM
MAX LABELS: 0 MODIFIED: THU, DEC 24, 1992, 10:52 AM
DISC DEV #: 2 ACCESSED: FRI, FEB 05, 1993, 8:15 AM
 RESTORED: THU, DEC 30, 1993, 11:34 AM
 STATE : THU, DEC 24, 1992, 10:52 AM
SEC OFFSET: 0 LABEL ADDR: **
UFID : $055C0002 $4B8C11A6 $00593ABA $85033455 $1CBC9B07
VOLCLASS : MPEXL_SYSTEM_VOLUME_SET:DISC

Attribute Type Returns Example

FOPTIONS [INT] FOPTIONS of a file $2001

FMTFOPTIONS [STR] Formatted FOPTIONS value "BINARY,FIXED,
NOCCTL,STD"

CREATOR [STR] Creator name "MANAGER"

CREATORACCOUNT [STR] Creator's logon account

On pre-POSIX MPE/iX systems, this applied to
native mode SPOOLFILES only.

"VESOFT"

OWNER [STR] Owner name "MANAGER.VESOFT"

LOCKWORD [STR] Lockword (up to 8 chars, no blanks).

Returns an empty string if the file has no
lockword or the user does not have AM (for
files within their account) or SM capability.

(Remember, POSIX files do not have
lockwords.)

""

FILEGROUP [STR] The file's GROUPID attribute "VESOFT"

CREDATE [DATE] Creation date 8/11/91

CRETIME [TIME] Creation time 1:55 PM

CREDATETIME [STR] Creation date and time, a 12-character string
formatted as "YYMMDDhhmmss", e.g.
"900522050630" means 90/05/22, 5:06 AM
and 30 seconds. Useful for comparing
creation dates and times of files.

"900522050630"

ACCDATE [DATE] Last access date 2/5/93

ACCTIME [TIME] Last access time 8:15 AM

ACCDATETIME [STR] Last access date and time, "YYMMDDhhmmss"
format.

"930205081530"

MODDATE [DATE] Last modify date 12/24/92

MODTIME [TIME] Last modify time 10:52 AM

FILENAMES AND FILESETS: File attribute variables and functions

57

Attribute Type Returns Example

MODDATETIME [STR] Last modify date and time, "YYMMDDhhmmss"
format.

"921224105210"

RSTDATE [DATE] Last restore date 12/30/93

RSTTIME [TIME] Last restore time 11:34 AM

RSTDATETIME [STR] Last restore date and time, "YYMMDDhhmmss"
format.

"931230113422"

STATEDATE [DATE] State change date 12/24/92

STATETIME [TIME] State change time 10:52 AM

STATEDATETIME [STR] State change date and time, "YYMMDDhhmmss"
format.

"921224105210"

%LISTF MYFILE.PUB.SYS,4
-----FILE------ EXTENTS -BLKFACT- -----SECTORS----- DEVICE
LABEL
NAME CODE NUM MAX NOW BEST USED NOW SAVABLE CLASS LDEV

MYFILE 27 29 32 16 5930 1220 DISC 2
 Dev/Sector: 1/%00000242254 3/%00000242576 ...

Attribute Type Returns Example

BESTBLOCKFACTOR [INT] Best blocking factor for this file 16

SAVABLESECTORS [INT] Total sectors savable by ALTFILE…;XLTRIM 1220

DEVICE [STR] Device class "DISC"

FLABLDEV [INT] LDEV for the file label.

Note: this isn't necessarily where the file resides.

2

LASTEXTENTSIZE [INT] # of sectors in last extent

%LISTF MYFILE.PUB.SYS,SEC
FILENAME REC TYPE READ APPEND WRITE LOCK EXECUTE

MYFILE 80B FA AC AL,GU CR CR ANY

Attribute Type Returns Example

ISRELEASED [BOOL] TRUE if file is :RELEASEd FALSE

ISSECURED [BOOL] TRUE if file is :SECUREd TRUE

FILENAMES AND FILESETS: File attribute variables and functions

58

Attribute Type Returns Example

HASACD [BOOL] TRUE if file has an ACD FALSE

SECURITYR [STR] Allowed readers "AC"

SECURITYA [STR] Allowed appenders "AL,GU"

SECURITYW [STR] Allowed writers "CR"

SECURITYL [STR] Allowed lockers "CR"

SECURITYX [STR] Allowed executers "ANY"

SECURITYAC [STR] Rights of users of class AC "R"

SECURITYAL [STR] Rights of users of class AL "A"

SECURITYGU [STR] Rights of users of class GU "A"

SECURITYGL [STR] Rights of users of class GL ""

SECURITYCR [STR] Rights of users of class CR "WL"

CSECURITYxxx [STR] Same as SECURITYxxx (where xxx can be R, A, W, ANY, AC, AL,
etc.) except that it factors in the group and account security
access matrices as well. Not available in VEFINFO.

ISBOSS [BOOL] TRUE if executing user is SM or AM of file's account.

Miscellaneous attributes:

Attribute Type Returns

ACDREQUIRED [BOOL] TRUE if ACDs are required.

VALIDCOLDLOADID [BOOL] (always returns TRUE on MPE/iX) .

EXCLUSIVE [BOOL] TRUE if being accessed exclusively.

FULLNAME [STR] Fully-qualified name (up to 26 chars, no blanks, no lockword).

E,g, "CICAT.PUB.SYS"

FULLNAMELOCK [STR] Fully-qualified name (up to 35 chars, no blanks, with lockword).

E.g. "GOD/BOG.PUB.VESOFT"

LABELEOF [INT] Total currently written user labels.

LABELFLIMIT [INT] Maximum number of user labels.

LOADED [BOOL] TRUE if loaded (:RUN or :ALLOCATEd).

ID [STR] Text associated with this file.

IDCONTAINS(S) [BOOL] TRUE if the string S passed to this function appears in the file's
identification string.

FILENAMES AND FILESETS: File attribute variables and functions

59

Attribute Type Returns

OPENEDSYSFAIL [BOOL] TRUE if a system failure occurred while the file was FOPENed and
the file has not been FOPENed since then (useful for KSAM files to
determine if KSAMUTIL >KEYINFO;RECOVER should be run
against them).

(Not available under MPE/iX).

PATH [STR] The PATH portion of a filename.

For the file "/ROOTDIR/subdir/filename", the PATH is
"/ROOTDIR/subdir/".

RESTORED [BOOL] TRUE if being :RESTOREd.

(not available under MPE/iX).

STORED [BOOL] TRUE if being :STOREd.

(not available under MPE/iX).

READING [BOOL] TRUE if opened for read access.

WRITING [BOOL] TRUE if opened for write access.

Functions:

Attribute Type Returns

ACCESSIBLE(S) [BOOL] TRUE if you — the running user — have the access specified by
string S to the file, e.g. ACCESSIBLE("RWX") is TRUE if you have
Read, Write, and eXecute access to the file.

ACCESSIBLEBY
 (S1,S2)

[BOOL] TRUE if the file has ACDs and the user indicated by S2 has the
access specified by S1 to the file. For instance,

ACCESSIBLEBY("RW","JACK.PROD") is TRUE if JACK.PROD has
Read and Write access to the file. S2 may also be "@.account"
or "@.@" — ACCESSIBLEBY("X","@.DEV") is TRUE if all users
of DEV account has eXecute access to the file;
ACCESSIBLEBY("R","@.@") is TRUE if everybody has been
granted Read access to the file.

Note: At the moment, this only returns TRUE for files with
 ACDs; also, it only looks at what access the user has
 been explicitly allowed; it does not consider that the
 user may be allowed full access because he is the file's
 creator, AM or SM.

 This may be changed in future versions.

DEVICESECTORS(I) [INT] The number of sectors of the current file located on LDEV I, e.g.
DEVICESECTORS(2).

FILENAMES AND FILESETS: File attribute variables and functions

60

Attribute Type Returns

`MATCHES(S) [BOOL] TRUE if filename matches fileset S, e.g.
MATCHES("AP@.SOURCE.@").

NEWERTHAN(S) [BOOL] TRUE if the file has been modified later than the corresponding
file in the targetfileset specified by the string S (see "Target
Filesets", above). Because MPE may change the modify date for
program files when you merely RUN them, MPEX uses the create
date rather than the modify date if the targetfile is a program file
(PROG or NMPRG).

If the targetfile doesn't exist, NEWERTHAN(...) returns TRUE.

ONDEVICE(I) [BOOL] TRUE if at least one extent of the current file is located on LDEV
I, e.g. ONDEVICE(1).

Text processing and string searching functions:

Attribute Type Returns

FSEARCHSTRING(S) [INT] Total number of lines containing the string S in the text of the
current file:

 %LISTF @.SOURCE(FSEARCHSTRING('FOO')>0)

finds all the files in the SOURCE group which have one or more
lines containing the string 'FOO'.)

FCONTAINS(S) [BOOL] TRUE if the string S is in the file. For example:

 %LISTF @.SOURCE(FCONTAINS('FOO'))

finds all the files in the SOURCE group which have one or more
lines containing the string 'FOO'. This is equivalent to the
example for FSEARCHSTRING, but you don't include ">0" as part
of the selection criteria.)

FSEARCHEXP(S) [INT] Total number of lines that match the logical expression — just
like the ones that can be passed to %PRINT...;SEARCH=... —
specified by S. Remember, however, that since in this context S
is a STRING, it must be enclosed in quotes:

 %LISTF @.SOURCE (FSEARCHEXP("'CUST-NO' or &
 'CUST-NAME'")>0)

will find all files that have at least one line containing EITHER
the string 'CUST-NO' or the string 'CUST-NAME'.

In fact, S can include (in addition to the logical expression used
by ;SEARCH=) any of the MPEX %PRINT parameters (although
not all of them are useful in this context).

FILENAMES AND FILESETS: File attribute variables and functions

61

Attribute Type Returns
For example, you might say

 %LISTF @.FAIRY.TALES &
 (FSEARCHEXP("'happily';START=50;END=60")>0)

which means "list all of the files in the FAIRY.TALES group that
have the word 'happily' between lines 50 and 60.

Perhaps the most useful keyword in this context is ;MAX=, which
means stop reading the file after finding a given number of
occurrences of the string.

 %LISTF @.TALL.TALES(FSEARCHEXP("CL'blue ox'; &
 MAX=2")=2), 3

shows you the create/restore/modify/access dates (",3") of all
the files in the TALL.TALES group that contain at least two
occurrences of the string "blue ox" (upper- or lowercase), and
stops searching each file after finding two occurrences of the
string.

File attributes pertaining to IMAGE datasets

Note:

These file attributes are relevant only for IMAGE datasets — if the current file is not an IMAGE
dataset, these attributes will return unpredictable values.

%LISTF CUST01.VESOFT.LIST,DB
FILENAME SET NAME TYPE LDEV ENTRY CAPA- %FULL BLK SECTORS %BLOCK SECTRS
 COUNT CITY FCT WASTED WASTED

CUST01 CUST M 2 13856 19009 72.9% 19 17024 0.4% 62

Attribute Type Returns Example

DBSETNAME [STR] Dataset name "CUST"

DBSETTYPE [STR] Dataset type ("M", "D", or "A") "M"

DBSETENTRIES [INT] # of dataset entries 13856

DBSETCAPACITY [INT] Dataset capacity 19009

DBSETMAXCAPACITY [INT] Dataset max capacity 19009

DBSETFULLNESS [REAL] DBSETENTRIES//DBSETMAXCAPACITY 0.729

DBSETHIGHWATERMARK [INT] Highwatermark: highest record number ever used

DBSETBLOCKFACTOR [INT] Dataset blocking factor. 19

DBSETENTRYLENGTH [INT] Dataset data entry length (in words).

FILENAMES AND FILESETS: File attribute variables and functions

62

Attribute Type Returns Example

DBSETNUMPATHS [INT] Number of paths linked to this dataset.

DBSETMEDIALENGTH [INT] Dataset "media record" length, i.e. length of each record
including IMAGE pointers.

DBSETBLOCKSIZE [INT] Actual size (in words) of each dataset block on disk.

DBSETBLOCKWASTAGE [REAL] Fraction (from 0 to 1) of each dataset block that is wasted
(because DBSETBLOCKSIZE is not a multiple of 128 words).

File attributes pertaining to programs

Note:

These file attributes are relevant only for program files — if the current file is not a program
file, these attributes will return unpredictable values (usually 0 for integers, FALSE for
booleans, and "" for strings).

All of these file attributes must be referred to as "PROG.attrvar". The "PROG." simply tells
MPEX that this attribute pertains specifically to program files (just like "RFILE." tells MPEX —
in those contexts, like %REPEAT...%FORFILES, where MPEX doesn't automatically assume it —
that the attribute pertains to files in general).

Although "RFILE." can usually be omitted for general file attributes (except in
%REPEAT...%FORFILES), "PROG." can not be omitted but must always be specified if you want
to get program file information.

%LISTF DBUTIL.PUB.SYS,5
FILENAME MAXDATA STACK DLSIZE DBSIZE #SEGS CAPABILITIES

DBUTIL 31000 1200 0 3296 4 BA IA PM MR DS

Attribute Type Returns Example

PROG.FMTCAPS [STR] Formatted capabilities "BA IA PM"

PROG.PMCAP [BOOL] TRUE if program has PM capability TRUE

PROG.MRCAP [BOOL] TRUE if program has MR capability FALSE

PROG.DSCAP [BOOL] TRUE if program has DS capability FALSE

PROG.PHCAP [BOOL] TRUE if program has PH capability FALSE

PROG.IACAP [BOOL] TRUE if program has IA capability TRUE

PROG.BACAP [BOOL] TRUE if program has BA capability TRUE

PROG.HASPRIVSEG [BOOL] TRUE if program has any permanently privileged
segments.

TRUE

PROG.ZERODB [BOOL] TRUE if CM program was :PREPed with ;ZERODB. FALSE

PROG.NUMSEGS [INT] # of code segments in program. 4

FILENAMES AND FILESETS: File attribute variables and functions

63

Attribute Type Returns Example

PROG.DBSIZE [INT] # of words in CM program's globald (DB) area. 3296

PROG.STACK [INT] CM Program's :PREP-time ;STACK= 1200

PROG.DL [INT] CM Program's :PREP-time ;DL= 0

PROG.MAXDATA [INT] CM Program's :PREP-time ;MAXDATA= 31000

PROG.ISOCTCOMPED [BOOL] TRUE if program was :OCTCOMPed FALSE

PROG.NMSTACK [INT] NM Program's :LINK-time ;NMSTACK= 503808

PROG.NMHEAP [INT] NM Program's :LINK-time ;NMHEAP= 81920000

File attributes pertaining to SPOOL files

Note:

These file attributes are relevant only for spool files, and should thus be used only on those
commands that handle spool files (like %ALTSPOOLFILE, %DELETESPOOLFILE or %SHOWOUT).
If you use them in connection with normal files, you'll get unpredictable information.

All of these file attributes must be referred to as "SPOOL.attrvar". The "SPOOL." simply tells
MPEX that this attribute pertains specifically to spool files (just like "RFILE." tells MPEX — in
those contexts, like %REPEAT...%FORFILES, where MPEX doesn't automatically assume it —
that the attribute pertains to files in general).

Although "RFILE." can usually be omitted for general file attributes (except in
%REPEAT...%FORFILES), "SPOOL." can not be omitted but must always be specified if you want
to get spool file information.

:RUN SPOOK5.PUB.SYS
> SHOW 970
FILE #JOB FNAME STATE DEV/CL PR COP RFN OWNER
O970 #J350 $STDLIST READY LP 3 1 MANAGER.VESOFT
FILE LDEV LABEL SECTORS LINES TIME
O970 %2 %1173436 40 87 12:15 2/ 9/91

Attribute Type Returns Example

SPOOL.ISACTIVE [BOOL] Spool file STATE is ACTIVE FALSE

SPOOL.ISREADY [BOOL] Spool file STATE is READY TRUE

SPOOL.ISOPENED [BOOL] Spool file STATE is OPENED FALSE

SPOOL.ISLOCKED [BOOL] Spool file STATE is LOCKED FALSE

SPOOL.ISDEFERRED [BOOL] Spool file STATE is DEFERRED FALSE

SPOOL.ISSPSAVE [BOOL] Spool file has SPSAVE set

SPOOL.OUTPRI [INT] Output priority 3

FILENAMES AND FILESETS: File attribute variables and functions

64

Attribute Type Returns Example

SPOOL.JOBTYPE [INT] 1 if created by session, 2 (job)
2 if created by job,
3 if created by job and >INPUT from tape,
0 if created by session and >INPUT from tape

SPOOL.JOBNUMBER [INT] Creating job number 350

SPOOL.USER [STR] Creating user name "MANAGER"

SPOOL.ACCOUNT [STR] Creating account name "VESOFT"

SPOOL.JSNAME [STR] Creating job/session name.

SPOOL.FILE [STR] Spool filename "$STDLIST"

SPOOL.SPOOLFILENUM [INT] Spool file number (#Oxxx) 970

SPOOL.HASFORMMSG [BOOL] TRUE if has forms message.

SPOOL.DEVICE [STR] Output device class.

Note: Numeric devices (e.g. LDEV 6) will be
 returned as a string (e.g. "6").

"LP"

SPOOL.JOBABORTED [BOOL] TRUE if job aborted as a result of an error in a command
that was not preceded by "!CONTINUE".

SPOOL.NUMCOPIES [INT] Number of copies. 1

SPOOL.NUMLINES [INT] Number of lines. 87

SPOOL.READYDATE [DATE] Date the file was made ready 2/9/91

SPOOL.READYTIME [TIME] Time the file was made ready 12:15

GROUP and ACCOUNT attributes of files
Suppose you want to find all program files that were :PREPed with ";CAP=PH", but that reside
in groups (or accounts) that don't have PH capability. You can easily select PROG.PHCAP, but
how do you select based on attributes of the group and/or account the file is in? Very easily!
You just use "DIRGROUP.attrvar" and "DIRACCOUNT.attrvar" in the selection condition (or
"RFILE.DIRGROUP.attrvar"/"RFILE.DIRACCOUNT.attrvar" in a %REPEAT...%FORFILES)!

In the above example, you would simply say

%LISTF @.@.@(PROG.PHCAP and NOT DIRGROUP.CAP("PH"))

or

%LISTF @.@.@(PROG.PHCAP and NOT DIRACCOUNT.CAP("PH"))

For a complete list of group and account attributes, see the MPE Group Attribute Variables and
MPE Account Attribute Variables in the Object Attribute Variables section of the VEAUDIT User
Manual.

FILENAMES AND FILESETS: File attribute variables and functions

65

Actually, DIRGROUP and DIRACCOUNT are really just shorthand for VEGROUPINFO and
VEACCTINFO; e.g.

DIRGROUP.CAP("PH")

is the same as

VEGROUPINFO(RFILE.GROUP+"."+RFILE.ACCOUNT).CAP("PH")

See Appendix B for more information on these and other functions.

JOB/SESSION attributes

Note:

Unlike previous attributes, which pertain to some type of file ("flat" files, databases, spoolfiles,
etc.), or to MPE groups and accounts, these are attributes of jobs and/or sessions. They can
only be used in commands and/or expressions that handle MPE jobs/sessions (like
![RJOB.attrvar] in a %REPEAT...FORJOBS construct, and the VEJOBINFO(...).attrvar
function).

When we use "job" in the description of the following attribute variables, we really mean "job
or session". However, some attribute variables are meaningful only for jobs (e.g. NUMCOPIES,
ISSTDLISTDELETE, OUTPRI, etc.), while others make sense only for sessions (HPDTCPORTID,
ISQUIET, etc.). If you try to use a JOB attribute against a SESSION, you may get an error.

Attribute variables of type string [STR] omit trailing blanks.

Attribute Type Returns

FMTLOGON [STR] Job logon, formatted as "jobname,user.account,group"

FMTJOB [STR] Job number, formatted as "#Snnn" or "#Jnnn"

JSNAME [STR] Job/session name

USER [STR] User name

GROUP [STR] Group name

ACCOUNT [STR] Account name

HOMEGROUJP [STR] Home group name

INTROTIME [TIME] Time the job was introduced

INTRODATE [DATE] Date the job was introduced

LDEVIN [STR] Job input device

LDEVLIST [STR] Job output device

CURRENTCMD [STR] Last MPE command the job executed

INPRI [INT] Job input priority (15 = HIPRI)

OUTPRI [INT] Job $STDLIST output priority

NUMCOPIES [INT] Job $STDLIST number of copies

FILENAMES AND FILESETS: File attribute variables and functions

66

Attribute Type Returns

ISDEFERRED [BOOL] TRUE if the job is deferred (i.e. INPRI<JOBFENCE)

MAINPIN [INT] Job's main PIN

ISRESTARTABLE [BOOL] TRUE if the job is restartable

CPULIMIT [INT] Job's CPU time limit

ISEXEC [BOOL] TRUE if job is executing

ISSUSP [BOOL] TRUE if job is suspended

ISWAIT [BOOL] TRUE if job is waiting

ISINIR [BOOL] TRUE if job is being initialized

ISSCHED [BOOL] TRUE if job is scheduled

ISQUIET [BOOL] TRUE if user has issued a SET MSG=OFF command

STATE [STR] Job state ("EXEC", "SUSP", etc.)

LOCATTR [INT] Local attribute of user ID that job is logged on to

HPDTCPORTID [STR] The DTC PORT address/ID for the session

INSPOOLFILENUM [INT] Job input spool file number

OUTSPOOLFILENUM [INT] Job output spool file number

ISSTDLISTDELETE [BOOL] TRUE if job did a :SET STDLIST=DELETE

PRIVATE [BOOL] TRUE if the job's $STDLIST spoolfile is PRIVATE

SPSAVE [BOOL] TRUE if the job's $STDLIST spoolfile should be saved

SECURITY/3000 user profile attributes
In addition to all of the various MPE-related attributes described above, MPEX also gives
SECURITY users access to various "user profile" attributes, like the user's real name, last logon
date/time or even user-defined fields.

You can access these attributes using the VEPROFILEINFO(profile).attr and
VEPROFILEEXISTS(profile) functions (see Appendix B for details).

For a complete listing of user profile attributes, see "User Profile Attribute Variables and
Functions" in the Listing User Profiles section of the SECURITY User Manual.

SPECIAL MPEX TOPICS:: Using MPEX to compile programs

67

SPECIAL MPEX TOPICS:

Using MPEX to compile programs
Say that you change your COPYLIB — now you have to recompile all of your many COBOL
programs. (Even if you think that the COPYLIB module you changed affects only 10 programs,
you may easily be mistaken, and if you are, a partial recompile may do more harm than good!)
MPEX lets you do this in one command.

Although these examples show the COBOL compiler, MPEX has commands to compile using C,
FORTRAN, PASCAL, RPG, and SPL as well. The format for each of these commands is virtually
identical, so once you've learned how to use one compiler, learning the others is a fairly simple
task. At the end of this section, specific differences between our commands and their MPE
equivalents will be discussed.

What does the

%COBOL AP@.SOURCE,AP@.PUB,,,,,MAXDATA=30000;CAP=PH

command do? Well, it takes all the files in the fileset "AP@.SOURCE" and compiles (and
:PREPs) them into program files with the same names except that they reside in the PUB group
(that's what the AP@.PUB indicates). Since the "prepparms" parameter was specified
(MAXDATA=30000;CAP=PH), all the :PREPs will take place with those parameters.

This is one command that you might want to do in batch mode rather than online (otherwise it
might tie up your terminal for quite a while). Saying

%$COBOL AP@.SOURCE,AP@.PUB,,,,,MAXDATA=30000;CAP=PH

will execute all the compiles in a batch job stream (that's what the "$" before the "COBOL"
indicates). If there are any compile errors, the job stream will send you a message indicating
this; in any case, the job stream will also send you a message when it's done. (Remember that
the "$" prefix can be used in front of any command to execute it in batch.)

Although the command is called %COBOL, it's actually more like a :COBOLPREP — the second
parameter is the program file (not the USL file). If you want to specify the USL fileset, too, you
can — it's the sixth parameter (after the "newfileset" and before the "prepparms"). If you
only want to do compiles, not :PREPs, see below.

GENERAL SYNTAX:
General syntax for CM compilers:

Syntax: %CMcompiler textfileset
 [,[progfileset]
 [,[listfileset]
 [,[masterfileset]
 [,[newfileset]
 [,[uslfileset]
 [,[prepparms]]]]]]]

Compilers available: COBOL, COBOLII, COBOLIIX, FORTRAN, FTN, PASCAL, RPG, SPL

SPECIAL MPEX TOPICS:: Using MPEX to compile programs

68

General syntax for NM compilers (compile only, no link):

Syntax: %NMcompiler textfileset
 [,[objectfileset]
 [,[listfileset]
 [,[mastfileset] (COBXL only)
 [,[newfileset] (COBXL only)
 [,[libfileset]]]]]] (PASXL only)
 [;INFO= infostring]
 [;WKSP= workspacename] (COBXL only)
 [;XDB= xdbfilename] (COBXL only)

Compilers available: CCXL, COB74XL, COB85XL, FTNXL, PASXL, RPGXL

General syntax for NM compilers (with linking):

Syntax: %NMcompilerLK textfileset
 [,[progfileset]
 [,[listfileset]
 [,[mastfileset] (COBXL only)
 [,[newfileset] (COBXL only)
 [,[libfileset]]]]]] (PASXL only)
 [;INFO= infostring]
 [;WKSP= workspacename] (COBXL only)
 [;XDB= xdbfilename] (COBXL only)

Compilers available: CCXLLK, COB74XLK, COB85XLK, FTNXLLK, PASXLLK, RPGXLLK

In the above syntax diagrams, each of the filesets described MUST be entered in the order
given or a "," should be included as a placeholder. This is true even when using the ;INFO=,
;WKSP= and ;XDB= parameters. If you do not specify all the files or filesets before any of these
parameters, you must include placeholders as shown in these examples:

%RPG GL###S,GL000P,,,,GL000U,MAXDATA=30000;CAP=PH;RL=XRL3
%COB85XL MYSRC,,,,;WKSP="MYWORK"

Also note that for the NM compilers, COBOL has two additional filesets as well as additional
keywords while the PASCAL compiler has only one additional fileset.

Compiling many sources into one program
The "%COBOL AP@.SOURCE,AP@.PUB" command we talked about above compiled each source
file in AP@.SOURCE into a corresponding program file in AP@.PUB.

What if you organize your system by having a single main body source file (e.g. the main
menu) and a lot of $CONTROL DYNAMIC subroutines? MPEX can handle this, too:

%COBOL GL###S,GL000P,,,,GL000U,MAXDATA=30000;CAP=PH;RL=XRL3

This will compile all the sources in the fileset GL###S into the program file GL000P.
Incidentally, it specifies that all the sources are to be compiled into the USL file GL000U; you

SPECIAL MPEX TOPICS:: Using MPEX to compile programs

69

don't have to specify the USL file on this kind of compile, but you'd often want to (in case you
want to later recompile just one of the modules).

Compiling without :PREPing
If you want to compile but not :PREP, you may just specify the USL fileset (or a single USL
file) without a program fileset. For instance, saying

%COBOL AP@.SOURCE,,,,,AP@U.PUB

will compile all the files in AP@.SOURCE into correspondingly-named USL files in the fileset
AP@U.PUB (each USL file will have the same name as the source file but with a U at the end).

Similarly,

%COBOL GL###S,,,,,GL000U

will compile all the GL###S files into the single USL file GL000U.

Compiling with a COPYLIB
To compile with a COPYLIB, you should simply issue an ordinary

:FILE COPYLIB=copylibfilename

file equation. If you're compiling in batch, e.g.

%$COBOL GL###S,,,,,GL000U

that's OK — just issue the :FILE COPYLIB= file equation online and MPEX will automatically
copy it into the job stream.

Specific differences between MPE and MPEX compiler commands
In general, MPEX follows the same syntax as MPE (or MPE/iX) to compile programs. As the
COBOL examples above show, however, certain portions of the command may be a FILESET
instead of a single file name. Here are some other notable differences between our commands
and MPE:

• The MPE/V compilers FTN and PASCAL do not support the "master-file" and "new-
file" parameters supported by some of the other compilers (COBOL, FORTRAN, RPG, and
SPL); however, they are included in these commands for consistency's sake — you should
always skip them.

• When compiling using the MPE/iX compilers, you could specify the ";INFO=" string
immediately after the last actual parameter given. i.e. if you compile a C program using an
";INFO=" string without specifying the object and list files, you could simply say

:CCXL MYSOURCE;INFO="compiler-directives"

SPECIAL MPEX TOPICS:: Using MPEX to compile programs

70

However, MPEX requires you to insert placeholders in the command for any parameter not
specified, so to do the above command in MPEX, you would need to type:

%CCXL MYSOURCE , , ;INFO="compiler-directives"

Using third party compilers with MPEX
The above commands and examples all deal with using compilers supplied by HP for many of
their third generation languages (COBOL, FORTRAN, PASCAL, RPG), but what about fourth
generation languages (such as TRANSACT) or compilers supplied by a third party? While we
don't have specific commands for all of the compilers available, it is a simple matter to create a
command file that uses %REPEAT... %FORFILES to compile several files with one command.

Here is an example command file that accepts two parameters — a source fileset and a target
mask. All of the files in the source fileset are compiled using the generic compiler into the files
specified by the target "mask".

PARM CS$SOURCESET
ANYPARM TARGETMASK
REPEAT
 FILE SOURCE=!MPEXCURRENTFILE
 FILE TARGET=![OBJECTFILE(!TARGETMASK)]
 ECHO -----Compiling !mpexcurrentfile
 RUN ANY.GENERIC.COMPILER;INFO="*SOURCE,$NEWPASS";PARM=12345

(if this is a CM compiler)
 PREP $OLDPASS,*TARGET
(if this is a native mode compiler)
 LINKEDIT $OLDPASS;TO=*TARGET

FORFILES !SOURCESET

As you can see, this is a very simple example and does not take into account such possibilities
as compiling multiple files into a single program file or redirecting the output listings to a
printer. This example presumes that the name(s) of the files to be used are passed as an
;INFO= parameter, but could just as easily be specific file equations for the source and object
files.

If the compiler you are using prompts for the names of the files to use as the source, object,
and even the resulting program, you can use this example:

PARM CS$SOURCESET
ANYPARM TARGETMASK
REPEAT
 ECHO -----Compiling !mpexcurrentfile
 RUN ANY.GENERIC.COMPILER&
 ;INPUT="!MPEXCURRENTFILE";INPUT="$NEWPASS"
 (PREP or LINK as appropriate)
FORFILES !SOURCESET

SPECIAL MPEX TOPICS:: MPEX HOOK

71

As you may have noticed, MPEXCURRENTFILE corresponds to the actual (fully qualified)
filename of the sourcefile for each repetition through the loop, and the OBJECTFILE(...)
function takes a parameter which it applies to the CURRENTFILE to create a TARGET file
name.

MPEX HOOK

Executing MPEX and MPE commands, and UDCs from EDITOR, QUERY or
any other utility

Let's say you're working in EDITOR. You write your program, compile it, find that there's a
'bug', make some changes, run it, make some more changes – the usual program development
process. Unfortunately, with EDITOR, this will involve a lot of effort. You have to:

• Make some changes to your program

• Keep your program

• Exit EDITOR

• Compile your program

• Enter EDITOR

• Text your program

• Make some more changes

• Keep it again

• Exit EDITOR

• Run your program

• Enter EDITOR

• Text your program again

• Make some more changes...

Much of your time is spent in doing nothing more than texting and keeping your program,
exiting and entering EDITOR. This is true not only of EDITOR, but also of QUERY, BASIC and
many other programs. It would make sense to have any program be able to execute any MPE
command — including compiles, RUNs, and UDCs.

We let you execute these commands, and many more, from any of these programs. For
instance, you can say

:RUN EDITOR.PUB.VESOFT;LIB=P
/TEXT MYSRC
<< modify your source >>
/KEEP MYSRC
/%:COBOL MYSRC,MYUSL
<< fix the 'bugs' the compile discovered >>
/KEEP MYSRC
/%:COBOL MYSRC,MYUSL
/%:PREP MYUSL,MYPROG
/%:RUN MYPROG
<< make more modifications >>

SPECIAL MPEX TOPICS:: MPEX HOOK

72

/%Q << assuming Q is your QUERY UDC >>
<< run QUERY to examine your data base >>
>EXIT
<< exit from QUERY back into EDITOR! >>
/EXIT
: << you're back in MPE >>

As you see, you've not only saved a lot of time for yourself but you've also saved a lot of
computer resources by executing MPE commands directly from EDITOR!

The commands could just as easily have been MPEX commands — for instance, if your
program aborts, you can, without exiting EDITOR, say

/%ALTFILE MYDATA; FLIMIT=FLIMIT+1000

All you need to do to use the new (HOOKed) version of EDITOR is to

:RUN EDITOR.PUB.VESOFT;LIB=P

Actually, MPEX HOOKed programs have a number of valuable features in addition to just
being able to execute MPEX commands from them:

• A REDO facility is available that lets you redo up to the last 1000 commands that you've
typed in the program (just like MPEX %REDO). This doesn't just mean "redo the MPEX
commands you typed" — this includes all the commands you've entered in this particular
execution of this program.

• For instance, say that you make an error in an 8-line QUERY >REPORT – you can redo the
entire statement, make one modification, and have QUERY immediately re-execute all 8
commands.

• You can activate the MPEX HOOKed program's father process without terminating the
MPEX HOOKed program itself. For instance, if from within MPEX (or any other process-
handling environment) you type:

%QUERY.PUB.VESOFT;LIB=P

and then when in QUERY type

>%%

QUERY will be suspended and the father process (in this case, MPEX) will be re-activated.
You could then execute whatever MPEX commands you like (including other %RUNs), and
then, whenever you want to, type:

%QUERY.PUB.VESOFT;LIB=P

QUERY will be re-activated (which will be quite a bit faster than re-%RUNing it from
scratch); your database will still be open, records that you did a >FIND on will still be
found, etc.

SPECIAL MPEX TOPICS:: MPEX HOOK

73

• If you have SM capability, the program will be allowed to SAVE FILES IN OTHER
ACCOUNTS. Thus, SM users of the MPEX HOOKed EDITOR can now /KEEP across account
boundaries; SM users of the MPEX HOOKed FCOPY can specify ;TO=;NEW files in other
accounts; and so on.

• Finally, you can (as we discussed earlier) execute arbitrary MPEX commands and MPE
commands (including compile, %RUN, UDCs) from within any MPEX HOOKed program, e.g.
EDITOR, QUERY, etc.

REDOing subsystem commands
Just like MPEX lets you save, %REDO, %LISTREDO, and %DO up to the last 1000 (or even more!)
MPEX commands you've typed, so MPEX HOOKed programs can save, %REDO, %LISTREDO, and
%DO up to the last 1000 commands you've typed inside them. This doesn't just mean that you
can redo only MPEX commands you've typed — it means that you can redo ANY input you've
entered. For instance, you might say

%QUERY.PUB.VESOFT;LIB=P
...
>FIND PRICE>100 and STATE<>"CA" and NUM-UNITS<10 and &
>> SHIP-CODE="XX"
172 ENTRIES FOUND
>REPORT
>>D,CUST-NAME,30;D,PRICE,50;D,NUM-UNITS,70;end
>,,
...
129) FIND PRICE>100 and STATE<>"CA" and NUM-UNITS<10 and &
130) SHIP-CODE="XX"
131) REPORT
>>D,CUST-NAME,30;D,PRICE,50;D,NUM-UNITS,70;end

As you see, the saved command history includes all the input you've typed to QUERY — the
FIND command, its continuation, the REPORT command, the various report sublines, etc.

All the features of MPEX's %LISTREDO, %REDO, and %DO are available in MPEX HOOKed
programs except:

• Instead of typing just "LISTREDO", "REDO" or "DO", you must type ":LISTREDO", ":REDO" or
":DO" (note the ":"). This is done to avoid any confusion with subsystem commands.

You can also use the ",,", ",", and ",." abbreviations, without any ":" prefix. (In fact, if the
program terminates when you enter a ":" – like SPOOK5 does — you'll HAVE to use the
abbreviations.)

• If you want to save the command history in a permanent file, you should make a file
equation for "progname.REDO.VESOFT", where "progname" is the filename of the MPEX
HOOKed program. For instance, to save your EDITOR command history in the permanent
file EDHIST, say

:FILE EDITOR.REDO.VESOFT=EDHIST

One other important thing that you should know is that all subsystem input is saved in the
command history; also, all subsystem input is checked for a leading "%" or ",". There's no

SPECIAL MPEX TOPICS:: MPEX HOOK

74

way for MPEX to know if EDITOR is prompting for a command or, say, an /ADD line;
therefore, all input that you enter in /ADD mode will be saved in the command history
together with all the EDITOR commands you typed at the "/" prompt.

Also, if you type

/ADD
 127.5 %ABC%

MPEX will see the "%" at the beginning of the input line and treat it is an MPEX command
(even though the line was entered in /ADD mode); it'll try to execute the MPEX command
"ABC%", which will probably fail. The same will happen if one of your input lines starts with
a ",".

One of the reasons we chose "%" and "," as identifying characters for MPEX commands and
redo commands is that it's unlikely you'll ever want to use them for your own purposes. If,
however, you want to give the program true input that starts with a "%" or a ",", you need
to prefix the input with a space.

Activating the father process
If in response to any prompt of an MPEX HOOKed program you type the two characters

%%

then the MPEX HOOK facility will re-activate the father process of this MPEX HOOKed
program. For instance, if you run MPEX HOOKed EDITOR out of MPEX, you might say

:RUN MAIN.PUB.VESOFT
...
%RUN EDITOR.PUB.VESOFT;LIB=P
/TEXT MYFILE
/...
/%%
% << MPEX prompts you for input >>

Now, if you say %SHOWTREE, you'll see

%SHOWTREE
25 C.I.
 123 MPEX.PUB.VESOFT (active) [you are here]
 195 EDITOR.PUB.VESOFT

EDITOR.PUB.VESOFT still exists as a son process of MPEX — if you now say

%RUN EDITOR.PUB.VESOFT;LIB=P

or

%RUN 195 << activate the PIN you saw in %SHOWTREE >>

SPECIAL MPEX TOPICS:: MPEX HOOK

75

or (if you have a UDC called ED that runs EDITOR.PUB.VESOFT),

%ED

you'll be brought back into EDITOR, at exactly the same point that you left it. Your file will
still have been /TEXTed in, all the options you had set will still be set, and, of course, the re-
activation of EDITOR would take a lot less time than re-running it from scratch would.

Of course, this will work equally well if you run a HOOKed program from any advanced
process handler (like MPEX itself) and then type "%%" in the HOOKed program. The purpose of
the "%%" command is to make it easy for you to switch from the HOOKed son process back to
the father (which will later presumably be able to re-activate the HOOKed son).

If you do run a program directly from the MPE prompt and then do a %% within it, the MPEX
HOOK will terminate the program rather than suspend it – MPE doesn't let us suspend
processes that are run from the Command Interpreter.

If you want to, you can say

:SETJCW VESOFTHOOKPPSONONLY=1

to indicate that "%%" (Percent Percent) can only be typed from TRUE son process (i.e. not a
process run directly from the CI). If you set this JCW and type "%%" from a son of the CI, you'll
get an error message; this might save you from accidentally terminating a process that you
only wanted to suspend.

Building files in other accounts
One of the features of HOOKed programs is their ability to build files in other accounts
(assuming, of course, that you have SM capability). For instance, if you're logged on as
MANAGER.SYS and run EDITOR.PUB.VESOFT, you'll be able to say /KEEP MYFILE.DATA.AP
thus saving your work file in another account. No need to log on into the AP account — no
need even to /KEEP the file as some temporary file and then use MPEX's %COPY command to
copy the file into another account — you can /KEEP files in other accounts directly. The same
can be done with other HOOKed programs. If you say

:RUN FCOPY.PUB.VESOFT;LIB=P
>FROM=MYFILEEB.DATA.AP;TO=MYFILEAS.DATA.AP;EBCDICIN;SUBSET=100;NEW
>EXIT

then the HOOKed FCOPY will save the new file into the AP account (provided, of course, that
you have SM capability).

The only thing you need to worry about are programs that are "too smart for their own good".
Some programs actually check to see if you're trying to create a file in another account — if
you are, they don't even try to FCLOSE the file (which is where the HOOK would intervene to
allow the cross-account save), but immediately print an error message.

For instance, if you try to /KEEP across account boundaries in EDITOR and the /KEEP file
already exists then EDITOR will print this error message:

*71*KEEP FILE MUST BE WITHIN LOG ON ACCOUNT"

SPECIAL MPEX TOPICS:: MPEX HOOK

76

In this case, you should

• :PURGE the /KEEP file first

• and then do the /KEEP.

If the /KEEP file DOESN'T already exist, EDITOR won't do the account check, and everything
will be OK.

Most programs don't do any special cross-account check, so you can make them build files in
other accounts with no difficulty:

• FCOPY TO=;NEW files, for instance, can be built across account boundaries (provided, of
course, that you're using a HOOKed FCOPY and have SM).

• The contributed QUAD text editor can, when HOOKed and run with SM, /KEEP across
account boundaries.

• The BASIC subsystem, if HOOKed and run with SM, can >SAVE programs across account
boundaries.

MPEX HOOK preserves ACDs in EDITOR, TDP, etc.
If you're using Access Control Definitions (ACDs) on your files, you know that when you
/KEEP a file in EDITOR, TDP or most other editors, the ACDs of the file you've kept over are
lost. This is because a /KEEP purges the old file and rebuilds it; when the old file is purged, its
ACDs are destroyed, and the new file is built without ACDs.

This can be a serious problem. The person who does the /KEEP will most likely forget to put
the ACDs back on the file; even if he wants to, he might not know what the ACDs were
because once the /KEEP is done he can no longer see them. (He'd have to remember to do a
:LISTF...,-2 before every single /KEEP he does, and an :ALTSEC...;NEWACD= — specifying
every single pair! — afterwards.)

What is most likely to happen this way is that, very soon, all the files that you normally edit
will lose their ACDs and all the additional security that ACDs give them.

Naturally, we wouldn't be telling you this horror story if we didn't have a solution up our
sleeve. All HOOKed programs will automatically preserve the ACDs of any file that they purge
and then re-build (which is exactly what a /KEEP does). To be precise, every time the
program purges a file the HOOK remembers that file's ACD; if the next file the program saves
has the same name as the just-purged file, the HOOK will impose that saved ACD on the new
file.

Thus, if you do an EDITOR /KEEP, EDITOR will first purge the old file (at which point HOOK
will save the old file's ACD) and then save the new file with the same name as the just-purged
old file (at which point HOOK will put that saved ACD onto the new file).

Note that the ACD that's saved is the ACD of the file purged by the /KEEP, not the ACD of the
file that was /TEXTed. If you say

/TEXT A
...
/KEEP B
OK TO PURGE B? YES

then the new file B will have the same ACD as the old file B, not the same ACD as A.

SPECIAL MPEX TOPICS:: MPEX HOOK

77

This is all done for you transparently — no need to specify any special keywords or options;
whenever HOOK senses a purge followed by a save under the same name, it will retain the
file's ACD.

If for some reason you don't want to preserve a particular file's ACD, you can always do an
:ALTSEC...;DELACD of the file. If you feel that you NEVER want the HOOK to preserve ACDs
for you, you should say

:SETJCW VESOFTHOOKNOKEEPACD=1

before running the HOOKed program. This will tell the HOOK to do nothing about ACDs,
which would normally mean that the programs will be allowed to throw away ACDs at /KEEP
time like they normally do.

Note that it is possible that some programs might not delete and rebuild files in the way that
the HOOK expects. (For instance, if the program purges the old file using the :PURGE
command rather than using FCLOSE disposition 4 or if the program builds the new file under a
different name and then :RENAMEs it.) In these cases, the HOOK might not be able to preserve
the ACD because it won't really know exactly what the program is doing.

We've tested the "keep ACD" feature in EDITOR and TDP. Feel free to try it in other programs;
however, it is possible that the HOOK might not be able to properly preserve ACDs for them.

How to %HOOK a program
Some programs are HOOKed by VESOFT at installation time (EDITOR, QUERY). To "HOOK"
other programs, just execute the MPEX command

%HOOK progname

(To do this, you must have SM capability or be logged on into the VESOFT account.)

Whenever you get a new version of a HOOKed program — for example, a new version of
EDITOR.PUB.SYS from HP — you should "re-HOOK" it. For example:

%HOOK EDITOR.PUB.SYS
%HOOK QUERY.PUB.SYS

Or, you might say

:RUN STREAMX.PUB.VESOFT
Enter filename: MPEXHOOK.JOB.VESOFT
Name of program to HOOK (if any)? EDITOR.PUB.SYS
Name of program to HOOK (if any)? QUERY.PUB.SYS
Name of program to HOOK (if any)? MYFILE.MYGROUP.MYACCT
Name of program to HOOK (if any)?
 #J123

MPEXHOOK.JOB.VESOFT is a STREAMX job stream that can do the HOOKing for you.

SPECIAL MPEX TOPICS:: MPEX process handling

78

How to run a %HOOKed program
To run "HOOKed" Compatibility Mode programs on MPE/iX systems, simply

:RUN program.PUB.VESOFT;LIB=P

To run "HOOKed" Native Mode programs on MPE/iX systems, you will also need to add the
VESOFT procedures used by "HOOKed" programs to your system segmented library,
SL.PUB.SYS. These procedures are kept in the USL file VEPROCU.PUB.VESOFT, and can be
added to the system SL by streaming the job stream VEPROC.JOB.VESOFT. (It's a simple, non-
privileged procedure, so there's no problem adding it to the system SL — just re-stream
VEPROC.JOB.VESOFT whenever you do a system update.)

VEPROC also adds the VECMMND, VEOPEN and VECHECKLOGON procedures to the system SL.

See "What If Your Program Does a :STREAM Programmatically (With The COMMAND Intrinsic)?"
in Batch Access Security, "Installing VEOPEN" in Database Security, and "Checking SECURITY
Logons From Within Your Program" in Logon Security in the SECURITY User Manual for more
details.

After adding the segments to SL.PUB.SYS, simply

:RUN program.PUB.VESOFT;LIB=P

or

:RUN program.PUB.VESOFT;XL="MPEXHKNL.PUB.VESOFT"

(the latter is especially useful if the program already has an XL list it must be run with;
generally, MPEXHKNL.PUB.VESOFT should be added to the end of the list).

To make it easier to invoke the "HOOKed" programs, you may want to set the file
MPEXUDC.PUB.VESOFT system-wide.

MPEX process handling
MPEX can be a powerful process-handling environment. Not only can you run programs from
within MPEX, but you can also:

• Manage suspended programs, programs that suspend before re-activating MPEX instead of
terminating. STREAMX is a good example of such program, as are all MPEX HOOKed
programs (in which "%%" is a suspend command).

• Run son processes and pass them input — without having to build a special STDIN file!

• Press [BREAK] and resume MPEX rather than aborting the entire MPEX process tree.

• Use additional new MPEX :RUN command keywords, such as ;GOON and ;PRI=...

These features can be quite useful both in day-to-day work (e.g. you can easily jump from
MPEX to EDITOR or QUERY without going through the overhead of constantly re-CREATEing
each son process) and for various "MPEX programming" constructs.

SPECIAL MPEX TOPICS:: MPEX process handling

79

Managing suspended son processes
Normally, when you run a program (from within MPEX, MPE or any other program) and then
exit it, the son process (the program being run) dies. It closes all its files, forgets all its state
information, and terminates. If you want to re-run the program, you have to re-run it from the
beginning (which can take a good deal of computer resources).

Some programs are smarter than that. Take, for instance, SPOOK5. If you say (from MPEX):

%SPOOK5
SPOOK5 G.03.00 (C) HEWLETT-PACKARD CO., 1983
>...do some work...
> EXIT

you'll be back in MPEX as soon as you type the "> EXIT". HOWEVER, the SPOOK5 son
process won't actually be dead — it'll only be SUSPENDED.

Now, when you again (from the same MPEX session) say

%SPOOK5

SPOOK5 will simply respond

>

As you see, SPOOK5 doesn't print a header because it's not really being re-:RUN. Rather, it's
being re-activated, a much quicker and more resource-efficient operation. Your current spool
file is still >TEXTed, your current line number is still unchanged, your current >MODE settings
are the same as they were when you >EXITed SPOOK5 before. In fact, if we type

> EXIT

again in our suspended SPOOK5 son, we'll be back at MPEX. Now, we might say

%SHOWTREE
27 C.I.
 79 MPEX.PUB.VESOFT (active) [you are here]
 119 SPOOK5.PUB.SYS

This shows you that your MPEX process has a suspended son; in fact, given the number on the
left (the PIN, in our case 119 for SPOOK5), we can say

%RUN 119
>

to re-activate SPOOK5.

HOOKed programs
This can be particularly useful when you're running "HOOKed" programs, programs that have
been modified (see the MPEX HOOK chapter) to honor MPEX commands, the multi-line REDO
facility, etc.

SPECIAL MPEX TOPICS:: MPEX process handling

80

One of the things that every HOOKed program (e.g. EDITOR.PUB.VESOFT,
QUERY.PUB.VESOFT, etc.) can do is suspend and re-activate the father process whenever you
type a "%%". For instance, you might say

%RUN EDITOR.PUB.VESOFT;LIB=P
/TEXT MYFILE
...
/%%

The "%%" typed at the "/" prompt — essentially a new EDITOR command implemented for you
by the HOOK — causes MPEX to be re-activated. If you do a %SHOWTREE now, you'll see:

%SHOWTREE
25 C.I.
 79 MPEX.PUB.VESOFT (active) [you are here]
 106 EDITOR.PUB.VESOFT

EDITOR.PUB.VESOFT still exists as a son process, with exactly the same /TEXTed file, current
line pointer, /SET command settings, etc. Now, if you say

%RUN EDITOR.PUB.VESOFT;LIB=P
/

the EDITOR son process will be re-activated (in a fraction of a second), and you'll be back
where you were when you typed the "%%".

The key here is that EDITOR (and QUERY and FCOPY and KSAMUTIL and so on) don't
normally suspend — if you enter EXIT in any one of them, they'll terminate altogether. It's the
MPEX HOOK that implements the new "%%" command which allows them to suspend instead of
terminating.

A cautionary note
We think that the ability to manage suspended son processes can be very useful; however, it
might sometimes surprise you (especially at first). For instance, if you say

%QUERY.PUB.VESOFT;LIB=P
>BASE=MYBASE
...
>FIND...
>%%

QUERY will still be alive, MYBASE will still be opened, and whatever locks QUERY may hold
will still be held (which is, of course, what suspending-instead-of-terminating is all about). To
terminate QUERY, you should say either

%QUERY.PUB.VESOFT;LIB=P
>EXIT

(since QUERY's >EXIT command does indeed terminate)

SPECIAL MPEX TOPICS:: MPEX process handling

81

or

%KILL QUERY.PUB.VESOFT

MPEX's %KILL command (documented elsewhere in this manual) kills the son process whose
name you specify.

Passing input to son processes
MPE's :RUN...;STDIN=... lets you run a program with its STDIN redirected to a disk file. But
what if you don't want to build a disk file? What if you want to have a UDC such as:

ERASEDB !DBNAME
RUN DBUTIL.PUB.SYS,ERASE

that will erase a database? You want to take the database name from the !DBNAME UDC
parameter, but DBUTIL.PUB.SYS,ERASE will prompt you for the database name. You could
:RUN DBUTIL.PUB.SYS,ERASE;STDIN=..., but what will you use for the STDIN file? Surely
you don't want to have one STDIN disk file for each database you might want to erase!

MPEX solves this problem by implementing a new %RUN command parameter called ;INPUT=.
(Also, see commands %RUNCREATE, %RUNINPUT and %RUNACTIVATE). In the above example,
you could simply say

ERASEDB !DBNAME
RUN DBUTIL.PUB.SYS,ERASE;INPUT="!DBNAME"

MPEX will take the ;INPUT=... parameter, write it to a special temporary file, and then RUN
DBUTIL.PUB.SYS with STDIN redirected to that temporary file.

You can use the same construct for feeding multiple input lines — you have more than one
;INPUT= parameter on the same command, and each one will be written to the temporary
STDIN file in turn.

For instance, a simplified version of MPEX's %EDIT command might have been implemented as
follows:

PARM FILESET, CMD
REPEAT
 ECHO -----Editing !MPEXCURRENTFILE
 CONTINUE
 RUN EDITOR.PUB.SYS;INPUT="TEXT !MPEXCURRENTFILE";INPUT="!CMD";&
 INPUT="KEEP";INPUT="EXIT"
FORFILES !FILESET

(see the %REPEAT...%FORFILES documentation for more details).

This runs EDITOR.PUB.SYS with ;STDIN=... redirected to a temporary file that contains the
lines:

• "TEXT filename", where filename is the name of the current file;

• "cmd", where cmd is the EDITOR command being executed;

SPECIAL MPEX TOPICS:: MPEX process handling

82

• "KEEP", to keep the changed file back;

• "EXIT", to get out of EDITOR.

If we didn't have ;INPUT=, we really couldn't do this sort of thing, since the STDIN file to be
passed to EDITOR changes from file to file.

One related feature that we provide is the ;INMSG keyword. This merely tells MPEX that the
temporary file that contains the ;INPUT= lines is to be a message file rather than a standard-
format file.

Why would you want to do this? Well, say that you want to have a son process that you keep
suspended and "feed" commands to. You might run it with ;INPUT="xxx";INMSG, and then
keep re-activating it, passing more ;INPUT="xxx" lines through this temporary message file.

A good example of this might be a UDC such as:

SPOOKCMD !CMD
RUN SPOOK5.PUB.SYS;INPUT="!CMD";INPUT="EXIT";INMSG

Now, if you say

%SPOOKCMD "TEXT #O1234"

MPEX will create a SPOOK5 son process, pass it the command "TEXT #O1234", and then pass it
an >EXIT command which will re-activate MPEX. Now, you have a suspended SPOOK5 son
process with a >TEXTed file; you may now say

%SPOOKCMD "L 1/20"

and the SPOOK5 son process will be activated and passed the "L 1/20" command — it'll list
the first twenty lines of #O1234 and then (because of the INPUT="EXIT") re-activate MPEX.

As you see, you can now execute SPOOK5 commands from within MPEX much like you could
execute MPE commands from within EDITOR — just prefix the SPOOK5 command with
"SPOOKCMD" and it'll be executed by the SPOOK5 son process.

:WAKE, MPEX's improvement to [BREAK] and :ABORT/:RESUME
One of the problems with process handling is [BREAK]ing and :ABORTing. If you press
[BREAK] and do an :ABORT, the entire process tree will be killed (a phenomenon we call
"mass processide").

If you run MPEX, run another program that gets into an infinite loop, press [BREAK], and do
an :ABORT, everything will be killed — the program, MPEX, whatever other son processes
MPEX might have, and all of their son processes.

What's the solution? Well, one solution is not to run programs that go into infinite loops...

Another, more practical alternative involves our WAKEUP program. To use it, you need to do
two things:

• :SETCATALOG WAKEUDC.PUB.VESOFT for your user, account (or even the entire system).
This defines a UDC called :WAKE that can be used in place of :ABORT (more about that
later).

SPECIAL MPEX TOPICS:: MPEX process handling

83

• %WAKEUP.PUB.VESOFT in your MPEX session. We suggest that you put this into your
MPEXMGR, MPEXMGR.PUB, or MPEXMGR.PUB.VESOFT file.

Now, say that you enter:

:RUN MAIN.PUB.VESOFT
...
%INFLOOP.TEST
<< program branches to never-never-land... >>

Now, instead of saying [BREAK] and :ABORT, you say

[BREAK]
:WAKE
%

The :WAKE command has awakened the MPEX process (that's why you get the "%"). The
INFLOOP.TEST process is still around:

%SHOWTREE
25 C.I.
 79 MPEX.PUB.VESOFT (active) [you are here]
 106 EDITOR.PUB.VESOFT
 126 INFLOOP.TEST.DEV (active)

As you can see, INFLOOP.TEST.DEV is still active, chugging right along. You can either let it
go (in which case it'll proceed just as if it were run with ;GOON — see below) or say

%KILL INFLOOP.TEST.DEV

or

%KILL 126

The important thing to remember is that for [BREAK]/:WAKE to work, you must have done a
%WAKEUP.PUB.VESOFT in your MPEX session (preferably in one of your MPEXMGR files) AND
you must have a :WAKE UDC set for you. WAKEUP acts as a sort of "monitor" that's asleep, but
can be awakened by the :WAKE command — when the :WAKE is done, WAKEUP is triggered,
and it re-activates MPEX (which is suspended waiting for its infinite-loop son to stop).

Naturally, there's no need for the son to be actually in an infinite loop. It could just be taking
a long time doing something you don't want to do – doing a [BREAK], :WAKE, and then a
%KILL can stop it.

The only thing you have to worry about is a son process that reads input from a terminal.
When you do a [BREAK] and a :WAKE, MPEX is awakened, but the son process remains active
— now, both MPEX and the son process are asking for terminal input at the same time. In this
case, the first %KILL you type might very well be read by the son process rather than by MPEX.
The son process will probably just reject this, and prompt for input again — keep entering
%KILLs until one of them will be read by MPEX. (This is just the way MPE works when two or
more processes have simultaneous reads pending on a terminal.)

SPECIAL MPEX TOPICS:: MPEX process handling

84

%RUN...;PRI=...
The ;PRI=... keyword of the %RUN command lets you indicate the priority with which you
want the son process to run (CS, DS or ES). For instance, if you want to run some big CPU-hog
report, you could say

%RUN OINKOINK;PRI=ES

The son process OINKOINK will now run in the ES queue, and you'll get that feeling of virtue
for not slowing down other users too much.

%RUN...;STDIN=...;STDLIST=...
MPEX's %RUN command has ;STDIN=... and ;STDLIST=... keywords just like MPE's :RUN
command does. However, MPEX's ;STDIN=... and ;STDLIST=... need not be just filenames
— they can include an entire file equation (except for the word ":FILE"), e.g.

%RUN MYPROG;STDIN="MYMSG,OLDTEMP;REC=,,F;DEL";&
 STDLIST="OUTFILE,OLD;SHR;GMULTI"

which is identical to

%FILE TEMPIN=MYMSG,OLDTEMP;REC=,,F;DEL
%FILE PERMOUT=OUTFILE,OLD;SHR;GMULTI
%RUN MYPROG;STDIN=*TEMPIN;STDLIST=*PERMOUT

The same thing, but with the extended ;STDIN=... and ;STDLIST=... keywords you can save
yourself a file equation or two.

%RUN...;GOON
The ;GOON keyword (which means "go on") merely says that the son process is to be run but
MPEX should not be suspended. For instance, say that you have a big task (that requires no
terminal input or output!) that you want to do in your session, but you don't want to lock up
your terminal. You can say

%RUN BIGPROG;GOON

and have BIGPROG run as a son process while you keep doing whatever you want to be doing
in MPEX. Watch out:

• If BIGPROG does terminal output, you might get its output interspersed with whatever
other output you're getting from MPEX or another son process.

• If BIGPROG does terminal input, you might have it prompt for input at the same time as
MPEX or another son process is prompting — this can be very confusing, since you won't
know which program will actually get the input line you type.

• Don't confuse this keyword with the %GOON command prefix. Programs run using
:RUN…;GOON are NOT reported by the %SHOWGOON command.

SPECIAL MPEX TOPICS:: MPEX process handling

85

To be perfectly frank, the ;GOON keyword is useful rather infrequently, mostly in sophisticated
MPEX programming situations. If you do use it, you might want to also use the
;NOACTSONTERM keyword (see the %RUN command documentation for more information).

%RUN...;NOACTIVATE, ;NEW, and ;KILL
These three %RUN command keywords govern how the son process is to be started and/or
terminated:

• If you use ;NOACTIVATE, the son process will be CREATEd but not ACTIVATEd.

• If you use ;NEW, the son process will always be CREATEd, even if a process with this name
already exists.

• If you use ;KILL, if the son process suspends instead of terminating, it will be KILLed.

These keywords are usually used for sophisticated MPEX programming applications. For
instance, say that you want to have a UDC or command file that runs SPOOK5, executes a few
commands, and gets back to MPEX. It might look something like:

SPOOKLIST !SPOOLFILENUM
RUN SPOOK5.PUB.SYS;INPUT="T !SPOOLFILENUM";INPUT="L ALL";INPUT="E"

— it'll run SPOOK5, >TEXT in the spool file you want, >LIST it, and then >EXIT back to
MPEX.

However, what if you already have a SPOOK5.PUB.SYS son process? You certainly don't want
to re-activate it, which is what the %RUN command would normally do — therefore, you say

SPOOKLIST !SPOOLFILENUM
RUN SPOOK5.PUB.SYS;NEW;INPUT="T !SPOOLFILENUM";INPUT="L
ALL";INPUT="E"

The ;NEW keyword will guarantee that a new SPOOK5 son process will be created. However,
now the SPOOK5 son is still alive, since the >EXIT command has only suspended it, not
terminated it.

You might say

SPOOKLIST !SPOOLFILENUM
RUN SPOOK5.PUB.SYS;NEW;INPUT="TEXT !SPOOLFILENUM";&
 INPUT="LIST ALL";INPUT="EXIT";KILL

to make sure that MPEX kills the son process after it's done. (You might also have said
INPUT="QUIT" instead of INPUT="EXIT", telling SPOOK5 to execute the >QUIT command,
which forces a termination.)

In most cases you will probably find it more convenient to use the %RUNCREATE, %RUNINPUT,
and %RUNACTIVATE commands (documented earlier in this manual) rather than
;NOACTIVATE, ;NEW, and ;KILL.

SPECIAL MPEX TOPICS:: MPEX and your system security

86

The MPEXPIN JCW
One other feature that can be useful for MPEX process handling applications: whenever MPEX
runs a son that suspends, MPEX will set the JCW called "MPEXPIN" to the PIN of that son. You
can then save that value in some other JCW, and then use it to re-activate or kill that son
process, e.g.

%RUN SPOOK5.PUB.SYS;NOACTIVATE
%SETJCW SPOOKPIN=MPEXPIN
...
%RUN !SPOOKPIN
...
%KILL !SPOOKPIN

If you use MPEXPIN, you might also find the SONALIVE(pin) function to be handy — it
returns true if the son process with the given PIN is still alive.

MPEX and your system security
Before we go any further, let us point out one of the fundamental principles of MPEX:

• MPEX IN NO WAY DIMINISHES YOUR SYSTEM SECURITY.

MPEX might make some things easier for people to do, but it'll never let anybody do anything
to a file that they wouldn't be entitled to do without MPEX.

In fact, MPEX can greatly improve your system security by letting you easily %SECURE filesets,
find released files, find privileged programs, and so on.

Removing "creator-only" restrictions
MPEX removes "creator-only" restrictions for the %RELEASE, %SECURE, %RENAME, and %ALTSEC
commands.

In MPE, you can't :RELEASE, :SECURE, :RENAME or :ALTSEC a file unless you are its creator.
You might have full access to it — be able to copy it and purge it — but not be able to
:RENAME it. This struck us as a rather inconvenient feature, one that didn't add anything to
your system security (why should, say, an account manager be prohibited from :RENAMEing a
file in his own account). Therefore, our rule is different:

• Anybody who has READ, WRITE and EXECUTE access to a file can %RELEASE, %SECURE,
%RENAME or %ALTSEC it.

This is, of course, in no way a security violation. Remember, somebody with READ, WRITE,
and EXECUTE access to a file can already do whatever he please to it, from purging it to
changing it to copying it. It only makes much more convenient something that somebody
could always do the hard way.

SPECIAL MPEX TOPICS:: MPEX and your system security

87

Copying files into other accounts
Another thing that we allow is

• We let anybody with SM capability copy files into other accounts.

Standard MPE security forbids ANYBODY — even MANAGER.SYS! — from building files in
other accounts. We think that this makes no sense; if you have SM, you could always log on to
the target account, do the copy (possibly after :RELEASEing the original file to make it
accessible), and log back on to wherever you were before.

But why make the system manager do this? MPEX lets him %COPY files into other accounts
(also, MPEX HOOKed programs allow SM users to build files in other accounts, so HOOKed
EDITOR for instance allows cross-account /KEEPs). No security violation, but a great
convenience!

Working on databases
MPEX lets you do several things to databases:

• %COPY them.

• %RENAME them.

• %ALTFILE...;DEV=xxx them (to move them from one disk to another).

• %RELEASE them.

• %SECURE them.

• %ALTSEC them.

• %PURGE them.

Naturally, file system security rules are not enough for checking database access — many
databases are >>RELEASEd and count on their privileged file codes and IMAGE security to
protect them.

The rule that MPEX uses is that:

• ONLY

o the database's creator,

o the account manager of the database's account, or

o the system manager

can execute any of the above commands against a database file.

Spool files
Normal MPE :ALTSPOOLFILE and :DELETESPOOLFILE are available only to the console
operator and people who are :ALLOWed those commands. MPEX's %ALTSPOOLFILE and
%DELETESPOOLFILE can be done:

• by the spool file's creator,

• by the account manager of the spool file,

• by the system manager, or

• by a user with OP capability.

SPECIAL MPEX TOPICS:: MPEX and your system security

88

Lockwords
In MPE, whenever you want to access a lockworded file, you must specify the lockword (even
if you're SM or AM and can figure it out with :LISTF...,-1). This is no big deal on MPE's
single-file commands, but say that you're doing a

%COPY @.@.AP, @.@.APNEW

— you certainly don't want to be prompted for the lockword of each lockworded file (or have
the %COPY of that file fail if it's done in batch).

MPEX's rule on this is rather straightforward:

• If you have SM, MPEX will automatically supply lockwords on all lockworded files in the
source fileset.

• If you have AM, MPEX will automatically supply lockwords on all lockworded files in the
source fileset as long as the file is in your own account (files in other accounts won't have
lockwords automatically supplied).

• If you specify a lockword on the source fileset, e.g.

%COPY @/FOO.@.AP, @.@.APNEW

then MPEX will automatically supply the lockword "FOO" on all lockworded files in the
source fileset that have that lockword. In other words, non-lockworded files will be
handled OK, and so will be those that have the lockword "FOO" — however, a file with any
other lockword won't have it automatically supplied (and you'll be prompted for it when
the time comes).

• If none of the above is true, the lockword will not be automatically supplied, which simply
means that you'll be prompted for it just as you would in MPE (in batch, you'll get a
lockword violation error).

This solution maximizes both ease-of-use and security — you don't lose any security since
people with SM or AM can figure out the file lockword anyway (using :LISTF...,-1).

One thing that you must keep in mind with lockwords is that unless you explicitly specify a
lockword in a target file (e.g. the second parameter on a %COPY or a %RENAME), the target file
will be built without a lockword.

For instance, the

%COPY @.@.AP, @.@.APNEW

will build the APNEW files without lockwords. This is done for MPE compatibility — if in MPE
you say

:RENAME X/LOCK,Y

or

:FCOPY FROM=X/LOCK; TO=Y; NEW

then the new file will be created without a lockword — therefore, the %RENAME, %FCOPY, and
%COPY commands were made to act the same way.

SPECIAL MPEX TOPICS:: GOD — gives SM capability and :ALLOWs all commands

89

What if you want to preserve the lockword? No problem! Just say

%COPY @.@.AP, @/=.@.AP

As you see, the target fileset (@/=.@.AP) was specified with a lockword of "=". The "="
wildcard (see "Target Filesets" in the MPEX Filesets chapter) tells MPEX to make that part of
the target file be identical to the corresponding part of the source file; specifying an "=" in the
lockword portion of a filename indicates that the target lockword should be identical to the
source lockword.

Naturally, the same thing will work in %RENAME and %FCOPY commands.

GOD — gives SM capability and :ALLOWs all commands
Say that you are the system manager and have to log on as a normal user to do some trouble-
shooting; or, you need to log on under a particular user ID to run one of your programs.
Whenever you log on as a non-SM user, many of the things that you are used to doing as SM
no longer work. You can no longer access the files that you need to or run the programs that
you need to; you can no longer :RUN some programs with the ;DEBUG parameter. The
operating system looks at your logon ID, sees that this user doesn't have SM capability, and
forbids you any SM-level operation. What MPE doesn't realize is that you (personally) really
are the system manager — you just had to log on as a user who doesn't have SM capability.

VESOFT's MPEX product includes a program called GOD.PUB.VESOFT (which you should, of
course, keep under a lockword) that temporarily grants you all the capabilities and all the
:ALLOWs on the system. This way, if the system manager has to log on as a "plain vanilla"
user, he can run GOD and be the system manager again, regardless of his logon. (The user
ID's capabilities are not permanently changed — when you next log on as this user ID, it'll
have the same capabilities that it did before; the system manager can also run a program
called MORTAL.PUB.VESOFT to return to his pre-GOD state without having to log off.)

Since GOD has a lockword (whenever we install GOD on a system that didn't have it before,
we actually assign it a random lockword!), only the person who knows the lockword (which
should only be the system manager) can run it.

GOD can also be useful if some job stream that you have needs to acquire some special
capability or :ALLOW — you can have it do a !RUN GOD.PUB.VESOFT, perform the operation
that needs the capability or :ALLOW, and then !RUN MORTAL.PUB.VESOFT. Using STREAMX's
$NOPASS keyword, you can even do this without having to embed the GOD lockword into the
job stream.

GOD is not just a great convenience for the system manager; it can actually ENHANCE your
system security. If you don't use GOD, then you will inevitably have more :RELEASEd files,
weaker group and account security, and more global :ALLOWs than necessary. Say that the
system manager finds that he often has to do a :REPLY or a :STARTSPOOL when logged on as
various user IDs — without GOD, he'll be quite likely to :ALLOW these commands globally
since there would otherwise be no way for him to access these commands. If he has GOD, he
can avoid :ALLOWing these commands because he will always have them available (if he
knows the GOD lockword). Similarly, if the system manager finds himself needing various
programs or data files when he logs on as non-SM users, he will be tempted to :RELEASE

SPECIAL MPEX TOPICS:: MORTAL — undoes a previous "GOD" operation

90

these files or otherwise keep them less secure than they should be. If he uses GOD, he will
always be able to access any file he needs — again, only if he knows the GOD lockword.

If you have SECURITY you can protect it even further — see the SECURITY User Manual
chapter on Restricting Access To GOD.PUB.VESOFT. In fact, SECURITY provides a number of
useful features (like $ALLOW, CHLOGON, and WITHCAPS) that eliminate the need for
GOD.PUB.VESOFT in most circumstances — see the SECURITY User Manual for more details.

MORTAL — undoes a previous "GOD" operation
MORTAL is a program which sets the capabilities of the user who runs it back to their original
state. This program is usually run after GOD is run to bring user's normal capabilities back
(see "GOD" in this section of this manual):

:RUN MORTAL.PUB.VESOFT

MORTAL can also be used any time you need to change user's capabilities, while doing
:ALTUSER; normally, the user must log back on to the system to have the new capabilities.
Instead, he can run MORTAL to transfer the capabilities from the system tables to your
session's capability area in the stack.

VEMODIFY — line editing made easier
VEMODIFY is a VESOFT-written procedure that provides a ONE-PASS, VISUAL FIDELITY line
modification facility which is much easier to use than EDITOR's or TDP's /MODIFY (or the MPE
:REDO command). It may be used in:

• An MPEX HOOKed EDITOR or TDP (using the /MV command).

• MPEX's %REDOs (if the HPREDOVEMODIFY JCW is set).

• :REDOs (or ','s) in any MPEX HOOKed program.

• Your own EXPRESSION programs or command files by calling the VEMODIFY(...) function.

VEMODIFY's visual fidelity means that any modifications made to a line are echoed
immediately rather than echoed after you press [RETURN]. As you do the modifications,
VEMODIFY uses the power of your HP terminal to change the line as it appears on your screen
at the same time as the line is changed in VEMODIFY's internal editing buffer.

The VISUAL REDO facility allows you to edit a line up to 150 characters in length. Since this is
longer than a single screen line (even in 132 column mode), characters inserted in the first
line will wrap-insert into the second line, and characters deleted from the first will pull back
characters from the second line.

To use VEMODIFY in a HOOKed EDITOR, type

/MV linerange << e.g. /MV 1/4 >>

after :RUN EDITOR.PUB.VESOFT;LIB=P.

To use it in MPEX's (and HOOKed programs') REDO, say

:SETJCW HPREDOVEMODIFY=1

before entering the program.

SPECIAL MPEX TOPICS:: VEMODIFY — line editing made easier

91

VEMODIFY displays the line to be modified for you and prompts for modifications with the
cursor right on top of the first character of the line. Then, when you type a printable character
(e.g. 'B'), that character overwrites the one beneath it or is inserted before the one beneath it;
when you type an unprintable character (e.g. [Control-B], space, etc.), VEMODIFY
considers it a special command (see below).

Any unprintable control characters that were in the line when VEMODIFY was called are
echoed as '.'s; no new unprintable control characters can be introduced into a line with
VEMODIFY. If you make a mistake (e.g. type a control character that VEMODIFY does not
consider a command, backspace beyond the first character in the line, etc.), VEMODIFY rejects
your command and rings the terminal's bell.

The user should press [RETURN] only once — when the line modification is completed.

Callable VEMODIFY function for expression programs and command files
To use the VEMODIFY(...) function in your own expression program or command files, pass
the string you want the user to modify to the function and set the result to a variable that
contains the edited string. For example, suppose you want to "prompt" the user for some data,
and you want to supply a default value based upon what the user typed in the last time. This
is one way to accomplish this:

For a command file:

%ECHO Please enter the destination for the report
%SETVAR DEST VEMODIFY(SVAR('DEST','LP'))

For an expression program:

WRITELN ('Please enter the destination for the report');
DEST := VEMODIFY(SVAR('DEST','LP'));

This displays the prompt string ("Please enter the destination...") and then displays
either the previous value of the variable DEST or "LP" if DEST has never been set. The user will
then be in modify mode and can change the value for DEST as needed or simply press
[RETURN] if all is well.

The VEMODIFY commands are:

Command Mnemonic Notes

[Control-A] Append Moves the cursor to the end of the line, thus allowing you to
append text to your line.

Same as [Control-L].

[Control-B] Before Enters Insert Character mode.

All characters typed (until a [RETURN] or [Control-T]) will
be inserted before the current character.

Same as [Control-^].

SPECIAL MPEX TOPICS:: VEMODIFY — line editing made easier

92

Command Mnemonic Notes

[Control-C] Case Changes the case of the current character — upshifts it if it is
lower case, downshifts it if it is UPPERCASE. Does not affect
non-alphabetic characters.

[Control-D] Delete Deletes the current character. If at the end of line, deletes the
line's last character.

[Control-E] Erase Erases everything from the current cursor position to the end of
the line.

[Control-F] Find Must be followed by another character.

Finds the first occurrence of that character after the current
cursor position, i.e. [Control-F] followed by an 'A' moves the
cursor to the next 'A' in the line.

[Control-F] [Control-W] finds the first character of the next
word.

If you type [Control-F] [Control-B] 'A', VEMODIFY will
find the second occurrence of 'A' after the current character
(B is the second letter of the alphabet); similarly, typing
[Control-F] [Control-C] 'A' will find the third occurrence of
'A' after the current character, and so on.

[Control-G] Goof Undoes all modifications made to this line.

[Control-L] Lengthen Same as [Control-A]. Useful when VEMODIFY is used on
system console where [Control-A] is reserved.

[Control-N] Number Toggles displaying the line number of the current line. After
this number has been displayed, pressing [Control-N] again
will remove the line number.

[Control-O] Overwrite Enters space overwrite mode.

In this mode, typing a space causes the character beneath to be
overwritten with a space rather than just causing the cursor to
move forward. This mode is also initiated by typing any
PRINTABLE character, and is stopped with [Control-T].

[Control-Q] Question Displays this page of the manual, the "help" for VEMODIFY.

[Control-S] Scan Same as [Control-F], but finds the first occurrence of the
following character BEFORE the current cursor position.

[Control-S] [Control-W] finds the first character of the
previous word.

[Control-T] Terminate Terminates Character Insertion ([Control-B]) mode and
Space Overwrite ([Control-O]) mode.

[Control-T] [Control-D] cause the current line to be
deleted.

SPECIAL MPEX TOPICS:: Online notepad

93

Command Mnemonic Notes

[Control-X] Cancel Redisplays the current state of this line and moves the cursor
back to column 1.

[Control-^] Insert Same as [Control-B]. Useful when VEMODIFY is used on
system console where [Control-B] is reserved.

" " Space Moves the cursor forward (default mode), blanks out the
current character (Space Overwrite mode) or inserts a blank
before the current character (Insert Character mode).

[Printable
 Character]

 Overwrites the current character (Default mode) or is inserted
before the current character (Insert Character mode). Turns on
Space Overwrite mode.

[Backspace] Moves the cursor back one column.

[Tab] Same as [Control-I]. Moves the cursor forward 10 columns.

Online notepad
Has this ever happened to you?

You're on the phone with a friend or client, they mention in passing that their phone number
has changed, and you suddenly discover that all of the pens on your desk have mysteriously
and simultaneously run out of ink. After a bit of coaxing and lots of furious scribbling on what
you thought was a bit of scrap paper (but turned out to be your last sheet of 20lb letterhead)
you get the pen working only to realize you never heard the new number...

Use the ; prefix to enter a note
MPEX has a new "notepad" feature that is literally a single keystroke away! Any command line
beginning with a semicolon (;) will be treated as a single line "note" to be entered in a notepad
file! Beginning a command line with two semicolons will list or search the contents of the file.

So when Joe says, "Hey, I've just been moved to a new department over in the east wing of our
complex, so starting next Thursday you can reach me at 555-1234", you simply type:

%;JOE:PHONE (work): 555-1234

and MPEX immediately files this bit of information away safely and cleanly (and you still have
a sheet of letterhead available to write a letter congratulating your client on his promotion).

Everything you type after the notepad ";" character is written to a file along with a date and
time stamp. When you list the file later, you can see when the notes were made. Since the
time/date stamp takes about 20 characters to display, limit your notepad entries to 50-60
characters to avoid having the lines "wrap" when displayed.

SPECIAL MPEX TOPICS:: Online notepad

94

Searching and printing notepad entries
The ;; command is used to search and/or print Notepad entries:

;; Prints the entire contents of your standard notepad:

 %;;
 1 18/05/01 12:13 JOE:PHONE (work): 555-1234

;;text Without any wildcards: performs a caseless search for any lines containing
text, equivalent to %PRINT…;SEARCH=CL"text"

;;wildcardtext With (@, ?, [...]) wildcards: performs a match against wildcardtext,
equivalent to %PRINT…;SEARCH=R MATCHES "text"

;;.aux-parms Append supplied aux-parms to the internal %PRINT command, equivalent
to %PRINT…;SEARCH=aux-parms

Can be used to specify search expression (e.g. ;;."text") and/or supply
additional %PRINT command parameters (e.g. ;;.;OUT=$STDLIST).

Since we actually use our %PRINT command internally, you can use the ";;." syntax to specify
a search string and/or regular MPEX %PRINT parameters. For instance, to print the entire file
to a printer, use ";;.;OUT=*LP". To print the file without stopping (on screen), use
";;.;PAGE=0". As these are translated to ;SEARCH=;OUT=*LP and ;SEARCH=;PAGE=0, (the
search argument is a NULL) the ;SEARCH= keyword is effectively ignored.

By default, we apply the ;NUM parameter to the %PRINT command in order to display line
numbers (for editing, see next section), if this causes lines to "wrap around" your display, then
you can append ;UNN to the ;;. command to avoid this problem.

Editing or deleting notepad entries
It should be fairly obvious that this feature is not intended to replace a full-scale editor for
maintaining a simple text file — there are plenty of editors already on the market available for
such tasks. Instead, this is intended to be a simple, quick, extension to MPEX that allows for
rapid entry and retrieval of simple notes when it isn't convenient to grab a piece of paper or
run a different program. However, just offering the ability to add and subsequently find notes
is not sufficient. After all, information changes over time, records need to be updated, and
eventually the information become obsolete and should be deleted. Therefore, we also
provide the ability to modify lines and delete lines that are no longer needed.

Earlier we mentioned that listing the contents of a notepad with ";;" would, by default, be
numbered for "editing". Entering ";M[num]" will modify the specified line number and
";D[num]" will delete the specified note line. The default for either of these options is the last
line in the notepad.

;M[num] Modifies last (or specified line num) entry.

Modifications are limited to the data portion of a note, not the timestamp.

;D[num] Deleted last (or specified line num) entry.

SPECIAL MPEX TOPICS:: Online notepad

95

The modify command makes use of our visual-redo facility if you have our JCW set for this
option, otherwise is uses the normal editor / command interpreter editing commands.

At the moment, this is the extent of the editing capabilities available — modifying incorrect
lines (for instance, to correct the spelling of a particular item or update the status of a project)
and deleting lines no longer deemed necessary (presumably, for tasks that have been
completed). If you find that you must edit the file a bit more extensively, say for instance to
add a paragraph or two to a note, then you should use a regular editor to edit the appropriate
file (see the section below on how the files are named). One thing to be aware of when
editing a note file manually is that the date and time stamp area of the file (the first 17
characters) cannot be "edited" using the ";M" command.

Multiple notepads — a mini-file cabinet
You actually have access to 11 separate notepads — your default notepad and ten others
numbered from 0 to 9. If you precede the notepad character with a number from 0 to 9, then
the note will be written to the corresponding notepad. (of course, "#;;" will list the contents
of that particular notepad).

Notepad file names – naming using VESOFTNOTEFILE variable
How do we determine the name of your notepad? If you did not log on with a session name,
i.e. you logged on simply as CLERK.OFFICE,MYGROUP, then we use a file called
VENOTE.MYGROUP.OFFICE. (actually, it is "VENOTE?" where the "?" character is replaced by
the notepad number or blank for your default notepad). If you logged on with a session name,
as in "BOB,MGR.DEV", then we use a file called "BOB?.VENOTE.VESOFT". Since we append a
"?" character to the end of your session name, and MPE limits file names to 8 characters, we
only use the first 7 characters of your session name so that we don't generate an error trying to
create a 9 character name.

Using your session name is great if every session name is unique (since you can refer to the
same notepad files regardless of where you log on) or if everyone logs on without a session
name but in different groups (in which case the file VENOTE? is built in each group), but what
if everyone logs on as "CLERK.OFFICE,PUB" or you have two users who log on with the
session name of "JOE"? In these cases, you should set a special variable, VESOFTNOTEFILE, to
a filename of your own choosing and MPEX will use that file for keeping notes. Note that in
order to use the multiple notepad feature, you must include a question mark as part of the
filename.

Changing the notepad prefix character (;)
You can change what character MPEX recognizes as the "notepad character" by setting the
special variable MPEXPREFIXNOTE to either the ASCII value of a character or the actual
character itself. In fact, you may be forced to set this variable if you use an MPEXPREFIXDEF
variable for the ";" character since the MPEXPREFIXDEF character will override the notepad
action. See the section of our manual regarding SPOONFEEDing for details on the
MPEXPREFIXDEF variables.

MPEX COMMAND REFERENCE: Online notepad

96

MPEX COMMAND REFERENCE
MPEX recognizes many different commands. Some of them have no analog in MPE; others are
quite similar to normal MPE commands. In general, whenever MPEX prompts you (with a "%")
for a command, you can type one of the following:

• An ordinary MPE command, including commands such as %RUN, %EDITOR, %SHOWCATALOG,
etc.

• A UDC invocation. (Normally the COMMAND intrinsic doesn't let you execute UDCs — we're
rather proud to say that we were the first product [outside HP's Command Interpreter] that
let you execute UDCs from within it.)

• One of the special MPEX commands (listed below), such as %COBOL, %COPY, %INPUT,
%SETVAR, etc.

• One of the special MPEX commands that can handle filesets (%COBOL, %COPY, %EDIT, etc.),
prefixed by a "?" — this tells MPEX to prompt you Yes/No for each file in the fileset and
execute the command only on those files for which you say "Yes".

• Any command (MPE or MPEX) prefixed with a "$", indicating that the command is to be
executed offline (in a batch job stream of its own).

• The name of a program file (fully-qualified or not), which is then automatically :RUN; for
instance, saying

%DBUTIL

will automatically do a :RUN DBUTIL.PUB.SYS even though you don't have such a UDC!

• The name of a command file, an ordinary EDITOR file that contains a set of commands to
be executed. This is very similar to a UDC, but it doesn't have to be :SETCATALOGed —
just entering its filename causes it to be executed.

How does MPEX decide which one of these to do? Suppose you have both a program and a
UDC named FIBAR. Should MPEX execute the UDC or run the program?

Basically, MPEX follows the same rules as MPE/iX:

• first look for a UDC;

• next, see if the command is an MPEX command; if not,

• see if the command is an MPE command;

• finally, if none of the above is true, look for a program file or a command file matching the
command name, execute that.

There are several things that can change this order:

• if you precede the command with %XEQ, MPEX will look for a command file or program file,
and if it doesn't find one, print an error;

• if you precede the command with %RUN, MPEX will look for a program file, and if it doesn't
find one, print an error;

• if you precede the command with a ":", MPEX will not look for an MPEX command (but it
will emulate MPE/iX commands on MPE/V systems);

• if you precede the command with a "!", MPEX will not look for a UDC – use this if you have
a UDC with the same name as an MPEX command. You can precede "!" with a "$" to
execute the command "offline" (see "Batch execution" in this manual).

MPEX COMMAND REFERENCE: Online notepad

97

Just like in MPE, any MPEX command can be continued with an "&". For compatibility with
MPE/V and older versions of MPEX, MPEX inserts a space character in the command line in
the position where the "&" was and includes leading spaces on the continued line. MPE/iX,
however, does not include a space for the "&" and strips leading spaces from the continued
line. If you want to tell MPEX to use the MPE/iX behavior, you should set the variable
VESOFTCONTINUENOSPACE to 1 in your MPEXMGR.PUB.VESOFT file.

%SETVAR VESOFTCONTINUENOSPACE 1

In addition (also like MPE), the length of the entire command is limited to 279 characters,
after all variables and expressions within the command have been "resolved" (see "Using MPEX
variables", in this manual).

The following are all examples of valid MPEX commands:

%SHOWJOB JOB=@J

which executes the ordinary MPE command :SHOWJOB JOB=@J.

%RUN MYPROG;LIB=G;PARM=17

which executes the MPE command :RUN MYPROG;LIB=G;PARM=17. Although such a
command can't normally be executed through the COMMAND intrinsic, MPEX can execute it
nonetheless.

%S J

which, if you have a UDC called S, will invoke it with parameter "J".

%DELETESPOOLFILE $STDLIST.@.@(SPOOL.OUTPRI<=3)

which will delete all the $STDLISTs in the system that have an output priority of 3 or less (for
more information, see the %DELETESPOOLFILE command description in this manual).

%$COBOL AP@.SOURCE, AP@.PUB
%$RUN MYPROG;LIB=G;PARM=17

which will execute the specified commands in batch jobs (one batch job for the COBOL
command and one for the RUN command). As you see, MPEX allows easy offline execution of
either MPEX commands or normal MPE commands – just prefix them with a "$".

%DBUTIL

which will run the program DBUTIL.PUB.SYS. Actually, it will (by default)

• first try to run DBUTIL (in your logon group);

• if it can't find DBUTIL, it'll try to run DBUTIL.PUB (in your logon account);

• if it can't find DBUTIL or DBUTIL.PUB, it'll try to run DBUTIL.PUB.SYS.

MPEX COMMAND REFERENCE: %ABORTJOB

98

Thus, if you had a program called MYPROG in your own group and account, you could run it by
simply saying

%MYPROG
%FROBOZZ 10, 20, 30

which will execute the commands in the file FROBOZZ (or FROBOZZ.PUB or
FROBOZZ.PUB.SYS), passing to them as parameters 10, 20, and 30. The file FROBOZZ might
look like:

PARM WIDGETS, GADGETS=33, FRAMASTATS, THINGAMABOBS=55
BUILD XXFILE;TEMP;REC=![WIDGETS+GADGETS+FRAMASTATS]
RUN TWIDDLE;PARM=!WIDGETS;INFO="G!GADGETS"
RUN TWADDLE;PARM=!FRAMASTATS;INFO="XXX!THINGAMABOBS"
PURGE XXFILE,TEMP

— just like a UDC, except that instead of the header line "FROBOZZ WIDGETS, ...", the header
says "PARM WIDGETS, ...".

%ABORTJOB
 Syntax: %ABORTJOB userset

 [;NOVERIFY]
 [;QUIET]

Examples: %ABORTJOB @.AP-MGR.AP-RON,@.@
%ABORTJOB #J1234+#J1235
%ABORTJOB ONLINE-LDEV=!HPLDEVIN-LDEV=!HPCONSOLE
%ABORTJOB QREPORT,@.@
%ABORTJOB ACCESSING=CUST.DB.PROD
%ABORTJOB #A10 (aborts a STREAMX scheduled job)
%ABORTJOB @J&SCHED (aborts only MPE-scheduled jobs)
%ABORTJOB SCHED-@A

The %ABORTJOB command is an enhanced version of MPE's :ABORTJOB command. It allows
you to specify which jobs to abort using VESOFT usersets (see the Usersets section in the
Logon Security chapter of the SECURITY User Manual).

By default, ABORTJOB will show the job numbers and logon IDs of all the jobs that are to be
aborted and then ask you if it's OK to abort them. If you do not reply "Y", the jobs will not be
aborted. This can help you avoid accidentally aborting many jobs that you don't actually want
to abort.

