- Enhancing your database

@)BRADMARK

SUPERDEX

User Manual

Version 3.1

All updates to or derivatives of the SUPERDEX™ computer software provided herein
are copyrighted and may not be copied except for archive purposes, 1o replace a
defective copy, or for program error verification by Licensee. Copyrighted material
may not becopied onto any media (e.g. magnetic tape, paper tape, disc memory
cartridges, read-only memory, etc.) for any other purposes. The authorization to
duplicale copyrighted materials hereunder shall not be construed to grant the
Licensee or Licensee's customer the right to use copyrighted SUPERDEX material in
any manner other than which is provided in this agreement or otherwise approved in
writing by Bradmark Techologies, Inc..

{c) 1988 Bradmark Technologles, Inc.

Released March, 1892

Advancelink, Business Basic, Business Report Writer, HP, IMAGE, TRANSACT, TurbolMAGE, and
TurbolMAGE/XL are trademarks of Hewleti-Packard Company

ASK2 and VISIMAGE are frademarks of Cogelog

Business Session is a trademark of Tymiabs Corporation

dBASE, dBASE Ill, and dBASE i Plus are trademarks of Ashton-Tate Corporation
DBGENERAL is a trademark of Bradmark Technologies, Inc.

DIF is a registered trademark of Software Arts Products

ENQUIRE and SUPERDEX are trademarked product names of Bradmark Technologies, Inc. for the
SI-IMAGE and ENQUIRE packages developed and implemented by Dr. Wolfgang Matt

FASTRAN is a trademark of Performance Software Group

Lotus and 1-2-3 are registered trademarks of Lotus Development Comoration

Macintosh is a registered trademark of Apple Compuser, Inc.

MPEX/3000 is a trademark of Vesoft Inc,

PowerHouse, QUIZ, QUICK, and QTP are registered trademarks of Cognos Incorporated
Reflection is a registered trademark of Walker Richer & Quinn, Inc.

SPEEDWARE is a trademark of infocentre Corporation

SYDAID is a trademark of Sydes

About this manual

in writing this manual, we have assumed that you have working knowledge, atthough not internal
knowledge, of IMAGE and the HP3000.

All references to IMAGE in this manual and throughout the SUPERDEX package also apply to
TurbolMAGE and TurbolMAGE/XL unless otherwise noted.

This manual is arranged in the following format:

Section 1 provides an Qverview of the SUPERDEX package, its capabilities, and benefits. it also
describes how SUPERDEX works and how it maintains compatibility with IMAGE and its facilities.

Sectlon 2 overviews the various Agcess methods available in SUPERDEX for qualifying and
retrieving entries in IMAGE databases, with one chapter per method.

Section 3 describes the procedures used in figuration/Establishing Sl-indices in SUPERDEX for
use with your databases to provide quick retrieval of data entries.

Section 4 discusses the various methods utilized in Programming with SUPERDEX to add, update,
delete, qualify, and retrieve entries in SUPERDEX, and gives examples of each.

Section 5 describes the Infrinsics provided with SUPERDEX as enhancements to the IMAGE
intrinsics, as well as new SUPERDEX intrinsics.

Section 6 discusses the various Mainfenance considerations for SUPERDEX ed databases, as well
as the use of various Ulilities 1o access and maintain them.

Section 7 deccribes SuperSELECT. which can be used to override a serial read with a SUPERDEX
qualification and retrieval,

Appendix A contains fragments of Program examples written in COBOL utilizing SUPERDEX.

Appendix B examines various [nternal structures used for SUPERDEX, inciuding the method for
caiculating the capacity of the Sl-dataset.

Appendix C documents Maximum limits that are imposed for SUPERDEX configuration.

Appendix D lists Error and exceptional conditions for SUPERDEX intrinsics, utilities, and programs
with their meanings and recommended actions.

Following Appendix D are several Suppiements for different products and languages.

Finally, the Index is a complele index to the manual,

Table of contents

Section 1: OVervieW.....c.cmenrcnrnmcasnmisismessnes Ceerenssaeeserensenesnranreastannessrans 1-1
WY SUPERDEX . ettt st eassste s e s st s esn s st aesrna s re e aeeas e aessntansonns 1-2
Enhancements......... et eeereeieerreasarrereseeeaiesaeesenseaTrtesanerosteteoaateerrpyeeneeeraraysaassesearenn 1-4
FUNCHONAIY Lo et r s et e s sra e e e r e e e aase s e e s e e e baes et bbbns e e are s reaaaaaras 1-7
CONCEPIS ..ottt ee e bt s s s et s b s rr e s s e e s b a e e d s s e bbb rrrananeneenreas 111
TeIMINOIOGY . .ceoiiiiiieici it e e s b e sas e 1-13
ACCESS PIINCIPIES . oot e e e e s s e e er s e e e e e senanee 1-16
COMIPAEDIY ..ottt ccsr e e b e e s ke ee s s e ser e s s e aneneeeanns 117

Section 2: Access methods werrcsesrenraunsrrenras crtnrseennseranrenannn vernenreersnens 2-1
Multiple keys in master and detail datasets ... 2-3
Concatenated keys containing multiple fieldsooovvviniircci s 2.5
Sorted sequential relleVal ... e 2-7
KeYWOTId TeIHEVAL. ...t e a st et e s e e ae s e naresar e e 2-8
Generic and partial key retrieval............coiiinir e 2-11
Approximate match retrieval ... 2-13
Greater-than, less-than, and range retrieval ... e 215
Grouped rethieval ... s 2-17
Super-grouped retriBValo e e s e nnnarean 2-18
Relational access: mulliple criteria retheval.........ocoocvviiire e 2-21
Relational access: multiple fields, sets, and bases ... 2-23
LSO INUBXING ..o verriee et et et er e e e ss e e tssstraastsataeeeeeee e s bbabssratnsbreennsen 2-24
Independent INAEXING. . ..o e e e e 2-25

Section 3: Configuration / Establishing Sl-indices........... SOPORR . |
INSTANALION ... et e et ettt e et et erananeneaann e aenaaans 3-2
Configuralion OVBIVIBW ... s seae e st s v nse s re s s dnaesinneson 3-6
Excluding words from KeyWording........o.cooiiiiiiiicniciiiinisi e 3-12
Customizing defaull characters..........ciiiecciiri e 3-14
Configuring SUPERDEX using SIMAINT ..o e sinvssiisnvsseressssnsanesssinans 3-16

Section 4: Programming.......... cerseaas e rrrEenasNaEEeE RS ROR O E bR SR SRS A SRR ARSI RS RS AR 4-1
(o Co] (1 L« RO OO RSOOSR PP 4.2
Adding, updating, and deleting entries ... s 4-5
Qualifying entries with DBFIND ... 4-8
Retrieving entries With DBGET ... cvcrrreecin e srer e s 4-33
Additional programming consideralionS.......cocveev e rsivense i e 4-36
Native Language SUPPOMot s 4-40

Section 5: IntrinsiCS.......ceerunn S rreesmerasassessusses vevessansnsnass eesessnenrenronrarsanesers 91

ENRANCEMEBNLS L. i e rer e et e e r e e e raieaaa e e e et e raranearaRe e e ares 5-2
DBBEGIN INEINSIC oo crtictr s r e sttt s s e teessaas 44t bbb bs st e neeeen e sbsebssssssrnnes 5.4
DB L OSE MIINSIC v civreeire et si ittt e sseee et e et b et eaesss i sessnransseneaessatanressacsssssssstnten 5-5
DB E L E T E IMINSIC ittt a ettt ettt s et s anneeeaeraaees 5-6
D7 e IR D e €72 TT O USRI B-7
(B I (ATt o RO 5-9
D R A S INTIISIC ..o veeire sttt cracss s tsr e s e e e s s e ea s svsssas s easaasasanserrrenrassarrreeasas 5-10
DBERROR and DBEXPLAIN IntHiNSICS .o eees e sv s iss s aes 5-12
DB N D I iTESIC .o eeevs st t e ee e e e sttt r s et e sseaaeaeaeeestsssssaaaananerastanausssrsbrbrsrnsrnnasssnnn 513
DB G T I EITISIC 11 rrrmas st s e e e ereee st ea s e e e e rereteeaeaaeaaansarssnraneaarassatnnsnrsbsssrrrrnrbesssssnsan 5-21
DBINFO INTHNSGIC .oovieiiiiiiire e e eecerarat e e e e e e s s e s e seeeeaneseseessan s rernsmmnasassnaesan 5-25
DBLOCK intrinsic oo, rrtererrserteeeeteeeeryrensrransinsnraed s rarteraeereeraraenarts 5-28
DBMEMO ITINSIC ..eevirrerecietimesrnnnniiircasas e sr s s vss s s i i reeerreeeeasasestenarrrrans e st rsrbrrrarrasssssrssrsnres 5-29
DBOPEN INEINSIC ... cvieeee ettt rer s s e ce e s e st ststar s s teeesaeserserrensasnsnnees 5-30
B S e I 2T o U T 5-31
B P U T X I EiISI0 ittt et ae et et e e e e e e e e eeemaeests s bbb as e eeamtninsen s bssnan 5-32
DB UNL G K I IINSIC oot e erevvi e ieivi e e e ve bt rrr e e e e e r e rasanrsamnnsseeeees s eesnnnnnnsneeenssnnrns 5-34
DBUP D AT B NI, . ot iieeiie et e e s et s s e s e s e arasas s e s es s bbb e s s rrananraarrarbannn 5-35
DBXBEGIHN IMINSIC. oeeie e iri s aae s e e e e sr s s ssveseeessensnes st baberrar s ranaeaessrees 5-36
DB N D I NSIC L oottt ettt s e e a e st 5-37
DBEXUNDO INTINSIC oiieiieeeeiiiisssssvererr ettt erererersr s s aseassssssss it r st s s sesaananvevesssrssenase 5-38
S T R AN S L AT INFNSIC it ceeee e eeev vt s s et s aasneee e e e e e s searennrnmstsnttnnrranan 5-39
SIUSER PIOCEUUIE ..ovveereiieiii it teecestaa s e s ae s s ecs e as s aasasasrre e e s e rraeasasassnssresesssnsere 5-40
Section 6: Maintenance and Utilities.......ccvvecmecrrcrercccccrnrrnr e e 6-1
Database maintenance cONSIAeralionNS .. .iiiiiivevrvrrrrree e e e e eenerensss 073
SIMAINT UHILY oot cee et cs s r e s sescne s st s e s s srae s sererssesraanen 6-6
SUPERDEX Y v s s e R EEEEEYTErTettees s rareraaasrrrarnas 6-16
SIPATH Y o et e e et et ata e s s s e seeeaseeeaanasa nnes 8-37
SITEST and SIREPAIR WHHHES .o eeccec e bvvserre s aa e 6-40
SICOUNT LY ..ot res v s e st es e e s sbeasse e ese s e srnesane s rereeraeas 6-46
SITRACE HHIY oo e e e e e s e st e s e e st b e st rne e nnrenns 8-50
SIDRIVER HIY oo e ettt e e e e e e et e e e assssmnreeaeeenbnee 5-52
SIBASE ULIIY ..o e cre e crea s rsrnesse e s s taa s e ee e re et e e aaan e sasssbesssbnenans 6-53
SISIZE UMY .ottt rvre st e e et e v s s va e e e esssas s s s vastbbse e vt ane s s s aensssaeas s venesas 6-55
ALTPROG WY et cr e s s s st s s s bt e s s e an ey e e s ssss s ee e e e ntbreas 6-58
QUERY/B000 UHIY ...ovvveire e iicimiiisineenecereercesmsterseanna s eseesasre s s srresrsceraneesnsessnes 6-60
Section 7: SUPEIrSELECT ...t rceresessssesscancusacsassseressssssessssvens 7-1
IVOKING SUPEESELE T s eeb s et e 71
SUperSELECT - Method 1. s 7-1
SuperSELECT - MathOG 2.t rcereeecee e e e cae s e s saba s emeevnanes 7-3
SUPEISELECT - MethOT ... ettt cee e s e e s e e r e s et st e ereaneeeees 7-4

SuperSELECT - Method 4. ..ot e 7-5

Appendix A: COBOL Program examples.......... cersonens reessernn veererrerrasnnees crenees And

Retrieving ali entries in a set in ascending sorted order..........cccooviiniiinnieccreene, A-2
Retrieving all entries in a set in descending sorted order...........cooconicvinenenns A-4
Retrieving entries using a partial of genenic KeYcoovveeecieeececrvrivcere s seeenns A-6
Retrieving entries using a concatenated Key ..o A-8
Retrieving entries ina range of values ... A-10
Retrieving entries using mulliple Values........occccorviiiinrre e ss e A-12
Refining and undoing @ Selectionccocoiecii s A-14
Retrieving entries using multiple Sl-paths in a single dataset............ccoiiee A-17
Retrieving entries using multiple datasels ...t A-19
Retrieving entries using multiple databases........c..coocciiiinnnininn e A-22
Retrieving entries in multiple sets and bases using projectioncccccoovviicnennnnn. A-25
Reading SIHNAICES ONMY .o cce st s n s as e e e en e marcaane A-28
Customizing Sl-key value(s) wWith SIUSER ... st A-30
Manually adding Si-indices with DBPUTIX ... A-32
Manually deleting Sl-indices with DBDELEX ... A-34
Adding Sl-dataset to the lock desCriptorn ... A-36
Calling SITRANSLATE ... ittt ne s A-37
Appendix B: Internal structurescu... SO, reereresssrrasee B-1
Sl-dataset SUUCIUIE ..o et s e e e snmr e e e B-1
Sl-datasel CAPAsHY ettt s b s B-1
B B (= £ DO O P OO P O OSSOSO U TP OT RS OO P UP PO B-2
Sl-INUEX DASE .overiiriirrrriiseaerarereersassnrsesarrmeaeesassaaessrrssseesrraaaansseess seersaserssssseresssrasssren B-2
ShaiMEX ..ottt e e ea e e e b d e e s e a ettt e s e b b e et e e ann e e aeaaneeeeseaas B-2
S POIBY . et e b e B-3
Sl-BUDBEL .ottt e et e e rn st e e e e e s n b e etk B-3
Appendix C: Maximum lImitsccviincnininninninne PN vorressernsvanness G 1
Appendix D: Error and exceptional conditions........ccccoeeiinnenninnn. D-1
SUPERDEX intrinsic error and exceptional conditions..................ccvnininiiiinn, D-1
SUPERDEX utility error and exceptional conditionscccevvicrmene s D-1
Program failures related to SUPERDEX....c..cco i cecises e D-1
Business Basic interface.......c.ommrerresnnnsninneennnicsesnsacs e ...SUPP-1
INSLANANON ..ot SUPP-1
RUnning programscoreverrecrrvenrrceerens eeeeeee e tea—reaanr s ea e mr e rnt e e rebans SUPP-2
Adding, updating, and deleting entries ... SUPP-3

Qualifying and retrieving entries ..o SUPP-3

TRANSACT interfaceovvvmssesismissarresens enrrsssrrerrenis s rrannrssaanrarssnsrsnnsnires WP P-4

ENSEAIALION ...t te et enn e e b et e p e srenrsaes SuUPP-4
Adding, updating, and deleting entries ..., SUPP-4
USING {CHAIN) (et e et ete s e e s s sabe s s r s b e sbnesrmnennaennn SUPP-4
Qualifying and refrieving entries. ... ceree s e SUPP-4
MaLCH TEGISIET ..ot ceerrrene i e s s e s sressse s e e e ssa e rrr e sacssruanans SUPP-6
LIS T ChaNGE. .ttt h s st nea s e s na e SUPP-6
PROC DBFIND ..ot eresrvsmsesi st s o e carsanesstassseasannesss s nasneanas SUPP-6
FASTRAN ..ottt et cseas e e bt as s te s re e e s e o e e et e ne e nesaesnesassaesbeenenes sSUPP-7
NetBase Interface ...t seans SUPP-8
Installation and CONfIQUIALION ...t n e s s SUPP-8
SIGROUPSL JCW ..ottt et te s aae e aaernns SUPP-8
ShALOWINIG ... oottt e e e st s e e e e e e e e R s sestnaaste s e b raeeesanabas SUPP-9

NEtWOTK B A B ittt ee s rree et es e rensnssaansesesssnsssrsnnssesrrrernsanns SUPP-g

Section 1 Introduction

Overview

SUPERDEX is not a database management systemn, nor a programming language. His realized as a
natural extension to IMAGE, picking up where IMAGE lsaves off. SUPERDEX automatically creates
and manages new B-tree indices in your databases and provides enhanced IMAGE-compatible
intrinsics used by your programs automatically.

SUPERDEX has been designed and implemented to provide the most power and flexibility with the
least amount of effort. SUPERDEX is so simple, it requires little training and takes only a few
minutes to configure and minor program modifications to implement. Many SUPERDEX capabilities

are accessible with no program medifications at all.

This section previews the SUPERDEX package, its capabilities, and its benefits.

Charter1 Why SUPERDEX?

Description explains the basic reason for SUPERDEX and it's capabilifies.

Chapter 2 Enhancements

Description is a description of the latest enhancements in SUPERDEX Version 3.1.

Chapter 3 Functionality

Description gives a brief description of the features that provide SUPERDEX's Functionality and
a simple example of each.

Chapter4 Concepts

Description explains the main Concepts of SUPERDEX and how they are used.

Chapter5 Terminology

Description defines the Terminology used throughout SUPERDEX to identify its features and
capabilities.

Chapter 6 Access Principles

Description overviews the Access principles within SUPERDEX for adding, updating, deleting,
and retrieving entries.

Chapter 7 Compatibility

Description reviews compatibilify issues, including compatibility with IMAGE intrinsics, the status

array, and transaction logging. Additionally, the impact on existing application
programs, third- and fourth-generation languages, QUERY and other utilities is
discussed. Finally, issues involving locking, program capabilities, and stack
requirements are examined.

Why SUPERDEX ?

Perhaps the best way fo understand what SUPERDEX is all about is to understand why R was
created, why it was implemented in the way |t was, and why we believe you will find it to be a simple,
straightforward method for achieving faster, more flexible access to your IMAGE, TurbolMAGE, and
TurbolMAGE/XL databases.

IMAGE, although a very functional and powerful database management system, lacks certain
obviously-needed capabilities, such as:

multiple keys in both master and detail datasets

concatenated keys containing multiple fields

sorted sequential retrieval

automatic keywording and keyword retrieval

generic and partial-key retrieval

approximate match retrieval

greater-than, less-than, and range retrieval

grouping of functionally-equivalent fields

relational access using multiple criteria

relational access across mulliple fields, datasets, and databases

SUPERDEX provides these desirable capabilities, and several others.

In IMAGE, for example, a master set indexes entries in a detall set, but there is no IMAGE structure
that indexes a master set. To locate a master entry, you must specify the exact search field (key)
value. To get around this fimitation and permit entries 1o be located by multiple keys, many IMAGE
databases are designed such that master-oriented information (entities such as customers, vendors,
and paris} are placed in detail sets instead of master sets and indexed via automatic master sets.
This leads to cumbersome, inefficient database structures, yet fundamental operations such as
parlial-key retrieval still cannot be performed without serially reading the dataset.

One fundamental requirement in designing SUPERDEX was to provide complete flexibility in
searching for entries by allowing any field in any master or detail dataset to be used as a key.
SUPERDEX permits you to designate any field--even every field--in master and detall datasets as a
key. ‘

Another requirement was to be able to specify a partial or generic key value in searching for entries.
SUPERDEX can locate entries by a partial or generic key, multiple keys, or a range of keys. It can
even find entries by any word contained in a key, which is called keyword retrieval.

SUPERDEX provides these capabilities for master and detail sets in the same way, so the same

code that is writlen for detail datasets will work on master datasets, and vice-versa. In fact, ease of
integration was one of SUPERDEX's primary requirements.

1-2 Overview Version 3.1 March 1992

Another requirement was to minimize space and resources and impact existing structures as littie as
possible. So, SUPERDEX requires only a single dataset with a single field in your database, in which
it maintains special B-tree index structures. Alemately, SUPERDEX’s indices can reside in a
separate database. SUPERDEX manages these indices automatically using standard IMAGE
intrinsics, to remain entirely within and compatible with IMAGE facilities such as transaction logging,
unlike other indexing structures such as KSAM. These B-free structures may be established,
deleted, and reconstructed quickly on-the-fly, allowing very flexible indexing schemes like those
inherent in relational databases.

Another IMAGE limitation is the inability to relate a master set to another master set. SUPERDEX
permits logical master-master conneclivity, and moreover, conneclivity between multiple keys in a
dataset, between any logically related datasets, and even across multiple databases.

The overall intent in creating SUPERDEX was to make it look and feel just like IMAGE--perhaps the
next kogical step for IMAGE--with fully-compatible enhanced inirinsics that provide additional
functionality with the same names, parameters, and calling sequences. In SUPERDEX, all access
capabilities are available through DBFIND mode 1 to find entries and DBGET mode 5 and 6 to
retrieve them. And, to make matters as simple and straightforward as possible, all selection criteria
may be specified in the argument for DBFIND mode 1, permitting generic retrieval code to be written
and the type of and scope of the retrieval specified by the user.

SUPERDEX's B-tree indices are maintained automatically by DBPUT, DBDELETE, and DBUPDATE,
All status information is returned in the standard IMAGE status array, and locking may be done
automatically, further easing integration.

And most important of all, SUPERDEX was designed to be the fastest method for retrieving entries in
an IMAGE database. Lookups that would take minutes in IMAGE are done in seconds by
SUPERDEX.

We know you will quickly see the areas in which SUPERDEX improves IMAGE, and appreciate the

efforts that have been taken to make SUPERDEX as easy for you as its speed and power are o your
users.

Version 3.1 March 1992 Overview 1-3

Enhancementis

Version 3.1 has several enhancements that are briefly described here.

SUPERDEX Menu Program

The SUPERDEX menu program provides a full screen system that can access all of the programs
and utilities in the SUPERDEX product. This menu also provides a user-friendly, menu-driven
process that allows the user to maintain SUPERDEX paths.

SuperSELECT

This new program is used to intercept an existing program that reads the database serially. it will
force the serial read 1o be replaced with SUPERDEX qualifying and reading. It can be used to greatly
increase the speed of serial reads which also do qualifications.

The are several different modes of execution, including the ability fo build entry screens for user-
friendly prompts.

SIREPAIR

SIREPAIR is a program that can be used fo repair indices that are not aligned with the data. This
situation occurs when a program that updates the data was executed without the SUPERDEX library.
SIREPAIR will determine and report any inconsistencies in a path and will comect those
inconsistencies.

SICOUNT

in SUPERDEX Version 3.0, disc usage for indexes was reduced via a compression algorithm that
takes into consideration many different aspects of the user data and the database structure. This
makes it very difficult fo calculate what the exact compression ratio is. SICOUNT has been
developed 1o read the B-tree and display the exact compression status.

SIDRIVER

The new SIDRIVER program replaces the current DBDRIVER.PUB.SUPERDEX. It has several
additional features including multiple database access and upshifting.

1-4 Overview Version 3.1 March 1892

New Boolean Operators

The words AND, OR, and NOT can now be used in an argument value to perform relational
accessing. For example, the user can now enter "SMITH@ OR JONESQ@; as a valid search
value.

Additionally, the infix notations, + (AND), , (OR), and = (NOT), can be entered as valid operators
inan argument. The user can enter " SMITH®@,JONES@;.

New Wild Cards

The @ can now be used in an argument other than just for a terminators. Up to two (2) @ signs can
be included in an argument. One can be placed at the beginning of an argument, or they can be
placed in the middie.

<<A@BQEC>> -will retrieve all words that begin with an "A”, have a "B" anywhere after the
“A", and a "C" anywhere after the "B".

A new wild card for numeric values has also been added. The # can be used o fioat a particular
position (similar to the ? wild card), but will only qualify records that have a numeric value (0 - 8) in
the position

AB#I35@ - will retrieve AB3J35P12 and AB5SJ35T, but will not retrieve ABKJ354.

Paths can now have their starting position defined, along with their lengths defined in bytes. This
means a path can now begin in position 5 of the field, and only include the next 3 positions.

SIMAINT Enhancements

Paths can now have their starling positions (referred to as *OFFSET") along with their lengths
defined in bytles. This means a path can now begin in position 5 of the field, and only include the
next 3 positions.

SIMAINT now has thorough progress reporting. As paths are processed, SIMAINT will display the
number of indexes processed, the percentage complete, the elapsed time, and the number of CPU

seconds used. The interval for progress reporting defaults to every 1000 records, but can be defined
prior to execution.

The number of datasets in a database that can contain SUPERDEX paths has been expanded from
100 to ALL datasets in the database.

The number of grouped items in a path has been increased from 16 fo 32.

Path Numbers
Now, as paths are defined, SUPERDEX will assign a path number beginning with the value of ten

thousand and one (10,001). This is similar to IMAGE defining and allowing set and item numbers to
access data.

Version 3.1 March 1892 Overview 1-5

DBINFO Mode 312

DBINFO Mode 312 has been modified fo return the new path number, along with the starting position
of the path. The buffer size of DBINFO mode 312 was not increased. The areas reserved in version
3.0 were utilized. Existing calls will continue to function as before.

SIPATH Enhancements

SIPATH has been enhanced to display the new options available for paths. These include the path
number, the subkey starting position and the iength of the subkey. Additionally, the IMAGE key
information can optionally be displayed.

New Relation Operator

A new option has been added for those situations where several relational DBFINDs are being

executed and the relation tables overflow. (See Section 4: Programming)

SIBASE

This new program will create the additional Si-Index database for storing the Sk-indices in a separate
database.

SISIZE

This new program allows you to maintain the capacity of the Si-dataset(s).

16 Overview Version 3.1 March 1992

Functionality

The various capabilities of SUPERDEX are covered here. More complete information about and
examples of each feature appears in the Access methods section.

Sample applications

SUPERDEX may be used throughout your application systems in different ways to accomplish
various operations. Some of the more common uses of SUPERDEX capabilities are listed here:

B Customer lookup
Customers stored in a master dataset need to be accessed by name, contact, phone number,
and address. SUPERDEX could search on any field, keyword the contact so that either first or
last name or both could be specified, and group together both tines of a two-line address so both
are always searched. The customer name could be looked up by a partial or generic key.

W Part lookup
Users can enter partial part descriptions and the program retrieves all that qualify and displays
them on the screen with their corresponding part numbers. SUPERDEX could treat the part
descriplion as a keyworded field, permitting any word or words within the description to be
specified.

W Part classification extract
Al part numbers start with a classifying character sequence, and i is necessary retrieve all the
parts which start with a certain sequence of characters, so those characters are specified as
partial keys.,

HE Maii room
Everyone in a company has a mail-stop, but not all correspondence indicates #t, so the mall
clerks enter the addressee’s name or partial address and get the mail stop for routing.

B Text Management
Comments and other text must be searchable by any word contained in an 80-character field;
SUPERDEX couid handle it as a keyworded field.

B Library system
Book litles, authors, and summary information stored in 2 master set and two related detall sets
could be super-grouped togsther, permitting retrieval by any combination of criteria in a single
operation.

Version 3.1 March 1892 Overview 1-7

Multiple keys in master and detail datasets

IMAGE lets you access a master set by only one field, and a detail set only via its related masters
unless time-consuming serial reads are performed, forcing rigid applications and cumbersome
database structures. Using simple, IMAGE-compatible technigues, SUPERDEX lets you access any
dataset directly by any field, regardiess of whether or not it is an IMAGE search field.

For example, a customer entry in a master dataset could be looked up by its customer number,
customer name, contact hame, or phone number.

Concatenated keys containing multiple fields

SUPERDEX permits multiple fields or truncated fields to be concatenated together and retrieval to be
done on the entire concatenated value. This permits very specific lookups to be performed without
having to read serially or down a chain to qualify entries that match on multiple fields because all

fields may be contained in the key.

For examnple, a division number, group number, and partial account number could be concatenated
together and loocked up by the full combined value or any portion of the combined value.

Sorted sequential retrieval

IMAGE returns entries in chronological order, unless sorted paths are used. SUPERDEX returns
entries in ascending or descending alphabetical order and, by using concatenated keys, provides
more flexibility than sorted paths without the overhead.

For example, a classification number, account number, and dateftime stamp could be concatenated
together, and entries would be returned in chronological order within each account within each class.

Keyword retrieval

SUPERDEX lets you access entries by any word contained in designated fields. This technique is
referred to as keywording,

For example, the entry "BRADMARK TECHNOLOG!ES, INC." couid be located by specifying either
BRADMARK, TECHNOILOGIES, or INC.

Generic and partial key retrieval

IMAGE won't find an entry unless you specify its exact key value. SUPERDEX is far more forgiving:
you may specify for any key or keyword a partial value or an embedded value with matchcodes.

For example, GEN@ would find all the entries that begin with *GEN" and MA? ? ER would find ali the
entries that begin with *MA" followed by any two characters followed by "ER". A#J3@ would find all
the entries that begin with "A" followed by a single digit (0 - 9}, then "J3" followed by any other
characters.

1-8 Overview Version 3.1 March 1992

Approximate match retrieval

IMAGE cannot not find an entry that does not exist, but SUPERDEX can do the next best thing: find
the nearest matching entry.

The alphabetic ordering of indices allows approximate match retrieval: # no matching entry exists,
the nearest qualifying entry is returned, permitting a program to start reporting data at any alphabetic
focation. '

Greater-than, less-than, and range retrieval
SUPERDEX is also capable of retrieving alt entries that are:

W greater than or equal to a specified value
B less than or equal to a specified value

| not equal to a specified value

B within the range of two values

For example »=1000 would find all the entries with amounts greater than or equal to 1000, <=500
would find all entries with amounts less than or equal to 500, <> 10 would find all amounts not equal
to 10, and >=A@<=C@ would find all the entries that begin with the letters "A", "B", or *C".

Grouped retrieval

IMAGE can search only one field at a time. SUPERDEX lets you group muttiple fields together at
configuration time, and automatically searches them alt at lookup time. IMAGE compound (arrayed)
fields can be used as keys, and are grouped automatically.

For example, three fields containing phone numbers could be grouped together and would all be
searched when retrieving by phone number.

Super-grouped retrieval

IMAGE can only search a single dataset at a time. SUPERDEX lets you form a super-group of a
master set and one or more of its related (by IMAGE paths) detail sets and qualify master entries
based on the contents of the related detail entries.

For example, a master set containing a book title related to a detail set containing authors and

ancther detail set containing summary information could be super-grouped together, allowing master
book entries 10 be qualified by title, author, and/or summary in & single operation.

Version 3.1 March 1992 Overview 1-9

Relational access: multiple criteria retrieval
Access may be performed using boolean operations against multiple eriteria, to retrieve:

R all entries that meet either criterion (OR operation)

B all entries that meet both criteria (AND operation)

B all entries that meet one criterion but not the other (AND NOT operation}
For example, all the customers that have orders waiting fo ship or on back-order; all customers who
are more than 60 days delinquent and owe more than $1000; all parts that are out of stock and not
discontinued.
Relational access: multiple fields, sets, and bases
Relational queries may be performed based on multiple values across multiple fields, datasets, and
databases using dynamically-joined indices. This provides the power of a relational database in
accessing a reguiar IMAGE database.
For example, finding all the customers who have more than $100,000 in annual activity, current
orders pending, and who did that same amount of business last year requires access to the
CUSTOMERS and ORDERS sets in the SALES database and the ORDER-SUMMARY set in the
HIST database.
Custom indexing

SUPERDEX contains a facility for addressing non-standard indexing requirements for circumstances
in which the index value cannot be determined automatically.

Examples of this are data type conversion, date reformatting, upshifting, key extraction, and stripping
unneeded characters.
Independent non-IMAGE indexing

SUPERDEX is designed to index entries in IMAGE dalabases, but can also be used to index other
types of files.

For example, separate word processing documents may be indexed by all the significant words in
their document descriptions and accessed via their file names.

1-10 Overview Version 3.1 March 1982

Concepts

SU?ERDEX looks and feels like IMAGE. It uses IMAGE-compatible intrinsics which have extended
capabilities and, in some cases, additional modes.

These are the major concepts of SUPERDEX:

B-tree indices instead of chains

IMAGE uses doubly-linked lists to represent ifs chains. SUPERDEX uses SUPERDEX indices in
B-trees which are contained in one or more standalone detail datasets in each database or in a
separate database. These B-ree indices are automatically maintained and accessed by
SUPERDEX intrinsics which are IMAGE-compatible, They are easy to configure and
reconfigure.

B-tree = automatic master set

A SUPERDEX B-tree is functionally equivalent to an IMAGE automatic master set which provides
access to a field in a dataset, commonly referred to as a "key". Like entries in an automatic
master, SUPERDEX B-tree indices are added and deleted automatically. SUPERDEX easily
replaces and enhances the functionality of automatic master sets with SUPERDEX indices.