If you want to do the %ABORTJOB without prompting for verifications, just append
";NOVERIFY" to the command, e.g.

%ABORTJOB BATCH&EXEC;NOVERIFY

This will still show the numbers and logon IDs of the jobs that are being processed.

MPEX COMMAND REFERENCE: %ALARM, %SHOWALARM, %DELETEALARM

99

If you used the ";QUIET" keyword instead, e.g.

%ABORTJOB @.AP&WAIT;QUIET

then both the verification request and the job numbers/logon IDs will not be displayed.

For compatibility with MPE, if you specify a single job/session number (e.g. "%ABORTJOB
#J1234") you will not be asked for verification, and the job number/logon will not be
displayed, just as if you had said ";QUIET".

ABORTJOB and STREAMX scheduled jobs
Our STREAMX product (part of SECURITY/3000) has the ability to schedule jobs based upon a
date, time or event, with an option to repeat as needed. These jobs are shown by our %SEC
SHOWSCHED command with a "#A" that specifies each scheduled job. For example, entering
%ABORTJOB #A12 would abort scheduled job #12 in our job scheduler. Once a job is
scheduled, it keeps the same #A number until it is launched or aborted or in other words, the
%ABORTJOB command doesn't change scheduled job numbers.

The %ABORTJOB command also supports our %SHOWJOB usersets of @J, @S, and @A.

See the chapter on repeating jobs in the STREAMX section of the SECURITY manual for more
details.

%ALARM, %SHOWALARM, %DELETEALARM
 Syntax: %ALARM ["{time|booleanexpression}"], [message]

 [;TO= userset]|[;LOGON]|[;TERMINAL]|[;SESSION]
 [;NOHP]
 [;scheduleparms]
 [;CHECKEVERY=interval]
 [;REPEAT={DAILY|WEEKDAYS|list of days}]
 [;WHEN=expression]
 [;WHENEVER=expression]

%SHOWALARM
 [;ALL]
 [;FROM= mpeuserset]

%DELETEALARM alarmnumber

Examples: %ALARM "11:45AM", "Almost time for lunch!"
%ALARM "2:30PM", "Don't forget our meeting at 3:00";TO=@.DEV
%ALARM 'JSCOUNT("REPORT1,BATCH.PROD")=0', "REPORT1 is done!"
%ALARM 'JSCOUNT("BILL,@.@")>0', "Bill has logged on!"; &
 CHECKEVERY=5
%ALARM "HPJOBCOUNT>3", "More than 3 jobs are logged on!"; &
 TO=LDEV=20

MPEX COMMAND REFERENCE: %ALARM, %SHOWALARM, %DELETEALARM

100

%ALARM , "FORBIN Project is due TODAY!"; TO=TERMINAL; &
 DATE=11/05/91; AT=9:00

%SHOWALARM
%SHOWALARM;ALL
%SHOWALARM;FROM=@.DEV

%DELETEALARM 1

The %ALARM command uses the BACKG background job (see the %BACKG command in this
manual for details) to send the specified message at some given future time. Alarms can be set
by specifying:

• the time-of-day;

• a boolean expression (the message will be sent when the expression becomes TRUE);

MPE :STREAM-type scheduling parms (";AT=", ";DAY=", ";DATE=", or ";IN=").

Note that these are entered as separate parameters and not within the first parameter.

By default the message will be sent to your logon (i.e. to the
"session,user.account,group" you were logged on as when you set the alarm); however,
you can specify that the message be sent to any VESOFT userset (see "Usersets" in the
SECURITY User Manual for details on usersets) using the ;TO=userset option.

For example, to send the message to all users logged on with SM capability, you might say
something like

%ALARM 'JSCOUNT("LDEV=20")>0', Someone logged on to the console; &
 TO=CAP=SM

Three shorthand keywords are also provided:

• ;LOGON (the default) means the same as
;TO=!HPJOBNAME,!HPUSER.!HPACCOUNT,!HPGROUP (i.e. notify anyone logged on exactly
the same way as the person who set the alarm).

• ;TERMINAL means the same as TO=LDEV=!HPLDEVIN (i.e. notify anyone logged on to the
terminal the alarm was set from, useful if you frequently log off and back on with a
different user ID, but at the same terminal).

• ;SESSION means the same as ;TO=#!HPJOBTYPE!HPJOBNUM (i.e. notify the particular
session that set the alarm, not all users that logged on the same as the user who set the
alarm. This is useful if you log on with a user ID that is the same as other users, but want
to limit who sees the alarm).

If the message (or the boolean expression) contains embedded commas, semicolons or quote
characters, enclose the entire message (or boolean expression) in quotes.

Normally the message is sent using the equivalent of our %WARNF command (documented in
this manual), which writes the message over the function key labels on HP terminals. If you
know that the terminal to which the message will be sent is NOT an HP terminal (or
emulator), you might want to use the ;NOHP option so that we won't send the escape sequence
to write over the function keys.

MPEX COMMAND REFERENCE: %ALARM, %SHOWALARM, %DELETEALARM

101

Unlike the :TELL (or %TELL) command, %ALARM messages do not include any information
about who set the %ALARM. To avoid having to manually include your name (or session
number) in every %ALARM message you set, MPEX will prefix the message with the contents of
the variable MPEXALARMPREFIX (if you %SETVAR it).

For example, to prefix all %ALARM messages with "From Ron: ", you would do a

%SETVAR MPEXALARMPREFIX "From Ron: "

before you do any %ALARMs. In fact, you may want to include this %SETVAR in your MPEXMGR
file (see "Specifying commands to be executed each time MPEX is entered" in the Running
MPEX section of this manual).

Repetitive alarms
The %ALARM task accepts the same repetitive keywords as STREAMX for scheduling repeating
alarms. The ;REPEAT=... keyword lets you use the values DAILY for every day of the week,
WEEKDAY for every "work" day (excludes Saturday and Sunday), a specific day of the week or a
list of days. For specific days, you need to supply at least the first three letters of each day you
want the alarm to be sounded.

Ordinarily, when you use the ;REPEAT=... keyword, you would also use ;AT= to specify a
particular time each day that the alarm should be triggered. If you use ;REPEAT=... without
;AT=..., the scheduled time for the alarm will be the time of day that you issued the command.
So if you type:

%ALARM "","Quitting Time!";REPEAT=WEEKDAY

at 4:00 in the afternoon, then this alarm will be executed at 4:00 PM each weekday.

The keywords ;WHEN and ;WHENEVER are used to specify a condition that when true will
signal an alarm. ;WHEN is used to set up a single event alarm — when the condition becomes
TRUE, the alarm is triggered and deleted from the scheduler. ;WHENEVER is used to set up a
multiple event alarm — as long as the condition is TRUE, the alarm will be sounded.

Security considerations
For security reasons, non-SM users are not allowed to use certain functions in the boolean
expression when they set an alarm (some functions are not even allowed for SM users, because
their use might hang the ALARM background process, but most of these wouldn't be very
useful in an alarm anyway). The restricted functions include:

• the MPE(...), PAUSE(...), and PRINTOPREPLY(...) functions;

• all VEFaccess and VEDBaccess functions (like VEFOPEN, VEDBOPEN, etc.);

• the LOCKWORD, ACCESSIBLEBY, FSEARCHEXP, and FSEARCHSTRING file attributes (for
example, using the VEFINFO function);

• all of the terminal input functions (INPUT, READSTRING, etc.)

• all of the variable-setting functions (SETVAR, SVARSET, etc.)

• all of the object info functions (VEUSERINFO, VEACCTINFO, etc.)

• all SECURITY-related functions (SECURITYLOG, VEPROFILEINFO, etc.)

MPEX COMMAND REFERENCE: %ALARM, %SHOWALARM, %DELETEALARM

102

Performance considerations
By default, the ALARM task wakes up and checks each alarm once each minute. This can be
changed by setting the variable VESOFTALARMPAUSE in the BACKG initialization file. For
example, adding the line:

SETVAR VESOFTALARMPAUSE 15

to the file BACKGINI.DATA will cause the ALARM task to wake up every 15 seconds or 4 times
each minute.

Each time the ALARM background task wakes up, every alarm that has been set will be tested.
If you set an %ALARM based on an expression that uses a lot of system resources (CPU, disk
I/Os, etc.) to evaluate, you may want to check that particular alarm less frequently. When you
enter an %ALARM command, simply append the ;CHECKEVERY= keyword to tell the ALARM
background task how many intervals to skip before checking the particular expression you are
entering.

For example:

%ALARM "JSCOUNT('COMPILE,@.@&EXEC')=0", Compiles are done!; &
 CHECKEVERY=10

This means "notify me when there are no more jobs executing that logged on with a jobname
of COMPILE — but only check every 10th time the task wakes up".

Viewing pending alarms (%SHOWALARM)
To see what alarms you currently have set, type %SHOWALARM. This will show you all of the
alarms set by anyone logged on using the same session, user, and account name you are
currently logged on to. For each alarm, you will see:

• an alarm number (you need this for the %DELETEALARM command, documented below);

• the time the alarm is set to "go off" or the expression which this alarm is set to test;

• the message this alarm will send when it "goes off".

If you say %SHOWALARM;ALL, you will also see:

• who set the alarm;

• who the message is to be sent to;

• any other special options set (;CHECKEVERY= or ;NOHP).

If you have SM capability, you can use the ;FROM= option to see alarms set by other users. For
example:

%SHOWALARM;FROM=@.@;ALL

will show you all alarms set by any users, and all parameters of those alarms.

MPEX COMMAND REFERENCE: %ALIAS, %UNALIAS

103

Deleting pending alarms (%DELETEALARM)
To delete pending alarms, first do a %SHOWALARM (documented above) to find out the alarm
number. Then simply type %DELETEALARM and the number of the alarm you wish to delete;
for example, to delete alarm #5:

%DELETEALARM 5

Unless you have SM capability, you can only delete alarms that were set while logged on with
the same session, user, and account name you are currently logged on with (these are the only
alarms that %SHOWALARM shows you).

%ALIAS, %UNALIAS
Syntax: %ALIAS [aliasname command]

%UNALIAS aliasname

Examples: %ALIAS WT WARNF TOM,@.@;From Ron:
%WT This is a test of an alias...
%ALIAS SS SHOWJOB JOB=@S
%SS
%UNALIAS SS
%ALIAS

The %ALIAS commands allows you to create your own commands, sort of like UDCs or
command files. So, why have a separate command when you could just use UDCs or
command files?

• UDCs are hard to modify.

• Command files, while easier to change, require a separate file for each new command (on
MPE/iX, the smallest amount of space a file can take is 16 sectors or 4096 bytes!)

• Both UDCs and command files require you to create a file, which means stopping what
you're doing long enough to run some editor.

Aliases are created by simply typing "%ALIAS", an aliasname (which can be anything that an
MPEX variable name can be), and the command to be executed when you enter that alias.
When you log off, all of your aliases are automatically deleted. This makes it very convenient
for you to create a simple, immediate shortcut for some complex sequence that you need to do
repetitively (perhaps only for one day).

For example, suppose you're testing some program, and you have to run it with a long ;INFO=
string to test it, but not when it is put into production (presumably, you already have a UDC or
command file that does this). You could say something like:

%ALIAS TESTIT RUN MYPROG;INFO="TESTDATA1 TESTDATA2"

Now, all you have to do is say

%TESTIT

MPEX COMMAND REFERENCE: %ALLOCATE

104

But, what if you need to run it with different parms? You could create several aliases, but a
better solution would be

%ALIAS TESTIT RUN MYPROG;INFO="TESTDATA1 TESTDATA2";PARM=

Then you can say

%TESTIT 20 (* to run with PARM=20 *)
%TESTIT 32 (* to run with PARM=32 *)

As you can see, everything you type after the alias name is appended to the command that
corresponds to that alias.

To see a list of your current aliases, simply type

%ALIAS

without any parameters.

To remove an alias, type

%UNALIAS aliasname

%ALLOCATE
Syntax: %ALLOCATE PROCEDURE, { procname }

%ALLOCATE [PROGRAM,] { fileset }
 [;LIB= { G | P | S }]

Examples: %ALLOCATE MY.OWN.PROGRAM;LIB=G
%ALLOCATE PROCEDURE, VECMMND

MPEX has enhanced the normal MPE :ALLOCATE command to allow the use of the traditional
;LIB=G or ;LIB=P parameter (;LIB=S is also supported but has no effect as it is the default).
MPE does not allow specifying ;LIB=G or ;LIB=P on the allocate command.

As with many other MPEX commands, MPEX allows you to specify a fileset instead of a single
file name. Note that the file attribute "ISCMPROG" is quite useful here in determining which
files even NEED to be allocated.

For example, when installing our software, MPEX %HOOKs several programs and places a
copy in the VESOFT account. To %ALLOCATE all of these programs using ;LIB=P, so that the
HOOK procedure is loaded, type the following command:

%ALLOCATE @.PUB.VESOFT(ISCMPROG);LIB=P

MPEX COMMAND REFERENCE: %ALTFILE

105

%ALTFILE
Syntax: %ALTFILE fileset

General Characteristics:

 [;CAP= [+|-] progcapability [,...]]
 [;CODE= filecode]
 [;KEEPAMDATES]
 [;LOCKWORD= lockword]
 [;MAXDATA= progmaxdata]
 [;STACK= progstacksize]

File Ownership and Access:

 [;CREATOR= username]
 [;CREATOR= username [.accountname]] (POSIX)
 [;NOCHECK] (POSIX)
 [;DELACD]
 [;GROUPID= groupid] (POSIX)
 [;LOCAL[GROUPID]] (POSIX)

Physical Structure:

 [;BINARY|ASCII]
 [;BLKFACT= { blockingfactor|BEST }]
 [;DEV= { devicenumber|deviceclass }]
 [;EXTENTS= maxextents]
 [;FIXED|VARIABLE|UNDEF|BYTE]
 [;FLIMIT= flimitspecifier]
 [;INITEXTENTS= initialextents]
 [;KEEPTRAIL]
 [;REC= newrecordlength]
 [;SQUEEZE]
 [;XLTRIM]

The %ALTFILE command can change many of a file's attributes. It can:

• Save disk space (XLTRIM, FLIMIT, SQUEEZE);

• Better manage the disk space you have by moving files from drive to drive (DEVICE);

• Make room in files (MPE or KSAM!) that are out of space (FLIMIT);

• Let you transfer ownership of files from one user to another (OWNER=), including ACCOUNT
(GROUPID=) information on MPE/iX systems that support POSIX as well as removing ACDs
(DELACD) that would override normal MPE security;

• Change the attributes of improperly :PREPed program files, preventing run-time capability
errors and stack overflows (CAP, MAXDATA, and STACK);

• Alter the file codes and lockwords of files or filesets (CODE, LOCKWORD).

• Change file's internal structure (FIXED, VARIABLE, UNDEF, BYTE)

• Change the file from ASCII to BINARY (or the other way around, if you prefer)

• Change the length of each record, optionally keeping trailing SPACES for ASCII files, if
desired. (REC=... and ;KEEPTRAIL)

MPEX COMMAND REFERENCE: %ALTFILE

106

All of these options are described in detail below. Note that you can combine any of the above
options on one command, as well as use these parameters on a %COPY command (see the
%COPY command for more details and examples). e.g.

%ALTFILE @.DATA; FLIMIT=EOF*1.5;XLTRIM;KEEPAMDATES

or

%COPY MYPROG, YOURPROG; CAP=+PH,DS; MAXDATA=30000

POSIX note: %ALTFILE security considerations
Ordinarily, an account manager can use the %ALTFILE command against any file within any
group of his own account. On systems supporting POSIX, files have an attribute called the
FILEGROUP (which is the ACCOUNT of the OWNER of the file). Since a system manager can
%RENAME a file to another account, it is possible to have a file that an account manager cannot
alter because the file belongs to a FILEGROUP that is different from the account manager's
FILEGROUP.

Changing file blocking factors (;BLKFACT=)

Syntax: %ALTFILE fileset;BLKFACT={expression|BEST}

Examples: %ALTFILE @.DATA(ISASCII); BLKFACT=BEST
%ALTFILE MYFILE; BLKFACT=128

This keyword of the %ALTFILE command lets you change a file's blocking factor (or the
blocking factors of a set of files). You can set the new blocking factor to a given number or let
MPEX choose the best possible value (in terms of disk space) by specifying ;BLKFACT=BEST.

Note:

%ALTFILE...;BLKFACT=... works on all systems, including MPE/iX; however, since blocks are
handled quite a bit differently under MPE/iX, this discussion and the advantages described in
it might not apply to MPE/iX machines. If you're using MPE/iX, you might want to skip the
%ALTFILE...;BLKFACT discussion altogether.

Saving disk space
Bad blocking factors can waste disk space. For example, typing

:BUILD RPTLIST;REC=-133,,,ASCII;CCTL

will make MPE assign a default blocking factor of 1, which will waste 47.5% of the disk space
used by the file! MPE's default blocking factors, which are optimized to save memory (no
longer a scarce resource) can often result in very bad disk space usage.

Typing a command such as

%ALTFILE @.DATA(ISASCII); BLKFACT=BEST

MPEX COMMAND REFERENCE: %ALTFILE

107

will set the blocking factors of ASCII ("plain vanilla") files in the DATA group to the BEST
blocking factor — the best in terms of disk space usage. If several different blocking factors
would result in the same file size, MPEX chooses the HIGHEST one to optimize access speed.

The blocking factor can be BEST, an integer constant or an EXPRESSION calculated from
various file parameters (the same ones available in selection criteria). For instance, you might
want to set a file's blocking factor to 8192 divided by the record size (in bytes):

%ALTFILE @.DATA(ISASCII); BLKFACT=8192/RECSIZE

(This, of course, will set the blocking factor to the highest value such that the resultant block
size is <= 8192 bytes.) If we also want to limit the blocking factor to at most 100, we could
say

%ALTFILE @.DATA(ISASCII); BLKFACT=MIN(8192/RECSIZE,100)

This ability to specify expressions as %ALTFILE parameters is available on the BLKFACT=...
and FLIMIT=... keywords; it isn't (currently) available on any of the others, primarily because
we haven't found any case in which we think it'll be useful. If you can think of one, let us
know.

Speeding up file access
In normal buffered file access (the default access mode), the file system does disk I/Os in units
of one block — the blocking factor is the number of records in each block. If a 30,000-record
file which has blocking factor 3 is read sequentially, the file system will have to issue 10,000
disk I/Os. If the file has a blocking factor of 100, it could be read in only 300 disk I/Os;
although each 100-record I/O would be somewhat slower than each 3-record I/O, you could
still realize a 10-fold performance improvement.

Therefore, it can be quite desirable to increase the blocking factors of some of your MPE or
KSAM files — especially ones that are accessed sequentially.

For instance, saying

%ALTFILE DATAFILE; BLKFACT=100

will increase DATAFILE's blocking factor to 100; saying

%ALTFILE @UDC@; BLKFACT=EOF

will set the blocking factor of all the files that have "UDC" in their file names to be equal to
their current EOF, thus making it possible (on MPE/V) to read the entire file in one I/O (this
only works if the EOF is 255 or less).

It's often a good idea to increase the blocking factor of your UDC files because they must be
read in their entirety every time a user logs on — increasing their blocking factors can thus
greatly speed up logon time. (Of course, the UDC files must be un-:SETCATALOGed before
reblocking and re-:SETCATALOGed afterwards.)

Note that you pay for this speed by higher memory usage (as a rule, the system keeps two
blocks of memory allocated for every accessor of a disk file – if your file has blocking factor 60
and record size 40 words, each of the users of the file will have 4800 extra words of memory

MPEX COMMAND REFERENCE: %ALTFILE

108

allocated for him). If you find this a problem (and most people don't), you can easily lower
blocking factors.

WARNING
Like most %ALTFILE options, %ALTFILE...;BLKFACT=BEST doesn't change the data in your file
— it only changes the format in which the data is kept on disk. Most of your programs
shouldn't care what a file's blocking factor is; however, a few programs (especially system
utilities) do care, and sometimes make assumptions about a file's blocking factor.

A good example of this is the MPE :SEGMENTER subsystem — it assumes that all USL, RL, and
SL files have blocking factor 1. If you change a USL file's blocking factor, :SEGMENTER won't
be able to access the file, not because the blocking factor change somehow "ruined" the data in
the file, but because :SEGMENTER's assumptions are no longer valid.

Because of this, MPEX doesn't let you change the blocking factor of files whose file codes are
1024 or greater — these file codes are generally reserved for MPE or HP subsystems, which
usually make assumptions about the blocking factors of these files. This rule prevents you
from accidentally rendering some of your USL files, program files, etc. unusable.

It is still possible, though, that one of your own programs (or a program supplied by a third-
party vendor) can't handle files whose blocking factors have been changed. Naturally, MPEX
doesn't know this, and will reblock such a file if you tell it to (remember, "a computer does
what you tell it to do, not what you want it to do").

If this happens to you — if you change a file's blocking factor (or its file limit) and your
program doesn't like this — don't panic! Just use %ALTFILE to change the blocking factor back
to whatever it was before.

Similarly, before doing a fileset %ALTFILE...;BLKFACT=... check to see if there are any special
files in the fileset — if there are, try altering one of them first and seeing if the program that
normally accesses it can still do so.

If you find that the program complains, you can easily exclude that file (and others like it) by
saying something like

%ALTFILE @.@(CODE<>"557" and CODE<>"558"); BLKFACT=BEST

Note:

%ALTFILE...;BLKFACT=BEST also forbids changes of files with file code 111 [QEDIT files] but
allows changes of files with file code 1052 [EDTCT files].

Changing program file capabilities (;CAP=)

Syntax: %ALTFILE fileset;CAP={[+|-][IA,BA,PH,PM,MR,DS]}

Examples: %ALTFILE AP010P; CAP=+PH,DS
%ALTFILE @.UTIL.SYS(ISPROG); CAP=-PM,PH,MR,+DS

In order to do certain things — create son processes, acquire extra data segments, lock
multiple files/databases or use privileged mode — a program must be :PREPed (or, for
MPE/iX native mode programs, :LINKed) with the appropriate capabilities.

What if you omit the right capability? With MPEX you don't need to re-:PREP the program (or
recompile it if you've lost the USL); you can just give it the capabilities that it should have.

MPEX COMMAND REFERENCE: %ALTFILE

109

For instance, saying:

%ALTFILE AP010P; CAP=+PH,DS

will add to the program file AP010P the capabilities PH and DS (without removing any of the
capabilities it already possesses).

Similarly, you can use %ALTFILE to remove capabilities from a program. For example:

%ALTFILE @.UTIL.SYS(PROG.PMCAP); CAP=-PM

will remove PM capability from all the UTIL.SYS programs that have PM.

Specifying all capabilities without a + or - (e.g. %ALTFILE XFILE; CAP=PH,DS) is the same
as specifying them with a +; it adds the capabilities while retaining any other capabilities the
program might have. However, specifying ;CAP=PH,-MR,DS is equivalent to ;CAP=+PH,-
MR,-DS. Similarly, specifying ;CAP=-BA,PM,PH,+MR,DS would be treated as ;CAP=-BA,-
PM,-PH,+MR,+DS. In other words, unsigned capabilities retain the same sign as the previous
capability listed.

As we implied above, %ALTFILE...;CAP= also works on MPE/iX native program files.

Related MPEX features
In addition to being able to alter a program file's capabilities, MPEX lets you do a couple of
other things that MPE doesn't let you do easily (or at all):

• List a program file's capabilities:

%LISTF MYPROG.DEV,5
FILENAME MAXDATA STACK DLSIZE DBSIZE #SEGS CAPABILITIES
MYPROG 30000 2048 0 4604 28 BA IA PM DS PH

A number of important file parameters, including the MAXDATA, capabilities, the program's
global storage size (in this case 4604), and the total segments (28) are shown.

Another way to see this (and much more) information about program files is with the
%PROGINFO command (described later in this manual).

• Find all programs with (or without) a specific capability:

%LISTF @.@.@ -@.@.VESOFT - @.PUB.SYS(PROG.PMCAP),5
%LISTF / - /VESOFT/ - @.PUB.SYS(PROG.PMCAP),5

will find for you all the programs in the system (except for those in the VESOFT account or
in PUB.SYS) that are allowed to use PM capability.

These features work hand in hand with the %ALTFILE...;CAP= command.

MPEX COMMAND REFERENCE: %ALTFILE

110

Changing file codes (;CODE=)

Syntax: %ALTFILE fileset;CODE=filecode

Examples: %ALTFILE MYDB; CODE=400
%ALTFILE MYDB01; CODE=401

In addition to all the other things, MPEX also lets you change a file's file code.

Why would you want to do this? There are several possible reasons:

• Some (though by no means all) communication programs (especially PC-to-HP3000
transfer utilities) always build HP3000 files with code 0 — if you download a file to a PC
and then upload it back, you'll find that you've lost the filecode. %ALTFILE...;CODE= can
put it back.

• Since the file system normally doesn't care much about a file's filecode — a normal program
can read a file with one filecode just as well as with another — the filecode can be a
convenient way of "marking" files. Thus, you can set some of your data files to a particular
filecode so they look more distinct on :LISTFs and so they can be selected with MPEX's
selection conditions.

An interesting idea is for marking "ephemeral" files — files that you know you'll only be using
for a few days and want to automatically purge, say, at the end of the week. Whenever you
build such a file you might %:ALTFILE...;CODE= it — then, even if you forget about it, you
can easily find it when you want to clean your disks.

If you want to get really fancy, you might have a convention to set the filecode to 1 if you want
to keep the file for one day, to 2 if you want to keep it for two days, etc. Then, you can
periodically say

%PURGE @.@(BETWEEN(INTCODE,1,14) and ACCDATE<TODAY-INTCODE)

This will purge all the files whose code is between 1 and 14 and which haven't been accessed
in that many days!

• You may also want to change a file's filecode if the code is currently negative (i.e. PRIV,
quite likely an IMAGE file). If you want to manipulate IMAGE files using a program that
normally can't handle them (e.g. DSCOPY or DISKED5), you might want to alter the file's
filecode to a positive value, do whatever you need to do, and then alter the filecode back.

Needless to say, you can get into a lot of trouble this way. Naturally, MPEX only allows a
database's creator, its account manager or the system manager (all three of whom can do
anything to the database anyway) to do this operation; we also encourage people to be very
careful with what they do with the internal structures of their precious databases.

However, under some circumstances (with somebody who knows what he's doing), this can be
a rather useful feature.

Note, however, that changing a filecode to some value doesn't magically make that type of file.
For instance, if you change a source file's filecode to PROG, the file won't become a valid
program file; the :RUN command will just give you some nasty error message when you try
running it. If you change the code to some other system-defined value (e.g. USL, SL, etc.),
whatever program accesses the file will probably complain. Use this option carefully.

MPEX COMMAND REFERENCE: %ALTFILE

111

Changing file ownership (;CREATOR= and ;GROUPID=)

Syntax: %ALTFILE fileset;CREATOR=username
%ALTFILE fileset;CREATOR=username;NOCHECK
%ALTFILE fileset;CREATOR=username.acctname
%ALTFILE fileset;GROUPID=groupid
%ALTFILE fileset;GROUPID=groupid;NOCHECK
%ALTFILE fileset;LOCALGROUPID
%ALTFILE fileset;creator=username;DELACD
%ALTFILE fileset;GROUPID=groupid;DELACD

Examples: %ALTFILE @.@(CREATOR="TOM"); CREATOR=MANAGER.SYS
%ALTFILE @.@(CREATOR<>"DBA" and ISPRIV); CREATOR=DBA
%ALTFILE @.@.SYS;GROUPID=SYS
%ALTFILE @.@.@;LOCALGROUPID
%ALTFILE @.SOURCE;CREATOR=NOBODY.ATALL;NOCHECK

A file's creator ID is often very important:

• MPE's :RENAME, :RELEASE, :SECURE, and :ALTSEC commands can only be performed by
a file's creator (although MPEX's %RENAME, %RELEASE, %SECURE, and %ALTSEC don't have
this restriction).

• As a rule, many database utilities can only be run by a file's creator (unless you use
maintenance words).

• An ordinary :RESTORE (without ;CREATE) requires the file's creator ID to exist in the
system.

Say that one of your programmers left your company; naturally, the first thing you did is
:PURGEUSERd his user ID. Now, all his files are "orphans" – they can't be :RENAMEd,
:RELEASEd, :SECUREd or :ALTSECed; his databases can't be DBUTILd; and unless you're
careful enough to put a ;CREATE on all your :RESTOREs (e.g. after your next RELOAD), they
won't be restored.

What you really need to be able to do is to "re-assign" all of these "orphans" to another user.
For instance, you might say

%ALTFILE @.@(CREATOR="TOM"); CREATOR=MANAGER
%ALTFILE @.@(CREATOR="TOM"); CREATOR=MANAGER.SYS;GROUPID=SYS

This will find all the files in your account that have creator ID TOM and change their creator ID
to be MANAGER (or MANAGER.SYS). Similarly,

%ALTFILE @.@(CREATOR<>"DBA" and ISPRIV); CREATOR=DBA

will change all your databases (which don't already have a creator ID of DBA) to be "owned by"
DBA.

Related POSIX features
Just changing the name of the creator, however, doesn't completely change the "ownership" of
a file on a POSIX system. On these systems, a file is "owned" by the CREATOR and the account
manager of the GROUP in which the file resides. Note that this is NOT the MPE group, but

MPEX COMMAND REFERENCE: %ALTFILE

112

rather the POSIX "GROUPID", (which has its roots in the UNIX operating system) and is, in
reality, an MPE ACCOUNT name.

When a file is RENAMEd from one account to another (using either MPEX or MPE itself), the
CREATOR and GROUPID don't change, so the CREATOR and account manager of the account
where the file was originally built retain "ownership" of the file. In order to enforce this, MPE
may place an Access Control Definition (ACD) on a file that has been renamed.

In order to change the ownership of all files on your system to the account where each file now
resides, use the ;LOCALGROUPID (which can be abbreviated to ;LOCAL) and ;CREATOR
keywords as shown here:

%ALTFILE @.@.@;LOCALGROUPID;CREATOR=MANAGER;DELACD

(This presumes that all of your account managers have a user ID of MANAGER; however, many
sites use MGR as the account manager.) If you want to set the ownership of a set of files to a
particular GROUPID (for instance, to secure the source of all of your job streams in a particular
account), you can use the following:

%ALTFILE @.JOBS.PROD;GROUPID=SYS;CREATOR=MANAGER.SYS

This would effectively make the system manager the "owner" of all of your job streams in the
PROD account.

Note:

;GROUPID= and ;LOCALGROUPID are mutually exclusive — you can specify one or the other,
but not both in the same command.

As the examples above show, the ;CREATOR= keyword allows you to specify the ACCOUNT as
well. If no account is specified, MPEX will assign the account name where the file resides as
the account name of the creator. In addition to specifying the MPE user ID and account, you
can use an asterisk to indicate yourself or an equals sign to indicate that the field should retain
whatever value it currently contains.

By "yourself", we mean the MPE user and account information for your current logon. For
instance, if you are logged on as MANAGER.ACCTING and type:

%ALTFILE @.DATA;CREATOR=*.*

then it would be equivalent to entering ;CREATOR=MANAGER.ACCTING.

The "=" character retains whatever value is currently in the field, so if a file was "created" by
CLERK.PAYROLL, then this command:

%ALTFILE @.DATA;CREATOR=MGR.=

would be the same as saying ;CREATOR=MGR.PAYROLL.

Note:

To maintain compatibility with MPE, MPEX generally will not let you change a file to be
"owned" by a non-existent user. This restriction can be overridden in MPEX by supplying the
;NOCHECK keyword on the %ALTFILE command.

MPEX COMMAND REFERENCE: %ALTFILE

113

Related MPEX features
We've already seen how the CREATOR= selection condition can work very well with the
%ALTFILE...;CREATOR= command. Another relevant feature is:

%LISTF MYFILE.PUB.SYS,3
FILENAME CREATOR CRE-DATE MOD-DATE MOD-TIME ACC-DATE RST-DATE

MYFILE MANAGER 11 AUG 91 24 DEC 91 10:52 AM 05 FEB 91 30 DEC 91

As you see, %LISTF...,3 shows you creator IDs, times, and dates.

Another interesting use of MPEX selection conditions in %ALTFILE…;CREATOR= is the
following:

%ALTFILE @.@(NOT USEREXISTS(CREATOR+"."+ACCOUNT)); CREATOR=MGR

Wow! What does all this mean? Well, the selection condition here is:

NOT USEREXISTS(CREATOR+"."+ACCOUNT)

We're executing the MPEX built-in function USEREXISTS(...), and passing to it the file's
creator, concatenated with a "." and the file's account. The USEREXISTS function (which you
can look up in Appendix to this manual) returns TRUE if a particular MPE user.account exists.
We said "NOT USEREXISTS..." because we want to select those files whose creator does NOT
exist. Therefore, MPEX will change to "MGR" the creator of all files (in your logon account)
whose current creator doesn't exist in the file's account.

Similarly, if you have SM capability, you could say

%LISTF @.@.@(NOT USEREXISTS(CREATOR+"."+ACCOUNT)),3

and find all the files in the system whose creators don't exist.

Moving files from disk to disk (;DEV=)

Syntax: %ALTFILE fileset;DEV=devicenumber|deviceclass

Examples: %ALTFILE CUST?#.DB(DBSETTYPE="D"); DEV=2
%ALTFILE CUST?#.DB(DBSETTYPE<>"D"); DEV=3
%ALTFILE @.@(ONDEVICE(1)); DEV=APPDISC

Which disk drives a file resides on can have a substantial impact on system performance. One
popular theory holds that having frequently-accessed files on the same disk drive can increase
contention for that drive and therefore slow down access to it. Therefore, many people like to:

• Keep frequently-accessed IMAGE master and detail files on different drives;

• Keep KSAM data files on different drives than their key files;

• Minimize the amount of non-system files that reside on device 1 (since it is already heavily
used for system access, directory access, and sometimes for virtual memory access).

MPEX COMMAND REFERENCE: %ALTFILE

114

MPEX is the most convenient tool for doing this sort of thing.

For example, saying

%ALTFILE CUST?#.DB(DBSETTYPE="D"); DEV=2
%ALTFILE CUST?#.DB(DBSETTYPE<>"D"); DEV=3

will move all the detail datasets of the CUST database (the selection condition
DBSETTYPE="D" will select only the detail datasets) to disk drive #2, and all the non-detail
(manual or automatic) datasets to disk drive #3. Similarly,

%ALTFILE @.@(ONDEVICE(1)); DEV=APPDISC

will move all files in your account that have at least one extent on device #1 to device class
APPDISC (which might be configured to include all disk drives except for device 1).

What you should know about extents
Before moving a lot of files, you must be aware of some little-known facts about the way disk
files are built.

By default, a disk file is built on device class DISC, which is (usually) configured to include all
the disk drives in the system. This means that each of a file's extents could conceivably be on a
different disk drive.

For instance, if you use MPEX's %LISTF...,4 to look at a file's extent map, you might see the
following:

-----FILE------ EXTENTS -BLKFACT- -----SECTORS----- DEVICE
LABEL
NAME CODE NUM MAX NOW BEST USED NOW SAVABLE CLASS LDEV

LOG0679 16 16 1 8192 DISC 2
 Dev/Sector: 2/%00000241110 3/%00000105237 1/%00000544165
 Dev/Sector: 1/%00000537652 3/%00000523744 4/%00000534046
 Dev/Sector: 3/%00000531514 2/%00000544520 4/%00000526374
 Dev/Sector: 2/%00000540024 1/%00000540652 1/%00000535347
 Dev/Sector: 1/%00001120104 2/%00001310054 4/%00000763606
 Dev/Sector: 1/%00001137722

As you see, this file has 6 extents on device 1, 4 extents on device 2, 3 extents on device 3, and
3 extents on device 4.

However, your :STORE listing will show this file as being "on device #2" — :STORE always
shows the device number of the file label! MPE/iX has a :LISTF...,3 (not the same as MPEX's
%LISTF...,3!) that shows the "DISC DEV #", but this is actually the disk that the file label is
on; the beginning of the file itself may be on a completely different disk!

Therefore, when you're figuring out which files should be moved, be sure that you have all the
data! Do a %LISTF...,4 first to see exactly on which disk drive a file is located — even if you
see a data and key file which :STORE shows as being on different disk drives, it may be that
they're actually mostly on the same device.

MPEX COMMAND REFERENCE: %ALTFILE

115

Another relevant feature is the ONDEVICE(devnumber) selection criterion we mentioned
above. Saying

%ALTFILE @.DATA(ONDEVICE(1)); DEV=APPDISC

will select (and move) those files that have at least one extent on device 1. Thus, any files
which are even partially on the system disk will be moved.

The criteria that are related to file location are:

ONDEVICE(devnumber) TRUE if the file has at least one extent on the given device.

DEVICESECTORS(devnumber) An integer that indicates how many sectors of the file are
actually on device devnumber.

DEVICE=... A string indicating the DEVICE CLASS (e.g. "DISC",
"SYSDISC", "MEBER2" or "2") — a device class may also be a
device number.

FLABLDEV=... An integer indicating where (on which device) the file label is.

For instance, some interesting commands might be:

%ALTFILE @.DATA(DEVICESECTORS(1)>=SECTORS/10); DEV=2

(affects all files that have at least one tenth of their sectors are on device 1; moves them onto
device 2)

%ALTFILE @.DATA(DEVICE="SYSDISC"); DEV=APPDISC

(moves to device class APPDISC all the files that were built on device class SYSDISC — not
those files that happen to be on a device in that class, but those that were explicitly built to be
on that device class)

What you should know about non-system volumes
When moving files from one device to another, you should also be aware of the effect non-
system volumes have on files. Note that on an XL system, the SYSTEM volume set is called
"MPEXL_SYSTEM_VOLUME_SET", while NON-SYSTEM volume sets are given an arbitrary name
when they are created. On MPE/V systems, the SYSTEM volume set did not have any special
definition while NON-SYSTEM volume sets were usually referred to as PRIVATE VOLUMES.

The important thing to understand about volume sets is that the VOLUME SET for a particular
file is not determined by the file itself, but rather the GROUP in which the file resides
determines the VOLUME SET for the file. While all of the files in a particular group reside on
the same volume set, different groups within the same account may reside on different volume
sets. For this reason, when you %RENAME a file from one group to another, you may get an
error indicating that the file cannot be renamed across volume sets. In this case, the file must
be %COPYd instead.

For example, lets take a system with eight drives: LDEVs 1,2,3, and 4 are the SYSTEM volume
set; LDEVs 5,6,7, and 8 are a NON-SYSTEM volume set. On this system, the account DEMO
has three groups, PUB, SYSTEM, and PRIVATE. PUB and SYSTEM are in the SYSTEM volume
set and PRIVATE is on the NON-SYSTEM volume set.

MPEX COMMAND REFERENCE: %ALTFILE

116

To move the file SHOW.PRIVATE.DEMO to SHOW.PUB.DEMO, you must use the %COPY
command instead of the %RENAME command since these groups are in different volume sets.
For the same reason, you cannot %ALTFILE SHOW.PRIVATE.DEMO;DEV=2 but you could
%ALTFILE SHOW.PRIVATE.DEMO;DEV=8. In general, however, you could %ALTFILE
SHOW.PRIVATE.DEMO;DEV=DISC since the device class of DISC may be applied to devices in
different volume sets (and is usually applied to all physical disk devices when configured).
When you use ;DEV=disk for a file on a non-system volume set, the file is placed on any disk
within that set, so the file SHOW.PRIVATE.DEMO would exist on LDEV 5, 6, 7 or 8 after the
above command was executed.

In order to move a group from a SYSTEM volume set to a NON-SYSTEM volume set, you need
to use the :NEWGROUP and :ALTGROUP commands to define the group on the non-system
volume set. The group must be empty when you do this, so you must :STORE, and %PURGE
the files prior to moving the group, then :RESTORE the files after the group has been moved.

This works fine for a single group, but could become tedious for a large number of groups.
Our VEAUDIT product can perform %ALTGROUP commands against groupsets, so moving
groups from a system volume set to a non-system volume set is relatively easy (see the
VEAUDIT manual for details).

Changing file maximum # of extents (;EXTENTS=)

Syntax: %ALTFILE fileset;EXTENTS=maxextents

Examples: %ALTFILE MYFILE;EXTENTS=32
%ALTFILE @.DATA(EOF<FLIMIT and MAXEXTENTS<>32);EXTENTS=32

Note:

%ALTFILE...;EXTENTS=... works on all systems, including MPE/iX; however, since extents are
handled quite a bit differently under MPE/iX, this discussion and the advantages described in
it might not apply to MPE/iX machines. If you're using MPE/iX, you might want to skip the
%ALTFILE...;EXTENTS=... discussion altogether.

A disk file may be built as any number (from 1 to 32) of chunks of contiguous disk space.
Each such contiguous chunk is called an extent.

The most important thing about extents is that a file is always allocated extent by extent:

• If you build an entirely empty file — one that contains no data – an entire extent of the file
will have to be allocated (if the file has file limit 100,000 and a maximum of 8 extents, then
enough room for 12,500 records will be allocated even if none of them are actually used);

• Whenever a file is not full — its EOF is less than its FLIMIT — ½ of an extent is, on the
average, wasted.

For instance, in that file with FLIMIT 100,000 and a maximum of 8 extents, on the average
6,250 records worth of data will be wasted — allocated but not used. For example, in the file

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE 134B FAC 13215 100000 21 13112 2 8

MPEX COMMAND REFERENCE: %ALTFILE

117

6,171 sectors of data (almost half!) are wasted — there are only 13,215 records in it, but since
each extent has 12,500 records (100,000 / 8), MPE allocates enough disk space for 25,000!

What this really means is that:

• Whenever you expect a file to have EOF < FLIMIT, you should build it with a maximum of
32 extents, the largest value allowed by MPE. (MPE's default is 8, which is less efficient
than 32.)

With 32 extents, the average amount of wasted space (½ of an extent) and the maximum
amount of wasted space (1 full extent) will both be minimized.

For instance, if in the above example we say

%ALTFILE MYFILE;EXTENTS=32

then our file would look like:

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE 134B FAC 13215 100000 21 8195 5 32

Simply by increasing the maximum number of extents for the file (which doesn't decrease the
room available in the file at all), we've saved 4,917 sectors or 37.5% of the file's disk space!
There's still some "wasted" space, but it's a lot less now than it was before.

A good example of the use of MPEX filesets on the %ALTFILE command might be:

%ALTFILE @.DATA(EOF<FLIMIT and MAXEXTENTS<>32);EXTENTS=32

This finds all the files that are not full (EOF<FLIMIT) and don't already have a maximum of
32 extents and changes them to have a maximum of 32 extents.

Note that the MAXEXTENTS keyword (which indicates the maximum number of extents this file
could have) shouldn't be confused with NUMEXTENTS (which indicates the number of extents
the file currently has). MAXEXTENTS corresponds to the "MX" column on a :LISTF...,2;
NUMEXTENTS corresponds to the "#X" column.

Also note that sometimes when you ask for a certain maximum number of extents, MPE will
actually build the file with a smaller maximum number of extents — for instance,
%ALTFILEing a file with EXTENTS=32 might actually make the file have only 29 extents.

This is a feature of MPE which MPEX can do nothing about (the MPE :BUILD command often
does the same thing); in any case, it shouldn't cause any problems, since the maximum
number of extents only affects the disk space allocated to a file, not the behavior of programs
accessing it.

MPEX COMMAND REFERENCE: %ALTFILE

118

Changing file flimits (;FLIMIT=)

Syntax: %ALTFILE fileset; FLIMIT=flimitspecifier

Examples: %ALTFILE @.DATA(INTCODE<>717); FLIMIT=EOF*1.5
%ALTFILE MYFILE.DATA; FLIMIT=FLIMIT-10000

Saving disk space
Whenever a file's FLIMIT is greater than its EOF, chances are that some disk space will be
wasted. This wasted space can be minimized by increasing the number of extents to 32 (see
";EXTENTS=" in the %ALTFILE command); but even then, most of the time there will be some
disk space that is allocated but not used.

Consider, for a moment, the following file:

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE 134B FAC 13215 100000 21 8195 5 32

As you see, it occupies 8,195 sectors of disk space; however, only about 6,900 of these
(13215*134/256) really contain data — the rest are unused.

It's quite possible that MYFILE will never have 100,000 records; it might be quite safe to leave
just enough additional room for, say, half as many records as are already in the file. All we
need to do is say

%ALTFILE MYFILE; FLIMIT=EOF*1.5

and then the file will look like:

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE 134B FAC 13215 19822 21 7260 22 32

As you see, we've saved 935 sectors or 11% of the file's disk space. Only 319 sectors are now
wasted (allocated but not used). And, chances are that the room left in the file (50% of its
current size) should be plenty for any further expansion.

What if a file overflows?
To save disk space, we can lower file limits. However, what if your data file (MPE or KSAM)
gets full? You built it with room for 20,000 records, so when you try to write the 20,001st,
MPE doesn't let you. What can you do?

MPEX's %ALTFILE...;FLIMIT=... can easily be used to increase file limits as well as decrease
them.

MPEX COMMAND REFERENCE: %ALTFILE

119

%ALTFILE MYFILE; FLIMIT=EOF*1.5

will decrease MYFILE's FLIMIT if it's currently greater than EOF*1.5; it will increase the
FLIMIT if it's currently less than EOF*1.5. For instance, if MYFILE currently looks like

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE 144B FA 19974 20000 16 11259 32 32

we can see that it's almost full. If we say

%ALTFILE MYFILE; FLIMIT=EOF*1.5

it will now look like:

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

MYFILE 144B FA 19974 29961 16 11682 22 32

Of course, we could use any of the other ;FLIMIT=... options as well; we could say one of:

%ALTFILE MYFILE; FLIMIT=30000
%ALTFILE MYFILE; FLIMIT=FLIMIT+10000
%ALTFILE MYFILE; FLIMIT=FLIMIT*1.5

any of which will set the file limit to 30,000. Usually, the FLIMIT=EOF*xxx construct is the
best since it very reasonably represents what you'd probably like the new file limit to be.

In fact, you might want to have a nightly job stream that says:

:JOB MAKEROOM,...
:RUN MAIN.PUB.VESOFT
 !ALTFILE @.DATA(EOF>0.8*FLIMIT); FLIMIT=EOF*1.5
 EXIT
:EOJ

This will find all the files that are more than 80% full (EOF > 0.8*FLIMIT) and set their file
limits to 50% more than their current EOFs.

Alternatively, you might want to expand your data file before running a program that adds a
lot of data to it, and then contract it after the program's done:

:JOB MYRPT,...
:RUN MAIN.PUB.VESOFT;PARM=1
 ALTFILE X77U.DATA; FLIMIT=EOF*5
 RUN X77P.PUB;LIB=P
 ALTFILE X77U.DATA; FLIMIT=EOF*1.1
 EXIT
:EOJ

MPEX COMMAND REFERENCE: %ALTFILE

120

This will set the FLIMIT to 5 times the EOF (EOF*5) before the program is run; after the
program's done, it'll set the FLIMIT to 10% more than the new EOF. It'll take some extra time
(not too much), but will both optimize your disk space usage AND make sure that the file
doesn't overflow.

WARNING
The %ALTFILE...;FLIMIT=... option tells the file system what the maximum number of
records in the file is supposed to be. Usually, this does exactly what you want it to do — saves
disk space or makes more room for future expansion.

However, some programs make assumptions about how large a file is supposed to be. Say that
you have a program that 'knows' that the FLIMIT recorded somewhere within the file itself (the
MPE :SEGMENTER subsystem is like that).

Then, when you ask MPEX to change the file's FLIMIT, MPEX will be very happy to do exactly
what you asked — change the FLIMIT. However, the data inside the file (known only to the
program that manages the file) will naturally not be changed.

This is why MPEX doesn't let you do %ALTFILE...;FLIMIT=... of RL, SL, or USL files — if you
try to increase the file limit, it'll have no effect; if you try to decrease the file limit, you'll
confuse :SEGMENTER and when you next try to add something to the file, the file might even
get corrupted.

Even if MPEX let you %ALTFILE...;FLIMIT=... of RLs, SLs, and USLs, this wouldn't be a "bug"
— MPEX would be doing exactly what you told it to do.

However, since you would never really want to change an RL's, SL's, or USL's file FLIMIT
(because of the problems with :SEGMENTER), MPEX specially checks for this case.

You might have other files just like this that MPEX can't possibly know about — for instance,
files manipulated by your own programs or some third-party vendor products. Whenever a file
contains — somewhere in its data — information on its own flimit, MPEX's
%ALTFILE...;FLIMIT=... could cause problems, since it'll change the FLIMIT but not the data-
resident information.

MPEX will gladly do what you ask, but the program that later accesses the file won't like it
(although the file's data will be exactly the same as before).

To avoid problems with this, you should do the following:

• Don't panic — remember, you could always do another %ALTFILE…;FLIMIT=... to change
the FLIMIT back to what it was before.

• If you suspect that one of your programs may not like %ALTFILE…;FLIMIT=... of its data
files, try this on one file (rather than doing an %ALTFILE of an entire group or account).

• If you do find that some files shouldn't have %ALTFILE…;FLIMIT=... done to them, you
can easily exclude them from your filesets; for instance, if files with code 557 and 558
shouldn't have their FLIMITs changed, you can simply say

%ALTFILE @.DATA(INTCODE<>557 and INTCODE<>558); FLIMIT=EOF*1.5

MPEX COMMAND REFERENCE: %ALTFILE

121

Changing file initially allocated extents (;INITEXTENTS)

Syntax: %ALTFILE fileset;INITEXTENTS=initialextents

Examples: %ALTFILE MYFILE;INITEXTENTS=32
%ALTFILE @.DATA(NUMEXTENTS<>MAXEXTENTS);INITEXTENTS=MAXEXTENTS

%ALTFILE...;INITEXTENTS= lets you specify the initial number of extents to be allocated to
the new file. This can be useful in several ways:

• You may want to pre-allocate space for the whole file so that if there's not enough room for
it on disc, you'll know now rather than when your program tries to allocate a new extent
for the file (which might be in the middle of your batch processing). To do this, you might
do an %ALTFILE...;INITEXTENTS=32, which will allocate the file with the maximum
number of extents (even if that is less than 32).

• On MPE/iX, you may want to allocate the file as one contiguous chunk of disk space — this
can be done with an %ALTFILE...;EXTENTS=1;INITEXTENTS=1.

• You might want to do an %ALTFILE preserving whatever extent-allocation parameters were
specified for the current files — you can do this by specifying
;INITEXTENTS=NUMEXTENTS, which means that the new file is to be allocated with an
initial number of extents equal to the number of extents that are currently allocated.

Preventing changes to file access/modify dates (;KEEPAMDATES)

Syntax: %ALTFILE fileset;...;KEEPAMDATES

Examples: %ALTFILE @.DATA;XLTRIM;DEV=2;KEEPAMDATES

When you do an %ALTFILE, the file's last access and last modify dates will be set to today's
date. This is rather typical MPE behavior — after all, you're both accessing and changing the
file, so the last access and the last modify dates should be updated.

However, sometimes you do not want these dates to be updated. In particular, you might not
want to update the last access date because you use it for archival purposes; you might
periodically say something like

%MPEXSTORE @.@.@-@.@.SYS-@.@.TELESUP(ACCDATE<TODAY-180);*TAPE;PURGE

to clean up your system and save disk space. If you do this, you'd like to update the last access
date as rarely as possible — update it only when somebody actually tries to access the file for
something productive.

If you merely say

%ALTFILE @.DATA;XLTRIM

you will have all the DATA group files marked as having been accessed today.

Similarly, if your partial backups take a long time, you might not want to update the last
modify date when you do something as relatively non-intrusive as, say, an %ALTFILE

MPEX COMMAND REFERENCE: %ALTFILE

122

@.DATA;DEV=... — the files' contents haven't actually changed, so there's no good reason to
force all the altered files to be backed up.

If you say

%ALTFILE @.DATA;DEV=2;XLTRIM;KEEPAMDATES

then MPEX will perform all the alterations without updating the last access and last modify
dates. If you want this to be the standard behavior of the %ALTFILE command, you can say

:SETJCW MPEXALTFILEKEEPAMDATES=1

— this tells MPEX that the %ALTFILE command should never update the last access and last
modify dates of files even if ;KEEPAMDATES is not specified.

If you're going to use the SETJCW command, you should probably put it into the
MPEXMGR.PUB.VESOFT file so that it comes into effect for all users in the system.

Note that for technical reasons, MPEX will always update the last access and modify dates of a
KSAM key file when a KSAM file is %ALTFILEd.

Changing file lockwords (;LOCKWORD=)

Syntax: %ALTFILE fileset;LOCKWORD=[lockword]

Examples: %ALTFILE @.UTIL.SYS(PROG.PMCAP); LOCKWORD=SECRET
%ALTFILE @.PRIV.TELESUP; LOCKWORD=!!RANDOMNAME

The %ALTFILE...;LOCKWORD= option lets you (you guessed it) alter a file's lockword (or the
lockwords of all the files in a fileset).

POSIX
note:

Since POSIX files cannot have lockwords, this keyword will not work with a POSIX fileset.

The advantages of %ALTFILE...;LOCKWORD= over a :RENAME (the normal way of altering a
file's lockword) are:

• you can %ALTFILE...;LOCKWORD= entire filesets;

• you can %ALTFILE...;LOCKWORD=!!RANDOMNAME to assign a file (or all files in a fileset) a
RANDOM lockword. (This is just a special case of the RANDOMNAME function [described in
Appendix] which can be used for setting random lockwords, random MPE passwords, etc.)

For example, you can say

%ALTFILE @.@.CONTRIB(PROG.PMCAP); LOCKWORD=XYZZY

to set a lockword on all the program files in the CONTRIB account that have PM capability.

To assign a random lockword to each of the files in PRIV.TELESUP, use the following
example:

%ALTFILE @.PRIV.TELESUP; LOCKWORD=!!RANDOMNAME

MPEX COMMAND REFERENCE: %ALTFILE

123

By assigning a random lockword to each utility in PRIV.TELESUP, you reduce the possibility
that someone could run one of these programs without authorization.

Even if one of the lockwords is discovered, the rest of the utilities are protected since they each
have a different lockword. When you need to use one of these utilities, log on with System
Manager (SM) capability and either run the program from MPEX (where we will automatically
supply the lockword) or use MPE's LISTF modes -1 or -3 to view the lockword.

We use !! instead of just ! so that each file in the fileset being %ALTFILEd gets its own
lockword — if we use one !, all the files being %ALTFILEd will get the same random
lockword. This is because a single ! would be resolved immediately at the time the %ALTFILE
command is parsed, rather than just once for each file — see the chapter on MPEX variables
for more information.

Security considerations
A file's lockword may be altered only by the account manager of the file's account or by the
system manager.

Related MPEX features
You can also (if you have SM or AM in your own account) use MPEX selection criteria to find
files by lockword (or the absence of one). For instance, you might say

%LISTF @.@.@(LOCKWORD<>""),2

to find all the files in the system that have a lockword; or, if there are several files that you
want to have the same lockword (e.g. some secure data files that only authorized people can
access) and you want to periodically change all these lockwords, you can say

%ALTFILE @.@.@(LOCKWORD="OLDLOCK"); LOCKWORD=NEWLOCK

and all the old OLDLOCK lockwords will be automatically changed to NEWLOCK.

Changing program file maxdata value (;MAXDATA=)

Syntax: %ALTFILE fileset;MAXDATA=progmaxdata

Examples: %ALTFILE AP010P; MAXDATA=30000
%ALTFILE @.PUB(ISPROG); MAXDATA=30000

The ;MAXDATA=... keyword of the :PREP and :RUN commands indicates how much stack
space a program can use. If your MAXDATA is too low, you're more likely to get Stack
Overflows; some of these can be fixed just by running the program with a bigger ;MAXDATA=.

%ALTFILE...;MAXDATA=... lets you change a program's MAXDATA value just as if you re-
:PREPed with the new MAXDATA. This way, you neither have to re-:PREP nor always
remember to specify a ;MAXDATA=... on the :RUN command — just do an

%ALTFILE AP010P; MAXDATA=30000

(30000 is close to the maximum valid MAXDATA of 31232, but not so close that you might get
into trouble with MPE running out of room in your stack to put its file system tables.)

MPEX COMMAND REFERENCE: %ALTFILE

124

Related MPEX features
In addition to letting you change a program file's MAXDATA, we also let you easily see the
MAXDATA:

%LISTF MYPROG.DEV,5
FILENAME MAXDATA STACK DLSIZE DBSIZE #SEGS CAPABILITIES

MYPROG 30000 2048 0 4604 28 BA IA PM DS PH

(As you can see, all the various program parameters are shown.)

Actually, we're so flexible that you can even select based on MAXDATA (%LISTF
@.@.@(PROG.MAXDATA>30000),5).

Setting file flimits = to their eofs (;SQUEEZE)

Syntax: %ALTFILE fileset;SQUEEZE

Examples: %ALTFILE RPT@.DATA; SQUEEZE
%ALTFILE @.DATA(MODDATE<TODAY-365); SQUEEZE

Note:

You probably want to use the ...;XLTRIM option instead of the ...;SQUEEZE option — it saves
as much disk space, without restricting the further growth of the file.

Changing program file stack value (;STACK=)

Syntax: %ALTFILE fileset;STACK=progstacksize

Examples: %ALTFILE AP010P; STACK=3000
%ALTFILE @.PUB(ISPROG); STACK=3000

One of the parameters that you can specify on the :PREP= command is ;STACK=..., the initial
Qi-Z area to be allocated for the process. This is a very little-known and very little-used
feature; if you do use it, %ALTFILE...;STACK=... will help you change it if it was specified
incorrectly on your :PREP command. In reality, this parameter is mostly included just for
completeness. The really useful program file modification options are ;CAP= and ;MAXDATA=.

Releasing file unused disk space on MPE/iX (;XLTRIM)

Syntax: %ALTFILE fileset;XLTRIM

Examples: %ALTFILE RPT@.DATA;XLTRIM
%ALTFILE @.@.@(SAVABLESECTORS>0);XLTRIM; KEEPAMDATES

MPEX COMMAND REFERENCE: %ALTFILE

125

MPE/iX files — especially those whose EOFs are less than their FLIMITs — often use more
space than necessary. This happens because MPE/iX doesn't want to allocate disk space a
record at a time; this would take too long and cause much disk fragmentation. MPE/iX
allocates space in units of up to 2048 sectors, so it's possible that a 1-record file uses an entire
2048-sector chunk of (contiguous!) disk space.

The %ALTFILE...;XLTRIM command lets you release all this unused space without changing
the file's file limit. Thus, you can save disk space without making the file any less extensible —
when you try to append more data to the file later, MPE/iX will just allocate another chunk of
space.

%ALTFILE...;XLTRIM may increase file fragmentation (for files that you frequently append
new records to) — instead of being a collection of 2048-sector chunks, a file that is repeatedly
XLTRIMed becomes a larger collection of smaller chunks. We don't think that this should be
much of a problem, but you might want to keep it in mind.

Our experience has been that you can save truly dramatic quantities of disk space this way
without making the XLTRIMed files any less extensible (since their file limits remain
unchanged). You might also want to use the %LISTF...,SAVABLE command to get an idea of
just how much disk space can be saved this way.

Changing the internal structure of a file

Syntax: %ALTFILE fileset;FIXED
%ALTFILE fileset;VARIABLE [;KEEPTRAIL]
%ALTFILE fileset;UNDEF
%ALTFILE fileset;BYTE
%ALTFILE fileset;ASCII
%ALTFILE fileset;BINARY
%ALTFILE fileset;REC=maxrecordlength ;VARIABLE [;KEEPTRAIL]

Examples: %ALTFILE RPT@.DATA;ASCII;VARIABLE;REC=80;KEEPTRAIL
%ALTFILE NEW.UPLOAD;BINARY
%ALTFILE ./doc/chapter2;BYTE

The keywords FIXED, VARIABLE, UNDEF and BYTE allow you to change the internal structure
of a file during an %ALTFILE or %COPY operation. Note that these keywords are mutually
exclusive, that is, you may specify only one of these keywords. The same is true for ;BINARY
and ;ASCII; however, either of these may be combined with one of the previous keywords
(i.e. you can specify ";FIXED;ASCII" or ";BINARY;VARIABLE", but not ";VARIABLE;ASCII;
BINARY" or ";BINARY;UNDEF;BYTE").

When converting files to FIXED or VARIABLE length, you have the option of specifying the new
fixed length or the maximum length using the ;REC= keyword.

Files that are converted to FIXED length will have trailing spaces (if ASCII) or NULLS (for
BINARY) appended to each record. Files that are converted to VARIABLE ASCII will have
trailing spaces REMOVED unless the ;KEEPTRAIL keyword is specified.

MPEX COMMAND REFERENCE: %ALTJOB

126

%ALTJOB

Syntax: %ALTJOB userset; altjobparms
 [;NOVERIFY]
 [;QUIET]

Examples: %ALTJOB @.AP&WAIT; INPRI=4
%ALTJOB WAIT; OUTDEV=LP2
%ALTJOB REPORTJ,@.@; INPRI=12

The %ALTJOB command is an enhanced version of MPE's :ALTJOB command. It allows you to
specify which jobs to alter using VESOFT usersets (see the Usersets section of the SECURITY
User Manual).

The ;NOVERIFY and ;QUIET parameters are the same as those used in the %ABORTJOB
command. For more information, see the documentation for the %ABORTJOB command.

%ALTPROC
Syntax: %ALTPROC [[PIN=] [#P]pin | [PIN=](pin [,...])]

 [[JOB=] userset | JOB=(jobID [,...])]
 [;PRI= { CS|DS|ES }]
 [;[NO]TREE]
 [;{USER|ANYUSER}]
 [;SYSTEM]

Examples: %ALTPROC #J232;PRI=CS
%ALTPROC PIN=100;PRI=DS
%ALTPROC BATCH-#J200;PRI=ES

Note: This command is only available on MPE/iX systems.

The %ALTPROC command is used to alter the priority of a process or processes. MPEX's
%ALTPROC command is an improved version of the MPE/iX :ALTPROC command.

The main enhancement is that it supports VESOFT usersets (see the Usersets section of the
Security User Manual for details) in the job specification. Please refer to HP's documentation
for an explanation of the various options.

%ALTSCHED
Syntax: %ALTSCHED scheduledjobset [schedparms]

 [;NOVERIFY]
 [;QUIET]

MPEX COMMAND REFERENCE: %ALTSCHED

127

Examples: %ALTSCHED BACKUP,MANAGER.SYS; AT=23:00
%ALTSCHED @.AP; IN=0,1,0
%ALTSCHED MONDAY,PR.PROD; DAY=TUESDAY
%ALTSCHED #J23; DATE=12/31/90
%ALTSCHED MYJOB,USER.DEV;NOVERIFY

Note: This command is only available on MPE/iX systems. MPE/V release 3P contains support for
altering the submission time of jobs in the SCHED and WAIT queues.

The %ALTSCHED command lets an SM user change the scheduling parameters of an existing
job in the SCHED state. You can specify which jobs to re-schedule using VESOFT usersets (see
the Usersets section of the SECURITY User Manual for details) and any MPE :STREAM
scheduling parameters (;AT=, ;DAY=, ;DATE=, ;IN=).

This is especially useful if you need to re-schedule a job that you no longer have the source for
or a STREAMX job using parameter substitution (see the SECURITY User Manual for details)
and you don't know what parameters it was :STREAMed with.

For example, if you have a job scheduled to run at 11:00 PM and decide you need it to run at
10:00 PM instead, the command

%ALTSCHED #J1234; AT=22:00

will re-schedule it for you.

Note that after a job has been re-scheduled by %ALTSCHED, it will have a new job number.

Another use of %ALTSCHED is to immediately submit a scheduled job. Since we use normal
MPE syntax for the new scheduling parameters, entering "%ALTSCHED jobset" without any
scheduling information will default to "stream it NOW".

By default, unless you specify a single particular job number, ALTSCHED will show the job
numbers and logon IDs of all the jobs that are to be re-scheduled and then ask you if it's OK to
process them. If you do not reply "Y", the jobs will not be re-scheduled. This can help you
avoid accidentally altering many jobs that you don't actually want to alter.

If you want to do the %ALTSCHED without prompting for verifications, just append
";NOVERIFY" to the command, e.g.

%ALTSCHED @,MANAGER.SYS; AT=23:45; NOVERIFY

This will still show the numbers and logon IDs of the jobs that are being processed; using the
";QUIET" keyword, e.g.

%ALTSCHED @.AP; IN=0,1,0; QUIET

will turn off both the verification request and the display of the job numbers and logon IDs.

As mentioned above, if you specify a single job/session number (e.g. "%ALTSCHED #J1234...")
you will not be asked for verification, and the job number/logon will not be displayed, just as
if you had said ";QUIET".

Note: This command cannot alter "#A" type jobs (jobs streamed by the STREAMX scheduler).

MPEX COMMAND REFERENCE: %ALTSEC

128

%ALTSEC
Syntax: %ALTSEC fileset; [altsecparms]

Examples: %ALTSEC PERS@.MGRMEMOS; (R,W,A,L,X:CR)
%ALTSEC @.@.TELESUP(PROG.PMCAP); (R,X:AC;W,A,L:CR)
%ALTSEC MYDB+MYDB?#; (R,W,A,L,X:AL,GU)
%ALTSEC @.DATA(NOT HASACD); NEWACD=(R:@.PROD;W:MGR.PROD)
%ALTSEC @.@.DEV; COPYACD=AP010.PUB.DEV

The %ALTSEC command lets you alter the security characteristics — access masks and ACDs —
of entire FILESETS.

Particularly useful applications include:

• One of the troubles with :ALTSEC is that whenever you re-build a file (e.g. using :EDITOR's
/KEEP, which purges the target file and re-builds it), the security matrix is set back to
READ, WRITE, APPEND, EXECUTE, LOCK: ANY, and any ACDs set up for the file are lost!

Therefore, it's a good idea to regularly %ALTSEC filesets that you know should be specially
protected, just in case somebody re-built one of those files and forgot to manually re-
:ALTSEC it. For example:

%ALTSEC PERS@.MGRMEMOS; (R,W,A,L,X:CR)

or

%ALTSEC PERS@.MGRMEMOS; NEWACD=(R,W:JOHN.MGRMEMOS)

• MPEX's powerful selection criteria can be used to intelligently control security on specific
files. For instance:

%ALTSEC @.@.TELESUP(PROG.PMCAP);(R,X:AC;W,A,L:CR)

will %ALTSEC all the privileged program files (PROG.PMCAP) in the TELESUP account to
prevent anybody other than TELESUP users (and users with SM capability) from running
them.

Similarly, if you use ACDs, you can say

%ALTSEC @.DATA(NOT HASACD and ISASCII); NEWACD=(R:@.PROD;W:MGR.PROD)

to alter all the ASCII files (ISASCII) in the DATA group that don't already have an ACD.

• Finally, the %ALTSEC command works on databases (DBUTIL has >>RELEASE and
>>SECURE commands, but no >>ALTSEC command).

Saying

%ALTSEC MYDB+MYDB?#; (R,X,W,A,L:AL,GU)

will alter the MYDB database so that only users in the same group or users with AL
capability can access it. Note, however, that only the access mask (not the ACD) features of
%ALTSEC can be used on databases – MPE doesn't let us define ACDs for databases.

MPEX COMMAND REFERENCE: %ALTSPOOLFILE

129

However, the VEOPEN module of VESOFT's SECURITY product lets you restrict access to
database not just by user ID (as ACDs would) but also by program, by session name, by
mode, and by user class! See Database Security in the SECURITY User Manual for details.

An additional advantage of MPEX's %ALTSEC is that it does not require creator access when it
is used to alter a file's access mask. It can be used by anybody with Read, Write, and eXecute
access to a file (since anyone who has Read, Write, and eXecute access can already do
anything to the file); this can be very useful when, say, the System Manager (or an account
manager) wants to %ALTSEC a whole fileset of files that may be in many different accounts
and may have been created by many different users.

The %ALTSEC alter-ACD options can be used only by a user with SM capability, a user with AM
altering files in his own account or the file's creator — this is exactly the same as the
requirements of MPE's alter-ACD options.

%ALTSPOOLFILE
Syntax: %ALTSPOOLFILE spoolfileset; {altspoolfileparms|spoolfparms} [;...]

Examples: %ALTSPOOLFILE $STDLIST.@.@(SPOOL.JSNAME="MCOMPILE"); PRI=3
%ALTSPOOLFILE RPTLIST.DEV.AP(SPOOL.NUMCOPIES=5); COPIES=1
%ALTSPOOLFILE @.@.@(SPOOL.DEVICE="FASTLP"); DEV=LP; PRI=1
%ALTSPOOLFILE REPORT.PUB.PR; UNDEFER (MPE/iX)

The %ALTSPOOLFILE command is just like MPE's :ALTSPOOLFILE (and MPE/iX's :SPOOLF
command), except that:

• It supports spool file filesets, letting you alter many spool files at once, WITHOUT having to
know their #Oxxx numbers.

• It can be performed not just by the console operator, but also by:

o anybody with SM or OP capability,

o anybody with AM capability working on spool files in his own account,

o anybody working on his own spool files.

(Note that this is the same security system used by SPOOK5.)

As the examples above show, this can be an exceptionally powerful command, not just because
you can perform it on several spool files at once, but also because you can indicate the spool
file not by its (completely arbitrary) #Oxxx number, but by its spool file name, creator job
name, priority, etc.

For instance,

%ALTSPOOLFILE $STDLIST.@.@(SPOOL.JSNAME="MCOMPILE"); PRI=3

will find all the job $STDLISTs created by jobs with job name MCOMPILE and alter their output
priority to 3.

MPEX COMMAND REFERENCE: %BACKG

130

MPE/iX native mode spooler note:
The Native Mode Spooler on MPE/iX does not retain the spoolfile's group name. If you specify
a group name in %ALTSPOOLFILE on MPE/iX, it will be effectively ignored. For example:

%ALTSPOOLFILE $STDLIST.PUB.PROD...

is the same as

%ALTSPOOLFILE $STDLIST.@.PROD...

%BACKG
Syntax: %BACKG [SHOW]

 [STARTJOB]
 [STOPJOB]
 [{START|STOP}, taskname]

"taskname" is one of:

 ALARM AUDITC CMDPROT HELLO LOGOFF
 LOGON NETPUSH NETRECV OBSFILL

or the name of a user-implemented task.

Examples: %BACKG STARTJOB
%BACKG START,LOGOFF
%BACKG STOP,LOGOFF
%BACKG SHOW
%BACKG STOPJOB

A number of MPEX, SECURITY, and VEAUDIT features require a background task that either
runs continuously (ALARM, CMDPROT, HELLO, LOGOFF, NETRECV) or periodically (NETPUSH,
OBSFILL, AUDITC). In order to help you better manage your system, VESOFT provides a
special facility that will execute all of these tasks within a single background job!

Note:

Not all tasks shown here are available on all machines. For example, the HELLO and LOGON
tasks make use of an operating system feature that is unavailable on CLASSIC systems and pre-
4.0 XL systems.

The BACKG background job is controlled by an interactive command, which you can enter
through MPEX, SECURITY or VEAUDIT (in these examples only, what you type is underlined):

:RUN MPEX.PUB.VESOFT
%BACKG

MPEX COMMAND REFERENCE: %BACKG

131

or

:RUN LOGON.PUB.VESOFT, SEC
%SEC BACKG

or

:RUN VEAUDIT.PUB.VESOFT, VEAUDITCMD
%VEAUDIT BACKG

For the sake of brevity, all examples will use MPEX; just remember that you can use SECURITY
or VEAUDIT for any of the BACKG commands.

The %BACKG command has options to start and stop the background job itself, and to start,
stop, and show the individual tasks being run by the background job. (If you type %BACKG
without any parameters, it does a SHOW.)

%BACKG STARTJOB (requires SM or OP capability)
The easiest way to start the background job is to type:

%BACKG STARTJOB

from the MPEX prompt. MPEX will submit the job using the same technique that STREAMX
uses to insert passwords for MANAGER.VESOFT, so we require the user starting the job to have
SM or OP capability. MPEX checks whether the background job is already running before
actually submitting the job.

Note that if you use the %ALARM command (documented in this manual) to set an alarm and
the BACKG job is not running, it will be started for you automatically, but with only the
ALARM task active. If %BACKG STARTJOB is subsequently issued, any other pending BACKG
tasks will be started at that time.

%BACKG STOPJOB
To stop the background job, type

%BACKG STOPJOB

or simply use the :ABORTJOB command.

Note:

If you stop the background job using %BACKG STOPJOB without first stopping every individual
task (using %BACKG STOP,task documented below) then each task will be automatically re-
started the next time you re-start the background job. This makes it very convenient to be able
to restart the BACKG job after your system backup without having to remember which tasks
were active at the time.

Stopping the BACKG job for a backup is important because several of the tasks may have
control files or the SECURG file open while they run. If these files are in use, then the :STORE
command may not store these files to tape, which may subsequently cause problems if you
need to recover your system using these tapes.

MPEX COMMAND REFERENCE: %BACKG

132

%BACKG START, taskname
This command tells the background job to begin execution of one of the tasks under its
control. Some of the tasks will begin execution immediately, and continue until you stop them
(or stop the entire job). Others will suspend until their scheduled execution time, when they
will execute once and then suspend again until the next day. We'll describe later exactly which
ones do what, and how you can control when the intermittent tasks are to execute.

Here are a few examples:

%BACKG START,LOGOFF (* to start LOGOFF *)
%BACKG START,OBSFILL (* OBSFILL will run once a day *)

Note:

Because all of the tasks run in a single job, we re-direct the STDLIST for each task to a file
(named Staskname) in the DATA group (e.g. SLOGOFF, SOBSFILL, etc.) — otherwise, reading
the $STDLIST of the BACKG job, you wouldn't be able to tell which lines were printed by
which tasks.

Each of these files is overwritten every time you restart the corresponding BACKG task.

%BACKG STOP, taskname
This command tells the background job to stop executing the specified task. Examples:

%BACKG STOP,CMDPROT
%BACKG STOP,AUDITC

Note:

If you stop the background job but don't use %BACKG STOP to terminate a particular BACKG
task first, that task will be automatically re-started the next time you re-start the background
job. For instance, if you have LOGOFF running, and you stop the background job (by doing a
%BACKG STOPJOB, :ABORTJOB, etc.), LOGOFF will be stopped; however, the next time you
start the background job (e.g. by doing a %BACKG STARTJOB), LOGOFF will be re-started
automatically.

%BACKG SHOW
This command shows you the current status of all available background tasks: either
"Initializing", "Executing", "Not Executing" or "Aborted". If the background job is not running,
all tasks will show as either "Not Executing" or "Pending".

In the case of intermittent tasks like OBSFILL that are usually "sleeping" (waiting to execute at
a future time) "Executing" means they will execute at some future time; "Not Executing" means
they will not execute.

%BACKG SHOW,taskname

This form of the %BACKG SHOW command will display the $STDLIST of a particular task,
whether or not the task is currently active. The $STDLIST is stored in the file 'Staskname' in
the DATA group.

MPEX COMMAND REFERENCE: %BACKG

133

BACKGINI.DATA configuration file
Whenever you start the BACKG job, the first thing it does (before it starts any of the
background tasks) is to execute any commands in the file BACKGINI.DATA.

This can be used, for example, to issue a file equation for LOGOFF.DATA.VESOFT or to specify
when the intermittent tasks (ALARM, NETPUSH, OBSFILL, AUDITC) are to run by setting special
variables (described below).

If you make any changes to BACKGINI.DATA, you must stop and then re-start the BACKG job
before the changes will take effect.

Setting execution priority for BACKG tasks
If you want to have any of the background tasks execute at a higher (or lower) priority than
the default you have set for batch jobs, all you have to do is add a

SETVAR tasknamePRI "xS"

(where "taskname" is one of the background task names, and "xS" is the subqueue [CS, DS or
ES] that you want that task to execute in) to your BACKGINI.DATA file. For example, if you
want LOGOFF to run in the CS queue, you would add to your BACKGINI.DATA.VESOFT file
the line

SETVAR LOGOFFPRI "CS"

BACKG tasks
The file TASKLIST.BACKG.VESOFT contains a list of valid task names. Additionally, if you
decide that you do not want to use a particular task, you can remove it from this list and it will
be disabled.

Here are the tasks that can be run using %BACKG, plus notes on any configuration options for
them that you can put in BACKGINI.DATA:

ALARM This task implements the MPEX "alarm" facility (see the %ALARM command in this manual).

By default, the ALARM task wakes up once per minute; you can change this (to, say, 5 minutes)
by adding to your BACKGINI.DATA file:

SETVAR VESOFTALARMPAUSE 300

Note:

The ALARM task is used by the STREAMX SCHEDULER to schedule repeating or conditional
jobstreams. If you intend to use this feature, the ALARM task must be active.

AUDITC This task collects the information VEAUDIT needs to produce the reports on "MPE Passwords
Unchanged In The Last 30 Days", "SECURITY Passwords Unchanged In The Last 30 Days",
"Recent MPE Directory Changes", and "Recent SECURITY Users Changes". AUDITC should be
run daily.

By default (if you've done a %BACKG START,AUDITC), it will be run at 2AM. To change this to
3:15AM, add the following line to BACKGINI.DATA.VESOFT:

MPEX COMMAND REFERENCE: %BACKG

134

SETVAR VEAUDITCTIME "3:15AM"

CMDPROT

This task implements the VEAUDIT facility which protects your UDC catalog,
COMMAND.PUB.SYS. It is described in the VEAUDIT User Manual under "Section #105: Users
Who May Disable System UDCs".

It runs continuously, but in a "MSG WAIT" state so it doesn't use any CPU time after starting up.

HELLO

This task makes use of a Procedure Exits (PE) to automatically intercept and authorize
network logons. Starting this task enables the PE, and stopping the task disables the PE.

Note that this task must run continuously to trap logons from such products as ARPA and FTP
which circumvent all UDCs (including any that use OPTION LOGON).

See the SECURITY manual 'NETWORK SECURITY...' chapter for details.

Note: As Procedure Exits are used, this task is only available on MPE/iX 4.0 and later systems.

LOGOFF

This task implements SECURITY's facility for aborting idle sessions (a real security risk — see
"Unattended Terminal Security" in the SECURITY User Manual).

By default, LOGOFF uses the files LOGOFF.DATA, LOGOFFAB.PUB.VESOFT, and
LOGOFFWR.PUB.VESOFT; you may put file equations for any or all of these files in
BACKGINI.DATA.VESOFT. LOGOFF generally wakes up every five minutes, but its operation
is controlled by the file LOGOFF.DATA.VESOFT.

LOGON

This task enforces SECURITY/3000 logon checking regardless of whether or not the UDC file
LOGONUDC.PUB.VESOFT has been :SETCATALOGed (or ignored by SM users using the
;PARM=-1 option of the :HELLO command).

This task makes use of a Procedure Exit (PE) that traps all logons and runs our LOGON
program. Starting this task enables the PE which will then continue to trap logons even if the
BACKG job is aborted by the ABORTJOB command. Stopping the task with the %BACKG STOP
command will disable the trap and return your system to normal.

Note: As Procedure Exits are used, this task is only available on MPE/iX 4.0 and later systems.

NETRECV

This task is part of the multi-CPU user profile maintenance facility of SECURITY (see the
SECURITY User Manual). It runs continuously, but only uses CPU when there is a user profile
change.

NETPUSH This task is part of the multi-CPU user profile maintenance facility of SECURITY.

NETPUSH runs once a day to forward SECURITY user profile changes to other systems. By
default, %BACKG will run NETPUSH every day at 1AM (but only if you've entered a %BACKG
START,NETPUSH). If you want NETPUSH to run at 2:30 AM, add the following line to
BACKGINI.DATA.VESOFT:

MPEX COMMAND REFERENCE: %BREAKJOB

135

SETVAR NETPUSHTIME "2:30AM"

OBSFILL This task is part of SECURITY's MPE-password obsolescence facility; it collects all MPE
password changes. OBSFILL runs once a day to see if any MPE passwords have been changed
during the day. By default (if you've done a %BACKG START,OBSFILL) it will be run at 1AM.

As above, if you want to run it at a different time simply add a line to
BACKGINI.DATA.VESOFT, e.g.:

SETVAR OBSFILLTIME "11PM"

%BREAKJOB
Syntax: %BREAKJOB userset

 [;NOVERIFY]
 [;QUIET]

Examples: %BREAKJOB @.AP
%BREAKJOB @.@
%BREAKJOB REPORTJ,@.@
%BREAKJOB #J1234+#J1235

The %BREAKJOB command is an enhanced version of MPE's :BREAKJOB command. It allows
you to specify which jobs to suspend using VESOFT usersets (see the Usersets section of the
SECURITY User Manual). Of course, this command will only apply to jobs that are in the
EXEC state. It uses the same parameters as %ABORTJOB. For more information, see the
documentation for the %ABORTJOB command.

%BYE
Syntax: %BYE [BYE|QUIT|ASK]

Examples: %BYE
CPU=5. Connect=1. WED, DEC 13, 1995, 4:09 PM.

 %BYE QUIT
END OF PROGRAM

%BYE ASK
OK to logoff (y/N)? n
END OF PROGRAM

The %BYE command is a modified version of MPE's :BYE command. It allows you to terminate
the current MPEX process, and also (on MPE/iX systems) to terminate the current Session.
Like MPE's :BYE command, %BYE may not be used within Jobs.

MPEX COMMAND REFERENCE: %CALC

136

By default (or when the ;BYE keyword is specified), you will be logged off when %BYE is
executed. If you specify the ;QUIT keyword, MPEX will terminate, but the active session will
not be logged off. If you specify the ;ASK keyword, then you will be prompted whether to log
off or not.

%BYE always checks to see if MPEX has any active son processes (perhaps as a result of using
the %GOON command), and will fail if any active son processes exist. You must either wait for
the active sons to terminate or use the %KILL command to terminate them before %BYE will
succeed.

The VESOFTDEFAULTBYE variable may be used to change the default behavior of the %BYE
command.

To ensure that %BYE will terminate MPEX without also logging users off the system, add the
following line to your MPEXMGR.PUB.VESOFT file:

%SETVAR VESOFTDEFAULTBYE "QUIT"

To change %BYE so that users will be prompted whether they wish to logoff or not, instead add
the following line:

%SETVAR VESOFTDEFAULTBYE "ASK"

The ;BYE keyword allows you to override any VESOFTDEFAULTBYE setting, and guarantees
that your session will be terminated.

%CALC
Syntax: %CALC expression

Examples: %CALC 123*456+789
56877, $DE2D, %157055, "...-"
 << output in decimal, hexadecimal, octal, and ASCII >>
 << ASCII has unprintable chars replaced by "." >>
%CALC 456.0//5.8
78.620689 << real arithmetic >>
%CALC TODAY+5
93/02/04 << date arithmetic >>

 %CALC STR("TESTING"+"ONE"+"TWO"+"THREE",6,12)
NGONETWOTHRE << string manipulation >>
%CALC MPEXNUMSUCCEEDED//(MPEXNUMFAILED+MPEXNUMSUCCEEDED)
0.950000

The %CALC command evaluates an arbitrary expression (see Appendix B for details on
expression syntax and the available operators).

The expression can involve integers, strings, logical values, real numbers, dates, and times; it
can also operate on MPEX VARIABLES (see the MPEX variables chapter) as well as on
constants.

MPEX COMMAND REFERENCE: %CALENDAR

137

If the expression has an integer result, the result will be displayed in decimal, hexadecimal,
octal, ASCII representation of the 4 bytes, with "garbage" (i.e. unprintable) characters
represented by periods (".").

In addition to displaying the result, %CALC also sets the HPRESULT variable to the calculated
value.

%CALENDAR
Syntax: [monthname]

%CALENDAR [month] [,year]
 [@]
 [;NOHOLIDAY]
 [;PICTURE]

Examples: %CALENDAR FEB
%CALENDAR OCTOBER,2004
%CALENDAR 2,68;NOHOLIDAY
%CALENDAR @;PICTURE

Prints a calendar for the given month (or for the whole year if month is given as "@"). The
month can be given as a number (e.g. 10) or as a string (e.g. OCTOBER), optionally
abbreviated to the first three letters (e.g. OCT). The year may be entered as a two or four digit
year. The default month is the current month; default year is the current year. If you're
printing the calendar for the current month, then today's date will be highlighted.

Certain hard-to-remember holidays are automatically listed after the calendar.

(You can change which holidays are listed by creating your own files similar to the
HOLID##.DATA.VESOFT (HOLID01 through HOLID12) and issuing file equations for them.)

%CHGROUP
Syntax: %CHGROUP [groupname [/grouppass]]

 [;KEEPCAPS]
 [;KEEPALLOW]
 [;KEEPUDCS]

Examples: %CHGROUP DATA
%CHGROUP PUB; KEEPCAPS
%CHGROUP

The %CHGROUP command (as you can probably guess) allows you to switch to a different
group. If you don't specify which group to change to, you will be changed to your home
group. If the new group has a group password (and you don't include it in the %CHGROUP
command), you will be prompted for it unless you have SM or AM capability or you are
changing to your home group.

MPEX COMMAND REFERENCE: %CHLOGON

138

MPEX has a function called ISCHGROUPED() that returns TRUE if the user has issued an MPEX
%CHGROUP command and is currently in a different group to the logon group. After the
%CHGROUP command is used to return to the original logon group, ISCHGROUPED() returns
FALSE. This is more specific than the ISCHLOGONED() function, which returns TRUE if the
user has changed logons directly (using %CHLOGON) or indirectly (using %CHGROUP). In fact,
using %CHLOGON to change only the group will cause ISCHGROUPED() to return TRUE (which
is actually what %CHGROUP does internally).

One thing to be aware of with CHGROUP (and CHLOGON, for that matter) is that the predefined
variable HPGROUP will change to reflect the new group name.

What this means is that if you have:

SETVAR MPEXPROMPT "!HPGROUP.!HPACCOUNT: "

or anything similar in your MPEXMGR start-up file, you should change it to:

SETVAR MPEXPROMPT "!!HPGROUP.!!HPACCOUNT: "

so that when you issue the %CHGROUP command your prompt changes (otherwise your
MPEXPROMPT variable will remain set to the same value even though you changed from one
group to another — see the discussion of "!"s with regard to variable substitution).

%CHGROUP is really just a subset of the more general %CHLOGON command, documented later
in this manual (please see the %CHLOGON command for an explanation of the various
parameters). In particular, %CHGROUP is affected by $CHLOGON-NOPASS, $CHLOGON-FORBID,
and $CHLOGON-PERMIT in STREAMX.DATA and any appropriate $LOGON-EXECUTE commands
in SECURCON.DATA (just as if you had entered a %CHLOGON command).

Also, just like with %CHLOGON, we must disable the [BREAK] key when you do a %CHGROUP
until you do a %CHLOGON with no parameters; simply entering a %CHGROUP with no parameters
will not re-enable break if you didn't originally log on to your home group; %CHGROUP with no
parameters switches you to your home group (for compatibility with MPE/iX); %CHLOGON with
no parameters switches you back to your original logon. Please read the "Important note for
MPE/iX users" in the %CHLOGON documentation.

%CHLOGON
Syntax: %CHLOGON [[session,] user [/pass] .account [/pass] [,group [/pass]]]

 [;KEEPCAPS]
 [;KEEPALLOW]
 [;KEEPUDCS]
 [;SILENT]
%CHLOGON abbreviated-logon

Examples: %CHLOGON EUGENE,MANAGER.SYS
%CHLOGON =,CLERK.PR;KEEPCAPS;KEEPALLOW;KEEPUDCS;SILENT
%CHLOGON

MPEX COMMAND REFERENCE: %CHLOGON

139

Special
note:

Although this feature is being described in the MPEX User Manual, some of the features used
to control it (the $CHLOGON-xxx commands in the STREAMX.DATA file), are only available to
you if you are a user of both MPEX and SECURITY. This command is also available (to
SECURITY users) within STREAMX jobs (via ::CHLOGON) and in SECURITY menus.

The %CHLOGON command gives you the ability to switch to a different MPE account, group,
user or session name without having to re-logon via the :HELLO command!

Why not just re-logon via :HELLO?

• The :HELLO command creates an entirely new session. You lose all of your file equations,
variable settings, temporary files, REDO history, etc.

%CHLOGON preserves all of this (and more!) for you.

• Because it doesn't have to actually create an entire new session, %CHLOGON is much faster
than :HELLO.

• %CHLOGON can be used in command files, SECURITY menus, and in STREAMX as
"::CHLOGON"!

• %CHLOGON lets you KEEP all of the CAPabilities (;KEEPCAPS), ALLOWs (;KEEPALLOW), and
UDCs (;KEEPUDCS) from your original logon in your new logon; this includes extra
capabilities and ALLOWs acquired via the GOD program or SECURITY's $ALLOW mechanism.

• Like STREAMX, %CHLOGON can be configured to not prompt for MPE and SECURITY user
profile passwords. This means you can set up a command file or menu (with OPTION
NOBREAK, and to which the user doesn't even need read access, only execute) that logs on
to another account, performs some task, then switches the user back to his original logon.
This is much more secure than giving him the passwords to an account he doesn't normally
need to log on to.