Master and detail sets treated equally

In IMAGE, an automatic master may be related only 1o a detail set; in SUPERDEX, B-tree indices
may be related 1o masier sets as well as detail seis. In IMAGE, master and detail sels are
handled differently: master sets are usually accessed via keyed reads (DBGET mode 7) and
delail sels are accessed via DBFIND followed by DBGET mode 5 or 6. In SUPERDEX, both
master and detail sets are accessed using a commen method: DBFIND and DBGET mode 5 or
6, with DBFIND qualifying the entries and DBGET retrieving them--just like accessing an IMAGE
path in a detail sel. Of course, DBFIND and DBGET against IMAGE paths continue 1o function
as in IMAGE.

Entries returned in sorted order
Eniries are returned in ascending alphabetical order by SUPERDEX key value with DBGET
mode 5 and descending order with DBGET mode 6.

Concatenated keys = sorted chains
A SUPERDEX key may consist of multiple field values or substring field values concatenated
together, permitting more flexible sorting than sorted chains without the overhead.

SUPERDEYX indices self-maintaining

SUPERDEX indices--like automatic master entries--are automatically added and deleted
whenever DBPUT and DBDELETE are called. Additionally, DBUPDATE may also cause the
indices to change automatically.

Version 3.1 March 1962 Overview 1-11

W Explicit index maintenance possible
SUPERDEX indices may be added and deleted manually via new intrinsics. This permits custom
indexing against IMAGE databases as well as indexing of external non-IMAGE files, This is

called Independent indexing.

B Zero or multiple indices per entry
A data entry may have zero or more SUPERDEX indices pointing to it, facilitating both multiple
indexing (as used in keyword retrieval) and the exclusion of biank fields.

B improved handling of compound items
IMAGE does not aliow compound items {which are also referred to as arrayed or repeating items)
to be used as keys. in SUPERDEX, compound items may be used as keys and are handied
such that every subitem in the item is automatically searched whenever the item is referenced.

B Power in the DBFIND mode 1 argument
Most of SUPERDEX's powetful selection capabilities are available via DBFIND mode 1, with
multiple values and operators included in the argument to define complex selection criteria. This
permits generic code to be written and the user to specify the type and scope of retrieval.

B Selection refinement and undo
SUPERDEX maintains the results of the current and previous DBFIND calls and manages them
automatically; it also allows them to be manipulated explicitly. This permits successive DBFINDs
to be used to refine and undo selections and to qualify entries across multiple fields, datasets,
and databases.

E Multipie relational syntax used
Boolean operations using multiple values can be specified in three common syntax.

SQL notation, as used with common SQL languages. The argumenis can be entered with the
words AND, OR, and NOT.

infix notalion, as used with common report-writers. The arguments can be entered with +, -,
and ,.

Reverse Polish Notation (RPN), as used by HP calculators. In RPN, the operator follows the two
values to which it applies.

1-12 Overview Version 3.1 March 1992

Terminology

Several new terms are used by SUPERDEX to identify its structures, and are used throughout this

manual:

|

Sl-key

Si-subkey

Sl-index

Sl-extension

Sl-path

St stands for SUPERDEX index.

Equivalent to an IMAGE search field, except in SUPERDEX the Sl-key may
consist of:

B = single field (simple Sl-key)

B a substring field (e.g. only the first 6 characters of a 12-character field or
the 3rd through 6th characters).

B 2 combination of up to four fields or substring fields (referred to as a
concatenated Si-key), which permits extended sorting capabilities and may
be searched by the entire concatenated key vaiue or any portion thereof.

A field or substring field used as an element in a concatenated Si-key. A?
simple Sl-key, which references only one field, has no Si-subkeys. |

The B-tree entries which are comprised of the Si-key followed by an extension
which points to the corresponding data entry.

included at the end of the Sl-index and used to map the corresponding data
entries. For entries that reside in master sets, the Sl-extension consists of the
full IMAGE search fieid value, and its length is the same as the length of the
search field, For detail sels, the Sl-extension is the entry's relative record
number, and is two words long.

in IMAGE, a path defines the relationship between a master and detail
dataset. In SUPERDEX, an S/-path defines any field (or combination of fields)
that can be searched via SUPERDEX, as an IMAGE path would be used to
index into a detail set. Entries along an Sl-path are logically maintained in
alphabetical order, so an Sl-path may be thought of as a virtual sorted chain
containing all the entries in the dataset.

Version 3.1 March 1992 Overview 1-13

Sl-chain

Si-subset

Si-link

Sl-counter

Sl-definitions

Sl-dataset(s)

Sl-item

Si-index base

1-14 Overview

In IMAGE, a chain is comprised of all the entries in a detail set that have the
same search field value, as specified in the DBFIND argument In
SUPERDEX, an Sl-chain is a virtual chain consisting of all the qualitying
entries in a master or detall sel thal meet the search criteria as specified in
SUPERDEX's DBFIND argument (which may or may not have the same
IMAGE search field value).

Used only when performing Relational Access (boolean operations) against
multiple values for a single Si-path, multiple Si-paths, datasets, and databases
by performing successive DBFINDs. Both a virtual active Si-subsef and
backup Si-subset are maintained {o contain the Sl-chains retrieved by the
DBFINDs.

Used when performing Relational Access against multiple datasets; it defines
the common item used to logically link the different sets.

The SHink may also be used to enforce a sorting order when performing
relational access against muttiple Si-paths, sets, and bases.

It is required that the item assigned as the Sl-link be configured an Si-subkey
in a concatenated Sl-key,; alternately, for Si-paths against a master dataset,
the Si-link may be the IMAGE search master fieid.

Optional parameter for the ! list construct for DBGET which specifies how
many Si-indices should be returned with a single DBGET call.

Information about the Sl-paths configured for a database.

One or more standalone detail datasets in each SUPERDEX'ed database
which contain all the SUPERDEX B-iree structures. The root Si-dataset
{named Sl or Si0) contains the Si-definttions.

The Si-datasel(s) that contain the Sl-indices may allernately reside in a
separate database. For large databases or to optimize throughput, up to eight
Si-datasets may be allocated, although one Sl-dataset is normally sufficient.
These datasets are named Si optionally followed by a sequence number (i.e.
St - 817.).

The only field in the Sl-dataset(s), which is configured as a compound item
named S1.

A separate database that contains the Sl-indices, which may optionally be
configured for any base. With this option, all Sl-indices are maintained in the
separate Si-index base rather than the primary base.

Version 3.1 March 1882

Si-pointer A pointer in each B-tree that can be positioned before or after any index in the
iree.

Sl-intrinsics The IMAGE-equivalent intrinsics used by SUPERDEX which are contained in
an SL or XL (and provided in a USL) and referenced by all programs that use
SUPERDEX. _

Substring field A partial definition of a IMAGE field. The starting character position and
number of characters can be specified.

Version 3.1 March 1992 Overview 1-15

Access principles

Adding, updating, and deleting entries

In SUPERDEX, entries are added, updated, and deleted using its DBPUT, DBUPDATE, and
DBDELETE intrinsics. These intrinsics are identical to their IMAGE counterparts and work exactly
the same, except they also update any corresponding St-indices.

Qualifying and retrieving entries

Entries are qualified and retrieved using SUPERDEX's DBFIND and DBGET intrinsics. These
intrinsics are syntactically identical to the corresponding IMAGE intrinsics, but have extended
capabilities and additional modes.

in SUPERDEX, DBFIND mode 1 may be called against a master or detail set with an argument that
contains multiple values, and conditional and boolean operators. The gualifying number of entries is
returned in the sfatus array, and an internal Si-pointer is set in the B-tree. if the qualifying entry
count is not needed, it is more efficient {o instead use DBFIND mode 10. Additional DBFIND modes
are available to perform specialized functions, such as setting a pointer to the alphabetical first or last
entry in the set.

DBGET mode 5 may be used to retrieve the entries in ascending soried sequential order; DBGET
mode 6 in descending order. When all qualifying entries have been returned, an end-of-chain (or

beginning-of-chain} condition is returned. New DBGET modes 15 and 16 may also be used to
continue retrieving entries that are not on the Si-chain (those that no longer meet the search criteria).

Indexed access vs. relational access

internally, one of two access methods is used in qualifying entries with DBFIND: indexed access or
relational access.

Indexed access is used for retrievals that can be accomplished by accessing a single Sl-chain. This
accounts for most refrievals, and is used by defaull. '

Relational access is used for boolean retrievals that require the use of multiple Si-chains, such as in
performing retrievals against multiple Si-paths, sets, and bases by using multipie DBFIND calls.

1-16 Overview Version 3.1 March 1992

Compatibility

Intrinsics

el
All SUPERDEX intrinsics are provided in an SL. and XL (as well as a USL, -RE; NUMHAL., and NMOBJ
files). All programs that access bases that are configured with Sl-paths must reference these
intrinsics, which are fully-compatible with their IMAGE counterparts.

Data types

SUPERDEX handies data as stored based on the IMAGE Rlem data types. Search values may be
represented in the same format as internally stored (ASCIi, binary, etc.), or special conversion
operators may be used.

= Unsigned and signed values for items of data type P and Z are treated identically when
qualifying entries.

Status array

All SUPERDEX status information is returned in the standard IMAGE status array. The qualifying
number of entries from DBFIND is returned in words 5-6 (like IMAGE), and end-of-chain and
beginning-of-chain conditions are returned as condition words 15 and 16 in word 1 of the status array.
Slatus words 7-10 are not available for Sl-paths,

Error and exceptional condition handling

All errors and exceptional conditions are indicated by standard IMAGE error messages in the
condition word field (word 1) of the status array.

Transaction logging

Because SUPERDEX uses IMAGE like intrinsics to maintain #s Sl-indices, it is covered by all forms
of logging and recovery. Normal recovery methods recover not only the IMAGE chain pointers but
also the Sl-indices. .

To further assure compatibility with transaction logging, for bases enabled for logging SUPERDEX
automatically imposes DBBEGINs and DBENDs around all DBPUTs, DBUPDATEs, and
DBDELETES that do not already contain them.

Because Si-index maintenance generates additional log records, the Si-indices may optionally reside
in a separate database (Sl-index database) from the data entries they map . This results in no
additional log records being written for the primary database, and logging can optionally be enabled
or disabled for the separate Sl-index database containing the Sl-indices.

Version 3.1 March 1992 Overview 1-17

Application programs

Existing application programs require no changes or minor, straightforward meodifications to utilize
SUPERDEX's capabilities.

Because SUPERDEX is fully-compatible with IMAGE, all existing programs may reference
SUPERDEX's SL or XL and continue to function as always. You can add SUPERDEX capabilities
and introduce them {o users over time, never having to run paralie! with old applications or perform
any significant conversion.

The simplest introduction of SUPERDEX is to replace all automatic master sets with Si-paths, which
makes it possible to access the records in the related detail sets generically and in sorted order
without any program modifications. The user need only include an @ and/or 7 in the value being
searched for. Another simple modification is to replace soried IMAGE paths with concatenated Sl-
keys.

Third-generation languages

SUPERDEX supports programs written in COBOL, FORTRAN, Pascal, SPL, BASIC, Business
Basic, and C. SUPERDEX will support programs written in RPG that call the IMAGE intrinsics
directly.

Fourth-generation languages

SUPERDEX supports several 4GLs via special interfaces. TRANSACT and PROTOS are already
compatible and only need 1o reference SUPERDEX's SL or XL. Front-end programs are available for
Cognos' PowerHouse products QUIZ and QTP, while minor medifications to the dictionary facilitate
SUPERDEX access via QUICK. Interfaces also exist for HP's Business Report Writer (BRW),
Cogelog's VISIMAGE and Sydes' SYDAID. interfaces to other 4GLs are currently being developed.

QUERY and other utilities

Most utilities that call IMAGE intrinsics, like QUERY/3000, are compatible with SUPERDEX in that
any data added, deleted, or modified in these programs while referencing the SUPERDEX SL or XL
will automatically adjust the associated Si-indices. The retrieval capabilities in utility programs,
however, will vary based on various factors. The QUERY-like ASK2 utility from Cogelog is
compatible with SUPERDEX.

1-18 Overview Version 3.1 March 1982

Locking

Because the Sl-indices may require change with every DBPUT, DBUPDATE, or DBDELETE, it is
necessary {o adopt an appropriate locking sirategy whenever the Sl-intrinsics are used,

SUPERDEX has several strategies for locking the Sl-dataset(s) when necessary:

l you may add the Sl-dataset(s) to the program's lock descriptor

B SUPERDEX will automatically lock and unlock the dataset containing the data and the Si-
dataset in succession

SUPERDEX will implicitly lock the Sl-dataset when necessary {requires MR capability)
SUPERDEX may be configured to perform a separate DBOPEN for each process accessing
a database and perform its locking via that "access path” (requires MR capability)
SUPERDEX may be configured to maintain the Sl-indices in a separate base, in which case
a separate DBOPEN is performed against the primary base and the Si-index base (requires
MR capability)

Refer to the discussion in the Locking chapter of the Programming section for a complete description
of the various locking strategies and their advantages and disadvantages.

Capabilities

SUPERDEX uses standard IMAGE intrinsics for maintaining #ts Si-indices, which means | does not
require Privileged Mode and will be compatible with future releases of IMAGE and MPE.

All programs that reference the SUPERDEX SL or XL.--except Native Mode programs under MPE/XL,
which do not require DS capability--must have DS and conditionally MR capability, depending on the

locking method used. The groups and accounts in which these programs reside also require these
capabilities, as do users who :PREP programs for use with SUPERDEX.

Stack requirements

SUPERDEX requires about two Kwords of stack space for indexed access and one or two additional
Kwords for relational access (if used). Programs that are short of stack space may require
MAXDATA increases. Programs that already utilize the maximum MAXDATA may need to be :RUN
with the ;NOCB parameter.

Native Language support

SUPERDEX fully supporis Hewlett-Packard's Native Language Support facility for matching,
collating, and other significant operations.

7-bit support for Swedish language

[%) A special version of SUPERDEX has been deveioped for support of the Swedish language.
Since new files must be supplied, please contact Bradmark i you need this version.

Version 3.1 March 1982 Overview 1-19

Section 2 Access methods

Overview

This section looks at various methods available in SUPERDEX for accessing entries in IMAGE
databases.

Each chapter covers a different access method and discusses the functionality provided, its
applications, details about configuration and implementation, rules of operation, efficiency, and

maintenance considerations. Examples are given throughout.

Chapter 1 Multiple keys in master and detail datasets

Function For accessing data entries in manual master and detail datasets by any number of
keys.

Chapter 2 Concatenated Si-keys containing multiple fields

Function Up to four fields or substring fields may be concatenated together to form a
composite key.

Chapter 3 Sorted sequential retrieval

Function All entries are returned in ascending alphabetical or descending alphabetical order.

Chapter 4 Keyword retrieval

Function Permits an entry to be accessed by any significant word contained in any keyworded
key.

Chapter 5 Generic and partial key retrieval

Function Allows entries to be searched for by the first few letters of a key or by a string
embedded in a key.

Chapter 6 Approximate match retrieval

Function SUPERDEX can find the nearest matching entry if no entry that matches a specified
value exists.

Chapter 7 Greater-than, less-than, and range retrieval

Function Parmits searches for all entries that are greater than or equal to, less than or equal
to, or not equal to a specified value, or that fall within the range of two values.

Chapter 8 Grouped retrieval

Function For handling multiple fields that are functionally equivaient as one logical field at
lookup.

Chapter 9 Super-grouped retrieval

Function For allowing master entries to be qualified based on their contents and the contents

of their related detail dataset entries.

Chapter 10 Relational access: multiple criteria retrieval
Function Permits multiple values to be specified for a fiekl in a single lookup operation and the
resufts to be combined by using boolean operations.

Chapter 11 Relational access: multiple fields, sets, and bases

Function Like multiple criteria retrieval, permits multiple values and boolean operators to be
specified--but extends these capabilities to work on multipie fields, datasets, and
databases.

Chapter 12 Custom indexing
Function indices may be calculated by a user-written procedure, providing complete flexibility
In indexing entries.

Chapter 13 Independent indexing
Function Permits non-IMAGE data to be indexed by SUPERDEX, for purposes such as
document management.

2-2 Access methods Version 3.1 March 1992

Muitiple keys in master and detail datasets

Functionality

IMAGE lets you access a master set by only one field and a detail set only via Hs related masters
unless time-consuming serial reads are used, forcing rigid applications and cumbersome database
structures. SUPERDEX lets any dataset be accessed quickly by any field or fields--even every field.

Application

Due to the inability to specify more than one field in accessing a master dataset and to the high
overhead of detail dataset paths, access to datasets is typically restricted to either one or a few
fields.

For example, customers stored in a master dataset may be accessed only by the customer number
(unless a serial read is performed). In SUPERDEX, they could be accessed by various fields, such
as COMPANY-NAME, CONTACT-1, CONTACT-2, and PHONE. [f the customers were instead
contained in a detail dataset with several related automatic master datasets, they could stay there,
and the related automatic master sets could be replaced by Sl-paths with the same names as the
search fields and accessed via DBFIND mode 1, meaning that no program modifications would be
required to facilitate partial-key access and other powerful retrievals.

Implementation

Each field or combination of fields that is to be accessible as a key must be configured in an Sl-path,
and SUPERDEX creates a B-tree for each one.

For simple, single-field Sl-keys, the entire field could form the index or a substring of the field could
be used.

Operation

DBPUT, DBUPDATE, and DBDELETE automatically maintain the Si-indices in the B-trees.

Entries are qualified by DBFIND mode 1 or one of several new modes and refrieved by DBGET

modes 5 and 6 or new modes 15 and 16. If the item parameter contains the name of an Sl-path, the
B-trees are automatically accessed; otherwise, regular IMAGE access is performed.

Version 3.1 March 1982 Access methods 2-3

Efficiency

it is recommended that Si-keys be kepl as short as possible for efficiency. The longer the Si-key, the
more access will be necessary to manage the associated Slkindices. Substring Si-keys should be
used where possible. For example, 10 characters of a 20-character LAST-NAME field may be
sufficient for indexing purposes, or only the 5th character through the 8th character of a general
ledger account number may be sufficient.

2-4 Access methods Version 3.1 March 1892

Concatenated keys containing multiple fields

Functionality

IMAGE restricts a key to a single field. SUPERDEX permits multipie fields or substring fields to be
concatenated together and retrieval to be done on the entire concatenated value or any portion
thereof,

Up to four fields, or substring fields, may be concatenated to form an Sl-key, permitting enhanced
retrieval and sorling capabilities and eliminating the need for sorted IMAGE paths and many
programmatic sorts. More than four fields may be included in a concatenated key as long as they are
physically contiguous in the dataset.

Application

Concatenated Si-keys permit very specific iookups to be performed without having to read down a
chain to qualify entries that match on multiple fields because all fields may be contained as Si-
subkeys in the Si-key.

For example, a customer number and order date coukd be concatenated together to form an Sl-key.
To access the Si-key, a single composite value wouid be specified and the corresponding entry
returned. The alternative in IMAGE would be having to read down the customer's chain until the
order with the specified dale was encountered.

implementation

The combination of fields that are to be accessible as a concatenated Sl-key must be configured in
an Si-path, and SUPERDEX creates a single B-tree for the concatenated Si-index.

wif related to a detail set, a concatenated Sl-key may consist of up to four fieids or
substring fields. For master sets, up to three fields (four if the IMAGE search field is
included) may be defined. Each field or substring fieid is calied an Si-subkey.

if more than four fields are needed for a concatenated key, SUPERDEX is able to support
this, so long as the extra fields are contiguous in the dataset. This is facilitated when
configuring the Si-path by declaring an Si-subkey length that exceeds the length of the specified
field. This results in the specified number of characters being included in the Si-subkey, thereby
forming an Sl-subkey that contains muttiple fields or truncated fields. To utilize this feature, it is
necessary to set a special JCW named SIEXTLEN during SIMAINT operation.

Version 3.1 March 1992 Access methods 2-5

Operation

DBPUT, DBUPDATE, and DBDELETE automatically maintain the Sl-indices for concatenated Si-
keys,

Entries are qualified by DBFIND mode 1 or one of several new modes and retrieved by DBGET
modes 5 and 6 or new modes 15 and 16, i the ftern parameter contains the name of an Sl-path, the
B-trees are automatically accessed; otherwise, regular IMAGE access is performed. The entire
combined Sl-key value or a partial vaiue may be specified in the argument parameter.

If the concatenated Si-key has been configured using the SIEXTLEN JCW {o inciude more than four
Si-subkeys, it is required that all fields that are included in the concatenated Si-key but are not
expiicitly referenced by name be inciuded in the DBGET /ist in the order in which they occur in the
dataset, for preparation for DBUPDATE and DBDELETE.

Efficiency

it is recommended that each Sl-subkey in an Sl-key be kept as short as possible for efficiency.
Substring Si-subkeys should be used where possible. Concatenated Si-keys are generally less
efficient than simple Si-keys because they typically have longer lengths and therefore cannot be
managed as sfficiently; however in many instances they can outperform simple Si-keys because they
can significantly reduce the number of entries qualified.

2-6 Access methods Version 3.1 March 1992

Sorted sequential retrieval

Functionality
IMAGE returns detail chain entries in chronological order, unless soried paths are used.

SUPERDEX returns entries in ascending or descending alphabetical order, providing a natural sorting
mechanism. The sort criteria may be further extended by using concatenated Sl-keys, which provide
more flexibility than sorted paths without the overhead.

Application

The ability to retrieve entries in sorted sequential order eliminates the need for many or all program
sorts, and requires no special handling.

The aiphabetic ordering of Sl-indices also permits approximate match retrieval {described later).

Operation

Entries are unconditionally returned in sorted sequential order for entries quaiified in indexed access
mode.

in relational access mode, an Sl-link may be specified in the ffem parameter of DBFIND to enforce a
sonting order.

Entries are returned in ascending sorted seguential order with DBGET modes § and 15 and
descending sorted sequential order with modes 6 and 16. All the entries in a dataset may be read in
ascending or descending sorted order by calling DBFIND mode 100 or 200, respectively, and DBGET
modes 15 or 16,

SUPERDEX uses MP’s Native Language Support facility in returning data contained in alphanumeric
(data types X and U) #ems for databases in which NLS is enabled, assuring that language-specific
attributes (such as esstsets and umiauts) are handled properly. The language is determined from the
root file of each database, and may be established in the database schema or by DBUTIL. The
collating sequences used by SUPERDEX, including language-dependent variations, are documented

in HP's Native Language Support Reference Manual.

WSUPERDEX respects the sign in sorting data contained in numeric items (data types |, J,
P, R, and Z), and thereby returns negative values before positive values.

Version 3.1 March 1892 Access methods 2-7

Keyword retrieval

eryword retrieval is avaiiable only in the SUPERDEX Ii package.

Functionality

SUPERDEX lets you access Sl-keys by any significant word they contain for Sl-paths configured as
keyworded. For example, an entry with the Sl-key value "REDUCED INSTRUCTION SET
COMPUTER?" could be located by the values REDUCED, INSTRUCTION, S8ET, or COMPUTER.

Application

Keywording is useful for indexing fields that contain muitiple values, such as company names, street
addresses, last/first names, part descriptions, and comments,

Implementation

llg)I(#ayworciing can be implemented on any alphanumeric (data type U or X) item, for a
simpie or concatenated Sl-key. For a concatenated Si-key, only the first Sk-subkey is
keyworded.

Keyworded Sl-paths are configured in the SIMAINT program by appending /K to the Sl-path name.
You must specify the keyword length, which refers to the maximum number of characters to include
in the Si-key. For indexing purposes, words that are longer than the keyword length are truncated;
those that are shorter are padded with spaces.

Also specified is the minimum number of characters per keyword, which defines the minimum
number of characlers, between 1 and 4, that a word must contain in order 1o qualify for keywording.
This permits very short words to be easily excluded based on their length.

Additionally for each keyworded S$i-path, the average number of keywords must be specified, which
refers to the average number of significant, unique keywords within each Si-key, between 1 and 16.
If requirements change at a later time, the average number of keywords may be changed by
reorganizing the Si-path--a new value may be entered at that time.

To eliminate unnecessary or common words by value from keywording, an exclusion list can be

defined which restricts the keyword entries to only relevant ones. Exclusion words are specified in a
disk file via any editor and uploaded into a special standalone Si-path called KWEXCLUDE.

2-8 Access methods Version 3.1 March 1892

Operation

For Sl-paths that are defined as keyworded, every word in the Si-key separated by spaces or special
characters is treated as a keyword. (You may optionally specity up to four special characters to
be excluded as keyword delimiters when configuring Si-paths.) Multiple Sl-index entries (one
for each unique value in the Sl-key) are automatically generated by DBPUT and removed by
DBDELETE. For compound IMAGE items that are keyworded, each subitem Is examined separately
and keyworded accordingly. For concatenated Si-keys, only the first Sl-subkey is keyworded.

E?‘I\H keywords are upshified for indexing and matching purposes.

Keyworded fields are always searched by individual significant word during the DBFIND operation.
Additionally:

B words that contain a hyphen are keyworded multiple times: once for each hyphen plus one.
For example, "MEWLETT-PACKARD" wouid be multiply indexed and could be located by
both HEWLETT-PACKARD and PACKARD, and "TIC-TAC-TOE" couid be located by
TIC-TAC, TAC-TOE, and TOE. (This muftiple-indexing feature can opticnally be
disabled when configuring Sl-paths.)

M Si-keys in which the same word appears more than once are indexed only once for that word

B a maximum of 16 keywords per Sl-key (for simple Si-keys) or Si-subkey (for concatenated
Sl-keys) is allowed.

Keyworded Si-paths are accessed in the same way as non-keyworded Si-paths--the only difference
is in the configuration of the Sl-path.

Efficiency

Keyword lengths should be kept as short as possible, typically 5 or 6 words, for efficiency. The
minimum keyword length should be set at 4, ¥ possible, to exclude very short words that contain less
than four characters.

Commonly occurring special characters shouid be excluded as keyword delimiters tc avoid
unnecessary indexing. For example, if keywording entries in which dales are common (e.g.
"02/20/90"), the slash character (/) shouid be exciuded.

If multiple indexing of hyphenated vaiues is not required in order 1o locate entries, this feature should
be disabled. This is especially significant for Sl-keys in which hyphens are very prevalent, such as
part numbers {e.g. "123-999-447").

Also, only very common words should be configured for exclusion, since the required overhead when
entries are added increases with the number of exciuded words.

Version 3.1 March 1992 Access methods 2-9

Maintenance

All keyworded Si-paths and the KWEXCLUDE (exclusion word) Sl-path must be reorganized
whenever any changes are made to the file of excluded words.

n?Tha keyword exclusion file must be present in the same group/account as the database
when Sl-paths are reorganized.

2-10 Access methods Version 3.1 March 1992

Generic and partial key retrieval

Functionality

IMAGE will not find an entry unless you specify its key value exactly in its entirety. - SUPERDEX
permits a partial key or keyword to be specified, as well as a generic key containing wildcards.
Application

Probably the most requested capability for IMAGE databases is generic and #artiat key access: the
ability to specify only a few significant characters of the key rather than ifs entire value.

This saves not only time and keystrokes, but locates entries whose exact values are not known or
which cannot be located due to misspellings or other reasons.

Generic key access permits values that match a specified pattern to be located, useful for selecting
entries with commonatly. Partial key access allows for.a variable number of positions to be defined.

implementation

Generic and partial key retrievals may be performed on any alphanumeric tield (data type X or U)
referenced in an Sl-path. They may not be periormed against numeric fields (datatypes |, J, K, P, R
and Z}.

Operation
Partial key access can be performed by three different methods: |

The first is to specify the partial key value appended with an @ as the argument for DBFIND mode 1,
e.g. HEWL@. DBFIND will locate all entries that match on the significant characters followed by
anything. (A character other than @ may be designated as the wildcard character when configuring
Sl-paths.) ' '

The second method is to specify up to two {2) @ in the argument, surrounded by << >> for DBFIND
mode 1, e.q. <<HQ@L@T>>. DBFIND will qualify ali entries that contain all three groups of significant
characters in the specified order.

The last method is to specify the value in the argument without an @ but vary the mode based on the
length of the argument. For example, an argument containing the partial key ROLA would dictate
mode 102 or -104 (100 plus the number of words or bytes, respectively, in the value).

Versionn 3.1 March 1992 Access methods 2-11

| Generic key retrieval is accomplished by embedding the 2 or # matchcodes in the argument.

The 2 holds the place of any alphanumeric character. For example, the argument L? TTER would
locate "LETTER" and "LITTER"; by appending an @ (L?TTER@), "LETTERMAN," "LITTERBUG,"
and "LOTTERY" would also be located. (A character other than 2 may be designaled as the
matcheode when configuring Si-paths, or the single-character matchcode may be disabled.)

The # holds the place of only numeric characters. The argument AP#J@ would locate "AP2J8AZ9"
and "AP7HT", but not "APYJ97K".

Efficiency

Search arguments that contain one or more ?s or #s in the leftmost character positions or contain an
@ in the first character position are less efficient than those that begin with alphanumeric characters.
Therefore, for best performance, a substring fieid shouki be specified.

2-12 Access methods Version 3.1 March 1992

Approximate match retrieval

Functionality

Neither IMAGE nor SUPERDEX can find an entry that does not exist, but SUPERDEX can do the
next best thing: find the nearest matching entry.

Application

Approximate match retrieval, like partial and generic key retrieval, is useful in circumstances in which
the exact key value is not known. Unlike partial and generic key retrieval, approximate match
retrieval does not require that any entry matching the specified value exist: the nearest matching
entry is always found.

For example, if the value UNITED is input and no matching entry exists, the nearest matching entry
in ascending or descending order, "UNIFIED" or "UNITY," may be retrieved.

implementation

The sorted ordering of Si-indices permits approximate match retrieval by using new SUPERDEX
DBFIND modes. If no entry that matches the search criteria exists, the internal Sl-pointer is set in
the B-tree to the nearest gualifying entry, permitting a program fo start reading entries at any
alphabetic location in either ascending or descending order.

Approximate match retrieval may be performed on any ajphanumeric item (data type X or U)
referenced in an Si-path.

Operation

Approximate match retrieval is performed by using a DBFIND mode that specifies how many
characters in the argument SUPERDEX should match on, which is typically the iength of the value

specified. If no matching entry exists, the nearest matching entry is retumed.

The mode also dictates whether the internal Sl-pointer in the B-tree should be set before or after the
matching or nearest matching entry, permitting subsequent DBGETSs to include or exclude that entry.

Version 3.1 March 1992 Access methods 2-13

For example, an argument containing the value ONITED would dictate mode 103 or -106, both of
which would cause DBFIND to match on the entire value. The mode is calculated as 100 plus the
number of words or bytes (negated if bytes). Using these modes, the Si-pointer would be set before
the matching or nearest matching entry. Subsequent DBGETSs in ascending order (mode 15) would
include any entries beginning with “UNITED," while DBGETs in descending order (mode 16) would
exclude them.

With a mode of 203 or -206 (200 plus the number of words or bytes), the Si-pointer would be set after
the matching or nearest matching entry, and the "UNITED” entries would now be included with
subsequent DBGETs in mode 16 (descending) but would excluded be included with mode 15
DBGETSs (ascending).

2-14 Access methods Version 3.1 March 1982

Greater-than, less-than, and range retrieval

Functionality
In addition to generic and partial-key retrieval, SUPERDEX permits retrievals of entries that are

B greater thah or equal to a specified value
W less than or equal to a specified value

B not equal to a specified value

M in the range between two values

Application

Greater-than-or-equal-to and less-than-or-equal-to retrievals are especially useful for operations
against amounts, such as finding al customers with balances of $1000 or more.

Not-equal-to retrieval is useful for testing for the absence of a value for a particular field, such as all
invoices that are not "PAID.”

Range retrievals may be used against ordered values, and can be used, for example, to find all
customers in a given geographical area by means of a range of zip codes. In addition, pattern
matching is supported within a range retrieval which is useful, for example, for finding all orders for a
given customer within a date range where the Si-key is a concatenation of the date and customer
number.

Implementation

Greater-than-or-equal-to, less-than-or-equal-fo, not-equal-to, and range retrievals may be performed
against both alphanumeric and numeric items.

BgD“i“heay operate on any value in any Si-key, including keyworded Si-keys.

Operation

These retrievals are performed by embedding special operators in the argument for DBFIND mode 1
or 10.