As you can see, %CHLOGON (::CHLOGON in STREAMX, and CHLOGON in menus) uses the same
basic syntax as MPE's ":HELLO" command, but with a few special keywords added and the
"user.account" is optional — if you don't specify a "user.account", %CHLOGON simply
switches you back to your original logon, the one you entered at the ":HELLO" command. This
is especially useful in command files, SECURITY logon menus, and STREAMX jobs: you can do
a "CHLOGON newuser.newacct", perform whatever task you want under the new logon, then
do a "CHLOGON" with no parameters to switch back to the original logon.

You may use an "=" in place of the session, user, account, and/or group names to retain your
current session, user, account, and/or group.

After you enter the %CHLOGON command, you will be prompted for the appropriate MPE and
SECURITY password(s) (unless you have SM or AM and are changing to another logon in the
same account or there is a $CHLOGON-NOPASS – documented below — in effect for you), and
then you will be switched to the new logon.

One thing to be aware of with CHLOGON (and CHGROUP for that matter) is that the redefined
variables HPGROUP and HPACCOUNT will change to reflect the new logon ID.

MPEX COMMAND REFERENCE: %CHLOGON

140

What this means is that if you have:

SETVAR MPEXPROMPT "!HPGROUP.!HPACCOUNT: "

or anything similar in your MPEXMGR start-up file, you should change it to:

SETVAR MPEXPROMPT "!!HPGROUP.!!HPACCOUNT: "

so that when you issue the %CHLOGON command your prompt changes (otherwise your
MPEXPROMPT variable will remain set to the same value even though you changed from one
logon ID to another — see the discussion of "!"s with regard to variable substitution).

The following special keywords may be used in the %CHLOGON command:

• ;KEEPCAPS tells %CHLOGON to give you the same capabilities under your new logon that
you had under your old one (this includes any capabilities acquired via the GOD program).

To prevent AM users in one account from getting AM in another account (where they might
not normally have it), ;KEEPCAPS only works if you have SM capability.

• ;KEEPALLOW tells %CHLOGON to ALLOW you the same console commands that your were
ALLOWed under your old logon (this includes global ALLOWs, :ALLOWs issued by the
console operator, ALLOWs acquired via the GOD program, and $ALLOWs in your SECURITY
SECURCON.DATA file).

• ;KEEPUDCS tells %CHLOGON to give you the same UDCs under your new logon that you had
under your old one.

• ;SILENT tells %CHLOGON to switch to the new logon without displaying the message
"Welcome! You are now signed on". This is useful when you want to use %CHLOGON
within a command file or menu where the user does not need to know that you changed
their logon-ID.

The function ISCHLOGONED() will return TRUE if the current session has executed a
%CHLOGON (and has not yet switched back). This can be useful within a command file or
SECURITY menu to test the CHLOGON status. In addition, the ISCHGROUPED() function
returns FALSE if the %CHLOGON command changes the account or user, but TRUE if ONLY the
group changed (which is actually what %CHGROUP does internally).

Eliminating password prompts ($CHLOGON-NOPASS)
You can allow particular usersets, using particular MPEX command files/SECURITY
menus/STREAMX jobs, to switch to particular logons without being prompted for passwords
by adding entries of the form:

$CHLOGON-NOPASS currentuserset fileset targetuserset

to your STREAMX.DATA file (as you can see, this is quite similar to the $NOPASS and
$WITHCAPS-PERMIT/FORBID entries in STREAMX.DATA). For example:

$CHLOGON-NOPASS @.DEV TESTPROD.CMD.PROD TEST.PROD

means anyone in the DEV account can %CHLOGON to TEST.PROD with ANY session name by
using the command file TESTPROD.CMD.PROD.

MPEX COMMAND REFERENCE: %CHLOGON

141

The "fileset" above can include $STDIN; this is how you keep from asking for passwords
when the user enters "%CHLOGON..." directly from the MPEX "%" prompt.

Restricting who may use %CHLOGON ($CHLOGON-FORBID|PERMIT)
What if you don't want certain users to have access to %CHLOGON at all? There are two
keywords you can put in the STREAMX.DATA file to control who can use %CHLOGON:

$CHLOGON-FORBID currentuserset fileset targetuserset
$CHLOGON-PERMIT currentuserset fileset targetuserset

By default, all users are allowed to use %CHLOGON to switch to any logon that they know the
passwords for. $CHLOGON-FORBID lets you forbid a particular userset from switching to a
particular set of new logons via a particular fileset of MPEX command files, SECURITY menus,
and/or STREAMX jobs. This "fileset" can include (or exclude) $STDIN; this is how you
control use of "%CHLOGON..." in an interactive session. $CHLOGON-PERMIT cancels the effect of
a previous $CHLOGON-FORBID. This lets you say things like

$CHLOGON-FORBID @.PROD @.@.@ @.@
$CHLOGON-PERMIT BERT,@.PROD @.MUPPET.PROD ERNIE,@.PROD

which means no users in the PROD account may use %CHLOGON at all, except any user in PROD
with a session name of "BERT" can use any file in the group MUPPET.PROD to %CHLOGON his
session name to "ERNIE". Another example would be:

$CHLOGON-FORBID @.@ @.@.@ @.@
$CHLOGON-PERMIT @.DEV $STDIN.@.@ @.@

Which means that only the users who can use the %CHLOGON command are users in the DEV
account, and even then, they can only use it from a "%" prompt.

What if the new logon is protected by a SECURITY logon menu?

• If you have SM capability (and use ;KEEPCAPS), you will be switched to the new logon and
the menu will not be activated;

• If you don't have SM capability, you will not be permitted to switch to the new logon at all.

If you want non-SM users to be able to switch to logons that are protected by SECURITY logon
menus (bypassing the logon menu), add the keyword

$CHLOGON-OKMENU currentuserset fileset targetuserset

to your STREAMX.DATA.VESOFT file. This keyword only allows a user to bypass the logon
menu for the new logon if he knows the passwords (or if you also have a $CHLOGON-NOPASS
for him).

For example:

$CHLOGON-OKMENU KENT,OPERATOR.SYS BOOTH.CMD.SYS BOSS,MANAGER.SYS

means "the user KENT,OPERATOR.SYS can use the command file BOOTH.CMD.SYS to CHLOGON
to BOSS,MANAGER.SYS, even if BOSS,MANAGER.SYS is protected by a logon menu (the logon
menu will be skipped)."

MPEX COMMAND REFERENCE: %CHLOGON

142

What if you want the user to be in the menu when he switches to the new account? Easy!
Using the same example as above, BOOTH.CMD.SYS could look something like this:

OPTION NOBREAK
CHLOGON BOSS,MANAGER.SYS
FILE MENUFILE=BOSS.MENU.SYS
RUN MAIN.PUB.VESOFT,MENU
CHLOGON

In addition to the STREAMX.DATA keywords of $CHLOGON-NOPASS, $CHLOGON-FORBID, and
$CHLOGON-PERMIT, %CHLOGON (and %CHGROUP) will also execute $LOGON-EXECUTE
commands from SECURCON.DATA as well. Please refer to the SECURITY manual discussion of
$LOGON-EXECUTE for details on this keyword.

Using abbreviated logons with %CHLOGON
If you have configured abbreviated logons for the LOGON facility of our SECURITY package,
then %CHLOGON will automatically recognize and use these abbreviated logons just as if you
had typed the entire logon string manually. Abbreviated logons are only available when the
BACKG job is running and the HELLO task is active. See the Additional Benefits of the
VESOFT HELLO trap section of the SECURITY manual for details on abbreviated logons and
the HELLO trap.

Important note for MPE/iX users
Due to MPE/iX limitations we cannot change your logon ID for other processes in your process
tree, including your father process, other son processes of your father (brother processes), and
any of your son processes that existed before you did the %CHLOGON (created, perhaps, by the
%GOON or %SPOONFEEDing facilities or programs like QEDIT that suspend themselves or by
using MPEX HOOKed programs).

Not changing your father process is only a problem if the father is still active (VERY unusual).
Not changing your sons and "brothers" is a problem IF they remain active or you re-activate
one of them to do something. An example of this would be if you were to, within MPEX, run
QEDIT, suspend it, %CHLOGON, re-activate QEDIT, and try and edit files.

For this reason, on MPE/iX systems, we do the following:

• If you have any son processes MPEX will not allow you to do a %CHLOGON.

• You must first %KILL your son processes.

• When you do a %CHLOGON, we disable the [BREAK] key until you switch you back to your
original logon.

• If you exit MPEX (or STREAMX) without switching back to your original logon first, we
switch you back automatically.

MPEX COMMAND REFERENCE: %COPY

143

%COPY
Syntax: %COPY fromfileset [,tofileset]

 [;altfileparm] [;...]
 [;{YES|NO|ASK}]
 [;KEEPATTR]
 [;KEEPAMDATES]
 [;KEYFILE= keyfileset]
 [;DEV= [[[remotesystemname]#] devicename]
 [;COPYACD]
 [;BUFFERSIZE= nnn]
 [;CREATE[Q]]

Examples: %COPY @.@.AP, @/=.@.APBACKUP; KEEPATTR; KEEPAMDATES
%COPY APDB@, DBNEW@; DEV=3
%COPY @.DEV, @.SOURCE; ASK
%COPY K@.DATA, N@.DATA; FLIMIT=EOF*1.5; BLKFACT=BEST
%COPY KSAMFILE, NEWDATA.NEWG.NEWA; KEYFILE=NEWKEY.NEWG.NEWA
%COPY APDB@, =; DEV=SYSB# << to another system >>
%COPY APDB@, =; DEV=# << back to the host system >>
%COPY ./source/project-3/, ./archive/= ;CREATEQ
%COPY MPEFILE, /posixdir/posixfile ;BYTE
%COPY ./MyDir/MyFile, /YOURACCT/YOURGRP/YourDir
 (Copies "MyFile" to "/YOURACCT/YOURGRP/YourDir/MyFile")

The %COPY command allows you to:

• Copy filesets (temporary or permanent);

• Copy IMAGE databases and KSAM files;

• Do all copies (even those of databases and KSAM files) very fast;

• Copy things into other accounts (if you have SM capability);

• Specify new file parameters for the newly-built files (e.g. ;DEV=3 or ;FLIMIT=EOF*1.5 —
all of these are the same as those permitted by the %ALTFILE command);

• Copy files (including IMAGE databases!) to other HP3000 systems across dslines.

• Copy files between MPE and POSIX directories, changing the format from FIXED,
VARIABLE or UNDEFined to BYTEstream (or the other way around) as needed.

• Create a new POSIX directory when copying files, avoiding the need to manually build a
complex directory structure.

This command copies all the files in "fromfileset" into correspondingly-named files in
"tofileset". On systems that support POSIX, if the "tofileset" is a subdirectory, then the
files are copied into that subdirectory with the same name as the original. If you would like to
copy a file to a back-referenced file (prefixed by "*"), you should use the %FCOPY or %PRINT
command instead.

MPEX COMMAND REFERENCE: %COPY

144

What if the "to-file" already exists? (;YES|NO|ASK)
• If the ;YES keyword was specified, the old to-file will be purged.

• If the ;NO keyword is specified, the old to-file will be kept and the copy (of this file) will
not be done.

• If the ;ASK keyword is specified, the user will be asked what he wants to do with the old
to-file — purge it or not purge it.

• Default is ;ASK online, ;YES in batch.

How is the "to-file" built?
By default, the to-file is built by FOPENing it with the same "vital attributes" (device class,
FLIMIT, etc.) that the from-file has. This means that the to-file will have the same attributes
except for:

• the creator ID (which is set to the copying user's user ID);

• the creation/restore/access/modify dates and times (which are set to the current date and
time);

• the file security (which is set to the system default — :SECUREd, file-level access mask
(R,A,X,W,L:ANY));

• the lockword, which is set to whatever is specified in the "to-fileset".

If you specify a ;KEEPATTR on the %COPY command, the creator ID, the security, and the
creation and restore dates won't be changed. All the to-file's attributes except for

• the last modify and access dates and times and

• the lockword

will be the same as the from-file's. If you want to also make the last modify and access dates
and times be the same as from-file's, specify BOTH a ;KEEPATTR keyword and a
;KEEPAMDATES keyword. (Note that neither ;KEEPATTR nor ;KEEPAMDATES will work if
you're copying to another system, since we can't change the file label of a remote file.
However, ;KEEPAMDATES will still preserve the last access date of the from-file.)

You may also use any %ALTFILE keyword to explicitly change any attribute of the target file.
For instance, saying

%COPY APDB@, DBNEW@; DEV=3

will copy all the files whose names start with APDB (presumably the APDB database) into files
where the APDB is replaced by DBNEW; but all the to-files will be built on device 3.

Similarly,

%COPY K@.DATA, N@.DATA; FLIMIT=EOF*1.5; DELACD

will copy K@.DATA into N@.DATA, setting the new files' file limit. Note that these parameters
are exactly identical (in syntax and in meaning) to the %ALTFILE command parameters.

This feature, along with the new %ALTFILE keywords of ;FIXED, ;VARIABLE, ;UNDEF, and
;BYTE will be most useful for systems that support POSIX. Most MPE editors and utilities
expect FIXED or VARIABLE length records and may corrupt BYTEstream files. POSIX utilities

MPEX COMMAND REFERENCE: %COPY

145

and programs, on the other hand, will return an error when attempting to read FIXED or
VARIABLE files and will only create BYTEstream files as output files. When using the %COPY
command to move files between MPE groups and POSIX subdirectories, you will almost always
want to add either ;FIXED or ;VARIABLE or ;BYTE to convert the file format as you copy.
(Note, however, that this will slow down the speed of the %COPY command).

Special note on private volumes
Because the %COPY command is intended to make an exact copy of the file, preserving virtually
all attributes of the file (which is normally what you want it to do), problems may arise
(involving the device class specification) when trying to %COPY a file to/from an account
residing on a private volume set to/from an account on the system volume set or a different
private volume set.

Fortunately, you can easily get around the problem by using the ;DEV= keyword.

For example:

%COPY @.PVGROUP.PVACCT, =.MYGROUP.SYSVOL; DEV=DISC

Copying into other accounts
The %COPY command lets users with SM capability copy files into other accounts.

For instance, the

%COPY @.@.AP, @/=.@.APBACKUP; KEEPATTR

command will copy all the files in the AP account into the APBACKUP account (assuming all the
appropriate groups are already built in the APBACKUP account). What can we say about this
command?

• If the person executing it has SM (perhaps by running GOD.PUB.VESOFT), it'll work even if
he's not logged on to the APBACKUP account.

• The target fileset is specified not as "@.@.APBACKUP" but as "@/=.@.APBACKUP". If we'd
said "@.@.APBACKUP", this would mean that the to-files would be built without lockwords
(much like an ordinary :FCOPY... ;TO=file.group.acct will always build the ;TO= file
without a lockword, even if the ;FROM= file has a lockword).

Specifying a "/=" after the to-filename ("@") means that all to-files are to be built with the
same lockword as their corresponding from-files.

Actually, we could have specified any lockword, e.g. "@/FOO.@.APBACKUP" — this would
build all target files with lockword FOO. However, this is usually not as useful as saying
"@/=.@.APBACKUP".

• We said ;KEEPATTR, telling MPEX to retain the creator ID, the security information, and
the create and restore dates and times. This is often a very good idea for such "bulk"
copies.

Note that if we hadn't said ;KEEPATTR, all the to-files would have the creator ID equal to
the copying user's user ID. This might cause problems if such a user doesn't exist in the
target account.

MPEX COMMAND REFERENCE: %COPY

146

Copying databases
Databases can be copied with the %COPY command just like ordinary MPE files, e.g.

%COPY APDB@, DBNEW@; DEV=3

In order to copy a database, you must be logged on as the creator of the database, the account
manager of the account containing the database or (if you are copying to or from another
account), as the system manager. Internally, MPEX has to do a little bit of work to make sure
the root file remains consistent, but you'll never have to see it. Database copies work well and
quickly. (Of course, you shouldn't try to %COPY an open database — it won't corrupt the
original database, but it is quite likely that the copy will have broken chains or other errors).

Copying KSAM files (;KEYFILE=)

Note:

The following discussion relates to Compatibility Mode KSAM files only. Native Mode KSAM
files (which no longer have a separate keyfile) are treated by MPEX the same as other files.

The %COPY command can copy KSAM files (very quickly, in fact). For example, if you say

%COPY @.DATA, @.NEWDATA

and there happen to be some KSAM files in the DATA group, they'll be copied into the NEWDATA
group just as normal files would be.

However, remember that a KSAM file is actually not one file, but two (the data file and the key
file). How does MPEX figure out what name to assign to the new key file?

In the "%COPY @.DATA, @.NEWDATA" example, the answer is simple — since the to-file file
names should be the same as the from-file file names (except for the different group name),
MPEX will build the new to-keyfile with the same name as the old from-keyfile.

Similarly, if you say

%COPY DEV@.PUB, PROD@.PUB

and there's a KSAM file called DEVDATA.PUB with key file DEVKEY.PUB, MPEX will copy it into
a file called PRODDATA.PUB with key file PRODKEY.PUB.

However, what if you just say

%COPY OLDDATA, NEWDATA.NEWGRP

— how can MPEX figure out a new name for the to-keyfile? It can't, which is why in this case it
requires that you specify the to-keyfile name explicitly:

%COPY OLDDATA, NEWDATA.NEWGRP; KEYFILE=NEWKEY.NEWGRP

In general, whenever you copy a single KSAM file (rather than a fileset), you should specify
the ;KEYFILE= parameter.

MPEX COMMAND REFERENCE: %COPY

147

There are also some other cases in which MPEX can't figure out the to-keyfile name. For
instance, say that your data file is called DATAAP, your key file is called KEYAP, and you enter
the command

%COPY DATA@, NDATA@.NEWSTUFF

How can MPEX figure out the to-keyfile name? Again, it can't — in fact, MPEX can only figure
out the to-keyfile name automatically when the from-keyfile is itself part of the from-fileset OR
when the to-fileset contains an "=" (e.g. "%COPY DATA@, =.NEWSTUFF", in which case MPEX
will know to keep the same file name but put the file into the NEWSTUFF group).

In the "%COPY DATA@, NDATA@.NEWSTUFF" case, you again have to use the ;KEYFILE=
parameter, e.g.

%COPY DATA@, NDATA@.NEWSTUFF; KEYFILE=NKEY@.NEWSTUFF

Now MPEX will know to copy DATAAP into NDATAAP.NEWSTUFF and build the key file as
NKEYAP.NEWSTUFF.

Copying to other computers (;DEV=envid#)
By specifying a DS device or an NS environment ID (followed by a #) as a ;DEV=... parameter,
you can copy filesets (including databases!) to other systems over DSLINEs or LANs. (You can
not, however, copy files from other systems — you must run MPEX on the system you wish to
copy from.) For instance, you can say

%REMOTE:SYSB HELLO ANNE,MANAGER.PROD
%COPY MYDB@, =; DEV=SYSB#

This will copy files in the fileset MYDB@ (presumably a database root file and its datasets) into
files with the same name on the system accessed with the SYSB DSLINE.

If you do the :REMOTE HELLO before running MPEX, you will need to enter a %DSLINE
command within MPEX before you can do the COPY...; i.e.

:REMOTE:SYSB HELLO ANNE,MANAGER.PROD
:RUN MAIN.PUB.VESOFT
%DSLINE SYSB
%COPY MYDB@, =; DEV=SYSB#

If you have problems, you might also try specifying the ;BUFFERSIZE= keyword:

%COPY MYDB@, =; DEV=SYSB#; BUFFERSIZE=2048

to control the number of words we try to copy at a time (the default is 4096 — it's possible
that smaller numbers might work better over DS).

Also note that when you copy to a remote machine, the account into which you're copying
should be your remote logon account. Non-remote %COPY can copy across account
boundaries, but remote %COPY can't (because of MPE restrictions).

MPEX COMMAND REFERENCE: %COPY

148

Preserving last access/last modify dates (;KEEPAMDATES)
When you %COPY a file, the from file's last access date is set to today's date (because the file is,
after all, being accessed); this is the same as MPE/iX's :COPY command does.

However, sometimes you do not want the last access date to be updated – you might want to
use it for archival purposes, periodically saying something like

%MPEXSTORE @.@.@-@.@.SYS-@.@.TELESUP(ACCDATE<TODAY-180);*TAPE;PURGE

to clean up your system and save disk space. If you do this, you'd like to update the last access
date as rarely as possible — update it only when somebody actually tries to access the file for
something productive. If you merely say

%COPY @.@.AP,@/=.@.APBACKUP

you don't want all the AP account files to be marked as having been accessed today.

If you say

%COPY @.@.AP,@/=.@.APBACKUP;KEEPAMDATES

then MPEX will do the copy without updating the from-file's last access date.

If you want this to be the standard behavior of the %COPY command, you can say

:SETJCW MPEXCOPYKEEPAMDATES=1

— this tells MPEX that the %COPY command should never update the last access and last
modify dates of files even if ;KEEPAMDATES is not specified. If you're going to use this SETJCW
command, you should probably put it into the MPEXMGR.PUB.VESOFT file so that it comes into
effect for all users in the system.

If you specify both the ;KEEPATTR and the ;KEEPAMDATES keywords, e.g.

%COPY @.@.AP,@/=.@.APBACKUP;KEEPATTR;KEEPAMDATES

then the to-file's dates (access, modify, create, and restore) will all be set to be exactly the
same as the from-file's dates. A normal ;KEEPATTR without a ;KEEPAMDATES would set the
to-file's create and restore dates to be the same as the from-file's, but will make the to-file's
access and modify dates be today's date.

If you specify ;KEEPAMDATES without ;KEEPATTR, all of the to-file's dates will be set to
today's date (since the to-file is, after all, being created today) — however, the from-file's last
access date will still be preserved (on the from-file).

Note that for technical reasons, MPEX will always update the last access and modify dates of a
KSAM key file when a KSAM file is %COPYd.

Preserving ACDs (;COPYACD)
Using Access Control Definitions (ACDs), MPE permits you to define exactly who is authorized
to access a particular file in a particular way. You can, using the :ALTSEC command, impose
an ACD on a file (MPEX's %ALTSEC command lets you do this to multiple files) — this ACD can

MPEX COMMAND REFERENCE: %COPY

149

indicate that, say, JOE.PROD can read and write to this file, while CLERK.PROD and MGR.AP
can only read it, and no other users can access it in any way.

The ;COPYACD keyword of the %COPY command lets you copy a file's ACD together with the
file, so that the newly-created file has the same ACD as the original. (The default, just as in
MPE's :FCOPY, is to build the new file without any ACDs.) Thus, if you want to copy an entire
group of files while preserving all their attributes (including lockword, creator ID, access dates,
and ACDs), you can say

%COPY @.DATA,@/=.NEWDATA;KEEPATTR;KEEPAMDATES;COPYACD

If the %COPY command encounters a file that has no ACD, it will copy it without an ACD; if,
however, it encounters a file whose ACD you are not authorized to read (because you weren't
granted RACD access to this file), %COPY will refuse to copy the file. This way you'll never be
surprised by a file suddenly "losing" its ACD.

The %COPY command's speed
The %COPY command is not only much more powerful than FCOPY — it's much faster, too. It
copies all files (MPE, KSAM, and IMAGE) via MR NOBUF, which is a very efficient copying
mechanism.

Copying single files
One other thing that you can do to make %COPYs of single files even faster is to prefix "COPY"
with a ":", e.g.

%:COPY MYFILE,TOFILE;YES

Prefixing %COPY with a ":" tells MPEX that this is a single-file-only command; MPEX can then
save some of its fileset processing overhead. However, this means that the from and to-files
must be ordinary MPE filenames — no filesets, selection conditions, "="s in the to-file, etc.
Also, the BLKFACT=... and FLIMIT=... keywords can not be used on a %:COPY command.

Lockwords and %COPY
As we discuss in the MPEX And Your System Security section, MPEX is quite intelligent in its
lockword handling. If you have SM capability (or AM capability in your own account), MPEX
will automatically supply the lockword for each file being processed. This lets you say
something like:

%COPY @.OLDGROUP,@.NEWGROUP

without having to specify the lockword of every lockworded file in OLDGROUP.

However, if you execute this %COPY command, what happens to all the lockwords of the files
being copied?

Well, remember that we must stay compatible with MPE's :FCOPY command (as well as with
:RENAME and with MPE/iX's :COPY). If you say (in MPE)

:FCOPY FROM=MYFILE/SECRET.OLDGROUP;TO=MYFILE.NEWGROUP;NEW

MPEX COMMAND REFERENCE: %DBxxxALT commands

150

then MYFILE will be copied from OLDGROUP into NEWGROUP BUT THE NEW FILE WON'T HAVE
A LOCKWORD. Don't blame us — this is how MPE does it; if the target filename does not
include a lockword, the new file will be unlockworded.

Therefore, if you say

%COPY @.OLDGROUP, @.NEWGROUP

MPEX will interpret this to mean "copy the OLDGROUP files into files in NEWGROUP without
lockwords" (just like MPE's :FCOPY).

What if you want to keep the lockwords? No problem! Just say

%COPY @.OLDGROUP, @/=.NEWGROUP

The "=" in the lockword field means "keep the same lockword as the old file" (see "Target
filesets" in the MPEX Filesets chapter for more information on "=").

Therefore, when MPEX issues the :COPY command for each file in @.OLDGROUP it'll be certain
to include the old file's lockword (if any) on the new filename.

Instead of saying the equivalent of

:FCOPY FROM=MYFILE/SECRET.OLDGROUP;TO=MYFILE.NEWGROUP;NEW

it'll say

:FCOPY FROM=MYFILE/SECRET.OLDGROUP;TO=MYFILE/SECRET.NEWGROUP;NEW

and all the lockwords will be preserved.

Copying data into existing files
As you see, the %COPY command is really useful for copying files into new files — it won't, say,
append a file to an already existing file or fill an existing KSAM file with data from an MPE
file. If %COPY finds that the target file already exists, it will either fail (if you specify ;NO) or
purge the existing file (if you specify ;YES).

If you want to copy data into existing files, we recommend that you use the %FCOPY command
(see below).

%DBxxxALT commands
With the help and cooperation of several other vendors, we are able to provide MPEX with the
ability to change the capacity of IMAGE databases using their products. Note that since these
vendors develop their programs independently of VESOFT, they may make changes to their
programs that MPEX won't recognize. While we do our best to ensure that we are using the
current syntax of their commands, we cannot guarantee this will always be the case.

To use any of these commands to change a database's capacity, you must be logged on as the
database creator (in the same group as the database), and you must have Read, Write, and
Lock access to the database. If you do not meet these conditions, the %DBxxxALT command
will try to stream a job for you (via the MPEX %SUBMIT command) that logs on as the database
creator and does the capacity change. You will be prompted for the passwords as appropriate.

MPEX COMMAND REFERENCE: %DBADGALT

151

If your copy of database utility is not in the default group and account where it is normally
installed, you should add one of the following SETVAR commands to your
MPEXMGR.PUB.VESOFT initialization file to inform our software of the location of your
database utility:

SETVAR MPEXDBADGFILE "ADAGER.group.account" (for ADAGER)
SETVAR MPEXDBGENFILE "DBGENRL.group.account" (for DBGENERAL)

%DBADGALT
Syntax: %DBADGALT dbfileset, ratio

Examples: %DBADGALT @.DB, .50
%DBADGALT @.DB (DBSETFULLNESS>.8 and MODDATE>TODAY-30), 0.6

The %DBADGALT command uses ADAGER to change the capacity of IMAGE datasets so that
they are a given percentage full (this command will only work if you own ADAGER, the
"Adapter/Manager for IMAGE Databases", a product of Adager).

For instance, the command in the above example increases the capacity of all datasets in the
DB group that are currently greater than 80% full so that they are only 60% full.

%DBGENALT
Syntax: %DBGENALT dbfileset, ratio

Examples: %DBGENALT @.DB, .50
%DBGENALT @.DB (DBSETFULLNESS>.8 and MODDATE>TODAY-30), 0.6

The %DBGENALT command uses the DBGENERAL utility to change the capacity of IMAGE
datasets so that they are a given percentage full (this command will only work if you own
DBGENERAL, which is a product of BRADMARK Technologies, Inc.).

For instance, the command in the above example increases the capacity of all datasets in the
DB group that are currently greater than 80% full so that they are only 60% full.

%DEALLOCATE
Syntax: %DEALLOCATE fileset

Examples: %DEALLOCATE @.@.@(ISCMPROG)

Deallocates program files. Since only compatibility mode program files can be allocated, use
of the file attribute variable ISCMPROG as shown here will speed up the execution of this
command.

See %ALLOCATE for more details on allocating programs.

MPEX COMMAND REFERENCE: %DELETEALARM

152

%DELETEALARM
Syntax: %DELETEALARM alarmnumber

Examples: %DELETEALARM

%DELETEALARM deletes the alarms you set via the %ALARM command. For more information,
see the documentation on %ALARM.

%DELETESPOOLFILE
Syntax: %DELETESPOOLFILE spoolfileset

Examples: %DELETESPOOLFILE $STDLIST.@.@(SPOOL.OUTPRI<=2)
%DELETESPOOLFILE @.@.DEV-RPT@.@.@(SPOOL.READYDATE<TODAY-2)
%DELETESPOOLFILE $STDLIST.@.DEV(SPOOL.JSNAME MATCHES "COM@")

MPEX's %DELETESPOOLFILE command lets you:

• Delete entire filesets of spool files at once;

• Find the spool files to be deleted by their "vital attributes" (spool file name, creating job
name, output priority, creation date, etc.);

• Delete spool files if you

o are console operator or

o have SM or OP capability or

o have AM capability and are deleting spool files in your own account or

o are the spool file's creator.

The command

%DELETESPOOLFILE $STDLIST.@.@(SPOOL.OUTPRI<=2)

will delete all job $STDLISTs whose output priority is 2 or less;

%DELETESPOOLFILE @.@.DEV-RPT@.@.@(SPOOL.READYDATE<TODAY-2)

will delete all DEV account spool files made ready more than 2 days ago except for those
whose spool file names begin with RPT;

%DELETESPOOLFILE $STDLIST.@.DEV(SPOOL.JSNAME MATCHES "COMP@")

will delete all DEV account $STDLISTs created by jobs whose job names start with COMP
(presumably the listings of compile job streams).

MPEX COMMAND REFERENCE: %DELETELVAR

153

MPE/iX native mode spooler note:
The Native Mode Spooler on MPE/iX does not retain the spoolfile's group name. If you specify
a group name in %DELETESPOOLFILE on MPE/iX, it will be effectively ignored. For example:

%DELETESPOOLFILE $STDLIST.PUB.PROD

is the same as

%DELETESPOOLFILE $STDLIST.@.PROD

%DELETELVAR
Syntax: %DELETELVAR varset [,...]

Examples: %DELETELVAR COUNTER
%DELETELVAR J, K, L
%DELETELVAR K#, FOO@

The %DELETELVAR command deletes local variables. Please see "Local variables" in the MPEX
Variables chapter of this manual for more details.

%DELETEVAR
Syntax: %DELETEVAR varset [,...]

Examples: %DELETEVAR X1
%DELETEVAR TEMPV@, MYFILENAME

%DELETEVAR deletes all the specified MPEX variables. You may use wildcards (@, # or ?) to
delete all the variables whose names match a given pattern. For more information on this
command, see the MPEX variables chapter.

%DEMO
Syntax: %DEMO [section]

Examples: %DEMO
%DEMO 3

This command starts the MPEX 'self-demo', which shows you the major features of MPEX. The
demo consists of an introduction and 5 sections (covering each of the major areas where MPEX
enhances your system). You may stop the demo at any time, and restart it later at the
beginning of any section.

MPEX COMMAND REFERENCE: %DEVCONTROL

154

%DEVCONTROL
Syntax: %DEVCONTROL ldevnumber; {LOAD|ONLINE}

Examples: %DEVCONTROL 7;ONLINE

One of the few drawbacks of HP's DDS tape drives is that they have no "online" button. In
order to put a tape back online, you must first eject the tape and then re-insert it.

The %DEVCONTROL command uses the HPDEVCONTROL intrinsic to either load a mounted tape
or put a loaded tape online.

Many new backup systems and devices have the ability to do a full system backup without an
operator present to mount additional tapes. However, once the backup is over, you must wait
for an operator to put the tape back "online" in order to validate that all files were successfully
stored. After your backup is done, you can use %DEVCONTROL to put the tape back online,
then verify your backup (using MPE/iX's :VSTORE command), all without an operator present!

%DO
Syntax: %DO [abscmdnum] [,editstring]

 [-relcmdnum]
 [cmdnum1/cmdnum2]
 [["][@]string["]]

Examples: %DO 155
%DO -2
%DO 155/158
%DO RUN
%DO @MYFILE

%DO re-executes a command that you typed earlier and that has been saved in the MPEX
command history.

%DO, %LISTREDO, and %REDO are related, and are discussed in full detail under the %REDO
command in this manual.

%DOSAVED
Syntax: %DOSAVED ;FILE= savefile

 [;NOVERIFY]
 [;QUIET]
 [;MUSTEXEC]
 [;mpeschedparms]

MPEX COMMAND REFERENCE: %ECHO

155

Examples: %DOSAVED;FILE=SAVEDJBS
%DOSAVED;FILE=PRODJOBS; NOVERIFY; AT=23:30
%DOSAVED;FILE=ALLJOBS; QUIET; MUSTEXEC
%DOSAVED;FILE=CRITJOBS; IN=0,0,5

%DOSAVED re-submits jobs that were saved via the %SAVEJOB command. For more
information, see the documentation on %SAVEJOB.

%ECHO
Syntax: %ECHO [message]

Examples: %ECHO PLEASE WAIT WHILE WE RUN AP000
%ECHO
%ECHO !PROCESSEDFILES files processed, !FAILEDFILES errors

The %ECHO command outputs the specified message to the terminal. It's most useful when
you're executing a UDC or a command file and want to tell the user something.

%ECHO is also useful for outputting the values of variables, since "!"s and "![...]"s are
processed before the message is output. See the chapter on MPEX variables for more
information.

If you want to output text with leading spaces, just insert the right number of spaces (plus the
one that always goes after the %ECHO) between the %ECHO and the message. %ECHO is the only
command that actually cares how many spaces there are between it and its parameters.

%EDIT
Syntax: %EDIT fileset, editcommands

Examples: %EDIT @.SOURCE(CODE="EDTCT"), SET VARIABLE

The %EDIT command lets you perform an EDITOR/3000 command (or multiple commands
separated by semicolons) on an entire fileset:

• To change all occurrences of one string to another in a fileset, say

%EDIT @.SOURCE, CHANGE "ACCT-TYPE", "ACCOUNT-TYPE", ALL

MPEX will tell EDITOR to /TEXT each file, do the /CHANGE, and then /KEEP it back (note
that the /KEEP will happen regardless of whether or not the /CHANGE actually changed
anything — see the %EDITCHG command for a better solution).

• To convert your fixed record-length COBOL source files to variable record-length files (and
save up to 30-50% of their disk space!), say

%EDIT @.SOURCE(CODE="EDTCT"), SET VARIABLE

MPEX COMMAND REFERENCE: %EDITCHG

156

Note that this works only for COBOL files or UNNUMBERED files; NUMBERED non-COBOL
files will be rendered uncompilable by an EDITOR /SET VARIABLE command — if you
accidentally do this to them, just do another %EDIT command to do a /SET FIXED.

When will %EDIT "/KEEP" the file?
Naturally, we didn't implement all the functions of EDITOR inside MPEX. For each file in the
fileset, MPEX actually runs EDITOR and passes to it:

• A /TEXT command to text in that file;

• The command you specified (/LIST, /WHILE, /CHANGE, etc.);

• Possibly a /KEEP command to keep the file back;

• An /EXIT command to return control back to MPEX.

When does MPEX tell EDITOR to /KEEP a file? Well, if your EDITOR command includes only
those commands that MPEX knows will never change the file (e.g. /LIST, /WHILE, /FIND,
etc.), MPEX will not tell EDITOR to /KEEP the file.

If, however, there's any chance that the file may be changed by your command — for instance,
if your command is a /CHANGE, a /JOIN, a /SET, etc. — MPEX will tell EDITOR to do the
/KEEP, to prevent your changes from getting lost.

If you know that you don't want to do a /KEEP, you can just append ";EXIT" to your
command, e.g.

%EDIT @.SOURCE, CHANGE "ITEM-NUM", "ITEM-NUM", ALL; EXIT

This will cause EDITOR to /EXIT before it gets a chance to do the /KEEP.

Actually, there's little harm in doing an unnecessary /KEEP; file parameters (creator ID,
creation date, modify date, etc.) will get changed, but the data will remain intact. Still, it's a
good idea to avoid doing /KEEPs unless you need to (if only for speed's sake) — this is why
MPEX automatically avoids /KEEPs in certain cases and lets you explicitly avoid them yourself
by specifying a ";EXIT" at the end of your EDITOR command.

%EDITCHG
Syntax: %EDITCHG fileset, "fromstring", "tostring" [,quotechar]

Examples: %EDITCHG @.SOURCE, "ACCT-TYPE", "ACCOUNT-TYPE"
%EDITCHG @.SOURCE, "DD""MM'YY", "DD'MM'YY", \

Saying

%EDITCHG @.SOURCE, "ACCT-TYPE", "ACCOUNT-TYPE"

does exactly the same thing as saying

%EDIT @.SOURCE, CHANGE "ACCT-TYPE", "ACCOUNT-TYPE", ALL

— it changes all occurrences of "ACCT-TYPE" to "ACCOUNT-TYPE" in all SOURCE group files.

MPEX COMMAND REFERENCE: %EDITQUAD

157

However,

• It will only /KEEP those files that are actually changed.

Any files that do not contain the string "ACCT-TYPE" are not /KEEPed back — their creation
and last modify dates aren't changed, and neither are any other parameters (like file code,
record type, etc.) that EDITOR is prone to changing.

Thus, for doing EDITOR /CHANGEs, the %EDITCHG command is both more efficient and more
convenient — for instance, since the last modify date of the files that don't have "ACCT-TYPE"
is not changed, those files won't be automatically included on daily stores.

What if the string you want to change contains both single- and double-quote characters?
EDITOR allows you to use some character that doesn't occur anywhere in the string as a string
delimiter (e.g. a "\"), but MPEX doesn't. To tell %EDITCHG to use a different quote character,
include it as the third parameter; the "fromstring" and "tostring" must still be enclosed in
matching quotes (either single ' or double "). (To embed quotes in a quoted string within
MPEX, you simply type the quote character twice.)

For example, to change the string

CODE'VAL:="A";

to:

CODE'VAL:="B";

in the fileset "@.SOURCE", use the command

%EDITCHG @.SOURCE, 'CODE''VAL:="A"', 'CODE''VAL:="B"', \

(Notice that you do not use the "\" character in the "fromstring" or "tostring" yourself;
%EDITCHG does it for you.)

%EDITQUAD
Syntax: %EDITQUAD fileset, quadcommands

Examples: %EDITQUAD @.SOURCE, C "ACCT-TYPE", "ACCOUNT-TYPE"

(QUAD is a popular contributed text editor.) If you have QUAD set up as QUAD.PUB.VESOFT,
MPEX's %EDITQUAD command will execute a QUAD command (or multiple commands
separated by semicolons) on a fileset.

MPEX will, for each file in the fileset, run QUAD.PUB.VESOFT, tell it to /TEXT in the file,
execute the commands you gave, do a /KEEP, and do an /EXIT.

If you don't want QUAD to /KEEP the file, append an ";EXIT" to quadcommands, e.g.

%EDITQUAD @.SOURCE, LIST ALL OFFLINE; EXIT

Otherwise, MPEX will always tell QUAD to /KEEP the file.

MPEX COMMAND REFERENCE: %EDITTDP

158

The "<" and ">" characters are special characters in MPEX (and MPE/iX) indicating I/O re-
direction (see Redirecting command input and output in the MPEX User Manual). QUAD uses
these characters to indicate a "Range File". In order to use them in an %EDITQUAD command,
you must prefix them with two "!" characters (not just one). For example:

%EDITQUAD WORK@, COPY !!<NEWSTUFF!!> TO 4

%EDITTDP
Syntax: %EDITTDP fileset, tdpcommands

Examples: %EDITTDP @.SOURCE, FIND "ITEM-NUM"; EXIT
%EDITTDP @.SOURCE, CHANGE "TO", "TWO", ALL

Just as the %EDIT command lets you execute an EDITOR command on a fileset, so the
%EDITTDP command lets you execute a TDP command (or several commands separated by
semicolons) on a fileset.

For each file in the fileset, MPEX tells TDP to:

• /TEXT it,

• Execute the specified command (or commands),

• /KEEP it, and

• /EXIT.

If you want to just execute the command and not do a /KEEP (for instance, if the command is
a /LIST ALL,OFFLINE), you should append an ";EXIT" to your TDP command:

%EDITTDP fileset, LIST ALL,OFFLINE; EXIT

This will make TDP do the /EXIT before it gets a chance to do the /KEEP. If you don't specify
the /EXIT, the /KEEP will always be executed (even for /LIST commands).

%ERASE
Syntax: %ERASE fileset

Examples: %ERASE @.DATA

The %ERASE command erases the contents of the files while leaving the file structure intact
(file size, ASCII/BINARY, record size, etc.); when you are done, the files will continue to exist
(they simply won't contain any data).

MPEX COMMAND REFERENCE: %ERRCLEAR

159

%ERRCLEAR
Syntax: %ERRCLEAR

Sets the variables CIERROR, CIERRORISWARN, FSERROR, HPCIERR and HPFSERR to 0.

%ESCAPE
Syntax: %ESCAPE [[CIERR=] errnum]

Examples: %ESCAPE
%ESCAPE 985

Terminates all levels of the currently executing UDC/command file/batch job (unless there is a
%CONTINUE or %TRAPERROR in effect), sets CIERROR to the absolute value of errnum, and sets
HPCIERR to the value of errnum.

• If there is a :CONTINUE in effect, execution continues with the next command.

• If there is a %TRAPERROR in effect, execution continues from the next %IFERROR or
%CLEANUP.

%EXIT
Syntax: %EXIT

%EXIT will terminate the active MPEX process, unless it's being run from within another
program, in which case it will suspend MPEX instead of terminating it. MPEX will not attempt
to suspend when being run from within the command interpreter.

If you need to terminate MPEX without attempting to suspend, use the %QUIT command. If
you need to terminate both MPEX and the current session, use the %BYE command.

Two synonyms for %EXIT are also supported: both %E and %END have the same effect as
%EXIT.

%FCOPY
Syntax: %FCOPY [FROM=] fromfileset,[TO=] tofileset

 [;fcopyparms]

Examples: %FCOPY S@.SRC+P@.PUB, =.OLD; NEW
%FCOPY FROM=RPT@.DATA; TO=SEL@.=; NEW; SUBSET="X7"

The %FCOPY command lets you copy filesets using FCOPY. This is useful if you want to use
FCOPY's special features, like ;SUBSET=, ;CHAR=, etc.

MPEX COMMAND REFERENCE: %FILTER

160

Simply put, MPEX's %FCOPY runs FCOPY for each file in the fileset and tells it do a copy
;FROM=fromfile;TO=tofile with the parameters you specified.

If the first parameter in the "fcopyparms" is "NEW", MPEX will automatically purge the target
file. Other than that, typing this command is identical to saying:

%REPEAT
%>:FCOPY FROM=!MPEXCURRENTFILE;TO=![OBJECTFILE('tofileset')];fcopyparms
%>FORFILES fromfileset

(see the %REPEAT...%FORFILES section for details on this command and the OBJECTFILE(...)
function).

%FILTER
Syntax: %FILTER "command" [,searchexpression [;mpexprintparms]]

Examples: %FILTER "SHOWJOB", " 113 "
%FILTER "RUN MYPROG", CL"TOTAL"
%FILTER "%COBOLII @.SOURCE,=.PUB", "ERROR"; CONTEXT=-2
%FILTER "SHOWDEV", "DOWN PENDING" OR "DP"

Have you ever done a SHOWJOB in order to find out who was logged on to a particular LDEV,
only to have to wade through screen after screen of data searching for the LDEV number you
were interested in? Or run a program that produces a whole bunch of output, when all you're
really interested in is the "TOTAL" line?

The "%FILTER" command lets you execute any command that you could normally type at
MPEX's "%" prompt, and "filter" the output using the MPEX %PRINT command's powerful
";SEARCH=" feature. (In fact, %FILTER is merely a convenient combination of %PRINT,
documented in this manual, and the STDLIST(...) function, documented in Appendix; it has
been implemented to make using these features more convenient — take a look at
FILTER.CMD22.VESOFT!)

As you can see from the examples above, the first parameter is the command you wish to
execute. If it needs to contain spaces, commas, or semi-colons, you must put quotes around it.

The second parameter is the same kind of thing you can pass to the FSEARCHEXP(..) function:
a %PRINT...;SEARCH=... type of expression optionally followed by any additional %PRINT
parameters (like ;CONTEXT=, ;PREV=, etc.).

For example, to see all of the jobs on your system that are SCHED and have HIPRI (which
SHOWJOB displays as inpri 15), you could say

%FILTER "SHOWJOB SCHED", " 15 "

Note that since %FILTER internally executes the %PRINT command, it is affected by any
variables you may have set that would affect %PRINT (like MPEXPRINTNONDELIMS). For more
details on the search expression, see "%PRINT...;SEARCH=..." in the "MPEX Commands" section
of this manual.

MPEX COMMAND REFERENCE: %GOON, %SHOWGOON

161

%GOON, %SHOWGOON
Syntax: %GOON command

%SHOWGOON

Examples: %GOON PRINT @.SOURCE;SEARCH="SOC-SEC-RATE";NUM
%GOON ALTFILE @.@.DEV; XLTRIM; KEEPAMDATES
%GOON COBOL MYPROG.SOURCE,=.PUB

%GOON (which stands for "go on") lets you execute any command that you could normally type
at the MPEX prompt as a son process, immediately returning control of your terminal to you,
and re-directing output of the command to a temporary file! This lets you run tasks that may
take a long time to complete in the "background", without tying up your terminal. It is similar
to the ;GOON keyword of MPEX's enhanced %RUN command (documented later in this manual).

Here is an example of using %GOON:

%GOON LISTF @.SOURCE.DEV(FSEARCHSTRING("PART-NUMBER")>0),2
Output will be sent to temporary file VEO139

After typing %GOON LISTF... and pressing [RETURN], you immediately get an MPEX prompt
again. This allows you to do other things while this LISTF is executed in the background. The
output of %GOON LISTF... is redirected to a temporary file named VEO139 (in this example),
so that it doesn't interfere with your display while you are doing other things.

Sometime later, a message will appear (over your function key labels if you have an HP
terminal) that says:

Execution of LISTF done; see file VEO139

to see the results, simply %PRINT the output file:

%PRINT VEO139

As you can see, when you enter an MPEX command using %GOON, you will be shown the name
of the temporary file that the output will be sent to. When the command is done, a message
letting you know it is done will be sent to your terminal (written over your function key labels,
if you have an HP terminal, the same way the %WARNF command does), telling you which
command finished (in case you have more than one %GOON running!) and reminding you of
the name of the output file for that command.

If you were to %EXIT from MPEX before all %GOON processes completed, they would be
automatically killed. To prevent this, MPEX will not let you exit; if you try you'll see:

Error: Son processes still running, you must %KILL them before exiting.

Simply use the %SHOWGOON command (described below) to see which ones are still active, and
wait for them to finish or %KILL them.

MPEX COMMAND REFERENCE: %HELP

162

What advantage does the %GOON command have over MPEX's $command, %SUBMIT... , and
%SCHEDULE... , all of which create a job stream to execute the command for you?

• Job streams frequently have to sit in the WAIT queue for a while before actually logging on;

• after WAITing, the job has to log on, which is a high-overhead operation;

• many users launching background tasks may clutter up your job queue and create a lot of
$STDLIST spoolfiles;

• finally, since the %GOON command executes within your session, it has access to all of your
MPEX (or MPE/iX) variables and TEMP files.

Checking status of %GOON processes (%SHOWGOON)
%SHOWGOON displays the status of all processes started using %GOON:

%SHOWGOON
FILENAME [STATUS] COMMAND

VEO53 [done] PRINT @.SOURCE;SEARCH="SOC-SEC-RATE";NUM
VEO73 [active] ALTFILE @.@.DEV; XLTRIM; KEEPAMDATES
VEO94 [active] COBOL MYPROG.SOURCE,=.PUB

In this example the %ALTFILE and %COBOL commands are still running, but %PRINT is done.

%SHOWGOON does NOT report on processes launched via the %RUN command's ;GOON keyword.

Setting %GOON process priority
By default, %GOON commands are executed in the DS queue, in order to minimize their impact
on your system. On most systems, this gives them the same priority as normal batch jobs.

You can change which queue your %GOON processes execute in by setting the variable
VESOFTGOONPRI to "CS", "DS" or "ES"; e.g. to have all future %GOON processes that you create
(in the current session) execute in the CS queue, simply type:

%SETVAR VESOFTGOONPRI "CS"

The maximum value that you can actually run %GOON processes at may be limited by the
system manager via the %SET GOONMAXPRI command (documented later in this manual).

%HELP
 Syntax: %HELP [keyword] help on MPEX

%SEC HELP [keyword] help on SECURITY
%VEAUDIT HELP [keyword] help on VEAUDIT
%HELP :[keyword] help on MPE
%HELP CIERR number Displays CI error messages
%HELP FSERR number Displays FILE SYSTEM messages
%HELP LOADERR number Displays LOADER error messages
%HELP POSIX

MPEX COMMAND REFERENCE: %HELP

163

Examples: %HELP INTRO
%SEC HELP INTRO
%VEAUDIT HELP INTRO
gets you a general introductory discussion of MPEX, SECURITY or VEAUDIT.

%HELP :SHOWCATALOG
opens the MPE help file, CICAT.PUB.SYS, and displays the normal MPE help on
this command or keyword. Since this uses MPEX's help facility, it means that
MPE's help can be back-scrolled!

See also: %SYNTAX, %SEC SYNTAX, %VEAUDIT SYNTAX.

The %HELP command lets you read this manual (and its index!) online.

MPEX's HELP facility is conceptually oriented. What this means to you is that the %HELP
command allows you to ask for help on general concepts, rather than on a specific command.
There are very many — literally thousands — of keywords you can get help on.

As an example, someone familiar with DOS on a PC would know that the DEL command is
used to DELETE files from the disk. Typing DEL in MPE or MPEX, however, returns "UNKNOWN
COMMAND NAME". In MPEX, you could type:

%HELP DEL

MPEX will respond with something like:

1. %PURGE: Deletes a file or fileset
2. VEMODIFY: Control-D (Delete character)
3. Spool files: deleting by output priority
4. %DELETELVAR, MPEX command
5. %DELETEALARM, MPEX command
6. %DELETESPOOLFILE, MPEX command
7. MPE/V and MPE/iX differences: NM spooler %DELETESPOOLFILE
8. Link to MPE's :DELETESPOOLFILE
9. %DELETEVAR, MPEX command
10. Link to MPE's :DELETEVAR
Which of the above would you like help on?

You realize that the thing you want is probably item #1 ("%PURGE: Deletes a file or
fileset"), so you enter "1". MPEX will now display for you the manual page that contains
the description of the %PURGE command. MPEX will then prompt you:

(F)orward,(B)ack,(>)forward 1/2 page,(<)back 1/2 page,(M)enu,(E)xit?

This lets you page forward and backward through the manual to read the entire %PURGE
section of the manual (which could be several screens).

Note that when MPEX displays the manual page describing the thing you asked for, the actual
description will start about a third of the way down the screen; thus, it displays about eight
lines of manual text preceeding the description as well as the description itself. This is done
because the text that immediately precedes the description is often (though not always)
related information that might be useful. As long as you remember that the thing you asked
for actually starts at about line eight or nine of the screen, you shouldn't get confused.

MPEX COMMAND REFERENCE: %HELP

164

When you're done reading, type "E" to return to the % prompt or "M" to get back to the DELETE
keyword menu we showed above (in case you realize you chose the wrong option).

This online HELP index is even more useful than the index in the back of this manual, since
the %HELP command finds all the index entries that contain the given keyword (not just those
that start with that keyword).

You don't need to specify the full keyword; you might, for instance, say

%HELP CRE

which will get you a menu like:

1. Spool files: selecting by creating job/session name
2. CREDATE, file attribute variable
3. CRETIME, file attribute variable
4. CREATOR, %ALTFILE command keyword
5. CREATOR, file attribute variable
6. Security: removing creator-only restrictions

As you see, index entries containing the strings "creating", "CREDATE", and "CRETIME" were
found.

In addition to the MPEX commands, the HELP facility will also access the MPE help catalog
keywords and topics (see the %HELPMAKE command for details). These are noted in the menu
as "Link to MPE's :COMMAND" where COMMAND refers to an MPE command that matches the
keyword that you entered. In the first example, for %HELP DELETE, the MPE commands
:DELETESPOOLFILE and :DELETEVAR were listed as well. You can select either of these by
number, just as any other MPEX command, and move forward and backward through MPE's
help text on these commands.

Getting help on SECURITY and VEAUDIT topics
When you request help on a topic, MPEX normally searches the MPEX manual first. If the
topic you are interested in is in the MPEX manual, then the %HELP command displays the topic
and does not search any farther. If the topic you requested is not in the MPEX manual, then
the SECURITY manual is searched, and if not there, then the VEAUDIT manual, and finally,
the MPE or UDC help. Normally, this is exactly what you want; however, there are a number
of SECURITY and VEAUDIT topics that are mentioned in this manual, so it is possible that
requesting help for what is primarily a SECURITY topic would result in a listing of only those
topics explained in the MPEX manual.

In order to force the %HELP system to search the other manuals, preface the command with
%SEC (for SECURITY topics) or %VEAUDIT (for auditing related topics).

Getting help on MPE CI, File, and Loader errors
On MPE/V systems, HP supplied a utility called EXPLAIN that explained what a particular
CIERROR number means. On MPE/iX systems, the text of each CIERROR is included as part of
the CICAT.PUB.SYS file. Our %HELP command makes use of this information to display the
"help text" for any given CIERROR.

MPEX COMMAND REFERENCE: %HELPMAKE

165

When you type

%HELP CIERR 976

MPEX displays the text associated with the error, including suggestions for recovering from the
error and avoiding it in the future. Similarly, help on LOADER errors can be found with:

%HELP LOADERR 36

and FILE SYSTEM (FS) errors with:

%HELP FSERR 100

You can also get help on the following special keywords:

INTRODUCTION an introductory discussion of MPEX in general
CONTENTS online access to the Table Of Contents
FILESETS information on MPEX filesets
NEWS new features of MPEX
:SUMMARY summarizes MPE HELP system commands/topics

Finally, if you just say

%HELP

MPEX will display this very chapter.

Note that MPEX's %HELP is used primarily for getting help on MPEX, SECURITY, and VEAUDIT
features from these manuals as well as displaying the MPE help catalog (CICAT.PUB.SYS)
with the ability to scroll forward or backward at will.

If you want help on UDCs or command files (which are not contained in CICAT.PUB.SYS)
then you must preface the HELP command with a ":" as follows:

%:HELP MPEX

%HELPMAKE
Syntax: %HELPMAKE [;NOMPE]

Examples: %HELPMAKE

Building MPEX HELP file
Linked in 1190 MPE help keywords
Linked in 22 VEAUDIT help keywords
Linked in 33 SECURITY help keywords
Linked in 196 POSIX help keywords

Building SECURITY HELP file

Building VEAUDIT HELP file

MPEX COMMAND REFERENCE: %HOOK

166

The %HELPMAKE command rebuilds and re-indexes our internal help files. By default, the
current MPE help catalog (CICAT.PUB.SYS) is indexed as well. This is done automatically
when installing or updating our software and when we detect that you have updated the
operating system. Although at MPE update time HP's installation job does not know that you
have our software, (and therefore does not execute this command), our program can detect
that the MPE help catalog has been updated later than our help catalog and therefore needs to
be indexed. We only do this the first time you issue a %HELP command in MPEX and the files
are 'out of sync'.

%HOOK
Syntax: %HOOK filename

 [;MPEXPREFIX= char]

Examples: %HOOK DBUTIL.PUB.SYS

This command allows you to "HOOK" programs, so that you can execute MPEX commands
from within them! Please see the MPEX HOOK chapter elsewhere in this manual for more
details.

In the rare cases where the "%" character is needed to begin a line in your application, you can
specify an alternate "trigger" character to invoke MPEX. Simply add

;MPEXPREFIX="x"

to the %HOOK command. "x" can be any special character and will default to "%". When you
begin a line of input in your application with this character, the HOOK procedure will intercept
the line and execute it as an MPEX command.

%IDENTIFY
Syntax: %IDENTIFY filereference, "description"

 [;NOCHECK]
 [;SYS]

%IDENTIFY filereference ;DELETE
 [;NOCHECK]
 [;SYS]

Examples: %IDENTIFY MYSOURCE, "My latest program (source code)"
%IDENTIFY MYSOURCE ;DELETE
%IDENTIFY EDITOR.PUB.SYS, "System editor";SYS

This command allows you to apply an extended description to a file. We store the extended
description in a file called ID.DATA.VESOFT. The extended description will be shown when
you use %LISTF fileset,ID (see the %LISTF section for details). Although each description
may be up to 80 characters in length, you may find it convenient to limit your descriptions to
31 characters to avoid line wrapping when using %LISTF...,ID.

MPEX COMMAND REFERENCE: %IF...%ELSEIF...%ELSE...%ENDIF

167

The file specified by filename must exist on the system to be identified or deleted; however,
the ;NOCHECK keyword will allow you to override this requirement. Use the ;DELETE option
to remove an extended description from the file. Note that this does not :PURGE the file, it
merely removes the extended description from our data file.

For your convenience, we have pre-loaded the data file with descriptions of all files found in
the VESOFT and VECSL accounts along with the files found in the PUB and HPBIN groups of
the SYS account. If you wish to change these descriptions or have additional files in these
groups that we have not identified, then you must use the ;SYS keyword.

Security considerations
In order to set or change an identification string for a file, you MUST be either the file's
creator, the account manager of the account where the file resides or a system manager. You
must have SM capability to use the ;SYS keyword for predefined files.

%IF...%ELSEIF...%ELSE...%ENDIF
Syntax: %IF logicalexpression [THEN]

% [command]
% [...]
%[ELSEIF logicalexpression [THEN]
% [command]
% [...]
%[ELSE
% [command]
% [...]]]
%ENDIF

Examples: %COMMENT --- Check room in dataset 1
%IF VEFINFO("DBASE01").DBSETFULLNESS > .90 THEN
% ECHO ERROR: The dataset is more than 90% full!!!
% ECHO Aborting...
% RETURN
%ELSEIF VEFINFO("DBASE01").DBSETFULLNESS > .75 THEN
% ECHO Warning: the dataset is more than 75% full.
% INPUT ANSWER; PROMPT="OK to continue? "
% IF UPS(ANSWER[0:1])<>"Y" THEN
% RETURN
% ENDIF
%ELSE
% ECHO No problem! You have plenty of room...
%ENDIF
%COMMENT --- Continuing with the update

MPEX's %IF and %ELSEIF commands are just like MPE's :IF and MPE/iX's :ELSEIF
commands, but with one major enhancement: they give you the full power of VESOFT
expressions! (VESOFT expressions are constructed from the hundreds of integer, boolean,
string, real, date, and time variables, operators, and functions documented in the Appendix.)

MPEX COMMAND REFERENCE: %INITUDCS

168

The number of things you can do with VESOFT expressions is practically unlimited; here are
just a (very) few examples to get you started:

%IF NOT FEXISTS("DATAFILE") THEN
% ECHO The DATAFILE is missing!
...

%IF DATEDAY(TODAY+1)=1 THEN
% ECHO Today is the last day of the month.
...

%IF VEFINFO("DBROOT").OPENED THEN
% ECHO The database root file is opened; someone is
% ECHO currently accessing the database.
...

%IF UPS(PRINTOPREPLY("OK to start Payroll?")[0:1])="Y" THEN
% ECHO The console operator has confirmed;
% ECHO start the Payroll run now.
...

%INITUDCS
Syntax: %INITUDCS [NOBUF]

Examples: %INITUDCS

The %INITUDCS command recognizes what UDCs you have :SETCATALOGed and makes them
accessible from within MPEX.

This is usually automatically done whenever you enter MPEX (because the
MPEXMGR.PUB.VESOFT file, which is always executed when you enter MPEX, by default
contains a %INITUDCS command). However, if you press [BREAK] and do a :SETCATALOG to
change your effective UDCs, MPEX won't know about this change.

Entering

%INITUDCS

will "refresh" MPEX's knowledge of which UDCs are in effect. Thus, a typical use would be:

% [you press the [BREAK] key]
:SETCATALOG NEWUDC
:RESUME
%INITUDCS

MPEX COMMAND REFERENCE: %INPUT

169

If you say

%INITUDCS NOBUF

MPEX will read the UDC files MR NOBUF, which could be quite a bit faster than a normal
"%INITUDCS".

However, whenever MPEX needs to execute a UDC, MPEX will have to use more stack space,
possibly causing STACK OVERFLOW aborts. If you really want to decrease the time it takes to
get into MPEX, you might want to replace the %INITUDCS in MPEXMGR.PUB.VESOFT by a
"%INITUDCS NOBUF" (see "Specifying commands to be executed every time MPEX is entered"
in the Running MPEX section). Then, if you start getting STACK OVERFLOWs, you'll have to
change back to "%INITUDCS".

%INPUT
Syntax: %INPUT [NAME=] varname

 [;PROMPT= "prompt"]
 [;WAIT= waitseconds]

Examples: %INPUT MYFILE;PROMPT="Which file do you want to process? "
%INPUT DUMMYVAR;PROMPT="Hit return to continue...";WAIT=3

As we discuss in the MPEX Variables chapter, MPEX variables can contain arbitrary data that
can be set with the %INPUT and %SETVAR commands and later substituted into MPEX
commands.

The %INPUT command prompts the user for input and stores it (as a string) in the variable
with the specified name. For instance,

%INPUT MYFILE;PROMPT="Which file do you want to process? "

will ask the user "Which file do you want to process? " and put the input into the
variable MYFILE. (If the ;PROMPT= string hadn't been specified, the user would be asked for
input, but wouldn't be shown a prompt string.)

If the variable doesn't exist, it's created; if it exists, its old value is thrown away and it's set to
the user-input value.

If the user presses [RETURN], the old value of the variable is unchanged (although if the
variable didn't already exist, it is created and set to "").

If you specify ;WAIT=, MPEX will wait for at most "waitseconds" seconds for user input; if
the user doesn't respond by that time, the read will terminate and the CIERROR JCW will be
set to 9003. In the example

%INPUT DUMMYVAR;PROMPT="Hit [RETURN] to continue...";WAIT=3

we're not so much prompting for data as just waiting for the user to press the [RETURN] key
— in this case, we should probably say

%NOMSG INPUT DUMMYVAR;PROMPT="Hit [RETURN] to continue...";WAIT=3

MPEX COMMAND REFERENCE: %KILL

170

The %NOMSG prefix tells MPEX not to print an error message if an error occurs — this will
prevent the error message "THE INPUT TIMED READ HAS EXPIRED. (CIWARN 9003)" from
being printed.

%KILL
Syntax: %KILL {sonprocessname|sonprocesspin}

Examples: %KILL STREAMX.PUB.VESOFT
%KILL 54

MPEX is a powerful process-handling environment (see "MPEX process handling" in the MPEX
Special Topics section of this manual) in which you can manage multiple son processes, active
or suspended. For instance, if you say

%SPOOK5

and then >EXIT out of it, SPOOK5 will remain suspended as a son process of MPEX. Then,
when you type

%SPOOK5

again (assuming you haven't exited MPEX in between the two %RUNs), SPOOK5 will be re-
activated rather than re-run from scratch — a much faster and more resource-efficient
operation. (Not all programs behave this way; STREAMX does, MPEX itself does, and so do
some others.)

Sometimes, you may find that you need to terminate a son process that's suspended (or active
— see discussion of the %RUN;GOON command).

For instance, if you get into SPOOK5, >TEXT in a spool file, and >EXIT back to MPEX, the
spool file will stay locked until you re-enter SPOOK5 and unlock it (by doing another >TEXT)
or until the SPOOK5 son process terminates (perhaps by doing a >QUIT). At this point, you
may say

%KILL SPOOK5.PUB.SYS

MPEX will look at all its son processes (only in your own session, of course, and only MPEX's
immediate sons) and kill the one that's running SPOOK5.PUB.SYS. Alternatively, you might
do a

%SHOWTREE

to find out SPOOK5's PIN (Process Identification Number) and then kill it by specifying the PIN
(assuming that 54 is the appropriate PIN):

%KILL 54

One more reason why you might want to %KILL a son process is if you want to re-run that
program with a different run-time parameter (e.g. a different ;PARM=, ;INFO= or entry point).

MPEX COMMAND REFERENCE: %LISTF

171

In this case, you certainly don't want the process to be re-activated; you want to %KILL it and
then do the %RUN with the new parameters, which will create a new son process with the
parameters specified.

%LISTF
Syntax: %LISTF fileset [:{SPOOL|TEMP}] ,mode [;listfile]

 [;{NOTOTALS|NORMTOTALS|ALLTOTALS}]
 [;NOPAGEHEAD]
 [;NOEXPANDDIR]

Examples: %LISTF @.DEV-TEST@-@KEY, 0
%LISTF @.@(CODE="EDTCT"), 1
%LISTF @.@(SECTORS>10000 and NOT ISPRIV), 2
%LISTF @.@.@(ACCDATE<TODAY-120 and NOT ISPRIV),3; *LP
%LISTF @.DATA(ONDEVICE(2)), 4
%LISTF @.UTIL.SYS(ISPROG and PROG.PMCAP), 5
%LISTF MAIN000.DATA, ACCESS
%LISTF @.DB.@(DBSETFULLNESS>.70 and DBSETTYPE<>"D"), DB
%LISTF @.DATA, DISCUSE
%LISTF @.DATA, SEC
%LISTF MYFILE, XL3
%LISTF @:SPOOL, 2
%LISTF @.@.@:TEMP, 3

MPEX's %LISTF command is a vastly extended version of MPE's :LISTF command:

• Naturally, not just MPE filesets but MPEX FILESETS (see some of the examples above) can
be %LISTFed;

• Many useful new modes (3, 4, 5, DB, XL3, and more) have been implemented. These
modes can show you information that you never even dreamed of getting with MPE
:LISTF.

• Several synonyms are available for the numeric modes. For instance, instead of having to
remember to use -2 to show information on ACDs, simply use %LISTF MYFILE,ACD
instead.

• Tempfilesets and spoolfilesets can also be %LISTFed, using many of these modes, by simply
appending :TEMP or :SPOOL to the fileset.

• On POSIX systems, %LISTF will default to listing files from your Current Working Directory
(CWD), which may not be an MPE GROUP if you have issued a :CHDIR command.

• Also on POSIX systems, %LISTF will list, where appropriate, files found in subdirectories of
the group or directory specified. This behavior can be turned off by using the keyword
;NOEXPANDDIR.

By default, some %LISTF modes output no file/sector totals, while others output file/sector
totals only for those groups which have more than one file shown, for those accounts which
have more than one group shown, and grand totals only if more than one account is shown.
All %LISTF modes (except for mode 6) by default print page headers at the top of each page of
output.

MPEX COMMAND REFERENCE: %LISTF

172

There are four keywords that you can put on a %LISTF that can alter these defaults:

• ;NOTOTALS — don't output any file/sector totals.

• ;NORMTOTALS — output file/sector totals only for groups with more than one file, for
accounts with more than one group, and grand totals only if more than one account.

• ;ALLTOTALS — output file/sector totals and grand totals for all groups and accounts, even
if there is only one file in the group, one group in the account, or one account.

• ;NOPAGEHEAD — do not output page headers.

All %LISTF modes do a page break every 60 lines. To change the page size, type

:SETJCW VESOFTPAGESIZE=numlinesperpage

If you have more than one HP3000 and would like to have your system name show in the
%LISTF headings, simply do a

%SETVAR HPSYSNAME "yoursystemname"

(e.g. "%SETVAR HPSYSNAME 'ALPHA'") before doing the %LISTF. Even better, add the
SETVAR to your MPEXMGR.PUB.VESOFT file and the system name will always show on all
%LISTFs.

Note: HPSYSNAME is also used by SECURITY for the reports generated by LISTLOG and LISTUSERS.

One final note on using %LISTF: if the number of files to be listed is very large (more than
10000), you may get an error message regarding the file SORTWRIT.PUB.VESOFT. If this
occurs, set the variable VESOFTSORTFILESIZE to the number of files you expect to be listed.

%SETVAR VESOFTSORTFILESIZE 100000
%LISTF @.@.@,DATESORT.LISTF.VECSL

%LISTF modes
%LISTF supports several different formats or "modes". Here is a brief listing of each mode,
showing the symbolic name and mode number (when available). Several of these mode
names correspond to the symbolic names that MPE's :LISTFILE command supports.

Number Name Description

-3 HP's mode -3: file label as readable text and LOCKWORD/CREATOR.

-2 ACD HP's -2 mode: shows ACD information.

-1 LABEL HP's mode -1: shows file label in hex.
(MPE/iX)

 0 FILES Default %LISTF mode: filenames only.

 1 SUMMARY HP's mode 1; limited file information (TYPe, EOF, FLIMIT).

 2 DISC Mode 1 information + disk space usage + file's age.

 XL3 HP's mode 3; file label as readable text.

MPEX COMMAND REFERENCE: %LISTF

173

Number Name Description

 DETAIL HP's mode 3, see XL3 for details.

 3 MPEX's mode 3; shows last access/modify/creation and restore dates.

 XL4 HP's mode 4: shows security related information.

 SECURITY (same as above)

 4 MPEX's mode 4: shows file location (full extent map).

 5 MPEX's mode 5: shows program information (PREP parms, CAPs).

 6 FILENAME HP's mode 6: fully qualified filenames.

 QUALIFY (same as above)

 ACCESS Displays users accessing a file or fileset.

 DATES Displays access, modify, create, restore, and state change dates.

 DB Shows DATABASE statistics.

 DISCUSE Shows drive-by-drive allocation of a fileset.

 ID Helps identify the type and contents of a file.

 SAVABLE Displays space savable using ;XLTRIM or ;SQUEEZE for each file.

 SEC Shows file security considering group and account access.

 POSIX Shows POSIX-related file attributes.

%LISTF...,0 [FILES]

Syntax: %LISTF fileset [,0]

Examples: %LISTF @.DEV-TEST@-@KEY(CODE="EDTCT"), 0
ACCOUNT= VESOFT GROUP= DEV

AP000S AP000U AP010S* AP100P AP100S BADRECS*
COMP000 COMP999 ...

As you see, MPEX's %LISTF...,0 is quite similar to MPE's :LISTF...,0, but with a few distinct
improvements:

• Of course, the full power of MPEX filesets — with "+"s, "-"s, and selection criteria — is
supported. This lets you select files in ways that you never could before.

• Account and group names are printed — if you type a command such as

%LISTF @CLOCK@.@.@

you'll get group and account headers for each group in which a file is found (unlike MPE's
:LISTF...,0).

MPEX COMMAND REFERENCE: %LISTF

174

• Files that are in use are marked with an "*" (we thought that since we had the space on the
listing, we might as well use it).

%LISTF...,1 [SUMMARY]

Syntax: %LISTF fileset,1 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.DEV-TEST@-@KEY(CODE="EDTCT"), 1

ACCOUNT= VESOFT GROUP= DEV

FILENAME CODE ------------LOGICAL RECORD--------
 SIZE TYP EOF LIMIT

BEXP EDTCT 256W FB 633 958
...

ACCOUNT TOTAL: 192 FILES 35722 SECTORS

MPEX's %LISTF...,1 is just like MPE's :LISTF...,1 except that:

• It has the full power of MPEX filesets — + filesets, - filesets, selection (by code, by disk
space, by record size, etc.).

• File counts and disk space totals (group, account, and grand) are printed.

%LISTF...,2 [DISC]

Syntax: %LISTF fileset,2 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.@(SECTORS>10000 and NOT ISPRIV),2

ACCOUNT= LIST GROUP= VESOFT

FILENAME CODE -------LOGICAL RECORD------ ----SPACE---- --DAYS--
 SIZE TYP EOF LIMIT R/B SECTORS #X MX ACC MOD

CUST01 * 2560W FB 566 566 1 11340 32 32 1 1
 current 540 2 readers, 2 writers
...

ACCOUNT TOTAL: 15 FILES 231007 SECTORS

MPEX COMMAND REFERENCE: %LISTF

175

 %LISTF ./A@/,2

PATH= /DOC/WORK/

FILENAME CODE ------LOGICAL RECORD----- ----SPACE---- --DAYS--
 SIZE TYP EOF LIMIT R/B SECTORS #X MX ACC MOD

A01 KSAM 128W FB 0 1023 1 128 1 * 20 20
A01K KSAMK 128W FB 210 210 1 224 2 8 20 20
A09 / ==> NEWFILE
A16 link /DOC/WORK/A09/NEWFILE 16 1 *
ACORELFT 80B FA 135 135 16 48 1 1 119 145
...

DIRECTORY TOTAL: 17 FILES 16432 SECTORS

PATH= /DOC/WORK/A09/

FILENAME CODE -------LOGICAL RECORD------ ----SPACE---- --DAYS--
 SIZE TYP EOF LIMIT R/B SECTORS #X MX ACC MOD

NEWFILE 128W FB 0 1023 1 0 0 * 20 20

MPEX's %LISTF...,2 is just like MPE's :LISTF...,2 except that:

• It has the full power of MPEX filesets — + filesets, - filesets, selection (by code, by disk
space, by record size, etc.).

• File counts and disk space totals (group, account, and grand) are printed.

• The AGE of the file, both in terms of last access and last modification, are shown (in days).

• If the file is in use, the number of readers, the number of writers, and the actual EOF (if it's
different from the one kept on disk) are also output.

Note that on MPE/iX systems, native mode KSAM files (KSAMXL) will almost always report
an EOF that is greater than the FLIMIT. This is due to the fact that a KSAMXL file contains
both the DATA and the KEY information in the same file. The FLIMIT reported by :LISTF
is the maximum number of DATA records, the CURRENT EOF reported by %LISTF shows
the number of both KEY and DATA records combined.

• On systems supporting POSIX, the contents of directories are shown as well as the
destination of any LINK files.

%LISTF...,3

 Syntax: %LISTF fileset,3 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

MPEX COMMAND REFERENCE: %LISTF

176

Examples: %LISTF @.@.@(ACCDATE<TODAY-120 and NOT ISPRIV),3

ACCOUNT= TECH GROUP= EUGENE

FILENAME CODE CREATOR CRE-DATE MOD-DATE MOD-TIME ACC-DATE RST-DATE

ADDTECHJ EUGENE 31 DEC 90 02 OCT 91 10:05 AM 02 OCT 91 13 DEC 91
AL EUGENE 06 MAR 91 02 OCT 91 10:05 AM 28 OCT 91 13 DEC 91
ASPLASH EUGENE 24 OCT 91 12 DEC 91 04:58 PM 12 DEC 91 13 DEC 91
...

GROUP TOTAL: 41 FILES 52344 SECTORS

%LISTF...,3 can show information that's unavailable elsewhere in any sort of compact format:

• The creator id of the file.

• The creation date of the file.

• The date the file was last modified.

• The TIME the file was last modified (not shown in the above example).

• The date the file was last accessed.

• The date the file was last restored — this is usually equal to the creation date unless you
did a :RESTORE ;OLDDATE of this file, in which case it is the date of the restore.

These features are particularly useful when used together with the ACCDATE, CREATOR,
MODDATE, CREDATE or RSTDATE selection criteria (note that everything that can be shown
using MPEX's %LISTF can be selected by as well!).

For instance,

%LISTF @.DATA(CREATOR<>"DBA"),3

will show you the creator IDs of all the files in the DATA group that weren't created by the user
DBA. If you want to get REALLY fancy, you can say

%LISTF @.@.@(NOT USEREXISTS(CREATOR+"."+ACCOUNT)),3

This will find all the files in the system whose creators don't exist. How does it do this? See
";CREATOR=" in the %ALTFILE command discussion — it's too long to repeat here.

Another interesting use for last access date selection criteria is security — which files were
accessed over the weekend? If you come in on Monday, you can say

%LISTF @.@.@(ACCDATE=TODAY-1 or ACCDATE=TODAY-2),3

This will find all the files accessed on Sunday (TODAY-1) or Saturday (TODAY-2). The mode 3
listing will tell you which day the access was on, and also whether the file was also modified
on that day.

MPEX COMMAND REFERENCE: %LISTF

177

%LISTF...,4

Syntax: %LISTF fileset,4 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.DATA(ONDEVICE(2)), 4

ACCOUNT= VESOFT GROUP= DATA

-----FILE------ EXTENTS -BLKFACT- -----SECTORS----- DEVICE LABEL
NAME CODE NUM MAX NOW BEST USED NOW SAVABLE CLASS LDEV

MYFILE 4 32 1 3 136 28 DISC 2
 Dev/Sector: 1/%0000512114 2/%0000227353 1/%0000512156
 Dev/Sector: 3/%0000725756
MYDATA 7 32 1 238 8 DISC
 Dev/Sector: 3/%0000321710 2/%0000231143 2/%0000255345
 Dev/Sector: 1/%0000512220 2/%0000263320 3/%0000535323
 Dev/Sector: 1/%0000216607
 ...

GRAND TOTAL: 37 FILES 115227 SECTORS

%LISTF...,4 displays information on the disk space used by a file. It shows certain things that
:LISTF...,2 doesn't:

• The device class on which the file resides (i.e. ;DEV=... parameter the file was built with).

• The best blocking factor for the file: the blocking factor that optimizes the file's disk space.
(Omitted on MPE/iX systems as blocking factor is irrelevant to MPE/iX disk space usage.)

• The total amount of savable disk space: the amount of space you'd save if you %ALTFILEd
this file with ;BLKFACT=BEST;SQUEEZE (improving the blocking factor and setting its
FLIMIT to its EOF).

• The file extent map: on which device (and where on the device) each file piece resides.

What is the extent map?
A file is not necessarily built as a single contiguous chunk of disk space. It can be divided into
up to 32 (on MPE/iX, even more) pieces called "extents".

It's conceivable that every extent in the file is on a different disk drive — in fact, when the
:STORE command (on MPE/V) shows you the "device number" on which the file resides, it's
only telling you the device on which the first extent resides. It's quite possible that all
remaining extents actually reside on other disk drives.

Therefore, before doing any "disk balancing" (for instance, using %ALTFILE...;DEV=... to move
IMAGE details onto one drive and masters onto another), you should be certain which devices
the file actually resides on.

The %LISTF...,4 listing (and also the %LISTF...,DISCUSE listing, which we'll discuss shortly)
can give you this information.

MPEX COMMAND REFERENCE: %LISTF

178

Related MPEX features
As we mentioned, %LISTF...,4 is often useful when you're doing %ALTFILE...;DEV=. On
MPE/iX systems, any files that show some value in the "savable disk space" column should be
%ALTFILE...;XLTRIMed.

Selection criteria that you might want to use with %LISTF...,4 include:

• ONDEVICE(x), which selects those files which have at least one extent on device x.

• DEVICESECTORS(x), which returns the number of sectors of the file that reside on the
given device —

%LISTF @.DATA (DEVICESECTORS(1) >= SECTORS/2), 4

will show the extent maps of those files at least half of whose sectors reside on device 1.

• DEVICE, a string that contains the file's true device class —

%LISTF @.DATA (DEVICE = "SYSDISC"), 4

will find all the files built with ;DEV=SYSDISC.

• BESTBLOCKFACTOR, the same best blocking factor value displayed by %LISTF...,4;

%LISTF @.@(BESTBLOCKFACTOR <> BLOCKFACTOR), 4

will find all the files whose blocking factor can be improved.

• SECTORS, the number of sectors used by the file.

• SAVABLESECTORS, the numbers of sectors savable by reblocking and ;SQUEEZEing (on
MPE/V) or ;XLTRIMing (on MPE/iX).

Of course, like on all commands, any fileset with any selection criteria can be used — the ones
we just listed are only those that are most applicable to %LISTF...,4.

%LISTF...,5

Syntax: %LISTF fileset,5 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.UTIL.SYS(ISPROG and PROG.PMCAP), 5

ACCOUNT= SYS GROUP= UTIL

FILENAME MAXDATA STACK DLSIZE DBSIZE #SEGS CAPABILITIES
 (NMSTACK) (NMHEAP)

FILEUTIL 8192 1200 600 1231 3 BA IA PM PH [ZERODB]
SLEEPER DEFAULT 1241 0 111 2 BA IA PM
SOO 20000 1200 768 2696 10 BA IA PM PH

MPEX COMMAND REFERENCE: %LISTF

179

%LISTF...,5 shows you all about program files. The most important things here are:

• The program's MAXDATA attribute: how large the program's stack can grow.

• The capabilities which the program has — PM (Privileged Mode) capability is, of course, of
particular interest.

Also included are:

• DBSIZE, the size of the program's global variable area;

• #SEGS, the number of segments in the program;

• STACK and DL, the ;STACK=... and ;DL=... values the program was :PREPed with;

• If the program was :PREPed with ;ZERODB, "[ZERODB]" is displayed after the capabilities.

• On POSIX systems, NM program files' NMSTACK and NMHEAP values are displayed instead
of the CM MAXDATA, STACK, DLSIZE, and DBSIZE fields. An extra heading line is also
supplied to identify the two new fields.

Only program files are displayed — any non-program files in the fileset are simply skipped.

Related MPEX features
%LISTF...,5 is often used in conjunction with the %ALTFILE ;MAXDATA=... and ;CAP=...
keywords — you can easily find out what MAXDATA and capabilities a program has, and then
change them with %ALTFILE.

The other important use of %LISTF...,5 is finding programs that have the sensitive PM and
MR capabilities. PM, of course, should be carefully controlled because it gives a program
complete power over the system; MR, if improperly used, can make it easy for deadlocks to
occur, which would require a system restart to resolve. For example, you might say

%LISTF @.@.@-@.PUB.SYS-@.@.VESOFT&
 (ISPROG and (PROG.PMCAP or PROG.MRCAP)),5

This will show you all the programs in the system (except those in PUB.SYS and the VESOFT
account) that use either PM or MR capability.

%LISTF...,6 [FILENAME, QUALIFY]

Syntax: %LISTF fileset,6 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %FILE FILELIST;TEMP;REC=-26,,F,ASCII;NOCCTL;DISC=99999
%LISTF @.@.@(ACCDATE<TODAY-90 and NOT ISPRIV),6; *FILELIST

(FILELIST will contain:
AP000S.DEV.AP
AP001S.DEV.AP
 ...
)

"%LISTF fileset,6" will output (to $STDLIST or to the specified destination file) the fully-
qualified filenames of all the files in the given fileset.

MPEX COMMAND REFERENCE: %LISTF

180

This can be very useful for generating indirect files to be used by :STORE or any other
program that asks for a list of fully-qualified filenames. For example, our %MPEXSTORE
command looks something like:

%FILE FILELIST;TEMP;REC=-26,,F,ASCII;NOCCTL;DISC=99999
%LISTF [A-Z]@.@.@(ACCDATE<TODAY-90 and NOT ISPRIV),6; *FILELIST
%STORE !FILELIST; *T; SHOW

will store all the non-database files that haven't been accessed in the past 90 days.

The :STORE command can't handle an MPEX fileset (with its selection criteria), but it can take
an indirect file (a file containing filenames). We then use MPEX's %LISTF...,6 to create an
indirect file and then feed this indirect file to the :STORE command.

Note, however, that if you want to use %LISTF...,6 to create such an indirect filename list,
you must specify ;NOCCTL on the file equation for the list file.

%LISTF...,-1 [LABEL]

Syntax: %LISTF fileset,-1 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF MYFILE, -1

%LISTF...,-1 is very similar to the MPE :LISTF...,-1 (which shows the exact contents of a
file label) except that MPEX's %LISTF can work on MPEX filesets.

To do a %LISTF...,-1 of a file, you must either have SM capability or have AM capability in
the file's account.

%LISTF...,-1 is included mostly for compatibility and completeness; typically, all information
you need to know is available far more clearly from one of the other %LISTF modes.

%LISTF...,-2 [ACD]

Syntax: %LISTF fileset,-2 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.DATA-AP@.DATA(ACCESSIBLE("R")), -2

FILENAME ------------ACD ENTRIES--------------

CONTROL @.PROD : R
 JACK.PROD : R,W,X,A,L,RACD
 LEARN.PROD : NONE
 OPERATOR.SYS : R,RACD
DATATEST NO ACDS
D770UPD NO ACD ACCESS
...

MPEX COMMAND REFERENCE: %LISTF

181

%LISTF @.@.@(HASACD), -2
 << shows ACD information on all files in the system that >>
 << have an ACD >>

%LISTF...,-2 shows the Access Control Definitions (ACDs) of files in an MPEX fileset.

The output of %LISTF...,-2 is just like the output of MPE's :LISTF...,-2 except that, of
course, MPEX %LISTF lets you use MPEX filesets, with selection conditions (such as
ACCESSIBLE("R"), which means "all files that I can read"), + filesets, and - filesets.

Just like MPE :LISTF...,-2, MPEX shows "NO ACDS" when a file has no ACD and "NO ACD
ACCESS" when a file has an ACD but you are not authorized to see it.

%LISTF...,-3

Syntax: %LISTF fileset,-3 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF MYFILE, -3

FILE MYFILE.DEV.VESOFT

FILE CODE : 1029 FOPTIONS: BINARY,FIXED,NOCCTL,STD
BLK FACTOR: 1 CREATOR : MANAGER
REC SIZE: 256(BYTES) LOCKWORD: MYLOCK
BLK SIZE: 256(BYTES) SECURITY--READ: ANY
EXT SIZE: 1529(SECT) WRITE: ANY
NUM REC: 1528 APPEND: ANY
NUM SEC: 1529 LOCK: ANY
NUM EXT: 1 EXECUTE: ANY
MAX REC: 1528 **SECURITY IS ON
MAX EXT: 1 FLAGS : n/a
NUM LABELS: 0 CREATED : TUE, JAN 26, 1991
MAX LABELS: 0 MODIFIED: TUE, JAN 26, 1991, 1:52 PM
DISC DEV #: 2 ACCESSED: TUE, JAN 26, 1991
CLASS : DISC RESTORED: TUE, JAN 26, 1991, 1:35 PM
SEC OFFSET: 1 LABEL ADDR: %00100610103

%LISTF...,-3 is exactly like %LISTF...,XL3 except that it shows the lockwords (if any) of the
files listed, and it lets you use MPEX filesets.

Needless to say, this mode can only be used by users with SM capability or by users with AM
capability listing files in their own accounts.

MPEX COMMAND REFERENCE: %LISTF

182

%LISTF...,ACCESS

Syntax: %LISTF fileset,ACCESS [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF MYFILE@(ISASCII), ACCESS

ACCOUNT= PROD GROUP= DATA

FILENAME ---TYPE-- JOBNUM PIN ----PROGRAM---- ACCESS RECORD -LOCK-

MYFILE OPENED #S141 16 AP000.PUB.PROD INPUT 16
 tim,clerk.payroll,pub (ldev 24)
 OPENED #J478 39 AP090.TEST.PROD APPEND 127
 update,mgr.dev,test
 OPENED #S193 55 AP000.PUB.PROD INPUT 18
 laura,clerk.payroll,pub (ldev 37)

%LISTF...,ACCESS may well be one of the most internally complicated — and one of the most
useful — MPEX commands. It lets you see exactly who is accessing (and locking) a particular
MPE or KSAM data file. It shows you:

• What they're doing to the file — opening it, running it, storing it, restoring it, etc.;

• Who they are — their job/session numbers, logon IDs, program names, and PINs;

• How they're accessing it (INPUT, OUTPUT, APPEND, etc.);

• Where they are in the file (the record number of the most currently read record) — very
useful if somebody is reading a file sequentially and you want to see how far they've gotten.

Note: The current record number is not available for MPEX/XL "mapped" files (which includes
IMAGE databases), due to operating system limitations.

• Whether or not the user is locking the file or perhaps waiting on a file lock (in which case
it'll tell you what order it is in the wait queue!).

Note: File locking information is not available on MPE/iX systems, due to operating system
imitations.

There are many applications for this sort of capability. Some common ones include:

• You want to access the file exclusively (purge it, rename it, modify it, restore over it, store
it, etc.) and the system says that somebody else has it open. Who is it? If you only knew,
you could just get user to close it — ask to exit the program for a moment — with
%LISTF...,ACCESS, you can do this.

• You're running a big batch serial read and you're getting impatient. How far has it gotten?

Just do a %LISTF...,ACCESS and look at its current record number! (This is also quite
useful for checking the progress of your batch compiles.)

MPEX COMMAND REFERENCE: %LISTF

183

• You're using MPE file locking on MPE or KSAM files and sessions are beginning to hang.
Who's got the file locked? Maybe they're at a terminal read and have gone to lunch!

%LISTF...,ACCESS will tell you who the locker is, who the waiting processes are, in what
order the processes are in the wait queue.

Databases
Before TurboIMAGE, %LISTF...,ACCESS worked just fine with databases — databases and
their datasets are, after all, just plain MPE files; what works on files will work on databases,
too. (%LISTF...,ACCESS will also work very well on TurboIMAGE/XL.)

Unfortunately, TurboIMAGE/V uses a special mechanism called "global FOPEN": instead of
having each database user open each dataset that he's using, each dataset is opened once (or,
sometimes, 3 times) by the system.

What can %LISTF...,ACCESS do? It can search the entire system for accessors of the dataset
and not find anybody in particular, since no specific process actually has the dataset FOPENed.
For a dataset, all that it can display is that it is "GLOBALLY OPENED" and the current record
number in the dataset (useful only if only one process is accessing that dataset).

For a database root file, things are better, because a root file is opened by each accessing
process. If you do a

%LISTF APBASE,ACCESS

against a root file, you'll see the vital statistics (session number, logon ID, program name, and
PIN) of every database accessor (sometimes more than once, since IMAGE may issue more
than one FOPEN per process against the same root file).

If you're using TurboIMAGE/V, we recommend you just do a DBUTIL >>SHOW USERS and/or
>>SHOW LOCKS. They're specifically tailored for IMAGE databases, and work quite well for
them; MPEX's %LISTF...,ACCESS does roughly the same thing for MPE files and KSAM files.

As we mentioned before, %LISTF...,ACCESS will again give you a lot of useful information on
MPE/iX machines with TurboIMAGE/XL. It's only for TurboIMAGE/V that %LISTF...,ACCESS's
output is somewhat restricted.

Performance notes
As we mentioned before, %LISTF...,ACCESS is in some respects the most internally
complicated of MPEX's commands. MPE does not make it easy for us to do a %LISTF...,ACCESS;
we have to read every open file entry in the stack of every process to find out which processes
have the file open.

This can take a substantial amount of time. %LISTF...,ACCESS is much faster than in some
previous versions, but it could still take up to a minute or so on a heavily loaded system. It
will not lock down any resources, but it will take some time and processing power.

To optimize %LISTF...,ACCESS, we try to read as much data as possible from each data
segment we look at (to avoid having to look at the data segment again later); to do this,
though, we need a good deal of stack space.

MPEX COMMAND REFERENCE: %LISTF

184

If you get a stack overflow abort while doing a %LISTF...,ACCESS, you can tell MPEX to
decrease the size of each chunk that it reads from a data segment, thus slowing the command
down a bit but possibly avoiding the stack overflow.

You can control the chunk size by saying

:SETJCW MPEXLISTFACCESSCHUNKSIZE=number

The default value is 4096; you can (without too badly affecting performance) set this to 2048
or even 1024 if necessary; this can save enough stack space to avoid stack overflows.

%LISTF...,ACCESS stack overflows should, in any event, be rare; they most frequently happen
when the %LISTF...,ACCESS is being done from within a UDC or as a result of a %REDO (or
%DO) command, since UDCs and %REDOs already require a good deal of stack space for
themselves.

%LISTF...,DATES

Syntax: %LISTF fileset,DATES

Examples: %LISTF MPEX@,DATES

SYSTEM BATMAN TOM,MANAGER.VESOFT,PUB TUE, NOV 30, 1993, 9:48 AM

ACCOUNT= VESOFT GROUP= PUB

File Created Modified Accessed Restored State-Change
-------- ---------- ---------- ----------- --------- ------------
MPEX 1/20 11:15 Wed 11:15 Today 9:36 Tue 11:15 Wed 11:15
MPEXMGR Wed 12:20 Wed 12:20 Today 9:37 Wed 12:20 Wed 12:20

MPEX %LISTF...,DATES is an updated and easier-to-read version of MPEX's %LISTF...,3. This
%LISTF mode uses the current setting of the %SET DATE command to determine the proper
format to display dates over a week old. For dates within the last week, the day of the week is
displayed using a three letter abbreviation. However, for dates older than a week but still in
the current year, the date is displayed as MM/DD if the date setting is MDY or YMD or as DD/MM
for %SET DATE,DMY. For dates prior to the current year, a six-digit number is displayed
without slashes, either in MMDDYY, DDMMYY or YYMMDD format, depending upon what was set
using the %SET DATE command.

On systems that support POSIX, an additional column labelled "State-Change" is displayed
showing the files' state-change date.

MPEX COMMAND REFERENCE: %LISTF

185

%LISTF...,DB

Syntax: %LISTF fileset,DB [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.DATA(DBSETFULLNESS>.65 and MODDATE>TODAY-90), DB

ACCOUNT= PROD GROUP= DATA

FNAME SET NAME TYPE LDEV ENTRY CAPA- %FULL BLK SECTORS %BLOCK SECTRS
 COUNT CITY FCT WASTED WASTED

ADVT01 CUST M 3 943 1001 94.2% 16 1024 0.7% 7
ADVT02 SUPPLY M 1063 1511 70.3% 51 434 0.1% 0
ADVT03 SALES D 2 199 210 94.7% 14 256 0.1% 0

CUST01 CUST M 9576 13001 73.6% 23 11340 0.2% 22
CUST02 SUPPORT D 5618 8004 70.1% 6 13350 12.7% 1699
CUST09 AUX-CUST D 1 525 634 82.8% 2 2544 5.6% 143
CUST10 LINES D 2 321 476 67.4% 2 1912 0.1% 1

As you see, %LISTF...,DB shows you a lot of useful information on IMAGE DATABASE
DATASETS:

• The dataset's filename and IMAGE dataset name.

• The dataset type (D=detail, M=manual, A=automatic).

• The LDEV the dataset is on, if it is entirely on a single LDEV; otherwise blank.

• The number of entries in the dataset, the dataset capacity(which is maximum, if DDX is
enabled) and the fullness of the dataset.

• The dataset blocking factor (number of records per IMAGE block).

• The number of sectors in the dataset.

• The fraction of space that is wasted in each block (because the total size of the data in each
block [including IMAGE pointers] is not an exact multiple of 128 words).

• The total number of sectors wasted because the total data size in each block is not an exact
multiple of 128 words.

The major advantages of this mode are the obvious ones:

• You can now see the status of all the databases in your system (or in a particular fileset).

• You can select datasets by various things, especially their fullness:

%LISTF @.@.@(DBSETFULLNESS>.70 and DBSETTYPE<>"D"), DB

will find all the master (DBSETTYPE<>"D") datasets in the system that are more than 70%
full (since access speed to highly-loaded master datasets can be pretty bad).

• You can easily see the percentage fullness and the blocking factor of each dataset.

MPEX COMMAND REFERENCE: %LISTF

186

Related MPEX features
Certain selection criteria fit very nicely with %LISTF...,DB:

• Selection by DBSETFULLNESS (see the example above);

• Selection by DBSETTYPE:

%LISTF @.@.@(DBSETTYPE<>"D"), DB

finds all the non-detail (i.e. manual or automatic) datasets. As you see, DBSETTYPE is
always one-character string — "D" for detail, "M" for manual, and "A" for automatic.

• Selection by DBSETNAME, used if you want to show information on a specific dataset:

%LISTF BASEAP@(DBSETNAME="INVOICES"), DB

Similarly, you might even say

%LISTF BASEAP@(DBSETNAME MATCHES "INV@"), DB

to show information on all datasets whose names start with INV. This way you can avoid
having to figure out the dataset's MPE file name (e.g. BASEAP09).

• If you want to, you can also select on DBSETENTRIES (current number of entries),
DBSETCAPACITY (capacity), DBSETBLOCKFACTOR (dataset blocking factor),
DBSETENTRYLENGTH (number of words per IMAGE record), and DBSETBLOCKWASTAGE (the
fraction of space wasted because the block size is not a multiple of 128 words).

MPEX can get database information on any database (except for those that are exclusively
opened), subject to the normal MPE file system security restrictions.

Notes on DBOPEN modes
Unfortunately, some DBOPEN modes are incompatible with one another — if, for instance, you
open a database in mode 1, you can't then open it in mode 2 (until the original opener closes
it), and vice versa.

Although %LISTF...,DB doesn't use DBOPEN to look at the databases, its FOPEN call is roughly
equivalent to a DBOPEN mode 6 (which is compatible with modes 2, 4, and 8, but not with
modes 1 and 5). If, however, this fails because the database is already opened in mode 1 or 5,
%LISTF...,DB is smart enough to try opening the database the other way, which is compatible
with modes 1 and 5.

If MPEX opens the database when it is not opened by anybody else, and then somebody else
tries to open it in mode 1 or 5, the would-be opener will get an IMAGE error -1, "DATA BASE
OPEN IN AN INCOMPATIBLE MODE" — MPEX didn't know that somebody would try to open
the database in mode 1 or 5, so it opened it in mode 6. (This will only happen until MPEX
closes the database, which it will do when MPEX starts listing the next database in the fileset
or when the %LISTF...,DB finishes.)

MPEX COMMAND REFERENCE: %LISTF

187

If you are concerned that this might happen, and you only open your databases in modes 1 or
5, you can set the MPEXLISTFDBMODE5 JCW to 1 (perhaps in your MPEXMGR.PUB.VESOFT
file). This tells %LISTF...,DB to open databases in a way analogous to a DBOPEN mode 5
(read only, compatible with modes 1 and 5, but incompatible with the other modes).

%LISTF...,DISCUSE

Syntax: %LISTF fileset,DISCUSE [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.DATA, DISCUSE

ACCOUNT= VESOFT GROUP= DEV

FILENAME CODE REC TYPE DEV 1 DEV 2 DEV 11

ACC 171 508B VA 50
BEXP 256W FB 420 840 60
BHOOKU 256W FB 40 80
BPROCSRL PROG 128W FB 795
BRLMPE 256W FB 120 280
CADDRL 72B FA 2
CCALC 72B FA 10
CCONVEXP 256W FB 60 30
...

GROUP TOTAL 12317 9422 1529

MPEX's %LISTF...,DISCUSE is an invaluable tool if you care about which files are on which
disk drives. For each file in the fileset, it shows you how many of its sectors are on each
device; it also prints group, account, and grand totals, for each device.

Some examples of possible uses are:

%LISTF BASEAP@.DATA.AP, DISCUSE

to show where each of your BASEAP datasets is located; or,

%LISTF @.@.@(ONDEVICE(1)), DISCUSE

to show all the files that are at least partly on the system disk (ONDEVICE(1)) — the DISCUSE
listing will tell you exactly how much of each file is on the system disk and how much is on
other disks.

MPEX COMMAND REFERENCE: %LISTF

188

%LISTF...,ID

Syntax: %LISTF fileset, ID

Examples: %LISTF @.PUB.VESOFT, ID

MPEX %LISTF @.PUB.VESOFT PAGE 1
SYSTEM DEVELOP TOM,MANAGER.VESOFT,WORKTE FRI, NOV 5, 1993, 3:42 PM

FILENAME CODE REC TYPE EOF SECT DAYS SINCE
 SIZE ACC MOD

BASIC PROG 128W FB 360 368 25 25 HOOKed BASIC.PUB.SYS
BYEUDC 72B FA 13 16 25 25 LOCKOUT
 OPTION LOGON
 COMMENT This UDC
CI PROG 128W FB 11 16 1 25 Command Interpreter
CIMGR 256B FA 3 16 1 25 :INITUDCS
 :INITMPEXMGR
 :INITREDO
DATAFILE 256B VA 7 256 Encrypted Today at 15:23
 by TOM,MANAGER.VESOFT
EDITOR PROG 128W FB 307 320 1 25 HP32201
FONEDB PRIV 128W FB 6 16 73 73 Telephone database
FONEDB01 PRIV 512W FB 35 144 73 73 NOTES (master)
FONEDB02 PRIV 384W FB 6 32 73 73 A-KEY (auto)
FONEDB03 PRIV 512W FB 10 48 73 73 PHONES (detail)
FONEDBVE 72B FA 2 16 73 73 $user @.@
 $program query.pub
 $class 1
QEDITMGR QEDIT 80B TEXT 31 16 20 /set addcurrent
 /set check delete
 /set decimal
QEDJUMBO QEDIT 1000B DATA 5 16 23 31 This is an example of
 a QEDIT "JUMBO" file
 (longer records,etc.)
...

In addition to the basic %LISTF...,2 information shown for each file, this %LISTF mode
displays extended descriptions or a portion of the file to help you to easily identify each file.

This identifying information is retrieved from within files without modifying their last-access
date and time.

Note that for QEDIT files, as shown in the above example, the SIZE, TYPE, and EOF columns
display more descriptive information. The SIZE is the actual record size, the TYPE is the
internal file type, and the EOF is the actual number of logical lines in the file.

For "jumbo" QEDIT files, (files that can have more than 65,535 lines and/or records wider than
256 characters), we add a "+" after "QEDIT" in the CODE column.

For files that have been encrypted using the %SEC ENCRYPT command, a two-line display is
generated showing the date, time, and user ID of the person who encrypted the file. Note that
a specific description created using the %IDENTIFY command will override this display.

MPEX COMMAND REFERENCE: %LISTF

189

If you have used %IDENTIFY to create an extended description for the file, then the extended
description you have applied to this file will be displayed.

Although the description that you create using %IDENTIFY may be up to 80 characters,
descriptions longer than 31 characters will "wrap around" to the next line on an 80 column
display (of course, if you send the listing to the line printer, then the line can be up to 78
characters before it wraps around to the next line).

If you have not added your own description of the file and the file is a dataset within a
DATABASE, then information about the dataset will be displayed, such as the name of the set
and whether or not it is a master or detail dataset. For CM programs without an extended
description, the name of the outer block will be displayed if it is defined. For all other files,
the contents of the first three lines of the file will be displayed.

A useful application of the %IDENTIFY command and this %LISTF mode is to use a "keyword"
when describing your files. You can then use the IDCONTAINS() function or the %FILTER
command to limit the listing to only those files related to a particular command or application.

Here are some useful examples:

%LISTF @.PUB.SYS(IDCONTAINS("SQL")),ID

Shows all SYSTEM files related to the SQL subsystem.

%LISTF @.@.VESOFT(IDCONTAINS("Obsolete")),ID

Shows all files in the VESOFT account that are OBSOLETE.

%FILTER "LISTF @.MYBASE,ID",DELIM "AP"

Shows all files with the keyword "AP" in their description. The ";DELIM" keyword avoids
descriptions like "CAPTURED TEXT".

%LISTF...,SAVABLE

Syntax: %LISTF fileset,SAVABLE [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.@.@, SAVABLE

Group DATA .DEV has 10256 savable sectors out of 25984
 Group USL .DEV has 42240 savable sectors out of 59680
Account DEV has 52496 savable sectors out of 85664
...
Fileset has 274224 savable sectors out of 986240

MPEX COMMAND REFERENCE: %LISTF

190

%LISTF...,SAVABLE shows you how much disk space can be saved in a fileset (usually @.@.@,
meaning your entire system) by using

%ALTFILE fileset;XLTRIM

on MPE/iX systems. The savable disk space is shown by group, by account, and for the entire
system — we show you both the savable and the total space.

This is especially useful in MPE/iX systems because %ALTFILE...;XLTRIM (available only on
MPE/iX systems) is so safe — its only effect is to save the space used by the file, without
making the file inaccessible in any way and without restricting its further growth. You might
very well want to say

%ALTFILE @.@.@(SAVABLESECTORS>0 and NOT OPENED);KEEPAMDATES;XLTRIM

to trim all the files on your system that are using more disk space than necessary.

%LISTF...,SEC

. Syntax: %LISTF fileset,SEC [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.DATA, SEC

ACCOUNT= VESOFT GROUP= DATA

FILENAME CODE TYPE READ APPEND WRITE LOCK EXECUTE

LOG20 FBO !!! !!! !!! !!! RELEASED!
LOGOFF FA ANY ANY ANY ANY ANY
MEMOFORM FA ANY AC AC AC AC
VEOPNTS EDTCT FA AC AC CR CR CR
VEOPNTVE FA ANY AL,GU CR AL,GU AL,GU

%LISTF...,SEC shows information on file security. It shows both the :RELEASE/:SECURE
status (in the above example, LOG20 is released — all the other files are secured) and the
security matrix of the file (set by :ALTSEC).

As you may know, you can separately allow READ, APPEND, WRITE, LOCK, and EXECUTE
access to a file. By default, anybody can do anything to a file (subject to the security attributes
of the file's group and account) — however, the :ALTSEC command can be used to change
this. For instance, the VEOPNTVE file shown above must have been :ALTSECed by a command
such as:

:ALTSEC VEOPNTVE;(R:ANY;A,L,X:AL,GU;W:CR)

and is, in fact, a probable security breach.

MPEX COMMAND REFERENCE: %LISTF

191

(Files with the same name as the root file of a database but ending with "VE" are usually used
by our VEOPEN routine to protect database access. See the SECURITY manual for details on
the use of VEOPEN and access control files.)

Normally, the information %LISTF...,SEC shows can only be obtained from LISTDIR5's
>LISTF or >LISTSEC commands (or MPE/iX's :LISTF...,3 and :LISTF...,4). However,
%LISTF...,SEC is the only command that shows the data in a one line-per-file format (much
easier to read than MPE/iX :LISTF's print-outs). Furthermore, %LISTF...,SEC merges the file
security matrix, the group security matrix, and the account security matrix, thus showing the
true effective security of the file.

Sometimes, the information reported by %LISTF...,SEC will appear slightly different from that
shown by LISTDIR5 or MPE/iX :LISTF. For instance, LISTDIR5 might say that read access on
a file is allowed to "AC,GU,CR" — %LISTF...,SEC will show this simply as "AC".

This is because AC (account) access implicitly allows GU and CR access, too; thus "AC,GU,CR"
is redundant, and is equivalent to just "AC". Although %LISTF...,SEC's and LISTDIR5's outputs
appear different, they're really identical.

Related MPEX features
%LISTF...,SEC works closely with:

• The %RELEASE and %SECURE commands — if, for instance, %LISTF...,SEC shows you a lot
of released files in a group, you can say

%SECURE @.DATA(ISRELEASED)

which will :SECURE all the released files in the DATA group.

• The %ALTSEC command can :ALTSEC entire filesets, as well — after looking at a
%LISTF...,SEC listing, you might decide to :ALTSEC the entire fileset:

%ALTSEC @.DATA;(R:ANY;A,W,L,X:GU,CR)

• The SECURITYANY, SECURITYAC, SECURITYAL, SECURITYGU, SECURITYGL, and
SECURITYCR selection criteria — each of these is a string that contains (or doesn't contain)
the characters "R", "A", "W", "X" or "L" depending on whether or not this access mode is
allowed to this class of user.

For instance, if SECURITYANY="R", this means that the only thing that all users may do is
Read the file; the other access types are allowed to more restrictive access classes (e.g. AC
users only or GU users only).

For example:

%LISTF @.DATA(POS("R",SECURITYANY)=0),SEC

will find and list all the files in the DATA group that do not allow R access to ANY.
POS("R",SECURITYANY) finds the location of the first occurrence of the character "R" in
SECURITYANY — if there is no "R", POS returns a 0.

MPEX COMMAND REFERENCE: %LISTF

192

Thus, POS("R",SECURITYANY)=0 means "there is no 'R' in SECURITYANY", i.e. Read access
is not allowed to ANY.

• The SECURITYR, SECURITYA, SECURITYW, SECURITYL, and SECURITYX selection criteria
— each of these is a string that contains (in the same format as in the %LISTF...,SEC
listing) the classes of users that are allowed this type of access.

For instance, SECURITYR="AC" means that only users in the file's account are authorized to
read the file.

%LISTF...,POSIX

. Syntax: %LISTF fileset,POSIX [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: ACCOUNT= VESOFT GROUP= PUB

File Type UID Owner GID Group ID ACD State
---------- ---- ----- ----------------- ----- -------- -- ---- --- ------------

CI FB 108 MANAGER.VESOFT 106 VESOFT 020109 17:14
MX FB 109!MGR.DEV 106 VESOFT 090210 7:33
NL FB 108 MANAGER.VESOFT 106 VESOFT 020109 17:13
SL FB 1!MANAGER.SYS 1!SYS Must 020109 17:18
XL FB 108 MANAGER.VESOFT 106 VESOFT 020109 17:15

GROUP TOTAL: 5 FILES 5 MEGABYTES 20016 SECTORS

%LISTF...,POSIX shows all POSIX-related fields, including:

• Fully-qualified File Owner and corresponding numeric UID value.

• File Group and corresponding numeric GID value.

• ACD state: "Yes" if present, "Must" if mandatory.

• State-change timestamp.

The display also flags the following:

• "?" instead of UID or GID, if the fields are zero, indicating that the corresponding owner or
group do not currently exist.

• "!" indicates that the file is located in a different account than its owner.

%LISTF...,XL3 [DETAIL]

Syntax: %LISTF fileset,XL3 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

MPEX COMMAND REFERENCE: %LISTF

193

Examples: %LISTF MAIN,XL3

FILE: MAIN.PUB.VESOFT

FILE CODE : 1030 FOPTIONS: BINARY,FIXED,NOCCTL,STD
BLK FACTOR: 1 CREATOR : MANAGER.VESOFT
REC SIZE: 256(BYTES) LOCKWORD: **
 GROUP ID: VESOFT
BLK SIZE: 256(BYTES) SECURITY--READ: ANY
EXT SIZE: 561(SECT) WRITE: ANY
NUM REC: 17926 APPEND: ANY
NUM SEC: 17936 LOCK: ANY
NUM EXT: 34 EXECUTE: ANY
MAX REC: 17926 **SECURITY IS ON
MAX EXT: 32 FLAGS : 15 ACCESSORS,SHARED,15 R
NUM LABELS: 0 CREATED : THU, APR 20, 2000, 8:37 AM
MAX LABELS: 0 MODIFIED: THU, APR 20, 2000, 8:38 AM
DISC DEV #: 1 ACCESSED: MON, MAY 29, 2000, 9:00 AM
 RESTORED: THU, APR 20, 2000, 8:37 AM
 STATE : THU, APR 20, 2000, 8:38 AM
SEC OFFSET: 0 LABEL ADDR: **
UFID : $055E0001 $46112208 $006924C8 $378224E8 $25E6B9F1
VOLCLASS : MPEXL_SYSTEM_VOLUME_SET:DISC

The XL3 listing mode is very much like MPE/iX's :LISTF...,3 — of course, its big advantage is
that it supports the full power of MPEX filesets.

%LISTF...,XL4 [SECURITY]

Syntax: %LISTF fileset,XL4 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF MYFILE,XL4

FILE: MYFILE.WORK.VESOFT

ACCOUNT ------ READ : ANY
 WRITE :
 APPEND :
 LOCK : ANY
 EXECUTE : ANY

MPEX COMMAND REFERENCE: %LISTF

194

 GROUP -------- READ : GU
 WRITE : GU
 APPEND : GU
 LOCK : GU
 EXECUTE : GU
 SAVE : GU

FILE --------- READ : ANY FCODE: 0
 WRITE : AC **SECURITY IS ON
 APPEND : AC
 LOCK : AC
 EXECUTE : ANY

FOR MANAGER.VESOFT: READ, WRITE, APPEND, LOCK, EXECUTE

The XL4 listing mode is very much like MPE/iX's :LISTF...,4 — of course, its big advantage is
that it supports the full power of MPEX filesets.

Additionally, rather than just giving you the "raw" information about the file's access mask —
e.g. that Write access was granted to AC, AL, and GL — it gives you the file's "true" access
information, in this case that Write access is actually granted to AC; after all, since AL and GL
are subsets of AC, saying "AC, AL, and GL" would be redundant.

Similarly, if a file is built with Write access granted to AC and Lock access granted to GU only,
MPEX's %LISTF...,XL4 will show it as "LOCK:AC". This is because Write access implies both
Lock and Append access; if you configure Lock or Append access as being more restrictive than
Write access, this configuration won't really take effect.

Thus, our output might look somewhat different from the MPE/iX :LISTF...,4 output;
however, we believe that our output is actually more informative.

%LISTF — defining your own %LISTF formats

Syntax: %LISTF fileset, listfgroupfile|^formatfile
 [;listfile]
 [;NOTOTALS|NORMTOTALS|ALLTOTALS]
 [;NOPAGEHEAD]

Examples: %LISTF @.@.AP, ^MYLISTF.DATA.PROD; *LP
%LISTF @.@.AP, SUPER << uses your own file: SUPER.LISTF.VESOFT >>

Note:

This is one of the most sophisticated features of MPEX. It can be very powerful, but also fairly
difficult to use. Beginning users should probably skip this section.

In addition to providing you with many powerful LISTF modes, MPEX lets you define your
own. You can set up your own "flexible %LISTF format files" that define how you want the
output to look; these files essentially contain little PASCAL-like programs that give you all the
power of a high-level programming language.

MPEX COMMAND REFERENCE: %LISTF

195

Most of the syntax elements of these files are described in the Advanced Expression
Programming section in Appendix B — this will explain the various operators and statements
(like IF/THEN/ELSE, WHILE/DO, VAR, etc.) that you have available. You can also look at the
files in the LISTF.VESOFT group to see how MPEX implements its built-in %LISTF modes.

Once you write a flexible %LISTF format file, you can use it by specifying its filename
(prefixed by a "^") as the "mode" parameter of a %LISTF command:

%LISTF @.@.AP, ^MYLISTF.DATA.PROD; *LP

You may also put the file in the LISTF.VESOFT group — in this case, all you need to do is
specify the unqualified file name:

%LISTF @.@.AP, SUPER

will use the flexible %LISTF file called SUPER.LISTF.VESOFT. In fact, all MPEX %LISTF
modes are implemented by flexible %LISTF format files in the LISTF.VESOFT group —
DB.LISTF.VESOFT implements the DB mode, DISCUSE.LISTF.VESOFT implements the
DISCUSE mode, etc.

A word of warning is in order here: when upgrading to new releases of our software, we will
not make any attempt to preserve any %LISTF files that you may have created and placed in
this group. In fact, it is quite possible that we may eventually choose the same name that you
have in order to define a new %LISTF format. In that case, our future installation will
overwrite your handiwork. So while it may be convenient to use this group, we do not
recommend that you place any files here.

Since MPE filenames can't start with digits or special characters, all the numeric modes (0, 1,
2, etc.) are prefixed with Ns in the LISTF.VESOFT group (mode 3 is implemented by
N3.LISTF.VESOFT). Similarly, the negative modes are prefixed with Ms (mode -1 is
implemented by M1.LISTF.VESOFT).

How is a flexible %LISTF template file implemented? It's an ordinary EDITOR-format file that
contains a sequence of statements of the type described in the Advanced Expression
Programming section of Appendix B. The file can therefore define its own local variables, use
control structures like IF/THEN/ELSE, WHILE/DO, and so on. More importantly, it can
reference all FILE ATTRIBUTE VARIABLES pertaining to the current file, just like you can in
selection conditions.

For instance, the N2.LISTF.VESOFT file (which implements %LISTF...,2) contains:

WRITELN (FILE:8,
 FMTOPENED:2,
 CODE:6,
 FMTRECSIZE:6:'RIGHT',
 ' ', FMTTYPE:4,
 EOF:10,
 FLIMIT:11,
 BLOCKFACTOR:4,
 SECTORS:9,
 ' ', NUMEXTENTS:2,
 IF MAXEXTENTS=0 THEN ' *' ELSE STRWRITE(MAXEXTENTS:3)
);

MPEX COMMAND REFERENCE: %LISTF

196

This is what generates the detail lines of a %LISTF...,2, e.g.

SL * SL 128W FB 9768 65535 1 10084 4 26

The WRITELN statement takes all the specified file attribute variables and formats them to be
output.

The Advanced Expression Programming chapter of Appendix B describes various control
structures, but does not mention the most important one: FOR RFILE IN... This construct is
used in flexible %LISTF files to repeat something for all the files in the fileset. The reason that
this is only mentioned here is because this is a special statement that is valid only in %LISTF
expression files.

FOR RFILE IN MPEXFILESETTOTAL
 DO
 BEGIN
 statement;
 ...
 statement;
 END;

If you look at the LISTF.VESOFT files, you'll find that almost all of them use this statement. It
simply means "For each file in the current fileset, do the statements between the 'BEGIN' and
the 'END'".

A typical flexible LISTF file might look like:

statements to do at the beginning of the %LISTF operation;
MPEXHEADER1:="headerline1";
MPEXHEADER2:="headerline2";
MPEXHEADER3:="headerline3";
FOR RFILE IN MPEXFILESETTOTAL
 DO
 BEGIN
 statement;
 ...
 statement;
 END;
statements to do at the end of the %LISTF operation;

The MPEXHEADER1, MPEXHEADER2, and MPEXHEADER3 variables are set to the header lines that
you want to output for each group (and at the top of each page); the statements between
BEGIN and END indicate what is to be printed for each file. MPEX automatically takes care of
writing the "ACCOUNT=... GROUP=..." headers, the group/account/grand totals, and the page
breaks.

MPEX COMMAND REFERENCE: %LISTF

197

For example, %LISTF...,1 is implemented by N1.LISTF.VESOFT, which is similar to:

MPEXHEADER1:="FILENAME CODE ------------LOGICAL RECORD--------";
MPEXHEADER2:=" SIZE TYP EOF LIMIT ";
MPEXHEADER3:="";
FOR RFILE IN MPEXFILESETTOTAL
 DO
 BEGIN
 WRITELN (FILE:8,
 FMTOPENED:2,
 CODE:6,
 FMTRECSIZE:6:'RIGHT',
 ' ', FMTTYPE:4,
 EOF:10,
 FLIMIT:11
);
 END;

The header variables are set (MPEXHEADER3 is set to the empty string since the header is only
2 lines long — you should always specify all three variables unless you are using
MPEXFILESET, described below); the WRITELN indicates what is to be output for each file.

Several other options are also available. Saying

FOR RFILE IN MPEXFILESETHEAD
 SELECT selectioncondition
 DO
 BEGIN
 statement;
 ...
 statement;
 END;

will do the "statements" only for those files that match "selectioncondition".

For instance, MPEX's %LISTF...,5 (which only outputs program file information) specifies

FOR RFILE IN MPEXFILESETHEAD
 SELECT ISPROG
 DO...

to select only those files with code="PROG" or code="NMPRG".

Saying

FOR RFILE IN MPEXFILESETHEAD

instead of

FOR RFILE IN MPEXFILESETTOTAL

will cause MPEX not to print any group, account or grand totals (of the number of files and of
the disk space). Instead, you can specify your own things to be done at every "group break"
and "account break" by using ONBREAKBEFORE and ONBREAKAFTER (with ALREADYSORTED).

MPEX COMMAND REFERENCE: %LISTF

198

The full syntax of a flexible LISTF format file

(* Comments -- may be inserted anywhere *)
MPEXHEADER1 := "headerline1";
MPEXHEADER2 := "headerline2";
MPEXHEADER3 := "headerline3";
other statements to do before any files are processed;
FOR RFILE IN MPEXFILESET[HEAD|TOTAL]
 SELECT selectioncondition
 SORT|ALREADYSORTED (sortfields)
 FIRST
 BEGIN
 statements to do at the beginning of the fileset;
 END
 PAGEHEAD
 BEGIN
 statements to do at the beginning of each page of output;
 END
 ONBREAKBEFORE 1
 BEGIN
 statements to do at the beginning of each new account
 ("ONBREAKBEFORE 1" means "before breaking on sort item 1",
 which is the account if you use "ALREADYSORTED");
 END
 ONBREAKBEFORE 2
 BEGIN
 statements to do at the beginning of each new group
 (or whatever sort item 2 is, if you don't use "ALREADYSORTED");
 END
 DO
 BEGIN
 statements to do for each file;
 END
 ONBREAKAFTER 2
 BEGIN
 statements to do at the end of each group
 (or whatever sort item 2 is, if you don't use "ALREADYSORTED");
 END
 ONBREAKAFTER 1
 BEGIN
 statements to do at the end of each account
 (or whatever sort item 1 is, if you don't use "ALREADYSORTED");
 END
 FINALLY
 BEGIN
 statements to do at the end of the fileset;
 END;

MPEX COMMAND REFERENCE: %LISTF

199

You can specify as many or as few of the above clauses as you like — put together they can do
some very powerful things.

A very simple example might be:

FOR RFILE IN MPEXFILESETHEAD
 DO
 BEGIN
 WRITELN (FILE:8, " ", SECTORS:10, SAVABLESECTORS:10);
 END
 ONBREAKAFTER 2
 BEGIN
 WRITELN ("TOTAL SAVABLE DISK SPACE: ", TOTAL(2,SAVABLESECTORS));
 END;

For each file, this outputs the name, the number of sectors, and the number of savable sectors
(savable, that is, by an %ALTFILE...;XLTRIM). After each group is finished (ONBREAKAFTER
2), it writes the total savable disk space in the entire group.

Note the expression

TOTAL(2,SAVABLESECTORS)

TOTAL(2,x) returns the sum of x for all files in this group; TOTAL(1,x) returns the sum of x
for all files in this account; TOTAL(0,x) returns the sum of x for all files in the fileset.

In general,

TOTAL(n,x)

can be said to be the sum of all 'x'es since the last Nth level break; 'x' can be any file attribute
variable (however, 'x' can not be a user-defined variable whose value is calculated in the "DO"
section).

We could have done the same thing without a TOTAL by saying:

VAR SPACE: INTEGER;
FOR RFILE IN MPEXFILESETHEAD
 ONBREAKBEFORE 2
 BEGIN
 SPACE:=0;
 END
 DO
 BEGIN
 WRITELN (FILE:8, " ", SECTORS:10, SAVABLESECTORS:10);
 SPACE:=SPACE+SAVABLESECTORS;
 END
 ONBREAKAFTER 2
 BEGIN
 WRITELN ("TOTAL SAVABLE DISK SPACE: ", SPACE);
 END;

MPEX COMMAND REFERENCE: %LISTF

200

This explicitly initializes a tally variable before each group starts, increments it for each file,
and outputs it after the entire group is done.

A useful idiom, incidentally, is TOTAL(n,1). This stands for the total number of files since the
last n-level break — TOTAL(2,1) is the total number of files in the group, TOTAL(1,1) is the
total number of files in the account, and TOTAL(0,1) is the total number of files in the fileset.

Another structure you might want to use is:

FOR RFILE IN MPEXFILESET
 ...

(as opposed to "FOR RFILE IN MPEXFILESETHEAD" or "FOR RFILE IN
MPEXFILESETTOTAL"). This simply tells MPEX not to print any headers (global, group or
account) and not to print any totals, but only do those things that you specify in the FOR
statement. For instance,

%LISTF fileset, FILENAME

(which simply lists the fully-qualified names of the files in the given fileset) is implemented
using the file FILENAME.LISTF.VESOFT, which says:

FOR RFILE IN MPEXFILESET
 DO WRITELN (FULLNAME);

You don't want any headers or totals in %LISTF...,FILENAME — you just want the fully-
qualified file names; this is what "FOR RFILE IN MPEXFILESET" is useful for.

Of course, even if you use "FOR RFILE IN MPEXFILESET", you can still print your own
headers (using FIRST, ONBREAKBEFORE, ONBREAKAFTER, and FINALLY). It's just that you'd
have to specify the headers that you want explicitly. For instance, using

FOR RFILE IN MPEXFILESET
 ALREADYSORTED (ACCOUNT:8, GROUP:8)
 ONBREAKBEFORE 1
 WRITELN ("ACCOUNT = ", ACCOUNT)
 ONBREAKBEFORE 2
 WRITELN ("GROUP = ", GROUP)
 DO
 WRITELN ("FILE = ", FILE);

outputs "ACCOUNT = accountname" before every account's files and "GROUP = groupname"
before every group's file.

Note the "ALREADYSORTED (ACCOUNT:8, GROUP:8)" — this is necessary to tell MPEX that
you should expect the files to be sorted in account and group order. With "FOR RFILE IN
MPEXFILESETHEAD" and "FOR RFILE IN MPEXFILESETTOTAL" you don't have to do this, but
for "FOR RFILE IN MPEXFILESET" you must specify the "ALREADYSORTED" clause if you'll be
using ONBREAKBEFORE, ONBREAKAFTER, and/or TOTAL.

MPEX COMMAND REFERENCE: %LISTF

201

By default, all %LISTF output prints the files in sorted order (by account, then by group, then
by file).

You can specify your own sort sequence by saying:

FOR RFILE IN MPEXFILESET
 SORT (field1, field2,...fieldN)
 DO...

(of course, you can also specify SELECT, FIRST, FINALLY, and [especially useful]
ONBREAKBEFORE and ONBREAKAFTER). Each fieldX parameter indicates what you want to
sort it on (the highest-precedence things first). (Note: for SORT to work, you must use
MPEXFILESET, not MPEXFILESETHEAD or MPEXFILESETTOTAL.)

For instance, saying

FOR RFILE IN MPEXFILESET
 SORT (ACCDATE, MODDATE)
 DO...

will sort all the files in the fileset by their last access date (ACCDATE), and within that (for all
files with the same last access date) by last modify date.

Saying

FOR RFILE IN MPEXFILESET
 SORT (ACCOUNT:8, SECTORS)
 DO...

will sort first by the account and then by the file's disk space. Note that we said "ACCOUNT:8"
— the 8 is the maximum length of the account name. Whenever you sort by a STRING, you
must specify the maximum length of the string field (otherwise you'll get an error message).

You can also append a ":'DESC'" to any of the fields to indicate a sort in DESCending order:

FOR RFILE IN MPEXFILESET
 SORT (ACCOUNT:8, SECTORS:'DESC')

will sort by account, and within each account, in descending order by the number of sectors
(i.e. the biggest files first).

When you do your own SORTing, the ONBREAKBEFORE, ONBREAKAFTER, and TOTAL constructs
are especially useful. In general, an

ONBREAKBEFORE n
 BEGIN
 ...
 END

will be executed before the Nth field in the SORT list changes — thus, for the example of
SORT (ACCOUNT:8, SECTORS:'DESC'), any ONBREAKBEFORE 1 will be executed before the
start of each new account.

MPEX COMMAND REFERENCE: %LISTJOB

202

An ONBREAKAFTER N will similarly be executed after the Nth field in the SORT list changes.
TOTAL(n,x) will sum all the values of x since the last change in the Nth field.

One more example that uses ONBREAKAFTER, SORT, and TOTAL:

FOR RFILE IN MPEXFILESET
 SORT (ACCOUNT:8, CREATOR:8)
 ONBREAKAFTER 2
 WRITELN (CREATOR, '.', ACCOUNT, ' created ',
 TOTAL(2,1), ' files, ',
 TOTAL(2,SECTORS), ' sectors');

This sorts all the files in the fileset by their account and creator ID; then, for each creator
(level-2 break), it outputs the number of files created by that user (TOTAL(2,1)) and the
number of sectors those files occupy (TOTAL(2,SECTORS)). Since only an ONBREAKAFTER 2
clause was specified, only the creator-level totals will be output; no information will be output
for each file, nor will any account or grand totals be printed.

One final note on using SORT(...) in a flexible LISTF file: if the number of files to be
%LISTFed is very large (more than 10000 files), you may get an error message regarding the
file SORTWRIT.PUB.VESOFT. If this occurs, you can set the variable VESOFTSORTFILESIZE to
the number of files you expect to be listed.

So, there it is — the way for you to write your own flexible %LISTF files. As you can see, you
can do arbitrary sorts, totals, and formatted outputs; you can define %LISTF modes even more
complicated (and useful) than the ones we've predefined.

Perhaps the best way to learn how to write flexible %LISTF files is by looking at the VESOFT-
supplied files in the LISTF.VESOFT group. The only thing we can warn you about is that
some of those files use additional, undocumented constructs that we may not be prepared to
release yet to the user community at large — however, most of the stuff that the
LISTF.VESOFT files do can as easily be done by your own flexible %LISTF files.

%LISTJOB
Syntax: %LISTJOB [userset]

 [;NOPROC]
 [;NOSORT]
 [;SUBMIT]

Examples: %LISTJOB;SUBMIT

JOB# STATE DEV INTRODUCED Q PROGRAM LOGON

#S27 EXEC 20 TUE 2:28P MAIN OPERATOR.SYS,OPERATOR
#S127 EXEC 38 9:44A QEDIT CHUCK,MANAGER.TECH,CHUCK
#S116 EXEC 33 7:17A MAIN RON,MANAGER.TECH,RON
#S117 EXEC 35 7:37A RON,same

MPEX COMMAND REFERENCE: %LISTJOB

203

 #J555 EXEC o766 WED 12:16P b+MAIN BACKG,MANAGER.VESOFT,BACKG
 #s27, operator.sys
#J601 WAIT D1 THU 10:52A TEST,MANAGER.TECH,CHUCK
 #s88, chuck,manager.tech

#J880 SCHED HI SAT 12:01A 01/22/94 SCHEDULR,MANAGER.SYS,PUB
 #j567, schedulr,manager.sys
#A6 SCHED + 1:30A -MTWRF- BACKUP,MANAGER.SYS
#A4 SCHED + 12:35A S-----A DISCLEAN,same
#A8 SCHED + WHENEVER (HPDATE=1) REPORT,same
#A11 SCHED FRI 10:00A 94/09/16 TESTSCHD,same
#A1 SCHED + 12:10A SMTWRFA GETDFREE,MANAGER.TECH
#A2 SCHED + 12:15A -MTWRF- DAILY,MGR.XPRESS
#A7 SCHED + WHENEVER BETWEEN(HPDAY,2,6)... REMOTE,USER.XPRESS

JOBFENCE = 6; JLIMIT = 3; SLIMIT = 33

The %LISTJOB command is similar to the MPE :SHOWJOB command, but displays additional
information and allows for selection based upon a userset.

The key features of this command are:

• Name and queue of the currently running process. If there is more than one process
running, the first process on the process tree will be listed with a "+" character to indicate
additional processes are active.

• The MPE group name is displayed for each user.

• The output is sorted by job type (sessions first, then jobs), account, user, and finally the job
or session number.

• Selection based upon MPEX usersets.

Note that fields that have trivial values — such as the STATE when it's EXEC, the LDEV for
jobs, the INTRO date when it's today, etc. — are not displayed.

The ;NOPROC keyword disables the display of the currently executing process for each job or
session.

The ;NOSORT keyword disables the sort step prior to display. Without the sort, multiple
occurrences of the same user, group and account may not be displayed as
"Sessionname,same" as shown above.

The ;SUBMIT keyword, when specified, displays additional information about each Job. With
this keyword, an additional line indicating the original submitter of the job will be displayed.

At the end of the listing, STREAMX scheduled jobs are displayed as follows:

• For ordinary jobs that do not repeat or have a particular condition to be streamed are
shown with the scheduled date and time to submit in the INTRODUCED and PROGRAM
columns.

• Jobs that repeat are indicated with a "+" character to the right of the word "SCHED".

• If the job is to be submitted when a particular condition occurs, the conditional expression
for that job will be displayed. If the condition is too long to display in the field, then it is
truncated and "..." is printed to show that it is too long to display.

MPEX COMMAND REFERENCE: %LISTREDO

204

• For jobs that repeat on specific days, the days that the job repeats is shown in the
PROGRAM column.

This is essentially the same format as the %SHOWJOB command, and shows the same
information as the %SEC SHOWSCHED command. %SEC SHOWSCHED, however, will display the
entire condition under which a job will be submitted.

%LISTREDO
Syntax: %LISTREDO [abscmdnum1[/abscmdnum2]] [;OUT=outfile]

 [-relcmdnum[/-relcmdnum2]] [;{REL|ABS|UNN}]
 [["][@]string["]]

Examples: %LISTREDO
%LISTREDO 10/20
%LISTREDO START=10; END=20
 (* for compatibility with MPE/iX *)
%LISTREDO -30;REL
%LISTREDO RUN
%LISTREDO @MYFILE

%FILE LP;DEV=LP
%LISTREDO;OUT=*LP;UNN

%LISTREDO displays those commands that you entered into MPEX and that have been saved in
the MPEX command history.

%DO, %LISTREDO, and %REDO are related, and are discussed in full detail under the %REDO
command in this manual.

%MANY
Syntax: %MANY delimiter mpexcommand [delimiter...]

Examples: %MANY \PURGE DATAFILE\BUILD DATAFILE\RUN PROGFILE
%MANY %REPEAT %BUILD FILE!N %FORNUM N=1,10

The %MANY command lets you specify several MPEX commands on one line; for instance,

%MANY %REPEAT %RUN MYPROG;INFO="!MPEXCURRENTFILE" %FORFILES A@

will execute the given %REPEAT...%FORFILES loop just as if you'd typed

%REPEAT
% RUN MYPROG;INFO="!MPEXCURRENTFILE"
%FORFILES A@

MPEX COMMAND REFERENCE: %MPEXSTORE

205

This can be especially useful for "$" commands (to submit a job stream that executes several
commands) and for :RUN MPEX;INFO="...".

Note that the commands are delimited by the first character in the %MANY command's
parameter list — the character "%" was used above, but if you wanted to, you could have used
something else, e.g.

%$MANY ^REPEAT ^RUN MYPROG;INFO="!MPEXCURRENTFILE" ^FORFILES A@

Just make sure you use a character that doesn't occur in any of the commands you are going to
enter!

%MPEXSTORE
Syntax: %MPEXSTORE fileset; storeparms

Examples: %MPEXSTORE @.@.@-@.@.SYS-@.@.VESOFT &
 (ACCDATE<TODAY-90 and NOT ISPRIV);*T;SHOW

The MPE :STORE command can already handle filesets — however, its filesets are not nearly
as flexible as MPEX filesets. In particular:

• It doesn't have selection criteria such as CODE,SECTORS,CREATOR, etc. For instance, you
can't store all the files that haven't been accessed in 90 days EXCEPT FOR databases —
:STORE can't select by filecode.

The %MPEXSTORE command lets you use the full power of MPEX filesets with MPE :STORE.
For instance, the command

%MPEXSTORE @.@.@-@.@.SYS-@.@.VESOFT &
(ACCDATE<TODAY-90 and NOT ISPRIV);*T;SHOW

will store all files that haven't been accessed in 90 days EXCEPT:

• databases (ISPRIV),

• files in the SYS account (-@.@.SYS), and

• files in the VESOFT account (-@.@.VESOFT).

Of course, all the other fileset features and selection criteria are available, too — you can store
all the files created by a particular user, store all the files except for files with code PROG and
USL (since in the event of failure they could easily be regenerated), etc.

This command works by doing %LISTF...,FILENAME to write the fully qualified names of all
the files in the fileset to a disk file; then, it uses the disk file as an indirect file for MPE
:STORE. For large filesets, this means that it might take some time for this command to start
up (since it has to go through the entire fileset before doing the :STORE). Please be patient...

MPEX COMMAND REFERENCE: %NEWLINK

206

%NEWLINK
Syntax: %NEWLINK linkfileset, targetfileset

Examples: %NEWLINK MYLINK, REALFILE
%NEWLINK WORK, /DEVELOP/PUB/source/c
%NEWLINK =.TEST, @.PROD

The %NEWLINK command allows you to create a symbolic link to another file or directory.
Since symbolic link files are a POSIX related feature, this command is only available on
machines that support POSIX.

Symbolic link files are files that "point" to other files, somewhat like a permanent file equation.
When a link file is referenced in a command or program, the file that the link points to is
actually opened. Our %LISTF...,2 shows the target of a link file as follows:

%LISTF ./A@/,2

PATH= /DOC/WORK/

FILENAME CODE ---------LOGICAL RECORD-------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

A09 / ==> NEWFILE
A16 link /DOC/WORK/A09/NEWFILE 16 1 *

PATH= /DOC/WORK/A09/

FILENAME CODE ---------LOGICAL RECORD-------- ----SPACE----
 SIZE TYP EOF LIMIT R/B SECTORS #X MX

NEWFILE 80B FA 1420 1420 16 448 * *

In this example, the file A09 is a DIRECTORY containing the file NEWFILE. The file A16 is
LINKED to NEWFILE, so if you were to reference A16 in your command (such as :VI A16 to
invoke the VI editor), then the file /DOC/WORK/A09/NEWFILE will be opened as the actual
work file.

This command is quite a bit different than other commands that have a "source" and
"target" fileset. For this command, the files in the linkfileset are based upon files in the
targetfileset, rather than the target files being based upon the source files. The third example
above shows how to create a link file in the TEST group for each file that exists in the PROD
group. This would allow you to perform a test against "live data" without having to move files
from one location to another.

In order to remove a symbolic link file, the command %PURGELINK must be used instead of the
regular %PURGE command. (see the %PURGELINK command for details)

MPEX COMMAND REFERENCE: %NOMSG

207

%NOMSG
Syntax: %NOMSG command

Examples: %NOMSG INPUT ANSWER; PROMPT="OK to continue? "; WAIT=5

%REPEAT
...
%NOMSG FORFILES A@.SOURCE

Saying

%NOMSG command

does the same thing as saying

%command

(without the NOMSG) except that %NOMSG inhibits the printing of any MPE CI or file system
errors associated with the command.

The CIERROR and FSERROR JCWs are still set; if the command encounters a fatal error and no
%CONTINUE is in effect, the command file or UDC will still be flushed. The only difference is
that no error message will be printed.

This can be quite useful in cases where you expect an error to occur, and don't want to burden
the user with an irrelevant warning or error message. For instance, if you have a command
file that uses a particular work file and you want to make sure the file doesn't already exist,
you might say

%NOMSG PURGE WORKFILE;YES

This way, the "FILE NOT FOUND, NO PURGE DONE" warning will not be printed out if
WORKFILE doesn't exist. Remember that you can still check to see if an error occurred by
looking at the CIERROR and FSERROR variables.

%OPTION
Syntax: %OPTION [LIST]

 [NOLIST]
 [RECURSION]
 [NORECURSION]

Examples: %OPTION LIST
%OPTION RECURSION

MPEX COMMAND REFERENCE: %PAUSE

208

MPE/iX lets you have an OPTION line not just at the beginning of a command file or a UDC,
but also anywhere inside one. The only four options available on this OPTION command are:

• LIST and NOLIST, which turn on or off echoing of the remaining commands in this
command file.

• RECURSION, which makes MPEX search for UDCs starting with the very beginning of the
UDC directory (rather than just starting with the currently-executing UDC) — this lets a
UDC call itself recursively (either directly or indirectly, e.g. when UDC A calls UDC B which
in turn calls A).

• NORECURSION, which turns off OPTION RECURSION and allows UDCs to only call those
UDCs which come after them in the UDC directory. (This is the default).

OPTION LIST can be useful when you're debugging a UDC and want to check which
commands are being executed; however, the MPEXCMDTRACE JCW (documented elsewhere in
this manual) is probably more useful for this purpose. OPTION RECURSION could be
convenient in some cases, but you might just want to use command files (which can always be
used recursively) instead.

%PAUSE
Syntax: %PAUSE numseconds

Examples: %PAUSE 300

Suspends MPEX for the given number of seconds.

%PAUSEJOB, %SHOWPAUSED
Syntax: %PAUSEJOB "[{time|booleanexpression}]" , userset

 [;VERIFY|NOVERIFY|QUIET]
 [;scheduleparms]
 [;CHECKEVERY=minutes]

%SHOWPAUSED

Examples: %PAUSEJOB "5:30PM", #J123
%PAUSEJOB "11:00PM", COMPILE,@.@; NOVERIFY
%PAUSEJOB "JSCOUNT('@,REPORT.@&EXEC')<=3", REPORT,@.@
%PAUSEJOB , #J987; IN=0,0,120

The %PAUSEJOB command allows you to SUSPEND (via the :BREAKJOB command) a
particular job or jobset (using VESOFT usersets — see the usersets section of the SECURITY
User Manual for details), and have MPEX automatically RESUME the job at a specified future
time or when a given expression becomes true.

MPEX COMMAND REFERENCE: %PAUSEJOB, %SHOWPAUSED

209

The syntax for %PAUSEJOB is quite similar to %ALARM (documented earlier in this manual). In
fact, you must have the ALARM task running under the BACKG job in order for %PAUSEJOB to be
able to RESUME the job later (%PAUSEJOB actually sets a special type of alarm to later
:RESUMEJOB the suspended job). For this reason, if you issue a %PAUSEJOB command and the
BACKG job is not already running, MPEX will attempt to start it for you. For more information
on the BACKG facility, please see the documentation for the %BACKG command, earlier in this
manual.

You may tell %PAUSEJOB to RESUME the suspended job:

• at a particular future time (e.g. "5:30 PM");

• when a particular boolean expression becomes true (e.g.
"JSCOUNT('COMPILE,@.@')<=3"); or

• using the MPE :STREAM-style scheduling parameters ;AT=, ;DAY=, ;DATE=, and ;IN= (e.g.
";IN=0,0,5" or ";DATE=11/05/91;AT=9:00").

If you specify a jobset (rather than a single job), %PAUSEJOB will list all of the jobs that will be
affected and ask

OK to process these jobs (y/n)?

If you don't want to be asked, use the ;NOVERIFY keyword. If you don't even want
%PAUSEJOB to list the jobs that it processes, use the ;QUIET keyword (which implies
;NOVERIFY).

Performance considerations (;CHECKEVERY=)
By default, the ALARM background task wakes up once per minute to see if any of the
%PAUSEJOB conditions have been met (i.e., the "logical expression" returns TRUE). If you set a
%PAUSEJOB alarm based on an expression that will use a lot of system resources (CPU, disk
I/Os, etc.) to evaluate, you may want to check that particular alarm less frequently.

When you enter a %PAUSEJOB command, simply append the ;CHECKEVERY= keyword to tell
the ALARM background task how many intervals to skip between tests. For example:

%PAUSEJOB "JSCOUNT('COMPILE,@.@&EXEC')=0", #J115; CHECKEVERY=10

This means ":BREAKJOB #J115, and when there are no more jobs executing that logged on
with a jobname of COMPILE, :RESUMEJOB #J115." Since the default pause time is one
minute, this will wait 10 minutes between tests. Please see the documentation on the %ALARM
and %BACKG commands earlier in this manual for more details.

Viewing "paused" jobs (%SHOWPAUSED)
To find out what %PAUSEJOB commands still have :RESUMEJOB alarms pending for them, use
the %SHOWPAUSED command. For each "paused" job that is still suspended, you will be shown
the job number, the intro time, the "will resume" time (unless the %PAUSEJOB was set to
resume based on a logical expression), and the job name.

MPEX COMMAND REFERENCE: %PRINT

210

%PRINT
Syntax: %PRINT [fileset|(file-eq-parms)]

 [;BUF]
 [;COPY[ACCESS]]
 [;FORMAT= formatstring]
 [;HIGHLIGHT]
 [;KEEPAMDATES]
 [;NOFILEPAGEBREAK]
 [;NONUMRECOGNIZE] [;{UNN|NUM}]
 [;{OLD|OLDANY|OLDTEMP}]
 [;OUT= {outfile|(file-eq-parms)}]
 [;PAGE= pagesize] [;PAGEHEAD]
 [;PAGEHEAD]
 [;SEARCH= expression]
 [;ALLFILENAMES]
 [;CONTEXT= [{numlines1|exp1}],[{numlines2|exp2}]]
 [;MAX= numlines]
 [;PREV= expression]
 [;START= startrecnum] [;END=endrecnum]
 [;WAIT=[[+|-]numseconds]]

Examples: %FILE LP;DEV=LP;CCTL
%PRINT AP@.SOURCE(CODE="EDTCT");NUM;KEEPAMDATES &
 ;OUT=*LP;PAGEHEAD
%PRINT MYFILE;START=100;END=150;NUM
%PRINT PROGFILE;FORMAT=STRWRITE(R:'GARBAGE')
%PRINT @.SOURCE;SEARCH="CUSTNO" or "CUSTNUM" or "CUSTNAME"
%PRINT @.SOURCE &
 ;SEARCH=("FOO" and "BAR") or ("XYZ" and NOT "ABC")
%PRINT @.DOC;SEARCH=CASELESS "DEBUG"
%PRINT @.SOURCE;SEARCH=DELIM "CUST"
%PRINT @.SOURCE;SEARCH="FNAME";PREV="PROCEDURE" or "FUNCTION"
%PRINT @.SOURCE;SEARCH=CL"PAR-ONE";CONTEXT="PERF","END-PERF"

The %PRINT command lets you conveniently output filesets (or individual files) to the
terminal, to the printer or to some external file. Major features include:

• You can print entire filesets, e.g.

%FILE LP;DEV=LP
%PRINT @.SOURCE(CODE="EDTCT"); NUM; OUT=*LP; PAGEHEAD

This will print all the files in the SOURCE group that are EDITOR /SET FORMAT=COBOL files
(CODE="EDTCT") with line numbers to the line printer.

This is more convenient than

%EDIT @.SOURCE (CODE="EDTCT"), LIST ALL,OFFLINE

MPEX COMMAND REFERENCE: %PRINT

211

because it doesn't print any of those pesky one-page /VERIFY ALLs that EDITOR is so fond
of. (The %PRINT command is also faster.)

• When specifying the file to be printed or the ;OUT= file, you can specify not just a filename,
but an entire file equation (except for the word ":FILE") — you can even use the special
extensions described under VEFOPEN in Appendix). Thus you can say

%PRINT MYFILE;OUT=(LP;DEV=LP,5,2;ENV=MYENV.HPENV.SYS)

or

%PRINT (XFILE,OLD;EXC);SEARCH=...

Note that the "filename" MUST be enclosed within parenthesis. This indicates to MPEX
that the keywords that follow (;DEV, ;REC, etc.) are for the :FILE to be processed or used
as output and not as parameters to the command itself.

This essentially saves you from having to set (and :RESET) a special file equation; however,
it is especially useful with our STDLIST function (see Appendix B). A quick example:

%PRINT (![STDLIST('RUN MYPROG')]); &
 SEARCH="ERROR"; CONTEXT=,2; &
 FORMAT=STRCHANGE(R,"ERROR","*****ERROR***** ")

This runs the program MYPROG and passes its output to the %PRINT command, which prints
all of the lines that contain the string "ERROR" (+ the 2 following lines), changing "ERROR"
to "*****ERROR***** " for emphasis!

• When you're outputting to the terminal, the display will pause every 23 (or however many
you specify) lines — when you press [RETURN], it will resume printing.

• You may (by specifying the ;NUM keyword) see the line number of each line output — this
is either the absolute record number or, if the file is numbered, the true line number from
the file.

• You can indicate (with ;START= and ;END=) which records of the file you want to output.

For instance, if you say

%PRINT MYFILE; START=-8; NUM

it will display — with line numbers — the last 8 lines of the file:

 99 PROC (CAPS)
 100 ELSE IF MINUS'CAPS <> 0D THEN
 101.1 PROC (DNOT (MINUS'CAPS))
 101.5 ELSE
 102 PROC (-1D);
 110 END;
 111 END;
 113 END.

MPEX COMMAND REFERENCE: %PRINT

212

If you had said

%PRINT MYFILE; START=10; END=60; NUM

it would have displayed the 10th through the 60th line of the file; however, since this would
fill up more than one terminal screen, it would pause every 23rd line and say, for example:

 31 "or all - capabilities" TO'TERMINAL
 32 ELSE IF CAPS <> 0D THEN
 (33/97) Continue (Yes/No/Quit/Dontask)?

At this point, you could:

• Press [RETURN] or type Y (for "Yes") to see the next 23 lines.

• Type N (for "No") to stop printing this file.

• Enter a positive integer (e.g. 50) to continue printing the file starting with record number
50 (counting from 1).

• Enter an integer prefixed by a + (e.g. +5) to continue printing the file starting with record
number 38 (=33+5, where 33 is the number printed before the "/" in the "Continue?"
line).

• Enter an integer prefixed by a - (e.g. -10) to continue printing the file starting with record
number 23 (=33-10, where 33 is the number printed before the "/" in the "Continue?"
line).

• Press Q (for "Quit") to stop printing all files in the current fileset.

• Press D (for "Dontask") to print the rest of this file and all of the files in the current fileset,
without stopping for a "Continue?" prompt again.

(The first number in the parentheses — 33 — is the current record number; the second
number — 97 — is the total number of records in the file.)

%PRINT keywords
• ;BUF — used to avoid stack overflow errors. By default, the %PRINT command reads files

NOBUF, which makes fileset searches more efficient.

Unfortunately, it also uses more stack space; it is possible (though unlikely) that if your
;SEARCH=...and ;PREV=... selection conditions are complicated enough, you will get a
stack overflow.

If this happens, just specify ";BUF" on your %PRINT command, e.g.

%PRINT @.SOURCE;SEARCH=...;BUF

This will tell MPEX to do buffered reads, which will use less stack space but will also be
slower.

• ;COPY[ACCESS] — uses non-destructive reads for message files. MPEX's %PRINT
command uses ordinary intrinsics to read a file. In the case of a message file, records that
have been read from the file are deleted — nothing special, this is exactly what is supposed
to happen when reading a message file. However, when you are searching a fileset that
contains a message file, reading (and therefore emptying) a message file may have
disastrous side effects on your production environment. Another side effect of reading a

MPEX COMMAND REFERENCE: %PRINT

213

message file is that if the file is empty to begin with, the read will wait or "hang" until
someone actually WRITES to the file. When this happens, MPEX appears to "hang" and you
have to press [BREAK] and type :ABORT to exit the program.

When you use ;COPYACCESS (which may be abbreviated to just ;COPY), MPEX will use a
special mode when reading message files that preserves the contents of the file and will not
"hang" if the file is empty.

• ;FORMAT= lets you tell %PRINT not to output the actual record from the file, but rather to
output some function of the record. Here are some examples and their explanations:

%PRINT...;FORMAT=R[0:10]

Displays just the first 10 characters of each record.

%PRINT...;FORMAT=STRWRITE(R:'GARBAGE')

replaces unprintable characters with a ".".

%PRINT...;FORMAT=TOKEN(REMTOKEN(R,'AN'),'AN')

displays just the second "token" of each record (see the discussion of TOKEN and REMTOKEN
in Appendix B for more details).

The ;FORMAT= parameter can be any expression whose result is a string.

• ;HIGHLIGHT will display "-----Printing: filename" in inverse video. This is most
useful when printing a fileset using ";SEARCH=" and displaying only a few lines from each
file. When ;HIGHLIGHT is specified on the print command, the filename will be printed in
inverse video (if you are using an HP terminal or emulator). This makes it easy to
distinguish the filename from the text of each file being printed.

• ;KEEPAMDATES — indicates that the files' last Access and Modification dates should not be
changed as the files are printed or searched; this is really useful if you want to print or
search a whole fileset but still want all those files to be eligible for archival if they haven't
been accessed in a long time.

If you say :SETJCW MPEXPRINTKEEPAMDATES=1 in your MPEXMGR.PUB.VESOFT file, the
;KEEPAMDATES keyword will always be in effect for the %PRINT command. (see also the
discussion on MPEXDEFAULTxxx variables).

• ;NOFILEPAGEBREAK — tells MPEX not to do a page break after each file it prints. This is
useful if you're doing a %PRINT...;SEARCH=... and are therefore printing only one or two
lines from each file; you don't want to have a page break every one or two lines.

• ;NONUMRECOGNIZE — indicates that %PRINT should print the full text of the file despite the
fact that the last 8 characters of the first line are digits. If you don't specify this keyword,
%PRINT will think that the file is a numbered file, and treat the last 8 digits as the line
number; this is usually the right thing to do, but for files that contain actual numeric data
in the last 8 columns, ;NONUMRECOGNIZE is the way to go.

• ;UNN — indicates that output should not contain record numbers (whether or not the file
has internal line numbers). This is ordinarily the default, but if you have set a
VESOFTDEFAULTPRINT variable with ";NUM", then this will override the variable for this
command only.

MPEX COMMAND REFERENCE: %PRINT

214

• ;NUM — indicates that output should contain either line numbers (if the file is numbered)
or record numbers (if the file is unnumbered). This is most useful when printing source
files that are kept numbered (such as EDTCT files). See the section on ;SEARCH= for
another useful facet of this keyword.

• ;OLD means "process permanent files only."
;OLDTEMP means "process temporary files only."
;OLDANY means "for each file in the fileset, first look for the file as a temporary file and
then, if none exists, as a permanent file".

What is the default? Well, if you specify a single file (i.e. a filename with no wildcards, no
indirect file, no + or -, and no selection condition), the default is ;OLDANY (first TEMP, the
PERM); if you specify a fileset, the default is ;OLD (PERM files only).

Note:

For compatibility with MPE/iX's :PRINT command, if you type "%:PRINT filename" or
"%PRINT filename", MPEX will look first for a temporary file and then, only if it doesn't
find one, a permanent file. However, a %PRINT fileset command will NOT print any
temporary files because this is a fileset-handling command and we don't want to surprise
you by printing a whole bunch of permanent files and one temporary file that happens to
have the same name as a permanent file.

• ;OUT=filename — indicates that output is to go to the specified file, such as the line
printer; for example, to output to the line printer, you might do a ":FILE LP;DEV=LP" and
then a "%PRINT fileset;OUT=*LP".

(Naturally, if this option is selected, you won't be prompted with "(xx/yy) Continue?"
every so many lines.)

• ;OUT=(file-eq-parms) — indicates that output is to go to the file or device specified in
the file-eq-parms without using a :FILE equation. For example, %PRINT
fileset;OUT=(LP;DEV=LP) will perform the same print as above (sending the output to
the printer) without actually setting a file equation.

• ;PAGE=pagesize — indicates how many lines to print before prompting with
"Continue (Yes/No/Quit/Dontask)?".

The default is 23 when outputting to the terminal, 60 when outputting to the printer (no
prompt in this case).

• ;PAGEHEAD — indicates that page headers (including the name of the file, the date and
time, and the page number) are to be output to the ;OUT= file. Useful when the ;OUT= file
is the line printer. If you use this option to print to the line printer, you should specify
;CCTL on your file equation for your ;OUT= file (:FILE LP;DEV=LP;CCTL).

Default is that no page headers are to be output — this is for compatibility with MPE/iX,
although it's admittedly not very nice.

• ;SEARCH=searchstring — restricts output to only those lines containing the search
string (or search expression). This is perhaps the most powerful aspect of the print
command and is documented in greater detail below.

The following %PRINT keywords are useful only when ;SEARCH= has been specified:

o ;ALLFILENAMES — display all filenames as files are searched. Ordinarily, when using
;SEARCH=, MPEX will not display the name of each file being searched unless the file
contains the search string.

MPEX COMMAND REFERENCE: %PRINT

215

Specifying ;ALLFILENAMES causes MPEX to print each file as it is searched, regardless
of whether or not the file contains the search string. This is useful if you want to watch
the progress of the command on a very large fileset when only a few files contains the
search string.

o ;PREV=prevsearchstring — searches backwards for a previous occurrence of a
different search string.

Let's say that you want to look through your programs for all occurrences of a particular
variable. Chances are that you don't just want to see the lines that mention the variable
but that you also want to know in which procedure or function (in PASCAL terminology)
the variable is referenced.

For example, to see both the line that contains the word "CUSTNUM" and the last prior
occurrence of the line that contains "PROCEDURE" or "FUNCTION", the following
command will do exactly that:

%PRINT @.SOURCE;SEARCH="CUSTNUM";PREV="PROCEDURE" or "FUNCTION";NUM
-----Printing MYPROG.SOURCE
 11.5 PROCEDURE ERRORPROC (VAR F: INTEGER;
 15 WRITELN (CUSTNUM:10, ' NOT FOUND!');
 922 FUNCTION COPYREC (VAR FILE: TSTRING): BOOLEAN;
 939 IF CUSTNUM<>'XXX' THEN
 992.44 CUSTNUM:='';
 ...

As MPEX reads each record from the SOURCE group files, it checks if the record contains
PROCEDURE or FUNCTION; if it does, MPEX doesn't print the record but rather saves it
away. Then, when MPEX actually finds a record that refers to CUSTNUM, it prints both
the saved PROCEDURE/FUNCTION record and the CUSTNUM record.

o ";CONTEXT=[startrec|startstring],[endrec|endstring]" displays the line
being searched for and the lines surrounding the search string. For example:

%PRINT MYFILE;SEARCH="CUSTNO" or "CUSTNUM";CONTEXT=-1,+2

will print 1 line before and 2 lines after each line that contains "CUSTNO" or "CUSTNUM".

But wait — there's more! What if you don't want to show a fixed number of lines before
or after, but show the entire logical unit that contains the line found by ;SEARCH=, no
matter how large it is? Here's an example of how you might do this:

%PRINT MYFILE;SEARCH="CUSTNO" or "CUSTNUM";&
CONTEXT=("PROCEDURE" or "FUNCTION"), (R[0:3]="END")

Here, MPEX will find all the lines containing the string "CUSTNO" or "CUSTNUM", and then
print all the lines from the immediately preceding line that contains "PROCEDURE" or
"FUNCTION" and until the immediately following line that contains "END" as its first three
characters. This is, of course, appropriate for PASCAL programs; however, other
languages and files will have similar ;CONTEXT= strings. For instance, to display all the
UDCs in a particular file that :RUN a particular program, you can say

%PRINT UDC1;SEARCH="RUN PRG";CONTEXT=(R[0:1]="*"),(R[0:1]="*")

MPEX COMMAND REFERENCE: %PRINT

216

The ;CONTEXT= in this example indicates that all lines surrounding the RUN command,
from the preceding line with an "*" in column 1 to the following line with an "*" in
column 1 are to be printed.

The general syntax of the ;CONTEXT= keyword is thus:

;CONTEXT=[-numlines1],[+numlines2]
 [exp1] ,[exp2]

The number or expression before the comma indicates which lines before the line
containing the found string are printed; the number or expression after the comma
indicates which lines after that line are printed.

As you may have noticed, we've used both strings (e.g. ;CONTEXT="PROCEDURE") and
logical expressions (e.g. ;CONTEXT=(R[0:1]="*")) in our examples. This corresponds
to the way ;SEARCH=...and ;PREV= work — they can take either strings (which mean
"search for this string") or expressions (which mean "search for lines for which this
expression is true"). A string in a ;CONTEXT= indicates "print lines up to and including
the one that contains this string"; an expression indicates "print lines up to and including
the one for which this expression is true".

o ";MAX=numlines" — indicates the maximum number of lines to search and print. This
is also used to optimize the FSEARCHEXP(...) function when searching for a string in a
fileset. Ordinarily, the FSEARCHEXP(...) and similar functions read the ENTIRE file
looking for the string specified. On especially large files, this can take quite some time,
but if all you are interested in is whether or not the file contains the string at all,
stopping the search after you have found the first occurrence will save the time it takes
to search the rest of the file.

For instance, if you wanted to %COPY all of the files that contain a reference to a
particular file (perhaps in preparation for changing the structure of that file), the
following command could be used:

%COPY @.FROZEN(FSEARCHEXP("'CUSTFILE';MAX=1")>0),=.WORKING

If you use ;MAX=numlines with ;CONTEXT=range, the %PRINT command will display
the entire range for each occurrence of the ;SEARCH= string.

• ";START=startrecnum" — indicates the starting record number for the output. Positive
numbers indicate record numbers from the start of the file (1 being the first record);
negative numbers indicate record numbers from the end of the file (-1 being the last).

Default is 1 (the first record).

• ";END=endrecnum" — indicates the ending record number for the output. Positive means
from start of file (1 = first record); negative means from end of file (-1 = last record).

Default is -1 (the last record).

• ";WAIT=[numseconds]" — indicates that the file may be open for output by another
process and that MPEX should "wait" when reaching the end of file or more data to be
produced. If a number is specified, then MPEX will pause for the number of seconds
specified. After this delay, MPEX will check to see if any additional data has been written
to the file, and if so, continue printing until the end of the page or until all of the new data

MPEX COMMAND REFERENCE: %PRINT

217

has been printed. This is primarily useful when using the %PRINTO command to watch the
progress of a job stream.

If the number of seconds specified is positive, MPEX will "beep" the terminal prior to
resuming its printing. If the number is negative, MPEX will remain silent when displaying
any new data.

The default is -5 (a five second delay without beeps).

One thing to be aware of is that when using ;WAIT=, the default pagesize (;PAGE=) will be
set to 0 and the output of the print command will continue until the current EOF is
reached.

Searching for strings (;SEARCH=)
The MPEX %PRINT command can not only print entire filesets, but can also search an entire
fileset for a string. For instance, you can say

%PRINT AP@.SOURCE;SEARCH="CUSTNUM";NUM

and MPEX will print for you (with line numbers, as per ;NUM) all the lines that contain
"CUSTNUM" in all the files in AP@.SOURCE. This can be quite handy in many ways — whenever
you want to find all occurrences of a variable in a fileset of sources, of a filename in a set of
job streams, of a word or phrase in a set of documents, and so on.

But wait — there's more! You can not only search for a single string but for MULTIPLE strings.
For instance, if you say

%PRINT @.SOURCE;SEARCH="PROCEDURE" or "FUNCTION";NUM

MPEX will print for you all the lines that contain either the string "PROCEDURE" or the string
"FUNCTION" (thus giving you an index of all the procedures or functions in your PASCAL
programs). Similarly, you can say

%PRINT @.SOURCE;SEARCH="CUSTNUM" or "COMPNAME" or "DEFAULT";NUM

to print all lines that contain one of three strings, and so on.

Just like you can use OR to find all lines that contain one string OR another, you can use AND
to find all lines that contain both strings:

%PRINT @.SOURCE;SEARCH="PROCEDURE" and "FNAME"

will find you all the lines that contain both the strings "PROCEDURE" and "FNAME" in the same
line. Similarly, you can say

%PRINT @.JOB;SEARCH="!JOB" and NOT "MANAGER.SYS"

to find all the lines that contain "!JOB" but not "MANAGER.SYS".

Sometimes you want to search for a string regardless of whether it appears in UPPERCASE or
lowercase. The CASELESS SEARCHING feature permits this. If you say

%PRINT @.DOC;SEARCH=CASELESS "INVOICING"

MPEX COMMAND REFERENCE: %PRINT

218

MPEX will find all occurrences of "INVOICING", "invoicing", "Invoicing" or any other
UPPERCASE/lowercase combination. CASELESS can be abbreviated CL, e.g.

%PRINT @.DOC;SEARCH=CL "INVOICING" and "NO"

which finds all lines that contain "INVOICING" in either UPPERCASE or lowercase and at the
same time contain "NO" in UPPERCASE. Note that the CL applies only to the string that
immediately follows it (in this case "INVOICING") — "NO" will be matched only in
UPPERCASE.

Say that you try searching for the string "WARD". If you just do a

%PRINT D@.DEV;SEARCH="WARD"

then you'll also find the strings "WARDEN", "FORWARD", "AWARDED", and so on. What if you just
want to see occurrences of the string "WARD" when it occurs as a separate word, i.e. delimited
by special characters?

You can do this by using the DELIM keyword (which can be abbreviated to just a D):

%PRINT D@.DEV;SEARCH=DELIM "WARD" or
%PRINT D@.DEV;SEARCH=D "WARD"

This will find all the lines which contain the string "WARD" when the characters immediately
before it and after it are non-alphanumeric characters.

What if you want to find all occurrences of a string delimited on one side by a special
character? For instance, you might want to find all lines containing the string DB preceded (but
not necessarily followed by) a delimiter – this might match all your database-related variables
(i.e. DBTHISVAR, DBTHATVAR, and DB_THE_OTHER_VAR, but not BLOODBANK_VAR); you can
do this by saying

%PRINT @.SOURCE;SEARCH=LDELIM "DB"

— the LDELIM means "delimited on the left"; similarly, RDELIM means "delimited on the right".

This can be especially useful for looking for all occurrences of a particular variable name in a
source file (or a fileset of source files). However, since most languages allow at least one
special character as part of a variable name ("_" in PASCAL or C, "-" in COBOL), you want to
search for all occurrences of a string delimited by characters that are neither alphanumeric nor
allowable in variable names.

To do this, we let you set a variable called MPEXPRINTNONDELIMS. If, for instance, you use
COBOL, you can do a

%SETVAR MPEXPRINTNONDELIMS "-"

to tell MPEX that all %PRINT...;SEARCH=...DELIM (and LDELIM and RDELIM) operations are to
consider "-"s as "non-delimiter" characters. The %SETVAR (like all %SETVARs) remains in effect
for the remainder of your session (or until you do a %DELETEVAR MPEXPRINTNONDELIMS). If
you want the non-delimiter characters to be always set to a particular value, you should put
the SETVAR command into your MPEXMGR, MPEXMGR.PUB or MPEXMGR.PUB.VESOFT file

MPEX COMMAND REFERENCE: %PRINT

219

(documented elsewhere in this manual). You can specify more than one character in
MPEXPRINTNONDELIMS — all the characters you specify will be viewed as non-delimiters.

Of course, you can combine DELIM (or LDELIM or RDELIM) and CASELESS to search for
delimited strings ignoring case:

%PRINT AP@.SOURCE;SEARCH=DELIM CASELESS "FNUM" or
%PRINT AP@.SOURCE;SEARCH=D CL "FNUM"

The entire ;SEARCH=...parameter is really just a logical expression (much like the logical
expressions you can use in :IF, :WHILE, fileset selection conditions, etc.). One difference is,
of course, that strings can be used in place of booleans — you normally wouldn't be able to say
"FOO" AND "BAR", but you can do this in the ;SEARCH=...parameter.

However, you can actually specify an arbitrary logical expression as the ;SEARCH=...
parameter. This is especially useful because the current record being processed is available to
you as a variable called "R". Thus, you can, for instance, say

%PRINT @.DATA;SEARCH=(STR(R,10,5)="XYZZY");NUM

which will output all the records that contain the string "XYZZY" in characters 10 through 14 of
string R. Similarly, you can say

%PRINT @.DATA;SEARCH=R MATCHES "@XY?#@";NUM

which will find all occurrences of the pattern "XY?#" in the DATA files. The @ characters at the
start and end of the string indicate that the pattern can be found anywhere in the string.

Just saying

%PRINT @.DATA;SEARCH=R MATCHES "FOO@";NUM

will find all the lines that start with FOO;

%PRINT @.DATA;SEARCH=R MATCHES "@BAR";NUM

will find all the lines that end with BAR.

Do you want to get really fancy? Try saying:

%PRINT @.DATA;SEARCH=VALIDINTEGER(STRRTRIM(STR(R,20,5)));NUM

This will find all the lines in all the files in the DATA group that have a valid integer in columns
20 through 24.

In addition to the variable R (the contents of the current record), the ;SEARCH=...(or ;PREV=)
parameter can also refer to the variable RECNUM (record number) or LINENUM (line number).
RECNUM refers to the record number of the current record in the file, starting with 1. Thus,

%PRINT MYFILE;SEARCH=(RECNUM MOD 2)=0

will output every other record in the file. (This can be particularly useful for reformatting
files, especially if you use the ;OUT= parameter to send the output to another file.)

MPEX COMMAND REFERENCE: %PRINT

220

LINENUM refers to the line number of the current record in the file. If the file is unnumbered,
LINENUM is set to -1; if the file is numbered, LINENUM is set to the EDITOR line number
MULTIPLIED BY 1000 — thus EDITOR line 1.5 has LINENUM = 1500.

You can use LINENUM to select a range of file records, not by record number (as ;START= and
;END= do) but by line number. Thus,

%PRINT AP@.SOURCE;SEARCH=BETWEEN(LINENUM,1000,9900)

will print lines 1.0 through 9.9 of all the files in AP@.SOURCE. Of course, you can do some
even trickier things, for instance

%PRINT AP@.SOURCE;SEARCH=(LINENUM MOD 1000)<>0

which will find you all the non-integer line numbers in AP@.SOURCE. (Perhaps this might give
you a good idea of changes that were made since the last renumbering.)

Why do we set LINENUM to an integer value (e.g. 1500 or 33250) instead of a real number
(e.g. 1.5 or 33.25)? We would have liked to use real numbers, but unfortunately the HP3000's
single-precision real numbers are not precise enough to correctly represent an 8-digit value;
for large line numbers the error would be substantial enough to cause some serious problems.

If you're interested, the %PRINT command sets a variable called MPEXPRINTLINESFOUND to
the number of lines that actually contain the given search string. (If no ;SEARCH=...parameter
is specified, MPEXPRINTLINESFOUND is set to the total number of lines in the files printed.)

A few final notes on using ;SEARCH=...on the %PRINT command:

• When you use ;SEARCH=, CONTEXT=, and ;NUM, the lines that actually contain the string
being searched for are marked with a "*" between the line number and the text; any lines
shown as a result of a ;PREV= are marked with a "-".

• If you omit the part of the ;CONTEXT= parameter that comes before a comma, no lines
before the one found are printed; if you omit the part that comes after the comma, no lines
after the one found are printed.

• When you specify the "before" part of the ;CONTEXT=, %PRINT has to read backwards from
the point where it finds a line that matches the ;SEARCH=. This is rather fast for fixed-
record-length files, but much slower for variable-record-length and QEDIT files — keep this
in mind.

String searches in fileset selections
You can use all the power of string searching in fileset selection conditions (using FSEARCHEXP
or FSEARCHSTRING, which work like %PRINT...;SEARCH=...) — for instance,

%COBOL @.SOURCE(FSEARCHEXP("'CUSTNO' or 'CUSTNAME'")>0), =.PUB

will recompile all your SOURCE files that mention the variables CUSTNO or CUSTNAME! See the
documentation on the file attribute functions FSEARCHEXP and FSEARCHSTRING in the MPEX
Filesets chapter.

MPEX COMMAND REFERENCE: %PRINTI, %PRINTO

221

%PRINTI, %PRINTO
Syntax: %PRINTI [#Ispoolfilenumber] [;mpexprintparms]

 [#Jjobnumber]
 [jobname]
 [#Aschedjobnumber]

%PRINTO [{#Ospoolfilenumber|#Jjobnumber|jobname}]
 [;mpexprintparms]
 [;IFLOW]
 [;SEARCH={IFTRUE|IFFALSE}]

Examples: %PRINTI #J1234; SEARCH=":"
%PRINTO MYJOB,MYUSER.MYACCT; PAGE=9999; NUM
%PRINTO #O1234; SEARCH="CIERR" or "FSERR"; CONTEXT=-2
%PRINTO ;WAIT;IFLOW

The %PRINTI and %PRINTO commands print, respectively, input and output spoolfiles; you
may, optionally specify any of the parameters of the %PRINT command (see above).

If you specify a spoolfile number ("#I1234" for %PRINTI, "#O1234" for %PRINTO), the given
spoolfile will be printed.

If you specify a job number or job name, MPEX will find and print the $STDIN (for %PRINTI)
or $STDLIST (for %PRINTO) spool file of the given job.

If you don't specify either a job number, job name or spoolfile number, the $STDIN or
$STDLIST spoolfile of the last job submitted by MPEX (via %$command, %SUBMIT or
%SCHEDULE) or by STREAMX (see the SECURITY User Manual) or by VEAUDIT will be
printed.

%PRINTI also works on all input spool files (which, however, exist only for currently running
jobs, waiting jobs, and scheduled jobs, not jobs that have already run), but requires SM
capability.

Using ;WAIT, ;IFLOW, & ;SEARCH=... to view $STDLISTS
On MPE/iX, %PRINTO works on all output spool files, including ones currently being generated
by a running job. There are a few %PRINT keywords that are especially well suited for printing
$STDLIST files. The ;WAIT= keyword has already been documented under the %PRINT
command since it will work for any output file, not just $STDLISTs.

When you supply the ;IFLOW keyword, %PRINTO will display the FALSE portions of
:IF/:ELSE/:ENDIF blocks in low intensity. This makes it easier to scan the output of a
$STDLIST file since you can tell at a glance that a particular statement was or was not
executed without having to look back (perhaps several screens) for the "*** CONDITION
FALSE, COMMANDS IGNORED..." message buried in the $STDLIST.

The ;SEARCH= attribute IFTRUE takes the above concept a step further and allows you to filter
out the false portion of a job stream entirely. Or, if you prefer, you can use
;SEARCH=IFFALSE to just view the parts of a job that were not executed. In either case, if

MPEX COMMAND REFERENCE: %PROGINFO

222

something appears in the listing that should not have, then it is a simple matter to look back at
the preceding condition to determine why it was not evaluated correctly.

%PROGINFO
Syntax: %PROGINFO progname

Examples: %PROGINFO DBUTIL.PUB.SYS

Note: %PROGINFO only works on Compatibility Mode (CM) programs.

Ever want to find out some detail about a program file? Well, here's a command that will
display a great deal of information about a compatibility mode program.

For example, %PROGINFO QUERY.PUB.VESOFT might show the following:

FILE: QUERY.PUB.VESOFT CAPS : BA IA MR MAXDATA: 32767
DL : 0 STACK : 1200 DBSIZE : 12830
DB AREA RECNUM: 1 EXTERNALS RECNUM: 862 ENTRY RECNUM: 872
FPMAP RECNUM: 873
CREATED 91/03/25, 2:21 PM LAST ACCESSED 91/06/28, 10:05 AM
SEG LEN REC# SEG LEN REC# SEG LEN REC# SEG LEN REC#
 0 2260 102 1 2176 120 2 7516 137 3 6396 196
 4 7544 246 5 2072 305 6 8456 322 7 8124 389
 ...

ENTRIES: QUERY'C'00'00(main) BUGS SEARCH
EXTERNALS: ASCII BIMAGEVERSION BINARY CALENDAR CATCLOSE CATOPEN CATREAD
 CAUSEBREAK CLOCK COMMAND COMPLIBINFO DASCII DBBEGIN DBCLOSE
 DBCONTROL DBDELETE DBEND DBERROR DBFIND DBGET DBINARY DBINFO DBLOCK
 DBMEMO DBPUT DBUNLOCK DBUPDATE DEBUG DFLOAT' DIVD DLSIZE EXTIN'
 ...
 SORTOUTPUT SORTTITLE TERMINATE TERMINATE' UNLOADPROC VEOPEN WHO
 XARITRAP XCONTRAP ZSIZE

As you can see, this copy of QUERY doesn't call DBOPEN! Instead, it calls VEOPEN, VESOFT's
improved version of DBOPEN (see the section Database Security in the SECURITY User Manual
for details).

%PURGE
Syntax: %PURGE fileset [,TEMP]

 [;YES]

Examples: %PURGE K#######.@.@+LOG####.PUB.SYS
%PURGE @,TEMP;YES
%PURGE @.@.@ - @.@.VESOFT(ACCDATE<TODAY-120 and NOT ISPRIV)
%PURGE / - /VESOFT/ (ACCDATE<TODAY-120 and NOT ISPRIV)

MPEX COMMAND REFERENCE: %PURGE

223

The %PURGE command lets you — you guessed it — purge entire filesets, saving a lot of disk
space in the process. For instance,

%PURGE K#######.@.@+LOG####.PUB.SYS

will purge all your EDITOR K-files and your system log files;

%PURGE @.@.@ - @.@.VESOFT(ACCDATE<TODAY-120 and NOT ISPRIV)
%PURGE / - /VESOFT/ (ACCDATE<TODAY-120 and NOT ISPRIV)

will purge all the files in the system that haven't been accessed in 120 days except for
databases or other PRIV files (You might do an %MPEXSTORE first to :STORE them to tape and
then do the %PURGE.)

The ,TEMP option allows you to %PURGE temporary filesets (just like MPE's :PURGE,TEMP
allows you to :PURGE single temporary files)!

Another application for %PURGE is purging all of the files in an account:

• without locking up the directory (which the :PURGEACCT does, sometimes for minutes,
while it purges all the files);

• without destroying the users and groups within the account.

If you want to save space by deleting an account (e.g. the contributed library, TELESUP, etc.),
you can :STORE all the files and then do a

%PURGE @.@.TELESUP

This will delete the files but leave the accounting structure intact — whenever you want to
:RESTORE any files into the account, you won't have to worry about specifying the ;CREATE
keyword or making sure all the groups have the right capabilities and access masks, etc.

Also note that the %PURGE command allows a system manager, an account manager (in his
own account) or a database's creator to %PURGE a database just like he would a normal fileset.

Automatic verification to avoid mistakes
A natural concern that most people have is: what if I accidentally mess up? You meant to say
%PURGE @.@.@-@.@.VESOFT(ACCDATE<TODAY-120), but instead you typed:

%PURGE @.@.@ - @.@.VESOFT (ACCDATE>TODAY-120)

Wow! Now that wouldn't be very nice.

As the old saying goes, "to err is human, but to really foul things up, you need a computer".
Just as the power of MPEX can make it very easy to do things that you want to do, it can make
it very easy to accidentally do things that you don't really want to do.

Fortunately, MPEX has some very important fail-safes that can vastly decrease your chances of
error. The most important one is that:

• Before doing ANY real %PURGEs, MPEX will first show you the names of all the files
that are to be purged.

MPEX COMMAND REFERENCE: %PURGE

224

For instance, let's say you type:

%PURGE SA@.SOURCE

The output you get might look like this:

-----Will purge SAMSFILE.SOURCE.AP (code "EDTCT", type FA, 1333 sectors)
-----Will purge SAR010X.SOURCE.AP (code "EDTCT", type FA, 4001 sectors)
-----Will purge SATURDAY.SOURCE.AP (code "", type FB, 128 sectors)
-----Will purge SAZ999.SOURCE.AP (code "", type VAM, 22 sectors)
5484 sectors will be saved
OK to purge 4 files (y/n)?

So far, none of the files have actually been touched. If you say "N" (or press [RETURN]), MPEX
will say

Error: Operation aborted by user request.

and the files will remain intact.

If, however, you answer "Y" to the "OK to purge?", MPEX will actually purge the files:

-----Purging SAMSFILE.SOURCE.AP (1333 sectors)
-----Purging SAR010X.SOURCE.AP (4001 sectors)
-----Purging SATURDAY.SOURCE.AP (128 sectors)
-----Purging SAZ999.SOURCE.AP (22 sectors)
5484 sectors saved

This way, if you inadvertently specify the wrong fileset, you'll get to see all the files that are to
be purged before they're actually touched. Then, if you see your production database come up
on the list, you'll know that something's wrong...