Greater-than-or-equal-to retrieval is accomplished by prefixing the argument with the >= operator
{e.g. >=1000), less-than-or-equal-to retrieval uses the <= operator as a prefix, and not-equal-to
retrieval uses the <> operator as a prefix. The <> operator can also appear after another value in
the same argument to exclude records (e.g. BUPER@<>SUPERDEX).

Version 3.1 March 1952 Access methods 2-15

Range retrievals are performed by using the >= and <= operators in combination. For example, a
range search to find all the entries with amounts between 500 and 1000, inclusive, is specified with
the argument >=500<=31000. Pattern matching may be done within a range by specifying the
pattern, start point, and endpoint in the argument, for example, an argument of
2722774433>=890101<=891231 against a concatenated key containing date and customer
number would find all the orders for the customer 4433 placed in 1989,

Entries may be retrieved in ascending or descending sorted order with DBGET modes 5 and 6, which
return end-of-chain and beginning-of-chain conditions when ali entries have been read.

Greater-than-or-equal-to and less-than-or-equal-io retrievals may alternately be accomplished without
specifying the >= and <= operators and instead using any DBFIND mode and argument foliowed by
DBGETs with new modes 15 and 16, which perform greater-than ascending and less-than
descending retrievals, respectively.

2-16 Access methods Version 3.1 March 1992

Grouped retrieval

meup@d rotrieval is available only in the SUPERDEX Il package.

Functionality

IMAGE can search only one field at a time. SUPERDEX lets you group multiple fields in a dataset
together at configuration time, and automatically searches them all at lookup time, thereby handling
them as one logical field. By default, Si-keys are not grouped.

This grouping technique is automatically imposed on all compound IMAGE items used in Sl-keys,
and generates a separate Sl-index for each subitem value. The result is that every subitem is always
searched automatically whenever the item is referenced.

Application
Grouping is useful for logically combining muttiple fields in a dataset that are functionally identical.

For example, a two-line address may be stored in the fields ADDRESS-1 and ADDRESS-2 with
addresses contained on either or both lines. The two fields may be configured as Si-keys and
grouped together in an Sl-path called ADDRESS, and both will be searched automatically whenever
ADDRESS is referenced.

Or, if a quick customer lookup mechanism is needed in which either the company name, contact
name, or phone number may be specified in response to a single prompt, the fields COMPANY,
CONTACT, and PHONE could be grouped together under the Si-path name QUICK-LOOKUP.,

Implementation

Multiple Sl-keys may be grouped together into a single Si-path as a configuration option in SIMAINT
by appending /@ to the Sl-path name.

ﬁ=AII Sl-keys contained in a group must be of the same data type. it is also required that
each Si-key in the group be configured with the same length, so it is possible that some
Si-keys must be substringed and others padded with spaces. For example, if COMPANY
is X30, CONTACT is X20, and PHONE is X14, these three fiekds may be grouped together with
any length between 7 and 15 words--with 7 words, the Si-key for both COMPANY and
CONTACT would be truncated; with 15 words, both CONTACT and PHONE would be padded
with spaces; or any length in between could be chosen,

Version 3.1 March 1992 Access methods 2-17

In configuring a group, specify the longest Si-key first. It will establish the length of the grouped SI-
path, as its length (or substring length, if specified) is unconditionally applied to subsequently
configured Sl-keys belonging 1o the same group.

U5 keys that are used as IMAGE master set search fislds should be specified ast.

Concatenated Si-keys can also be grouped. The second through the fourth Sl-subkeys are repeated
for each Sl-key in the group. This allows COMPANY and CONTACT to be grouped and io have the
LAST-ACTIVITY-DATE concatenated with both indexes.

Operation

Whenever the group is referenced by its Sl-path name in the ifern parameter of DBFIND, all Sl-keys
that form the group are unconditionally searched.

Grouped Si-paths are accessed in the same way as non-grouped Sl-paths--the only difference is in
the configuration of the Sl-path.

There may be some ambiguity in searching by an Si-key in a grouped Si-path whose item length is
shorter than the group length and which is therefore padded with spaces. For example, if CITY, an
X16, and STATE, an X2, are grouped together with an Sl-key length of 8 words {to accommodate
CITY), an argument of CA would find not only all entries in the state of "CAlfornia"” but also those in
the cities of "CALABASAS" and "CARLSBAD." To resclve this ambiguity, use DBFIND mode 1 or 10
and pad the argument with enough trailing spaces to cover the full Si-key length.

2-18 Access methods Version 3.1 March 1992

Super-grouped retrieval

n'gﬁ,Sup@r-gz’oz,aped retrieval is available only in the SUPERDEX |l package.

Functionality

IMAGE can search only a single field in a single dataset at a time. SUPERDEX lets you group
together a master dataset with one or more of its related detail sets at configuration time, and
automatically searches the configured fields in the related detail datasets at lookup time.

The result is that entries in master datasets can be qualified based on the values in related detail
sels.

Application

Super-grouping is useful for qualifying master entries based on a logical combination of each master
entry and its related detail entries, or on just the related detail entries.

For example, a library system may contain the {itle of a book in a master dataset, a description of the
book on multipie entries in a related detail set, and the book's author(s) on one or more entries in
another related detail set. The master set is keyed on book number and pathed {o the two related
detail sets on the same item. Together, the master and detail entries of a given book number form a
profile of the book.

A super-grouped Sl-path called BOOK-FPROFILE could be configured based on the book name (from
the master dataset), description (from one detail dataset), and authors {from the other delail dataset),
permitting a book to be qualified by one or more of its characteristics (such as author plus title). The
greatest functionality would be achieved by defining the super-grouped Sl-path as Keyworded,
permitling any word in the book name, summary, or author--or any combination thereof--t0 be
specified for retrieval.

It is not required that the master entry itself be contained in the super-group: 1 is possible to define a
super-group in which the detail entries only are used to qualify their related master entries. This
means that a DBFIND against the master dataset can only be qualified by values in the detail
dataset.

The super-group in the previous example could have alternately been defined to consist of only the

descriptions and authors (excluding the book name). This way, books could be qualified by author
and/or description,

Version 3.1 March 1992 Access methods 2-19

Impiementation

Muttiple Si-keys in related datasets may be grouped together into a single Si-path as a configuration
option in SIMAINT by first defining the Si-path for the master dataset and then referencing this Si-
path (by appending /G to the Sl-path name) for each detail dataset that should be included in the
super-group.

if instead defining a super-group that does not include the master entry itself, the Si-path is specified
for the master set using an item from one of the related detail sets {since no item from the master set
Is included in the super-group).

@Asi detail sets included in the super-group must be related to the master dataset by an
IMAGE path. Also, the name of the item in each detail dataset that forms the path must
be the same as the name of the search field in the master dataset.

Concatenated Si-keys can also be super-grouped. The second through the fourth Sl-subkeys are
repeated for each Sl-key in the super-group.

Operation

DBPUT, DBUPDATE, and DBDELETE to ali datasets configured in the super-group automatically
maintain the Sl-indices.

Super-groups may be accessed only via the master dataset--not the relaled detail sets. So DBFIND
must be called against the master set, referencing the name of the super-group in the item
parameter. DBFIND automatically searches all Si-keys in all {master and related detail) datasels in
the super-group and qualifies the corresponding master entries based on them.

Only qualifying master entries are returned by SUPERDEX's DBGET--nct their related defail entries.
if desired, use standard IMAGE DBGETs (mode 5 or 6) to read the IMAGE chains to retrieve the
detail entries related to the qualifying masters.

As illustrated, SUPERDEX's DBFIND and DBGET qualify and retrieve only master entries. The
detail entries in the super-group are only used as criteria for qualifying their related master entries.

Maintenance

Whenever the SIMAINT program is used to reorganize or delete any Si- key contained in the group,
all Sl-keys in the group are automatically reorganized or deleted.

2-20 Access methods Version 3.1 March 1892

Relational access: multiple criteria retrieval

wnelational access retrieval capability using muitiple criteria is available only in the
SUPERDEX [package.

Functionality
SUPERDEX can search an Si-path for a combination of multiple search criteria in a single operation.
Retrievals against multiple criteria can be used 1o locate entries:

B that meet either criterion (Boolean OR operation)
M that meet both criteria (Boolean AND operation)
W that meet one criterion but not the other (Boolean AND NOT operation)

Application

Often, it is not encugh to be abile to specify keys in partial or generic format; rather, it is necessary to
locate entries that meet multiple criteria,

Boolean operations provide the most powerful and flexible search capability. Some examples would
be finding all entries in a keyworded Sl-path that contain both of two keywords (AND operation}, or
one keyword or the other (OR operation), or one keyword and not the other (AND NOT operation).

Implementation

Boolean operations may be specified against any Sl-path, regardiess of its configuration.

Operation

Boolean operations are accomplished by embedding the appropriaie notation in the DBFIND
argument. '

For example, a search for all part descriptions that contain both the words PAPER and CLIP could be
specified with an argument of either "PAPER AND CLIP; {(SQL Notation), " PAPER+CLIP;
(Infix Notation), or [PAPER] [CLIP] & {(Reverse Polish Notation). To find all invoices that are
unpaid or cancelied, the argument would be "UNPD OR CANC:, “UNPD,CANC;, or
[UNPD] [CANC] |. Additionally, to find all entries in California and not Los Angeles would be
specified as "CA NOT WLOS ANGELESY;, "CA-"LOS8 ANGELES";, or [CA][LOS
ANGELES] ! &.

Values stored in binary may be qualified by specifying the search values in ASCIl format.

Version 3.1 March 1992 Access methods 2-21

For a more complete description of boolean operations, refer to the Qualifying entries with DBFIND
chapter in the Programming section of this manual.

Efficiency

When performing boolean operations using multipie values, it is always recommended for
sfficiency to specify the less common value or values first. For example, an argumenf of
"JOHN AND BROWN; causes SUPERDEX to select all the entries that contain "JOHN" and then
deselect those that do not contain "BROWN", f there are mote records with JOMN, it would be
considerably faster and more efficient to specify "TBROWN AND JOHN; instead, since far fewer
entries would be selected in the first lookup.

2-22 Access methods Version 3.1 March 19392

Relational access: mulitiple fields, sets,
and bases

ﬁ-‘R«latio:ma! access retrieval capability using muitiple fields, sets, and bases is available
only in the SUPERDEX i package.

Functionality
Relational queries may be performed using multiple values across multiple fields, datasets, and

databases using dynamically-joined indices. This provides the power of a relational database within a
reguiar IMAGE database.

Application

These features permit entries 1o be located by multiple criteria on multipie fields in a dalaset, as well
as using multiple datasets and databases to qualify entries.

For example, to find all unpaid invoices in the ORDERS database with amounts greater than $1000
might require testing both the PAID-FLAG and ORDER-TOTAL-AMT fields of the INVOICE-HEADER
dataset.

To find all those invoices only for customers with poor payment history would also require a jookup in

the AVG-DAYS-TO-PAY field in the CUSTOMER dataset. And to attain more complete information
about these customers may require access to entries archived in the ORHIST database.

impiementation
Entries are qualified based on multiple fields, sets, or bases with multiple DBFIND calls against any
Sl-paths. No special Si-path configuration is required.

Operation

Multiple DBFIND calls are performed in succession, with one DBFIND per Si-path with varied base,
dset, and item parameters which specify the database, dataset, and Si-path to access.

in the preceding example, four DBFINDs would be performed in succession: one against the PA/D-
FLAG Si-path in the ORDER-HEADER set in the ORDERS base, another against the ORDER-
TOTAL-AMT Si-path, another against the AVG-DAYS-TO-PAY Sl-path in the CUSTOMERS set, and
the last against the dataset and Sl-path of the same name but in the ORHIST database.

Version 3.1 March 1992 Access methods 2-23

Custom indexing

Functionality

SUPERDEX indexes each entry based on its configured Si-paths using the literal value of each SI-
key, as influenced by truncated fislds, concatenated Si-keys, and keyworded Si-paths.

There are circumstances in which this may not be sufficient to properly index an entry and where
additional intelligence is required to compose the Si-key.

To address these requirements, SUPERDEX allows entries to be indexed by any value that may be
calculated from the data entry.

Application
Some examples of requirements for customized Si-indices are:

data type conversion

reformatting date {e.g. ASCli| to Julian)

upshifting

specialized Sl-key extraction {embedded key)

stripping unneeded characters

facilitating concatenated Sl-keys comprised of more than four Si-subkeys

Implementation

SUPERDEX provides an exit in the form of a user-written procedure that permits Sl-indices to be
calculated by parsing any values in data entries.

This procedure, named SIUSER, needs to be writien by the user and placed in the SL or XL along
with the SUPERDEX intrinsics.

Operation

The SIUSER procedure is calied unconditionally with every DBPUT, DBUPDATE, DBDELETE, and
by the SIMAINT utility, and thereby automatically maintains the generated Si-indices.

Custom Sl-keys should be handled as ASCI, since sorting is done using the binary or NLS
representation and non-ASCIl Sl-keys would not sort properly. For binary Si-keys, the DBFIND
argument must also be specified in binary format and modes 1nn or 2nn, or modes 1 or 10 with the
full Si-key value, may be used.

224 Access methods Version 3.1 March 1992

Independent indexing

Functionality

Independent indexing describes the use of SUPERDEX o index entries contained in a structure other
than an IMAGE database, such as flat MPE files. This permits SUPERDEX's advanced data
qualification capabilities to be used on data external to an IMAGE database.

Application

SUPERDEX's independent indexing facility is intended to index files that supplement an IMAGE
database, afthough an IMAGE database need only exist 1o house the Si-dataset in which the Si-
indices are maintained.

For example, a document management system that manages separate word processing files could
be implemented using independent indexing, with the Si-index consisting of the arlicle title as the SI-
key and the file name as the Si-exiension. This permits an arlicle 1o be looked up by its title, and its
file name returned to the calling program.

implementation

Independent indexing is implemented by configuring a standalone B-tree for each independent Si-
path using the SIMAINT program. The datasetl is ieft blank, and the Sl-path name and Sl-index
tength, including the Sl-extension, are defined.

WWith independent indexing, the type and valus of the Si-extension is unknown to
SUPERDEX and must be specified, since the file and data structures are designed by the
user. Typically, a file name or record number is used as the Si-extension.

Operation

The entities being indexed are added and deleted by some method that is unknown and of no
concern to SUPERDEX.

Sl-indices must be explicitly added and deleted using the new DBPUTIX and DBDELIX intrinsics, for
which both the Si-key and Sl-extension are specified in the buffer parameter. The database that
contains the Sl-indices is specified in the base parameter, and the Si-path in the jfem parameter.
The dset parameter is left blank or set 1o 200.

Version 3.1 March 1882 Access methods 2-25

Entries are qualified and retrieved by DBFIND and DBGET. For both, the base parameter specifies
the database that contains the Sl-indices, the dsef parameter is left blank or set to 200, and the Si-
path is defined in the ifem parameter. For DBGET, the ! /ist is used lo return the entire Sl-index,
including the Sl-extension.

Independent Sl-indices should be handled as ASCIl, since sorting is done using the binary or NLS
representation and non-ASCl! St-indices would not sort properly. For binary Sl-indices, the DBFIND
argument must also be specified in binary format and modes 1nn or 2nn, or modes 1 or 10 with the
full Si-index vaiue, may be used.

Maintenance
Correspondence of the Sl-indices to the entities they reference is the sole responsibility of application

programs. No method is provided for implicitly manipulating the Sl-indices, nor maintaining their
synchronization. '

2-26 Access methods Version 3.1 March 1952

section3 Configuration / Establishing

Sl-indices

Overview

This section describes the methods used in configuring SUPERDEX for your databases. This
includes establishing the Si-item and Si-dataset(s), defining Sl-paths, and establishing B-trees and

Si-indices.

This section assumes that you have already loaded SUPERDEX on your system, as described in the

separate SUPERDEX loading instructions.

Chapter 1
Function

Chapter 2

Function

Chapter 3

Function
Chapter 4

Function

Chapter 5

Function

installation
describes procedures, including SL creation and modifications to users, groups,
accounts, programs, job streams, menus, and UDCs.

Configuration overview

provides a brief description of the various configuration options, including simple vs.
concatenated Sl-keys, handling of compound IMAGE items, Si-path names, Si-key
iengths, and various restrictions.

Exciuding words from keywording
reviews the process of excluding words from keywording and shows how to create
the KWEXCLUD file and configure exclusion words.

Customizing default characters

illustrates customizing default characters to optionally redefine the characters used to
represent the wildcard and matchcode, 1o disable multiple indexing of hyphenated
values for keyworded Si-paths, and to exclude certain speciai characters from being
recognized as keyword delimiters.