Note that when MPEX shows you the "-----Will purge ..." information, it not only shows
you the filename, but also the filecode, the record type (which is the same as the "TYP" column
in a :LISTF...,2 listing — FA, for instance, means Fixed Ascii), the file size in sectors, and the
number of records in the file (not shown in the above example). This gives you an additional
chance to make sure that the files being purged are actually the ones you want to purge.

A few other alternatives exist if you want to be really secure about all this. For instance, you
can add to your MPEXMGR.PUB.VESOFT file (which is automatically executed whenever
anyone enters MPEX) the commands:

%SET CAPABILITY,PURGE,AM
%SET DEFAULT,PURGE,?

• The first command (%SET CAPABILITY) indicates that the %PURGE command can only be
used by people with AM capability working inside their own accounts (except that SM users
can always use any command).

• The second command says that if a user types "%PURGE" (rather than "%!PURGE" or
"%$PURGE"), he'll be prompted Yes/No for each file in the fileset, as well as once for the
entire fileset.

MPEX COMMAND REFERENCE: %PURGELINK

225

If you're really concerned about accidental damage done with the %PURGE command, you may
use one or both of these commands; however, we believe that the fileset-level YES/NO
verification that the %PURGE command now provides should be more than enough.

If, on the other hand, you do not want to have all this verification — if you want the %PURGE
to be done without prompting — you can add ";YES" to the command.

As an alternative, you can set the JCW MPEXYESPURGE to 1 to cause all %PURGE commands to
act like %PURGE...;YES. We implemented this because a number of users requested it; we do
not recommend that you do this, but if you want to live dangerously, go ahead.

A better alternative is to set the MPEXYESPURGEONE JCW to 1. This means "don't ask yes-or-no
when the %PURGE command specifies a single file rather than a fileset." This is especially useful
when you want to execute an MPE/iX command file and don't want to be prompted every time
it attempts to purge a single file.

Note that if you execute a %PURGE command in batch (by saying %$PURGE..., %SCHEDULE
PURGE... or %SUBMIT PURGE...), the %PURGE command will (naturally) not ask for
verification, since it'll be running in batch where there's nobody to ask.

However, remember that whenever you submit a job via $, %SCHEDULE, or %SUBMIT, MPEX
asks you "OK to stream (y/N)? " — this is your last chance to say "whoops! I didn't really
mean it!".

%PURGELINK
Syntax: %PURGELINK fileset [;YES]

Examples: %PURGELINK MYLINK
%PURGELINK ./LISTS/linkfiles
%PURGELINK ./Testdir/ ;YES

This command lets you PURGE symbolic link files created by the %NEWLINK command, as well
as normal files and directories. Since symbolic link files are a POSIX related feature of the
operating system, this command is only available on machines that support POSIX. (See the
%NEWLINK command for a discussion of LINK files)

Note that like our %PURGE command for filesets, this command prompts for verification before
actually purging the links and other files. If you are certain that the links can be purged
without verification, then you can either use ;YES on the command, or set the variable
VESOFTDEFAULTPURGELINK to ";YES".

It is important to realize that purging the LINK file does not purge the ACTUAL file, merely a
pointer to the file. If you inadvertently purge a link file, the data is still in the original file.

Remember that, like MPE's :PURGELINK, this command purges ordinary MPE and POSIX files
and directories as well as links. To purge only the link files in a fileset, type

%PURGELINK fileset(ISLINK)

MPEX COMMAND REFERENCE: %QEDIT

226

%QEDIT
Syntax: %QEDIT fileset, qeditcommand

Examples: %QEDIT @.SRC, LIST "FCONTROL"
%QEDIT @.SRC, CHANGE "ACCT-NUM", "ACCOUNT-NUM", @

The %QEDIT command lets you execute QEDIT commands on an entire fileset. (QEDIT, a
product of ROBELLE Consulting Ltd., is a powerful text editor that many of our customers —
and we ourselves — use.)

For instance,

%QEDIT @.SRC, LIST "FCONTROL"

will display (to the terminal) all occurrences of the string "FCONTROL" in your SRC group files.

The command

%QEDIT @.SRC, CHANGE "ACCT-NUM", "ACCOUNT-NUM", @

will change all occurrences of "ACCT-NUM" to "ACCOUNT-NUM" in your SRC group files.

How it works
MPEX does slightly different things depending on the type of the file and on the QEDIT
command being executed:

• If the command is a /LIST, MPEX uses QEDIT's "list external file" feature to /LIST the file
without /OPENing it or /TEXTing it. This is quite a bit faster and also doesn't change the
file's last modify date.

• If the command is not a /LIST but the file being processed is a QEDIT file, MPEX will have
QEDIT /OPEN the file and execute the command.

• If the command is not a /LIST and the file being processed is not a QEDIT file, MPEX will
have QEDIT /TEXT the file, execute the command, and /KEEP the file.

One thing you should be warned about is this: if you do a non-/LIST on a non-QEDIT file,
MPEX will always tell QEDIT to do the /TEXT and /KEEP (but we do use QEDIT's "IFDIRTY"
option). This is usually not a problem at all, since a useless /KEEP will just recreate the file.

However, in a few cases, it is possible that the rebuilding of the file by /KEEP might damage
the file structure in some way — for instance, if the file is a KSAM file, a VFORM file or
something like that, you might want to exclude it from the command.

You can easily do this with MPEX filesets:

%QEDIT @.SRC(ISQEDIT or ISASCII),C "ACCT-NUM","ACCOUNT-NUM",@

This will do the /CHANGE on only those files in the SRC group that have code QEDIT or are
ASCII.

MPEX COMMAND REFERENCE: %QUIT

227

%QUIT
Syntax: %QUIT [[CIERR=] errnum]

Examples: %QUIT
End Run

%QUIT 10
Program terminated in an error state. (CIERR 976)

The %QUIT command is a modified version of MPEX's %EXIT command. Unlike %EXIT, %QUIT
always terminates the active MPEX process, without attempting to suspend MPEX inside of the
current father process.

Practically, the only time you need %QUIT is when you're running MPEX from within a process-
handling environment that isn't smart enough to allow you to re-activate suspended son
processes (for example, when running copies of CI.PUB.SYS on an MPE/iX system).

%QUIT checks to see if MPEX has any active son processes (perhaps as a result of using the
%GOON command), and will fail if any active son processes exist. You must either wait for the
active sons to terminate or use the %KILL command to terminate them before %QUIT will
succeed.

%QUIT also accepts an optional CIERR parameter. If a non-zero CIERR parameter is supplied,
MPEX will terminate with the system JCW set to the value FATAL+CIERR. This allows you to
signal to the father process that MPEX has terminated in an error state, and to pass an error
code at the same time.

%REDO, %DO, %LISTREDO
Syntax: %REDO [abscmdnum] [,editstring]

 [-relcmdnum]
 [cmdnum1/cmdnum2]
 [["][@]string["]]

%DO [abscmdnum] [,editstring]
 [-relcmdnum]
 [cmdnum1/cmdnum2]
 [["][@]string["]]

%LISTREDO [abscmdnum1[/abscmdnum2]] [;OUT=outfile]
 [-relcmdnum[/-relcmdnum2]] [;{REL|ABS|UNN}]
 [["][@]string["]]

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

228

Examples: %DO -2
%DO 155/158
%DO "MYUDC A,B"
%REDO 155
%REDO RUN
%REDO @MYFILE
%LISTREDO
%LISTREDO -30/-1

%,155 same as %REDO 155 (, abbreviates %REDO)
%,, same as %LISTREDO (,, abbreviates %LISTREDO)
%,.-6/-1 same as %DO -6/-1 (,. abbreviates %DO)

MPE/iX users might already be familiar with most features of these commands, since they're
patterned on the corresponding MPE/iX commands.

Everybody makes mistakes (even you!). When you mistype an MPEX command, you'd like to
be able to easily correct the typo without having to re-enter the whole thing. Say you entered

%RUN MYPROG;MAXDATA=30000;INFO="MYFILE.DATA.SYS";PARMN=555

You entered PARMN instead of PARM, and MPEX will give you a syntax error message.

Now, you can (just as in MPE) type

%REDO

and the command will appear for you to edit; after you make your modification (presumably
deleting that "N"), you press [RETURN], and MPEX re-executes the modified command.

This is all well and good, but what if the bad command wasn't the last one you typed, but the
second-to-last? You tried running the program, but it didn't exist; then you did a :LISTF to
find out the true program name. Now the RUN command — all 57 characters of it — isn't the
last command any more, but you still want to %REDO it.

MPEX lets you do this. By default, it saves in the command history the last 1000 commands
you typed, and every one of them is available for you to

• Examine with the %LISTREDO command.

• Edit and re-execute via the %REDO command.

• Immediately re-execute (without editing) using the %DO command.

Because of its size, the command history can be used for much more than just correcting typos:

• You can have a sort of "instant function key" — say that you're working on a particular
program and type a long %PREP command; next time you need to do the %PREP, just say

%DO PREP

and that command will be automatically re-executed. You only need to type the command
once.

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

229

• You have a complete log of all MPEX commands typed in this MPEX session (we'll see later
how you can save them permanently so they'll be accessible even after you exit MPEX and
re-enter later). You can see whether you indeed did what you thought you did, whether
the sequence of commands you typed which triggered a particular condition was what you
thought it was, and so on.

• And, of course, you can still use %REDO to correct typos.

Referring to saved commands
In order to %REDO (or %DO) a command, you need to tell MPEX which command is to be
redone. There are several ways of doing this:

• If you simply say

%REDO

MPEX will %REDO the last command you typed

• If you say

%REDO RUN (%REDO followed by a string)

MPEX will %REDO the last command (if any) that starts with the string RUN.

• If you say

%REDO @MYFILE (%REDO @string)

MPEX will %REDO the last command that CONTAINS the string MYFILE.

• If you say

%REDO 177

MPEX will %REDO the command with the ABSOLUTE COMMAND NUMBER 177.

How do you know a command's absolute command number? You might know it from a

%LISTREDO
...
176) PURGE MYFILE
177) PREP MYUSL,MYFILE;CAP=PH,PM,DS;MAXDATA=30000;RL=...
178) RUN MYFILE
...

or, if you've set MPEXPROMPT to include the command number (see below), you'll be able to
see each command number on the screen as the command is entered:

(cmd176) % PURGE MYFILE
-----Purging MYFILE.DEV.VESOFT
(cmd177) % PREP MYUSL,MYFILE;CAP=PH,PM,DS;MAXDATA=30000;...
...
(cmd184) %

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

230

• If you say

%REDO -3

MPEX will redo the 3rd-to-last command you've typed. Your most recently typed command
is referred to as -1, so

%REDO

is really the same as

%REDO -1

• If you say

%REDO 177/180

then MPEX will redo lines 177,178,179 and 180, prompting you for modifications for each
and then re-executing each.

This is most useful on the %DO command (which re-executes a command without prompting
for modifications): say that you've typed a sequence of 6 commands that you want to re-
execute — you can type

%DO -6/-1 << relative or >>
%DO 179/184 << absolute >>

A good example of this is if you enter a multi-line >REPORT statement in QUERY (as we'll
discuss later in the Running MPEX section, under "MPEX HOOK", VESOFT makes the REDO
facility available in QUERY, in EDITOR, etc.) — a single DO command can re-execute the
entire report in one fell swoop.

Editing the command being %REDOne
In addition to letting you redo the last 1000 commands, MPEX makes it easier for you to edit
them.

Instead of just the usual R, I and D editing characters, MPEX also lets you use:

>xxx to append "xxx" to the end of the line.

>DDDDD to delete five characters (one for each D) from the end of the line.

>Rxxxx to replace the last 4 characters (in this case) of the line by "xxxx".

D> to delete until the end of the line.

C/xx/yy
to change all occurrences of "xx" into "yy"; you may use any non-
alphanumeric character like ' or " or / or , as a delimiter.

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

231

For example:

%REDO RUN
RUN myprod;LIB=G;MAXDATA=34000;INFO="TESTING 123"
 D>
RUN myprod;LIB=G;MAXDATA=34000
>;PARM=555X
RUN myprod;LIB=G;MAXDATA=34000;PARM=555X
>D
RUN myprod;LIB=G;MAXDATA=34000;PARM=555
C/34/30/
RUN myprod;LIB=G;MAXDATA=30000;PARM=555

Try it out — it's a good deal more powerful than ordinary :REDO.

Actually, there's an even more powerful editing feature that you can use in :REDO (and also in
EDITOR — see "MPEX HOOK" for more details). It is called VEMODIFY, and it uses the full
power of your HP terminal to allow "full-line" modification. To use it, say

:SETJCW HPREDOVEMODIFY=1

See the VEMODIFY section for information on this. (Or try it — do the :SETJCW, :REDO a
line, and press [Control-Q] to get help.)

Finally, if you know exactly what modifications you need to make, you can specify them on the
%REDO or %DO commands:

%RUN MYFILE;LIB=G;STDIN=XFILE;INFO="BANANA";PRAM=123
Error: Expected one of the MPE :RUN parameters...
%DO ,C/PRAM/PARM/

Since we knew that the error was our "PRAM" typo, we immediately specified "C/PRAM/PARM/"
to change the PRAM into PARM — this modification will be made and the command will be re-
executed without any further prompting.

If you specify this edit string, %DO and %REDO behave identically: both execute the edit, and
neither prompts for any more modifications.

Abbreviations for %REDO, %DO and %LISTREDO
Since %REDO is largely present to save you typing, it would be a shame if you had to say
LISTREDO and REDO all the time — you might end up typing more than if you had just re-
entered the entire command.

This is why we permit you to abbreviate all three commands:

, in place of REDO

,, in place of LISTREDO

,. in place of DO

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

232

Thus, you might say

%,,
1079) FILE COPYLIB=MYCOPY
1080) $COBOL AP010S,AP010P,,,,,MAXDATA=30000
1081) $COBOL XFILE.SOURCE,XPROG.PUB,,,,,CAP=PH,DS;RL=MYRLFILE
...
%,.1079/1081
<< MPEX now re-executes commands 1079 through 1081 >>
FILE COPYLIB=MYCOPY
$COBOL AP010S,AP010P,,,,,MAXDATA=30000
OK to stream (Y/N)? Y
#J123
$COBOL XFILE.SOURCE,XPROG.PUB,,,,,CAP=PH,DS;RL=MYRLFILE
OK to stream (Y/N)? Y
#J124
<< MPEX is done re-executing 1079/1081; it prompts you again >>

%RUN MYFILE.DATA.PROD;LIB=G;INFO="BANANA";PARM=177
PROGRAM FILE NOT FOUND. (CIERR 622)
%LISTF MYFILE.@.PROD,1
...
%,RUN
RUN MYFILE.DATA.PROD;LIB=G;INFO="BANANA";PARM=177
C/DATA/PUB/
RUN MYFILE.PUB.PROD;LIB=G;INFO="BANANA";PARM=177
...

As you see, in place of the LISTREDO, REDO, and DO commands, we used their abbreviations —
in all other respects, the commands worked just as if they'd been fully spelled out.

%LISTREDO parameters
The %LISTREDO command has several parameters that are worth mentioning:

%LISTREDO shows the last 20 commands you've typed.

%LISTREDO 10/50

shows commands #10 through #50 (pausing every 23 lines for
you to press [RETURN]).

%LISTREDO 10 shows commands #10 through the most recent one.

%LISTREDO -25/-10 — you can use relative command numbers, too.

%LISTREDO RUN shows all the commands that start with RUN.

%LISTREDO @MYFILE shows all the commands that contain MYFILE.

%LISTREDO 10/15;ABS shows commands with absolute command numbers (the default).

%LISTREDO 10/15;REL shows commands with relative command numbers.

%LISTREDO 10/15;UNN shows commands without command numbers.

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

233

%LISTREDO;OUT=*LP sends all the output to the given file (*LP).

%LISTREDO 1 shows all the commands saved in the history (not just the last 20).

All of the above options — the command specification (1, 10/15, RUN, etc.), the numbering
scheme (;ABS, ;REL or ;UNN) and the ;OUT= file may be combined any way you like.

Saving your command history as a permanent file
By default, your command history is kept in a program-temporary file. When you leave MPEX,
all the saved commands are forgotten.

However, if you want to, you can save the command history so that even if you :BYE off and
then log on again tomorrow, when you re-enter MPEX all the saved commands will be
available to you.

To do this, just say

:FILE MPEX.REDO.VESOFT=MYREDOFL

MYREDOFL can be any file you want to; the first time you run MPEX with this file equation,
MPEX will build MYREDOFL with all the right parameters. Then, every time you run MPEX
after that (assuming the file equation is still in effect), MPEX will use that file as the "command
history file"; any new commands you enter will be appended to the file.

As you can see, this is geared towards letting everybody have their own REDO files — you
might even have a system logon UDC that includes the command

:FILE MPEX.REDO.VESOFT=MPEXREDO

This way (assuming everybody has his own group), each person will have his own command
history file.

You can't have several people sharing the same command history file — MPEX opens it
exclusively.

Setting MPEX prompt to make %REDOing easier
The one difficulty that you may sometimes face is identifying the command that you want to
%DO or %REDO. There may be several commands that start with the same characters (so just
saying %REDO RUN [or whatever] won't work); you could always do a %LISTREDO and try to
find it there, but that might be more trouble than it's worth.

Many people like to address this by changing the MPEX prompt to include the MPEX variable
HPCMDNUM. HPCMDNUM contains the command number of the current command — exactly the
thing you need to later %REDO it. Thus, you might say

%SETVAR MPEXPROMPT "(!!HPCMDNUM) Yes, boss? "

MPEX will then prompt you with something like

(391) Yes, boss?

MPEX COMMAND REFERENCE: %REDO, %DO, %LISTREDO

234

Now, if you ever want to %REDO or %DO the command that you enter here, you'll know that it is
command number 391. As long as it's still on the screen (or in your terminal memory), the
command number will be right there in front of you.

This is only one of the many nice things you can do with the MPEXPROMPT variable. You
might, for instance, say

%SETVAR MPEXPROMPT "(!!HPCMDNUM !!HPUSER !!HPTIMEF) "

This will make every MPEX prompt show the command number, your logon user name, and
the current time.

:REDO, :DO and :LISTREDO in other programs
As useful as :REDO, :DO and :LISTREDO are in MPEX, they can be even more useful in other
programs, like EDITOR, QUERY, FCOPY, etc. We don't mean just :REDOing MPEX commands
that you've executed from the program, but rather :REDOing the program's own commands.

For instance, you run :FCOPY, type a long FROM=;TO=;... command, and find that you've
made an error — you'd like to use :REDO to redo that FCOPY command. You may type an
eight-line >REPORT command in QUERY, and then find that you need to do another >FIND
and :DO all the commands again.

The "MPEX HOOK" facility allows you to do exactly this, and more:

• It lets you :REDO, :DO and :LISTREDO all commands you type in a particular utility (with
all of the features we talked about above).

• It lets you execute MPEX commands — including the compile commands, %RUN and UDCs
— from within EDITOR, QUERY, etc.

• It lets you (if you have SM) save files in other accounts — /KEEP into other accounts in
EDITOR, copy into other accounts in FCOPY, etc.

%REDO facility options
There are several options you can set for the REDO facility (which apply equally to the REDO
facility available from MPEX HOOKed programs). They are set by defining various specially-
named JCWs and/or variables. These JCWs must be set before issuing a %INITREDO
command or running a HOOKed program within which you wish them to take effect.

:SETJCW MPEXREDOSIZE=200 Sets the number of commands saved in the history
(default 1000).

:SETVAR MPEXREDOSIZE=200 On MPE/iX systems, you should use :SETVAR
instead of :SETJCW.

Note: due to the way MPE/iX handles the
 HPREDOSIZE variable, setting HPREDOSIZE
 outside of MPEX has no effect. Setting
 HPREDOSIZE inside MPEX is translated to
 MPEXREDOSIZE for compatibility.

MPEX COMMAND REFERENCE: %RELEASE

235

:SETJCW HPREDOVEMODIFY=1 Turns on VEMODIFY mode in :REDO
(default 0 = OFF).

:SETJCW VESOFTVEMODIFYBIT8CHECK= (used for terminals that support 8-bit ASCII, such
as a 2392, when using the EXTEND key)

0 if bit 8 is set, discard the character and beep
1 strip bit 8
2 accept full 8-bit characters

:SETJCW VESOFTVEMODIFYEXPANDOK=1 (used on 700/9x terminals and emulators)

This JCW causes MPEX to use escape sequences to
position the cursor which are not dependent upon
the terminal width.

By default, VEMODIFY assumes that your terminal
is 80 columns wide, and uses escape sequences
that won't work correctly if you have a 132
column wide terminal.

VEMODIFY uses much longer escape sequences
when you configure it this way, so we suggest you
only use this mode when connected over a high
speed line.

:SETJCW HPREDODEFLIST=200 Sets the default number of lines listed by a simple
parameter-less %LISTREDO (default 20).

:SETJCW HPREDONODUPS=1 Tells MPEX that if exactly the same command is
entered several times in a row, only one copy of it
will be saved.

Default (0): every command you type will be
saved, even if it's the same as the last one.

Actually, we think that our defaults are pretty reasonable, but we give you these options just
for additional flexibility.

%RELEASE
Syntax: %RELEASE fileset

 [;KEEPAMDATES]

Examples: %RELEASE MYDB+MYDB?#

Warning:

The Programmer General has determined that :RELEASEing files (in MPE or MPEX) can be
dangerous to the health of your system security — see the %SECURE command documentation
for more information.

MPEX COMMAND REFERENCE: %REMOTE HELLO

236

The %RELEASE command is just like MPE's :RELEASE, except that:

• It works on FILESETS.

• It does not require creator access. It can be used by anybody with Read, Write, and eXecute
access to a file (since anyone who has Read/Write/Execute access can already do anything
to the file).

• The ;KEEPAMDATES keyword allows you to release a file (or fileset) without changing that
file's last Access and Modify dates.

Practically speaking, we don't encourage you to :RELEASE any files, much less filesets.

IMAGE databases are an exception — since they're protected by IMAGE security (and can't be
accessed normally because of their "PRIV" filecodes), it's quite safe and often quite necessary
to release them.

You can release a database very easily by saying:

%RELEASE MYDB+MYDB?#

(to :RELEASE the root file and all the datasets).

You can release all the databases in a group by saying:

%RELEASE @.DATA(ISPRIV)

Of course, you can %RELEASE any filesets you'd like — you might say

%RELEASE @.SOURCE(ISASCII)

to release your source files or what have you.

However, we advise you to :RELEASE files as little as possible, since :RELEASEing a file
removes all security restrictions from it, allowing anybody to do anything to the file.

%REMOTE HELLO
Syntax: %REMOTE HELLO remotelogon

Examples: %REMOTE HELLO USER.ACCT;DSLINE=SYSB
%REMOTE:SYSB HELLO USER.ACCT
%DSLINE SYSB
%REMOTE HELLO USER.ACCT

SECURITY's STREAMX and logon menus allow you to avoid having remote passwords
embedded in job streams or menus; SECURITY will automatically prompt the user for the
remote passwords or even insert them without prompting (if you configure the system for
this). Of course, if you choose to have the passwords automatically inserted, you can control
for which users and which job streams/menu files this will be done.

If you use SECURITY, you will also be allowed to do the same inside MPEX command files or
UDCs. If, for instance, you want to have an MPEX command file that logs on to a remote

MPEX COMMAND REFERENCE: %RENAME

237

system, does some work on it, and immediately logs off, you can configure SECURITY to tell
MPEX to insert the appropriate passwords into the REMOTE HELLO command (but only for this
particular command file and only for a particular set of users that you can configure).

For more information on this, see "REMOTE HELLO Processing In LOGON MENUs And In
MPEX" in the "STREAMX And !REMOTE HELLO" chapter of the BATCH ACCESS SECURITY
section of the SECURITY User Manual.

Since this is fundamentally a SECURITY feature (implemented in MPEX only for additional
convenience), it is available only for those MPEX customers who are also licensed to use
SECURITY.

%RENAME
Syntax: %RENAME fromfileset, tofileset

 [;KEEPAMDATES]
 [;CREATE[Q]]
 [;LOCAL[GROUPID]]
 [;DELACD]

Examples: %RENAME MYDB@(ISPRIV), NEWDB@
%RENAME @.UTIL(ISPROG and PROG.PMCAP),@.PRIVUTIL
%RENAME @.OLDGROUP,@/=.NEWGROUP; KEEPAMDATES

%RENAME ./src/project11/@, ./arc/proj11/@ ;CREATE

The %RENAME command is quite similar to MPE's :RENAME, but with the following extensions:

• Of course, it works on filesets, including all the MPEX extensions (+ filesets, - filesets, and
selection criteria).

• It works on IMAGE databases as well as normal files -

%RENAME MYDB@(ISPRIV), NEWDB@

will rename the database MYDB (the root file and all the datasets) into NEWDB. Note the
ISPRIV selection criterion, which ensures that only the database (and no other files that
may start with MYDB) is renamed.

• It does not require the user to be the file's creator. It can be used by anybody with Read,
Write, and eXecute access to a file (since anyone who has Read/Write/Execute access can
already do anything to the file – for instance, copy it and purge the original).

If you have SM capability, this command allows renaming across account boundaries!

• Note that MPEX's %RENAME, just like MPE's :RENAME, does not work on compatibility mode
KSAM files. In fact, if you %RENAME either a KSAM data file or a KSAM key file, your file
will probably become inaccessible until you %RENAME it back to its original name (again,
this is just like MPE's :RENAME).

The only time when %RENAME will work on a KSAM file is if you rename both the data file
and the key file into files with the same names as before but in another group. In this case

MPEX COMMAND REFERENCE: %RENAME

238

(e.g. when you do a %RENAME @.OLDGROUP,@.NEWGROUP), the files will be handled
properly.

MPE/iX's Native Mode KSAM stores both the data and keys in a single file, which can be
%RENAMEd!

• The ;KEEPAMDATES keyword allows you to rename a file (or fileset) without changing that
file's last Access and Modify dates.

• On systems that support POSIX, the ;CREATE keyword will create any directories needed to
build the file. The ;CREATEQ keyword builds the directories without displaying any
messages ("quiet" mode).

For example, to move all of the files in a source directory into an archive directory, building
any necessary subdirectories along the way, you could use the last command in the above
examples.

%RENAME ./source/proj11//@, ./archive/proj11//= ;CREATE

-----Renaming ./source/proj11/main.c => ./archive/proj11/main.c
Directory "/XYZCORP/DEV/archive/proj11" created
-----Renaming ./source/proj11/subs.c => ./archive/proj11/subs.c
...

• Also for POSIX systems, there are additional MPE security restrictions placed on files that
are not in their own "filegroup" (see the %ALTFILE POSIX note regarding file security for
additional details). MPE uses ACDs and group/owner information to implement this
additional security, and MPEX adds the same ACDs when renaming files from one account
to another. MPEX has two options for %RENAME that allow you to %RENAME files from one
account to another and have it actually belong to the new account:

o The ;LOCALGROUPID keyword (which may be abbreviated to just ;LOCAL) tells MPEX to
rewrite the GROUPID and OWNER information so that the file is owned by the account
manager of the target account.

o The ;DELACD keyword removes the additional ACDs that MPE applies when RENAMEing
a file from one account to another. These ACDs enable the original owner or creator to
maintain access to the file as if it were in the original account.

Some useful applications:

• Renaming databases, shown above.

• Moving files that match a particular selection criterion into a particular group. For example

%RENAME @.UTIL(ISPROG and PROG.PMCAP),@.PRIVUTIL

will rename all the privileged program files (PROG.PMCAP) from the UTIL group into the
PRIVUTIL group (which might have more stringent security);

%RENAME @.DEV-S@.@(ACCDATE<TODAY-120),@.ARCHIVE

will move all the DEV files (except for those starting with S) that haven't been accessed in
120 days into the ARCHIVE group.

MPEX COMMAND REFERENCE: %RENAME

239

Lockwords and %RENAME
As we discuss in the MPEX And Your System Security section, MPEX is quite intelligent in its
lockword handling. If you have SM capability (or AM capability and are working on files in
your own account), MPEX will automatically supply the lockword for each file being
processed.

This lets you say something like:

%RENAME @.OLDGROUP,@.NEWGROUP

without having to specify the lockword of every lockworded file in OLDGROUP.

However, if you execute this %RENAME command, what happens to all the lockwords of the
files being renamed? Remember that we must stay compatible with the MPE :RENAME
command.

If you say (in MPE)

:RENAME MYFILE/SECRET.OLDGROUP,MYFILE.NEWGROUP

then MYFILE will be renamed from OLDGROUP into NEWGROUP and its lockword will be
removed. Don't blame us — this is how MPE does it; if the target filename does not include a
lockword, the new file will be unlockworded.

Therefore, if you say

%RENAME @.OLDGROUP, @.NEWGROUP

MPEX will interpret this to mean "rename the OLDGROUP files into NEWGROUP and strip their
lockwords" (just like the MPE :RENAME command).

What if you want to keep the lockwords? No problem! Just say

%RENAME @.OLDGROUP, @/=.NEWGROUP

The "=" in the lockword field means "keep the same lockword as the old file" (see "Target
Filesets" in the MPEX Filesets chapter for more information on "=").

Therefore, when MPEX issues the :RENAME command for each file in @.OLDGROUP it'll be
certain to include the old file's lockword (if any) on the new filename. Instead of saying

:RENAME MYFILE/SECRET.OLDGROUP,MYFILE.NEWGROUP

it'll say

:RENAME MYFILE/SECRET.OLDGROUP,MYFILE/SECRET.NEWGROUP

and all the lockwords will be preserved.

MPEX COMMAND REFERENCE: %REPEAT...%FOREACH

240

%REPEAT...%FOREACH
Syntax: %REPEAT

%>command1
%>command2
 ...
%>command
%>FOREACH varname=value [,...]

Examples: %REPEAT
%>ECHO Creating group and user for !NAME
%>NEWGROUP !NAME
%>NEWUSER !NAME; HOME=!NAME
%FOREACH NAME=BILL,GEORGE,SUE

The %REPEAT...%FOREACH construct performs a sequence of MPEX commands several times
with a given variable (for example, "GROUP") set to each one of a given list of values:

%REPEAT
%> COPY MYFILE, MYFILE.!GROUP
%>FOREACH GROUP=PUB,DATA,JOB,LIB

will do the COPY command four times, setting the variable GROUP to the strings "PUB", "DATA",
"JOB", and "LIB".

The items on the list can be delimited by commas or spaces; if an item has an embedded
comma or space, enclose it in quotes.

%REPEAT...%FORFILES
Syntax: %REPEAT

%>command1
%>command2
 ...
%>command
%>FORFILES fileset[:{SPOOL|TEMP}]

Examples: %REPEAT
%>ECHO -----Processing file !MPEXCURRENTFILE
%>FILE MYFILE=!MPEXCURRENTFILE
%>RUN MYPROG
%>FORFILES @.DATA-T@.DATA(NOT ISPRIV)

The %REPEAT...%FORFILES construct allows you to execute an arbitrary sequence of
commands on a fileset. When you type %REPEAT you will be prompted with "%>".

MPEX COMMAND REFERENCE: %REPEAT...%FORFILES

241

All commands that you type at the "%>" prompts will not be executed as you type them;
instead, they'll be saved up until you type a command such as

%>FORFILES @.DATA-T@.DATA(NOT ISPRIV)

("FORFILES" followed by an MPEX fileset). Then, all the commands you input at the "%>"
prompt will be executed once for each file in the specified MPEX fileset, with the variable
MPEXCURRENTFILE being set in turn to the name of each file.

For instance, MPEX's fileset %PURGE command might very well be implemented as something
like:

%REPEAT
%>:PURGE !MPEXCURRENTFILE
%>FORFILES fileset

For each file in the fileset, MPEX will execute the MPE command ":PURGE !MPEXCURRENTFILE".

If we wanted to do more, we could say

%REPEAT
%>ECHO -----Purging !MPEXCURRENTFILE
%>:PURGE !MPEXCURRENTFILE
%>FORFILES fileset

In reality, many MPEX commands are actually implemented using the %REPEAT...%FORFILES
construct. It is an extremely powerful tool that can let you do absolutely anything you want
(well, almost anything you want) to a fileset.

Accessing file information
As we just mentioned, every time the commands between the %REPEAT and the %FORFILES
are executed, the MPEX variable "MPEXCURRENTFILE" is set to the name of the current file.
(This is the fully-qualified filename, including the lockword [if any], group name, and account
name.)

However, the filename is not the only piece of information available to you about the current
file. In fact, all file attribute variables (see "File attribute variables and functions" in the MPEX
Filesets chapter of this manual) for the current file are available by saying

RFILE.attrvar

For instance,

RFILE.CODE contains the current file's filecode;
RFILE.FLIMIT is set to the current file's file limit.

You can access these variables the same way that you access plain MPEX variables — in :IFs,
in %CALCs, in %SETVARs, and using the "![expression]" variable substitution construct (see
the MPEX variables chapter for more information).

MPEX COMMAND REFERENCE: %REPEAT...%FORFILES

242

For instance, our fileset :PURGE loop might very well look like:

%REPEAT
%>ECHO -----Purging !MPEXCURRENTFILE (![RFILE.SECTORS] sectors)
%>:PURGE !MPEXCURRENTFILE
%>FORFILES fileset

The string "![RFILE.SECTORS]" will be replaced by the value of the file attribute variable
RFILE.SECTORS, which is the number of sectors the current file occupies. You might even say

%SETVAR SECTORSSAVED 0
%REPEAT
%>ECHO -----Purging !MPEXCURRENTFILE (![RFILE.SECTORS] sectors)
%>SETVAR SECTORSSAVED SECTORSSAVED+RFILE.SECTORS
%>:PURGE !MPEXCURRENTFILE
%>FORFILES fileset
%ECHO Total: !SECTORSSAVED sectors saved

This uses RFILE.SECTORS in a %SETVAR statement to calculate the total number of sectors
saved by the %PURGE.

One thing to bear in mind is that the values of these RFILE attribute variables are established
only once. For example, if a file was in use when the fileset was evaluated, then
RFILE.OPENED will be true for that file, even if it has since been closed.

"From" filesets and "To" filesets
What about a command like :FCOPY that handles more than one fileset. The "from-fileset"
would be specified on the %>FORFILES command, and the name of each from-file would be
available as MPEXCURRENTFILE. What about the "to-fileset"?

Well, say that we want to copy all files in the fileset "S@.DATA" into files in the fileset
"B@.BACKUP" (i.e. files with the same name in the BACKUP group, but with the first S replaced
by a B). We'd do it like this:

%REPEAT
%>:FCOPY FROM=!MPEXCURRENTFILE;TO=![OBJECTFILE("B@.BACKUP")];NEW
%>FORFILES S@.DATA

The new thing here is, of course, the

![OBJECTFILE("B@.BACKUP")]

construct. The "![...]" construct tells MPEX to execute the expression between brackets
("OBJECTFILE('B@.BACKUP')") and substitute it into the command.

OBJECTFILE is a VESOFT function, just like MAX, MIN, STR, UPS, etc. (please see Appendix B
for more information on VESOFT expressions, including functions). It takes as a parameter an
"object fileset" and returns the name of a file in that fileset that corresponds to the current file
in the current fileset.

MPEX COMMAND REFERENCE: %REPEAT...%FORFILES

243

In the above example, if

• the current file is SMYPROG.DATA, then

• OBJECTFILE("B@.BACKUP") will return the string "BMYPROG.BACKUP".

Thus,

%REPEAT
%>:FCOPY FROM=!MPEXCURRENTFILE;TO=![OBJECTFILE("B@.BACKUP")];NEW
%>FORFILES S@.DATA

will execute (for each file in S@.DATA) a command like

%:FCOPY FROM=SMYPROG.DATA;TO=BMYPROG.BACKUP;NEW

— just what a normal MPEX

%FCOPY S@.DATA,B@.BACKUP,NEW

command would do. In fact, MPEX's %FCOPY command is implemented using a
%REPEAT...%FORFILES loop just like the one above.

Running programs and passing them input
One thing that you may want to do for each file is to run a program, passing to it input
(perhaps including the current file's name and other attributes). For instance, to implement
MPEX's %EDIT command, we'd like to %RUN EDITOR.PUB.SYS for each file and pass it a
/TEXT of the current file, a command, and a /KEEP.

The way to do this is to say

%REPEAT
%>RUN EDITOR.PUB.SYS;INPUT="TEXT !MPEXCURRENTFILE";&
%> INPUT="the command to be executed";INPUT="KEEP";INPUT="EXIT"
%>FORFILES fileset

The ;INPUT=... keyword causes EDITOR.PUB.SYS to be run with STDIN redirected to a
temporary disk file to which MPEX has written the values of all the ;INPUT=... strings.

For more information, see the section on the ;INPUT=... keyword in the %RUN command
documentation below.

Operating on spool filesets
The %REPEAT...%FORFILES construct can also be used for performing arbitrary commands on
filesets of spool files. You must indicate that your fileset is a spool file fileset by appending a
":SPOOL" to it on the %FORFILES command, i.e.

%REPEAT
...
%>FORFILES @.@.@(SPOOL.OUTPRI=1):SPOOL

MPEX COMMAND REFERENCE: %REPEAT...%FORFILES

244

The commands between the %REPEAT and the %FORFILES will be executed once for each
spool file in the spool file fileset. The MPEXCURRENTFILE variable will be set to "#Oxxx"
where "xxx" is the spool file number (e.g. "#O1234"); the RFILE.attrvar fields will be
available just as for normal files, and the spool file attributes will also be available by saying

SPOOL.attrvar

(just like file attribute variables except that instead of being prefixed with "RFILE." they must
be prefixed with "SPOOL.").

For example, the following commands will copy all the $STDLISTs in the DEV account into
files in the SAVESP group whose filenames are "STD" followed by the spool file's spool file
number:

%REPEAT
%> RUN SPOOK5.PUB.SYS;&
%> INPUT="TEXT !MPEXCURRENTFILE";&
%> INPUT="COPY ALL,STD![SPOOL.SPOOLFILENUM].SAVESP";&
%> INPUT="QUIT"
%>FORFILES $STDLIST.@.DEV:SPOOL

Operating on temporary filesets
The %REPEAT...%FORFILES construct can also be used for performing arbitrary commands on
filesets of temp files. You must indicate that your fileset is a temp fileset by appending a
":TEMP" to it on the %FORFILES command, i.e.

%REPEAT
...
%>FORFILES @.@.@:TEMP

When operating on 'temp' filesets, the MPEXCURRENTFILE variable contains the fully qualified
name of the current TEMPorary file, but does not indicate in any way the file is a temp file.
For example, the following is wrong:

%COMMENT --- Do NOT do this! This is an example of something that
%COMMENT --- doesn't work the way you might expect!
%REPEAT
% PURGE !MPEXCURRENTFILE
%FORFILES @.FOOBAR.PROD:TEMP

This will purge all permanent files in the group FOOBAR.PROD that have the same name (fully
qualified) filename as any of your temp files! What you should do (in this case) is:

%COMMENT --- Do this instead.
%REPEAT
% PURGE !MPEXCURRENTFILE,TEMP
%FORFILES @.FOOBAR.PROD:TEMP

Only use commands that operate on temp files, and use whatever options you normally need
to use to specify temp files.

MPEX COMMAND REFERENCE: %REPEAT...%FORJOBS

245

%REPEAT...%FORJOBS
Syntax: %REPEAT

%>command1
%>command2
 ...
%>command
%>FORJOBS userset

Examples: %REPEAT
%>ECHO -----Processing job ![RJOB.FMTJOB] ![RJOB.FMTLOGON]
%>IF RJOB.INPRI=2 THEN
%> :ALTJOB ![RJOB.FMTJOB];INPRI=3
%>ELSE
%> :ABORTJOB ![RJOB.FMTJOB]
%>ENDIF
%>FORJOBS @.AP&WAIT

Similar to %REPEAT...%FORFILES, the %REPEAT...%FORJOBS construct allows you to execute
an arbitrary sequence of commands on a VESOFT userset (see the Usersets section of the
SECURITY User Manual for details on usersets).

Note that you can use the RJOB.attrvar syntax to refer to the job attribute variables of each
job much like you can use the RFILE.attrvar syntax in the %REPEAT...%FORFILES construct.
For a list of attributes that can be used with this syntax, refer to the section "Job/Session
Attributes" in this manual.

%REPEAT...%FORNUM
Syntax: %REPEAT

%>command1
%>command2
 ...
%>command
%>FORNUM varname=startvalue,endvalue[,increment]

Examples: %REPEAT
%>:BUILD TESTDAT!I; REC=-80,,F,ASCII
%>FORNUM I=1,9

The %REPEAT...%FORNUM construct is just like the FOR in C/PASCAL/SPL, PERFORM VARYING
in COBOL, and DO in FORTRAN:

%REPEAT
%>:ABORTJOB #J!I
%>FORNUM I=955,970

will execute the %ABORTJOB sixteen times, setting the variable I to numbers from 955 to 970.

MPEX COMMAND REFERENCE: %REPEAT...%FORPROFILES

246

To increment I by a value other than 1 for each iteration, just say

%FORNUM I=startvalue,endvalue,increment

(e.g. %FORNUM I=0,100,10 will set I to 0, 10, 20, 30, ..., 100.)

%REPEAT...%FORPROFILES
Syntax: %REPEAT

%>command1
%>command2
 ...
%>command
%>FORPROFILES profileset

MPEX's %REPEAT...%FORPROFILES construct allows you to perform an arbitrary set of actions
on SECURITY profiles. Although the %SEC CHANGE command lets you change large groups of
profiles, and %SEC LISTUSER lets you report on any set of profiles, there commands still have
some limitations. %SEC CHANGE is limited to changing ALL profiles in the profileset to have
the SAME value, and %SEC LISTUSER displays profiles using only one format.

Using %REPEAT...%FORPROFILES, however, you can change fields of each profile that qualifies
with different values (which may even be based upon current values of other fields). Simple
reports can be generated by using the %ECHO command to format and display the values of any
field within the profile.

Within the loop itself, profile field values are referenced using the same syntax as in
%REPEAT...%FORFILES, namely, use ![PROFILE.attribute] as part of the command (refer
to the USER PROFILE ATTRIBUTES chapter of the SECURITY manual for a description of these
attributes). The variable MPEXCURRENTPROFILE will contain the key value for the current
profile, in session,user.account format, for use in a %SEC CHANGE command.

For example, lets say you have a user defined field that contains a three-digit department code
and you want to change them to be four-digits by adding a "1" to the beginning of each code.

The following %REPEAT...%FORPROFILES loop will do just that:

%REPEAT
%SEC CHANGE !MPEXCURRENTPROFILE;DEPT=!["1"+PROFILE.UF('DEPT')]
%FORPROFILES @,@.@(UF('DEPT')<>'')

%REPEAT...%FORRECS
Syntax: %REPEAT

%>command1
%>command2
 ...
%>command
%>FORRECS varname=fopenparms

MPEX COMMAND REFERENCE: %RESUMEJOB

247

Examples: %REPEAT
%>RUN MYPROG1; INPUT=PROCDATE
%>FILE DATAFILE=D!PROCDATE.DATA
%>RUN MYPROG2
%>FORRECS PROCDATE=MYFILE,OLD

The %REPEAT...%FORRECS construct performs a sequence of MPEX commands once for each
record of a file, with a given variable (for example, "CURRENTREC") set to each file record:

%REPEAT
%>ECHO Processing !CURRENTREC
%>RUN MYPROG;INFO="!CURRENTREC"
%>FORRECS CURRENTREC=DATAFILE,OLD

will do the commands between "%REPEAT" and "%FORRECS" once for each record in the file
DATAFILE, setting the variable CURRENTREC to the contents of the current record.

%RESUMEJOB
Syntax: %RESUMEJOB [userset]

 [;NOVERIFY]
 [;QUIET]

Examples: %RESUMEJOB @.AP
%RESUMEJOB
%RESUMEJOB REPORTJ,@.@
%RESUMEJOB #J1234+#J1235

The %RESUMEJOB command is an enhanced version of MPE's :RESUMEJOB command. It
allows you to specify which jobs to resume using VESOFT usersets (see the Usersets section of
the SECURITY User Manual). By default, the userset is "SUSP" or all suspended jobs (in fact,
"&SUSP" is appended to the userset supplied since it doesn't make sense to try and
:RESUMEJOB a job that is not suspended).

%RETURN
Syntax: %RETURN

Examples: << sample MPEX command file: >>
PARM FILE
IF NOT FEXISTS("!FILE") THEN
 ECHO Error: !FILE does not exist.
 RETURN
ENDIF
...

MPEX COMMAND REFERENCE: %RUN

248

The %RETURN command exits the currently-executing UDC or command file; in the example
above, it's used to exit a command file in case the FILE parameter turns out to be invalid.

This sort of thing — exiting command files and UDCs in case of an error condition — is what
%RETURN is most often used for.

%RUN
Syntax: %RUN {progfile|pin} [,entry]

 [;mperunparms]
 [;GOON]
 [;INMSG]
 [;INPUT= inline] [;INPUT=...]
 [;KILL]
 [;NEW]
 [;NOACTIVATE]
 [;NOACTSONTERM]
 [;PRI= {CS|DS|ES}]
 [;STDIN= {fileref|$NULL|"file-eq-parms"}
 [;STDLIST= {fileref|$NULL|"file-eq-parms"}

Examples: %RUN MYPROG; MAXDATA=30000; LIB=G
%RUN BIGHOG; PRI=ES; GOON
%RUN MYPROG; STDIN="TEMPMSG;REC=,,V,ASCII;DEL";&
 STDLIST="OUTFILE,OLDTEMP;SHR;GMULTI;TEMP"
%RUN SEGDVR.PUB.SYS; INPUT="USL U"; INPUT="AUXUSL AU";&
 INPUT="COPY SEGMENT,MYSG"; INPUT="EXIT"

MPEX's %RUN command fully emulates all the parameters of the MPE :RUN command (;LIB=,
;PARM=, ;INFO=, ;MAXDATA=, etc.), and implements a few of its own (see "MPEX process
handling" in the MPEX Special Topics chapter for more information — these features are fairly
advanced, and are probably not for beginning users):

• ;PRI={CS|DS|ES}, which lets you indicate the queue in which the son process is to run
(just like the ;PRI=... parameter on a :JOB card works for a job).

• ;GOON ("go on"), which means that MPEX shouldn't suspend when it creates the son
process, but rather go on processing with both MPEX and the son being active.

Don't confuse this keyword with the %GOON command prefix. Programs run using :RUN
…;GOON are NOT reported by the %SHOWGOON command.

• ;NOACTSONTERM, which means that MPEX should not be automatically re-activated when
the son process terminates. This can sometimes be useful in conjunction with the ;GOON
keyword; however, if you use ;NOACTSONTERM without using ;GOON, you're liable to get
hung up when the son process terminates and does not re-activate MPEX.

• ;STDIN=.../STDLIST=... "parms", which let you specify not just the filename for the son's
STDIN/STDLIST, but a full file equation (except for the word ":FILE"), including options
such as ;DEL, ;SHR, ;REC=, etc.

See "Command I/O redirection" for another way to re-direct STDIN and STDLIST.

MPEX COMMAND REFERENCE: %RUNCREATE, %RUNINPUT, %RUNACTIVATE

249

• ;INPUT= (and ;INMSG), which let you pass data as input to the son process without
building a special STDIN file. MPEX will build the STDIN file for you, writing the values of
all the ;INPUT=... parameters to it; the son process will then be run with that STDIN file.
(See also "%RUNCREATE, %RUNINPUT, %RUNACTIVATE", below).

• ;NOACTIVATE, which creates the son process without activating it.

• ;NEW, which commands MPEX to create a new process, even if another son process with the
same name exists and is ready to be re-activated.

• ;KILL, which tells MPEX to kill the son process when it's done (in case it suspends rather
than terminates).

• Instead of specifying the name of the program to be run, you may specify the PIN of an
already existing son process; in that case, that process will be re-activated.

• If you have SM capability or are AM of the account in which the program you are %RUNing
resides, and the program file has a lockword, MPEX automatically inserts lockwords for
you.

%RUNCREATE, %RUNINPUT, %RUNACTIVATE
Syntax: %RUNCREATE program [,entry] [;mpexrunparms]

%RUNINPUT inputline

%RUNACTIVATE

Examples: %RUNCREATE MYPROG,PROCFILES; PARM=1; PRI=CS
%REPEAT
%>RUNINPUT !MPEXCURRENTFILE
%>FORFILES @.DATA
%RUNINPUT EXIT
%RUNACTIVATE

MPEX's %RUN...;INPUT=... lets you run a program and pass input lines to it (without having to
specially build a STDIN file). What if, however, you want to pass many input lines (more than
can fit on one %RUN command)? This is particularly relevant for %REPEAT...%FORFILES, with
which you might want to pass a program one or more lines of input for each file in the fileset.

MPEX's %RUNCREATE, %RUNINPUT and %RUNACTIVATE commands let you do this —
%RUNCREATE creates a son process but doesn't actually run it; %RUNINPUT writes a line of
input to its STDIN file; %RUNACTIVATE actually activates it and waits for it to finish executing
all the commands you passed to it using %RUNINPUT.

For instance,

%RUNCREATE KSAMUTIL.PUB.SYS
%REPEAT
%>RUNINPUT KEYINFO !MPEXCURRENTFILE
%>FORFILES @.@.AP(ISKSAM and NOT ISKSAMXL)
%RUNINPUT EXIT
%RUNACTIVATE

MPEX COMMAND REFERENCE: %SAVEJOB, %SHOWSAVED, %DOSAVED

250

This will run KSAMUTIL.PUB.SYS, pass it a KEYINFO command for each file in the fileset
(which automatically recovers KSAM files that were open during a system failure), and then an
EXIT command, and finally activate KSAMUTIL.PUB.SYS to let it execute all those commands.

Note that the program is not activated until the %RUNACTIVATE — the %RUNINPUT commands
don't actually "execute" the commands but rather buffer them up in the son process' STDIN file
to be executed when the %RUNACTIVATE is done.

%RUNCREATE, %RUNINPUT and %RUNACTIVATE are actually shorthand for "%RUN progname
;NOACTIVATE;NEW;INMSG", "%RUN progname;INPUT=..." and "%RUN progname;KILL"
respectively — all of which are documented MPEX :RUN command enhancements.

One important point about these commands is the fact that they use a message file to pass
your input to the program being run. If you forget to %RUNINPUT an EXIT command of some
sort, then the program will merely suspend after it is done executing the commands you gave
it instead of terminating (This is similar to how the %SPOONFEED command works). The
problem that this creates is that control is never returned to MPEX, so it appears that our
program hangs. You should press [BREAK] and type :ABORT to terminate MPEX and the
"suspended" program.

%SAVEJOB, %SHOWSAVED, %DOSAVED
Syntax: %SAVEJOB userset; FILE=savefile

 [;NOVERIFY]
 [;QUIET]

%SHOWSAVED; FILE= savefile

%DOSAVED;FILE=savefile
 [;NOVERIFY]
 [;QUIET]
 [;MUSTEXEC]
 [;mpeschedparms]

Examples: %SAVEJOB WAIT+SCHED; FILE=SAVEDJBS
%SAVEJOB @.PROD; FILE=PRODJOBS; NOVERIFY
%SAVEJOB @.@-EXEC; FILE=ALLJOBS; QUIET
%SAVEJOB #J1234+#J1235+#J1236; FILE=CRITJOBS

%SHOWSAVED;FILE=PRODJOBS

%DOSAVED;FILE=SAVEDJBS
%DOSAVED;FILE=PRODJOBS; NOVERIFY; AT=23:30
%DOSAVED;FILE=ALLJOBS; QUIET; MUSTEXEC
%DOSAVED;FILE=CRITJOBS; IN=0,0,5

For security reasons, these commands can only be executed by SM capability users.

MPEX COMMAND REFERENCE: %SAVEJOB, %SHOWSAVED, %DOSAVED

251

You need to shut your system down, but there are a bunch of jobs in the WAIT and SCHED
state. What do you do?

You could try writing down the names of all of the jobs and then re-:STREAM them after you
bring the system back up, but the :SHOWJOB command only shows you how the job logs on,
not the name of the file that was :STREAMed (sometimes they match, but...). What if the job
file doesn't even exist anymore? If you use STREAMX, how are you going to know what
answers were entered to any ::PROMPTs the jobs contain?

The %SAVEJOB command saves the $STDIN files for all (or selected) jobs, so that you can later
re-submit them via the %DOSAVED command (described below)! Since the $STDIN file — not
the job file — is what MPE actually executes, the saved job (when re-submitted later) will be
exactly the same (except for the job number) as it was before you saved it:

• all of the job-card parameters (like ;INPRI=, etc.) will be preserved;

• if you use SECURITY, any necessary $BATCH-VEPROFILE job authorizations will still be in
effect;

• all STREAMX parameter substitutions were done before the $STDIN was created, so they
won't be lost;

• if the job was in a SCHED state at the time it was saved, the scheduling information will
also be preserved.

Here's how it works:

%SAVEJOB WAIT+SCHED; FILE=SAVEDJBS
-----Will SAVEJOB #J41, DISCLEAN,MANAGER.SYS,JOB
-----Will SAVEJOB #J38, SEND,MANAGER.LIST,VESOFT
-----Will SAVEJOB #J33, VEAUDIT,MANAGER.VESOFT,PUB
-----Will SAVEJOB #J34, NIGHTLY,MGR.PROD,PUB
OK to process these jobs (y/n)? Y
-----SAVEJOB #J41, DISCLEAN,MANAGER.SYS,JOB
-----SAVEJOB #J38, SEND,MANAGER.LIST,VESOFT
-----SAVEJOB #J33, VEAUDIT,MANAGER.VESOFT,PUB
-----SAVEJOB #J34, NIGHTLY,MGR.PROD,PUB

Like the %ABORTJOB, %TELL, %ALTSCHED and other MPEX jobset-handling commands,
%SAVEJOB allows you to specify which job(s) to save using VESOFT usersets (documented
fully in the usersets section of the SECURITY User Manual).

If you want %SAVEJOB to save the jobs without asking you if it's OK, use the ;NOVERIFY
keyword.

If you don't even want %SAVEJOB to show you the jobs as it saves them, use the ;QUIET
keyword.

At this point, you can shut down your system or perhaps abort these jobs via the MPEX
%ABORTJOB command (%SAVEJOB does not abort the existing job) and wait for the currently
executing jobs to finish before shutting down.

MPEX COMMAND REFERENCE: %SAVEJOB, %SHOWSAVED, %DOSAVED

252

Viewing saved jobs (%SHOWSAVED)
%SAVEJOB copies the jobs to the "savefile" in a special format (and creates the "savefile" as a
PRIV file — you must use MPEX to %PURGE it). To see what jobs are in a "savefile", use the
%SHOWSAVED command:

%SHOWSAVED;FILE=SAVEDJBS
:JOB DISCLEAN,MANAGER.SYS,JOB;PRI=DS;OUTCLASS=LP,3,1
 DATE=01/29/92;AT=03:00
:JOB SEND,MANAGER.LIST,VESOFT;HIPRI;PRI=CS;OUTCLASS=LP,2,1
 DATE=01/29/92;AT=02:30
:JOB VEAUDIT,MANAGER.VESOFT,PUB;PRI=DS;OUTCLASS=LP,1,1
 DATE=01/29/92;AT=22:00
:JOB NIGHTLY,MGR.PROD,PUB;HIPRI;PRI=DS;OUTCLASS=LP,1,1
 DATE=01/29/92;AT=00:01

Re-submitting saved jobs (%DOSAVED)
After you bring the system back up (or whenever you like) you can re-submit saved jobs by
typing:

%DOSAVED;FILE=SAVEDJBS

By default, this will display the job logon and scheduling parms (if any) for each job in the
SAVEDJBS file, and ask if you want to submit that job:

Submit DISCLEAN,MANAGER.SYS,JOB [date=01/29/92;at=03:00] (y/n)? Y
 #J54
Submit SEND,MANAGER.LIST,VESOFT [date=01/29/92;at=02:30] (y/n)? Y
 #J55
Submit VEAUDIT,MANAGER.VESOFT,PUB [date=01/29/92;at=22:00] (y/n)? Y
 #J56
Submit NIGHTLY,MGR.PROD,PUB [date=01/29/92;at=00:01] (y/n)? N

Like %SAVEJOB, you can use the ;NOVERIFY to submit job(s) without prompting or ;QUIET to
submit them without even listing them.

When you re-submit saved jobs, %DOSAVED simply re-submits the jobs with the originally
scheduled date and time. Generally, this is OK; however, you may end up in the situation
where a saved job was scheduled to run specifically at a time when the jobs were not on the
system (i.e., if you had to take the system down, and a job was scheduled to run during the
time the system was down). In this case, an error message is displayed regarding an attempt
to stream a job prior to the current date and time.

There are two methods you can use to avoid this problem

• Specify the keyword ;MUSTEXEC, which signals to our software that if the time for a job to
launch has passed, stream the job immediately.

• Supply new scheduling parameters with the %DOSAVED command (like ;AT=, ;DAY=,
;DATE= or ;IN=) to override those that were in effect when the job was saved;

MPEX COMMAND REFERENCE: %SCHEDULE

253

e.g.

%DOSAVED;FILE=SAVEDJBS; DATE=01/31/92
Submit DISCLEAN,MANAGER.SYS,JOB [date=01/31/92] (Y/n)? N
Submit SEND,MANAGER.LIST,VESOFT [date=01/31/92] (Y/n)? N
Submit VEAUDIT,MANAGER.VESOFT,PUB [date=01/31/92] (Y/n)? N
Submit NIGHTLY,MGR.PROD,PUB [date=01/31/92] (Y/n)? Y
#J58

Any scheduling parameters specified with %DOSAVED will completely replace all scheduling
parameters that were "saved" with the job; if the job was not scheduled when it was saved (i.e.
it wasn't in a SCHED state), the %DOSAVED scheduling parms will not be applied to it.

If you want to PURGE the savefile (%DOSAVED does not automatically PURGE it), simply use
the MPEX %PURGE command — MPE's :PURGE command doesn't purge PRIV files.

Important
note:

There is no need to save schedule if you use STREAMX's scheduling — see the SECURITY User
Manual for details.

%SCHEDULE
Syntax: %SCHEDULE "scheduleparms", "[joblogon] [;jobparms]", command

Examples: %SCHEDULE "AT=3:00;DAY=TUE",, COBOL AP@.SOURCE, AP@.PUB
%SCHEDULE "AT=21:00", ";OUTCLASS=,3", RUN MYPROG;PARM=1234
%SCHEDULE "AT=1:00", "MANAGER.SYS", PURGE LOG####.PUB.SYS

The %SCHEDULE command makes MPEX submit a scheduled job that will execute the given
MPEX command.

• You can use any MPE scheduling parameters (AT=, DAY=, etc.).

• You may (optionally) indicate that the job is to be submitted under somebody else's user ID
or with some special job parameters.

• You may execute either an MPEX command or a normal MPE command (RUN, STORE, a
UDC, etc.); if the MPE command has the same name as an MPEX command (like FCOPY),
precede it with a ":".

• All the file equations that are in effect in your session and the current value of your HPPATH
variable will be copied to the created job.

• You may indicate who MPEX should notify of the job's completion by setting the
MPEXTELLBACK variable.

• You may indicate how MPEX should inform you of the job's completion by setting the
MPEXTELLBACKCMD variable.

(See the %SUBMIT and "Batch execution ('$' prefix)" in the MPEX Commands chapter for more
information.)

MPEX COMMAND REFERENCE: %SCHEDULE

254

To execute an MPEX command in a job stream, you can simply say

%$COBOL AP@.SOURCE, AP@.PUB

The "$" tells MPEX to perform the command offline — MPEX will automatically generate a job
stream that executes the above command.

It'll also copy all the file equations (such as :FILE COPYLIB=...) that you may have in your
session into the job, so that the job environment is as close as possible to your session
environment.

The %SCHEDULE command simply extends this capability to allow you to specify scheduling
and :JOB card parameters for the job stream. Saying

%$COBOL AP@.SOURCE, AP@.PUB

will execute "COBOL AP@.SOURCE, AP@.PUB"

• immediately,

• under your own logon id,

• with the job parameters ";OUTCLASS=,1".

What if you want to submit it at 3 AM Tuesday? Just say:

%SCHEDULE "AT=3:00;DAY=TUE",, COBOL AP@.SOURCE, AP@.PUB

The first parameter ("AT=3:00;DAY=TUE") specifies the :STREAM command scheduling
parameters; as the second parameter is omitted, logon ID and job parameters will be defaults.

If you say:

%SCHEDULE "AT=3:00;DAY=TUE", "MGR.PROD;OUTCLASS=SLOWLP,3", &
 COBOL AP@.SOURCE, AP@.PUB

then it'll not only define the scheduling parameters but also the logon (MGR.PROD) and job
card parameters (;OUTCLASS=SLOWLP,3).

Saying

%SCHEDULE "AT=3:00;DAY=TUE", ";OUTCLASS=SLOWLP,3;INPRI=4", &
 COBOL AP@.SOURCE, AP@.PUB

will only change the job card parameters (;OUTCLASS=SLOWLP,3;INPRI=4); the logon will
be the default (your own logon ID).

Saying

%SCHEDULE "AT=3:00;DAY=TUE", "MGR.PROD", COBOL AP@.SOURCE, AP@.PUB

will only change the logon ID (MGR.PROD) and leave the job card parameters at their default
setting (;OUTCLASS=,1).

Of course, if you try to submit something under somebody else's logon ID, MPEX will prompt
you for the passwords (unless you have SM capability or AM capability in your own account).

MPEX COMMAND REFERENCE: %SEC

255

%SEC
Syntax: %SEC command

Examples: %SEC LISTUSER @.@
%SEC ADD JAY,MGR.SALES; ASKPASS

The %SEC prefix allows SECURITY users to enter SECURITY maintenance commands within
MPEX. Please see "Command-Driven SECURITY Maintenance" in the SECURITY User Manual
for details.

%SECURE
Syntax: %SECURE fileset

 [;KEEPAMDATES]

Examples: %SECURE @.@.PROD-TEST@.@.PROD(ISRELEASED)
%SECURE @.@.@ &
 (ISPROG and ISRELEASED and DIRGROUP.CAP("PM"))

The MPEX %SECURE command lets you

• %SECURE entire filesets

• even if you're not the file's creator (all it takes is Read, Write, and eXecute access — since
with Read, Write, and eXecute, you can do anything to the file [including purging it], this is
quite safe); additionally,

• the ;KEEPAMDATES keyword allows you to secure a file (or fileset) without changing that
file's last Access and Modify dates.

As you know, :RELEASEing a file is very dangerous to system security. When you
:RELEASE a file, you are letting anybody do anything to it — read it, write to it, even purge it!
There's no way of :RELEASEing a file for read access only or to a particular user or set of
users.

If you :RELEASE a (non-privileged) file, you lose absolutely all security with respect to it.

This is why the %SECURE command can be so useful. Chances are that there are hundreds of
:RELEASEd files on your system, :RELEASEd from ignorance (most people don't know how
wide-open the :RELEASE command leaves them) or laziness.

The only way you can %SECURE them all in one fell swoop is with MPEX. You could always
find them with the %LISTF command:

%LISTF @.@.PROD(ISRELEASED)

MPEX COMMAND REFERENCE: %SET CAPABILITY

256

but you could always just :SECURE them all:

%SECURE @.@.PROD(ISRELEASED)

(the ISRELEASED selection condition will find only those files that are actually :RELEASEd,
and thus avoid re-:SECUREing files that are already :SECUREd).

If for some reason, you need some files to remain :RELEASEd, you can easily tailor your
selection conditions to exclude them from the %SECURE:

%SECURE @.@.PROD-TEST@.@.PROD(ISRELEASED and NOT ISPRIV)

will :SECURE all the :RELEASEd files in the PROD account EXCEPT for databases (NOT
ISPRIV) and those files that start with TEST. (As we discuss in the %RELEASE command,
databases are the only files that it's often a good idea to :RELEASE.)

Vital for system security!
There's one very important way in which :RELEASEd files can

ENTIRELY COMPROMISE YOUR SYSTEM SECURITY.

If you have any

• program files

• that are :RELEASEd

• and reside in groups that have PM capability,

then

ANY USER — WITHOUT ANY SPECIAL CAPABILITIES — WILL BE ABLE TO ACQUIRE
SM CAPABILITY!

For obvious reasons, we won't tell you how he could do this; however, it's vital that all the files
that match the conditions shown above must be :SECUREd (with NO exceptions). With MPEX,
nothing could be easier:

%SECURE @.@.@(ISPROG and ISRELEASED and DIRGROUP.CAP("PM"))

Just another example of the power of MPEX selection conditions.

%SET CAPABILITY
Syntax: %SET CAPABILITY,command,{SM|AM|AL}

Examples: %SET CAPABILITY,PURGE,AM
%SET CAPABILITY,RELEASE,SM

MPEX does not in any way endanger your system security — anything "dangerous" you could
do in MPEX can be done with simple MPE commands (although it would take longer!).

However, when MPEX makes it easier for you to do some things, it has no way of knowing that
what you ask it to do is what you really want it to do.

MPEX COMMAND REFERENCE: %SET CREATORPROTECT

257

If you say

%RELEASE @

MPEX will faithfully :RELEASE all the files in your group (assuming you have Read/Write/
Execute access to the files). Never mind the fact that this will remove ALL security from those
files — you asked it to :RELEASE them, and that's exactly what it'll do.

Because of this, a system manager might want to restrict access to some MPEX commands —
usually %PURGE and %RELEASE — to people with certain capabilities. For instance, he might
put into the MPEXMGR.PUB.VESOFT file (which always gets executed whenever anybody enters
MPEX — see "Specifying commands to be executed every time MPEX is entered" in the
Running MPEX section) the commands:

%SET CAPABILITY,PURGE,AM
%SET CAPABILITY,RELEASE,SM

This means that

• Only users with SM capability will be allowed to use the %RELEASE command.

• Only users with AM capability will be allowed to use the %PURGE command. Users with AM
only will be able to %PURGE files only in their own accounts — users with SM will be able to
%PURGE files anywhere.

The capabilities that you can specify are SM, AM or AL (Account Librarian).

We advise, however, that you use %SET CAPABILITY sparingly; naturally, we think that most
MPEX commands are just too useful to deny access to. Please see the chapter on "Restricting
MPEX commands to only work on certain files" in the Running MPEX section in this manual.
There, we explain how you can set up your own commands with your own restrictions — for
instance, you could easily build a %PURGE that will not purge databases or KSAM files or an
%ALTFILE that will only work for files in your logon group.

%SET CREATORPROTECT
Syntax: %SET CREATORPROTECT

MPEX's %ALTFILE...;CREATOR= and %COPY...;CREATOR= keywords let you change a file's
creator ID. This can be a very useful feature (see the documentation on %ALTFILE...
;CREATOR= for more information) in many instances, including changing the creator IDs of
files whose creators have been purged. Normally (on non-POSIX systems), MPEX allows
anybody who has Read, Write, and eXecute access to a file to %ALTFILE its creator ID, since
with that sort of access the user can do anything to the file anyway.

Some users need creator IDs for their own internal auditing purposes and therefore don't want
to let people change files' creator IDs. The %SET CREATORPROTECT command lets system
managers impose this restriction if they so wish.

MPEX COMMAND REFERENCE: %SET DATE

258

If you put a "SET CREATORPROTECT" command into your MPEXMGR.PUB.VESOFT (see
"Specifying commands to be executed every time MPEX is entered" in the Running MPEX
section), then only users with SM capability and users with AM capability working on files in
their own accounts will be allowed to do an %ALTFILE...;CREATOR=... or a
%COPY...;CREATOR=... (of course, non SM/AM users can still use any of the other %ALTFILE
and %COPY keywords). Also, if any non-SM non-AM user uses the %COPY...;KEEPATTR
command, the creator ID will not be kept by the copy, but will instead be set to the copying
user's name.

%SET CREATORPROTECT will still permit SM users and AM users working on files in their own
accounts to use %ALTFILE...;CREATOR=, %COPY...;CREATOR=... and %COPY...;KEEPATTR
without restriction.

POSIX
note:

Due to changes in MPE regarding file security, MPEX enforces %SET CREATORPROTECT on
POSIX based systems. This is to maintain compatibility with MPE's :ALTFILE command which
is designed to let SM and AM users change the OWNER of a file. See the %ALTFILE command
for more details.

%SET DATE
Syntax: %SET DATE,{MDY|DMY|YMD}

Examples: %SET DATE,MDY

By default, MPEX dates — in selection conditions, in the %CALC, %IF, %SETVAR, etc.
commands, and so on — are expected to be in MM/DD/[YY]YY (2- or 4-digit year, with or
without slashes) format.

You can change this by saying

%SET DATE,DMY

to indicate that input dates will be in DD/MM/[YY]YY format, or

%SET DATE,YMD

to indicate that input dates will be in [YY]YY/MM/DD format.

Note that while most commands do not make use of this setting to determine how to display
date values, a few commands do use this setting. The commands that do make use of this
setting have a note to that effect in their command description. If you want to output a date in
a specific format (in a %CALC command or your own %LISTF template file), you can use the
CDATEMDY, CDATEDMY, and CDATEYMD functions or the built-in formatting capability of the
WRITELN and STRWRITE functions. (see Appendix B for more details).

MPEX COMMAND REFERENCE: %SET DEFAULT

259

%SET DEFAULT
Syntax: %SET DEFAULT,command,{?|!|$}

Examples: %SET DEFAULT,PURGE,?
%SET DEFAULT,COBOL,$

By default, all MPEX commands are executed online, immediately as you type them. You can
always prefix any MPEX command with a "$", e.g.

%$COBOL AP@.SOURCE,AP@.PUB

to perform it offline, or prefix it with a "?", e.g.

%?PURGE @.TEST

to verify the %PURGE for every file before purging that file (MPEX will ask you "OK to
process X.TEST (y/N)? ", and if you answer N, the operation won't be done on this file).

You might want to make either "$" execution or "?" execution the default for some commands;
for instance,

%SET DEFAULT,PURGE,?
%SET DEFAULT,COBOL,$

to indicate that all %PURGEs are to be done with verification (for safety's sake) and all %COBOLs
are to be done offline (to avoid tying up your terminal).

When these defaults are set, you can still say

%!PURGE K#######.@
%!COBOL AP010.SOURCE,AP010.PUB

to execute the commands ONLINE with no verification (that's what the "!" prefix does);
however, the DEFAULT will be "?" for %PURGE and "$" for %COBOL.

Remember, in all cases you can execute each command any way you like (online, offline or
with verification) with one extra keystroke; %SET DEFAULT merely indicates which mode is to
be used if you specify neither "!", "?", nor "$".

If you use the %SET DEFAULT command, you'll probably want to embed it into

• the MPEXMGR.PUB.VESOFT file, so it'll be automatically executed every time anybody runs
MPEX (and will thus be in effect on a SYSTEM-wide basis),

• the MPEXMGR.PUB file of your own account, so it'll be automatically executed every time
anybody in that account runs MPEX, and/or

• the MPEXMGR file of your own group, so it'll be automatically executed every time anybody
in that group runs MPEX.

See "Specifying commands to be executed every time MPEX is entered" in the Running MPEX
section for more information.

MPEX COMMAND REFERENCE: %SET GOONMAXPRI

260

%SET GOONMAXPRI
Syntax: %SET GOONMAXPRI,{CS|DS|ES}

Examples: %SET GOONMAXPRI,CS
%SET GOONMAXPRI,ES

The %GOON command (documented earlier in this manual) gives MPEX users an easy,
convenient way to execute commands, run programs, etc. as son processes. By default, %GOON
processes execute in the DS queue (which gives them about the same priority as batch jobs, on
most systems) but users may change this by setting the VESOFTGOONPRI variable.

Although this doesn't allow users to do anything that MPE security would normally prevent
them from doing, it does make it much easier for one user to create many active son processes
in the CS queue. The system manager might wish to restrict %GOON processes to the DS (or
even the ES) queue.

To do this, simply add a line to your MPEXMGR.PUB.VESOFT file that says something like:

%SET GOONMAXPRI,DS

Now, even if the user sets the VESOFTGOONPRI variable to "CS", his %GOON processes will run
in the DS queue.

Once a %SET GOONMAXPRI command has been executed within your current run of MPEX, you
can not change it to a higher queue until you exit MPEX and re-run it; i.e. if you set the
GOONMAXPRI to DS (as in the example above), you will not be able to change it back to CS
unless you first exit MPEX (but you could change it to ES).

%SET [NO]CMDTRACECHECK
Syntax: %SET [NO]CMDTRACECHECK

Examples: %SET CMDTRACECHECK
%SETJCW MPEXCMDTRACE = 1

MPEX, STREAMX and VEMENU all let you trace execution of commands using the
MPEXCMDTRACE JCW; if you set it to 1, each command is output before it is executed, which
can help you debug complicated command files, job streams or menus.

It takes time to check this variable and this can add up if you have a very complicated
command file or menu (one of our users sent us a menu file that had about 100 lines per
caption!), especially if you are on a heavily loaded system.

Therefore, we have two commands, usable from MPEX, STREAMX, or VEMENU – SET
NOCMDTRACECHECK, which turns off MPEXCMDTRACE checking, and SET CMDTRACECHECK,
which turns it on. Checking is on by default for MPEX and off by default for STREAMX and
VEMENU, but these SET commands can be used to alter this setting.

MPEX COMMAND REFERENCE: %SET [NO]VARTRACE

261

%SET [NO]VARTRACE
Syntax: %SET [NO]VARTRACE

Examples: %SET VARTRACE
%XEQ MYCMDFIL
%SET NOVARTRACE

You can write MPEX command files that do a lot of different things (our users constantly
surprise us with the creative use to which they put our software). The %SET VARTRACE
command was implemented to help you debug these command files.

%SET VARTRACE

tells MPEX to echo to $STDLIST the name of any variable whose value changes, the old and
new values of that variable, and the name of the command file or UDC which changed it
($STDIN, if the variable was changed by an interactive command).

Using %SET VARTRACE is much easier than adding a bunch of "ECHO" commands to the
command file, and it shows all variables that are changed (including "local" variables), not just
the ones you thought to "ECHO".

%SET NOVARTRACE

turns the tracing off.

For example, suppose you have a command file named TEST.WORK.VESOFT that looks like
this:

SETVAR TEST_VAR "tadpole"
SETVAR TEST_VAR "frog"
SETLVAR TEST_LOCAL_VAR "caterpillar"
SETLVAR TEST_LOCAL_VAR "butterfly"

You could watch these variables change using %SET VARTRACE, like this:

%SET VARTRACE
%TEST
[TEST.WORK.VESOFT] TEST_VAR := tadpole
[TEST.WORK.VESOFT] TEST_VAR (tadpole) := frog
[TEST.WORK.VESOFT] TEST_LOCAL_VAR [local] := caterpillar
[TEST.WORK.VESOFT] TEST_LOCAL_VAR [local] (caterpillar) := butterfly
%SET NOVARTRACE

MPEX COMMAND REFERENCE: %SETLVAR

262

%SETLVAR
Syntax: %SETLVAR varname expression

Examples: %SETLVAR COUNTER 1
%SETLVAR ANSWER UPS(ANSWER[0:1])
%SETLVAR JULIANDAY TODAY-DATEBUILD(HPYEAR,1,1)+1

The %SETLVAR command evaluates an expression and assigns its value to an MPEX local
variable.

Please see "Local variables" in the MPEX Variables chapter of this manual for more details.

%SETVAR
Syntax: %SETVAR varname expression

Examples: %SETVAR NUMFILES NUMFILES+1
%SETVAR FRECSIZE -VEFINFO(FNAME+".DEV.AP").RECSIZE
%SETVAR NUMBERISVALID BETWEEN(NUMINPUT,-5,15+NUMWIDGETS)
%SETVAR FOURTHREC VEFREADDIR("DATAFILE,OLD",3)
%SETVAR C SQRT((A)+(B))
%SETVAR LASTDAYOFLASTMONTH DATEBUILD(HPYEAR,HPMONTH,1)-1
%SETVAR LASTFRIDAY TODAY-DATEDAYOFWEEK(TODAY-6)
%SETVAR NEXTFRIDAY TODAY+7-((HPDAY+1) MOD 7)
%SETVAR JULIANDAY TODAY-DATEBUILD(HPYEAR,1,1)+1

The %SETVAR command evaluates an expression and assigns its value to an MPEX variable (see
the MPEX variables chapter). This variable can later be substituted into MPEX commands, and
used in %IFs, %WHILEs, %CALCs and other %SETVARs.

If the variable "varname" exists, its old value will be overwritten with the new; if it doesn't
exist, it will be created.

The expression can be any VESOFT expression, not just an ordinary MPE expression. The
syntax of VESOFT expressions is described fully in the Appendix.

VESOFT expressions support real numbers, dates and times as well as integers, booleans and
strings. Unfortunately, MPEX variables can only be integers, booleans, and strings (because of
the restrictions imposed by MPE/iX with which we must be compatible). If the expression
returns a real number, a date or a time, that value will be nicely formatted into a string, and
the variable "varname" will be a string variable.

MPEX COMMAND REFERENCE: %SHOW

263

%SHOW
Syntax: %SHOW

Examples: %SHOW
SET CAPABILITY,RELEASE,SM
SET DEFAULT,PURGE,?
SET DATE,MDY

Shows the values of all the

• %SET CAPABILITY (capability restrictions on MPEX commands),

• %SET DEFAULT (default modes of execution for MPEX commands), and

• %SET DATE (input date format, MDY vs. DMY vs. YMD)

options that have been set.

%SHOWALARM
Syntax: %SHOWALARM [;ALL]

 [;FROM=mpeuserset]

Examples: %SHOWALARM
%SHOWALARM;ALL
%SHOWALARM;FROM=@.DEV

%SHOWALARM shows information about the alarms you set via the %ALARM command. For more
information, see the documentation on %ALARM.

%SHOWGOON
Syntax: %SHOWGOON

Examples: %SHOWGOON
FILENAME [STATUS] COMMAND

VEO53 [done] PRINT @.SOURCE;SEARCH="SOC-SEC-RATE";NUM
 VEO73 [active] ALTFILE @.@.DEV; XLTRIM; KEEPAMDATES
 VEO94 [active] COBOL MYPROG.SOURCE,=.PUB

%SHOWGOON displays the status of all of your %GOON processes. For more information, please
see the %GOON command in this manual.

MPEX COMMAND REFERENCE: %SHOWJOB

264

%SHOWJOB
Syntax: %SHOWJOB [mpe-showjob-parameters]

 [;JOB=@A]
 [;NOSEC]

Examples:

%SHOWJOB JOB=@A
%SHOWJOB SCHED;NOSEC
%SHOWJOB JOB=@.SYS;*LP

%SHOWJOB

JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME

#S2 EXEC 20 20 WED 7:41A CHUCK,MANAGER.SYS
#J3 EXEC 10R LP WED 7:43A BACKG,MANAGER.VESOFT
#S4 EXEC QUIET 3 3 WED 8:05A VLADIMIR,MANAGER.VESOFTD
#S6 EXEC 5 5 WED 8:10A RON,MANAGER.TECH
#S9 EXEC 9 9 WED 9:16A TOM,MANAGER.VESOFTD

5 JOBS:
 0 INTRO
 0 WAIT; INCL 0 DEFERRED
 5 EXEC; INCL 4 SESSIONS
 0 SUSP
JOBFENCE= 6; JLIMIT= 2; SLIMIT= 40

JOBNUM STATE R SCHED-CONDITION SCHEDULED-INTRO JOB NAME

#A1 SCHED + SMTWRFA 0:10 GETDFREE,MANAGER.TECH
#A2 SCHED + -MTWRF- 0:15 DAILY,MGR.XPRESS
#A3 SCHED + S-----A 0:35 DISCLEAN,MANAGER.SYS
#A4 SCHED + -MTWRF- 1:30 BACKUP,MANAGER.SYS
#A5 SCHED + WHENEVER BETWEEN(HPDAY,2,6) AND... REMOTE,USER.XPRESS
#A6 SCHED + WHENEVER (HPDATE=1) REPORT,MANAGER.SYS
#A7 SCHED FRI 9/16/94 10:00 TESTSCHD,MANAGER.SYS

7 STREAMX SCHEDULED JOBS.

The MPE :SHOWJOB command has been enhanced to display STREAMX scheduling
information as well as MPE :SHOWJOB information. When appropriate, STREAMX scheduling
information is automatically displayed after the status section of the MPE :SHOWJOB
command. In addition, we have created a new %SHOWJOB userset of @A to represent all
STREAMX scheduled jobs.

The SCHED-CONDITION/SCHEDULED-INTRO columns display different information depending
upon whether or not the job repeats on specific days, is scheduled to submit on a particular
day and time or if the job should be launched when a particular condition occurs. Repeating
jobs are indicated by a "+" character after the word "SCHED". For jobs that are scheduled for a
particular day and time, that information is displayed much the same as MPE scheduled jobs.

MPEX COMMAND REFERENCE: %SHOWLVAR

265

For conditional jobs, as much of the condition that can be displayed on one line will be
printed, followed by "..." if the conditional expression is longer.

This is essentially the same format as the %SHOWJOB command, and shows the same
information as the %SEC SHOWSCHED command. %SEC SHOWSCHED, however, will display the
entire condition under which a job will be submitted.

Since the default is to display both jobs and sessions, simply typing %SHOWJOB alone will
display MPE jobs and sessions, MPE scheduled jobs, the MPE status block, and STREAMX
scheduled jobs in that order. To display only STREAMX scheduling information, type
%SHOWJOB JOB=@A. To suppress STREAMX scheduling information, include ;NOSEC as part
of the command.

%SHOWLVAR
Syntax: %SHOWLVAR [varset] [,...]

Examples: %SHOWLVAR COUNTER
%SHOWLVAR J, K, L
%SHOWLVAR K#, FOO@

The %SHOWLVAR command shows local variables. Please see "Local variables" in the MPEX
Variables chapter of this manual for more details.

%SHOWME
Syntax: %SHOWME [;DETAIL]

Examples: %SHOWME;DETAIL

The MPE :SHOWME command has been enhanced to display additional information when you
have changed from your original LOGON to a new LOGON using the %CHLOGON or %CHGROUP
commands. The example below shows the additional information that is displayed when the
optional ;DETAIL parameter is used.

%chlogon tom,vanilla.user,tom
Welcome! You are now signed on.
%showme;detail
CURRENT LOGON: TOM,VANILLA.USER,TOM
 CAPS: ND,SF,BA,IA
ORIGINAL LOGON: TOM,MANAGER.SYS,PUB

USER: #S135,VANILLA.USER,TOM (IN PROGRAM)
RELEASE: B.40.00 MPE/iX HP31900 B.30.45 USER VERSION: B.40.00
CURRENT: THU, JUN 17, 1993, 11:35 AM
LOGON: THU, JUN 17, 1993, 9:02 AM
CPU SECONDS: 27 CONNECT MINUTES: 153
$STDIN LDEV: 11 $STDLIST LDEV: 11

MPEX COMMAND REFERENCE: %SHOWOUT

266

%SHOWOUT
Syntax: %SHOWOUT spoolfileset[;listfile]

Examples: %SHOWOUT $STDLIST.@.@
%SHOWOUT @.@.PROD(SPOOL.JSNAME="COMP010")
%SHOWOUT @.@.@(SPOOL.OUTPRI>=5)

The %SHOWOUT command shows information on output spool files. In this, it's similar in
purpose to MPE's :SHOWOUT, but is appreciably more powerful:

• It lets you select which spool files you want to list; for instance, to find the PROD account
spool files belonging to the job with job name COMP010, you can just say

%SHOWOUT @.@.PROD(SPOOL.JSNAME="COMP010")

Similarly, to find the spool files of all jobs that terminated with an error, you may enter:

%SHOWOUT @.@.@(SPOOL.JOBABORTED)

• Its output has rather more interesting information:

SPFile# Filename Pri JOB#:jobname,user.acct,group Ready Date
#O869 LP 7 #J493:SORTCITY,MGR.SALES,PUB WED 11:45AM
#O733 CONTRACT 6 #J427:CONT,TEST.AP,DATA TUE 11:23AM
#O1181 $STDLIST 3 #J620:COMP010,JACK.AP,DEV FRI 9:24AM
#O1198 $STDLIST 3 #J632:COMP030,PETE.AP,DEV FRI 9:55AM
ERR!

The output includes:

o The full logon of the job involved (including the session name).

o The spool file's output priority.

o The date that the spool file was made ready. If the date is within the past week, it's
shown as a day of week (e.g. WED); if it's earlier, it's shown as the day of month and
month name (e.g. 17APR). If the spool file has not yet been made ready, "(OPENED)" is
shown in this column.

o The string "ERR!" if the job is marked as having terminated abnormally (i.e. because a
command that was not preceded by a !CONTINUE got a fatal error) — the
SPOOL.JOBABORTED selection condition lets you select by this flag.

We think that the %SHOWOUT command is a good replacement for :SHOWOUT — just the fact
that it shows the job name can make it worthwhile.

MPEX COMMAND REFERENCE: %SHOWOUTJ

267

MPE/iX Native Mode Spooler note
The Native Mode Spooler on MPE/iX does not retain the spoolfile's group name. If you specify
a group name in %SHOWOUT on MPE/iX, it will be effectively ignored. For example:

%SHOWOUT $STDLIST.PUB.PROD...

is the same as

%SHOWOUT $STDLIST.@.PROD...

%SHOWOUTJ
Syntax: %SHOWOUTJ [jobsessionname][,user.account]

Examples: %SHOWOUTJ DAILY,@.VESOFT
%SHOWOUTJ XXX is the same as %SHOWOUTJ XXX,@.@
%SHOWOUTJ ,USER.ACCT is the same as %SHOWOUTJ @,USER.ACCT

%SHOWOUTJ is simply a very useful special case of %SHOWOUT. It shows you all the spool files
belonging to jobs/sessions with the given job/session name, user, and account.

For example, to see all the spool files belonging to jobs/sessions named DAILY that logged on
as any user in the VESOFT account:

%SHOWOUTJ DAILY,@.VESOFT

SPFile# Filename Pri JOB#:jobname,user.acct,group Ready Date

#O923 LP 7 #J493:DAILY,MANAGER.VESOFT,PUB TUE 12:23AM
#O755 $STDLIST 1 #J493:DAILY,MANAGER.VESOFT,PUB TUE 12:23AM
#O1150 $STDLIST 1 #J505:DAILY,TEST.VESOFT,PUB (OPENED)

This command is quite useful if you frequently have many jobs that log on with the same user
ID but with different job names.

As we mentioned above, this command is just a special case of the much more powerful
%SHOWOUT command. Saying

%SHOWOUTJ X@,Y@.Z@

is the same as saying

%SHOWOUT @.@.Z@(SPOOL.JSNAME MATCHES "X@" and &
 SPOOL.USER MATCHES "Y@")

MPEX COMMAND REFERENCE: %SHOWPAUSED

268

%SHOWPAUSED
Syntax: %SHOWPAUSED

%SHOWPAUSED shows information about jobs that were suspended via the %PAUSEJOB
command. For more information, see the documentation on %PAUSEJOB.

%SHOWPROC
Syntax: %SHOWPROC [[PIN=][#P]pin | [PIN=](pin [,...])]

 [[JOB=]userset | JOB=(jobID [,...])]
 [;FORMAT=[{SUMMARY|FILES}]]
 [;FILES=fileset]
 [;[NO]TREE]
 [;{USER|ANYUSER}]
 [;SYSTEM]
 [;C[HANGE]]
 [;[NO]TRUNC]

Examples: %SHOWPROC #J232
%SHOWPROC (190,56,110,108) (* list of pins *)
%SHOWPROC JOB=(#J132, #J134) (* list of jobs *)
%SHOWPROC #J232; FORMAT=FILES (* info on open files *)
%SHOWPROC BATCH; FILES=@.DB.PROD(ISPRIV)
%SHOWPROC LDEV=MODEM
%SHOWPROC LDEV=MODEM;CHANGE

MPEX's %SHOWPROC command is an improved version of the MPE/iX :SHOWPROC command; it
provides the following enhancements:

• it displays the job/session number, job/session name, user name, account name, and group
name before the first PIN of each job/session;

• it lets you list just those processes which have used CPU since the last %SHOWPROC
command you entered;

• it will show you information about any (or particular) files that the processes you're
displaying have open (perm and temp files);

• it shows you the command line or ;INFO= string of each process (which may be truncated
using the ;TRUNC keyword if the process nesting is too deep);

%SHOWPROC entered without parameters will show all processes in your current job/session:

%SHOWPROC
QPRI CPUTIME STATE JOBNUM PIN (PROGRAM) STEP
 #s187, eugene,manager.tech,eugene (ldev 20)
C152 0:02.425 WAIT S187 17 :RUN MPEX.PUB.VESOFT
C152 0:00.304 WAIT S187 105 (MPEX.PUB.VESOFT)
C158 0:11.023 READY S187 88 (MAIN.PUB.VESOFT)

MPEX COMMAND REFERENCE: %SHOWPROC

269

You may specify a PIN or list of PINs to show particular processes, or a job/session ID, a list of
job/session IDs or a VESOFT userset to show all processes for a particular job or or set of jobs
(in this discussion, job means job or session). If you don't specify any job, userset or PIN, you
will be shown information about your current job/session.

"Normal" users (users without SM or OP capability) will only be allowed to view information
on processes logged on with their same user.account. SM/OP users by default will be shown
information about any jobs/sessions that match the userset they specify. They can limit the
output to jobs/sessions matching their user.account by saying ";USER". (This is mostly for
compatibility with MPE/iX.)

If you have OP capability, you can show any user process(es), but not system processes. If you
have SM capability, you can show any user or system process(es).

If you specify a PIN (or list of PINs), %SHOWPROC defaults to ;NOTREE – only show the
process(es) whose PIN(s) were specified, not their sons.

If you specify a jobID (or list of jobIDs) or VESOFT userset, the default is ;TREE — all
processes in each qualifying job are shown.

The ;CHANGE keyword allows you to show just those processes that have used CPU time since
the last execution of %SHOWPROC! (You must do at least one %SHOWPROC, without ;CHANGE,
that includes the process(es) you are interested in before using ;CHANGE.)

For example, if you do a

%SHOWPROC OPERATOR.SYS

and then later do a

%SHOWPROC OPERATOR.SYS; CHANGE

the second %SHOWPROC will only show those processes that have used CPU time since the
execution of the first %SHOWPROC; the CPUTIME column will show the CPU used since the last
%SHOWPROC rather than (as it normally does) the total CPU used by each process.

The output of the %SHOWPROC command includes the command line or INFO string passed to
each program. When a process tree has several nested processes or the INFO strings are quite
long, the ;INFO= that we display will wrap around to the next line of your screen. While this
isn't serious, it can make reading the output of this command difficult, so we have created a
;TRUNC keyword that will truncate the output at 80 characters. You may want to set this as a
default using the VESOFTDEFAULTSHOWPROC variable. If you have set this variable, you can
use ;NOTRUNC to override the VESOFTDEFAULTSHOWPROC setting. Truncated lines are
identified with a '$' character in the last position.

Showing which files a process has open (;FORMAT=FILES)
MPEX's %LISTF...,ACCESS (documented elsewhere in this manual) has long been one of our
most popular commands. It gives you information about everyone who is accessing a
particular file (or fileset). But, sometimes what you want is just the opposite: you want to
know which files a particular user (or userset) is accessing. The ;FORMAT=FILES option gives
you this information!

MPEX COMMAND REFERENCE: %SHOWSAVED

270

For example, if you want to see what the job LONGTIME,BATCH.PROD is doing at the moment,
you could type:

%SHOWPROC LONGTIME,BATCH.PROD; FORMAT=FILES

This will show you, for every file the job currently has open (in addition to the normal process
information %SHOWPROC displays):

• the file number, full name, file code and record size;

• the type of access the file is opened for (Read, Write, Append, execute, lock);

• the current EOF;

• the current record number;

• the number of disk I/Os this process has performed against this file.

%SHOWPROC shows this information for both temporary and permanent files!

The ;FORMAT=FILES keyword shows all of the files that every process in the process tree has
open. Often, this provides too much information — you may be interested in only one
particular file or fileset instead of every file. Even though %LISTF...,ACCESS shows the
information for a file or fileset, it also shows you every user accessing the file, which again can
be "too much" information (besides, %SHOWPROC shows more information about how this
process is accessing the file than %LISTF does). To limit the output of the %SHOWPROC
command to only those files that are in a given fileset, use the keyword ;FILES=fileset
instead (in fact, ;FORMAT=FILES is equivalent to ;FILES=@.@.@).

%SHOWSAVED
Syntax: %SHOWSAVED;FILE=savefile

Examples: %SHOWSAVED;FILE=SAVEDJBS

%SHOWSAVED shows information about jobs that were saved via the %SAVEJOB command. For
more information, see the documentation on %SAVEJOB.

%SHOWTREE
Syntax: %SHOWTREE

%SHOWTREE shows the entire process tree of your session, e.g.

%SHOWTREE
24 C.I.
 19 MPEX.PUB.VESOFT
 28 MAIN.PUB.VESOFT (active) [you are here]
 53 EDITOR.PUB.VESOFT

MPEX COMMAND REFERENCE: %SHOWVAR

271

Note:

Since MPEX is a CM shell program that runs the NM MAIN program (on MPE/iX systems), the
"[you are here]" marker will appear next to the MAIN program and not the MPEX program.

The "[you are here]" marks the MPEX process; the indentation indicates who is whose son
(PIN 53 is the son of MAIN [PIN 28]).

Once you know that, say, SPOOK5.PUB.SYS is PIN 17, you can type:

%RUN 17

to re-activate it or

%KILL 17

to kill it. Of course, you could have always said

%SPOOK5

or

%KILL SPOOK5.PUB.SYS

(referred to the son process by its program name) — but referring to it by PIN can also be
useful sometimes (to save typing or to resolve ambiguities if you have two son processes with
the same name).

%SHOWVAR
Syntax: %SHOWVAR [varset] [,...]

Examples: %SHOWVAR << shows all your own variables >>
%SHOWVAR @ << shows all variables, including >>
 << system-defined variables >>
%SHOWVAR X, TEMPV@

The %SHOWVAR command shows the values of the specified MPEX variables (see the MPEX
variables chapter for more information).

Typing

%SHOWVAR

will show all of the modifiable variables (mostly the ones that you've set yourself and the ones
that MPEX uses for control purposes).

On the other hand,

%SHOWVAR @

will show all the variables, including the predefined non-modifiable ones, like HPACCOUNT,
HPUSER, etc.;

MPEX COMMAND REFERENCE: %SPOONFEED

272

for instance:

AP = PURGERBM SEGMENT,EXP'
MPEXPREFIX = !
MPEXFILESET = MY@
VESOFTPAGESIZE = 60
HPACCOUNT = VESOFT
HPCMDNUM = 6
HPCPUNAME = SERIES MICRO/XE
HPDATE = 30
HPDATEF = SAT, JAN 30, 1991
...

To see the value of a specific variable or set of variables, you can say

%SHOWVAR AP
AP = PURGERBM SEGMENT,EXP'

or

%SHOWVAR HPDATE@,A?
HPDATE = 30
HPDATEF = SAT, JAN 30, 1991
AP = PURGERBM SEGMENT,EXP'

As you see, you can use wildcards (@, ? and #) to select those variables you want.

%SPOONFEED
Syntax: %SPOONFEED progname, cmd

%>cmd (to execute cmd as a SPOOK5 command)
%'cmd (to execute cmd as a QUERY command)

Examples: %>TEXT 1234
%>LIST 10/20
%'FIND CUST-NO="X985"
%'REPL CUST-NAME="JOHN SMITH & CO."; END

Many programs (EDITOR, QUERY, etc.) allow you to execute some MPE commands from within
them simply by prefixing the command with a ":". Similarly, all MPEX HOOKed utilities let
you execute MPEX commands from within them by prefixing the command with a "%".

Imagine that you could similarly execute QUERY commands or commands of any other utilities
— instead of running QUERY, executing the command, exiting QUERY, and then re-running it
the next time you need to do a QUERY command, you could just say

%'FIND STATE=CA,TX,WA

All that you have to do to execute a QUERY command is to prefix it with a "'" character.

MPEX COMMAND REFERENCE: %SPOONFEED

273

%>TEXT 1234
%>LIST 1/20

You might even put all these ">"-prefixed commands in a command file; the same command
file can mix MPEX commands, QUERY commands, and so on!

We call this process "spoon-feeding" — we keep QUERY or whatever else as a son process and
pass it one command at a time. As soon as the program involved executes that command and
prompts for more input, control is returned to MPEX (or whatever MPEX HOOKed program
you're using MPEX from). This actually works regardless of what sort of input the "spoon-fed"
program prompts you for (a command or some other kind of input).

Thus, a typical "spoon-fed QUERY" conversation might look like this:

%'BASE=MYDB
HP32216D.00.08 QUERY/3000

PASSWORD = << QUERY prompt >>
%'MYPASS
MODE = << QUERY prompt >>
%'5
> << QUERY prompt >>
%'FIND CUST-NO="X987"
...

Every time QUERY prompts you for input, control is returned to MPEX, and QUERY remains
suspended until you enter the next command that starts with "'" – this command will then re-
activate QUERY and send it the data that you want.

Note that this sort of approach might take some getting used to. For instance, many programs
(like QUERY and EDITOR) will output their own prompt to you before re-activating MPEX;
thus, you'll see not just MPEX's "%" prompt but also the program's prompt before it. Also, in
the example above, QUERY turned off echo when prompting for the password; echo will
remain off for MPEX until you either do a "%SET ECHO=ON" command or send the password to
QUERY (which will cause QUERY to turn echo back on). However, all in all, we think that this
can be a very powerful time-saving feature.

Another way to look at spoon-feeding is that it doesn't "mode you in"; instead of having
"EDITOR mode", "MPE mode", "QUERY mode", etc., you can readily execute any kind of
command you want from one environment (typically either MPEX or your favorite HOOKed
text editor).

How to use spoonfeeding
All of the above has been an introduction to the benefits of what we believe to be a rather
novel feature. How exactly can you get it to work for you?

Well, technically speaking, the fundamental spoon-feeding command is

%SPOONFEED progname, cmd

MPEX COMMAND REFERENCE: %SPOONFEED

274

For instance, to execute a QUERY command, you'd say:

%SPOONFEED QUERY, FIND CUST-NO="X987"

This will execute QUERY.PUB.VESOFT (this program must be an MPEX HOOKed program in
PUB.VESOFT — QUERY is HOOKed automatically when you install our software) and pass to
it the FIND command.

Of course, if you had to type "SPOONFEED QUERY, " before every QUERY command you
wanted to execute, it wouldn't be much better than having to run QUERY and execute the
command directly from QUERY.

Fortunately, we let you define the meaning of any special character (except for the reserved
characters "%", "!", "?", "$", ":" and "," [comma]) when used as the first character of an MPEX
command.

In the default MPEXMGR.PUB.VESOFT file, we say

%:SETVAR MPEXPREFIXDEF39 "SPOONFEED QUERY,"

This means: "Set the DEFinition of PREFIX character 39 (which is the ASCII code for a single
quote) to be 'SPOONFEED QUERY,'". (If you haven't memorized the ASCII table yet, you could
have said %CALC ORD("'") to find out the ASCII code.) Whenever MPEX sees a command
that starts with a "'", it will replace the quote by "SPOONFEED QUERY,", which will then cause
the command to be executed as a QUERY command.

Needless to say, you can in this way define your own spoon-fed programs. If, for instance, you
frequently use KSAMUTIL, you can say:

%HOOK KSAMUTIL.PUB.SYS

to make an MPEX HOOKed copy of it in PUB.VESOFT, and then add a line to
MPEXMGR.PUB.VESOFT that says

%:SETVAR MPEXPREFIXDEF94 "SPOONFEED KSAMUTIL,"

This will define "^" (ASCII 94) as the prefix character for KSAMUTIL command — of course,
you can use some other character if you prefer, or you might even set up a command file called
"K" that says

ANYPARM CMD
SPOONFEED KSAMUTIL,!CMD

and then you'll be able to execute KSAMUTIL commands from MPEX simply by saying

%K BUILD MYFILE;KEYFILE=MYFILEK;KEY=...

(There's nothing that says that you have to use special characters to identify spoon-feeding
commands.)

MPEX COMMAND REFERENCE: %SPOONINIT

275

An important warning
As we mentioned before, if you use spoon-feeding you might have to get used to a few new
considerations. One of the most important ones has to do with the fact that the spoon-fed
process remains alive even when you're not in it. In a way, this is obvious, since this is the
whole point of spoon-feeding; however, this also means that any files that the process has
opened remain opened and any resources that it has locked remain locked.

For example, a problem can happen if you're spoon-feeding QUERY and do a %'FIND
command without previously doing an %'ASSIGN LOCKOPTION=OFF. The FIND command
will lock the entries it finds, which is not bad by itself; however, if you then run your own
program from within MPEX and it tries to lock something, the program will either get an error
indicating that it tried to lock something while the session already holds a lock.

Furthermore, if your program has CAP=MR (which explicitly turns off this lock-time
checking), you can cause a mini-deadlock — your program will be waiting for a lock that is
held by QUERY, while QUERY will be waiting for re-activation by MPEX, which in turn is
waiting to be re-activated by your program. You would then have to do a [BREAK] and
:ABORT to get out of this.

Getting information on which programs you're spoonfeeding
Here are a few ways in which you can see the state of the programs you are currently spoon-
feeding:

• A %SHOWTREE will show you all of your son processes, including the ones you're spoon-
feeding.

• The PIN (Process Identification Number) of a spoon-fed process is kept in the JCW
MPEXSONEXECPINprogname, where the "progname" is fully qualified. Since the "."
character isn't legal in a variable name, the "."'s are changed to the letter "Z". For instance,
the PIN of a spoon-fed QUERY would be in MPEXSONEXECPINQUERYZPUBZSYS.

• If you've forgotten where you are in a particular spoon-fed process, remember that all
spoon-fed processes are running MPEX HOOKed programs — you can use the MPEX HOOK
LISTREDO command to see which commands you've executed through this spoon-fed
program. For example, entering "':LISTREDO" (or ',,) will show you the last 20
commands you've spoon-fed to QUERY.

%SPOONINIT
Syntax: %SPOONINIT programfile {;MPEX %run-parm} [;...]

Examples: %SPOONINIT QEDIT;PARM=7

Occasionally, you may need to supply a "runtime" parameter to the program being spoonfed
(such as a ;PARM= value or an ;INFO= string). %SPOONINIT allows you to do this; however, it
must be used as the FIRST "spoonfeed" type command for the program and does not allow you
to actually specify a command to be "spoonfed".

MPEX COMMAND REFERENCE: %SUBMIT

276

Although ;INFO= and ;PARM= are most likely to be the only parameters you would need to
specify, the following parameters may be used as well (of course, you should not use any
parameters from this list if they cause your program to abort outside of MPEX):

;DL
;INFO
;LMAP
;MAXDATA
;NMHEAP (NM)
;NMSTACK (NM)
;PARM
;PRI
;STACK
;STDLIST

The following %:RUN parameters should be avoided as they will interfere with our processing
of the spoonfeed command:

;DEBUG (used for debugging, we cannot supply input in this case)
;GOON
;INMSG
;INPUT
;KILL
;NEW (we supply this in our command)
;NOACTIVATE (we supply this in our command)
;NOPRIV
;STDIN (SPOONFEED provides the STDIN input)
;UNSAT (used for debugging)
;XL= (NM) or ;LIB= (CM) (we supply this in our command)

%SUBMIT
Syntax: %SUBMIT "[joblogon] [;jobparms]", mpexcommand

Examples: %SUBMIT ";OUTCLASS=,1;INPRI=2;PRI=ES", &
 COBOL AP@.SOURCE, AP@.PUB
%SUBMIT "MANAGER.SYS", PURGE LOG####.PUB.SYS
%SUBMIT "MGR.PROD;OUTCLASS=SLOWLP,3", RUN MYPROG;PARM=1234

The %SUBMIT command makes MPEX submit a job that will execute the given MPEX
command.

• You may (optionally) indicate that the job is to be submitted under somebody else's user ID
or with some special job parameters.

• You may execute either an MPEX command or a normal MPE command (RUN, STORE, a
UDC, etc.); if the MPE command has the same name as an MPEX command (like FCOPY),
precede it with a ":".

MPEX COMMAND REFERENCE: %SUBMIT

277

• All the file equations that are in effect in your session, and the current value of your
HPPATH variable, will automatically be copied to the created job.

• You may indicate who MPEX should notify of the job's completion by setting the
MPEXTELLBACK variable.

• You may indicate how MPEX should inform you of the job's completion by setting the
MPEXTELLBACKCMD variable.

(See the %SCHEDULE chapter and "Batch execution ('$' prefix)" in the MPEX Commands
chapter for more information.)

To execute an MPEX command in a job stream, you can simply say

%$COBOL AP@.SOURCE, AP@.PUB

The "$" prefix tells MPEX to perform the command offline — MPEX will automatically generate
a job stream that executes the above command.

It'll also copy all the file equations (such as :FILE COPYLIB=...) that you may have in your
session into the job, so that the job environment is as close as possible to your session
environment.

The %SUBMIT command simply extends this capability to allow you to specify a different logon
ID and :JOB card parameters for the job stream. Saying

%$COBOL AP@.SOURCE, AP@.PUB

will execute "COBOL AP@.SOURCE, AP@.PUB"

• under your own logon id

• with the job parameters ";OUTCLASS=,1".

What if you want to submit it at input priority 2 with CPU priority ES? Just say

%SUBMIT ";OUTCLASS=,1;INPRI=2;PRI=ES", COBOL AP@.SOURCE, AP@.PUB

If you say

%SUBMIT "MGR.PROD;OUTCLASS=SLOWLP,3", COBOL AP@.SOURCE, AP@.PUB

then it'll not only use the given job card parameters but also the given logon ID (MGR.PROD).

Saying just

%SUBMIT "MANAGER.SYS", PURGE LOG####.PUB.SYS

will only change the logon ID (MANAGER.SYS) while keeping the default job card parameters
(;OUTCLASS=,1).

Of course, if you try to submit something under somebody else's logon ID, MPEX will prompt
you for the passwords (unless you have SM capability or AM capability in your own account).

If you always want to submit your jobs with a particular set of !JOB card parameters (other
than the default ";OUTCLASS=,1"), you might want to add a %SETVAR MPEXDEFAULTJOBPARMS

MPEX COMMAND REFERENCE: %SYNTAX

278

to your MPEXMGR, MPEXMGR.PUB or MPEXMGR.PUB.VESOFT file to set the special
MPEXDEFAULTJOBPARMS variable to your default !JOB card parameters.

For example, you might say

%SETVAR MPEXDEFAULTJOBPARMS "OUTCLASS=,2;PRI=ES"

If you do this, all the jobs you submit with the "$command" syntax (or with the %SUBMIT
command in which you only specify a different logon ID, not a different set of !JOB card
parameters) will be submitted with OUTCLASS=,2 and PRI=ES.

%SYNTAX
Syntax: %SYNTAX [mpexcommand]

Examples: %SYNTAX ALTFILE
%SYNTAX PRINT

MPEX has a lot of new commands, and adds many features to existing MPE commands. To
help you take full advantage of the increased power MPEX gives you over your HP3000, we
provide a very easy-to-use conceptual online help facility (see the documentation on the
%HELP command for details).

Sometimes, however, all you want is a quick reminder of the syntax of a particular command.
For this purpose, we provide the %SYNTAX command.

Typing

%SYNTAX ALTFILE

for example, will take you directly to the syntax diagram for MPEX's ALTFILE command.

Typing

%HELP ALTFILE

would give you a list of topics related to the %ALTFILE command, and ask you which one you
would like help on.

%TELL
Syntax: %TELL userset [[;]text]

Examples: %TELL EUGENE,@.@&ONLINE Lunch time!
%TELL @,MANAGER.@+@,MGR.@ System will be down tonight...
%TELL LDEV=113 Is anyone there?
%TELL LDEV=DIALIN Please hang up soon or be aborted.

MPEX COMMAND REFERENCE: %TRAPERROR

279

The %TELL command is an enhanced version of MPE's :TELL command. It allows you to
specify which sessions to :TELL to using VESOFT usersets (see the Usersets section of the
SECURITY User Manual).

%TRAPERROR
Syntax: %TRAPERROR

%command
...
%command
%{IFERROR|CLEANUP}
% command
...
% command
%{ENDIFERROR|ENDCLEANUP}

Although MPE lets you do rudimentary error handling with :CONTINUE,
:IF/:ELSE/:ELSEIF/ :ENDIF and the CIERROR JCW, this can prove to be very cumbersome.

For instance, say that you want to do the commands A, B, C, and D, but once one of them gets
an error, you want to avoid doing the others without aborting the UDC, command file or job
(perhaps because you want to do some cleanup at the end).

You'd have to say something like:

SETJCW CIERROR=0
CONTINUE
A
IF CIERROR=0 THEN
 CONTINUE
 B
 IF CIERROR=0 THEN
 CONTINUE
 C
 IF CIERROR=0 THEN
 CONTINUE
 D
 ENDIF
 ENDIF
ENDIF
IF CIERROR<>0 THEN
 TELLOP ERROR IN THE PROCESSING
ENDIF

MPEX COMMAND REFERENCE: %CLEANUP

280

MPEX has a very useful construct that can let you do this much more easily:

TRAPERROR
A
B
C
D
IFERROR
 TELLOP ERROR IN THE PROCESSING
ENDIFERROR

This syntax tells MPEX to do the commands between the %TRAPERROR and the %IFERROR until
an error occurs, and then, if the error occurs, do the commands between the %IFERROR and
%ENDIFERROR (and then continue with the rest of the UDC, command file or job).

This can be very useful. For instance, you can make all your production jobs look like:

:JOB...
:COMMENT The first thing we do is :RUN CI.PUB.VESOFT, which
:COMMENT provides a very good emulation of MPE (plus all the
:COMMENT new features.)
:RUN CI.PUB.VESOFT
TRAPERROR
<< all the commands you'd normally put into your job >>
IFERROR
 TELLOP !HPJOBNAME FAILED, ERROR !HPCIERRMSG
ENDIFERROR
EXIT
:EOJ

The jobs will function the same way as before (subject to the relatively few minor
incompatibilities between MPEX and MPE — test before you commit to this!), but instead of
just blindly aborting, they catch the error and do whatever cleanup is necessary — in this case,
just a :TELLOP, but it could also include any necessary :PURGEs and such.

%CLEANUP
Another form of error handling that we've often found useful is doing several commands, and
then, regardless of whether an error occurred or not, doing some "cleanup" commands, e.g.:

%BUILD F1
%BUILD F2
%TRAPERROR
% RUN PROG1
% RUN PROG2
% ...
%CLEANUP
% :PURGE F1
% :PURGE F2
%ENDCLEANUP

MPEX COMMAND REFERENCE: %UNALIAS

281

Here, the commands between the TRAPERROR and the CLEANUP are executed, and then,
whether or not an error occurred, the commands between the CLEANUP and ENDCLEANUP are
executed. Then and only then — after the cleanup commands are done — if an error occurred
in the TRAPERROR/CLEANUP block, the rest of the UDC, command file or job is flushed
(subject, of course, to any other TRAPERROR constructs in which it is itself nested).

If you want to immediately "jump" to the IFERROR or CLEANUP block you can use:

%ESCAPE errnum

This sets HPCIERR to errnum, sets CIERROR to the absolute value of errnum, and skips all
statements until the next IFERROR or CLEANUP.

For example:

...
TRAPERROR
IF VEFINFO("FILE1").EOF//VEFINFO("FILE1").FLIMIT > .80 THEN
 ESCAPE 1
ELSEIF VEFINFO("FILE2").EOF//VEFINFO("FILE2").FLIMIT > .80 THEN
 ESCAPE 2
ELSEIF VEFINFO("FILE3").EOF//VEFINFO("FILE3").FLIMIT > .80 THEN
 ESCAPE 3
ENDIF
...
IFERROR
 ECHO ERROR:
 ECHO FILE!HPCIERR is more than 80% full!!!
 ECHO Terminating job submission.
 EXIT
ENDIFERROR

For additional information, see the %ESCAPE command documented earlier in this manual.

%UNALIAS
Syntax: %UNALIAS aliasname

Examples: %UNALIAS WG
%UNALIAS SS

%UNALIAS and %ALIAS are closely related commands; please see the documentation on
%ALIAS.

MPEX COMMAND REFERENCE: %VEAUDIT

282

%VEAUDIT
Syntax: %VEAUDIT command

Examples: %VEAUDIT LISTUSER @.@
%VEAUDIT ALTUSER CAP=SM-MANAGER.SYS;CAP=-SM

The %VEAUDIT prefix allows VEAUDIT users to enter VEAUDIT accounting structure
maintenance commands within MPEX. Please see "Accounting Structure Maintenance" in the
VEAUDIT User Manual for details.

%VECMDCH
Syntax: %VECMDCH fileset [;REMOVE]

Examples: %VECMDCH @.PUB.PROD(ISPROG)

This command allows you to change a program fileset so that it uses STREAMX instead of
STREAM (i.e. it replaces calls to the COMMAND intrinsic with calls to the VECMMND intrinsic).

To change a fileset from VECMMND back to COMMAND, use the ";REMOVE" option.

Please see the What if your program does a :STREAM programmatically chapter in the
SECURITY User Manual.

%VEOPENCH
Syntax: %VEOPENCH fileset [;REMOVE]

Examples: %VEOPENCH @.PUB.PROD(ISPROG)

This command allows you to change a program fileset so that it uses VEOPEN instead of
DBOPEN (i.e. it replaces calls to the DBOPEN intrinsic with calls to the VEOPEN intrinsic).

To change a fileset from VEOPEN back to DBOPEN, use the ";REMOVE" option.

Please see the Making Program Which Source Code You Don't Have Call VEOPEN chapter in
the SECURITY User Manual.

MPEX COMMAND REFERENCE: %WARN

283

%WARN
Syntax: %WARN userset [[;]text]

Examples: %WARN ONLINE System going down soon; please log off.
%WARN LDEV=113 Last chance to log off gracefully...
%WARN LDEV=DIALIN Please hang up soon or be aborted.

The %WARN command is an enhanced version of MPE's :WARN command. It allows you to
specify which sessions to :WARN using VESOFT usersets (see the Usersets section of the
SECURITY User Manual).

Note:

Just as in MPE, the WARN command can only be issued from the console, unless permitted via
the ALLOW command.

%WARNF
Syntax: %WARNF userset [[;]text]

Examples: %WARNF ONLINE System going down soon; please log off.
%WARNF @,MANAGER.@+@,MGR.@ System will be down tonight...
%WARNF LDEV=113 Last chance to log off gracefully...
%WARNF LDEV=DIALIN Please hang up soon or be aborted.
%WARNF ACCESSING=CUST.DB.PROD Please exit CUSTDB now...

%WARNF is just like %WARN except that it displays the message right over the function keys (on
most new HP terminals), rather than on the actual display portion of the screen. This makes it
easy for you to send messages to people without overwriting any of the data that they might
have on their screen. To erase the message, users can simply press [RETURN].

Unlike the :TELL (or %TELL) command, %WARNF does not include any information about who
sent the message. To avoid having to manually include your name (or session number) in
every %WARNF message you send, MPEX will prefix the message with the contents of the
variable MPEXWARNFPREFIX (if you %SETVAR it).

For example, to prefix all %WARNF messages with "From Ron: ", you would do a

%SETVAR MPEXWARNFPREFIX "From Ron: "

before you do any %WARNFs. In fact, you may want to include this %SETVAR in your MPEXMGR
file (see "Specifying commands to be executed each time MPEX is entered" in the Running
MPEX section of this manual).

%WARNF will not work on non-HP terminals or on really old HP terminals (like the 2621 or the
264x series) — it will either display the message on the normal part of the screen, with some
garbage characters before it or might (for non-HP terminals) trigger some strange terminal-
specific behavior. Be careful.

MPEX COMMAND REFERENCE: %WHEREIS

284

%WHEREIS
Syntax: %WHEREIS command

Examples: %WHEREIS EDITOR
----- EDITOR MPE command
 EDITOR Program file in PUB.SYS

%WHEREIS MPEX@

----- MPEX System-level UDC in MPEXUDC.PUB.VESOFT
 MPEX Program file in PUB.VESOFT

----- MPEXHELP MPEX command

----- MPEXLDIR Command file in PUB.SYS

----- MPEXMGR Command file in WORK.VESOFT
 MPEXMGR Command file in PUB.VESOFT

----- MPEXSTOR MPEX command

This command takes the name of a command as its parameter and displays how MPEX would
interpret the name if it were issued as a command.

WHEREIS uses the same rules that MPEX uses at execution time to determine how a command
is executed. The command identifies all instances of the command that exist, the first one
shown is the one that would actually be executed.

The command parameter accepts wildcards, as shown in the second example above.

The command is useful if MPEX appears to execute a different command from the one you
intended. It shows you if you have conflicts between the names of your UDCs and command
files, and also if your HPPATH gives you access to the commands that you expect it to.

MPEX uses the following precedence when determining which command to execute:

 1 MPEX aliases.
 2 User-level UDCs.
 3 Account-level UDCs.
 4 System-level UDCs.
 5 MPEX commands.
 6 MPE commands.
 7 Temporary programs or command files in your HPPATH.
 8 Permanent programs or command files in your HPPATH.

If the command parameter includes wildcard characters, all matching commands will be
displayed. However, MPE commands are not shown when wildcard characters are used.

MPEX COMMAND REFERENCE: %WHILE...%ENDWHILE

285

%WHILE...%ENDWHILE
Syntax: %WHILE logicalexpression [DO]

%>command1
%>command2
...
%>commandN
%ENDWHILE

Examples: %SETVAR I 0
%WHILE I<10
%>BUILD TEST!I
%>SETVAR I I+1
%>ENDWHILE

The %WHILE loop executes a sequence of commands while a certain condition is true (much
like a PASCAL's WHILE loop).

For instance, the above example will execute the commands

%>BUILD TEST!I
%>SETVAR I I+1

10 times, with the variable I being set to values from 0 to 9. Once the %>SETVAR sets I to 10,
the condition "I<10" will no longer be true, and the %WHILE loop execution will stop.

In other words, the commands actually executed will be:

BUILD TEST0
SETVAR I I+1
BUILD TEST1
SETVAR I I+1
...
BUILD TEST9
SETVAR I I+1

When you're being prompted for %WHILE loop commands, MPEX will prompt you with "%>"
instead of just "%".

%WHILE is much like MPE/iX's :WHILE command, but it gives you the full power of VESOFT
expressions (for details, see Appendix B)!

MPEX COMMAND REFERENCE: %WITHCAPS

286

Here's a sample job stream using %WHILE:

!JOB JOBA,MGR.PROD
!COMMENT
!COMMENT All MGR.PROD files that have the following lines
!COMMENT will only be allowed to run one at a time.
!COMMENT
!RUN MAIN.PUB.VESOFT;PARM=1
%WHILE MPE ("BUILD FLAGFILE; CODE=!HPJOBNUM; DISC=1")<>0 DO
% COMMENT The following IF is in case the job that built
% COMMENT FLAGFILE aborts before PURGEing it.
% IF JSCOUNT("#J"+"![VEFINFO('FLAGFILE').INTCODE]")=0 THEN
% PURGE FLAGFILE
% ELSE
% PAUSE 300
% ENDIF
%ENDWHILE
%EXIT
...
!PURGE FLAGFILE
!EOJ

%WITHCAPS
Syntax: %WITHCAPS "caplist", command

Examples: %WITHCAPS "SM", COPY F1,F2.PUB.ACCT;YES
%WITHCAPS "OP", STORE @.@.@; *TAPE
%WITHCAPS "AM", NEWGROUP !GROUPNAME

Special
note:

Although this feature is being described in the MPEX User Manual, it is only available in MPEX
command files if you are a user of both MPEX and SECURITY. It is also available within
STREAMX jobs (for :: commands) and in SECURITY menus.

Often you might want to have users execute certain commands in command files, job streams
or menus, that require more capabilities than they have. For instance, you might want a menu
to access — in a controlled way, of course — a file that you normally wouldn't let your users
access; or, you may want to set up an MPEX command file that lets users who lack SM
capability build new accounts, provided that certain checks are satisfied (e.g. the new accounts
don't have unusual capabilities). The WITHCAPS feature makes this possible.

Another similar SECURITY feature is the $NOPASS mechanism for STREAMX job streams, (see
"Allowing People To STREAM Certain Files Without Password Prompts" in the Batch Access
Security And Job Stream Programming section of the SECURITY User Manual) which lets users
stream jobs that log on as user IDs whose passwords the submitting users don't know — a user
is thus allowed to perform a particular operation that requires a given capability (for
WITHCAPS) or logs on as a given user ID (for $NOPASS) without in general having that
capability or being able to use the given user ID.

MPEX COMMAND REFERENCE: %WITHCAPS

287

The command file, menu or job stream involved can then perform the proper security checks
to make sure that the high-capability operation that it's trying to perform is actually legitimate.

The way the WITHCAPS mechanism works is rather simple:

• You add lines to the STREAMX.DATA.VESOFT file that indicate which command
files/menus/job streams being executed by which users can get which capabilities.

For instance, saying

$WITHCAPS-PERMIT @.AP APPFILE.CMD.SYS "SM"

means that the file APPFILE.CMD.SYS can use a WITHCAPS command to temporarily
obtain SM capability — but only while executing the particular line that contains
"WITHCAPS", and only when executed by users in the AP account.

You can, of course, have multiple $WITHCAPS-PERMITs, but you can also restrict them by
using $WITHCAPS-FORBIDs, e.g.

$WITHCAPS-PERMIT @.AP @.CMD.SYS "AM"
$WITHCAPS-FORBID CLERK.AP NEWUSER.CMD.SYS "AM"

which lets all AP users use all CMD.SYS files that acquire AM capability, but forbids
CLERK.AP from using NEWUSER.CMD.SYS, a command file that would need AM capability
to add a new user to the system, for instance.

Needless to say, it's very important to think out all the security ramifications of letting these
users use the files which temporarily get extra capabilities. In particular, it vital that users
not have write or save access to the filesets specified in $WITHCAPS-PERMIT, since
otherwise they'd be able to make up their own files with WITHCAPS commands in them.

• Once the appropriate $WITHCAPS-PERMIT line has been added to the
STREAMX.DATA.VESOFT file, the job stream, menu or command file (or even $STDIN)
would then include a

::WITHCAPS "caplist", cmd in a STREAMX job

or

WITHCAPS "caplist", cmd in a SECURITY menu or MPEX command file

For example:

WITHCAPS "SM", COPY F1,F2.PUB.ACCT;YES

will execute the COPY command while possessing SM (and will, of course, reset the
capabilities to normal when done).

MPEX COMMAND REFERENCE: %WITHCAPS

288

A menu option using this might look like:

*CAPTION ADD RECORD TO CONTROL FILE
PROMPT STRING REC = "Enter record"; &
 CHECK = (REC[0:1]<>"A" and REC[0:1]<>"D"); &
 CHECKERROR = "Not allowed to add Add or Delete records"
WITHCAPS "SM", CALC VEFWRITE ('CONTFILE,OLD;ACC=APPEND', REC)

Similarly, an MPEX command file (or UDC) might have a %WITHCAPS and a STREAMX job
might have a ::WITHCAPS. Note that the STREAMX ::WITHCAPS will change capabilities
at job submission time (for the benefit of any :: commands that you might want to do),
not at job execution time (since you can already determine the job execution capabilities by
submitting the job under the right user ID).

You need to keep a few things in mind when you use WITHCAPS:

• Firstly, be careful what you do when you've gotten capabilities with WITHCAPS. For
instance, don't just do an operation on a file whose name the user gave you (as a parameter
or an input value) — check to make sure that the user is really allowed to manipulate this
file. Don't just create a new user with the parameters that the user specified; check to make
sure that, for instance, the capability list doesn't include SM, AM, OP or PM.

• The WITHCAPS takes effect only for the MPEX/LOGON/STREAMX process and for processes
the command passed to WITHCAPS starts up. Since we don't set the capabilities for the
whole session (for security reasons), some operations (VEJOBINFO, for example) and
programs might not recognize the temporarily acquired capabilities, though we believe that
most (including, most importantly, the file system's file security checking) will.

• Normally, when you run a program or execute a command file, MPEX (and MPE) first try to
find a temporary file with that name and only look for a permanent file if the temporary file
doesn't exist. This would make it possible for a user to violate security by creating a
temporary file with the same name as a command file or program that was to be executed
while a WITHCAPS was in effect. To avoid this, MPEX, LOGON and STREAMX will, while a
WITHCAPS is in effect, only execute permanent command files and programs (unless you
explicitly indicate otherwise in the command file/menu/job stream by using a file equation
with a ,OLDTEMP on it).

• By the same token, we do not execute UDCs when WITHCAPS is in effect. The reason for
this is that the operating system resolves UDCs by scanning the USER level UDCs first, then
the ACCOUNT level and finally the SYSTEM level. If we were to execute UDCs while a user
had additional capabilities, all a user would have to do to circumvent security would be to
set a USER level UDC with the same name as an ACCOUNT or SYSTEM level UDC or even
an MPE command — therefore we don't allow this.

• Also for security reasons, MPEX will not honor MPEXCRITRESTRICTxxx variables (which
restrict MPEX fileset handling commands to operate only on certain types of files) and
VESOFTDEFAULTxxx variables (which set defaults for %ALTFILE, %COPY, %PRINT, :RUN
and implied RUN parameters) while a WITHCAPS is in effect.

• You cannot use WITHCAPS to acquire PM, PH, MR, DS, IA and BA capabilities; fortunately,
you probably wouldn't want to, since the most useful capabilities to acquire are SM, AM
and OP, and possibly also AL and GL.

• As we said before, this feature is only available in MPEX if you are user of SECURITY.

MPEX COMMAND REFERENCE: %XEQ

289

%XEQ
Syntax: %XEQ commandfilename [parameterlist]

%XEQ progfilename [[INFO=]infostring] [;[PARM=]parmvalue]

Examples: %XEQ MYPROG INFO="MYFILE";PARM=%10001
%XEQ MYPROG "MYFILE",%10001

In principle, "%XEQ xxx yyy" does the same thing as "%xxx yyy" — it finds a program file or
a command file named "xxx" and executes it, passing to it the parameters "yyy". (See "Implied
run" and "Command files" in the MPEX Commands chapter for more details.)

Why have the %XEQ command at all? The only reason for it is if "xxx" happens to be the name
of an MPE or MPEX commands or a UDC.

Remember that the sequence in which MPEX tries to execute commands is:

• UDCs,

• MPEX commands,

• built-in MPE commands,

• and finally command files or implied :RUNs.

If the command file or program you want to execute has the same name as a UDC or an MPE
or MPEX command (e.g. "INPUT" and "FCOPY" in the examples above), you need to use the
%XEQ command.

Note that %XEQ honors the HPPATH variable just like normal command file execution and
implied :RUNs do.

Appendix A

A-1

Appendix A: POSIX Compatibility issues

The following is a list of everything that we believe could be considered an "incompatibility"
with pre-POSIX versions of MPEX. We don't believe any of these changes should have negative
impact on you, but we want to make you aware of them.

For more details on any of these features, please see the main entry for that feature in the
MPEX User Manual.

Important note for users of MPEX/iX 4.5:
Version 4.5 of the MPE/iX operating system was the first version to include POSIX-compliant
extensions, and was sent primarily to software developers and users specifically interesting in
Beta testing these extensions. MPE/iX version 5.0 is the first generally distributed version to
include POSIX extensions. Because of a number of limitations in MPE/iX 4.5, with the release
of 5.0 we no longer support version 4.5 of the operating system.

Visual VEMODIFY (for %REDO) extends over 1 screen line
The VEMODIFY function, used for %REDO and HOOKed programs, when editing in visual mode,
has been enhanced to allow lines containing up to 150 characters to be edited. Characters
inserted on the first line will insert-wrap to the second line when they reach the last screen
column, and characters deleted from the first line will pull back characters from the second
line.

By default, VEMODIFY assumes that your terminal is 80 columns wide, and uses cursor-
positioning escape sequences that won't work correctly if you have a 132 column wide
terminal.

If you switch between 80 and 132 character-wide modes, you can now configure VEMODIFY to
use width-independent escape sequences to position the cursor. To do this you must setup the
JCW VESOFTVEMODIFYEXPANDOK=1 before using VEMODIFY the first time, or issue the
%INITREDO command after setting the JCW.

VEMODIFY uses much longer escape sequences when you configure it this way, so we suggest
you only use this mode when connected over a high speed line.

Type "%HELP VEMODIFY" for more details on this topic.

Using the continue ("&") character
MPEX handles continuation lines the same way MPE does on a CLASSIC system, i.e. there will
be one space inserted where the continuation character appears in the line. MPE/iX however,
does not insert a space, and also strips any leading spaces from the next line. In order to make
MPEX behave the same way, you must set the JCW VESOFTCONTINUENOSPACE=1. Be aware
that this may cause files that worked before to fail.

Appendix A

A-2

For example, the following IF command will fail:

IF a=b AND&
 j=k THEN
 ECHO Test true
ENDIF

as the letter "j" will be appended to the "AND" operator. Both MPEX and MPE/iX will report an
error when trying to evaluate the variable "ANDj".

Type "%HELP CONTINUE" for more details on this topic.

"@.@.@" vs. "/" on systems that support POSIX
Historically, "@.@.@" meant every file on the system. With the release of MPE/iX 4.5,
however, it became necessary to use "/" to specify all files on the system. ("@.@.@" was limited
to all MPE files on the system — files stored in subdirectories under the root or other MPE
groups would not qualify as part of "@.@.@".)

With the release of MPE/iX 5.0, MPE's :STORE command was modified to treat "@.@.@" and
"@.@.MYACCT" as equivalent to "/" and "/MYACCT/" respectively. This is currently the only HP
supplied utility that acts in this manner – the :LISTF command only list MPE files, and the
:LISTFILE command only lists POSIX files if you specify a POSIX-syntax fileset (one
beginning with a "." or "/"). Other HP commands and utilities act in a similar manner, i.e.
only finding files in the MPE or POSIX namespace depending upon the fileset given in the
command.

MPEX commands that accept filesets, however, will accept either a POSIX style fileset, an MPE
style fileset, or a mixture of MPE and POSIX filesets and automatically format the output as
appropriate. In addition, %LISTF @.GROUP will display any POSIX filenames stored in that
group (but not in any subdirectories of that group).

Type "%HELP HFS" or "%HELP POSIX" for more details on this topic.

LISTF format changes
A number of extensions have been made to the output of MPEX's %LISTF modes (on both
POSIX and pre-POSIX systems), as summarized here:

All %LISTF modes:
On POSIX system, unlike the MPE/iX :LISTF command, the MPEX %LISTF command shows
all POSIX files, including lower and mixed-case filenames, filenames containing special
characters, and long filenames.

If you wish to inhibit the display of all POSIX files (and emulate the behavior of MPE's :LISTF
command), issue the following command:

%SETVAR VESOFTNOTALWAYSPOSIX TRUE

Appendix A

A-3

%LISTF ,-1:
On POSIX systems, the output of %LISTF,-1 has been extended to display 332 words of the
filelabel, as opposed to the 256 words displayed by the MPE/iX :LISTF,-1. :

If you wish to emulate the behavior of MPE's :LISTF command, issue the following command:

%SETVAR MPEXLISTFLABELSIZE 256

%LISTF ,2:
The output of %LISTF,2 has been extended to display the number of days since a file was last
accessed and modified. The new fields are displayed to the right of the traditional :LISTF,2
fields.

If you wish to inhibit the display of the two new fields, issue the following command:

%SETVAR MPEXLISTFNODAYS TRUE

%LISTF ,-3 and %LISTF ,3:
The output of %LISTF...,3 and %LISTF...,-3 has been modified on POSIX systems to include
information on a file's OWNER and GROUPID. In addition MPEX's %LISTF also reports the
numeric UID and GID equivalents (when the filename is specified using HFS-syntax), as well
as the POSIX State-Change timestamp, and the target filename of a link file.

The "**SECURITY IS ON" field now also indicates if a file has an ACD assigned, and shows
(on POSIX systems) if the ACD is required.

On Spectrum systems, volume restrictions are now accurately displayed, as well as an
indication if the file is a system bootfile, located on device $SYSTEM_MASTER.

File attributes: CREATOR, CREATORACCOUNT, and OWNER
There are two new attributes related to the CREATOR attribute, these are CREATORACCOUNT
and OWNER. The CREATOR is the MPE USER ID of the owner of the file, (just as it has always
been), while the CREATORACCOUNT is the MPE ACCOUNT name of the owner of the file and
the OWNER is both the CREATOR and CREATORACCOUNT attributes in the form "user.account".

When CREATOR is used within extended fileset selection, special logic is used to allow it to
match either the traditional "user" or the new "user.account" posix styles of representing
the file creator. When OWNER is used within extended fileset selection, it will only match
strings using the "user.account" format.

In other words, (CREATOR="MANAGER.SYS") works just as well as (OWNER="MANAGER.SYS"),
(CREATOR="CLERK") works the same as it always has, while (OWNER="CLERK") will never
match anything.

When these attributes are recovered using the VEFINFO(...) function, CREATOR just returns
the USER info while OWNER returns both the user and account. This is very useful when trying
to determine if the creator of a file still exists.

Appendix A

A-4

In the %ALTFILE section, we gave this example:

%ALTFILE @.@(NOT USEREXISTS(CREATOR+"."+ACCOUNT));CREATOR=MANAGER

Using the OWNER attribute instead, this can be simplified as follows:

%ALTFILE @.@(NOT USEREXISTS(OWNER));CREATOR=MANAGER.ACCT

Type "%HELP CREATOR" for more details on this topic.

Extended filesets using CREATOR= and CODE=
In order to be compatible with older versions of our software, version 2.4 of our software
automatically quoted the value specified for CREATOR and CODE when used in an extended
selection. A warning was issued, however, that we were doing this and that at some point in
the future this might change. This is inconsistent with the rest of our software as these
attributes are defined as STRING attributes, but could not be compared to STRING variables.
(Since we were automatically quoting the comparison value, using the name of a string
variable would not work as we would try to quote the name of the variable instead of
comparing the CREATOR or CODE to the VALUE of the variable.)

Starting in version 27., when we see an extended selection of (CREATOR=MYVAR), we will first
check to see if there is a (string) variable called MYVAR and if so, use the value of the variable
for the comparison. If MYVAR doesn't exist, then we will issue the old warning and search for
files created by the user "MYVAR". For the CODE attribute, however, we treat valid values as
reserved words and issue the warning that you should use a quoted value. For instance:

%SETVAR A "BASFP"
%LISTF @.SOURCE(CODE=A)

will work, but

%SETVAR BASFP "BASFP"
%LISTF @.SOURCE(CODE=BASFP)

will generate a warning message.

Errors and warnings in STDLIST(...) honor I/O redirection
:In prior versions, errors or warnings detected during execution of the STDLIST(...) function
would ALWAYS display on your terminal, even if the "command" in the STDLIST(...) function
had I/O redirection specified. Starting in version 27., errors or warnings will be directed to
any I/O redirection file as specified in the STDLIST(...) function call. For example:

%SETVAR XFILE STDLIST("SHOWVAR BADVARIABLENAME >MYFILE")

would display an error message in 2.4, even though the "result" of the SHOWVAR command was
being redirected.

Starting in version 27., the file MYFILE will actually contain the text of the error message.
This will only effect you if you expect the file to be empty if there is an error. In both versions,

Appendix A

A-5

however, the variable HPCIERR is set to indicate whether or not an error occurred in the
command passed to the STDLIST(...) function.

Type "%HELP STDLIST" for more details on this topic.

ISxxxCAP variables/functions fixed
In previous versions, some ISxxxCAP variables would return a 1 or 0 instead of TRUE or
FALSE as documented. These still worked in an extended selection as we treated a 1 as TRUE
and 0 as FALSE, but direct comparisons would fail. If you worked-around this problem in a
job stream or command file, you will have to fix your files to compare against TRUE or FALSE
as appropriate.

Type "%HELP ATTRIBUTE" for more details on this topic.

%ABORTJOB sched can abort STREAMX scheduled jobs
The scope of the SCHED job attribute has been extended to encompass both MPE scheduled
jobs and STREAMX scheduled jobs (STREAMX SCHEDULING features — repetitive and
conditional job submission —- are described in the SECURITY MANUAL.)

As a result of this change, issuing the MPEX command %ABORTJOB SCHED will now result in
the loss of all STREAMX scheduled jobs (including the specification of when the job is to be
launched).

If you wish to limit the scope of SCHED to MPE scheduled jobs only, you should use the MPEX
command %ABORTJOB @J&SCHED instead.

Type "%HELP ABORTJOB" or "%SEC HELP STREAMX" for more details on this topic.

%ALARM starts the BACKG job if it's not already running
The %ALARM command will start the %BACKG background jobstream if the job is not already
running. Although this is the normal behavior for SM or OP users, the %ALARM command has
been enhanced to start the BACKG job (if necessary) when used by ANY user. However, if the
%ALARM command starts the background job, then only the %ALARM task is started — any other
"pending" tasks remain pending until a normal %BACKG STARTJOB command is issued.

Type "%HELP ALARM" or "%HELP BACKG" for more details on this topic.

%ALTFILE program;CAP=-xx,yy,zz changed
When using ;CAP= on an %ALTFILE or %COPY command, "-" signs do not need to be
repeated. i.e., ;CAP=PH,-MR,DS is equivalent to ;CAP=+PH,-MR,-DS. Previous versions of
MPEX treated all unsigned capabilities as having an implied "+", i.e. it would have ADDED PH
and DS while REMOVING MR. Similarly, specifying ;CAP=-BA,PM,PH,+MR,DS would be
treated as ;CAP=-BA,-PM,-PH,+MR,+DS. In other words, unsigned capabilities retain the
same sign as the previous capability listed.

Type "%HELP ALTFILE" for more details on this topic.

Appendix A

A-6

%ALTFILE ;CREATOR changes on POSIX systems
MPEX has traditionally allowed a file's CREATOR to be changed to any value, regardless of
whether the user name specified actually exists on your system. On POSIX systems MPE/iX
has its own :ALTFILE command, which allows a file's OWNER (and GROUPID) to be changed
to any User (and Account) that are currently configured on your system.

To maintain compatibility with MPE/iX, when used on a POSIX system, MPEX's %ALTFILE
command will now check that supplied CREATOR names actually exist, and will fail if they
don't. If you need to use %ALTFILE to set a file's CREATOR or GROUPID to values that don't
currently exist on a POSIX system, use the new ;NOCHECK keyword.

For example, if the following ALTFILE command fails as shown:

%ALTFILE file; CREATOR=MISSING.SYS
Specified owner does not exist in the user database. (CIERR 820)

Then you can force this to work as follows:

ALTFILE file; CREATOR=MISSING.SYS ;NOCHECK

%SET CREATORPROTECT now enforced on POSIX systems
MPEX's default behavior has always allowed users of any capability level to use the %ALTFILE
command to change the CREATOR of any file that they have read and write access to. The
%SET CREATORPROTECT command allowed system managers unhappy with this default to
prevent ordinary users from changing CREATOR names on any file, and to prevent account
managers from altering files outside their account. With MPE/iX 5.0, MPE/iX has it's own
:ALTFILE command, which only allows users with appropriate privileges to change the fully-
qualified OWNER of a file.

To maintain compatibility with MPE/iX, when used on a POSIX system, MPEX now always
enforces %SET CREATORPROTECT. The error messages displayed if a user fails in an attempt
to change a file's CREATOR name have also changed to be compatible with MPE/iX.

Type "%HELP CREATORPROTECT" for more details on this topic.

VEFxxx functions, changes for SM users
SM users can now access PRIV files using the VEFxxx functions. When the correct file code is
specified as part of the file parameter of the VEFOPEN, VEFREAD, and VEFWRITE functions, an
SM user can open, read, and write PRIV files.

Warning: PRIV files are privileged for a reason! Writing to PRIV files (IMAGE Database files, for
example), may corrupt the internal structure of the file and make them useless to your
application. Use this feature with care — VESOFT, Inc. cannot repair files corrupted (whether
PRIVileged or not) by misuse of these functions.

Appendix A

A-7

MPE error messages down-shifted
To remain compatible with MPE/iX 5.0, we have down-shifted the text associated with many
of the MPE error messages that MPEX displays. Users on pre-MPE/iX 5.0 releases will notice
that many (but not all) of the messages we display are now down-shifted.

Expressions: TYPEOF() enhanced for special types
The TYPEOF() function has been enhanced to recognize MPEX types of REAL, DATE, and
TIME. These types return 101, 102, and 103 respectively.

Note that these values are returned only if the argument to the function is an EXPRESSION
and not a simple variable. Also, setting the result of an expression to a variable will still
convert the result into a STRING for these types of expressions, so:

%CALC TYPEOF(TODAY+10)

would produce a different result than:

%SETVAR TESTDATE TODAY+10
%CALC TYPEOF (TESTDATE)

QEDIT "jumbo" files supported by %PRINT & %LISTF,ID
Version 4.3 of Robelle's QEDIT editor added support for extended size QEDIT files, known as
"jumbo" files. These files may contain up to 1000 characters per line, and be over 65,535 lines
long. Previous versions of MPEX were not able to correctly display the contents of these files
(which have the same "111" filecode as standard QEDIT files).

This version of MPEX fully supports these "jumbo" files: the %PRINT command understands
their internal format, and %LISTF,ID correctly displays their logical line length, file size and
file type. We've also added two new file attributes: ISQEDIT qualifies all QEDIT files,
ISJUMBO qualifies "jumbo" QEDIT files only.

HPREDOSIZE variable changed to MPEXREDOSIZE
There are several options you can set for the REDO facility (which apply equally to the REDO
facility available from MPEX HOOKed programs). They are set by defining various specially-
named JCWs and/or variables. These JCWs must be set before issuing a %INITREDO
command or running a HOOKed program within which you wish them to take effect.

In prior versions of our software, the variable that you would use to set the size of the history
file was HPREDOSIZE — the same variable MPE/iX uses. However, due to the way MPE/iX
handles the HPREDOSIZE variable, setting HPREDOSIZE outside of MPEX has no effect, so we
now use the variable MPEXREDOSIZE. Setting HPREDOSIZE inside MPEX is translated to
MPEXREDOSIZE, so users who set HPREDOSIZE in their MPEXMGR files prior to issuing the
%INITREDO command will not experience any problems.

Appendix B

B-1

Appendix B: VESOFT EXPRESSIONS

Introduction
In a number of places, we talk about "expressions". These expressions are very powerful
things; they let you do various tests, calculations, date arithmetic and so on. They support a
number of different data types, operators and functions and may be used to process strings,
integers, dates, times, boolean conditions and even real numbers.

In the simplest case, an expression is very much like an expression in BASIC, COBOL, PASCAL,
etc. For instance,

1+2*3+4

comes out exactly the way you expect it (11); the normal precedence of the operators is
respected (* first, then +).

Similarly,

LEN("FOOBAR")

calculates the length of the string "FOOBAR" (which is 6);

UPS("Testing")

returns "TESTING", the upshifted value of the string "Testing";

MIN(123,456)

returns 123, the minimum of MIN's parameters (123 and 456).

Variables
In addition to the functions (MIN, UPS, LEN, etc.), the operators (+, -, *, /, etc.) and the
constants (123, "Testing", etc.), you can also use variables. Variables are what makes
expressions so very powerful because they're adapted to the program in which they're used:

• In MPEX selection criteria you can refer to variables that represent various attributes of the
current file (e.g. CODE, SECTORS, ACCDATE, etc.); for instance, an MPEX selection criterion
may say

ISPROG and ACCDATE<1/1/1997

• In MPEX's %CALC, %SETVAR and %IF you can refer to any JCW, any variable previously set
by a %SETVAR, and any one of a number of predefined variables that let you figure out
things like the logon user ID, the logon account, the current day of week, the current job or
session limit, etc.

• In SECURITY's LISTLOG and LISTUSERS options, you can refer to various fields of the
SECURITY log record and SECURITY user record, respectively. For instance, you might try
to find all log or user records that match the criterion

Appendix B

B-2

USER MATCHES "X@" and ACCOUNT<>"SYS"

• In STREAMX, you can refer to any JCW, any predefined variable (see below), AND any
variable set by a STREAMX ::PROMPT or ::ASSIGN command. Thus, a STREAMX's
CHECK=... expression might say

RPTCODE='XX' or RPTCODE='Y7' or RPTCODE[0:1]='Z'

where RPTCODE is the name of the variable being ::PROMPTed for.

The differences between the kinds of variables acceptable to the different programs are
intentional, since in each case expressions have different purposes — sometimes to operate on
file attributes, sometimes to select log records, sometimes to work on STREAMX variables.

Data types
In the examples we showed above, we saw three data types:

• INTEGERS. These are simple numbers from -2147483648 to +2147483647 (i.e. 32-bit or
"DOUBLE" integers). You can specify them as decimal, as octal (prefixed by a %, e.g.
%12345670) or as hexadecimal (prefixed by a $, e.g. $89ABCDEF).

• STRINGS. These are sequences of characters — string constants can be enclosed in either
double quotes ("ABC") or single quotes ('ABC') although the quote types must obviously
match (e.g. "ABC' and 'ABC" are both invalid). You may embed quotes into a quoted
string by specifying the quote character twice, e.g. "ABC""DEF" stands for the string
ABC"DEF and 'ABC''DEF' stands for the string ABC'DEF; however, "ABC''DEF" stands
for the string ABC''DEF. The empty string (length 0) is "" (or '').

• DATES. These are dates from 1 January 1901 to 31 December 1999 with a 2-digit year or
from 1 January 1600 onward (into the year 2000 and beyond) with a 4-digit year.
Anywhere that you can input a 2-digit year, you can also input a 4-digit year!

Any time you are prompted for a date (e.g. by ::PROMPT in STREAMX jobs, PROMPT in
VEMENUs or the READDATE function) and in the DATEPARSE and VALIDDATE functions,
you can enter it either with or without slashes ("/"); however, when you are specifying a
date constant in an expression (rather than being prompted for it), you must include the
slashes (to distinguish it from an integer).

Date constants are usually (in STREAMX and SECURITY) specified in [YY]YY/MM/DD
format (e.g. 90/12/21 or 2024/05/14), although they can be output in any format you
please. By default, date output and formatting are in 2-digit year format, with slashes.

In MPEX (for historical reasons), dates are by default input in MM/DD/[YY]YY format
(12/31/99, 11/05/2022 or even 102283), but you can use the %SET DATE command to
change the default input format to [YY]YY/MM/DD or DD/MM/[YY]YY (the European way)

Several other data types are also supported:

• BOOLEAN VALUES (also known as LOGICALS). A boolean value may be either TRUE or
FALSE — various operators like =, <, >, <>, >=, <=, AND, OR, NOT and so on return boolean
values. In some places, e.g. an MPEX selection condition, a SECURITY LISTLOG or

Appendix B

B-3

LISTUSERS selection condition or a STREAMX ::PROMPT...;CHECK=... expression a
boolean value is explicitly required; if you say in MPEX

%!LISTF @.@.@ (2+3)

then MPEX will print you an error message since the selection condition should be a
boolean expression, not an integer like 2+3.

• REAL NUMBERS. Real numbers (32-bit single-precision, "HPREAL") are also supported —
saying

%CALC 1.2 * 3.4

in MPEX will give you the right value (4.08). The range of the magnitude of non-zero real
values is 9.9999*(10^-75) through 1.000004*(10^76); real numbers are accurate to 6.9
decimal places. Real constants can be entered in fixed-point format (1.234) or in the
exponential format known and loved by all you FORTRAN programmers (5.6E10).

• TIMES. You may also use the time-of-day in expressions. 12:00AM or 00:00T is midnight;
12:00PM or 12:00T is noon.

A time constant is specified by saying one of

hour:minute AM e.g. 10:25 AM
hour:minute PM e.g. 6:45 PM
hour:minute T e.g. 17:07 T (24-hour clock)

and times may be compared (RSTTIME>12:15AM) or printed.

Types are very important because the same operators (e.g. + and -) can have very different
effects when operating on, say, integers, strings and dates:

10 + 20 is 30 (simple addition)
"FOO" + "BAR" is "FOOBAR" (string concatenation)
91/2/20 + 10 is 91/3/2 (date increment)
1.2 + 3.4 is 4.6 (also addition, but on real numbers)
TRUE + FALSE is an error (you can't add booleans);
"FOO" + 10 is an error (you can't add numbers to strings);

Always keep in mind what types you're operating on, since that will influence the meaning of
the operation. Also note that although all of VESOFT's programs (MPEX, SECURITY and
VEAUDIT) allow expressions of all types, not all types may be used to define variables —
MPEX variables can only be integers, strings or booleans and STREAMX variables can only be
integers, strings or dates.

If you try to set an MPEX variable to a real, date or time value, (like 1.2, 90/11/05 or
11:59AM), the result will be converted to a string ("1.2", "90/11/05" and "11:59AM") before
assigning it to the variable — this is for compatibility with MPE/iX.

Appendix B

B-4

In all of the examples in this appendix (unless otherwise noted):

I, I1, I2, I3 Integer variables, constants and/or expressions

B, B1, B2 Boolean variables, constants and/or expressions

R, R1, R2 Real variables, constants and/or expressions

S, S1, S2, S3 String variables, constants and/or expressions

D, D1, D2 Date variables, constants and/or expressions

T, T1, T2, T3 Time variables, constants and/or expressions

The type of the result returned by the various functions are indicated by (in order of their
appearance):

[INT] Integer

[BOOL] Boolean

[STR] String

[DATE] Date

[REAL] Real

[TIME] Time

[NONE] No function return

[???] Function returm type depends on attribute type requested

Integer and boolean operators and functions
The following operators and functions work on integers and boolean values:

Operator or Function Type Operation Performed

I1 + I2 [INT] Addition.

I1 - I2 [INT] Subtraction.

I1 * I2 [INT] Multiplication.

I1 / I2 [INT] Integer division, truncates result.

20/3 is 6.

I1 MOD I2 [INT] Integer remainder.

20 MOD 3 is 2.

-I [INT] Negation. -10 is, of course, -10.

ABS (I) [INT] Absolute value of I.

ABS(-10) is 10.
ABS(10) is 10.

Appendix B

B-5

Operator or Function Type Operation Performed

MIN (I1 [,I2…]) [INT] Returns the smallest of one (or more) integers.

MAX (I1 [,I2…]) [INT] Returns the largest of one (or more) integers.

I1 ^ I2 [INT] Returns I1 raised to the power I2.

10^3 is 1000,
2^10 is 1024.

RANDOM (I) [INT] Returns a random number in the range 0 to I-1.

I1 = I2 [BOOL] Tests whether I1 is equal to I2.

I1 < I2 [BOOL] Tests whether I1 is less than I2.

I1 > I2 [BOOL] Tests whether I1 is greater than I2.

I1 <> I2 [BOOL] Tests whether I1 is not equal to I2.

I1 >= I2 [BOOL] Tests whether I1 is greater than or equal to I2.

I1 <= I2 [BOOL] Tests whether I1 is less than or equal to I2.

BETWEEN (I1, I2, I3) [BOOL] Tests whether I1 is between I2 and I3, i.e.
I1>=I2 AND I1<=I3;

BETWEEN(I,1,10) is TRUE if I is between 1 and 10
(inclusively).

ODD (I) [BOOL] Tests whether I is odd rather than even.

ODD(1) is TRUE,
ODD(2) is FALSE.

B1 AND B2 [BOOL] TRUE if B1 and B2 are both TRUE.

B1 OR B2 [BOOL] TRUE if either B1 or B2 (or both) is TRUE.

B1 XOR B2 [BOOL] TRUE if either B1 or B2 (but not both) is TRUE.

NOT B [BOOL] TRUE if B is FALSE, FALSE if B is TRUE.

B1 & B2 [BOOL] Synonym for B1 AND B2.

B1 | B2 [BOOL] Synonym for B1 OR B2.

TRUE, FALSE [BOOL] Boolean constants.

ON, OFF [BOOL] Boolean constants; ON = TRUE, OFF = FALSE.

I1 [I2 : I3] [INT] Extracts I3 bits (starting with bit #I2) from the
integer value I1; for instance

%1234[10:3] is 3.

Note that the highest-order bit (since I1 is a 32-bit
integer) is bit -16 (!) and the lowest-order bit is bit 15.
This way, when you extract bits from single integers,

Appendix B

B-6

Operator or Function Type Operation Performed
you can use the 0-to-15 bit numbering; bits -16 to -1
refer to the high-order word.

DBBUILD (I1, I2) [INT] Constructs a double integer with high-order word I1
and low-order word I2.

DBUILD(1,2) is 65538.

HIGHORDER (I) [INT] Returns the high-order word of I.

LOWORDER (I) [INT] Returns the low-order word of I.

BNOT I [INT] Returns the Bit-wise NOT of I.

I1 BAND I2 [INT] Returns a Bit-wise AND of the integers I1 and I2.

I1 BOR I2 [INT] Returns a Bit-wise OR of the integers I1 and I2.

I1 BXOR I2 [INT] Returns a Bit-wise XOR of the integers I1 and I2.

I1 LSL I2 [INT] Logical Shift Left the integer I1 by I2 bits.

I1 LSR I2 [INT] Logical Shift Right the integer I1 by I2 bits.

I1 CSL I2 [INT] Circular Shift Left the integer I1 by I2 bits.

I1 CSR I2 [INT] Circular Shift Right the integer I1 by I2 bits.

I1 ASL I2 [INT] Arithmetic Shift Left the integer I1 by I2 bits.

I1 ASR I2 [INT] Arithmetic Shift Right the integer I1 by I2 bits.

INTEGER (S) [INT] Returns the value of the 16-bit integer corresponding
to the 2 bytes in S (if S is a 2-character string) or the
32-bit integer corresponding to the 4 bytes in S (if S is
a 4-character string). Triggers an error if S is neither
2 nor 4 characters long. Useful for extracting integer
values from records read from files using the
VEFREADxxx functions.

INTEGERPARSE (S) [INT] Converts the string S to an integer; if it's not a valid
integer, aborts with an error message.

VALIDINTEGER (S) [BOOL] Returns TRUE if S is a valid integer, FALSE if it isn't.

Appendix B

B-7

String operators and functions
The following operators and functions work on strings:

Attribute Type Operation Performed

S1 + S2 [STR] Concatenates two (or more!) strings.

"AB" + "CD" is "ABCD".

S1 - S2 [STR] Removes first occurrence of string S2 from string S1.

 "TOTO" - "O" is "TTO".

I * S [STR] Repeats I times the string S. 3*"AB" is "ABABAB".

S [I1:I2] [STR] Extracts I2 characters of string S starting with
character #I1 (counting the first character as #0);

"FOOBAR"[2:3] is "OBA".

STRRTRIM (S1 [,S2]) [STR] Returns S1 with all trailing occurrences of the
character specified by S2 (which defaults to " ")
removed.

STRRTRIM ("FOO ") is "FOO";
STRRTRIM ("ABC---","-") is "ABC".

STRLTRIM (S1 [,S2]) [STR] Returns S1 with all leading occurrences of the
character specified by S2 (which defaults to " ")
removed.

STRLTRIM (" FOO") is "FOO";
STRLTRIM ("---ABC","-") is "ABC".

RTRIM(S1 [,S2]) [STR] Same as STRRTRIM.

LTRIM(S1 [,S2]) [STR] Same as STRLTRIM.

STRLDROP (S, I) [STR] Returns the string S with the first I characters
removed.

STRLDROP("INFLAMMABLE",2) is "FLAMMABLE".

STRRDROP (S, I) [STR] Returns the string S with the last I characters
removed.

STRRDROP("ABSOLUTELY NOT",4) is "ABSOLUTELY".

LEN (S) [INT] Returns the length of string S.

LEN("NOSE") is 4.

POS (S1, S2 [,I]) [INT] Returns the position of the Ith (starting with 1)
occurrence of S1 in S2. If I is negative, returns the
position of the (-I)th occurrence of S1 in S2, counting
from the right. If S1 is not found in S2, returns 0.
(I defaults to 1).

Appendix B

B-8

Attribute Type Operation Performed
POS("A","SPARK") is 3;
POS("IS","MISSISSIPPI",2) is 5;
POS("PE","PEPPERONI",-2) is 1.

UPS (S) [STR] Returns S with all alphabetic characters upshifted.

UPS("Test") is "TEST".

DWNS (S) [STR] Returns S with all alphabetic characters downshifted.

DWNS("Test") is "test".

STRCHANGE (S1, S2, S3) [STR] Returns the string S1 in which all occurrences of the
string S2 have been changed to the string S3.

STRCHANGE("TESTING","T","XX") is "XXESXXING".

STRCOUNT (S1, S2) [INT] Returns the number of occurrences of S1 in S2.

STRCOUNT("P","Pepper") is 1;
STRCOUNT("SS","MISSISSIPPI") is 2.

RPT (S, I) [STR] Returns string S repeated I times. If I<0, reverses
string S before repeating it.

RPT("ABC",3) is "ABCABCABC";
RPT("ABC",-3) is "CBACBACBA".

CHR (I) [STR] Returns a single-character string containing ASCII
character I.

CHR(33) is "!";
CHR(27) is the [Escape] character.

ORD (S) [INT] Returns integer ASCII value of the first character of S.

ORD("!") is 33.

HEX (I) [STR] Returns value of I converted to a hexadecimal string.

HEX(32767) is "$7FFF".

OCTAL (I) [STR] Returns value of I converted to an octal string.

OCTAL(32767) is "%77777".

STR (S, I1, I2) [STR] Returns I2 characters of string S starting with
character #I1 (counting the first as #1).

STR("FOOBAR",2,3) is "OOB".

LFT (S, I) [STR] Returns the I leftmost characters of string S.

LFT("FOOBAR",2) is "FO".

RHT (S, I) [STR] Returns the I rightmost characters of string S.

RHT("FOOBAR",2) is "AR".

ALPHA (S) [BOOL] TRUE if S consists entirely of alphabetic characters.

NUMERIC (S) [BOOL] TRUE if S consists entirely of numeric characters.

Appendix B

B-9

Attribute Type Operation Performed

ALPHANUM (S) [BOOL] TRUE if S consists entirely of alphabetic and/or
numeric characters.

MAXCONSECUTIVE (S) [INT] Returns the maximum number of consecutive
occurrences of any characters in S.

MAXCONSECUTIVE("ABBCCCDDE") is 3, since the
character 'C' occurs 3 times in a row.

S1 = S2 [BOOL] Tests if S1 is equal to S2.

S1 < S2 [BOOL] Tests if S1 is less than S2.

S1 > S2 [BOOL] Tests if S1 is greater than S2.

S1 <> S2 [BOOL] Tests if S1 is not equal to S2.

S1 >= S2 [BOOL] Tests if S1 is greater than or equal to S2.

S1 <= S2 [BOOL] Tests if S1 is less than or equal to S2.

S1 MATCHES S2 [BOOL] Tests if S1 matches the MPE-like pattern S2, where
"?" character in S2 matches a single alphanumeric
 character,
"#" matches a single numeric character,
"@" matches any number (0 or more) alpha-
 numeric characters;

"[...]" range operator (see "File ranges" in the MPEX
 User Manual).

S1 NMATCHES S2 [BOOL] Same as NOT (A1 MATCHES S2).

MIN (S1 [, S2...]) [STR] Returns the "minimum" of one (or more) strings.

"Minimum" means alphabetically, not according to
length, thus

MIN("AAA","ZZ") is "AAA";
MIN("BIG","SMALL","MEDIUM") is "BIG".

MAX (S1 [, S2...]) [STR] Returns the "maximum" of one (or more) strings.

"Maximum" means alphabetically, not according to
length, thus

MAX("AAA","ZZ") is "ZZ";
MAX("BIG","SMALL","MEDIUM") is "SMALL".

BETWEEN (S1, S2, S3) [BOOL] Tests whether S1 is between S2 and S3, i.e. S1>=S2
and S1<=S3; for instance,

BETWEEN(S,"JA","LM") is TRUE if S is between "JA"
and "LM" (inclusively).

TOKEN (S1, S2) [STR] Returns the first "token" of S1, where S2 is a string
containing the token delimiters; a "token" is the set of
characters, excluding the leading and trailing spaces,

Appendix B

B-10

Attribute Type Operation Performed
up to (but not including) the first occurrence of any
one of the delimiters; e.g.:

TOKEN(" ABC / D : EF ", "/:") is "ABC".

NTOKEN (S1, I, S2) [STR] Returns the Ith "token" of S1, where S2 is a string
containing the token delimiters; e.g.

NTOKEN (
 '8:49/#J8/9/LDEV# FOR "T" ON TAPE (NUM)?',
 3, "/") is "9".

REMTOKEN (S1, S2) [STR] Returns the second through last "tokens" of S1, where
S2 is a string containing the token delimiters; e.g.

REMTOKEN (" ABC / D : EF ", "/:") is
 "D : EF ".

TOKEN (S1, S2, S3) [STR] Same as TOKEN(S1,S2), but considers S3 to be the
set of allowed QUOTE CHARACTERS – delimiters
embedded within quotes are ignored in determining
token boundaries. For instance,

TOKEN(" 'ABC / D' : EF ", "/:", "'")
is "'ABC / D'"
— the first "/" is not treated as a delimiter because it's
nested within "'" quote characters.

NTOKEN (S1, I, S2, S3) [STR] Same as NTOKEN(S1,I,S2), but supports quote
characters.

REMTOKEN (S1, S2, S3) [STR] Same as REMTOKEN(S1,S2), but supports quote
characters.

The following cases are exceptions to the syntax listed above – in them, the second parameter
is not viewed as a string of delimiters, but as something else:

Attribute Type Operation Performed

TOKEN (S, "A") [STR] Returns all the characters of S until the first non-
Alphabetic character.

TOKEN("FOO1/3","A") is "FOO".

TOKEN (S, "N") [STR] Returns all the characters of S until the first non-
Numeric character.

TOKEN("123F/O","N") is "123".

TOKEN (S, "AN") [STR] Returns all the characters of S until the first non-
AlphaNumeric character.

TOKEN("123FOO/BAR","AN") is "123FOO".

Appendix B

B-11

Attribute Type Operation Performed

REMTOKEN
 (S, "A"|"N"|"AN")

[STR] Returns all the characters of S starting with the first
non-Alphabetic, non-Numeric or non-AlphaNumeric
character, respectively.

REMTOKEN("FOO1/3","A") is "1/3".

Date operators and functions
The following operators and functions work on dates:

Attribute Type Operation Performed

D + I [DATE] Date increment; returns the date that is I days after D.

E.g. (92/3/30 +10) is 92/4/9.

D – I [DATE] Date decrement; returns the date that is I days before
D. E.g.

(92/4/9 -10) is 92/3/30.

D1 – D2 [INT] Date difference; returns the number of days between
D1 and D2. E.g.

(92/4/9 - 92/3/30) is 10.

D1 = D2 [BOOL] Tests if D1 is the same date as D2.

D1 < D2 [BOOL] Tests if D1 is earlier than D2.

D1 > D2 [BOOL] Tests if D1 is later than D2.

D1 <> D2 [BOOL] Tests if D1 is a different date from D2.

D1 >= D2 [BOOL] Tests if D1 is later or the same as D2.

D1 <= D2 [BOOL] Tests if D1 is earlier or the same as D2.

MIN (D1 [, D2...]) [DATE] Returns the earliest of one (or more) dates.

MAX (D1 [, D2...]) [DATE] Returns the latest of one (or more) dates.

BETWEEN (D1, D2, D3) [BOOL] Tests whether D1 is between D2 and D3, i.e. D1>=D2
and D1<=D3.

DATEBUILD (I1, I2, I3) [DATE] Returns a date with the year I1, month I2, day I3;
DATEBUILD(92,10,1) is thus equal to 92/10/1. The
advantage of DATEBUILD over the yy/mm/dd syntax is
that DATEBUILD's parameters may be variables.

DATEYEAR (D) [INT] Returns the 2-digit year number of date D. Aborts if
you pass it a year outside the 20th century.

DATEYEAR4 (D) [INT] Returns the 4-digit year number of date D.

DATEMONTH (D) [INT] Returns the month number of date D.

Appendix B

B-12

Attribute Type Operation Performed

DATEDAY (D) [INT] Returns the day-of-month of date D.

DATEDAYOFWEEK (D) [INT] Returns the day of week (1=Sunday, 2=Monday,
7=Saturday) of date D.

DATEADD (D, I1, I2, I3) [DATE] Returns a date that is I1 years, I2 months and I3
days after the date D.

DAYOFYEAR (D) [INT] Returns the Julian "day of the year" for the date D.

YYYYMMDD (D) [INT] Converts D into an integer formatted as (4-digit year)
followed by (2-digit month) followed by (2-digit day).
YYYYMMDD(92/3/30) is 19920330.

CDATE (D, S) [STR] [STR] Formats D as a string; S specifies format.

CDATE(5/4/30,'YY/MM/DD') is 05/04/30
CDATE(5/4/30,'MM/DD/YYYY') is 04/30/2005
CDATE(5/4/30,'DD/MM/YY') is 30/04/05

The slashes may also be omitted or replaced by any
other character, e.g.

CDATE(5/4/30,'YYMMDD') is 050430
CDATE(5/4/30,'DD.MM.YY') is 30.04.05

Other special date descriptors may also be used (see
the STRWRITE function for a full description):

CDATE(5/4/30,'%W, %1M %0D, %4Y') is
SAT, APR 30, 2005

CDATEYMD (D) [STR] Formats D as a YY/MM/DD date.

CDATEMDY (D) [STR] Formats D as a MM/DD/YY date.

CDATEDMY (D) [STR] Formats D as a DD/MM/YY date.

DATEPARSE (S1, S2) [DATE] Parses the string S1 as a date; S2 specifies the format
in which S1 is supposed to be, either 'YMD', 'MDY' or
'DMY'. (The date may have either a 2- or 4-digit year
and may exclude the slashes).

DATEPARSE ('03/30/91','MDY') is 91/03/30;
DATEPARSE ('19910330','YMD') is also
91/03/30.

VALIDATE (S1, S2) [BOOL] Returns TRUE if S1 is a valid date, FALSE if it isn't —
S2 specifies the format, either 'YMD', 'MDY' or
'DMY'. The date may have either a 2-or 4-digit year
and may exclude the slashes.

TODAY [DATE] Returns today's date.

CALENDARTODATE (I) [DATE] Returns the date represented by the CALENDAR-format
integer I.

Appendix B

B-13

Attribute Type Operation Performed

DATETOCALENDAR (D) [INT] Returns the CALENDAR-format representation of the
date D.

Real operators and functions
The following operators and functions work on reals:

Note that in any "mixed-mode" operation — where one operand is an integer and the
other is a real — the integer will be automatically converted to a real.

Expression or Function Type Operation Performed

R1 + R2 [REAL] Addition.

R1 - R2 [REAL] Subtraction.

R1 * R2 [REAL] Multiplication.

R1 / R2 [REAL] Integer division, truncates result. 20/3 is 6.

I1 // I2 [REAL] Divides two integers and yields a real number
(dividing two integers as I1/I2 will always yield an
integer); e.g. 10//3 is 3.33333.

Note that R1/R2 (a real divided by a real, with one
slash) returns a real; two slashes are only needed
when dividing integers.

ABS (R) [REAL] Absolute value. ABS(-10) = 10; ABS(10) = 10.

MIN (R1 [,R2…]) [REAL] Returns the smallest of one (or more) reals.

MAX (R1 [,R2…]) [REAL] Returns the largest of one (or more) reals.

R1 ^ R2 [REAL] "R1 to the power R2". E.g.
2.5^3 is 15.625, 2.25^.5 is 1.5.

R1 = R2 [BOOL] Tests whether R1 is equal to R2.

R1 < R2 [BOOL] Tests whether R1 is less than R2.

R1 > R2 [BOOL] Tests whether R1 is greater than R2.

R1 <> R2 [BOOL] Tests whether R1 is not equal to R2.

R1 >= R2 [BOOL] Tests whether R1 is greater than or equal to R2.

R1 <= R2 [BOOL] Tests whether R1 is less than or equal to R2.

BETWEEN (R1, R2, R3) [BOOL] Tests whether R1 is between R2 and R3, i.e.

R1>=R2 AND R1<=R3.

ROUND (R) [INT] Rounds R to the nearest integer. E.g.
ROUND(1.5) is 2.0.

Appendix B

B-14

Expression or Function Type Operation Performed

INTEGER (R) [INT] Truncates R into an integer.

REALPARSE (S) [REAL] Converts the string S to a real number; if it's not a
valid real number, aborts with an error message.

EXP (R) [REAL] Returns e (2.718281828) to the power R.

LOG (R) [REAL] Returns the natural logarithm of R.

SIN (R) [REAL] Returns the sine of R (an angle in radians).

COS (R) [REAL] Returns the cosine of R (an angle in radians).

TAN (R) [REAL] Returns the tangent of R (an angle in radians).

SQRT (R) [REAL] Returns the square root of R.

REAL (I) [REAL] Explicitly converts I to a real.

Time operators and functions
Constants of type time may be specified in one of three formats:

hour:minuteAM e.g. 10:25AM
hour:minutePM e.g. 6:45PM
hour:minuteT e.g. 17:07T (24-hour clock)

For example, you might say (the function CLOCK is described below):

CLOCK>6:00PM AND CLOCK<6:30PM

or

CLOCK>18:00T AND CLOCK<18:30T

If the "minute" field is 0 (e.g. 6:00PM), you can omit it and the colon, i.e. say "6PM"; for
instance,

CLOCK>6PM AND CLOCK<7PM

You must specify one of those three suffixes (to avoid ambiguity) — "9:55" is not valid
(though "9:55T" is).

The following operators and functions work on time values:

Expression or Function Type Operation Performed

T + I [TIME] Returns the time that is I seconds after time T.

T – I [TIME] Returns the time that is I seconds before time T.

T1 – T2 [INT] Returns the number of seconds between T2 and T1.

Appendix B

B-15

Expression or Function Type Operation Performed

MIN (T1 [,T2…]) [TIME] Returns the earliest of one (or more) times.

MAX (T1 [,T2…]) [TIME] Returns the latest of one (or more) times.

T1 = T2 [BOOL] Tests whether T1 is equal to T2.

T1 < T2 [BOOL] Tests whether T1 is less than T2.

T1 > T2 [BOOL] Tests whether T1 is greater than T2.

T1 <> T2 [BOOL] Tests whether T1 is not equal to T2.

T1 >= T2 [BOOL] Tests whether T1 is greater than or equal to T2.

T1 <= T2 [BOOL] Tests whether T1 is less than or equal to T2.

BETWEEN (T1, T2, T3) [BOOL] TRUE if T1 is between T2 and T3 (inclusively);

BETWEEN(CLOCK,8AM,8:15AM) returns TRUE if
CLOCK>=8AM and CLOCK<=8:15AM.

Note: always FALSE if T2>T3; i.e.
 BETWEEN(CLOCK,10PM,4AM) is always false —
 instead use NOT BETWEEN(CLOCK,4AM,10PM).

CLOCK [TIME] Returns the current time.

CLOCKTOTIME (I) [TIME] Converts an integer in the format returned by the MPE
CLOCK intrinsic to the VESOFT time format.

HHMMSS (T) [INT] Formats the time T into an integer consisting of (2-
digit hour) followed by (2-digit minute) followed by
(2-digit second);

HHMMSS(5:33PM) is 173300.

TIMEPARSE (S) [TIME] Parses the string S as a time;

TIMEPARSE('23:00') is 11:00 PM;
TIMEPARSE('23:00T') is also 11:00 PM;
TIMEPARSE('11:00') is 11:00 AM, not PM;
TIMEPARSE('11:00 PM') is 11:00 PM.

VALIDTIME (S) [BOOL] Returns TRUE if the string S contains a valid time
representation (e.g. "12:34 PM"), FALSE if it doesn't.

TIMEBUILD (I1, I2, I3) [TIME] Constructs a time value corresponding to I1 hours, I2
minutes and I3 seconds. Thus, TIMEBUILD(10,5,0)
is the same as 10:05AM —TIMEBUILD's advantage
over the hh:mmT syntax is that TIMEBUILD can take
variables as parameters.

Appendix B

B-16

Special MPE access functions
These functions do special MPE-dependent things like look up your capabilities, parse/format
file codes, etc.:

Expression or Function Type Operation Performed

CAPABILITY (S) [BOOL] Checks if the running user has the capability
indicated by the 2-character string S, e.g.

CAPABILITY("SM") checks if the user has SM
capability.

ICODE (S) [INT] Parses a string that contains an MPE filecode and
returns the integer value of the filecode, e.g.

ICODE("PROG") is 1029. Remember, "PRIV" and
"KSAM" are NOT filecodes (even though :LISTF,2
puts them in the CODE field).

SCODE (I) [STR] Converts an integer value of an MPE filecode into its
string representation, e.g.

SCODE(1029) is "PROG".

MPE (S) [INT] Executes the MPE command indicated by S; returns 0
if all's well or the CI error number if an error does
occur

WRITEMPEMESSAGE (I1, I2) [NONE] Outputs the MPE error message I2 in message set I1.
CIERRs are in message set 2, FSERRs are in message
set 8. E.g.

WRITEMPEMESSAGE(2,980) writes "COMMAND
GREATER THAN 278 CHARACTERS LONG. (CIERR
980)" to your terminal;

WRITEMPEMESSAGE(8,52) would write
"NONEXISTENT PERMANENT FILE (FSERR 52)".

WRITEMPEXLSTATUS (I) [NONE] Outputs the message corresponding to the MPE/iX
intrinsic status code passed as I.

INPUT ([S] [,I]) [STR] Prompts the user with string S (optional), then waits
I seconds (optional, default forever) for a response.
Returns the response as a string. If the user does not
respond before the timeout, "" (the null string) is
returned and a warning is issued.

PRINTOPREPLY (S) [STR] Sends the string S as a message to the system console
and waits for the operator to :REPLY. Returns the
value given by the operator in the :REPLY command.

SONALIVE (I) [BOOL] Returns TRUE if the process whose PIN is I is alive
and a son process of MPEX. Useful for checking on

Appendix B

B-17

Expression or Function Type Operation Performed
the progress of son processes that you've started
(whose PINs you got from the MPEXPIN JCW).

SONALIVENAME (I, S) [BOOL] Returns TRUE if the process whose PIN is I is alive, is
a son process of MPEX and is running the program S.

ISCHLOGONED () [BOOL] Returns TRUE if session has done a CHLOGON to
another logon (and hasn't switched back yet).

BOUND (varname) [BOOL] True if the variable varname exists. e.g.

BOUND(MYVAR) returns true if the variable "MYVAR"
exists.

Note: do not put quotes around the variable name.

TYPEOF (expression) [INT] Returns the MPE type of an expression or variable, or
returns an error if the expression is invalid. This
function returns:

 1 if expression evaluates to an INTEGER
 2 if expression evaluates to a STRING
 3 if expression evaluates to a BOOLEAN
101 if expression evaluates to a REAL number
102 if expression evaluates to a DATE
103 if expression evaluates to a TIME

Note: when MPEX expressions of type DATE, TIME
 and REAL are assigned to a variable, the
 variable will be of type STRING.

SVAR (S) [STR] Retrieves the value of an MPE variable (either
predefined [see below], set by the MPEX %SETVAR
command or a JCW) as a string; if the variable is not
a string variable, formats it as a string.

If the variable does not exist, returns an empty string.
For instance,

SVAR("HPACCOUNT") returns the value of the
predefined HPACCOUNT variable — the logon account.

SVAR (S1, S2) [STR] Same as SVAR(S), but returns the string S2 if the
variable S1 doesn't exist.

IVAR (S) [INT] Retrieves the value of an MPE variable as an integer;
if the variable is a string or does not exist, returns 0.

IVAR (S, I) [INT] Same as IVAR(S), but returns the integer I if the
variable is a string or doesn't exist.

BVAR (S) [BOOL] Retrieves the value of an MPE variable as a boolean;
if the variable does not exist, returns FALSE.

Appendix B

B-18

Expression or Function Type Operation Performed

BVAR (S,B) [BOOL] Same as BVAR(S), but returns the value B if the
variable doesn't exist.

SVARSET (S1, S2) [STR] Sets the variable S1 to the string value S2. Returns
the value of S2.

IVARSET (S, I) [INT] Sets the variable S to the integer value I. Returns
the value of I.

BVARSET (S, B) [BOOL] Sets the variable S to the boolean value B. Returns
the value of B.

SETVAR (S, expression) [???] Sets the variable S to the value of "expression".
Returns the value of "expression".

The type depends on the type of "expression"
(integer, string or boolean).

SETVAR(TESTVAR,"TESTVALUE") returns
"TESTVALUE" and sets the variable TESTVAR to
"TESTVALUE".

CMDPARM (S) [STR] Returns the value of the parameter indicated by S of
the currently-executing command file or UDC.

Why use CMDPARM("XYZ") and not "!XYZ"?

Because CMDPARM works even when the parameter
XYZ contains embedded quotes — the "!XYZ" syntax
would cause a syntax error in this case.

RANDOMNAME [STR] Returns a string of 8 random alphabetic characters,
useful for setting random passwords and lockwords.
The letters are alternating consonants and vowels
(for ease of pronouncing and remembering). There
are over 100 million possible values of this function.

PAUSE (I) [NONE] Pauses for I seconds. Returns no result; therefore, it
can only be used in a %CALC PAUSE(I) or in an
"expression program".

ACCTEXISTS (S) [BOOL] TRUE if account indicated by the string S exists. E.g.

ACCTEXISTS("SYS") is TRUE.

USEREXISTS (S) [BOOL] TRUE if the user.account indicated by the string S
exists. E.g.

USEREXISTS("MANAGER.SYS") is TRUE.

GROUPEXISTS (S) [BOOL] TRUE if the group.account indicated by the string S
exists. E.g.

GROUPEXISTS("PUB.SYS") is TRUE.

Appendix B

B-19

Expression or Function Type Operation Performed

VEACCTINFO (S).attrvar [???] Returns the MPE account attribute variable indicated
by "attrvar" for the account indicated by S.

"attrvar" must be one of the account attribute
variables discussed in the "Object Attribute Variables"
chapter of the VEAUDIT User Manual.

VEUSERINFO (S).attrvar [???] Returns the MPE user attribute variable indicated by
"attrvar" for the user.account indicated by S.

"attrvar" must be one of the user attribute variables
discussed in the "Object Attribute Variables" chapter
of the VEAUDIT User Manual.

VEGROUPINFO (S).attrvar [???] Returns the MPE group attribute variable indicated
by "attrvar" for the group.account indicated by S.