Configuring SUPERDEX using SIMAINT

describes the methods of configuring SUPERDEX using SIMAINT and discusses
program operation, access requirements, and input rules. 1t then gives examples of
how to define various simple and concatenated Si-paths for keywording, grouping,
and other functions, as well as custom and independent Si-paths.

Options for maintaining Si-paths are not discussed in this section--refer to the Maintenance and
utifities section for information.

Installation

Once the SUPERDEX installation tape has been loaded, as described in the separate SUPERDEX
loading instructions, several steps are necessary for completing the SUPERDEX installation.

Some of these steps are one-time operations, while others are required for future creation of users,
accounts, programs, etc. The installation procedures may include:

creating SUPERDEX SL(s) or XL(s)

creating a group for utifity programs

adding capabilities to accounts and groups
adding capabilities to users

adding capabilities and stack space o programs
changing menus, UDCs, and job streams
expanding system tables

Creating SUPERDEX SL or XL

The SUPERDEX SL is SL.PUB.SUPERDEX; the XL (for Spectrum MPE/XL systems) s
XL.PUB.SUPERDEX. Copy the SL or XL into the PUB group of every account that contains
programs which wili use SUPERDEX.

if SL.PUB.youracct already exists, add the SUPERDEX segmenis info & from the file
SIUSL.PUB.SUPERDEX:

: SEGMENTER

-8L yours!

-U8L SIVUSL.PFUB.SUPERDEX
~-ADDSL SIPROCO

-ADDSL SIPROC1

-ADDSL SIPROCZ

~ADDSL SIPROC3

~ADDSL SIPROC4

-EXIT

If XL.PUB.youracct already exists, add the SUPERDEX modules into it from the file
XL.PUB.SUPERDEX:

1LINKEDIT

~XL yourx!

-COPYXL; XL.PUB.SUPERDEX
-EXIT

3-2 Configuration / Establishing Sl-indices Version 3.1 March 1992

The SUPERDEX SL or XL may alternately reside in a group SL or XL (in a group other than PUB).
Copy the SL or XL into the group in which the programs reside, or add the segments or modules into
an existing SL or XL as shown above.

= If using BASIC/3000, please call Bradmark Technologies for instructions. If using Business
Basic, refer to the supplementary documentation for the Business Basic Interface.

If you don't want to run your programs via an SL or XL, the SUPERDEX procedures may alternately
be included in program files during the PREP or the LINK.

Creating a group for utility programs

Copy the utilities (QUERY, DICTDBL, etc.) and other programs {TRANSACT, eic.) you use for
database transactions into a group in an account containing the SUPERDEX 8L or XL (not
PUB.SYS). The recommended method is to create a new SUPERDEX group in the SYS account,
copy the utilities into it, and run them with ;LIB=G. You may want to rename or lockword the
copies of the utilities that remain in PUB.SYS to prevent accidental use which could result in a loss of
synchronization between the Sl-indices and entries.

Adding capabilities to accounts and groups

SUPERDEX unconditionally requires DS capability, and optionally MR capability; DS capabiity is not
required under MPE/XL for groups/accounts that contain only Native Mode programs. MR eapability
is required for programs that have SUPERDEX automatically lock its infernal dataset(s)--refer {o the
discussion in the Locking chapler of the Programming section to determine ¥ MR capability is
necessary for your installation,

if required, add DS and optionally MR capabilities to groups and accounts in which programs that
access SUPERDEXed databases reside:

s ALTACCT account; Che=cutrent capabilities, DS, MR
:ALTGROUP group; CAP=current capabilities, DS, MR

ng,Aii programs, except those in Native Mode, that access the SUPERDEX SL--even those which
do not utilize SUPERDEX capabilities--require DS capability.

Adding capabilities to users
Programmers who will :PREP source programs which use SUPERDEX will need DS and optionally

MR capabilities added to their users, unless they are :LINKing only Native Mode programs under
MPE/XL, which do not require DS capability:

:ALTUSER userid; cap=current capabilities, DS, MR

Version 3.1 March 1952 Configuration / Establishing Sl-indices 3-3

Adding capabilities to programs

Programs that use SUPERDEX, including utility programs like QUERY, must also have DS and MR
capabilities. Several methods are available:

B use ALTPROG.PUB.SUPERDEX

W if you have VESOFT's MPEX/3000 utility, use the ALTFILE command (e.g. ALTFILE
@.@.account (CODE="“PROG"}; CAP=+DS,+MR)

W re-PREP with CAP=current capabilities , D8 , MR

Adding stack space to programs

All SUPERDENX procedures automatically extend a program’s stack by up to two Kwords for indexed
access and one or more additional Kwords for relational access (if performed), so programs which
run short of stack may abort with a STACK OVERFLOW. For programs in which this occurs,
increase the program's MAXDATA using one of the methods below. If the MAXDATA is already at its
upper limit, run the program ;NOCB:

B use ALTPROG.PUB.SUPERDEX

B use MPEX/3000 ALTFILE command (e.g. ALTFILE program; MAXDATA=(current
maxdata + 2048))

B re-:PREP with MAXDATA=current maxdata + 2048)

Changing menus, UDCs, and job streams
All application and tility programs that use SUPERDEX capabilities must be run with ;LIB=P or

LiB=G, depending on whether the SUPERDEX SL or XL are in an account or group SL or XL,
respectively:

:RUN program; LIB=P

Native Mode programs on MPE/XL may allernately be run by:

:RUN program; XL="XL.PUB.SUPERDEX"

All menus, UDCs, job streams, and other facilities that run these programs must be changed, and
users who run programs explicitly from MPE must be instructed to include ;LIB=P or ;LIB=G on the
:RUN command.

3-4 Configuration / Establishing Sl-indices Version 3.1 March 1992

Expanding system tables

On MPE/V systems, the LOADPROC intrinsic called by SUPERDEX utilizes entries in two system
lables, which may require expansion. The tables are:

B {OADER SEGMENT TABLE
B SWAP TABLE

Additionally on MPE/V systems, SUPERDEX creates one or more Extra Data Segments (XDS),
which may require that the system's virtual memory allocation be increased.

= Refer to HP's System Operation and Resource Management Reference Manual for
information about these tables and how to change them.

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-8

Configuration overview

Defining Sl-keys and Sl-paths

Si-paths are defined in the SIMAINT program, which initially creates the B-tree structures and
optionally the Si-tem and Sl-dataset(s}.

The SIMAINT program may need to know any of the following, which are discussed in detall on the
following pages:

W whether a separate DBOPEN should be done for each database through which to perform all
locking and unlocking of indices

whether fo maintain the Sl-indices in the base with the data entries or in a separate base
the dataset to which each Si-path is related

the Si-dataset that contains the Si-indices for a dataset's Sl-paths

the name of each Sl-path

the tield or fields that form each Sl-key and their lengths

whether each Sl-path is keyworded, grouped, both, or neither

whether to index entries that contain blank values in the first Sl-subkey, for each Sl-path
the keyword length, for each keyworded Sl-path

the minimum number of characters per keyword, for each keyworded Sl-path

the average number of significant words that will be contained in the Sl-key, for each
keyworded Si-path

the keyword exclusion length, for all keyworded Sl-paths

the Si-key length, for each custom Si-path

the St-index length, for each independent Si-path

up to four special characters to optionally exclude as keyword delimiters

an optional replacement character for the @ wildcard/terminator

an optional replacement character for the ? malchcode operator

an optional replacement character for the # matchcode operator

whether 1o disable multipie indexing of hyphenated values for keyworded Si-paths

Separate DBOPEN for locking

SUPERDEX is capable of implicilly locking the appropriate Sl-dataset whenever a DBPUT,
DBUPDATE, or DBDELETE is performed. Because IMAGE has no selective unlock facllity, the lock
on the Si-dataset is held until the program calls DBUNLOCK. This could impede throughput with
multiple users.

For this reason, SUPERDEX may be configured to DBOPEN a database twice for each process and
perform its Si-dataset locks via the second DBOPEN. it is then able to unlock the Si-dalaset via that
open rather than waiting for the program to call DBUNLOCK.

To configure SUPERDEX to perform a separate DBOPEN for locking, append /2 to the database
name.

3-6 Configuration / Establishing Sl-indices Version 3.1 March 1992

Separate database for Sl-indices

By default, SUPERDEX's B-tree structures reside in the Si-dataset(s) in the same database as the
data entries that they index. However, it is possible to alternately locate the Si-indices in a separate
database, referred 1o as an Sl-index base. In either case, the Si-definitions must reside in the root
Si-dataset in the same database as the data entries (the primary base).

The main advantage to keeping the Sl-indices in a separate database is that fewer log records are
written for bases enabled for logging. Because SUPERDEX uses IMAGE intrinsics for maintaining its
Sl-indices, additional log records are generated, causing iog files to fill more quickly. This situation
becomes even more apparent with multiple indexing {mutltiple Sl-indices for a single data entry), as
required for keywording. By locating the Sl-indices in a separate base, no additional logging activity
is generated for the primary base.

Logging may be selectively enabled or disabled for the Si-index base. In either case, it is always
possible to recover the Sl-indices. if logging is enabled, logging recovery may be used in the event
of a failure. If disabled, the inconsistent Si-paths may be re-indexed as necessary by reorganization
using the SIMAINT utility program.

With this option, the root Si-dataset and Si-Rem reside in the primaty database and contain only the
Si-definitions. Al Sl-indices reside in one or more Sl-datasets in the separate Sl-index base.

This feature may be used selectively for each database. First, ¢reate the Si-index base in the same
group and account as the primary base, and assign it the same name as the primary base but with
the last two characters Sl. if the primary base name is 4 characters or less, append 8l fo the base
name; if 5 or 6 characters, replace the last one or two characters with Sl. For example, the Sl-index
base for the OEDB base wouid be OEDBS!, and for CUSTDB would be CUSTS!

The Sl-index base may contain additional tems and datasets in addition to the Si-dataset(s). The
first Sk-dataset must be named SI1, with additional Sl-datasets named SI2 - §i7, Each Sl-dataset
must have the same biock size and blocking factor as the root Si-dataset in the primary base.

ligﬁef‘ar to the Infernal siructures appendix for more information about the required
characteristics of the Si-index base,

Once the Sl-item and root Sl-dataset have been added fo the primary base and the Sl-index base
has been created, proceed to configure the Si-paths using SIMAINT, and append /3 to the database
name,

l!a;‘This feature and the separate DBOPEN for locking feature {configured by 2} are
mutually exclusive, since all locking against the Sl-index base is always done
independently—via a separate DBOPEN against sach base.

Version 3.1 March 1892 Configuration / Establishing Sl-indices 3-7

Naming Sk-paths

The name of the Sl-path is important because i is iater used in the ifem parameter of SUPERDEX's
DBFIND intrinsic. Also, it may not contain a forward slash (/) uniess the Si-path name is identical to
an item name that contains a forward slash.

The Sl-path name must be unigue within a dataset but multiple datasets may contain Si-paths of the
same name, uniess the Si-path is for a super-group, in which case the Si-path name must be unique
within the database, it is recommended that the Si-path name not be the same as the item name
that forms the Si-key or any other item, since this can cause programs that are attempting IMAGE
access via the IMAGE path to instead perform SUPERDEX access via the Si-path. This may,
however, be desirable, as explained below.

#f an Si-path related to a dataset is given the same name as an existing item used as an IMAGE
search field in the same dataset, the Sl-path is used instead of the IMAGE path. If the eniry cannot
be found using the Sl-path, the IMAGE path is used instead. If both fail, condition word 17 ("NO
ENTRY") is returned. This is useful for replacing automatic master sets with Sl-paths: just name the
Sl-path the same name as the search field in the detail datasel and programs do not require
modification,

m:‘iile;ale«c.:ing an automatic master dataset with one or more Si-paths causes additional iog
records to be written for databases enabled for logging.

if, however, you would like to access entries alternately by an Si-path and by an IMAGE path, assign
a name other than the item name to the Sl-path.

Simple vs. concatenated Si-keys and their lengths

An Si-key can be simple (a single field) or concatenated {a combination of fiekis)., The latter is useful
for both searching and sorting by extended criteria.

A concatenated Si-key for a detail set may consist of up to four fields. For a master set, the search
field and up to two additional fields may be defined. If more than four fields are required in a
concatenated Si-key and the desired fields are contiguous, they may be included and thereby exceed
the four field limit. If the search field is included as an Si-subkey in a concatenated Si-key for a
master set, it must be defined last.

For a simple Si-key or for each Sil-subkey in a concatenated Sl-key, each aiphanumeric item that
exceeds one word may be included in full, or its length may be shortened (and can start in any
position). This is referred to as a substring Si-key or substring Sl-subkey. The exception is master
dataset search fields used in Sl-keys, which may not be substring.

mﬂWhen performing relational access against multiple datasets, it is required that a common item
{called an Sl-iink) from each dataset be inciuded in an Sl-key for each dataset, except for
master datasets in which the common item is the search field. The recommended method for
implementing this is to include the common fem as an Sl-subkey in a concatenated Sl-key.

3-8 Configuration / Establishing Si-indjces _ Version 3.1 March 1992

Compound items

Compound IMAGE items may be used in simple Si-keys or as the first Sl-subkey in concatenated Sl-
keys, including compound items with subitems of odd-byte lengths. SUPERDEX automatically treats
compound items as grouped Sl-keys and generates a separate Sl-index for each subitemn vaiue, the
result being that every subitemn is always searched automatically,

For concatenated Si-keys thal include compound IMAGE items, an Slkindex is automatically
generated for each subitem value, with the values of the other Si-subkeys in the Si-key repeated in
each Si-index. For example, for an Si-key that consists of the compound item ORDER-COMMENTS
{a 5X72) and the regular item ORDER-NUMBER (an X12) five Sl-indices would be created with each
one containing a different ORDER-COMMENT value but the same ORDER-NUMBER.

Keyworded Sl-paths

Any alphanumeric (data type U or X} Si-key, either simple or concatenated, may be defined as
keyworded. For concatenated Sl-keys, only the first Sl-subkey is keyworded.

Keyworded Si-paths are configured in SIMAINT by appending /K to the Sl-path name. Three
attributes must be specified for each keyworded Sl-path:

B maximum length of each keyword
B/ minimum number of characters per keyword
M average number of keywords in the field for each entry

The keyword length determinas the maximum number of characters to inciude in the Sl-key, which is
independent of the length of the field. For indexing purposes, words that are fonger than the keyword
length are truncated; those that are shorter are padded with spaces. For example, with a keyword
length of 5 words, the first 10 characters of each word would be included, so for the word
"MANUFACTURING," only "MANUFACTUR" would be included in the Si-key.

wit is desirable for efficiency to keep the keyword length as short as possible and not to
exceed a keyword length of 6 words (12 characters). Substring keywords can still be retrieved
using the full keyword as the search argument, but other entries may also be returned; for exampie,
MANUFACTURING would qualify entries with the value "MANUFACTURER" because only 10
characters are stored in the Si-index and the argument length is substringed 10 10 characters.

The minimum number of characters per keyword determines the minimum number of characters that
a word must contain in order to qualify for keywording. For example, the word "ASK" would be
inciuded in keywording with a minimum keyword length of 1, 2, of 3 but excluded with a length of 4,
The minimum keyword length may be between 1 and 4, wilh 1 effectively meaning that all words are
included in keywording. This value should be set to 4 wherever possible for efficiency.

The average number of keywords refers to the average number of significant keywords that wouid be
contained in this field, between 1 and 16. For example, "ACME MANUFACTURING PARTS"
contains three keywords. The value of this parameter is used to reserve sufficient internal space, so
fractional averages must be rounded up, and it is better to estimate high instead of low if in doubt; for
example, if an average of 2.5 words are contained in the field, specify a value of 3. If requitements
change at a later time, the average number of indices may be changed by reorganizing the Si-path--a
new value may be specified at that time.

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-9

To eliminate common words from keywording, an exclusion list may be defined, which restricts the
keyword entries to only relevant words. Exclusion words are specified in a disk file using any editor
and uploaded into a special standalone Si-path called KWEXCLUDE. You must define a keyword
length for this Si-path, which is applied against ali the keyworded Si-paths in the database. The
keyword length may be redefined at a later time if required.