"attrvar" must be one of the group attribute
variables discussed in the "Object Attribute Variables"
chapter of the VEAUDIT User Manual.

VEJOBINFO
(jobtype,jobnum).attrvar

[???] Returns the job attribute variable indicated by
"attrvar" for the given job. "Jobtype" is a string
and must be either "J" or "S"; "jobnum" must be an
integer expression.

"attrvar" must be one of the job/session attribute
variables discussed in the "Job/Session Attributes"
chapter of the MPEX User Manual.

VEJOBINFO
 (jobid).attrvar

[???] Same as above, but "jobid" is a string of the format
'#J999' or '#S999'.

JSCOUNT (S) [INT] Counts the number of jobs or sessions that match the
userset given by the string S; for instance,
JSCOUNT("@.AP-MGR.AP&ONLINE") returns the
number of sessions ("&ONLINE") that are logged on to
the AP account ("@.AP") but not as MGR.AP ("-
MGR.AP").

Note that the evaluation of +, - and & proceeds from
left to right (unless you use parentheses to override
this).

"Usersets" are discussed in more detail in the
SECURITY User Manual.

HP terminal manipulation functions
The following functions make it easier for you to do special HP terminal-dependent things
(e.g. position the cursor, clear the screen, etc.) — useful in command files, SECURITY menus,
etc.:

Appendix B

B-20

Expression or Function Type Operation Performed

HPTERMINAL () [BOOL] Returns TRUE if the terminal is configured as an HP
terminal (terminal type 10), FALSE if it isn't.

Note that this function must be called as
HPTERMINAL() — you can not omit the "()".

TERMPOS (I1, I2) [STR] Returns the escape sequence that causes an HP
terminal to position its cursor at row I1, column I2
(counting from 0).

TERMCLEAR () [STR] Returns the escape sequence that causes an HP
terminal to clear the rest of the screen from the cursor
to the end of memory. To clear the entire screen, you
should use TERMPOS(0,0)+TERMCLEAR().

Note that this function must be called as
TERMCLEAR() — you can not omit the "()".

TERMFKEY (I) [STR] Returns the string that corresponds to hitting the
function key numbered I on an HP terminal. Used to
check if a user hit a particular function key, e.g.

IF USERINPUT=TERMFKEY(8) THEN ...

I must be between 1 and 8.

TERMFKEYNUMBER (S) [INT] If S is the string that is sent by an HP terminal when a
function key is hit, returns the number (1 through 8)
of that function key; if it isn't, returns 0. Useful for
checking to see if a user hit a function key and if so,
which one.

SECURITY-related functions
The following functions let you do special SECURITY-related things:

Expression or Function Type Operation Performed

VEPROFILEEXISTS (S) [BOOL] Rerurns TRUE if SECURITY/3000 user profile for the
session,user.account indicated by the string S exists;
e.g.

 VEPROFILEEXISTS("NIVEN,WRITER.SF")

VEPROFILEINFO (S).attrvar [???] Returns the SECURITY/3000 user profile attribute
variable indicated by "attrvar" for the
session,user.account indicated by S. "Attrvar" must
be one of the user profile attribute variables
discussed in the "Listing User Profiles" chapter of the
SECURITY User Manual. For example,

VEPROFILEINFO("LN,WRITER.SF").NAME

might be the string "Larry Niven").

Appendix B

B-21

SECURITYLOG (S) [NONE] Writes a record containing the given string S to the
SECURITY log file. This record will then show up
(with type "Manual") in the SECURITY LISTLOG
entry point output or can be specially looked for
using the OPMANUAL and QUALIFIER selection
conditions.

Returns no result; therefore, it can only be used in a
%CALC SECURITYLOG(...) or in an "expression
program".

BADPASSWORD (S) [BOOL] Returns TRUE if the string S is one of the "bad
passwords" in the BADPASS.AUDITDAT.VESOFT list
of easy to guess passwords (see the VEAUDIT User
Manual), and prints the associated error message;
otherwise returns FALSE.

File attribute functions
These functions let you do some pretty interesting things to files. Don't let their position near
the end of the list fool you — these are some of the most useful expressions we provide.

Note:

MPEX's FINFO, VEFINFO and FEXISTS functions normally return information about
permanent files; MPE/iX's FINFO function, however, first looks for the file as a temporary file
and only then looks at the permanent file.

By doing a

:SETJCW MPEXFINFOANY=1

you can make MPEX's FINFO, VEFINFO and FEXISTS functions behave like MPE/iX's FINFO;
i.e. they will look first for a temporary file and then (if no temporary file with the given name
exists) for a permanent file.

Expression or Function Type Operation Performed

FREMLOCKWORD (S) [STR] Takes a string S that contains a filename and returns
the same filename, fully qualified but WITHOUT a
lockword (if any).

OBJECTFILE (S) [STR] (Only usable within MPEX's %REPEAT...%FORFILES
construct, documented in the MPEX User Manual.)

Returns the name of a file in the "object fileset"
indicated by S that corresponds to the current file in
the "source fileset". For example, if the "source fileset"
is S@.DATA and the current filename is
SMYPROG.DATA, then

OBJECTFILE("B@.BACKUP") is "BMYPROG.BACKUP".

Appendix B

B-22

Expression or Function Type Operation Performed

FEXISTS (S) [BOOL] Checks to see if the permanent file indicated by S
exists — if it does, returns TRUE; if it doesn't, FALSE.

Set the JCW MPEXFINFOANY to 1 to make FEXISTS
look first for a temp file and then, if it doesn't find
one, for a perm file.

FTEMPEXISTS (S) [BOOL] Just like FEXISTS, but for temp files.

FPERMEXISTS (S) [BOOL] Just like FEXISTS; use this function if you SETJCW
MPEXFINFOANY=1 and you want to only check for a
permanent file.

FANYEXISTS (S) [BOOL] True if either a permanent or a temp file with the
given name exists.

VEFINFO (S).attrvar [???] Finds the permanent file S and returns an arbitrary
piece of information about the file indicated by
"attrvar".

"attrvar" must be one of the file attribute variables
discussed in "File Attribute Variables And Functions" in
the MPEX Filesets chapter of the MPEX User Manual
— but not PROG ... or SPOOL ...

For example:

VEFINFO("AP010S.DATA").CODE returns
AP010S.DATA's filecode as a string

VEFINFO("X.PUB").SECTORS returns the number of
sectors used by X.PUB;

VEFINFO(DBSET+".DB").DBSETNAME returns the
IMAGE dataset name of the dataset whose file name is
in the DBSET variable in the DB group.

Set the JCW MPEXFINFOANY to 1 to make VEFINFO
look first for a temp file and then, if it doesn't find
one, for a perm file.

VEFTEMPINFO (S).attrvar [???] Just like VEFINFO, but for temp files.

VEFPERMINFO (S).attrvar [???] Just like VEFINFO; use this function if you SETJCW
MPEXFINFOANY=1 and you want to only check for a
permanent file.

VEFANYINFO (S).attrvar [???] Just like VEFINFO, but check first for a temp file, then
a permanent file.

FINFO (S, I) [???] The FINFO function allows you to extract various
pieces of information about a (by default, permanent)
file named by S. The information you get — and its
type — depends on the value of the second parameter
(I), which must be an integer constant. Note that all

Appendix B

B-23

Expression or Function Type Operation Performed
string results have trailing blanks stripped. If the file
doesn't exist, an error is reported.

Although MPE/iX's FINFO function looks first for a
temp file and then, if it doesn't find one, for a perm
file, the MPEX FINFO function only looks for a perm
file. You can set the JCW MPEXFINFOANY to 1 to
make FINFO work the same way in MPEX that it does
in MPE/iX.

FTEMPINFO (S, I) [???] Just like FINFO, but only looks at temp files.

FPERMINFO (S, I) [???] Just like FINFO, but only looks at permanent files.

FANYINFO (S, I) [???] Just like FINFO, but looks first for a temp file and then
(if it doesn't find one), for a permanent file.

FINFO Function Attributes
Both MPE/iX and MPEX now allow a string to be supplied as the second parameter of the
FINFO function, instead of the hard-to-remember numeric parameter originally supported.

As the list of supported string attributes is poorly documented by HP, we include the complete
list here:

Attribute #

EXISTS 0

FULL FILENAME 1

FULLFNAME 1

FULLY QUALIFIED FILENAME 1

FILENAME ONLY -1

FNAME -1

GROUP NAME 2

GROUP 2

ACCOUNT NAME 3

ACCOUNT 3

ACCT 3

CREATOR 4

FMTSECURITY 5

FORMATTED SECURITY MATRIX 5

INTSECURITY -5

Attribute #

SECURITY MATRIX -5

CREATED 6

CREATION DATE 6

FMTCREATED 6

CREATION DATE INTEGER -6

INTCREATED -6

ACCESSED 7

FMTACCESSED 7

LAST ACCESS DATE 7

INTACCESSED -7

LAST ACCESS DATE INTEGER -7

FMTMODDATE 8

LAST MOD DATE 8

MODIFIED 8

INTMODDATE -8

Appendix B

B-24

Attribute #

LAST MOD DATE INTEGER -8

FILE CODE MNEMONIC 9

FMTFCODE 9

FCODE -9

FILE CODE -9

INTFCODE -9

USER LABELS WRITTEN 10

USER LABELS AVAIL 11

FILE LIMIT 12

LIMIT 12

FMTFOPT 13

FORMATTED FOPTIONS 13

FOPTIONS -13

INTFOPT -13

RECORD SIZE 14

RECSIZE 14

BLOCK SIZE 15

BLKSIZE 15

MAX EXTENTS 16

MAXEXT 16

LAST EXTENT SIZE 17

LASTEXTSIZE 17

EXTENT SIZE 18

EXTSIZE 18

END OF FILE 19

EOF 19

ALLOC TIME 20

FMTALLOCTIME 20

ALLOC TIME INTEGER -20

INTALLOCTIME -20

ALLOC DATE 21

Attribute #

ALLOCATED 21

FMTALLOCDATE 21

ALLOC DATE INTEGER -21

INTALLOCDATE -21

NUM OPEN CLOSE RECS 22

DEVICE NAME 23

DEVNAME 23

FMTMODTIME 24

LAST MOD TIME 24

INTMODTIME -24

LAST MOD TIME INTEGER -24

FIRST USER LABEL 25

UFID 27

UNIQUE FILE ID 27

BYTE FILE LIMIT 28

BYTELIMIT 28

BYTE DATA OFFSET 29

DATASTART 29

BYTE RECORD SIZE 30

BYTERECSIZE 30

BYTE BLOCK SIZE 31

BYTEBLKSIZE 31

BYTE EXTENT SIZE 32

BYTEEXTSIZE 32

LOCKWORD 33

VOLRESTR 34

VOLUME RESTRICTION 34

The following attributes are only
available on POSIX systems:

VOLUME SET NAME 35

LOG SET ID 36

Appendix B

B-25

Attribute #

LOGICAL DEVICE NUMBER 37

LDEV 37

POSIXFULLFNAME 38

POSIX FULL FILENAME 38

NUM HARD LINKS 39

NUMHARDLINKS 39

LAST ACCESS TIME 40

ACCESS TIME 40

FMTACCESSTIME 40

LAST ACCESS TIME INTEGER -40

INTACCESSTIME -40

STATUS CHANGE TIME 41

FMTSTATUSCHANGETIME 41

INTSTATUSCHANGETIME -41

STATUS CHANGE DATE 42

CHANGE DATE INTEGER -42

OWNER 43

FILE OWNER NAME 43

UID 44

FILE OWNER ID 44

FILE GROUP 45

FILE GROUP NAME 45

GID 46

FILE GROUP ID 46

FILETYPE 47

FILE TYPE 47

FILE TYPE INTEGER -47

INTFILETYPE -47

Attribute #

RECTYPE 48

RECORD TYPE 48

BYTEFILESIZE 49

BYTE FILE SIZE 49

KSAM VERSION 50

KSAMVERS 50

KSAMPARAM 51

KSAM LABEL 51

DEVTYPE 52

DEVICE TYPE 52

DEVICE TYPE INTEGER -52

INTDEVTYPE -52

RELEASED 53

COMPRESSED 56

MIGRATED 57

SECTORS 58

NUM SECTORS 58

EXTENTS 59

NUM EXTENTS 59

CREATETIME 60

FMTCREATETIME 60

CREATION TIME 60

INTCREATETIME -60

CREATION TIME INTEGER -60

ACCESSORS 61

NUM ACCESSORS 61

LARGE 64

Note that many of these entries are synonyms and that negative numeric parameters return the
same information as corresponding positive ones, but unformatted.

Appendix B

B-26

FILE I/O functions
With these functions, you can access (open, read, write, close, etc.) disc files, including KSAM
files and IMAGE databases (see below), from within MPEX, STREAMX, VEMENU, SECURITY's
$FORBID, etc. — anywhere that you can use the expression handler. (In MPEX, you'll
probably use them from the %SETVAR, %CALC and perhaps %WHILE and %IF commands.)

Collectively, these routines are referred to as "VEFxxx functions" in our documentation.

It is important to note that SM users may use these functions to open, read and modify PRIV
files. In order to open a PRIV file, the file parameter of the VEFOPEN and VEFREAD functions
must include the correct file code.

For instance, to open the ROOT file of a database directly, you would use:

SETVAR ROOTFILE VEFOPEN('MYDB,OLD;CODE=-400');

Warning:

PRIV files are privileged for a reason! Writing to PRIV files, such as IMAGE DATABASE files,
may corrupt the internal structure of the file and make it useless to your application. Use this
feature with care — VESOFT, Inc. cannot repair files corrupted (whether PRIVileged or not) by
misuse of these functions.

These functions roughly correspond to the file system intrinsics (see HP's MPE INTRINSICS
REFERENCE MANUAL for details), but are often more powerful and easier to use. The
functions are:

Function Type File System Call

VEFOPEN
 ('filename,
 domain,
 fileeqparms')

[INT] Returns an integer file number to be used by the other
functions. The string you pass to VEFOPEN should look
very much like a :FILE equation (without the word
"FILE"), e.g.

VEFOPEN('MYFILE,OLD;ACC=INOUT;SHR').
However, several new parameters are supported:

;OLDANY try to open this as a temporary file, and
 if that fails, as a permanent one.

;NOFILEEQ ignore :FILE equations.

;ULABEL=num create the new file with room for up to
 num user labels.

;BUILD build the file first, and then re-open it.

;MAYBUILD if the file already exists, simply open it;
 if it doesn't exist, build it first.

You must specify ",OLD" when using ";MAYBUILD".

VEFCLOSE
 (fnum[,disposition])

[NONE] Closes the given file number. "disposition" should
be a string and may contain the following keywords
delimited by semicolons (e.g. "SAVE;SQUEEZE"):

Appendix B

B-27

Function Type File System Call
SAVE save file as permanent.

TEMP save file as temporary.

DEL purge file.

SQUEEZE set file limit to be equal to EOF.

XLTRIM return to free space any unused space
 beyond EOF (MPE/iX only).

CREATORONLY save file with access mask set to allow
 access only to its creator.

If disposition is omitted, the file will be closed
without any of the above parameters (which means
leave the file as it is, just like FCLOSE disposition 0).

VEFREAD (FNUM) [STR] Reads the next record from the file; sets VEEOF to
TRUE if read encounters end-of-file.

VEFREADV (S,FNUM) [BOOL] Reads the next record from the file and puts it into the
variable given by S; returns TRUE if all OK, FALSE if
EOF (also sets VEEOF to TRUE if read encounters end-
of-file). Example:

WHILE VEFREADV("REC",MYFNUM) DO ...

loops through the records in MYFNUM, putting each one
in turn into the variable REC.

VEFREADDIR (FNUM, I) [STR] Reads record I from the file. May only be used with
fixed record-length files.

VEFREADLABEL (FNUM, I) [STR] Reads label I from the file.

VEFWRITE (FNUM, S [,I]) [NONE] Writes S to the file, optionally with carriage control I.

VEFWRITEDIR
 (FNUM, S, I)

[NONE] Writes S as record I to the file.

VEFWRITELABEL
 (FNUM, S, I)

[NONE] Writes S as label I to the file.

VEFPOINT (FNUM, I) [NONE] Points the file to record I.

VEFCONTROL (FNUM, I, J) [INT] Does an FCONTROL mode I with parameter J. Returns
the value returned by FCONTROL's third Parameter.

VEFLOCK (FNUM, L) [NONE] Locks the file; if L=TRUE and file already locked by
someone else, waits; if L=FALSE, doesn't wait.

VEFUNLOCK (FNUM) [NONE] Unlocks the file.

VEFINFO (FNUM).xxx [???] Returns information about the file — just like a normal
VEFINFO, but of an open file.

VEPRINTFILEINFO (FNUM) [NONE] Prints a "tombstone" containing various information
about the file.

Appendix B

B-28

Function Type File System Call

VEFREADBYKEY
 (FNUM, S, I)

[STR] Reads a KSAM file record with key S (key start position
given as I); sets VEEOF to TRUE if the record was not
found.

VEFREADBYKEYV
 (S1, FNUM, S2, I)

[BOOL] Analogous to VEFREADV.

VEFFINDBYKEY
 (FNUM, S, I, S1)

[BOOL] Finds a KSAM file record with key equal to S (if S1 is
"="), greater than S (if S1 is ">") or greater than or
equal to S (if S1 is ">="). Key start position given as I;
partial key lookup is supported (if S is shorter than the
key length).

This function returns TRUE if found or FALSE if not
found and sets the VEEOF variable to the opposite
setting (i.e., FALSE if found and TRUE if not found).

VEFREMOVE (FNUM) [STR] Removes the current record in the KSAM file.

VEFUPDATE (FNUM, S) [STR] Replaces the current record in the KSAM file by S.

VEFFINDN (FNUM, I, J) [STR] Finds record number I (key start position given as J).

VEFREADC (FNUM) [STR] Reads the chronologically next record.

VEFREADCV (S, FNUM) [BOOL] Analogous to VEFREADV.

• If there is any error accessing the file, the command will abort with CIERROR set to 30080
and FSERROR set to the file system error number; you can, of course, use %CONTINUE, %IF,
%TRAPERROR, etc. to do appropriate error handling. The only exception to this are an end
of file discovered by VEFREAD or VEFREADC (not by any of the other VEFREADxxx
functions) or a nonexistent key discovered by VEFREADBYKEY or VEFFINDBYKEY; these will
cause no error, but rather return an empty string and set the special VEEOF variable to
TRUE. The alternate VEFREADV, VEFREADCV and VEFREADBYKEYV functions return the
eof/no key condition as their result and put the record that was read into a variable whose
name is passed to them.

• If any of the file I/O functions encounter a file system error, the variable VEFSERR is set to
the MPE FSERROR number.

• The VEFREADxxx and VEFWRITExxx functions can be passed a filename/file-parameter
string (like the one that you can pass to VEFOPEN) as the first parameter, instead of the file
number. We will then open the file, do the operation and immediately close the file; thus,

VEFREADDIR ('MYFILE,OLD', 5)

will return record 5 of the file MYFILE.

It is important that you specify ,OLD;ACC=OUTKEEP (for VEFWRITExxx calls) and whatever
other parameters you need to make the I/O work properly.

• The VEFREADxxxV functions return the record that is read into an MPEX (or MPE/iX)
variable, not an expression program variable created by the VAR statement in an expression
program (see "Advanced expression programming" below).

Appendix B

B-29

• What if the file you're reading or writing contains binary (rather than ASCII) data? You can
extract this data from the record by using the new INTEGER function, e.g.

INTEGER(REC[10:2])

to extract the 2-byte integer starting with byte 10 (counting from 0) of REC; you can
assemble a record from ASCII and binary data by using the 'I2' and 'I4' format specifiers of
STRWRITE, e.g.

VEFWRITE (MYFNUM, STRWRITE(NAME:30, NUMKIDS:'I2', SSN:'I4'))

For more documentation on INTEGER, see "Integer functions"; for 'I2' and 'I4', see "Output
formatting" below.

This facility has certain limitations that you should be aware of. Some of them may be
removed in the future, but we aren't making any promises.

• These functions are probably not fast enough to do serious processing of large files.

Actually, it's not so much the functions that are slow as the MPEX commands — like %CALC
and %SETVAR — in which you'll use the functions.

If you want to process a few records of a very large file, you might want to find them first
using the comparatively fast %PRINT...;SEARCH=, send its output to a temporary file and
then process the file with the VEFxxx functions.

• Because string variables can be at most 255 characters long, you'll have trouble processing
files with records longer than 255 characters.

• VEFINFO currently works only on disc, non-remote files.

Here is an example making use of some of these functions. It uses a file named STRLIST,
which is a list of strings to search for and reports all the files in a fileset that contain ANY of
those strings.

PARM CS$FILESET
REPEAT
SETVAR FNUM VEFOPEN("STRLIST,OLD")
TRAPERROR
WHILE VEFREADV("CURREC",FNUM) DO
 SETVAR SEARCHSTR TOKEN(CURREC," ")
 IF RFILE.FSEARCHSTRING(SEARCHSTR)>0 THEN
 ECHO !MPEXCURRENTFILE contains the string !SEARCHSTR
 ENDIF
ENDWHILE
CLEANUP
 CALC VEFCLOSE(FNUM)
 DELETEVAR CURREC
 DELETEVAR FNUM
ENDCLEANUP
FORFILES !FILESET

Appendix B

B-30

Database I/O functions
These functions provide access to IMAGE databases and are similar to the File I/O functions
above. Please don't throw away your applications now that you have these functions. You
won't get incredibly fast performance from them, but if you only need to affect an entry or
two, they can be extremely convenient!

Opening a database for access
Note that in the function definitions shown below, dbid can be either the string returned by
VEDBOPEN or a string containing 'dbname,pass,mode' (in the latter case, the open and close
will be done automatically). dset is a string containing the name of of the dataset being
accessed. list is a string containing an ordered list of data item names (delimited by
commas) or '@' to indicate all items. buffer is a string containing the data item values
specified in the list parameter (and in the same order).

If you are doing a single operation, such as adding a new record to a detail set, you should use
the automatic method of opening, locking, and closing a database. To do this, simply specify
the name of the database, the password, and the mode to open the database as a string
constant or variable in the call to VEDBPUT. If you intend to perform a number of operations,
such as finding a detail record, updating a few fields, then re-writing the detail record, it may
be better to use the VEDBOPEN function to keep the database open between VEDB calls.

In either case, these functions will look for and evaluate a database Access Control File if one
exists. Note that if VEDBOPEN is being called from a COMMAND file, MAIN.PUB.VESOFT
should be specified in a $PROGRAM clause. However, if VEDBOPEN is being called from an
EXPRESSION PROGRAM, the name of the EXPRESSION PROGRAM should be specified in a
$PROGRAM clause.

Determining the status of a VEDBxxx call
All functions (except for VEDBOPEN and VEDBGET) return TRUE if all went well, FALSE if there
was an error (EOF, BOF, end of chain, beginning of chain, no such key, duplicate key, etc.)
and abort in case of some other error. The predefined variable VEDBERR will be set to word 0
of the status array after each call to a VEDBxxx function and can be tested for the exact error.
We also display the DBERROR message in case of an error.

In addition to VEDBERR, the following predefined variables can be used (where appropriate,
depending upon which VEDBxxx function was called) to retrieve information that is returned
in the STATUS array.

Variable Status Word

VEDBDATALEN 1

VEDBRECNUM 1

VEDBCHAINLEN 2

VEDBPREVREC 3

VEDBNEXTREC 4

Appendix B

B-31

Please consult your HP TurboIMAGE Reference Manual for details about each of these status
array elements as well as the corresponding IMAGE intrinsics for the following VEDBxxx
functions.

Function Type IMAGE Call

VEDBOPEN ('dbname, pass, mode')

 [STR] DBOPEN. Accepts a string containing the database
name, password and mode (delimited by commas)
and returns a string value that can then be used as
the dbid in the other VEDBxxx functions.
Remember to close the base using VEDBCLOSE.

VEDBFIND (dbid, dset, [mode,] item, key)

 [BOOL] DBFIND. Sets up pointers to the first and last entries
of a detail chain to prepare for subsequent
VEDBGETs. The dset parameter must be the name of
a DETAIL dataset. The item is the name of the
desired search item. The key parameter is a string
containing the value of the search item in the desired
chain. The optional mode parameter is used to access
the TPI (Third Party Indexing) feature provided by
TurboIMAGE/iX starting with MPE/iX 4.0.

VEDBGET (dbid, dset, mode, list[, key])

 [STR] DBGET. Returns a string containing the items
requested in the list parameter. Mode is an integer
that determines the reading method (see your HP
TurboIMAGE Reference Manual for details).
Optionally, a key value (which must be the correct
length) may be specified to support modes 4, 7 and
8. If you are using mode 4 and want record 100, use
STRWRITE(100:'I4') as the key value. This
function sets the special variable VEEOF to TRUE if
the desired entry couldn't be found or EOF is
reached. You can retrieve a maximum of 255
characters with a single VEDBGET.

VEDBGETV ('varname', dbid, dset, mode, list[, key])

 [BOOL] DBGET. Same as VEDBGET except that it returns a
BOOLEAN value (just like the other functions). The
requested item values are assigned to the variable
specified in the first parameter. (Also sets VEEOF
TRUE if entry couldn't be found or EOF is reached).

Appendix B

B-32

Function Type IMAGE Call
Note: IMAGE requires you to pass it a key of the
 correct length, space-filled; use
 STRWRITE(str:len) if necessary.

VEDBPUT (dbid, dset, list, buffer)

 [BOOL] DBPUT. Adds a new entry to a dataset. If the
database was opened with VEDBOPEN, it must have
been opened in access mode 1, 3 or 4.

VEDBPUTL (dbid, dset, list, buffer)

 [BOOL] DBPUT, auto-lock. Same as VEDBPUT except that it
automatically does a DBLOCK and DBUNLOCK around
the DBPUT. This makes it more convenient to use the
auto-open form of dbid.

VEDBUPDATE (dbid, dset, list, buffer)

 [BOOL] DBUPDATE. Modifies the values of the data items
specified in list in the current record. The database
must be open in access mode 1, 2, 3 or 4.

VEDBUPDATEK (dbid, dset, list, buffer, key)

 [BOOL] DBLOCK, DBGET, DBUPDATE, DBUNLOCK. Allows
quick updating of master datasets by specifying the a
string containing the key value. It automatically does
a DBLOCK, DBGET and DBUNLOCK for you. This
makes it more convenient to use the auto-open form
of dbid.

VEDBDELETE (dbid, dset)

 [BOOL] DBDELETE. Deletes the current entry from a dataset.
The database must be open in access mode 1, 3 or 4.

VEDBDELETEK (dbid, dset, key)

 [BOOL] DBLOCK, DBGET, DBDELETE, DBUNLOCK. Same as
VEDBDELETE but allows the quick deletion of master
dataset entries by specifying a string containing the
key value. It automatically does a DBLOCK, DBGET
and DBUNLOCK for you. This makes it more
convenient to use the auto-open form of dbid.

VEDBLOCK (dbid, dset, mode)

 [BOOL] DBLOCK. Modes 1-4 are supported. Be careful using
mode 1 or mode 3; they could cause a deadlock.

Appendix B

B-33

Function Type IMAGE Call
VEDBUNLOCK (dbid)

 [BOOL] DBUNLOCK. Relinquishes the locks acquired by all
previous calls to VEDBLOCK.

VEDBCONTROL (dbid, mode)

 [BOOL] DBCONTROL. Allows a process accessing the database
in exclusive mode (VEDBOPEN mode 3) to enable or
disable the 'output deferred' option. The mode
parameter is an integer that can be either 1 or 2. 1
enables the output deferred option, 2 disables it. See
HP's TurboIMAGE Reference Manual for details.

VEDBCLOSE (dbid, dset, mode)

 [BOOL] DBCLOSE. Terminates access to a database or a
dataset or re-initializes access to a dataset (mode 1, 2
or 3 respectively). To close the database, specify an
empty string (i.e. "") for the dset parameter. See
HP's TurboIMAGE Reference Manual for details.

Examples: To assign the EMP-NAME field of the entry in dataset FOO of database MYDB whose key is EMPID
to the variable EMP_NAME:

SETVAR EMP_NAME VEDBGET ('MYDB,,5', 'FOO', 7, 'EMP-NAME', EMPID)

Here is an MPEX command file that will accept a key value as a parameter and then traverses
the detail chain; printing out some of the fields in each detail entry:

PARM CODE
SETVAR DBID VEDBOPEN('CUST.VESOFT.LIST,VESOFT,5')
IF NOT VEDBFIND(DBID,'TECH','CODE',UPS("!CODE")) THEN
 ECHO CANNOT FIND ANY DETAIL ENTRIES FOR CODE: !CODE
ENDIF
WHILE VEDBGETV('REC',DBID,'TECH',5,"OPEN'DATE,QUEST'ABOUT")
 ECHO DATE: ![CDATE(DATEPARSE(REC[0:8],"YMD"),"MM/DD/YY")]&
 ABOUT: ![REC[10:50]]
ENDWHILE
IF NOT VEDBCLOSE(DBID,'TECH',1) THEN
 ECHO UNABLE TO CLOSE THE BASE!
ENDIF
DELETEVAR DBID,REC

Appendix B

B-34

Here is an example of a STREAMX prompt that checks if the entered code exists as a KEY value
in a master dataset:

::PROMPT STRING KEYVAL="Customer code"&
:: ;CHECK=VEDBGETV('DUMMYVAR', 'CUST.VESOFT.LIST,VESOFT,5', &
:: 'CUST', 7, ' ', STRWRITE(UPS(KEYVAL):6)) &
:: ;CHECKERR= 'Invalid customer code.'

Trapping program output ($STDLIST)
Say that you want to run a program (or do an MPE command) that generates a lot of output,
but only want to see some of the output (e.g. a particular line or only the error messages) or
want to preprocess the output before seeing it (e.g. extract only a particular column range).

You could, of course, execute the program or command with $STDLIST redirected to a disc
file (issuing the proper :FILE equations, if needed), do a VEFREAD of the file or a %PRINT
;SEARCH=, ;CONTEXT=, or ;FORMAT= and then purge the file.

However, this (including the inevitable fumbling with :FILE equation parameters) is often
complicated enough that people just don't bother doing it.

With MPEX, this can be done very easily, e.g.

%PRINT (![STDLIST('RUN MYPROG')]);SEARCH="ERROR";CONTEXT=,2;&
 FORMAT=STRWRITE(R:'GARBAGE')

This does a RUN MYPROG with STDLIST= redirected to a special (uniquely named) temporary
file, prints only those lines in that file that contain "ERROR" (;SEARCH="ERROR"), plus two
lines after each (;CONTEXT=,2), with unprintable characters replaced by dots
(;FORMAT=STRWRITE(R:'GARBAGE')) and automatically purges the temporary file.

The key to all this is the STDLIST(S) function, which executes the command contained in the
string S with $STDLIST redirected to a temporary file and returns a string containing all the
FOPEN parameters needed to read this file and delete it when it's done. This string (which is
essentially a :FILE equation without the word "FILE") can then be passed to a VEFxxx
function, or to a %PRINT(xxx) command (the parentheses around the ![STDLIST(...)] are
necessary; otherwise %PRINT would expect only a filename, not all the FOPEN parameters).
For instance, you might say:

%SETVAR S VEFREAD(STDLIST('SHOWTIME'))

which will set S to be the first line of a :SHOWTIME listing.

By default, the list file is built as ;REC=-508,,V,ASCII;NOCCTL;DISC=15990,32. If you
want to change one of these parameters — for example, make the file fixed-record length, so
that you can then do a VEFREADDIR against it — you can specify this as a second parameter to
STDLIST, e.g.

%SETVAR REC VEFREADDIR(STDLIST('RUN MYPROG','REC=-80,,F,ASCII'),7)

Appendix B

B-35

Of course, if you need to get more than one record from the file, you can VEFOPEN the file and
do VEFREADs or VEFREADDIRs using the file number. Remember, though — when you do the
VEFCLOSE, the file will get automatically purged.

Note:

The STDLIST(S) function is implemented via the ">" I/O re-direction mechanism (see
"Redirecting command input and output" in the MPEX User Manual). Since I/O redirection is
not allowed in the CALC (and other commands), you can't use the CALC command in the
STDLIST(S) function.

Terminal input
Sometimes — usually from within command files or flexible LISTF template files — you might
want to prompt the user for input. There are several functions that do this: (F is a special
"format string" that is described later — it can be omitted unless otherwise stated below and
defaults to the empty string):

Function Type Result

READSTRING (S[,F[,I]]) [STR] Outputs the prompt message S and inputs a string
(which it returns). I is the maximum input length
(default 256) (F is required if I is specified, but can be
just an empty string, i.e. "").

READINTEGER (S[,F]) [INT] Outputs the prompt message S and inputs an integer
(which it returns).

READDATE (S[,F]) [DATE] Outputs the prompt message S and inputs a date
(which it returns).

READTIME (S[,F]) [TIME] Outputs the prompt message S and inputs a time
(which it returns).

READREAL (S[,F]) [REAL] Outputs the prompt message S and inputs a real
number (which it returns).

READSELECT (S,T[,F]) [STR] Outputs the prompt message S and inputs a single
character, which must be one of the characters in string
T; returns the character input. If carriage return was
hit, returns the first character of T (unless the NOCR flag
was specified in F).

T should not be a null string ("").

If, for example, you use the expression

READINTEGER("ENTER A NUMBER? ")

Appendix B

B-36

you will be prompted for input until you enter a valid number:

ENTER A NUMBER? XYZZY
An integer value between -2147483648 and 2147483647 expected. (CIERR 10010)
ENTER A NUMBER? 1.2
An integer value between -2147483648 and 2147483647 expected. (CIERR 10010)
ENTER A NUMBER? 55

In this case, the function's result will be 55 (the number input).

The "format string" indicated as F may contain one or more format specifiers, delimited by
commas. Valid format specifiers are:

Format Specifier Result

NOECHO Don't echo the input.

NOCR Force the user to input something, not just hit CR.

RTRIM String input: strip trailing blanks from input data.

UPSHIFT String input: upshift input data.

DOWNSHIFT String input: downshift input data.

HEX Integer input: assume input is hexadecimal.

OCTAL Integer input: assume input is octal.

YMD Date input: assume input is [YY]YY/MM/DD (default).

MDY Date input: assume input is MM/DD/[YY]YY.

DMY Date input: assume input is DD/MM/[YY]YY.

Thus, saying

READINTEGER ("SECRET NUMBER? ", "HEX,NOCR,NOECHO")

would prompt for an integer without echoing (NOECHO), assuming the input is a hexadecimal
number (HEX) and forbidding the user to just hit a CR (NOCR).

If the format string parameter is omitted, none of the options above will be enabled (except for
date input, for which YY/MM/DD input will be selected).

Terminal input: VEMODIFY
In addition to prompting for strings, integers and other data, we provide an expression
function that allows you to modify strings using the same EDITOR/MPE modification
commands or our Visual Modify keystrokes. The VEMODIFY(...) function takes a string as a
parameter, displays the string and allows the user to modify it, then returns the modified
string to your expression program or string variable. By default, normal MPE/EDITOR
modification commands are accepted ([I]nsert, [D]elete or [R]eplace characters), but if you
have the HPREDOVEMODIFY JCW set to 1, our standard Visual Modify will be used. Refer to
MPEX help on %REDO for a description of the keystrokes available in "visual modify" mode.

Appendix B

B-37

Output formatting
One function in particular (called STRWRITE) is a very powerful tool for formatting a number
of objects (strings, integers, dates, etc.) in a number of different ways (left-justified, right-
justified, decimal, hexadecimal, etc.).

The general format of STRWRITE is:

STRWRITE (descriptor, descriptor, ..., descriptor)

where each descriptor is one of

expression or
expression:fieldlen or
expression:formatstring or
expression:fieldlen:formatstring

STRWRITE returns a string which contains the formatted values of all the specified expressions.

This is more easily shown than explained:

STRWRITE ('DECIMAL', 123:6, ' IS OCTAL ', 123:'OCTAL',
 ' AND HEXADECIMAL ', 123:5:'HEX')

This operation returns the string

'DECIMAL 123 IS OCTAL 173 AND HEXADECIMAL 7B'

which is a concatenation of

'DECIMAL'+
' 123'+ (123 formatted in a field of length 6)
' IS OCTAL '+
'173'+ (123 formatted with format descriptor 'OCTAL')
' AND HEX '+
' 7B' (123 formatted in a field of length 5 with format descriptor 'HEX')

An expression may be specified without any qualifiers (e.g. 'DECIMAL'), in which case it's
printed in some default format in a field of minimum length; it may be specified with an
integer field length, in which case it's printed (left- or right-justified depending on the type) in
a field of the given length; it may be specified with a string format specifier, in which case it's
printed with appropriate formatting in a field of minimum length; or, it may be specified with
both.

String formatting
When you do a STRWRITE of a string, you have several options:

STRWRITE(S) Return the string S verbatim.

STRWRITE(S:I) Place the string S left-justified in a field of I characters, e.g.

STRWRITE("FOO":5) is "FOO ".

Appendix B

B-38

STRWRITE(S:I:'RIGHTJUST') Place the string S right-justified in a field of I characters, e.g.

STRWRITE("FOO":5:"RIGHTJUST") is " FOO".

STRWRITE(S:I:'CENTER') Center the string S in a field of I characters, e.g.

STRWRITE("FOO":5:"CENTER") is " FOO ".

STRWRITE(S:'UPSHIFT') Return the string S upshifted.

STRWRITE(S:'DOWNSHIFT') Return the string S downshifted.

STRWRITE(S:'GARBAGE') Return the string with garbage (non-printable) characters
replaced by "."s.

Any of the above options may be combined, e.g.

STRWRITE('FOO':10:'CENTER,UPSHIFT,GARBAGE').

Integer formatting
When you do a STRWRITE of an integer, you have several options:

STRWRITE(I) Return the string representation of the integer I, e.g.

STRWRITE(10) is "10".

STRWRITE(I1:I2) Return the string representation of I1 right-justified in I2-
character field, e.g.

STRWRITE(10:5) is " 10".

STRWRITE
(I1:I2:'LEFTJUST')

Return the string representation of I1 left-justified in I2-
character field, e.g.

STRWRITE(10:5:"LEFTJUST") is "10 ".

STRWRITE (I:'OCTAL') Returns the octal representation of I, e.g.

STRWRITE(123:"OCTAL") is "173".

STRWRITE (I:'HEX') Returns the hexadecimal representation of I, e.g.

STRWRITE(123:"HEX") is "7B".

STRWRITE
(I1:I2:'ZEROFILL')

Returns I1 right-justified in I2 characters with leading zeros,
e.g. STRWRITE(123:5:"ZEROFILL") is "00123".

STRWRITE (I:'UNSIGNED') Returns I formatted as an unsigned integer, e.g.

STRWRITE(-1:"UNSIGNED,HEX") is "FFFFFFFF".

STRWRITE (I:'I2') Returns the 2-byte representation of the low-order 16-bits of
the integer I. Useful for putting integer values into records
to be written to files using the VEFWRITExxx functions.

STRWRITE (I:'I4') Returns the 4-byte representation of the 32-bit integer I.
Useful for putting integer values into records to be written to
files using the VEFWRITExxx functions.

Appendix B

B-39

Again, any of the above options may be combined, e.g.

STRWRITE(I:10:"LEFTJUST,HEX,UNSIGNED").

Date formatting
The format specifiers used for formatting dates and times are quite different from those used
for formatting strings and integers. Here's an example of a STRWRITE of a date:

STRWRITE(TODAY:'%1W, %1M %RD, 19%0Y')

On 2/29/68, this would have returned

THU, FEB 29, 1968

Why? Well, the commas, the spaces and the "19" are transferred verbatim to the generated
string. However, certain special specifiers (largely those start with "%") are replaced by one of
several things: (Examples below assume the date Friday, 2 January, 1903)

Format Specifier Example Result

%0D "02" The day of month, zero-filled, 2 characters.

%0M "01" The month number, zero-filled, 2 characters.

%0Y "03" The year, zero-filled, 2 characters.

%0C "19" The 4-digit year's high-order 2-digits.

%4Y "1903" The 4-digit year.

%RD, %RM, %RY " 2" Same as %0D/%0M/%0Y, but right-justified (i.e. padded
with blanks).

%D, %M, %Y "2" Same as %0D/%0M/%0Y, but not padded either with
blanks or with zeros.

%1M "JAN" The month, 3-letter abbreviation.

%2M "January" The month's full name (first char UPPERCASE).

%1W "FRI" The day-of-week, 3-letter abbreviation.

%2W "Friday" The day-of-week's full name (first char UPPERCASE).

DD "02" Same as %0D.

MM "01" Same as %0M.

YY "03" Same as %0Y.

CC "19" Same as %0C.

All format specifiers must be UPPERCASE; for instance, "%1w" is invalid — you must use "%1W".

Appendix B

B-40

Some useful date formats might be:

STRWRITE (D:'YY/MM/DD') 03/01/02
STRWRITE (D:'MM/DD/YY') 01/02/03
STRWRITE (D:'DD.MM.YY') 02.01.03
STRWRITE (D:'%1W, %1M %RD, 19%0Y') FRI, JAN 2, 1903
STRWRITE (D:'%2W, %2M %0D, %0C%0Y') Friday, January 02, 1903
STRWRITE (D:'%4Y:MM:DD') 1903:01:02

Time formatting
Time format specifiers are quite similar to the date format specifiers. Special format specifiers
indicate parts of the time that are to be included into the formatted string. For instance,

STRWRITE(RSTTIME:'%rh:%0m:%0s %x')

would, if RSTTIME were 7:33:05 PM, return

7:33:05 PM

More precisely, the valid specifiers are: (examples are based on a time of 9:07:00 PM)

Format Specifier Example Result

%0h "09" The hour (by 12-hour clock), zero-filled, 2 chars.

%024h "21" The hour (24-hour clock), zero-filled, 2 chars.

%0m "07" The minute, zero-filled, 2 chars.

%0s "00" The second, zero-filled, 2 chars.

%rh, %r24h, %rm, %rs " 9" Same as the "%0..." format, but right-justified in 2
characters (i.e. padded with spaces)

%h, %24h, %m, %s "9" Same as the "%0..." format, but without leading
spaces or zeros.

%x "PM" Either "AM" or "PM" depending on the hour.

All format specifiers must be lowercase; for instance, "%H" is invalid — you must use "%h".

Real number formatting
Real number formatting is a bit different from all the other formatting constructs. Instead of
being able to specify the field length and/or a format specifier string, you may specify a field
length and optionally another integer indicating the number of digits to be printed after the
decimal point. Thus,

STRWRITE(1.2) yields " 1.20"
STRWRITE(1.2:11) yields " 1.20"
STRWRITE(1.2:11:4) yields " 1.2000"

Appendix B

B-41

As you see, the number after the first ":" is the field length (default 9) and the number after
the second ":" is the number of digits after the decimal point (default 2).

Advanced expression programming
The expression operators and functions that we described above had to do with what we might
call "simple expressions" — expressions that operate on several things (constants, variables,
etc.) and return a value. MPEX's %CALC, %SETVAR, %IF, STREAMX's CHECK=... conditions,
etc. all use "simple expressions" like that.

In certain circumstances, though — for instance, in the flexible LISTF files — you want more
than just an expression. What you want is more like a program, with a sequence of
statements, each to be executed in turn. This program should be able to have variables,
assignment statements, IF statements, WHILE loops, WRITELN statements to output things, etc.
— all the power of a true programming language.

Here, for instance, is a snippet from what might be an MPEX flexible LISTF file:

VAR I: INTEGER;
VAR S: STRING[120];

I:=10;
...
IF I>20 AND S<>'FOO' THEN
 WHILE I<>0 DO
 BEGIN
 WRITELN (S);
 ...
 END
ELSE
 ...;

As you see, this looks much like a PASCAL program and has most of the power of PASCAL.
Statements are separated by ";"s; variables can be declared, assigned to and used; IF... THEN...
ELSE and WHILE… DO loops are available; BEGIN... END can be used to group statements.

In addition to flexible LISTF files, MPEX expression programs can be used to do advanced tasks
that regular command files are too slow for (although expression programs are still slower
than regular, compiled programs). For more details on writing expression programs, see
"Advanced expression programming" below.

IF ... THEN ... ELSE
Conditional processing is quite simple; in fact, it's almost identical to PASCAL's:

IF condition THEN
 statement
ELSE
 statement;

Appendix B

B-42

For instance,

IF I>20 AND S MATCHES 'X@' THEN
 WRITELN ('HELLO')
ELSE
 WRITELN ('GOOD BYE');

To use more than one statement in either the THEN block or the ELSE block, use BEGIN...END:

IF I>20 AND S MATCHES 'X@' THEN
 BEGIN
 WRITELN ('HELLO');
 WRITELN ('THERE')
 END
ELSE
 BEGIN
 WRITELN ('GOOD');
 WRITELN ('BYE')
END;

One new feature of the IF... THEN... ELSE is the ability to use them in an "expression" context,
i.e. to return a value:

WRITELN (IF I>20 THEN 55 ELSE 66);

Here, either 55 or 66 will be output, depending on whether I>20 is true or false.

If you want an IF to return a value, the THEN block and the ELSE block must return values of
the same type —

WRITELN (IF I>20 THEN 55 ELSE 'FOOBAR');

is illegal, since we have to know the type of the expression to be WRITELNed at compile time.

Of course, if the IF doesn't return a value, it doesn't matter what the types of the THEN and
ELSE blocks are (in fact, they can then be BEGIN... END constructs, which have no type).

WHILE ... DO
Our WHILE...DO loops are identical to PASCAL's. If you say

WHILE condition DO
 statement;

then the statement will be executed again and again as long as the condition is true. BEGINs
and ENDs can be used if you want to execute more than one statement:

WHILE I<=100 DO
 BEGIN
 WRITELN (I:10, I*I:10, I*I*I:10);
 I:=I+1;
 END;

Appendix B

B-43

Constructs like REPEAT...UNTIL or a FOR x := y TO z DO can be easily emulated with the
WHILE loop.

FOR stringvar IN FILE (fopenparms) DO
This form of our FOR loop allows you to process all of the records in a file. The full syntax is:

FOR stringvar IN FILE (fopenparms) DO
 statement;

For example, to search through a list of files and report on any files that are missing:

VAR FILENAME_TO_TEST: STRING[68];
FOR FILENAME_TO_TEST IN FILE ("FILELIST,OLD") DO
 IF NOT FEXISTS(FILENAME_TO_TEST) THEN
 WRITELN ("File ",RTRIM(FILENAME_TO_TEST)," is missing!");

Here is a more advanced example that implements a new command. If you keep this as a file
named PURGETMP (with filecode 171 — see Writing expression programs), you can say

%PURGETMP @.@.@

to purge all of your temporary files.

Here is the expression program itself:

VAR TEMPFILENAME: STRING[68];
FOR TEMPFILENAME IN FILE (STDLIST('LISTFTEMP '+VEPARMS)) DO
 BEGIN
 IF TEMPFILENAME MATCHES "@.@.@" THEN BEGIN
 WRITELN ("-----PURGETMPing ",RTRIM(TEMPFILENAME));
 MPE ("PURGE "+TEMPFILENAME+",TEMP");
 END;
 END

What does all of this mean?

• Well, VEPARMS is a predefined variable containing the parameters passed to the expression
program;

• the STDLIST function (documented earlier in this Appendix) executes an MPE command
(in this case, "LISTFTEMP"), writes the output of the command to a temporary file and
returns the fopenparms needed to open that file and then automatically purge it when you
close it;

• "FOR TEMPFILENAME IN FILE..." reads the file created by the STDLIST function and puts
each line in turn into the variable "TEMPFILENAME";

• we check to make sure TEMPFILENAME contains a filename (to skip past the heading
portion of the output of the LISTFTEMP command) and if it does,

• we show the user the name of the file ("WRITELN..."), and, finally,

• we call the MPE function to purge the file!

Appendix B

B-44

TRY ... RECOVER and TRY ... CLEANUP
If you want to do your own error handling in the file, you can use two constructs — TRY...
RECOVER (analogous to the %TRAPERROR/%IFERROR) and TRY...CLEANUP (analogous to the
%TRAPERROR/%CLEANUP).

TRY
 stmt1
RECOVER
 stmt2

does stmt1 (which can be either a single statement or a BEGIN/END block) and if an error
occurs, does stmt2 and then continues with the remainder of the program.

TRY
 stmt1
CLEANUP
 stmt2

does stmt2 after doing stmt1, whether or not an error occurred in stmt1; however, if an
error did occur, it aborts the program after doing stmt2. Thus, a common sequence that you
might use for file handling would be:

FNUM:=VEFOPEN ...;
TRY
 BEGIN
 ...
 END
CLEANUP
 VEFCLOSE (FNUM);

Expression program variables
We support variables of several types:

INTEGER 32-bit integer.

BOOLEAN TRUE or FALSE.

REAL 32-bit floating point (single precision real).

DATE Date.

TIME Time.

STRING[xxx] Variable length string of up to xxx characters.

Appendix B

B-45

To declare a variable, just say

VAR varname: type;

e.g.

VAR LINECOUNT: INTEGER;
VAR HEADER: STRING[256];

You must have exactly one variable per VAR statement — both

VAR LINECOUNT, XYZZY: INTEGER; (* illegal! *)

and

VAR LINECOUNT: INTEGER; XYZZY: INTEGER; (* illegal! (no second VAR) *)

are illegal. Instead, say

VAR LINECOUNT: INTEGER;
VAR XYZZY: INTEGER;

All VAR statements must come at the beginning of the "expression program" in which they'll be
used.

Once you've declared a variable, you can assign to it by saying

variable := expression;

e.g.

I := I * 17;
S := 'TESTING ONE TWO THREE';

The left-hand side of an assignment statement can only be

• a variable (I := 17) or

• a substring (S[3:4] := 'XYZZ') — in this case, the entire substring must be within the
bounds of the string.

In particular, neither expressions nor MPEX variables (or MPE/iX variables) may be put on the
left-hand side of an assignment statement. To set MPEX variables, use the BVARSET, IVARSET
and SVARSET functions or the MPEX %SETVAR command.

After you've assigned a value to a variable, you can use it much as you'd be able to use a file
attribute variable or an MPEX variable:

IF I>10 THEN
 WRITELN (S);

Appendix B

B-46

Note that variables declared with a VAR command are strictly local variables, local to the
"expression program" that declares them. They can not be later referenced in an MPEX
command, whether in a %CALC, %SETVAR, ! substitution construct or what have you.

Sorry, no record structures (yet?). Also, be wary of declaring long strings! You have a very
limited amount of space left (if you exhaust it, it's STACK OVERFLOW time).

Outputting data
Every good language should have a good input and output mechanism (SPL is a notable
offender in this area). For input, you can use the READxxx functions discussed above
(READINTEGER, READSTRING, READDATE, etc.). For output, you can use:

WRITELN (value1, value2, ..., valueN);

and

WRITEPROMPT (value1, value2, ..., valueN);

Both are just like STRWRITE except that they output to the terminal (or whatever the list file of
the expression program is) instead of returning a string. WRITELN outputs the data and then a
carriage return/line feed; WRITEPROMPT outputs it without a CR/LF.

WRITE (value1, value2, ..., valueN);

formats all the values but doesn't actually output them. Instead, the formatted text is kept in
the "output buffer"; subsequent WRITEs, WRITELNs and PROMPTs will append to this output
buffer, until it's actually output (and cleared) by a WRITELN or a WRITEPROMPT.

Thus,

WRITE ('FOO');
WRITE ('BAR');
WRITELN ('XYZ');

will output "FOOBARXYZ".

If you have stuff in the output buffer and you want to throw it away, you can say

CANCELWRITE ();

(the open and close parentheses are important).

Other I/O constructs include:

* WRITEPAGE()

This causes a form feed on the expression program output file.

Appendix B

B-47

Comments
You can insert comments in expression programs by enclosing them in "(*" and "*)". For
example,

...
(* Figure out the month number for a three-letter abbreviation *)
MONTH:=(POS(UPS(MONTHSTR[0:3]),
 "JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ")
 +3)/4; (* Remember, POS starts counting at 1 *)
...

This feature may also be used to add comments to the following files:

SECURCON.DATA.VESOFT
STREAMX.DATA.VESOFT
LOGOFF.DATA.VESOFT
LOGOFFAB.PUB.VESOFT
LOGOFFWR.PUB.VESOFT

Writing expression programs
Especially now that MPEX can access files, there are many things that you can do in MPEX that
you used to need a program to do. However, MPEX command files are much slower than
programs, because every command has to be interpreted; thus, using a %WHILE loop to read a
file might take you a tenth of a second or more per record.

You can do things much quicker (though still more slowly, perhaps by as much as a factor of
10 or more, than in a program) using VESOFT expression programs. You may have already
used expression programs if you've written flexible LISTF files — they are much like simple
VESOFT expressions, in that you can use all the functions that you can use in %CALC, %IF, etc.,
but you can also declare variables and use constructs like IF/THEN/ELSE, WHILE, BEGIN/END,
etc. — these are all documented above under "Advanced Expression Programming".

In order to create an expression program, simply write it with your favorite text editor and
/KEEP it as a file with filecode 171 (you can use MPEX's %ALTFILE fileset;CODE=171).
You can then execute it by just typing its name at the % prompt, just like a command file
(HPPATH is honored for this just as it is for command files and programs).

The first time you execute any expression program, MPEX "compiles" it into a file with the
same name, in the same group and account, but with a "9" appended to the end of the
filename (or the last character changed to a "9" if the filename is already 8 characters long; or,
if the filename is 8 characters and already ends in 9, the new file will end in "8"). This new file
will have filecode 176.

If you are using the Native Mode version of MPEX, compiled expression programs will end in 8
(or 7) instead of 9 (or 8).

Note:

You must be careful not to create two different expression programs in the same
group.account with the filename the same for the first 7 characters.

Appendix B

B-48

For safety's sake, if there is an existing file with the filename that the expression program is
supposed to be compiled into, but it doesn't have filecode 176, MPEX will not overwrite, but
will instead print an error message (your new expression program will not run). If this
happens, simply PURGE or RENAME the "9"-file.

For example, if you create an expression program named MYEXPROG.MYGROUP.MYACCT (with
file code 171), then type

%MYEXPROG

MPEX will compile MYEXPROG into a new file named MYEXPRO9.MYGROUP.MYACCT (for CM
users) or MYEXPRO8.MYGROUP.MYACCT (for NM users), with filecode 176 and then execute it.
The next time you execute it (provided you haven't modified MYEXPROG in the meantime), it
will execute much faster, since it has already been "compiled". Note that you never say
%MYEXPRO9 or %MYEXPRO8; always use the name of the original file (in this case, MYEXPROG).

Whenever you make a change to any expression program, it will be automatically re-compiled
the next time you execute it. This "pre-compiling" helps make expression programs execute
much faster.

Any parameters that were specified are passed to the command file as the variable VEPARMS (it
is your job to parse it, probably using TOKEN and REMTOKEN). Here's an example:

VAR S: STRING[256];
VAR I: INTEGER;
VAR FNUM: INTEGER;

I:=0;
FNUM:=VEFOPEN (VEPARMS+',OLD');
S:=VEFREAD (FNUM);
WHILE NOT VEEOF DO
 BEGIN
 I:=I+INTEGERPARSE (S);
 S:=VEFREAD (FNUM);
 END;
VEFCLOSE (FNUM);
WRITELN ('Sum of lines is ', I);

This expression program opens a file (whose name is given as the parameter to the expression
program) and sums the integer values stored in all of its records — just an example of what
you can do. An alternative to the above would be:

VAR S: STRING[256];
VAR I: INTEGER;
I:=0;
FOR S IN FILE (VEPARMS+',OLD') DO
 I:=I+INTEGERPARSE (S);
WRITELN ('Sum of lines is ', I);

The FOR stringvar IN FILE (fopenparms) DO statement performs statement for
each record in the file, assigning the value of the record to stringvar. This saves you from

Appendix B

B-49

having to do your own VEFOPEN, VEFREAD and VEFCLOSE and also properly closes the file in
case an error occurs.

A very important disclaimer
I hesitated a lot before releasing this feature, since it should not be viewed as a general-
purpose programming language. It is limited in a number of ways and you should be aware of
these ways before you invest any serious time into using it.

• It is and always will be, slower — maybe much slower — than a third-generation-language
program. Though we "compile" the expression program, we compile it into a kind of
pseudo-code that we then interpret.

• Expression programs lack many features that are necessary for a really general-purpose
programming language, e.g. record structures, procedures, etc. On the other hand, it does
have a lot of nice things – like convenient file access and string manipulation — that most
languages don't have.

Although we'll entertain enhancement requests to work around these problems, they'll have a
substantially lower priority than other enhancement requests and we'll often expect you to live
with workarounds that might be less than perfect. Historically, expression programs were
developed to allow VESOFT to implement its own features (like most MPEX commands, all the
%SEC commands and a very great part of VEAUDIT) and we've made them available to users
because we had already created them for ourselves. Especially because we expect only rather
sophisticated users to use expression programs, we probably won't implement many features
unless they're useful to ourselves.

One other note — curious people may look at files in the VESOFT account and try to use in
their own expression programs the features that they see us use in ours. However, for security
reasons, the features we make available to users are a subset of those features we use
internally. Some of those features will actually give you errors if you try to use them
yourselves; even if, by accident, you can get them to work, we will not support them unless
they are documented.

We've put in these disclaimers because we don't want to create any expectations that we can't
live up to or have you invest a lot of effort into trying to do things with this feature that it was
never intended to do. On the other hand, for short, simple problems, we feel that expression
programs can be a really powerful solution.

Appendix C

C-1

Appendix C: LOADER ERROR MESSAGES EXPLAINED
Loader error messages, usually generated at :RUN command execution time, can best be
described in one word: CRYPTIC. They usually do not tell you what the problem is and they
never tell you how to remove or get around the problem. The Error Messages and Recovery
Manual or the Error Messages appendix of the System Intrinsics Manual is not much help
either — more often than not, no explanation is given, save a repetition of the text of the
message.

The following is a feeble effort at cataloging explanations and workarounds to some of the
more frequently occurring error messages:

20 ILLEGAL LIBRARY SEARCH (LOAD ERR 20):
Either 1) An attempt was made to run a program in the PUB group of the SYS account with
LIB=G or LIB=P or 2) an invalid library search parameter was specified in the CREATE or
LOADPROC intrinsic call.

WORKAROUND: In case 1) since LIB=G, LIB=P and LIB=S (default) are functionally
equivalent for programs in PUB.SYS, the program should be run with LIB=S or the LIB=
clause should be omitted; in case 2, a valid library search parameter should be specified.

21 UNKNOWN ENTRY POINT (LOAD ERR 21):
A program was run with an entry point which does not exist in the program file.

WORKAROUND: Specify an entry point that exists in the file.

22 TRACE SUBSYSTEM NOT PRESENT (LOAD ERR 22):
Your SPL or FORTRAN program uses the $TRACE keyword, but TRACE/3000 is not installed
on your system.

WORKAROUND: Remove the $TRACE keyword and recompile. You don't REALLY use
TRACE/3000, do you?

23 STACK SIZE TOO SMALL (LOAD ERR 23):
The stack size with which the program was to be run was less than 512.

WORKAROUND: Specify a bigger stack size.

24 MAXDATA TOO LARGE (LOAD ERR 24)
This error is no longer used.

25 STACK SPACE REQUIRED EXCEEDS SPECIFIED MAXDATA (LOAD ERR 25):
The maxdata specified is not large enough to fit the initial stack of the program to be run.

WORKAROUND: Specify a larger maxdata or decrease the program's stack usage.

26 PROGRAM LOADED IN OPPOSITE MODE (LOAD ERR 26):
An attempt was made to run with the ;NOPRIV keyword a program that is already loaded (run
or allocated) without the ;NOPRIV keyword, or vice versa.

WORKAROUND: Run the program with or without the ;NOPRIV keyword, whichever is
appropriate.

Appendix C

C-2

27 SL BINDING ERROR (LOAD ERR 27):
The program to be loaded has external references to procedures that cannot be found in the SL
files with which the program is to be loaded.

WORKAROUND: Correct the program so it will not refer to those procedures, add those
procedures to the SL file, or, if the procedures are present in the group SL or the PUB group SL,
run the program with LIB=G or LIB=P.

28 INVALID SYSTEM SL FILE (LOAD ERR 28):
Your SL.PUB.SYS is not a valid SL file. Boy, are you in deep trouble!

WORKAROUND: Do a COLDLOAD or an UPDATE (or, even better, a RELOAD). While you're
at it, call your SE, too.

29 INVALID PUBLIC SL FILE (LOAD ERR 29):
The PUB group SL file with which the program was to be loaded is not a valid SL file.

WORKAROUND: Run the program with LIB=S, replace the PUB group SL file with a valid SL
file or purge the PUB group SL file. It is usually a good idea to avoid using the name 'SL' for
non-SL files.

30 INVALID GROUP SL FILE (LOAD ERR 30):
The group SL file with which the program was to be loaded is not a valid SL file.

WORKAROUND: Run the program with LIB=G or LIB=P, replace the group SL file with a
valid SL file or purge the group SL file. It is usually a good idea to avoid using the name 'SL'
for SL files.

31 INVALID PROGRAM FILE (LOAD ERR 31):
The file to be loaded is not a valid program file (i.e. does not have filecode PROG).

WORKAROUND: Do not try to run the specified file.

32 INVALID LIST FILE (LOAD ERR 32)
33 CODE SEGMENT TOO LARGE (LOAD ERR 33):

One of the program file's code segments is larger than the maximum permitted by your system
configuration.

WORKAROUND: Re-segment the program file or get the system manager to increase the
maximum code segment size for your system. Note: The MPE V System Manager/System
Supervisor Manual suggests to set this parameter to 5% of available memory; i.e. systems with
768 Kilobytes or more of memory should have this parameter set to 16384 words, the
maximum possible.

34 PROGRAM FILE'S EXTENT MAXIMUM MUST BE ONE (LOAD ERR 34):
A program file must have its maximum number of extents equal to 1.

WORKAROUND: Do not run this program file or change its number of extents (possibly with
MPEX's %ALTFILE...;EXTENTS= command.

35 DATA SEGMENT TOO LARGE (LOAD ERR 35):
The total amount of stack data segment space (including stack, system overhead and stack
expansion area) necessary for this program exceeds the system maximum of 32K.

Appendix C

C-3

WORKAROUND: Decrease the amount of stack space used by the program. It is usually a
good idea to keep this quantity less than 25 to 30 thousand words.

36 DATA SEGMENT TOO LARGE (LOAD ERR 36):
The total amount of stack data segment space (including stack, system overhead and stack
expansion area) necessary for this program exceeds the configuration maximum.

WORKAROUND: Decrease the amount of stack space used by the program or increase the
configuration maximum.

37 TOO MANY CODE SEGMENTS (LOAD ERR 37):
The program file to be run contains more than 63 segments, the maximum allowed by the
system.

WORKAROUND: Re-segment the program so it will have less than 63 segments or separate
the functions of the program into two or more different programs (possibly linked via Process
Handling).

38 TOO MANY CODE SEGMENTS (LOAD ERR 38):
The program file to be run contains more code segments than the configuration maximum.

WORKAROUND: Re-segment the program to decrease the number of code segments, separate
the functions of the program into two or more different programs (possibly linked via Process
Handling) or increase the configuration maximum.

39 ILLEGAL CAPABILITY (LOAD ERR 39):
Either:

• The program to be run has a capability (e.g. PH, PM, MR or DS) that the group in which it
resides or the account in which it resides does not have,

• The program is a TEMPORARY FILE and has a capability that the user who's running it
doesn't have,

• The program is being run online, but lacks IA capability or is being run offline but lacks BA
capability or

• The program contains a privileged segment but lacks PM capability.

WORKAROUND:

• The group or account in which the program resides (not the user running the program!)
should be given all the capabilities that the program has or some of the capabilities should
be taken away from the program (e.g. with MPEX's %ALTFILE...,CAP= command.

• The user running the program should be given the appropriate capabilities or the program
should have capabilities taken away from it or it should be :SAVEd and then treated as a
temporary file (as in case 1);

• The program should be either given the missing capability (IA or BA) or run in the right
mode (offline or online);

• The program should either be given PM capability or have its privileged segments removed.

40 TOO MANY PROCEDURES LOADED (LOAD ERR 40):
An attempt was made to load (via the LOADPROC intrinsic) more than (approximately) 250
procedures.

Appendix C

C-4

WORKAROUND: Do not attempt to do more than 250 LOADPROCs. Note: Unloading some of
the procedures loaded (via the UNLOADPROC intrinsic) will not help!

41 UNKNOWN PROCEDURE NAME (LOAD ERR 41):
The procedure which was to be loaded (via the LOADPROC intrinsic) does not exist in the SL
file(s) from which it was to be loaded.

WORKAROUND: Do not try to load this procedure, add a procedure with this name to the SL
file, or, if the procedure already exists in a different SL file, specify a different library search
parameter in the LOADPROC invocation.

42 INVALID PROCEDURE NUMBER (LOAD ERR 42)
This message is no longer used.

43 ILLEGAL PROCEDURE UNLOAD (LOAD ERR 43)
This message is no longer used.

44 ILLEGAL SL CAPABILITY (LOAD ERR 44):
The SL with which this program was to be run has privileged procedures, but does not reside
in a group and account with PM capability.

WORKAROUND: Remove the privileged procedure from the SL, give PM capability to the
group and account in question or do not use this SL.

45 INVALID ENTRY POINT (LOAD ERR 45)
The entry point specified for the program or procedure to be loaded was found, but it pointed
to invalid code segment information.

WORKAROUND: The problem is not with the entry point you specified, but is with the
program file itself. Recompile the program and try again.

46 TEMPORARY PROGRAM FILE ILLEGAL (LOAD ERR 46)
An attempt was made to load a program that is in the temporary file domain. Only files in the
permanent file domain can be allocated.

WORKAROUND: Make the file permanent with the SAVE command, and try again.

50 UNABLE TO OPEN SYSTEM SL FILE (LOAD ERR 50):
The file in question cannot be opened. Possible reasons are that the file is opened exclusively,
its file label is clobbered.

WORKAROUND: Do not use the SL file in question; or, determine exactly why the file cannot
be opened and take appropriate action.

51 UNABLE TO OPEN PUBLIC SL FILE (LOAD ERR 51):
The file in question cannot be opened. Possible reasons are that the file is opened exclusively,
its file label is clobbered.

WORKAROUND: Do not use the SL file in question; or, determine exactly why the file cannot
be opened and take appropriate action.

52 UNABLE TO OPEN GROUP SL FILE (LOAD ERR 52):
The file in question cannot be opened. Possible reasons are that the file is opened exclusively,
its file label is clobbered.

Appendix C

C-5

WORKAROUND: Do not use the SL file in question; or, determine exactly why the file cannot
be opened and take appropriate action.

53 UNABLE TO OPEN PROGRAM FILE (LOAD ERR 53):
The file in question cannot be opened. Possible reasons are that the file is opened exclusively,
its file label is clobbered.

WORKAROUND: Do not run the program in question or determine exactly why the file cannot
be opened and take appropriate action.

54 UNABLE TO OPEN LIST FILE (LOAD ERR 54)
The LOADLIST file cannot be opened. The file might be open exclusively or its file label might
be defective.

WORKAROUND: If an asterisk (*) appears after the filename when you execute the command
"LISTF filename,2", the problem might be that another process has exclusive access to the
file. If not, then the file might need to be recreated or the operating system might need to be
reloaded.

55 UNABLE TO CLOSE SYSTEM SL FILE (LOAD ERR 55)
A process attempted to close the SL file SL.PUB.SYS, but the close was not successful.

This error condition could indicate a corrupt file or a problem with the operating system.
Report this error to your system administrator.

WORKAROUND: Perform an UPDATE/START to put a new copy of the System SL file on your
system.

56 UNABLE TO CLOSE PUBLIC SL FILE (LOAD ERR 56)
A process attempted to close the SL file in the PUB group, but the close was not successful.

This error condition could indicate a corrupt file or a problem with the operating system.
Report this error to your system administrator.

WORKAROUND: Restore a new copy of the SL from a known good backup.

57 UNABLE TO CLOSE GROUP SL FILE (LOAD ERR 57)
A process attempted to close the group SL file, but the close was not successful.

This error condition could indicate a corrupt file or a problem with the operating system.
Report this error to your system administrator.

WORKAROUND: Restore a new copy of the SL from a known good backup.

58 UNABLE TO CLOSE PROGRAM FILE (LOAD ERR 58)
A process attempted to close a program file, but the close was not successful.

This error condition could indicate a corrupt file or a problem with the operating system.
Report this error to your system administrator.

WORKAROUND: Recompile or Restore a good copy of the program file.

59 UNABLE TO CLOSE LIST FILE (LOAD ERR 59)
A process attempted to close a list file, but the close was not successful.

This error condition could indicate a corrupt file or a problem with the operating system.
Report this error to your system administrator.

Appendix C

C-6

60 EOF OR I/O ERROR ON SYSTEM SL FILE (LOAD ERR 60).
The program to be loaded could not be run because the loader got an end-of-file indication or
I/O error while reading the specified file. This could mean that 1) the specified file is messed
up or 2) the specified file could not be accessed because it is currently being STOREd (this
condition often occurs during a SYSDUMP).

WORKAROUND: In case 1, correct the file in question; in case 2, wait until STORE or SYSDUMP
unlocks the file or (in case the error occurs on the program file) copy the program file into
another file and then run the new file.

61 EOF OR I/O ERROR ON PUBLIC SL FILE (LOAD ERR 61).
The program to be loaded could not be run because the loader got an end-of-file indication or
I/O error while reading the specified file. This could mean that 1) the specified file is messed
up or 2) the specified file could not be accessed because it is currently being STOREd (this
condition often occurs during a SYSDUMP).

WORKAROUND: In case 1, correct the file in question; in case 2, wait until STORE or SYSDUMP
unlocks the file or (in case the error occurs on the program file) copy the program file into
another file and then run the new file.

62 EOF OR I/O ERROR ON GROUP SL FILE (LOAD ERR 62).
The program to be loaded could not be run because the loader got an end-of-file indication or
I/O error while reading the specified file. This could mean that 1) the specified file is messed
up or 2) the specified file could not be accessed because it is currently being STOREd (this
condition often occurs during a SYSDUMP).

WORKAROUND: In case 1, correct the file in question; in case 2, wait until STORE or SYSDUMP
unlocks the file or (in case the error occurs on the program file) copy the program file into
another file and then run the new file.

63 EOF OR I/O ERROR ON PROGRAM FILE (LOAD ERR 63).
The program to be loaded could not be run because the loader got an end-of-file indication or
I/O error while reading the specified file. This could mean that 1) the specified file is messed
up or 2) the specified file could not be accessed because it is currently being STOREd (this
condition often occurs during a SYSDUMP).

WORKAROUND: In case 1, correct the file in question; in case 2, wait until STORE or SYSDUMP
unlocks the file or (in case the error occurs on the program file) copy the program file into
another file and then run the new file.

64 EOF OR I/O ERROR ON LIST FILE (LOAD ERR 64)
The program to be loaded could not be run because the loader got a file system error while
reading the list file.

WORKAROUND: The list file might be corrupt or STORE or SYSDUMP might have the file
locked. Contact your support representative if problems persist.

65 UNABLE TO OBTAIN CST ENTRIES (LOAD ERR 65)
The loader could not get enough Code Segment Table entries for the program or procedure
being loaded.

WORKAROUND: A code segment cannot be larger than 37777 words. An SL can contain no
more than 255 segments and a program file can contain no more than 152 segments. Try
DEALLOCATEing a procedure not in use.

Appendix C

C-7

66 UNABLE TO OBTAIN PROCESS DST ENTRY (LOAD ERR 66)
The loader could not allocate a DST entry for the process being loaded.

WORKAROUND: Try DEALLOCATEing a procedure not in use or increasing the size of the DST.

67 UNABLE TO OBTAIN MAIL DATA SEGMENT (LOAD ERR 67)
This message is no longer used.

68 UNABLE TO CREATE LOAD PROCESS (LOAD ERR 68)
This message is no longer used.

69 UNABLE TO OBTAIN CSTX ENTRIES (LOAD ERR 69)
This message is no longer used.

70 SEGMENT TABLE OVERFLOW (LOAD ERR 70)
The loader was unable to load the program or procedure because the loader segment table is
full.

WORKAROUND: Increase the size of the Loader Segment Table if possible or use the
DEALLOCATE command to unload unnecessary programs.

71 UNABLE TO OBTAIN SUFFICIENT DL STORAGE (LOAD ERR 71)
The loader could not get enough DL area. This is a system problem.

WORKAROUND: Try to reduce the amount of SL libraries or external procedures being
referenced. For example, you might merge group and account SL libraries.

Contact your support representative if this occurs.

72 ATTIO ERROR (LOAD ERR 72):
The loader could not modify the program file's file label.

WORKAROUND: None. The file label may be clobbered or you may be having hardware
problems.

73 UNABLE TO OBTAIN VIRTUAL MEMORY (LOAD ERR 73)
Virtual memory was not available when the stack was being created.

WORKAROUND: Try again when the system is not as busy. You may need to increase virtual
memory on the system or their might be a hardware problem.

Contact your support representative if problems persist.

74 DIRECTORY I/O ERROR (LOAD ERR 74):
The loader could not retrieve the directory entry of the group in which the program file
resides.

WORKAROUND: None. Your directory may be clobbered or you may be having hardware
problems.

75 PRINT I/O ERROR (LOAD ERR 75):
The loader got an I/O error while printing a warning (LOAD WARN 89, 90, 91 or 92).

WORKAROUND: None. You may be having hardware problems.

Appendix C

C-8

76 ILLEGAL DLSIZE (LOAD ERR 76):
The dlsize with which the program is to be run exceed 32722 words, the maximum. Note that
even this hypothetical maximum is not attainable because dlsizes greater than approximately
27000 words cause the loader to generate a DATA SEGMENT TOO LARGE (LOAD ERR 35).

WORKAROUND: Specify a smaller dlsize.

77 ILLEGAL MAXDATA (LOAD ERR 77)
This message is no longer used.

80 PROGRAM ALREADY ALLOCATED (LOAD ERR 80):
An attempt was made to allocate a program that was already allocated.

WORKAROUND: None necessary. The program is already allocated.

81 ILLEGAL PROGRAM ALLOCATION (LOAD ERR 81)
An attempt was made to allocate a program that was already allocated.

WORKAROUND: None necessary. The program is already allocated.

82 PROGRAM NOT ALLOCATED (LOAD ERR 82):
An attempt was made to deallocate a program that was not allocated.

WORKAROUND: None necessary. The program is already deallocated.

83 ILLEGAL PROGRAM DEALLOCATION (LOAD ERR 83)
An attempt was made to deallocate a program that was not allocated.

WORKAROUND: None necessary. The program is already deallocated.

84 PROCEDURE ALREADY ALLOCATED (LOAD ERR 84):
An attempt was made to allocate a procedure that was already allocated.

WORKAROUND: None necessary. The procedure is already allocated.

85 ILLEGAL PROCEDURE ALLOCATION (LOAD ERR 85):
Allocation of system procedures (e.g. FOPEN, ATTACHIO, etc.) is not permitted.

WORKAROUND: None.

86 PROCEDURE NOT ALLOCATED (LOAD ERR 86):
An attempt was made to deallocate a procedure that was not allocated.

WORKAROUND: None necessary. The procedure is already deallocated.

87 ILLEGAL PROCEDURE DEALLOCATION (LOAD ERR 87):
Deallocation of system procedures (e.g. FOPEN, ATTACHIO, etc.) is not permitted.

WORKAROUND: None.

88 LMAP NOT AVAILABLE (LOAD WARN 88):
The program was run with a request for an LMAP; however, the program was already loaded
— thus the LMAP could not be produced.

WORKAROUND: Do without the LMAP, run the program when it is not loaded or copy the
program file into another file and then run it.

Appendix C

C-9

89 PROGRAM LOADED WITH LIB = G (LOAD WARN 89):
The program to be run was already loaded with a LIB= parameter other than the one with
which it was to be run. This means, for instance, that if you run a program X with LIB=G
while it is already loaded with LIB=S (or LIB=P, for that matter), this message will come up
and the program will be loaded with the same LIB= parameter as it is already loaded with.

WORKAROUND: Ignore the message, run the program when it is not loaded or copy the
program file into another file and then run it.

90 PROGRAM LOADED WITH LIB = P (LOAD WARN 90):
The program to be run was already loaded with a LIB= parameter other than the one with
which it was to be run. This means, for instance, that if you run a program X with LIB=G
while it is already loaded with LIB=S (or LIB=P, for that matter), this message will come up
and the program will be loaded with the same LIB= parameter as it is already loaded with.

WORKAROUND: Ignore the message, run the program when it is not loaded or copy the
program file into another file and then run it.

91 PROGRAM LOADED WITH LIB = S (LOAD WARN 91):
The program to be run was already loaded with a LIB= parameter other than the one with
which it was to be run. This means, for instance, that if you run a program X with LIB=G
while it is already loaded with LIB=S (or LIB=P, for that matter), this message will come up
and the program will be loaded with the same LIB= parameter as it is already loaded with.

WORKAROUND: Ignore the message, run the program when it is not loaded or copy the
program file into another file and then run it.

92 ATTEMPTING TO ALLOCATE PROGRAM FROM NON-SYSTEM DISC (LOAD ERR 92):
Allocation of programs that reside on private volumes is forbidden.

WORKAROUND: None.

93 UNABLE TO MOUNT PROGRAM FILE'S HOME VOLUME SET (LOAD ERR 93):
The home volume set of the indicated file cannot be mounted.

WORKAROUND: Determine what caused the mount failure and take appropriate action.

94 UNABLE TO MOUNT SYSTEM SL'S HOME VOLUME SET (LOAD ERR 94):
The home volume set of the indicated file cannot be mounted.

WORKAROUND: Determine what caused the mount failure and take appropriate action.

95 UNABLE TO MOUNT PUBLIC SL'S HOME VOLUME SET (LOAD ERR 95):
The home volume set of the indicated file cannot be mounted.

WORKAROUND: Determine what caused the mount failure and take appropriate action.

96 UNABLE TO MOUNT GROUP SL'S HOME VOLUME SET (LOAD ERR 96):
The home volume set of the indicated file cannot be mounted.

WORKAROUND: Determine what caused the mount failure and take appropriate action.

97 UNABLE TO LOAD REMOTE PROGRAM FILE (LOAD ERR 97):
This message is no longer used.

Appendix C

C-10

98 UNABLE TO CONVERT OLD FORMAT (LOAD ERR 98):
This message is no longer used.

99 UNABLE TO OBTAIN DST FOR LOGICAL MAP (LOAD ERR 99):
The loader could not get a Data Segment Table entry for the logical map (LSTT).

WORKAROUND: Try DEALLOCATEing unused programs and procedures. You may need to
increase the DST size or the maximum configuration for extra data segment. Virtual memory
size might also need to be increased.

100 TOO MANY MAPPED SEGMENTS (LOAD ERR 100):
Too many user SL segments were referenced. Total user SL segments cannot exceed 254.

WORKAROUND: Reduce the amount of segments in the user SL. Try combining some of the
user SL segments for this program.

101 SEGMAP TOO BIG (LOAD ERR 101):
The loader was unable to allocate space in the logical map (LSTT). The logical map is full.

WORKAROUND: Reduce the amount of segments in the user SL. Try combining some of the
user SL segments for this program.

102 UNABLE TO EXPAND SEGMAP (LOAD ERR 102):
The loader was trying to allocate a larger data segment for the logical map (LSTT) when an
error occurred.

WORKAROUND: Try again when the system is not as busy. Virtual memory might need to be
increased or their might be a hardware problem. Contact your support representative if
problems persist.

103 TOO MANY DYNAMIC LOADS ON PROCEDURE (LOAD ERR 103):
A single process has attempted to load a procedure more than 65,535 times. This is probably a
programming error since usually a procedure is loaded and then unloaded when not needed.

WORKAROUND: Change the program logic to call UNLOADPROC to release the procedure when
it is no longer needed. Check for conditions that would load a procedure that was already
loaded.

104 UNABLE TO OBTAIN DATA SEGMENT. COMMAND IGNORED (LOAD ERR 104):
The SHOWALLOCATE command was not able to obtain a temporary extra data segment.

WORKAROUND: Try DEALLOCATEing unnecessary programs and procedures. Increase the
DST size or the maximum configuration for extra data segment size. Virtual memory size
might also need to be increased.

105 UNABLE TO OPEN CONFDATA.PUB.SYS. COMMAND IGNORED (LOAD ERR 105):
This message is no longer used.

106 EOF OR I/O ERROR ON CONFDATA.PUB.SYS. COMMAND IGNORED (LOAD ERR 106):
This message is no longer used.

107 UNABLE TO CLOSE CONFDATA.PUB.SYS. COMMAND IGNORED (LOAD ERR 107):
This message is no longer used.

Appendix C

C-11

108 EOF OR I/O ERROR ON SHOWALLOCATE LIST FILE. COMMAND ABORTED (LOAD ERR 108):
The SHOWALLOCATE command had trouble using the list file specified with the command or
with $STDLIST if no file was specified.

WORKAROUND: If you specified a file for output from this command, you might need to make
it larger. If it is large enough, the file label might be corrupt. Check hardware and verify file
label integrity. Contact your support representative if problems persist.

109 I/O ERROR OCCURRED WHILE READING FILE LABEL. COMMAND ABORTED (LOAD ERR 109):
The loader had a problem reading from the program file label.

WORKAROUND: The file label might be corrupt. Recompile the program or restore it from a
backup tape. If this does not solve the problem, you might have a hardware problem or you
might need to reload the operating system by doing a COLDLOAD. Contact your support
representative if problems persist.

Appendix D

D-1

Appendix D: CRYPTIC FILE SYSTEM ERROR
MESSAGES DECRYPTED

In addition to its other failings, the System Intrinsics Manual does not explain the exact reason
for and/or workaround for most file system errors. In fact, most file system error messages are
very hard to understand.

The following is an attempt at an adequate explanation of the causes, effects and workarounds
for different file system errors that pertain to disc files:

0 END OF FILE (FSERR 0):
This error is encountered when a program attempts to read beyond the end of file or write
beyond the file limit.

WORKAROUND: Change the program or the file.

1 ILLEGAL DB REGISTER SETTING (FSERR 1):
Should never occur for non-privileged mode programs. For privileged mode programs, this
means that the programmer attempted to do an FFILEINFO, FGETINFO, FOPEN or FRENAME
in split-stack mode (i.e. after a call to the EXCHANGEDB or SWITCHDB procedures).

WORKAROUND: Do not perform the function in split-stack mode.

2 ILLEGAL CAPABILITY (FSERR 2):
A function that requires privileged mode capability (e.g. open a file for NOWAIT I/O, open a
file for EXECUTE access, etc.) was attempted without privileged mode capability.

WORKAROUND: Enter privileged mode before executing the function or do not attempt to
execute it at all.

3 REQUIRED PARAMETER IS MISSING (FSERR 3):
4 DISC FREE SPACE ALLOCATION DISABLED ON ALL DISCS IN DOMAIN (FSERR 4):
5 DRT NUMBER > 511 (FSERR 5):
6 DEVICE HAS NO AVAILABLE SPARE BLOCKS (FSERR 6):
7 UNFORMATTED OR UNINITIALIZED MEDIA ON DEVICE. (FSERR 7):
8 ILLEGAL PARAMETER VALUE (FSERR 8):

Parameters specified in FOPEN call are mutually contradictory; for instance, an attempt to
open a file NOWAIT on a serial disc was detected or the program tried to open a new KSAM
file without specifying the FORMALDESIGNATOR or KSAMPARAM parameters on the FOPEN.

WORKAROUND: Correct the parameter.

9 INVALID FILE TYPE SPECIFIED IN FOPTIONS (FSERR 9):
The file type field of the FOPEN file options is not one of 0 (STD = standard file), 1 (KSAM
file), 2 (RIO file), 4 (CIR = circular file) or 6 (MSG = message file).

WORKAROUND: Correct the file type field.

10 INVALID RECORD SIZE SPECIFICATION (FSERR 10):
The record size requested was more than 32,767 bytes.

Appendix D

D-2

WORKAROUND: Specify a smaller record size.

11 INVALID RESULTANT BLOCK SIZE (FSERR 11):
If the user requests were honored, the block size (BLOCK FACTOR * RECORD SIZE) of the
resultant file would be greater than 32,767 bytes.

WORKAROUND: Specify a smaller record size or blocking factor.

12 RECORD NUMBER OUT OF RANGE (FSERR 12):
The user passed a negative record number to the FPOINT, FREADDIR or FWRITEDIR intrinsic
— this is illegal.

WORKAROUND: Correct your program.

13 CAN'T OPEN FILE MULTI-ACCESS, OUT OF FMAVT ENTRIES (FSERR 13):
15 EXCEEDED THE MAXIMUM MESSAGE FILE OPENS FOR WRITE ACCESS (FSERR 15):
16 MORE THAN 255 OPENS OF A FILE (FSERR 16):
17 MAGNETIC TAPE RUNAWAY (FSERR 17):
18 DEVICE POWERED UP (FSERR 18):
19 FORMS CONTROL WAS RESET (FSERR 19):
20 INVALID OPERATION (FSERR 20):
21 DATA PARITY ERROR (FSERR 21):
22 SOFTWARE TIME-OUT (FSERR 22):

The user tried to read an empty message file or write to a full message file, an action which
would cause the user to be impeded until the file was no longer empty or full, respectively (see
MPE IV INTRINSICS MANUAL). However, a time out was set with the FCONTROL intrinsic
(mode 4) and the request timed out before it could be honored.

WORKAROUND: Do not set the time out or ensure that the request can be serviced before it
times out.

23 END OF TAPE (FSERR 23):
24 UNIT NOT READY (FSERR 24):
25 NO WRITE-RING ON TAPE (FSERR 25):
26 TRANSMISSION ERROR (FSERR 26):

Hardware failure.

WORKAROUND: Call your CE.

27 I/O TIME-OUT (FSERR 27):
28 TIMING ERROR OR DATA OVERRUN (FSERR 28):
29 SIO FAILURE (FSERR 29):
30 UNIT FAILURE (FSERR 30):

Hardware failure.

WORKAROUND: Call your CE.

Appendix D

D-3

31 END OF LINE (FSERR 31):
32 SOFTWARE ABORT (FSERR 32):
33 DATA LOST (FSERR 33):
34 UNIT NOT ON-LINE (FSERR 34):
35 DATA-SET NOT READY (FSERR 35):
36 INVALID DISC ADDRESS (FSERR 36):
37 INVALID MEMORY ADDRESS (FSERR 37):
38 TAPE PARITY ERROR (FSERR 38):
39 RECOVERY TAPE ERROR (FSERR 39):
40 OPERATION INCONSISTENT WITH ACCESS TYPE (FSERR 40):

The access type specified at FOPEN time does not permit this operation; for instance, an
FWRITE is not permitted when a file is opened with ACC=IN.

WORKAROUND: Specify an access type at FOPEN time which permits this operation or do not
perform the operation at all.

41 OPERATION INCONSISTENT WITH RECORD TYPE (FSERR 41):
It seems that this error should never show up and is merely a leftover from a previous version
of MPE.

42 OPERATION INCONSISTENT WITH DEVICE TYPE (FSERR 42):
The program tried to execute an operation that is incompatible with the device that it is trying
to perform it on; for instance, it is trying to read the line printer or change the baud rate of a
disk drive.

WORKAROUND: Do not execute the operation.

43 WRITE EXCEEDS RECORD SIZE (FSERR 43):
An attempt was made to write a record that would not fit in the destination file, e.g. trying to
write a 100-byte record into a file with a record length of 80 bytes.

WORKAROUND: Change the file's record size, change the length of the record to be written or
open the file with the Multi-Record (MR) access option.

44 UPDATE AT RECORD ZERO (FSERR 44):
The FUPDATE intrinsic (which is equivalent to the COBOL REWRITE statement) was called
with the record pointer at record 0, which indicates that no record has been read and therefore
no record can be updated.

WORKAROUND: Call FPOINT or FREAD before the FUPDATE call.

45 PRIVILEGED FILE VIOLATION (FSERR 45):
A program attempted to open a privileged file (one with a negative file code; e.g. an IMAGE
file) while specifying a filecode not equal to the file's filecode or while not in privileged mode.

WORKAROUND: Enter privileged mode before the call or specify the correct filecode.

Appendix D

D-4

46 OUT OF DISC SPACE (FSERR 46):
The device class on which this file resides (if this error occurs at extent allocation time) or is
requested to reside (if this error occurs at file creation time) does not have enough contiguous
disk space to accommodate this file; i.e. if NUMEXTS is the number of extents to be allocated
and EXTSIZE is the size (in sectors) of one extent, this device class does not have NUMEXTS
contiguous chunks of EXTSIZE sectors each.

WORKAROUND: Move the file to another, less full, device class, decrease the requested file
size or decrease the extent size by increasing the number of extents in the file.

47 I/O ERROR ON FILE LABEL (FSERR 47):
The internal file label of this file cannot be accessed. Most likely, the file is totally clobbered
and will return INVALID FILE LABEL (FSERR 108) when it is subsequently accessed.

WORKAROUND: None.