Grouped Sl-paths

Multiple Si-keys related fo a given dataset may be grouped together as a single Sl-path, with the
following restrictions:

M each Si-key in the group must be of the same data type
M each Si-key in the group must internally have the same length, which is assigned for the first
configured Si-key in the group and inherited by subsequently-configured Sl-keys

For concatenated Sl-keys in a group:

B the second - rmth Si-subkeys are automatically and unconditionally imposed on all Sl-paths in
the group

M the first Sl-subkey of every Si-key in the group must be of the same data type

W the first Sl-subkey of each Si-key must be assigned the same length

Because each Si-key in a group must be of the same length, it is possible that the lengths of some
Sl-keys must be truncated and others padded with spaces. For example, f COMPANY is X30,
CONTACT is X20, and PHONE is X14, these three fields may be grouped together with any length
between 7 and 15 words--with 7 words, the Si-key for both COMPANY and CONTACT will be
truncated; with 15 words, both CONTACT and PHONE would be padded with spaces; or any length
in between could be chosen.

Si-paths are grouped together as a configuration option in SIMAINT by appending /¢ to each Si-path
name except the first. The length and second - nth Sl-subkeys of the first Si-path defined are
unconditionally applied to subsequent Sl-paths belonging to the same group, so define the Sl-path
that contains the desired Sl-subkeys and longest Si-key first. If one of the Si-keys in a group for a
master dataset is the IMAGE search field, define it last.

Super-grouped Si-paths

A master set and one or more related detail sets--related by IMAGE paths~-may be super-grouped
together as a single Sl-path, with the following restriction:

W the item name of the search field used to form the IMAGE path must be the same
For concatenated Sl-keys in a super-group:
W the second - nth Sl-subkeys are automatically and unconditionally imposed on all Sl-paths in
the super-group

W the first Si-subkey of every Si-key in the super-group must be of the same data type
B the first Sl-subkey of each Si-key must be assigned the same length

3-10 Configuration / Establishing Sl-indices Version 3.1 March 1992

it is not required that a field in the master set be configured as an Si-key: it is possible to configure
only Sl-keys in the detail sets to be used to qualify entries in the related master set. In this case, use
the field in the detail set when configuring the master path. This will be used to define the length and

type of path.

Sl-paths are super-grouped together as a configuration option in SIMAINT by appending /¢ to each
Si-path name except the Sl-path related to the master set. The length and second - nth Si-subkeys
of the first Si-path defined are unconditionally applied to subsequent Si-paths belonging o the same
super-group.

Custom Sl-paths

Custom indexing (maintained by the SIUSER procedure) is implemented by defining an Si-path of an
arbitrary name for each custom index. Although the dataset is defined, along with the Sl-path, no
items are specified, since the Sl-indices do not directly reference any #tems. The Si-key length,
excluding the Sl-extension, is defined, as well as the average number of Sl-indices per entry.

Independent Si-paths

independent indexing is implemented by configuring a standalone B-tree for each independent Si-
path. The dataset is left blank, and the Si-path name and Si-index length, including the extension,
are defined.

Blank Sl-keys

By default, SUPERDEX will not generate any Sl-indices for any entry that contains a blank Si-key
value. For a concatenated Si-key, it will not generate any Skindices for an entry whose first Si-
subkey is blank.

This is done for efficiency and disk savings, but differs from IMAGE's method of creating a "null”
chain of all blank keys. To override SUPERDEX's default and cause Si-indices to be generated for
entries with blank Si-keys, append /B to the Sl-path name.

Summary of restrictions

Most configuration options may be used in combination against all data #tems, although some
restrictions exist. This summarizes the aforementioned restrictions:

B only alphanumeric tems (dala types U and X) may be keyworded

W keywording functions only for the first Si-subkey in a concatenated Sl-key

B substring fields may only be defined for alphanumeric tems (dala types U and X) whose
lengihs exceed one word. Master set search fields and numeric tlems are always
represented in full and may not be truncated

all Sl-keys in a group must be of the same data type

all Sl-keys in a group must be assigned the same length (alphanumeric fields may be
truncated or padded with spaces)

i a grouped Si-path for a master dataset contains the IMAGE master search field, it must be
configured last

concatenated Sli-keys may contain a compound item as the first Si-subkey only

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-11

Excluding words from keywording

Definition and Purpose

To minimize disk utilization, SUPERDEX permits common words to be excluded from keywording.
These exclusion words are user-specified and apply to all keyworded Si-paths in a database.

Alf the words that SUPERDEX should exciude from Keywording for a database are entered into a file
named KWEXCLUD and then transferred into the special Independent Si-path KWEXCLUDE by the
SIMAINT program.

Just as each keyworded Si-path has an associated keyword length that determines how many
characters of each Keyword are recognized for indexing, the KWEXCLUDE Sl-path also has an
associated keyword length which is applied against each word in the exclusion file. Because the
exclusion words are compared against all keyworded Si-paths, and because each keyworded Sl-path
may have a different keyword length, it is important {o assure that the excluded words will work
effectively for each Si-path. This means that only as many characiers as are defined by the keyword
length are matched on; therefore, it is recommended that the shortest keyword length configured for
any Sl-path in the database be used as the keyword length for the KWEXCLUDE path.

Exclusion words are entered into a file named KWEXCLUD which must be located in the
group/account in which the corresponding database resides. Multiple KWEXCLUD files may be
used, one per database. I multiple databases reside in the same group/account and require different
KWEXCLUD files, create additional files under different names and reference them with :FILE
equations, for exampie:

:FILE KWEXCLUD=QEDBRW.DEMO,SUPERDEX

Example
Exclusion words may be entered in any editor that creates a plain ASCIi file, one per line, and must

be in upper case, as shown in the following example. (In this example, EDIT/3000 is used, but any
editor that produces a standard ASCH file may be used.)

3-12 Configuration / Establishing Si-indices Version 3.1 March 1992

+tEDITOR

HP32201A.07.17 EDIT/3000
(C} Hewlett-Packard CO. 1885
/A

INC
INCORPORATED
CORP
CORPORATION
DIVISION
AsSsoc
ASSOCIATES

¥

/R KWEXCLOD

/EXIT

M ~3 O W B

END OF SUBSYSTEM

For this example, the keyword length that will be imposed on the KWEXCLUDE Sl-path (when it is
defined in SIMAINT) is 4 words (8 characters). The words on line 2 and 4 exceed this length, so they
will be truncated. The shorter words on lines 1, 3, and 6 will be padded with spaces, which are
ignored for comparison.

Once the KWEXCLUD file has been created, it is necessary to define the KWEXCLUDE Sl-path
using the SIMAINT program, as described in the following chapter. Although this file may be created
and modified at any time, it is recommended that # be created in its entirety before configuring any
keyworded Sl-paths because any changes to the file require that the KWEXCLUDE path and all
keyworded Si-paths be reorganized.

Default File
The KWEXCLUD.DEMO.SUPERDEX file is a defautt file containing common words to be excluded.

Except in very special cases, it is recommended that this file be used in databases with keyworded
Si-paths to reduce the amount of D. For example:

:FILE RWEXCLUD=XWEXCLUD.DEMO,SUPERDEX
tRUN STIMAINT.PUB.SUPERDEX,LIST

SIMAINT VERSION 3.1(06DEC%1} CCPYRIGHT DR. MATT / IABG (1588,1981)

DATARBASE >0EDB
DATASET > space+ returh
SI-PATH > EKWEXCLUDE

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-13

Customizing default characters

SUPERDEX recognizes a few special characters that influence the operation of various intrinsics.
Because of unique characteristics that your data may have, SUPERDEX allows you to redefine these
characters to suit your individual requirements.

For DBFIND, SUPERDEX reserves the following special characters as conditiona! operators:

M @ as wildcard and terminator
W ? as alphanumeric matchcode
B # as numeric matchcode

For DBPUT, DBUPDATE, DBDELETE, and SIMAINT indexing on keyworded Si-paths, the following
special characters are reserved:

W all special characters as keyword delimiters
B - as a keyword delimiter which resuits in muftiple indexing of hyphenated values

So, if your systern contains data values that include 2s or #s as literal characters, it would be
restrictive to use the defaull 2 or # characler as a single-character matchcode; therefore, the
matchcode operator could be redefined to some other character not commonly found in your data
values (such as %).

l@’wnen assigning replacement characters for @, #, and 2, it is important to choose
characters other than those already treated specially by DBFIND as relational or Boolean
operators (documented under DBFIND in the Intrinsics section in this manual).

Ancther circumstance in which default characters should be redefined is in recognizing keyword
delimiters for keyworded Sk-paths. By default, spaces and all special characters are treated as
keyword delimiters, and it may be desirable to restrict which special characters are recognized. For
example, values that include fractions (“1/2") or dates ("01/30/90"} suggest that / should be excluded
as a keyword delimiter; otherwise "1/2" would be indexed as "1" and "2."

Additionally, because hyphenated values are by default indexed multiple times ("01-30-90" is indexed
as "01-30," "30-90," and "80"} it may be desirable to disable this feature and instead treat hyphens (=
) as regular keyword delimiters (resulting in "01," "30," and "90"). Or, it may be best to disable
hyphens as keyword delimiters altogether.

To redefine default characters, inciude a customization string of up to eight characters which defines
the desired defaults as an INFO parameter when running the SIMAINT program {described later).
The wildcardfterminator, alphanumeric matchcode, numeric matchcode, and up to four excluded
keyword delimiters can all be included in the customization string.

The customization string specified when running SIMAINT affects all Sl-paths in the database.

3-14 Configuration / Establishing Sl-indices Version 3.1 March 1992

I331’03.::@; specified, the customization string is written into the internal Sl-definitions for the
database and need not be specified again. if the default characters need to be changed at a
later time, run SIMAINT with a new customization string; if keyword delimiters are changed, also
reorganize all keyworded Sl-paths.

To preserve the defaull values for wildcard and matchcode operators (@, #, and 2) it is
necessary to specify them explicitly in the customization string.

The eight characters (bytes) in the customization string are represented as follows:

byte| description

wildcard and terminator character

alphanumeric matchcode, blank disables this feature

numeric matchcode; blank disables this feature

= if multi-indexing on hyphen, blank to treat hyphen as reguiar delimiter
special character to be treated as literal rather than keyword delimiter
same

same

same

N AW -

For example, running SIMAINT with the customization string shown:

:RUN SIMAINT.PUB.SUPERDEX; IRFPO="%A% /[f:-."

would result in the following: % is recognized (in place of @) as the wiidcard and terminator character,
" {instead of 2} is the single-character matchcode, * replaces # as the single-numeric matchcode,
no multi-indexing is performed for hyphenated values, and /, 3, —, and . are not treated as keyword
delimiters but rather as regular literal characters.

To display the configured customization string, run SIMAINT with the LIST entry point as shown:

1RUN SIMAINT.PUB.SUPERDEX, LISY
SIMAINT VERSION 3.1 ({06DEC21>COPYRIGHT DR. MATT / IABG (1988,1991;
DATABASE >QEDB

QUSTOMIZATION STRING: $°% [i~.
THE FOLLOWING SI~-PATHS AND ITEMS ARE DEFINED:

Version 3.1 March 7392 Configuration / Establishing Si-indices 3-15

Configuring SUPERDEX using SIMAINT

The SIMAINT program automatically establishes the B-tree structures and Si-indices for all Sl-paths
when they are created. It adds the Sl-item and Sl-dataset(s) for TurbolMAGE and TurbolMAGE/XL
databases, unless a separate Si-index base is used. For non-Turbo bases, use DBGENERAL, or
DBUNLOAD/DBLOAD to establish the Si-dataset(s) and Sl-item. For separate Sl-index bases, use
the DBSCHEMA and DBUTIL utilities to create the Sl-index base, or use the SIBASE utility program
(see Section 6).

{SIMAINT is also used for deleting, reorganizing, and performing other maintenance funclions on
existing Si-paths. Options for existing Si-paths are not discussed in this section but in the
Maintenance and utilities section, which also includes a table describing the various operations that
may require Sl-path maintenance.)

Creating Sl-item and Si-dataset(s)

The Si-item and Sl-dataset(s) that are used for storing SUPERDEX's B-trees may be created by one
of two methods:

N by SIMAINT.PUB.SUPERDEX, which creates them automatically
W by conventional means, such as DBGENERAL, or DBUNLOAD/DBLOAD

The preferred method is to use SIMAINT, since it easier and automatic. After creating the Sl-item
and Si-dataset(s) based on the Si-path configuration, SIMAINT proceeds to create the required Si-
definitions and Slindices; however, the following requirements must be met in order o use
SIMAINT.PUB fo create the Sl-item and Sl-dataset(s}):

W the system must be running TurboIMAGE or TurbolMAGE/XL (not IMAGE)

W all dataset block sizes must be even multiples of 128 words (e.g. 128, 2586, 384, 512), which
is normally the case

M the Sl-indices must reside in the same dalabase as the data entries (not in a separate Si-
index base)

if the above conditions are not satigfied, instead run SIMAINT.NOPRIV which (based on the Si-path
configuration) displays the characteristics of the Sl-item and required capacities for the Sl-dataset(s)
but does not generate the Sl-definitions or Sl-indices. Use this information to manually create the 8i-
tem and Si-datasel(s), referring lo the [nfernal struclures appendix for more information. Then,
stream the job created by SIMAINT.PUB SCHEMA to configure the Si-paths, and the Si-definitions
and Sl-indices will be generated.

3-16 Configuration / Establishing St-indices Version 3.1 March 1992

Operation

The SIMAINT program is prompt-driven, and includes an on-line help facility that displays datasets
and the items they contain. SIMAINT operates in three discrete phases, which are automatically
invoked in succession:

B dialog phase: all configuration information is specified
B extension phase: the Si-item and Si-dataset(s) are added, as necessary
W indexing phase: all Sl-indices are generated

This permits all configuration information to be specified up front in the dialog phase and for the
program to be left unattended during extension and indexing.

Access requirements
Before running SIMAINT, make sure:

B you have exclusive access to the database
¥ you are logged on as the database creator
B you are logged into the group and account in which the datlabase resides

It is also recommended for performance reasons that you:

B disable ILR
B disable logging
B do not run SIMAINT with ;LIB=G or ;LIB=P

Input rules
These rules govern SIMAINT input;

all input may be in upper- or lower-case

? displays structural help (sets and items)

\ flushes all activity for a given level and returns to the previous level

space returns to the previous level in the hierarchy while retaining the activity in a level

alf lengths--with the exception of minimum keyword length, average number of characters per
keyword and offset in bytes, which are always specified in bytes--are reported and specified
in words if a positive value, and bytes if a negative value. It is necessary to convert for
alphanumeric {data types U and X) items (e.g. X20 = 20 bytes or 10 words).

Dialog phase

SIMAINT dialeg is structured in a hierarchical fashion whereby you are fed down through various
levels until all required information has been supplied, and then automatically returned to the previous
level. The levels in the hierarchy are:

DATABASE >
DATASET >
S5I-PATH >
ITEM n >
SI-subkey prompts

Version 3.1 March 1992 Configuration / Establishing Si-indices 317

This organization encourages a logical ordering in configuring SUPERDEX for multiple datasets and
items, assures that all required information is specified, and permits an easy and consistent method
for canceling and reentering input for any level in the hierarchy.

SIEXTLEN JCW for special concatenated Si-keys

A concatenated Sl-key can normally contain no more than four fields as Si-subkeys. It is possible,
however, to create a concatenated Si-key with more than four Si-subkeys, provided that the
additional fields are contiguous in the dataset. If they are, it is possible fo define a length for any SI-
subkey that exceeds the field length, and the additional fields or truncated fields that follow are
included in the Si-key, based on the length specified.

If you need fo utilize this feature, it is necessary 1o set a special JCW named SIEXTLEN to 1 before
invoking SIMAINT.

:SETICW STEXTLEN=L

Invoking SIMAINT
To invoke SIMAINT for TurbolMAGE and TurbolMAGE/XL databases:

:RUN SIMAINT.PUB.SUPERDEX

SIMAINT VERSION 3.1 (06DECS1) COPYRIGHT DR. MATT / IABG (1988,19%81)

WSEMAINT is run with neither ;LiIB=G nor ;LiB=P.

For IMAGE databases, as well as databases with block sizes tha! are not even multiples of 128
words (128, 256, 384, 512, efc.) instead : RUN SIMAINT.NOPRIV.SUPERDEX after creating
the Si-datasel(s) and Sl-item, refer o the Infernal structure appendix for more information.

Defining database

SIMAINT can be run against databases that have never been configufed for SUPERDEX as well as
those that already contain Si-paths.