48 OPERATION INVALID DUE TO MULTIPLE FILE ACCESS (FSERR 48):
One of the following conditions is true: 1) The program is trying to purge (i.e. close with
disposition DEL) a file that is currently loaded or being stored/restored, 2) The program is
trying to rename (with the FRENAME intrinsic) a file that it does not have exclusive access to
or 3) The program is trying to open with LOCK access a file that someone else has opened with
NOLOCK access or vice versa.

WORKAROUND: 1) Don't purge the file or wait for the file to become purgeable again, 2)
Don't rename the file or open the file with EXC access or 3) Open the file with LOCK or
NOLOCK access (whichever the other program has the file open with).

49 UNIMPLEMENTED FUNCTION (FSERR 49):
The program specified an invalid parameter value in a file system intrinsic call; e.g. a
disposition of 5, 6 or 7 at FCLOSE time or a file type of RIO on pre-Athena systems (ones
which do not support RIO files).

WORKAROUND: Correct your program.

50 NONEXISTENT ACCOUNT (FSERR 50):
An attempt was made to open a file in an account which was not configured in the system.

WORKAROUND: Correct the filename or build the account.

51 NONEXISTENT GROUP (FSERR 51):
An attempt was made to open a file in a group which was not configured in the system.

WORKAROUND: Correct the filename or build the group.

52 NONEXISTENT PERMANENT FILE (FSERR 52):
An attempt was made to open a file which does not exist.

WORKAROUND: Correct the program or build the file.

53 NONEXISTENT TEMPORARY FILE (FSERR 53):
The program tried to open a temporary file which does not exist.

WORKAROUND: Correct the program or build the file.

Appendix D

D-5

54 INVALID FILE REFERENCE (FSERR 54):
The program tried to open a file whose filename was invalid; for instance, the file, group or
account name was longer than 8 characters, an invalid system-defined file was specified (e.g.
$XYZZY) or no file equation was found for a back- referenced file (e.g. *MANSION with no file
equation for file MANSION).

WORKAROUND: Correct the filename specified.

55 DEVICE UNAVAILABLE (FSERR 55):
The program tried to open a message file that was already opened for MULTI (not GMULTI)
access by another job/session.

WORKAROUND: Wait for the other job/session to finish or rewrite the other program to open
the file NOMULTI or GMULTI.

56 INVALID DEVICE SPECIFICATION (FSERR 56):
The device number or device class on which the file was to be opened is not configured on the
system.

WORKAROUND: Correct the program.

57 OUT OF VIRTUAL MEMORY (FSERR 57):
The buffer size (NUMBER OF BUFFERS * RECORD SIZE * BLOCKING FACTOR) of the file to
be opened exceeds 8,192 words (or 14,000 words starting with the D-MIT version of MPE IV).

WORKAROUND: Decrease the number of buffers (by specifying BUF=1 on a :FILE equation,
for instance), decrease the record size of the file or decrease the blocking factor of the file.

58 NO PASSED FILE (FSERR 58):
The program attempted to open $OLDPASS, but no $OLDPASS file exists.

WORKAROUND: Correct the program or build a $OLDPASS file.

60 GLOBAL RIN UNAVAILABLE (FSERR 60):
The program requested dynamic locking at file open time, but the RIN (Resource Identification
Number) necessary for dynamic locking could not be obtained.

WORKAROUND: Free some global RINs (with the :FREERIN command), file RINs (by closing
files opened with LOCK access), open the file with NOLOCK access or enlarge the RIN table.

61 OUT OF GROUP DISC SPACE (FSERR 61):
The program tried to allocate more disk space than is allowed for a given group; e.g. it tried to
build a 10,000-sector file in a group which already had 95,000 sectors and was limited to
100,000 sectors.

WORKAROUND: Decrease the amount of disk space used by files in that group (by purging or
squeezing files) or ask the account manager to increase the group disk space limit.

62 OUT OF ACCOUNT DISC SPACE (FSERR 62):
The program tried to allocate more disk space than is permitted for the account in which it
tried to allocate it.

WORKAROUND: Decrease the amount of disk space used by files in that account (by purging
or squeezing files) or ask the system manager to increase the account disk space limit.

Appendix D

D-6

64 USER LACKS MULTI-RIN CAPABILITY (FSERR 64):
The program was not :PREPed with MR (Multi-Rin) capability, yet tried to lock a file when
another file (or RIN) was already locked by that program.

WORKAROUND: :PREP the program with MR capability or do not try to lock a file when you
have already locked another one.

65 PUNCH HOPPER EMPTY (FSERR 65):
66 PLOTTER LIMIT SWITCH REACHED (FSERR 66):
67 PAPER TAPE ERROR (FSERR 67):
68 INSUFFICIENT SYSTEM RESOURCES (FSERR 68):
69 I/O ERROR (FSERR 69):
70 I/O ERROR WHILE PRINTING HEADER/TRAILER (FSERR 70):
71 TOO MANY FILES OPEN (FSERR 71):

The program attempted to open a file, but there was not enough room in the system area
(PCBX) of the program's stack for the information for that file.

WORKAROUND: Close some files which are no longer necessary before trying the open or run
the program with the ;NOCB keyword in the :RUN command.

72 INVALID FILE NUMBER (FSERR 72):
An attempt was made to access (e.g. read or write) a file that had not been opened or that is a
privileged file; for instance, a read was requested against file number 10, but no file file
number 10 was open.

WORKAROUND: Correct your program or enter privileged mode before trying to access the file
(if the file is privileged).

73 BOUNDS VIOLATION (FSERR 73):
You are attempting to read or write more data than could fit into your I/O buffer (e.g. you are
trying to read 100 words into an 80-word array).

WORKAROUND: Decrease the length of the data you are trying to read or write or enlarge
your program's I/O buffer.

74 NO ROOM LEFT IN STACK SEGMENT FOR ANOTHER FILE ENTRY (FSERR 74):
When trying to do an FOPEN, the file system tried to expand your stack data segment to have
room for the information on the file being opened; this caused an error because it would make
the data segment too large.

WORKAROUND: Often, this does not mean that you were using too much stack space AT THE
TIME OF THE FOPEN. Rather, you might have used a lot of stack space earlier and that space
was not deallocated (since your stack data segment is never automatically shrunk by the
system). If you call "ZSIZE (0)" (to shrink the stack data segment to only the amount you're
currently using) immediately before the FOPEN call, the problem may very well go away. If it
doesn't, you might consider using less stack space or running your program with ;NOCB.

77 NO-WAIT I/O PENDING (FSERR 77):
78 NO NO-WAIT I/O PENDING FOR ANY FILE (FSERR 78):

Appendix D

D-7

79 NO NO-WAIT I/O PENDING FOR SPECIAL FILE (FSERR 79):
80 SPOOFLE SIZE EXCEEDS CONFIGURATION (FSERR 80):
81 NO "SPOOL" CLASS IN SYSTEM (FSERR 81):
82 INSUFFICIENT SPACE FOR SPOOFLE (FSERR 82):
83 I/O ERROR ON SPOOFLE (FSERR 83):
84 DEVICE UNAVAILABLE FOR SPOOFLE (FSERR 84):
85 OPERATION INCONSISTENT WITH SPOOLING (FSERR 85):
86 SPOOLING INTERNAL ERROR (FSERR 86):
87 BAD SPOOFLE BLOCK (FSERR 87):
88 NONEXISTENT SPOOFLE (FSERR 88):
89 POWER FAILURE (FSERR 89):
90 EXCLUSIVE VIOLATION: FILE BEING ACCESSED (FSERR 90):

Exclusive access was requested to a file which is already being accessed; thus, exclusive access
cannot be granted.

WORKAROUND: Specify SHR (shared) or EAR (exclusive - allow read) access when opening
the file or wait for the accessor to close the file.

91 EXCLUSIVE VIOLATION: FILE BEING ACCESSED EXCLUSIVELY (FSERR 91):
Access was requested to a file which is being accessed exclusively by some other user.

WORKAROUND: Wait for the accessor to close the file.

92 LOCKWORD VIOLATION (FSERR 92):
An invalid lockword was specified at file open time or when the file system prompted the user
for a lockword.

WORKAROUND: Specify a correct lockword or remove or change the lockword on the disc file.

93 SECURITY VIOLATION (FSERR 93):
Permitting the user to access this file in the specified access mode would be a breach of file
security.

WORKAROUND: Change the access mode specified in the program to one which is permitted
or ask the file's creator to :RELEASE or :ALTSEC the file.

94 USER IS NOT CREATOR (FSERR 94):
An attempt was made to :RENAME or FRENAME a file by someone other than the file's
creator.

WORKAROUND: Do not perform the :RENAME or FRENAME, ask the creator of the file to do
the :RENAME or (if you have read and write access to the file and are a user of MPEX) use
MPEX's %RENAME command.

95 READ COMPLETED DUE TO BREAK (FSERR 95):
96 DISC I/O ERROR (FSERR 96):

Hardware failure. Call your CE.

Appendix D

D-8

97 NO CONTROL Y PIN (FSERR 97):
98 READ TIME OVERFLOW (FSERR 98):
99 BOT AND BACKSPACE TAPE (FSERR 99):
100 DUPLICATE PERMANENT FILE NAME (FSERR 100):

The program tried to save (close with SAVE disposition) a new or temporary file as a
permanent file, but a permanent file with that name already exists.

WORKAROUND: Purge the other file with that name.

101 DUPLICATE TEMPORARY FILE NAME (FSERR 101):
The program tried to save as a temporary file (close with TEMP disposition) a new file, but a
temporary file with that name already exists.

WORKAROUND: Purge the other temporary file with that name.

102 DIRECTORY I/O ERROR (FSERR 102):
The directory (or part of it) is clobbered. You're in big trouble.

WORKAROUND: None.

103 PERMANENT FILE DIRECTORY OVERFLOW (FSERR 103):
There is no more room in the system file directory for this file (the system file directory
typically allows approximately 1,200 files per group).

WORKAROUND: Purge some of the files in the group in which you wish to build the file.

104 TEMPORARY FILE DIRECTORY OVERFLOW (FSERR 104):
There is no more room in your job / session temporary file directory for this file.

WORKAROUND: Purge some temporary files or :RESET some :FILE equations or :CRESET
some :CLINE equations.

105 BAD VARIABLE BLOCK STRUCTURE (FSERR 105):
The variable record length file being accessed has an inconsistent structure or would have an
inconsistent structure if this access were to go through (if you are writing NOBUF).

WORKAROUND: If you are writing NOBUF, correct your program; otherwise, none.

106 EXTENT SIZE EXCEEDS MAXIMUM (FSERR 106):
The program attempted to build a file which would have extents larger than 65,534 sectors,
the maximum permitted.

WORKAROUND: Increase the number of extents in the file or decrease the extent size by
decreasing the record size or file limit of the file.

107 INSUFFICIENT SPACE FOR USER LABELS (FSERR 107):
The maximum number of user labels for a file is 254.

WORKAROUND: Decrease the number of user labels requested by the program.

108 INVALID FILE LABEL (FSERR 108):
The file is inaccessible because the file is invalid (probably destroyed - and unrecoverable).

WORKAROUND: None.

Appendix D

D-9

109 INVALID CARRIAGE CONTROL (FSERR 109):
The program tried to do a write with a CCTL code of 1 (embedded CCTL) but with a buffer
length of 0; or, the program attempted an FCONTROL mode 1 (transfer CCTL code) with a
parameter of 1.

WORKAROUND: Correct the program.

110 ATTEMPT TO SAVE PERMANENT FILE AS TEMPORARY (FSERR 110):
An attempt was made to close a permanent file with temporary (TEMP) disposition: this is
illegal.

WORKAROUND: Correct the program.

111 USER LACKS SAVE FILES (SF) CAPABILITY (FSERR 111):
112 USER LACKS PRIVATE VOLUMES (UV) CAPABILITY (FSERR 112):
113 VOLUME SET NOT MOUNTED - MOUNT PROBLEM (FSERR 113):
114 VOLUME SET NOT DISMOUNTED - DISMOUNT PROBLEM (FSERR 114):
115 ATTEMPTED RENAME ACROSS VOLUME SETS - REJECTED (FSERR 115):
116 INVALID TAPE LABEL FOPEN PARAMETERS (FSERR 116):
117 ATTEMPED TO WRITE ON AN UNEXPIRED TAPE FILE (FSERR 117):
118 INVALID HEADER OR TRAILER TAPE LABEL (FSERR 118):
119 I/O ERROR POSITIONING TAPE FOR TAPE LABELS (FSERR 119):
120 ATTEMPT TO WRITE IBM STANDARD TAPE LABEL (FSERR 120):
121 TAPE LABEL LOCKWORD VIOLATION (FSERR 121):
122 TAPE LABEL TABLE OVERFLOW (FSERR 122):
123 END OF TAPE VOLUME SET (FSERR 123):
124 ATTEMPTED TO APPEND LABELED TAPE (FSERR 124):
125 EXPIRATION DATE CAN'T BE LATER THAN PRECEDING FILE'S (FSERR 125):
126 CHARACTER SET NUMBER MUST BE BETWEEN 0 AND 31. (FSERR 126):
127 FORM NUMBER MUST BE BETWEEN 0 AND 31. (FSERR 127):
128 LOGICAL PAGE NUMBER MUST BE BETWEEN 0 AND 31. (FSERR 128):
129 VERTICAL FORMAT NUMBER MUST BE BETWEEN 0 AND 31. (FSERR 129):
130 NUMBER OF COPIES MUST BE BETWEEN 1 AND 32767. (FSERR 130):
131 NUMBER OF OVERLAYS MUST BE BETWEEN 1 AND 8. (FSERR 131):
132 PAGE LENGTH PARM MUST BE BETWEEN 12 (=3") AND 68 (=17"). (FSERR 132):
133 PICTURE NUMBER MUST BE BETWEEN 0 AND 31. (FSERR 133):
134 EXTENDED CAPABILITY PARM MUST BE 0 (OFF) OR 1 (ON). (FSERR 134):
135 UNRECOVERED MEDIA ERROR. (FSERR 135):

Appendix D

D-10

136 USER LIMIT EXCEEDED. (FSERR 136):
137 DEFECTIVE TRACK ON FOREIGN DISC (FSERR 137):
138 TRACK DOES NOT EXIST ON FOREIGN DISC (FSERR 138):
139 DELETED RECORD ON IBM DISKETTE (FSERR 139):
140 ACCESS DENIED DUE TO CORRUPT ACD,FILE OWNER MUST REAPPLY ACD (FSERR 140):
148 INACTIVE RIO RECORD (FSERR 148):

An FPOINT, FREADDIR or FSPACE positioned the record pointer at an inactive record in an
RIO (Relative I/O) file.

WORKAROUND: None necessary.

149 MISSING ITEM NUMBER OR RETURN-VARIABLE (FSERR 149):
An item number was specified without a corresponding variable or vice versa in an FFILEINFO
intrinsic call.

WORKAROUND: Correct the program.

150 INVALID ITEM NUMBER (FSERR 150):
An item number specified in an FFILEINFO intrinsic call is invalid.

WORKAROUND: Correct the program.

151 CURRENT RECORD WAS LAST RECORD WRITTEN BEFORE SYSTEM CRASHED (FSERR 151):
152 UNRECOGNIZED KEYWORD IN FOPEN DEVICE PARAMETER (FSERR 152):
153 EXPECTED ";" OR CARRIAGE RETURN IN DEVICE PARAMETER (FSERR 153):
154 ENVIRONMENT FILE OPEN ERROR (FSERR 154):
155 NOT ENVIRONMENT FILE.CHECK FILE CODE OR RECORD SIZE. (FSERR 155):
156 ENVIRONMENT HEADER RECORD INCORRECT (FSERR 156):
157 UNCOMPILED ENVIRONMENT FILE (FSERR 157):
158 ERROR READING ENVIRONMENT FILE (FSERR 158):
159 ERROR CLOSING ENVIRONMENT FILE (FSERR 159):
160 ERROR DOING FDEVICECONTROL FROM ENVIRONMENT FILE (FSERR 160):
161 TOO MANY PARAMETERS IN DEVICE STING - OVERFLOW (FSERR 161):
162 EXPECTED "=" AFTER KEYWORD IN DEVICE PARAMETER (FSERR 162):
163 "ENV" BACK REFERENCE IN FILE EQUATION INCORRECT (FSERR 163):
164 DEVICE PARAMETER TOO LARGE OR MISSING CARRIAGE RETURN (FSERR 164):
165 INVALID DENSITY SPECIFICATION (FSERR 165):
166 FFILEINFO FAILED IN ACCESSING REMOTE SPOOL FILE. (FSERR 166):
167 SPOOL FILE LABEL ERROR, CAN'T INSERT INV FILE NAME. (FSERR 167):
168 ITEM NOT SUPPORTED ON REMOTE SYSTEM. (FSERR 168):

Appendix D

D-11

170 RECORD IS MARKED FOR DELETION (FSERR 170):
171 DUPLICATE KEY VALUE (FSERR 171):
172 NO SUCH KEY (FSERR 172):
173 TCOUNT PARAMETER LARGER THAN RECORD SIZE (FSERR 173):
174 CAN NOT GET EXTRA DATA SEGMENT (FSERR 174):
175 KSAM INTERNAL ERROR (FSERR 175):
176 ILLEGAL EXTRA DATA SEGMENT LENGTH (FSERR 176):
177 TOO MANY EXTRA DATA SEGMENTS FOR THIS PROCESS (FSERR 177):
178 NOT ENOUGH VIRTUAL MEMORY FOR EXTRA DATA SEGMENT (FSERR 178):
179 THE FILE MUST BE LOCKED BEFORE ISSUING THIS INTRINSIC (FSERR 179):
180 KSAM FILE MUST BE REBUILT (FSERR 180):
181 INVALID KEY STARTING POSITION (FSERR 181):
182 FILE IS EMPTY (FSERR 182):
183 RECORD DOES NOT CONTAIN ALL KEYS (FSERR 183):
184 INVALID RECORD NUMBER (FFINDN INTRINSIC) (FSERR 184):
185 SEQUENCE ERROR IN PRIMARY KEY (FSERR 185):
186 INVALID KEY LENGTH (FSERR 186):
187 INVALID KEY SPECIFICATION (FSERR 187):
188 INVALID DEVICE SPECIFICATION (FSERR 188):
189 INVALID RECORD FORMAT (FSERR 189):
190 INVALID KEY BLOCKING FACTOR VALUE (FSERR 190):
191 RECORD DOES NOT CONTAIN SEARCH KEY SPECIFIED FOR DELETION (FSERR 191):
192 SYSTEM FAILURE OCCURRED WHILE THE KSAM FILE WAS OPENED (FSERR 192):
193 $STDIN/$STDLIST CANNOT BE REDIRECTED TO KSAM FILES (FSERR 193):
194 KSAM FILES NOT ALLOWED FOR GLOBAL AFT'S (FSERR 194):
195 GLOBAL FILES CANNOT BE REMOTE FILES (FSERR 195):
196 LANGUAGE NOT SUPPORTED (FSERR 196):
197 NATIVE LANGUAGE INTERNAL ERROR (FSERR 197):
198 INVALID VERSION NUMBER IN KSAM FILE (FSERR 198):
199 UNABLE TO SWITCH THE LOCKING MODE (FSERR 199):
201 REMOTE DID NOT RESPOND WITH THE CORRECT REMOTE ID. (DSERR 201):
202 SPECIFIED PHONE NUMBER IS INVALID (DSERR 202):

Appendix D

D-12

203 REMOTE ABORT/RESUME NOT VALID WHEN DOING PROGRAM-TO-PROGRAM
 COMMUNICATION. USE LOCAL ABORT/RESUME. (DSWARN 203):
204 UNABLE TO ALLOCATE AN EXTRA DATA SEGMENT FOR DS/3000. (DSERR 204):
205 UNABLE TO EXPAND THE DS/3000 EXTRA DATA SEGMENT. (DSERR 205):
206 SLAVE PTOP FUNCTION ISSUED FROM A MASTER PROGRAM. (DSERR 206):
207 SLAVE PTOP FUNCTION OUT OF SEQUENCE. (DSERR 207):
208 MASTER PTOP FUNCTION ISSUED BY A SLAVE PROGRAM. (DSERR 208):
209 SLAVE PROGRAM DOES NOT EXIST OR IS NOT PROGRAM FILE. (DSERR 209):
210 WARNING -- INVALID MAXDATA OR DLSIZE FOR A SLAVE PROGRAM.
 SYSTEM DEFAULTS ARE IN EFFECT. (DSWARN 210):
211 SLAVE ISSUED A REJECT TO A MASTER PTOP OPERATION. (DSWARN 211):
212 FILE NUMBER FROM IOWAIT NOT A DS LINE NUMBER. (DSWARN 212):
213 EXCLUSIVE USE OF A DS LINE REQUIRES BOTH ND AND CS CAPABILITY. (DSERR 213):
214 DS LINE WAS NOT OPENED WITH A USER :DSLINE COMMAND. (DSERR 214):
215 DSLINE CANNOT BE ISSUED BACK TO THE MASTER COMPUTER. (DSERR 215):
216 MESSAGE REJECTED BY THE REMOTE COMPUTER. (DSERR 216):
217 INSUFFICIENT AMOUNT OF USER STACK AVAILABLE. (DSERR 217):
218 INVALID PTOP FUNCTION REQUESTED. (DSERR 218):
219 MULTIPLE POPEN.
 ONLY ONE MASTER PTOP OPERATION CAN BE ACTIVE ON A DSLINE. (DSERR 219):
220 PROGRAM EXECUTING GET WAS NOT CREATED BY POPEN. (DSERR 220):
221 INVALID DS MESSAGE FORMAT. INTERNAL DS ERROR. (DSERR 221):
222 MASTER PTOP FUNCTION ISSUED PRIOR TO A POPEN. (DSERR 222):
223 REQUEST TO SEND MORE DATA THAN SPECIFIED IN POPEN (DSERR 223):
224 FILE EQUATIONS FOR A REMOTE FILE CONSTITUTE A LOOP. (DSERR 224):
225 CANNOT ISSUE POPEN TO A SLAVE SESSION IN BREAK MODE. (DSERR 225):
226 SLAVE PROGRAM HAS TERMINATED BEFORE EXECUTING "GET". (DSERR 226):
227 RFA/RDBA COULD NOT FIND OR CREATE A REMOTE SESSION. (DSERR 227):
228 EXCEEDED MAXIMUM NUMBER OF VIRTUAL CHANNELS PER JOB. (DSERR 228):
229 TOO MANY DS USERS ON THIS SYSTEM.
 CANNOT OBTAIN A VIRTUAL PROCESS NUMBER. (DSERR 229):
230 (DSERR 230):
231 INVALID FACILITY IN CONNECTION REQUEST. (DSERR 231):

Appendix D

D-13

232 THE REMOTE COMPUTER IS NOT OBTAINABLE. (DSERR 232):
233 VIRTUAL CIRCUIT IS NOT AVAILABLE. (DSERR 233):
234 QUEUEING IS REQUIRED TO COMPLETE THE REQUEST. (DSERR 234):
235 DS MESSAGE SEQUENCING ERROR. (DSERR 235):
236 COMMUNICATIONS HARDWARE HAS DETECTED AN ERROR. (DSERR 236):
237 CANNOT CURRENTLY GAIN ACCESS TO THE TRACE FILE. (DSERR 237):
238 COMMUNICATIONS INTERFACE ERROR. INTERNAL FAILURE. (DSERR 238):
239 COMMUNICATIONS INTERFACE ERROR. TRACE MALFUNCTION. (DSERR 239):
240 LOCAL COMMUNICATION LINE WAS NOT OPENED BY OPERATOR. (DSERR 240):
241 DS LINE IN USE EXCLUSIVELY OR BY ANOTHER SUBSYSTEM (DSERR 241):
242 INTERNAL DS SOFTWARE ERROR ENCOUNTERED. (DSERR 242):
243 REMOTE OR PDN IS NOT RESPONDING. (DSERR 243):
244 COMMUNICATIONS INTERFACE ERROR. LINE RESET OCCURRED. (DSERR 244):
245 COMMUNICATIONS INTERFACE ERROR. RECEIVE TIMEOUT. (DSERR 245):
246 COMMUNICATIONS INTERFACE ERROR. REMOTE DISCONNECTED. (DSERR 246):
247 COMMUNICATIONS INTERFACE ERROR. LOCAL TIME OUT. (DSERR 247):
248 COMMUNICATIONS INTERFACE ERROR. CONNECT TIME OUT. (DSERR 248):
249 COMMUNICATIONS INTERFACE ERROR. REMOTE REJECTED CONNECTION. (DSERR 249):
250 COMMUNICATIONS INTERFACE ERROR. CARRIER LOST. (DSERR 250):
251 COMMUNICATIONS INTERFACE ERROR.
 LOCAL DATA SET FOR THE DS LINE WENT NOT READY. (DSERR 251):
252 COMMUNICATIONS INTERFACE ERROR. HARDWARE FAILURE. (DSERR 252):
253 COMMUNICATIONS INTERFACE ERROR.
 NEGATIVE RESPONSE TO THE DIAL REQUEST BY THE OPERATOR. (DSERR 253):
254 COMMUNICATIONS INTERFACE ERROR. INVALID I/O CONFIGURATION. (DSERR 254):
255 COMMUNICATIONS INTERFACE ERROR. UNANTICIPATED CONDITION. (DSERR 255):
257 DATA TRANSFER COUNT TOO LARGE. (DSERR 257):
300 NO. OF OPENS FOR FILE EXCEEDS 255 (FSERR 300):
301 FREE SPACE TABLE FOR LDEV ! IS FULL, RUN VINIT -COND (FSERR 301):
302 INVALID ITEM NUMBER FOR FDEVICECONTROL (FSERR 302):
303 INVALID ACCESS FOR ITEM NUMBER TO FDEVICECONTROL (FSERR 303):
304 ATTEMPT TO CHANGE TERMINAL PARITY IN 8 BIT MODE (FSERR 304):
305 INVALID FORMAT IN TERMINAL CONFIGURATION FILE (FSERR 305):

Appendix D

D-14

306 CHECKSUM ERROR IN TERMINAL CONFIGURATION FILE (FSERR 306):
307 PASSED VALUE TO FDEVICECONTROL LESS THAN MIN (FSERR 307):
308 PASSED VALUE TO FDEVICECONTROL IS UNSUPPORTED (FSERR 308):
309 PASSED VALUE TO FDEVICECONTROL IS UNSUPPORTED (FSERR 309):
310 COUNT TO FDEVICECONTROL INSUFFICIENT TO RETURN INFO (FSERR 310):
311 COUNT TO FDEVCNT GREATER THAN AVAILABLE TO STORE INFO (FSERR 311):
312 PASSED SPECIAL CHARACTER HAS PREVIOUSLY DEFINED FUNCTION (FSERR 312):
350 KSAM LOCK TABLE FULL (FSERR 350):
351 TOO MANY RECORD LOCKS IN ONE PROCESS (FSERR 351):
352 RECORD WAS LOCKED ALREADY (FSERR 352):
353 FILE MUST BE UNLOCKED BEFORE ISSUING THIS INTRINSIC (FSERR 353):
354 DATA INTEGRITY VIOLATION (FSERR 354):
355 FILE IS LOCKED BY ANOTHER PROCESS (FSERR 355):
356 LOCK REQUEST REJECTED DUE TO POTENTIAL DEADLOCK (FSERR 356):
357 DATA MAY BE INVALID BECAUSE FILE IS LOCKED BY OTHERS (FSERR 357):

Index

Index-1

INDEX

-

date decrement operator ... B-11
date subtraction operator .. B-11
integer negation operator .. B-4
integer subtraction operator .. B-4
real subtraction operator ... B-13
string removal operator .. B-7
time decrement operator ... B-14
time subtraction operator .. B-14
used to exclude filesets ... 45

' prefix, used to execute QUERY commands from with MPEX .. 272

! prefix

as a prefix character for embedded <, >, >> .. 29
as a prefix character for variables ... 33
execute MPEX command instead of a UDC with the same name ... 96
used as prefix for indirect files .. 46
used to execute MPEX commands online (default) .. 19

!'...',MPE syntax for embedded variables .. 33
![...], MPE syntax for embedded expressions .. 33

prefix, used to insert comments into indirect files ... 47

$ prefix, used to execute MPEX commands in batch ... 19
$CHLOGON-FORBID, STREAMX.DATA.VESOFT keyword ... 141
$CHLOGON-NOPASS, STREAMX.DATA.VESOFT keyword .. 140
$CHLOGON-OKMENU, STREAMX.DATA.VESOFT keyword .. 141
$CHLOGON-PERMIT, STREAMX.DATA.VESOFT keyword ... 141
$WITHCAPS-FORBID, STREAMX.DATA.VESOFT keyword ... 287
$WITHCAPS-PERMIT, STREAMX.DATA.VESOFT keyword .. 287

%%, MPEX HOOK command to suspend process .. 74
%ABORTJOB

and scheduled jobs, see also %SEC SHOWSCHED ... 99
and STREAMX scheduled jobs ... 99
MPEX command .. 98
see also ACCESSING= User attribute by typing %SEC HELP ACCESSING .. 98
see also SEC HELP USERSET ... 98

%ALARM, MPEX command .. 99
%ALIAS MPEX command .. 103
%ALLOCATE MPEX command ... 104
%ALTFILE

;CREATOR and GROUPID, related POSIX features ... 111
and non-system volume sets ... 115
MPEX command .. 105

%ALTFILE security considerations .. 106
%ALTJOB, MPEX command .. 126
%ALTPROC, MPEX command ... 126
%ALTSCHED, MPEX command ... 126
%ALTSEC, MPEX command .. 128

Index

Index-2

%ALTSPOOLFILE, MPEX command ... 129
%BACKG, MPEX command ... 130
%BREAKJOB, MPEX command ... 135
%BYE, MPEX command .. 135
%CALC, MPEX command .. 136
%CALENDAR, MPEX command .. 137
%CCXL, MPEX command .. 67
%CHGROUP interaction with $LOGON-EXECUTE .. 142
%CHGROUP, MPEX command .. 137
%CHLOGON

interaction with $LOGON-EXECUTE .. 142
MPEX command .. 138

%CLEANUP...%ENDCLEANUP, MPEX command .. 279
%COB74XL, MPEX command ... 67
%COB85XL, MPEX command ... 67
%COB85XLK, MPEX command ... 67
%COBOL, MPEX command... 67
%COBOLII, MPEX command... 67
%COBOLIIX, MPEX command .. 67
%COPY using %ALTFILE keywords.. 144
%COPY, MPEX command .. 143
%DBADGALT, MPEX command ... 151
%DBGENALT, MPEX command ... 151
%DEALLOCATE, MPEX command ... 151
%DELETEALARM, MPEX command .. 103
%DELETELVAR, MPEX command ... 34
%DELETESPOOLFILE, MPEX command ... 152
%DELETEVAR, MPEX command ... 153
%DEMO, MPEX command ... 153
%DEVCONTROL MPEX command .. 154
%E, synonym for MPEX %EXIT command .. 159
%ECHO, MPEX command ... 155
%EDIT, MPEX command ... 155
%EDITCHG, MPEX command ... 156
%EDITQUAD, MPEX command ... 157
%EDITTDP, MPEX command .. 158
%ELSE, MPEX command .. 167
%ELSEIF, MPEX command .. 167
%END, synonym for MPEX %EXIT command ... 159
%ENDIF, MPEX command .. 167
%ERASE, MPEX command .. 158
%ERRCLEAR, MPEX command ... 159
%ESCAPE, MPEX command .. 159
%EXIT, MPEX command ... 159
%FCOPY, MPEX command .. 159
%FILTER, MPEX command.. 160
%FORTRAN, MPEX command .. 67
%FTN, MPEX command ... 67
%FTNXL, MPEX command .. 67
%FTNXLLK, MPEX command .. 67
%GOON, MPEX command ... 161
%HELP

for CIERR numbers ... 162
for FSERR numbers .. 162
for LOADERR numbers ... 162

Index

Index-3

for normal :MPE commands .. 162
for POSIX commands ... 162
MPEX command .. 162
See also: %SYNTAX, %SEC SYNTAX, and %VEAUDIT SYNTAX... 162
using %HELPMAKE to rebuild help files ... 166

%HELPMAKE, MPEX command .. 165
%HOOK, MPEX command .. 166
%IDENTIFY

MPEX command .. 166
security considerations.. 167

%IF, MPEX command ... 167
%IFERROR...%ENDIFERROR, MPEX command ... 279
%INITMPEXMGR

MPEX command (in CIMGR) .. 15
MPEX command (in MPEXMGR).. 11

%INITREDO, MPEX command .. 11
%INITUDCS, MPEX command .. 168
%INPUT, MPEX command .. 169
%KILL, MPEX command to KILL a son process ... 170
%LISTF

ID and QEDIT files (normal and 'jumbo') ... 188
list of modes .. 172
MPEX command .. 171

%LISTF mode
' 0' [FILES] ... 173
' 1' [SUMMARY] ... 174
' 2' [DISC] ... 174
' 3' .. 175
' 4' .. 177
' 5' .. 178
' 6' [FILENAME] or [QUALIFY] ... 179
'-1' [LABEL] ... 180
'-2' [ACD] .. 180
'-3' [DETAIL] w/lockwords .. 181
ACCESS ... 182
DATES, shows extended date information ... 184
DB, shows IMAGE dataset statistics ... 185
defining your own formats .. 194
DISCUSE ... 187
ID, shows extended description .. 188
POSIX, shows POSIX-related information .. 192
SAVABLE (by XLTRIM or SQUEEZE) ... 189
SEC, shows security information ... 190
XL3 (MPE/iX :LISTF,3 format) ... 192
XL4 (MPE/iX :LISTF,4 [security] format) ... 193

%LISTJOB
MPEX command .. 202
see also %SEC SHOWSCHED .. 202
see also %SHOWJOB .. 264

%MANY, MPEX command .. 204
%MPEXSTORE, MPEX command .. 205
%NEWLINK, MPEX command .. 206
%NOMSG, MPEX command ... 207
%OPTION, MPEX command ... 207
%PASCAL, MPEX command ... 67

Index

Index-4

%PASXL, MPEX command .. 67
%PASXLLK, MPEX command .. 67
%PAUSE, MPEX command ... 208
%PAUSEJOB, MPEX command ... 208
%PRINT, MPEX command .. 210
%PRINTI, MPEX command ... 221
%PRINTO, MPEX command .. 221
%PROGINFO, MPEX command ... 222
%PURGE

Deletes a file or fileset ... 222
%PURGELINK, MPEX command ... 225
%QEDIT, MPEX command .. 226
%QUIT, MPEX command .. 227
%REDO

%DO, %LISTREDO abbreviations .. 231
%DO, %LISTREDO in MPEX HOOKed programs ... 234
%DO, %LISTREDO, MPEX commands ... 227
absolute line numbers ... 229
editing characters (R,I,D,>,C) ... 230
finding line to %REDO by contained string .. 229
finding line to %REDO by leading string .. 229
line ranges ... 230
redoing the last line ... 229
relative line numbers ... 230
saving command history in a PERMANENT file ... 233
setting MPEXPROMPT for ease of redo ... 233

%RELEASE, MPEX command .. 235
%REMOTE HELLO, MPEX command ... 236
%RENAME, MPEX command ... 237
%REPEAT...%FOREACH, MPEX command ... 240
%REPEAT...%FORFILES

MPEX command .. 240
operating on spool filesets .. 243
operating on temporary filesets .. 244

%REPEAT...%FORJOBS, MPEX command .. 245
%REPEAT...%FORNUM, MPEX command ... 245
%REPEAT...%FORPROFILES, MPEX command (for SECURITY) ... 246
%REPEAT...%FORRECS, MPEX command .. 246
%RESUMEJOB, MPEX command .. 247
%RETURN, MPEX command .. 247
%RPG, MPEX command ... 67
%RPGXL, MPEX command ... 67
%RPGXLLK, MPEX command.. 67
%RUN, MPEX command .. 248
%RUNACTIVATE, MPEX command ... 249
%RUNCREATE, MPEX command .. 249
%RUNINPUT, MPEX command ... 249
%SAVEJOB, %SHOWSAVED, %DOSAVED, MPEX command .. 250
%SCHEDULE, MPEX command ... 253
%SEC

MPEX prefix for SECURITY commands ... 255
%SEC HELP

getting help on SECURITY topics from MPEX .. 164
help on SECURITY .. 162

%SECURE, MPEX command ... 255

Index

Index-5

%SET [NO]CMDTRACECHECK ... 260
%SET [NO]VARTRACE ... 261
%SET CAPABILITY ... 256
%SET CREATORPROTECT .. 257
%SET DATE ... 258
%SET DEFAULT ... 259
%SET GOONMAXPRI .. 260
%SETLVAR, MPEX command .. 34
%SETVAR, MPEX command.. 262
%SHOW, MPEX command .. 263
%SHOWALARM, MPEX command ... 102
%SHOWGOON, MPEX command ... 162
%SHOWJOB, enhanced to show STREAMX scheduled jobs ... 264
%SHOWJOB, see also %LISTJOB ... 202
%SHOWLVAR, MPEX command ... 34
%SHOWME, MPEX command .. 265
%SHOWOUT, MPEX command ... 266
%SHOWOUTJ, MPEX command ... 267
%SHOWPAUSED, MPEX command .. 209
%SHOWPROC, MPEX command .. 268
%SHOWTREE, MPEX command ... 270
%SHOWVAR, MPEX command ... 271
%SPL, MPEX command .. 67
%SPOONFEED, MPEX command .. 272
%SPOONINIT, MPEX command .. 275
%SUBMIT, MPEX command ... 276
%SYNTAX, MPEX command ... 278
%TELL, MPEX command .. 278
%TRAPERROR

and %ESCAPE ... 159
MPEX command(s) .. 279

%UNALIAS, MPEX command.. 104
%UNLESSFAST, MPEX command ... 14
%VEAUDIT HELP

getting help on VEAUDIT topics from MPEX ... 164
help on VEAUDIT ... 162

%VEAUDIT, MPEX prefix for VEAUDIT commands ... 282
%VECMDCH, MPEX command ... 282
%VEOPENCH, MPEX command .. 282
%WARN, MPEX command ... 283
%WARNF, MPEX command .. 283
%WHEREIS, MPEX command ... 284
%WHILE...%ENDWHILE , MPEX command ... 285
%WITHCAPS, MPEX command... 286
%XEQ, MPEX command ... 289

&

boolean AND operator ... B-5
used to continue commands on multiple lines ... 97

*

integer multiplication operator .. B-4
real multiplication operator.. B-13
string repetition operator ... B-7
used as prefix for indirect files .. 46

Index

Index-6

, abbreviation for REDO ... 231
,, abbreviation for LISTREDO .. 231
,. Abbreviation for DO .. 231

/

integer division operator .. B-4
real division operator ... B-13
when used as the last character of an HFS (POSIX) fileset .. 52

//
real division operator ... B-13
used to select multiple subdirectories in an HFS (POSIX) fileset ... 52

: prefix, used to indicate an MPE command .. 17
:ABORT/:RESUME in MPEX (:WAKE) .. 82

; prefix, used to indicate a NOTEPAD command ... 93

? prefix, used to indicate yes/no prompting .. 18

[...], file range wildcard syntax... 49
[STARTBIT:NUMBITS], bit extraction operator .. B-6
[STARTCHAR:NUMCHARS], substring extraction operator .. B-7

^, integer exponentiation (raise to power) operator .. B-5
^, real exponentiation (raise to power) operator ... B-13
^, used as prefix for indirect files ... 46

|, boolean OR operator .. B-5

+

date increment operator .. B-11
integer addition operator ... B-4
real addition operator .. B-13
string concatenation operator .. B-7
time increment operator .. B-14
used to include filesets .. 45

<

Command I/O Redirection, input .. 28
date comparison operator .. B-11
integer comparison operator .. B-5
real comparison operator ... B-13
string comparison operator .. B-9
time comparison operator .. B-15

<=
date comparison operator .. B-11
integer comparison operator .. B-5
real comparison operator ... B-13
string comparison operator .. B-9
time comparison operator .. B-15

<>
date comparison operator .. B-11
integer comparison operator .. B-5
real comparison operator ... B-13

Index

Index-7

string comparison operator .. B-9
time comparison operator .. B-15

=

date comparison operator .. B-11
integer comparison operator .. B-5
real comparison operator ... B-13
string comparison operator .. B-9
target fileset wildcard character ... 50
time comparison operator .. B-15
Used to preserve lockword in target fileset .. 145

==, target fileset wildcard character .. 52

>

Command I/O Redirection, output .. 28
date comparison operator .. B-11
integer comparison operator .. B-5
real comparison operator ... B-13
string comparison operator .. B-9
time comparison operator .. B-15

> prefix, used to execute SPOOK5 commands from with MPEX ... 272
>=

date comparison operator .. B-11
integer comparison operator .. B-5
real comparison operator ... B-13
string comparison operator .. B-9
time comparison operator .. B-15

>>
Command I/O Redirection, append .. 28

4-digit years in dates .. B-2

A few comments about the '!' character ... 37
ABS, integer absolute value operator ... B-4
ABS, real absolute value operator .. B-13
ACCDATE, file attribute variable... 56
ACCDATETIME, file attribute variable .. 56
Access date: listing ... 175
ACCESSIBLE(), file attribute function ... 59
ACCESSIBLEBY(), file attribute function ... 59
ACCOUNT

file attribute... 64
file attribute variable ... 54
job/session attribute variable .. 65
spool file attribute variable ... 64

ACCTEXISTS, function .. B-18
ACCTIME, file attribute variable .. 56
ACDREQUIRED, file attribute variable .. 58
Advanced expression programming ... B-41
ALARM, %BACKG task .. 133
ALARMPRI, BACKG task execution priority variable .. 133
ALLFILENAMES, %PRINT;SEARCH= ... 214
ALLTOTALS, %LISTF keyword ... 172
ALPHA, string test function ... B-8
ALPHANUM, string function ... B-9

Index

Index-8

ALREADYSORTED, keyword used in flexible LISTF files .. 200
Altering ACDs of an entire fileset ... 128
AND, boolean operator ... B-5
ANYPARM and REST$, command file and UDC parameter qualifier ... 25
ANYUSER, %SHOWPROC keyword ... 269
Appending to existing files .. 150
Appendix

A: POSIX compatibility issues ... A-1
B: VESOFT Expressions.. B-1
C: Loader Error Messages ... C-1
D: Cryptic File System Error Messages ... D-1

ASCII, %ALTFILE keyword ... 125
ASK, %BYE keyword ... 135
ASL, bit Arithmetic Shift Left operator .. B-6
ASR, bit Arithmetic Shift Right operator ... B-6
AT=

%ALARM keyword ... 99
%PAUSEJOB keyword .. 209

AUDITC, %BACKG task ... 133
AUDITCPRI, BACKG task execution priority variable .. 133
Automatic lockword insertion for %RUN commands .. 249

BA capability: adding/removing BA from programs .. 108
BACAP, program file attribute variable ... 62
BACKGINI.DATA, %BACKG configuration file ... 133
Background execution of MPEX commands: %GOON ... 161
BADPASSWORD, function to look up the BADPASS file ... B-21
BAND, Bit-wise AND operator ... B-6
Batch execution

of MPEX commands: %SCHEDULE ... 253
of MPEX commands: %SUBMIT ... 276
using '$' Prefix.. 19

BEGIN, expression program operator ... B-42
BESTBLOCKFACTOR, file attribute variable .. 57
BETWEEN

date range checking function ... B-11
integer range checking function ... B-5
real range checking function .. B-13
string range checking function ... B-9
time range checking function ... B-15
used for implementing file ranges... 49

BINARY, %ALTFILE keyword .. 125
BLKFACT, %ALTFILE keyword .. 106
BLOCKFACTOR, file attribute variable.. 54
BLOCKSIZE, file attribute variable .. 54
BNOT, Bit-wise NOT operator .. B-6
Boolean

operators and functions ... B-4
variables and constants .. B-2

BOR, Bit-wise OR operator .. B-6
BOUND, function that checks if variable is defined .. B-17
BUF, %PRINT keyword ... 212
BUFFERSIZE, %COPY keyword .. 147
BVAR, Boolean VARiable retrieval function .. B-17
BVARSET, Boolean VARiable SETting function ... B-18

Index

Index-9

BXOR, Bit-wise eXclusive OR operator .. B-6
BYE, %BYE keyword .. 135
BYTE, %ALTFILE keyword .. 125

CALENDARTODATE, date function .. B-12
CANCELWRITE, expression program operator.. B-46
CAP, %ALTFILE keyword .. 108
CAPABILITY, function ... B-16
CASELESS keyword in %PRINT;SEARCH=.. 217
CCXL ... 68
CCXLLK ... 68
CDATE, date formatting function .. B-12
CDATEDMY, date formatting function ... B-12
CDATEMDY, date formatting function ... B-12
CDATEYMD, date formatting function .. B-12
CENTER, STRWRITE format specifier ... B-38
CHANGE, %SHOWPROC keyword .. 269
Changing the MPEX prompt .. 16
CHECKEVERY=

%ALARM keyword ... 102
%PAUSEJOB keyword .. 209

Checking MPEX command success .. 29
CHLOGON and SECURITY menus ... 141
CHR, string function (converts integer to ASCII character) ... B-8
CI emulation using CI.PUB.VESOFT .. 15
CI.PUB.SYS ... 15
CI.PUB.VESOFT (for MPE/iX emulation) ... 15
CIERR

%ESCAPE keyword ... 159
%QUIT keyword ... 227

CIERROR, JCW set when command fails .. 29
CIERRORISWARN, JCW set when command fails... 29
CIMGR files .. 15
CL keyword (abbreviation for CASELESS) in %PRINT;SEARCH= ... 217
CLOCK, time function .. B-15
CLOCKTOTIME, time function ... B-15
CMDPARM, command file / UDC parameter retrieval function ... B-18
CMDPROT, %BACKG task ... 134
CMDPROTPRI, BACKG task execution priority variable ... 133
COB74XL .. 68
COB74XLK .. 68
COB85XL .. 68
COB85XLK .. 68
COBOL .. 67
COBOLII .. 67
COBOLIIX .. 67
CODE, %ALTFILE keyword .. 110
CODE, file attribute variable .. 54
Command files ... 23
Comments

in expression programs .. B-47
in LOGOFF files ... B-47
in LOGOFFAB files ... B-47
in LOGOFFWR files .. B-47
in SECURCON files... B-47

Index

Index-10

in STREAMX files ... B-47
CONTEXT, %PRINT keyword used with ;SEARCH= ... 215
COPYACCESS, %PRINT keyword ... 212
COPYACD, %COPY keyword ... 148
COS, cosine function ... B-14
CPULIMIT, job/session attribute variable .. 66
CREATE, %RENAME keyword ... 238
Creation date: listing .. 175
CREATOR

%ALTFILE keyword ... 111
file attribute variable ... 56

Creator ID: listing ... 175
CREATORACCOUNT, file attribute variable ... 56
CREDATE, file attribute variable ... 56
CREDATETIME, file attribute variable ... 56
CRETIME, file attribute variable ... 56
CS$, command file / UDC parameter qualifier .. 27
CSECURITYA, file attribute variable .. 58
CSECURITYAC, file attribute variable .. 58
CSECURITYAL, file attribute variable .. 58
CSECURITYANY, file attribute variable .. 58
CSECURITYCR, file attribute variable .. 58
CSECURITYGL, file attribute variable .. 58
CSECURITYGU, file attribute variable ... 58
CSECURITYL, file attribute variable .. 58
CSECURITYR, file attribute variable .. 58
CSECURITYW, file attribute variable ... 58
CSECURITYX, file attribute variable .. 58
CSL, bit Circular Shift Left operator ... B-6
CSR, bit Circular Shift Right operator .. B-6
CURRENTCMD, job/session attribute variable ... 65

D keyword (abbreviation for DELIM) in %PRINT;SEARCH= .. 218
Data types ... B-2
Database I/O functions ... B-30
Date

operators and functions ... B-11
variables and constants .. B-2

DATE=
%ALARM keyword ... 99
%PAUSEJOB keyword .. 209

DATEADD, date function to increment dates .. B-12
DATEBUILD, converts year, month and day into date ... B-11
DATEDAY, date function to extract day ... B-12
DATEDAYOFWEEK, date function to extract day of week ... B-12
DATEMONTH, date function to extract month ... B-11
DATEPARSE, date parsing function .. B-12
DATETOCALENDAR, date function .. B-13
DATEYEAR, date function to extract the 2-digit year .. B-11
DATEYEAR4, date function to extract the 4-digit year .. B-11
DAY=, %ALARM keyword ... 99
DAY=, %PAUSEJOB keyword .. 209
DAYOFYEAR, date function to determine the Julian day ... B-12
DBSETBLOCKFACTOR, dataset attribute variable ... 61
DBSETBLOCKSIZE, dataset attribute variable ... 62

Index

Index-11

DBSETBLOCKWASTAGE, dataset attribute variable .. 62
DBSETCAPACITY, dataset attribute variable ... 61
DBSETENTRIES, dataset attribute variable ... 61
DBSETENTRYLENGTH, dataset attribute variable .. 61
DBSETFULLNESS, dataset attribute variable .. 61
DBSETHIGHWATERMARK, dataset attribute variable .. 61
DBSETMAXCAPACITY, dataset attribute variable ... 61
DBSETMEDIALENGTH, dataset attribute variable .. 62
DBSETNAME, dataset attribute variable .. 61
DBSETNUMPATHS, dataset attribute variable.. 62
DBSETTYPE, dataset attribute variable .. 61
DBSIZE, program file attribute variable ... 63
DBUILD, integer function .. B-6
Debugging MPEX command files/UDCs: HPCMDTRACE JCW .. 15
DELACD

%ALTFILE keyword ... 112
%RENAME keyword ... 238

DELETE, %IDENTIFY keyword ... 166
DELIM keyword in %PRINT;SEARCH= .. 218
Determining the status of a VEDB call .. B-30
DEV

%ALTFILE keyword ... 113
%COPY keyword .. 147

DEVICE
file attribute variable ... 57
spool file attribute variable ... 64

Device class
listing ... 177
of spool files .. 129

DEVICESECTORS(), file attribute function .. 59
DIRACCOUNT, account attribute of files .. 64
DIRGROUP, group attribute of files ... 64
Disk space

listing by disk drive .. 187
listing various information ... 177
selecting by savable space ... 57
selecting by used space ... 54

Disk space, saving
by lower file limit ... 118
by making files variable record length .. 155
by purging unused files .. 222
by setting max extents=32 ... 116
by SQUEEZEing .. 124
by XLTRIMing ... 124

Displaying the system name in %LISTF headings ... 172
DL, program file attribute variable... 63
DMY, READDATE format specifier .. B-36
DOWNSHIFT

READxxx format specifier ... B-36
STRWRITE format specifier ... B-38

DS capability: adding/removing DS from programs... 108
DSCAP, program file attribute variable .. 62
DWNS, string downshift function ... B-8

ELSE, expression program operator ... B-41

Index

Index-12

Embedded quote characters ('') in string variables .. B-2
END, %PRINT keyword ... 216
END, expression program operator .. B-42
ENTRY=, specifying entrypoint for implied RUN .. 23
EOF, file attribute variable ... 54
Eugene Volokh ... i
Examples

Database Management ... 5
File System Security ... 6
Job Stream Programming .. 6
Managing Disk space ... 3
MPEX commands ... 2
Program Development .. 4
System Management... 2

EXCLUSIVE, file attribute variable .. 58
EXP, exponentiation ('e' to the R) function ... B-14
Expression program variables ... B-44
Extent map: listing ... 177
EXTENTS, %ALTFILE keyword ... 116
EXTENTSIZE, file attribute variable .. 57

FALSE, boolean constant ... B-5
FANYEXISTS, function that checks if temp OR perm file exists ... B-22
FANYINFO, retrieves information on temp OR permanent files ... B-23
FCONTAINS, file attribute function (string search) .. 60
FEXISTS, function that checks if a file exists.. B-22
File

attribute functions.. B-21
attributes: variables and functions .. 52
I/O functions ... B-26
ranges .. 48

FILE
file attribute variable ... 54
spool file attribute variable ... 64

Filecode
171: expression programs .. B-47
176: compiled expression programs .. B-47

FILEGROUP, file attribute variable .. 56
FILES=, %SHOWPROC keyword .. 270
Fileset wildcards: ?, @, #, [...] .. 48
Filesets

Enhanced POSIX Filenames ... 42
Enhanced POSIX Filesets.. 43
General MPE and POSIX filesets .. 43
Standard MPE filenames ... 41
Standard MPE filesets .. 41

FINALLY, final processing in flexible LISTF files .. 198
Finding files with non-existent creators .. 113
FINFO, function to retrieve file information ... B-23
FIRST, initial processing in flexible LISTF files .. 198
FIXED, %ALTFILE keyword .. 125
FLABLDEV, file attribute variable ... 57
Flexible %LISTF ... 194
FLIMIT

%ALTFILE keyword ... 118

Index

Index-13

setting it to EOF ... 124
FLIMIT, file attribute variable .. 54
FMTCAPS, program file attribute ... 62
FMTFOPTIONS, file attribute variable .. 56
FMTJOB, job/session attribute variable ... 65
FMTLOGON, job/session attribute variable ... 65
FMTOPENED,

file attribute variable ... 54
FMTRECSIZE, file attribute variable ... 54
FMTTYPE, file attribute variable .. 54
FOPTIONS, file attribute variable ... 56
FOR RFILE IN, fileset-handling in flexible LISTF files .. 196
FOR, expression program operator .. B-43
FORMAT

%PRINT keyword to format output lines ... 213
=FILES, %SHOWPROC keyword to show files open by a process .. 269

FORTRAN ... 67
FPERMEXISTS, function that checks if a permanent file exists ... B-22
FPERMINFO, function to retrieve permanent file information ... B-23
FREMLOCKWORD, filename lockword removal function .. B-21
FSEARCHEXP, file attribute function (string search) .. 60
FSEARCHSTRING, file attribute function (string search) .. 60
FSERROR, JCW set when command fails ... 29
FTEMPEXISTS, function that checks if a temp file exists ... B-22
FTEMPINFO, function to retrieve temp file information ... B-23
FTN ... 67
FTNXL ... 68
FTNXLLK ... 68
FULLNAME, file attribute variable ... 58
FULLNAMELOCK, file attribute variable ... 58

GARBAGE, STRWRITE format specifier ... B-38
GOD -- gives SM capability, :ALLOWs all commands ... 89
GOD, see also SEC HELP ALLOW ($ALLOW in SECURCON) .. 89
GOON, %RUN keyword .. 84
GROUP

file attribute... 64
file attribute variable ... 54

GROUP, job/session attribute variable ... 65
GROUPEXISTS, function .. B-18

HASACD, file attribute variable .. 58
HASFORMSMSG, spool file attribute variable.. 64
HASPRIVSEG, program file attribute variable .. 62
HELLO, %BACKG task ... 134
HELLOPRI, BACKG task execution priority variable .. 133
HEX, READINTEGER format specifier .. B-36
HEX, string function (converts integer to hexadecimal) ... B-8
HEX, STRWRITE format specifier ... B-38
HFS filesets

and the '-' character .. 51
and the '/' character .. 51
and the '@' character .. 51
and the '=' character .. 51
with '==' (for TARGET filesets) ... 52

Index

Index-14

HHMMSS, time function ... B-15
HIGHLIGHT, %PRINT keyword .. 213
HIGHORDER, integer function... B-6
Hints, how to disable them .. 11
HOMEGROUP, job/session attribute variable .. 65
HOOKing programs .. 77
HPAUTOCONTTOPLEVEL, MPEX control variable .. 9
HPDTCPORTID, job/session attribute variable ... 66
HPPATH, MPEX variable indicating command search path ... 22
HPREDODEFLIST, MPEX control JCW .. 235
HPREDONODUPS, MPEX control JCW .. 235
HPREDOSIZE, MPEX control JCW/variable ... 234
HPREDOVEMODIFY, MPEX control JCW ... 235
HPSYSNAME, variable used in %LISTF headings .. 39
HPTERMINAL(), function that checks for HP terminals ... B-20

I2, STRWRITE format specifier .. B-38
I4, STRWRITE format specifier .. B-38
IA capability: adding/removing IA from programs .. 108
IACAP, program file attribute variable... 62
ICODE, file code parsing function ... B-16
ID, file attribute variable .. 58
IDCONTAINS(S)

example ... 189
File attribute function .. 58

IF, expression program operator .. B-41
IFLOW, %PRINTO keyword .. 221
IMAGE databases

copying .. 146
moving from disk to disk ... 113
releasing .. 235
renaming ... 237
securing ... 255

Implied RUN ... 21
Important security considerations for the MPEXMGR file .. 12
IN=

%ALARM keyword ... 99
%PAUSEJOB keyword .. 209

Indirect Files .. 46
INFO=

with :RUN MAIN.PUB.VESOFT ... 10
with implied RUN .. 23

INITEXTENTS, %ALTFILE keyword ... 121
INMSG, %RUN keyword ... 82
INPRI, job/session attribute variable ... 65
INPUT

%RUN command parameter .. 81
function, accepts input from user .. B-16
see also %RUNCREATE / %RUNINPUT / %RUNACTIVATE .. 249

INSIDEMPEX, JCW to determine whether or not you're in MPEX ... 27
INSPOOLFILENUM, job/session attribute variable ... 66
INTCODE, file attribute variable .. 54
Integer

operators and functions ... B-4
variables and constants .. B-2

Index

Index-15

INTEGER
byte-to-integer conversion function ... B-6
real-to-integer truncation function .. B-14

INTEGERPARSE, integer parsing function .. B-6
INTRODATE, job/session attribute variable ... 65
Introduction ... 1
INTROTIME, job/session attribute variable .. 65
ISACTIVE, spool file attribute variable ... 63
ISASCII, file attribute variable .. 54
ISBINARY, file attribute variable .. 54
ISBOSS, file attribute variable .. 58
ISBYTESTREAM, file attribute variable ... 55
ISCCTL, file attribute variable .. 54
ISCHGROUPED(), function to test %CHGROUP status ... 138
ISCHLOGONED()

differences from ISCHGROUPED() ... 140
function that checks if a user has done :CHLOGON to another logon ... B-17
function to test %CHLOGON status ... 140

ISCIR, file attribute variable ... 55
ISCMPROG, file attribute variable ... 55
ISDEFERRED

job/session attribute variable .. 66
Spool file attribute variable ... 63

ISDIR, file attribute variable ... 55
ISENCRYPTED, file attribute variable ... 55
ISEXEC, job/session attribute variable ... 66
ISEXECUTABLE, file attribute variable .. 55
ISFIXED, file attribute variable ... 54
ISHIDDEN

example showing usage of ISHIDDEN file attribute... 44
file attribute variable ... 55

ISINIT, job/session attribute variable .. 66
ISJUMBO, file attribute variable .. 55
ISKSAM, file attribute variable ... 55
ISKSAM64, file attribute variable ... 55
ISKSAMXL, file attribute variable ... 55
ISLINK, file attribute variable ... 55
ISLOCKED, spool file attribute variable .. 63
ISMSG, file attribute variable... 55
ISNMPROG, file attribute variable ... 55
ISNOCCTL, file attribute variable ... 54
ISOCTCOMPED, program file attribute variable ... 63
ISOPENED, spool file attribute variable ... 63
ISPRIV, file attribute variable ... 55
ISPROG, file attribute variable ... 55
ISQEDIT, file attribute variable .. 55
ISQUIET, job/session attribute variable ... 66
ISREADY, spool file attribute variable ... 63
ISRELEASED, file attribute .. 57
ISRESTARTABLE, job/session attribute variable ... 66
ISRIO, file attribute variable .. 55
ISSCHED, job/session attribute variable .. 66
ISSECURED, file attribute variable .. 57
ISSPSAVE, spool file attribute variable ... 63
ISSTD, file attribute variable .. 54

Index

Index-16

ISSTDLISTDELETE, job/session attribute variable ... 66
ISSUSP, job/session attribute variable ... 66
ISUNDEFINED, file attribute variable ... 54
ISVARIABLE, file attribute variable... 54
ISWAIT, job/session attribute variable .. 66
ISXLSPOOLFILE, file attribute variable ... 55
IVAR, Integer VARiable retrieval function ... B-17
IVARSET, Integer VARiable SETting function ... B-18

JOBABORTED, spool file attribute variable .. 64
JOBNUMBER, spool file attribute variable ... 64
JOBTYPE, spool file attribute variable .. 64
JSCOUNT, function to count jobs or sessions in userset ... B-19
JSNAME

job/session attribute variable .. 65
spool file attribute variable ... 64

KEEPALLOW, %CHLOGON keyword ... 140
KEEPAMDATES

%ALTFILE keyword ... 121
%COPY keyword .. 148
%PRINT keyword ... 213
%RELEASE keyword ... 236
%RENAME keyword ... 238
%SECURE keyword... 255

KEEPATTR, %COPY keyword .. 144
KEEPCAPS, %CHLOGON keyword .. 140
KEEPTRAIL, %ALTFILE keyword .. 125
KEEPUDCS, %CHLOGON keyword .. 140
KEYFILE, %COPY keyword ... 146
KILL, %RUN keyword .. 85

LABELEOF, file attribute variable .. 58
LABELFLIMIT, file attribute variable ... 58
LASTEXTENTSIZE, file attribute variable ... 57
LDELIM keyword in %PRINT;SEARCH= ... 218
LDEVIN, job/session attribute variable .. 65
LDEVLIST, job/session attribute variable .. 65
LEFTJUST

integer left-justification .. B-38
string left-justification .. B-37

LEN, string length function ... B-7
LFT, string function .. B-8
LINENUM, %PRINT;SEARCH= current line number variable .. 220
List of MPE FINFO parameters, by name and number ... B-23
LOADED, file attribute variable .. 58
Local variables ... 34
LOCALGROUPID

%ALTFILE keyword ... 111
%RENAME keyword ... 238

LOCATTR, job/session attribute variable .. 66
Lockword

on the %COPY command ... 149
on the %RENAME command ... 239

LOCKWORD

Index

Index-17

%ALTFILE keyword ... 122
file attribute variable ... 56

Lockwords
preserving them on %COPY/%FCOPY/%RENAME ... 89

LOG, logarithm function ... B-14
LOGOFF, %BACKG task... 134
LOGOFFPRI, BACKG task execution priority variable ... 133
LOGON

%ALARM command keyword .. 99
%BACKG task ... 134

LOGONPRI, BACKG task execution priority variable .. 133
LOWORDER, integer function ... B-6
LSL, bit Logical Shift Left operator ... B-6
LSR, bit Logical Shift Right operator .. B-6
LTRIM, string function (strips leading char) .. B-7

MAINPIN, job/session attribute variable ... 66
MATCHES(), file attribute function ... 60
MATCHES, string pattern matching operator .. B-9
MAX

%PRINT;SEARCH= keyword.. 216
date maximum function ... B-11
integer maximum function ... B-5
real maximum function .. B-13
string maximum function ... B-9
time maximum function ... B-15

MAXCONSECUTIVE, string function .. B-9
MAXDATA

%ALTFILE keyword ... 123
program file attribute variable .. 63

MAXEXTENTS, file attribute variable ... 54
MDY, READDATE format specifier .. B-36
MIN

date minimum function .. B-11
integer minimum function .. B-5
real minimum function ... B-13
string minimum function .. B-9
time minimum function .. B-15

MOD, modulo (remainder) operator .. B-4
MODDATE, file attribute variable ... 56
MODDATETIME, file attribute variable .. 57
Modification date, listing ... 175
Modification time, listing ... 175
MODTIME, file attribute variable ... 56
MORTAL -- undoes a previous 'GOD' operation .. 90
MOVING GROUPS TO A NON-SYSTEM VOLUME SET ... 116
MPE

command execution function ... B-16
commands ... 17
prefix, used to indicate an MPE command .. 17

MPE/iX compilers .. 67
(w/linking) ... 67

MPE/V and MPE/iX differences
%PROGINFO command ... 222
compiled exp progs .. B-47

Index

Index-18

MPEX
and your system security ... 86
batch job aborts .. 9
commands ... 96
process handling .. 78
variables: general discussion ... 32

MPEX and MPE/iX .. 16
MPEX HOOK ... 71

preserves ACDs in HOOKed programs ... 76
MPEXALARMPREFIX, variable to prefix to %ALARMs ...40, 101
MPEXALTFILEKEEPAMDATES, MPEX JCW .. 122
MPEXCMDTRACE JCW ... 38
MPEXCONTINUECOLON, MPEX control JCW ... 10
MPEXCOPYKEEPAMDATES, MPEX JCW .. 148
MPEXCRITRESTRICTxxx, MPEX variable ... 31
MPEXCURRENTFILE

current file variable in %REPEAT...%FORFILES... 241
current spoolfile variable .. 244

MPEXDBADGFILE, variable indicating where ADAGER is ... 39
MPEXDBGENFILE, variable indicating where DBGENERAL is ... 39
MPEXDEFAULTJOBNAME, MPEX variable for $ commands .. 19
MPEXDEFAULTJOBPARMS, MPEX variable .. 19
MPEXFASTSTART, MPEX JCW to set 'faststart' mode .. 13
MPEXFILESET, keyword used in flexible LISTF files .. 200
MPEXFILESETHEAD, keyword used in flexible LISTF files ... 197
MPEXFILESETTOTAL, totaling construct used in flexible LISTF files ... 196
MPEXFINFOANY, MPEX JCW ... B-21
MPEXHEADER1, header variable used in flexible LISTF files.. 196
MPEXHEADER2, header variable used in flexible LISTF files.. 196
MPEXHEADER3, header variable used in flexible LISTF files.. 196
MPEXLISTFACCESSCHUNKSIZE, MPEX JCW .. 184
MPEXLISTFDBMODE5, MPEX JCW ... 187
MPEXLISTFLABELSIZE, variable used to control LISTF,-1 display of file labels .. A-3
MPEXLISTFNODAYS, variable used to control LISTF,2 display of file age ... A-3
MPEXMGR files .. 10
MPEXNUMFAILED, JCW set by MPEX .. 30
MPEXNUMSUCCEEDED, JCW set by MPEX .. 30
MPEXPIN, JCW set by MPEX .. 86
MPEXPREFIX=, used to specify alternate trigger character for %HOOK .. 166
MPEXPREFIXDEFnn

MPEX variable used for SPOONFEEDing .. 274
variables used (mostly) for SPOONFEEDing .. 40

MPEXPREFIXNOTE, variable configuring NOTEPAD prefix character .. 95
MPEXPRINTKEEPAMDATES, MPEX JCW ... 213
MPEXPRINTLINESFOUND, MPEX variable .. 220
MPEXPRINTNONDELIMS, variable ... 218
MPEXPROMPT, variable indicating MPEX's prompt ... 39
MPEXQEDITFILE, variable indicating where QEDIT is ... 39
MPEXREDOSIZE

MPEX control JCW/variable ... 234
variable used to replace HPREDOSIZE .. A-7

MPEXSONEXECPIN, JCW of a %SPOONFED process .. 275
MPEXSTREAMGOD, MPEX JCW ... 20
MPEXSTREAMNOVERIFY, MPEX JCW ... 20
MPEXTELLBACK, variable indicating whom MPEX jobs :TELL to .. 39

Index

Index-19

MPEXTELLBACKCMD, variable indicating how MPEX jobs notify ... 40
MPEXWARNFPREFIX

example of use .. 283
variable to prefix %WARNF messages ... 40

MR capability: adding/removing MR from programs .. 108
MRCAP, program file attribute variable .. 62
MUSTEXEC, %DOSAVED keyword .. 252

NETPUSH, %BACKG task .. 134
NETPUSHPRI, BACKG task execution priority variable ... 133
NETPUSHTIME, variable set in BACKGINI.DATA.VESOFT ... 134
NETRECV, %BACKG task ... 134
NETRECVPRI, BACKG task execution priority variable ... 133
NEW, %RUN keyword .. 85
NEWERTHAN(), file attribute function ... 60
NMATCHES, string pattern matching operator ... B-9
NMHEAP, program file attribute variable .. 63
NMSTACK, program file attribute variable .. 63
NOACTIVATE, %RUN keyword ... 85
NOACTSONTERM, %RUN keyword .. 248
NOCHECK

%ALTFILE keyword ... 111
%IDENTIFY keyword ... 166

NOCR, READxxx format specifier .. B-36
NOECHO, READxxx format specifier ... B-36
NOEXPANDDIR, %LISTF keyword ... 171
NOFILEPAGEBREAK, %PRINT keyword ... 213
NOHOLIDAY, %CALENDAR keyword .. 137
NOHP, %ALARM command keyword ... 100
NONUMRECOGNIZE, %PRINT keyword ... 213
NOPAGEHEAD, %LISTF keyword .. 172
NORMTOTALS, %LISTF keyword .. 172
NOT, boolean operator ... B-5
NOTEPADS ... 93

configure filename using VESOFTNOTEFILE variable... 95
editing with [;M]odify and [;D]elete .. 94
Entering notes using ; prefix character.. 93
Printing entries .. 94
Searching for entries ... 94
using multiple NOTEPAD files .. 95

NOTOTALS, %LISTF keyword .. 172
NOTREE, %SHOWPROC keyword ... 269
NOVERIFY, %PAUSEJOB keyword .. 209
NTOKEN, string parsing function .. B-10
NUM, %PRINT keyword ... 214
Number of copies of spool files ... 129
NUMCOPIES

job/session attribute variable .. 65
spool file attribute variable ... 64

NUMERIC, string function ... B-8
NUMEXTENTS, file attribute variable .. 54
NUMLINES, spool file attribute variable .. 64
NUMSEGS, program file attribute variable .. 62

OBJECTFILE()

Index

Index-20

fileset processing function .. 242
function for use with %REPEAT...%FORFILES .. 242

OBJECTFILE, 'to-file' name function .. B-21
OBSFILL, %BACKG task ... 135
OBSFILLPRI, BACKG task execution priority variable ... 133
OBSFILLTIME, variable set in BACKGINI.DATA.VESOFT .. 135
OCTAL

READINTEGER format specifier .. B-36
string function (converts integer to OCTAL string) ... B-8
STRWRITE format specifier ... B-38

ODD, integer testing function ... B-5
OFF, boolean constant .. B-5
OLD, %PRINT keyword ... 214
OLDANY, %PRINT keyword .. 214
OLDTEMP, %PRINT keyword .. 214
ON, boolean constant ... B-5
ONBREAKAFTER, level-breaking in flexible LISTF files ... 198
ONBREAKBEFORE, level-breaking in flexible LISTF files ... 198
ONDEVICE(), file attribute function ... 60
OPENED, file attribute variable.. 54
OPENEDSYSFAIL, file attribute variable .. 59
Opening a database for access ... B-30
Operator precedence ... B-1
OR, boolean operator ... B-5
ORD, string function (returns ASCII value of character).. B-8
Other variable features ... 35
OUT, %PRINT keyword ... 214
OUTPRI

job/session attribute variable .. 65
spool file attribute variable ... 63

Output formatting functions .. B-37
Output priority of spool files ... 129
OUTSPOOLFILENUM, job/session attribute variable ... 66
OWNER, file attribute variable... 56

PAGE, %PRINT keyword ... 214
PAGEHEAD

%PRINT keyword ... 214
page break processing in flexible LISTF files .. 198

PARM
PARM=1, MPEX's 'faststart' mode ... 13
specifying PARM= with implied RUN ... 23
used in header record for command files ... 24

PASCAL ... 67
PASXL ... 68
PASXLLK ... 68
PATH, file attribute variable ... 59
PAUSE, function .. B-18
PH capability: adding/removing PH from programs .. 108
PHCAP, program file attribute variable ... 62
PMCAP, program file attribute variable .. 62
POS, string function (finds one string in another) .. B-7
PREV=, %PRINT keyword, used with ;SEARCH= ... 215
PRI=, %RUN keyword ... 84
Printing conventions .. xi

Index

Index-21

PRINTOPREPLY
console reply request function ... B-16
console reply request function-example ... 7

PRIVATE, job/session attribute variable ... 66
Privileged Mode

adding/removing PM from programs .. 108
finding PM programs ... 62
finding programs with PM segments .. 62

QUIET, %PAUSEJOB keyword ... 209
QUIT, %BYE keyword .. 135

R

current record variable within %PRINT;FORMAT= expression .. 213
current record variable within %PRINT;SEARCH= expression ... 219

RANDOM, integer function ... B-5
RANDOMNAME, function ... B-18
RDELIM keyword in %PRINT;SEARCH= .. 218
READDATE, date input function .. B-35
READING, file attribute variable .. 59
READINTEGER, integer input function .. B-35
READREAL, real input function ... B-35
READSELECT, input function ... B-35
READSTRING, string input function .. B-35
READTIME, time input function .. B-35
READYDATE, spool file attribute variable ... 64
READYTIME, spool file attribute var .. 64
Real

operators and functions ... B-13
variables and constants .. B-3

REAL, integer-to-real conversion function .. B-14
REALPARSE, real number parsing function ... B-14
REC, %ALTFILE keyword ... 125
RECNUM, %PRINT;SEARCH= current record number variable .. 219
RECSIZE, file attribute variable .. 54
Redirecting

command input/output ... 28
errors and warnings during command execution .. A-4

Released files: finding them .. 57
REMTOKEN, string parsing function ... B-10
REPETITIVE ALARMS .. 101
Restore date: listing ... 175
RESTORED, file attribute variable ... 59
Restricting MPEX commands to only work on certain files ... 31
RFILE., prefix for MPEX file attribute variables .. 53
RHT, string function .. B-8
RIGHTJUST, STRWRITE format specifier .. B-38
RJOB

prefix for Job/Session attributes ... 65
used in %REPEAT...%FORJOBS commands .. 245

ROUND, real-to-integer conversion function .. B-13
RPG .. 67
RPGXL... 68
RPGXLLK ... 68
RPT, string function ... B-8

Index

Index-22

RSTDATE, file attribute variable ... 57
RSTDATETIME, file attribute variable ... 57
RSTTIME, file attribute variable ... 57
RTRIM

READxxx format specifier ... B-36
string function (strips trailing char) .. B-7

Running MPEX ... 8
in batch .. 9
interactively ... 8
with ;INFO .. 10

SAVABLESECTORS, file attribute variable ... 57
SCODE, file code formatting function ... B-16
SEARCH, %PRINT keyword to find strings .. 214
SEARCH=IFTRUE or SEARCH=IFFALSE, %PRINTO keyword .. 221
Searching for

delimited strings (strings as words) ... 218
lines by line number .. 220
lines containing all of a list of strings... 217
lines containing any of a list of strings .. 217
patterns in fileset records using wildcards .. 219
strings ignoring case .. 217

SECTORS, file attribute variable ... 54
Security

%ALTSEC .. 86
%COPY ... 87
%RELEASE .. 86
%RENAME .. 86
%SECURE ... 86
copying files into other accounts .. 87
databases .. 87
IMAGE .. 87
Lockwords .. 88
removing creator-only restrictions .. 86
spool files ... 87

SECURITY user profile attributes ... 66
SECURITYA, file attribute variable .. 58
SECURITYAC, file attribute variable ... 58
SECURITYAL, file attribute variable .. 58
SECURITYCR, file attribute variable .. 58
SECURITYGL, file attribute variable .. 58
SECURITYGU, file attribute variable ... 58
SECURITYL, file attribute variable .. 58
SECURITYLOG(..), function to write a SECURITY log record .. B-21
SECURITYR, file attribute variable .. 58
SECURITY-related functions .. B-20
SECURITYW, file attribute variable ... 58
SECURITYX, file attribute variable .. 58
SELECT, keyword used in flexible LISTF files .. 197
Selection criteria

for files ... 52
for files (by group/account attribute) ... 64
for normal files .. 53
introduction ... 47
SECURITY user profile attribute ... 66

Index

Index-23

Self demo ... 1
SESSION, %ALARM command keyword ... 99
Setting

default parms for MPEX commands .. 30
execution priority for BACKG tasks ... 133
MPEX variables .. 34

SETVAR, arbitrary VARiable SETting function ... B-18
SHOW

%BACKG keyword .. 132
SHOW,taskname %BACKG keyword .. 132

SILENT, %CHLOGON keyword .. 140
SIN, sine function .. B-14
SONALIVE(I), son process checking function .. B-17
SONALIVENAME(I), son process checking function .. B-17
SORT, keyword used in flexible LISTF files ... 201
SOURCE and TARGET filesets using HFS syntax ... 51
Special MPE access functions ... B-16
Special variables used by MPEX ... 38
SPECIFIC DIFFERENCES BETWEEN MPE AND MPEX COMPILE COMMANDS .. 69
Specifying commands to be executed when MPEX is entered .. 10
Speeding up MPEX start-up ... 13
SPL ... 67
Spool files

deleting by output priority .. 152
selecting by creating job/session name .. 266
selecting spool files of aborted jobs .. 266

SPOOL., prefix for MPEX spoolfile attribute variables ... 244
SPOOL.attrvar, spoolfile attribute variables .. 63
SPOOLFILENUM, spool file attribute variable .. 64
SPOONFEEDing, passing input to son processes ... 273
SPSAVE, job/session attribute variable .. 66
SQRT, square root function ... B-14
SQUEEZE, %ALTFILE keyword ... 124
STACK

%ALTFILE keyword ... 124
program file attribute variable .. 63

Stack overflows
in %LISTF,ACCESS, how to avoid them .. 184
in %PRINT, how to avoid them .. 212

START
%BACKG keyword .. 132
%PRINT keyword ... 216

STARTJOB, %BACKG keyword .. 131
STATE, job/session attribute variable ... 66
STATEDATE, file attribute variable ... 57
STATEDATETIME, file attribute variable ... 57
STATETIME, file attribute variable ... 57
STDIN=, %RUN key ... 84
STDLIST=, %RUN keyword ... 84
STOP, %BACKG keyword .. 132
STOPJOB, %BACKG keyword .. 131
STORED, file attribute variable ... 59
STR, substring extraction function .. B-8
STRCHANGE, string function ... B-8
STRCOUNT, string function ... B-8

Index

Index-24

String operators and functions ... B-7
String variables and constants .. B-2
STRLDROP, string function (drop leading characters) ... B-7
STRLTRIM, string function (strips leading char) .. B-7
STRRDROP, string function (drop trailing characters) ... B-7
STRRTRIM, string function (strips trailing char) .. B-7
STRWRITE

date formatting function .. B-39
integer formatting function .. B-38
real formatting function ... B-40
string formatting function .. B-37
time formatting function .. B-40

SVAR, String VARiable retrieval function .. B-17
SVARSET, String VARiable SETting function ... B-18
SYS, %IDENTIFY keyword ... 166

TAN, tangent function ... B-14
Target filesets .. 50
TARGET filesets, when the target is a directory .. 52
TASKLIST.BACKG.VESOFT, BACKG configuration file ... 133
Technical Support .. i
TERMCLEAR(), function that clears screen on HP terminals ... B-20
TERMFKEY(), function that returns HP function key sequence .. B-20
TERMFKEYNUMBER(S), function that returns HP function key number... B-20
Terminal input functions .. B-35

VEMODIFY .. B-36
Terminal manipulation functions ... B-19
TERMINAL, %ALARM command keyword.. 99
TERMPOS(I1,I2), function to position cursor on HP terminals ... B-20
THEN, expression program operator .. B-41
Time

constants .. B-14
operators and functions ... B-14
variables and constants .. B-3

TIMEBUILD, time function .. B-15
TIMEPARSE, time function .. B-15
TO=userset, %ALARM command keyword .. 99
TODAY, date function .. B-12
TOKEN, string parsing function ... B-10
TOTAL, function used in flexible LISTF files ... 199
Trapping program output ($STDLIST) ... B-34
TREE, %SHOWPROC keyword .. 269
TRUE, boolean constant .. B-5
TRUNC, %SHOWPROC keyword ... 269
TRY ... CLEANUP, expression program operator ... B-44
TRY ... RECOVER, expression program operator ... B-44
TYPEOF, function that returns the type of an expression ... B-17

UNDEF, %ALTFILE keyword ... 125
UNN, %PRINT keyword .. 213
UNSIGNED, STRWRITE format specifier .. B-38
UPS, string upshift function .. B-8
UPSHIFT

READxxx format specifier ... B-36
STRWRITE format specifier ... B-38

Index

Index-25

USER
%SHOWPROC keyword .. 269
job/session attribute variable .. 65
spool file attribute variable .. 64

USEREXISTS, function .. B-18
Using

;WAIT, ;IFLOW and ;SEARCH= to view $STDLISTs .. 221
abbreviated logons with %CHLOGON ... 142
MPEX to compile programs ... 67
MPEX variables .. 32
PRINT;OUT= without issuing a file equation ... 211
third party compilers with MPEX... 70

VALIDCOLDLOADID, file attribute variable ... 58
VALIDDATE, date checking function .. B-12
VALIDINTEGER, integer checking function .. B-6
VALIDTIME, time function ... B-15
VAR, creating expression program variables .. B-44
VARIABLE, %ALTFILE keyword .. 125
Variables ... B-1
VEACCTINFO, function .. B-19
VEAUDITCTIME, variable set in BACKGINI.DATA.VESOFT .. 133
VECURRFILENAME, variable set to the current command filename ... 40
VEDBCHAINLEN, predefined IMAGE variable ... B-30
VEDBCLOSE, database I/O function .. B-33
VEDBCONTROL, database I/O function ... B-33
VEDBDATALEN, predefined IMAGE variable ... B-30
VEDBDELETE, database I/O function .. B-32
VEDBDELETEK, database I/O function .. B-32
VEDBERR, variable set by VEDBxxx functions ... B-30
VEDBFIND, database I/O function .. B-31
VEDBGET, database I/O function .. B-31
VEDBGETV, database I/O function .. B-32
VEDBLOCK, database I/O function .. B-32
VEDBNEXTREC, predefined IMAGE variable ... B-30
VEDBOPEN, database I/O function ... B-31
VEDBPREVREC, predefined IMAGE variable ... B-30
VEDBPUT, database I/O function .. B-32
VEDBPUTL, database I/O function .. B-32
VEDBRECNUM, predefined IMAGE variable ... B-30
VEDBUNLOCK, database I/O function ... B-33
VEDBUPDATE, database I/O function ... B-32
VEDBUPDATEK, database I/O function ... B-32
VEEOF

variable set by certain I/O functions .. B-28
variable set by VEDBGET .. B-31
variable set by VEDBGETV .. B-32
variable set by VEFFINDBYKEY .. B-28
variable set by VEFREAD ... B-27
variable set by VEFREADBYKEY ... B-28
variable set by VEFREADC ... B-28
variable set by VEFREADCV .. B-28
variable set by VEFREADV ... B-27

VEFANYINFO, retrieves information on temp OR permanent files ... B-22
VEFCLOSE, file I/O function ... B-26

Index

Index-26

VEFCONTROL, file I/O function ... B-27
VEFFINDBYKEY, file I/O function ... B-28
VEFFINDN, file I/O function .. B-28
VEFINFO

function to retrieve file information ... B-22
open file info function .. B-27

VEFLOCK, file I/O function .. B-27
VEFOPEN, file I/O function ... B-26
VEFPERMINFO, function to retrieve permanent file information ... B-22
VEFPOINT, file I/O function ... B-27
VEFREAD, file I/O function .. B-27
VEFREADBYKEY, file I/O function .. B-28
VEFREADBYKEYV, file I/O function .. B-28
VEFREADC, file I/O function .. B-28
VEFREADCV, file I/O function .. B-28
VEFREADDIR, file I/O function .. B-27
VEFREADLABEL, file I/O function .. B-27
VEFREADV, file I/O function .. B-27
VEFREMOVE, file I/O function .. B-28
VEFSERR, variable set by certain I/O functions .. B-28
VEFTEMPINFO, function to retrieve temporary file information .. B-22
VEFUNLOCK, file I/O function ... B-27
VEFUPDATE, file I/O function .. B-28
VEFWRITE, file I/O function .. B-27
VEFWRITEDIR, file I/O function .. B-27
VEFWRITELABEL, file I/O function .. B-27
VEFxxx functions, file access for SM users .. B-26
VEGROUPINFO, function ... B-19
VEJOBINFO

attributes ... 65
function .. B-19

VEMODIFY.. 91
configure operation using VESOFTVEMODIFYEXPANDOK .. A-1
Control-^ (insert -- same as Control-B) .. 93
Control-A (Append) ... 91
Control-B (insert Before) ... 91
Control-C (change Case) .. 92
Control-D (Delete character) ... 92
Control-E (Erase rest of line) ... 92
Control-F (Find character) ... 92
Control-G ('Goof': undo all modifications) .. 92
Control-L (Lengthen -- same as Control-A) .. 92
Control-N (display line or command Number) .. 92
Control-O (enter Overwrite mode) .. 92
Control-Q ('Question': help) .. 92
Control-S (Scan for character backwards) ... 92
Control-T (Terminate mode) ... 92
Control-X ('cancel': redisplay line) ... 93
Extended to multi-line commands ... A-1
line editing made easier .. 90

VEMODIFY()
callable function .. 91
example of use .. 91

VEPARMS, expression program parameters... B-48
VEPRINTFILEFINFO, file I/O function ... B-27

Index

Index-27

VEPROC.JOB.VESOFT ... 78
VEPROFILEEXISTS, function ... B-20
VEPROFILEINFO, function ... B-20
VERIFY, %PAUSEJOB keyword .. 209
VESOFT address, phone, FAX ... i
VESOFTALARMPAUSE, variable set in BACKGINI.DATA ... 133
VESOFTALARMPAUSE, variable used by %ALARM command ... 102
VESOFTCONTINUENOSPACE, JCW to control line continuation .. 97
VESOFTDEFAULTALARM, MPEX variable ... 30
VESOFTDEFAULTALTFILE, MPEX variable... 30
VESOFTDEFAULTALTJOB, MPEX variable ... 30
VESOFTDEFAULTBREAKJOB, MPEX variable .. 30
VESOFTDEFAULTBYE

forcing %BYE to %QUIT without logging off .. 136
forcing %BYE to prompt whether to logoff ... 136
MPEX variable .. 30

VESOFTDEFAULTCHLOGON, MPEX variable .. 30
VESOFTDEFAULTCOPY, MPEX variable .. 30
VESOFTDEFAULTDEVCONTROL, MPEX variable .. 30
VESOFTDEFAULTDOSAVED, MPEX variable ... 30
VESOFTDEFAULTIDENTIFY, MPEX variable .. 30
VESOFTDEFAULTIMPRUN, MPEX variable ... 30
VESOFTDEFAULTPAUSEJOB, MPEX variable .. 30
VESOFTDEFAULTPREP, MPEX variable ... 30
VESOFTDEFAULTPREPRUN, MPEX variable ... 30
VESOFTDEFAULTPRINT, MPEX variable ... 30
VESOFTDEFAULTRENAME, MPEX variable... 30
VESOFTDEFAULTRESUMEJOB, MPEX variable ... 30
VESOFTDEFAULTRUN, MPEX variable .. 30
VESOFTDEFAULTSAVEJOB, MPEX variable .. 30
VESOFTDEFAULTSHOWALARM, MPEX variable ... 30
VESOFTDEFAULTSHOWJOB, MPEX variable .. 30
VESOFTDEFAULTSHOWME, MPEX variable ... 30
VESOFTDEFAULTSHOWPROC

MPEX variable .. 30
overriding ;TRUNC with ;NOTRUNC .. 269

VESOFTDEFAULTxxx, variables to set defaults for MPEX commands ... 40
VESOFTGOONPRI, variable to control %GOON queue .. 162
VESOFTHOOKNOKEEPACD, HOOK JCW to avoid ACD keep ... 77
VESOFTHOOKPPSONONLY, HOOK JCW to forbid %% from CI-:RUN programs ... 75
VESOFTNOTALWAYSPOSIX, variable used to control LISTF display of POSIX files .. A-2
VESOFTNOTEFILE, configuring name of NOTEPAD file .. 95
VESOFTPAGESIZE, JCW used to set %LISTF page size .. 172
VESOFTSORTFILESIZE

JCW that sets sort file size for %LISTF ... 172
JCW to set flexible %LISTF sort file size ... 202

VESOFTVEMODIFYBIT8CHECK, MPEX control JCW .. 235
VESOFTVEMODIFYEXPANDOK

JCW to control display ... 235
variable used to control VEMODIFY operation .. A-1

VEUSERINFO, function .. B-19
Visual %REDO extends beyond a single screen line .. 90

WAIT

%PRINT keyword ... 216

Index

Index-28

%PRINTO keyword ... 221
WAKEUP.PUB.VESOFT ... 82
WHILE, expression program operator .. B-42
WITHCAPS, security restrictions and other notes ... 288
WRITE, expression program operator .. B-46
WRITELN, expression program operator .. B-46
WRITEMPEMESSAGE, writes MPE error message .. B-16
WRITEMPEXLSTATUS, formats MPE/iX status (error) code ... B-16
WRITEPAGE, expression program operator ... B-46
WRITEPROMPT, expression program operator .. B-46
Writing expression programs ... B-47
WRITING, file attribute variable ... 59

XLTRIM, %ALTFILE keyword .. 124
XOR, boolean eXclusive OR operator .. B-5

Yes/No prompting ('?' Prefix) ... 18
YMD, READDATE format specifier .. B-36
YYYYMMDD, date function ... B-12

ZERODB, program file attribute variable .. 62
ZEROFILL, STRWRITE format specifier .. B-38

	Appendix A: POSIX Compatibility issues
	Appendix B: VESOFT EXPRESSIONS
	Appendix C: LOADER ERROR MESSAGES EXPLAINED
	Appendix D: CRYPTIC FILE SYSTEM ERROR MESSAGES DECRYPTED