The OEDB database in these examples contains no Si-paths. Because the version of SIMAINT
being run is SIMAINT.PUB, a message is displayed that the Si-detail dataset{s) will be added
automatically:

DATABASE »CEDB

DATABASE HAS NOT BEEN INITIALIZED FOR SUPERDEX

AFTER THE DIALOG PHASE THE PROGRAM WILL GO INTO FRIVILEGED MODRDE TO ADD THE SI-
DATASET(S) TO THE DATABASE

3-18 Configuration / Establishing Sl-indices Version 3.1 March 1992

Defining number of DBOPENSs

In this example, the database is being configured for SUPERDEX to perform a second DBOPEN
through which all locking of the Si-dataset(s) will be performed:

DATABASE >0EDB/2

l!ga/ 2 appended to the database name means that a second DBOPEN should be performed.
instead, only a single DBOPEN should be done, with all locking done via that DBOPEN, either
nothing or /1 should be appended. The specified suffix is automatically retained for all
subsequent configuration against the database. Either suffix may also be declared for an
already-configured database, and SUPERDEX will override the old specification.

Defining that a separate Sl-index base is used
in this example, the database being configured for SUPERDEX will contain the root Si-dataset but

not the Si-datasel{s) that hold the Sl-indices, rather, they will be maintained in a separate Sl-index
dalabase:

DATARASE >OEDB/3

L= / 3 appended to the database name means that SUPERDEX should maintain its Sl-indices ina
separate Sl-index base, which must aiready exist. The suffix is automatically retained for all
subsequent configuration and may not be overridden.

The /3 option and the /2 option may not be used together--they are mutually exciusive.

Defining datasets

SIMAINT can be run against datasets that already have related Si-paths as well as those that do not.
if a dataset already contains Sl-paths, they are displayed.

Enter the name of a manual master or detail dataset in the current database, optionally followed by
one of the foliowing suffixes: *

/n Sl-dataset to contain the Sl-indices for all dataset's Sl-paths, where n is the number of the
Sl-dataset between 1 and 7 (

/D Delete all dataset's related Sl-paths {refer to Maintenance and utilities section)

/R Reorganize all dataset’s related Si-paths (refer to Mainfenance and utilities section)

In the following example, no suffix was specified, therefore all indices for Sl-paths related to the
PRFD dataset will reside in the root Si-dataset:

DATASET >PRFD

Version 3.1 March 1982 Configuration / Establishing Sl-indices 3-19

Once all datasets have been defined, hit RETURN al the DATASET prompt. This indicates to
SIMAINT that you are done defining Sl-paths, and causes it to proceed to the extension stage.

= Once an Si-dataset has been selected for a dataset, all indices for that dataset must
remain in the same Sl-dataset. Different Sl-paths for the same dataset cannot be placed
in different Slciatasets.

Defining associated Si-datasets

in this example, all the Sl-indices for all Sl-paths related to the CUST dataset will be buiit in the Si-
dataset named SI1:

DATASET »CUST/1

Up to eight Si-datasets (including the root Si-dataset)} may be configured for any database. Muitiple
Sl-datasets are useful for optimizing concurrent access and necessary for large databases in which
an Sl-dataset may outgrow the maximum file size allowed by the MPE operating system (about 2
million sectors for MPE/V and 8 million sectors for MPE/XL). Valid Sl-dataset sufiixes are /1
through /7. In assigning suffixes, do not skip any numbers.

The suffix is automatically retained for all subsequent configuration against the dataset, and may only
be changed by deleting and re-adding all the Sl-paths related to the dataset. Likewise, if the dataset
was originally configured without a suffix, no suffix may be specified without redefining all the
dataset's Si-paths.

= With super-greuping the master and the related detail sets must be configured with the
same Sl-datasetl.

Bypassing datasets for independent Si-paths
When defining independent Si-paths which are not associated with any dataset, and when defining

the keyword exclusion path KWEXCLUDE, a spack followed by a RETURN is specified at the dataset
prompt:

DATASET >space + return

To specify which Si-dataset will contain ali independent Sl-paths for the database, specify the SI-
dataset number in place of the SPACE, as shown:

DATASET »/2

3-20 Configuration / Establishing Sl-indices Version 3.1 March 1992

Defining Si-paths and Si-keys
As described previously, Sl-paths may be:

B simple or concatenated

B Keyworded

B a grouping of multiple Sl-keys

B customized, for Sl-keys generated via the SIUSER procedure
W standalone, for independent indexing

As already discussed, each Sl-path name is arbitrary, and may be the same as an existing item
name. The Sl-path name may optionally be appended by one of the following suffixes:

/X Sl-path is Keyworded

/G Si-path consists of multiple Si-keys that form a Group

/B Blank entries are indexed (by default, no Sl-index is generated for an Sl-key value that is
blank or for a concatenated Sl-key, whose first Sl-subkey is blank)

/D Delete existing Sl-path (refer to the Maintenance and utilities section)

/R Reorganize existing Si-path (refer 1o the Maintenance and utilities section)

After the Si-path name has been entered, SIMAINT prompts for the item(s) that comprise the
corresponding Sl-key. A simple Sl-key consists of only one item; a concatenated Si-key may contain
between two and four items.

For alphanumeric items (data types U or X), a truncated field rather than the full field may be included
in both simple and concatenated Si-keys. For numeric items, no fruncation is allowed, so the request
to shorten the length is not asked.

Defining simple Si-keys

in this example, the arbitrary name CITY is assigned for the Sl-path that consists of the full field
CUCITY:

SI-PRATH >CITY/B

ITEM 1 >CUCITY

ITEM LENGTH IS 8 WORDS.ENTER SHORTER LENGTH (- =BYTES} IF DESIRED>return
ITEM 2 >return

SI-PATH >

B perurn was hit 1o accept the full field fength for the Si-key and also hit when SIMAINT
prompted for the second Sl-subkey, thereby defining this Sl-key as simple rather than
concatenated, Also, /B was appended to the SI-PATH, which causes SUPERDEX to override
its default and generate Sl-indices for entries that contain blanks in the first Sl-subkey.

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-21

If the name specified for an Sl-path is the name of a field in the dataset--such as when replacing an
automatic master dataset with an Sl-path--SIMAINT assumes that the first Sl-subkey is that item and
therefore does not prompt for it:

SI-PATH >PRFIDF

ITEM LENGTE IS 2 WORDS.ENTER SHORTER LENGTH {~- =BYTES} IF DESIRED>return
ITEM 2 >return

SI-PATH »

if the current dataset is a master and the 8l-path name specified is the same as the datasetl's search
field, neither the item nor length is prompted for, since truncated Si-keys that are master set search
fields are not allowed:

SI-PATH >CUCNUM
SI-PATH >

Defining concatenated Si-keys

To define a concatenaled Si-key, specify additional fields to be included as Sl-subkeys:

SI-PATH >ORDER-ID/B

ITEM 1 >OMCPON

ITEM LENGTH IS 7 WORDS. ENTER SHORTER LENGTH (~ =BYTES) IF DESIRED >2
ENTER OFFSET IN BYTES (RETURN=1} > return

ITEM 2 >0MBLOC

ITEM 3 >0MCCOD

SI-PATH >

w?here are several items to notice in this example. First, only the first 2 words (4 characters) of
the OMCPON field are being included in the Si-key. Second, since the item has been
shortened, the desired offset is requested. Next, the length was not prompted for in the second
and third Sl-subkeys because the tems are nof of an alphanumeric data type and numeric items
must be represented in full. Fourth, only three Si-subkeys (rather than four) were prompted for
because the Sl-path is being configured for a master dataset and the IMAGE search field is not
included in the Si-key. lLastly, /B was specified to cause SUPERDEX to generate Si-indices for
entries that contain a blank value in the first Si-subkey.

3-22 Configuration / Establishing Sl-indices Version 3.1 March 1992

The following example defines the same concatenated Sh-path, but defines the length in bytes,
instead of words. Additionally, an offset of 3 has been chosen.

SI-PATH »CRDER-ID/B

ITEM 1 >OMCPON

ITEM LENGTH IS 7 WCRDS. ENTER SHORTER LENGTH (- =BYTES) IF DESIRED >4
ENTER OFFSET IN BYTES {(RETURH=1} > 3

ITEM 2 >OMBLOC

ITEM 3 >O0MCCOD

SI-PATH »

In the following example, a concatenated Si-key containing three Si-subkeys is being configured for a
detail dataset. No Sl-subkey lengths are prompted for because all items are numeric:

SI-PATH >ITEM-ID
ITEM 1 >OMNUMB
ITEM 2 >ITMNUM
ITEM 3 >ITMCOD
ITEM 4 >return
SI-PATH >

wﬁss explained earlier, a concatenated Sl-key can contain more than four Sl-subkeys only if the
desired excess fields are contiguous in the dataset and if the special SIEXTLEN JCW is set fo 1.

This example shows a concatenated Si-key containing eight Sl-subkeys, although only four are
referenced by name. The situation is that there are eight separate fields that hoid status codes--
named STATUS-1 through STATLUS-8 and it is necessary to have all eight four-character codes
included in the concatenated Si-key:

SI-PATH »>BTATUS

ITEM 1 >S8TATUS-1

ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH (- =BYTEES} IF DESIRED >return
ITEM 2 >»>8TATUS-2

ITEM LENGTH IS 2 WORDS, ENTER NEW LENGTH >return
ITEM 3 »>8STATUS-3

ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH >retwurn
ITEM 3 >8TATUS-4

ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH >10
ENTER OFFSET IN BYTES (RETURN=1)} >return

S5I-PATH »

lla:’The default length of two words was chosen for the first three status codes (by hitting RETURN).
A length of 10 was specified for STATUS-4, which will cause the remaining status codes
(STATUS-5 through STATUS-8) to be implicitly included in the Sk-key. Also, the question
displayed is not the same when the SIEXTLEN JCW is turned on.

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-23

Remember that in order to configure this special type of concatenated Si-key that it is necessary to
have the SIEXTLEN JCW set to 1 before invoking SIMAINT.

Defining keyworded Si-paths

Appending /K to the Sl-path name defines an Sl-path that is keyworded:

SI~PATH >CUNAME/K

ITEM LENGTH IS 15 WORDS. ENTER KEYWORD LENGTH >6

ENTER MINIMUM NUMBER OF CHARACTHRS PER KEYWORD {1-4) >4
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY >3

ITEM 2 >return

SI-FATH >

lta:"'lnsuauad of prompting for the Sl-key length, SIMAINT instead prompts for keyword length,
minimum number of characters per keyword, and average number of keywords. The keyword
length can be entered in bytes as a negative value. Also, the offset cannot be specified. The
entire field is included in the keyword.

in this example, each keyword is recognized only by the first 12 characters (6 words), a word must
contain at least 4 characters 1o be keyworded, and an average of 3 keywords are contained in each
Sl-key.

Concatenated Sl-keys can also be configured as keyworded, but only the first Si-subkey is
keyworded:

SI-PATH »>8SHIP-ID/R

ITEM 1 >SENAME

ITEM LENGTH IS 15 WORDS. ENTER KEYWORD LENGTH »-12
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD (1-4) »3
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY =4

ITEM 2 »SHADD1

ITEM 2 >BEADD2

ITEM £ »return

SI-PATH >

The keyword length of -12 (12 characters or 6 words), minimum number of characters per keyword of
3, and average number of keywords of 4 are automatically applied to the first Sl-subkey (the other SI-
subkeys are not keyworded).

3-24 Configuration / Establishing Si-indices Version 3.1 March 1992

Defining grouped Sl-paths

A grouped Sl-path is defined by specifying multiple Si-keys under a common Sl-path name. 1t is not
necessary to configure all members of the group at the same time: additional Si-keys may be added
into the group at a later time (when deleting a grouped Si-path, however, all members are deleted).

These are the steps to follow in defining a grouped Sl-path:

1. Specify a new Sl-path name, optionally suffixed with /B (to index all blank Si-keys in the group)
or /K (to define all Sl-keys in the group as keyworded). The suffix atiribute is inherited by all S1-
keys in the group.

2. Specify the name of the first item to be contained as an Si-key in the group. Define the longest
item first, since the Si-key length for the group may not exceed the length of the first item
specified. If the group is related to a master dataset and includes the IMAGE search field,
define i last.

3. Specify the Si-key iength, which will be applied to all Sl-keys in the group and which therefore
must be no greater than the longest item in the group. Si-keys for items that are shorter than
this length are padded with spaces.

4. Define additional Sl-subkeys, if desired, when prompted. These Sl-subkeys are unconditionally
applied to all Sl-keys in the group.

5. When prompted for the next Sk-path name, specify the same Si-path name as before but
append the suffix /G.

8. Enter the name of the next Si-key to be included in the group.

7. Repseat steps 5 and 6 for each additional Si-key in the group.

This example shows a grouping of two Sl-key fields under the Sl-path name SHADD:

SI-PATH >8HADD

ITEM 1 >SHADD1

ITEM LENGTH IS 13 WORDS. ENTER SHORTER LENGTH (- =BYTES) I¥ DESIRED >-10
ITEM 2 >return

ST-PRTH >SHADD/G

ITEM 1 >SHADD2

SI-PATH »

B§.‘t”he first field defined is automatically included in the group, even though /G was not appended
to the corresponding Sl-path name.

This example shows a grouping of three fields under the Sl-path CUPHN.

SI-PATH >CUPHN
ITEM 1 >CUPHER1
ITEM 2 >return
SI-PATH >CUPHN/G
ITEM 1 >CUPHN2
SIi-PATH >CUPHN/G
ITEM 1 >CUPHNZ
SI«PATH >

Version 3.1 March 1992 Configuration / Establishing St-indices 3-28

The Si-key length was not prompted for here because all tems are integers (data type 1).

Defining super-grouped Sl-paths

A super-grouped Sl-path is defined by configuring an Si-path for a masier dataset and then
referencing that Si-path for one or more related detail datasets. it is not necessary to include all
related detail datasets in the super-group.

The Sl-set number option on the datasets, both master and details, must be the same if a super-
group is wanted.

Sl-path names between masters and their related details should be uniquely named to avoid any
confusion between super-grouped paths, and those that are not super-grouped.

@The ferns selected must exist in afl datasets involved except for the first item on a master

dataset.

These are the steps to follow in defining a super-grouped Si-path:

1.

First configure a new Sl-path for the master dataset, optionally suffixed with /B (to index all
blank Si-keys in the group) or /K {to define all Si-keys in the group as keyworded). The suffix
attribute is inherited by all Si-keys in the super-group.

Specify the name of the first item in the master set {o be contained as an Si-key in the super-
group. If no item in the master set is fo be included in the super-group, specify the item from
one of the related detail sets that will be part of the super-group.

Define additional Sl-subkeys in the master set, if desired, when prompted. These $l-subkeys
are unconditionally applied to all Sl-keys in the super-group. If defining additional Sl-subkeys for
the master path, each subkey must also exist in the detail dataset(s), except for Sl-subkey 1.
When prompted for the next Si-path name, hit RETURN to be prompted for the next dataset (or
continue to define additional, unrelated Sl-paths for the master set}.

When prompted for the next dataset, specify the name of a detail dataset related by an IMAGE
path to the master set previously specified.

When prompted for Sl-path name, enter the same Si-path name as for the master set but
append the suffix /G.

Enter the name of the item in the detail dataset that is to be included as an Sl-key in the super-
group.

Enter ReTURN for Sl-path name (or continue o define additional, unrelated Sl-paths for that
detail set).

Repeat steps 5 through 9 for each additional related detail datasets in the super-group.

3-26 Configuration / Establishing Si-indices Version 3.1 March 1992

This example shows a super-grouping of a master dataset and a single associated detail set (related
by the IMAGE path along CUSTOMER-NUMBER]) under the Si-path name CUSTOMER-BRANCH:

DATASET >CUSTOMERS
S1I-PATH >CUSTOMER~BRANCH
ITEM 1 »>CUSTOMER-NAME

ITEM LENGTH IS5 15 WORDS. ENTER NEW LENGTH (- =BYTES) IF DESIRED >return
ITEM 2 >return

SI~-PATH >return

DATASET >BRANCHES

SI-PATH >CUSTOMER-BRANCH/G
ITEM 1 >BRANCH-NAME
SI-PATH >return

DATASET >

This example shows a super-grouping of the ORDER-LINES detall dataset that is related to the
ORDER-HEADERS master dataset in which the master dataset is not included in the super-group,
under the Si-path name PART-DESCRIP;

DATASET >ORDER-HEADERS

SI-PATH >PART~DESCRIP

ITEM 1 »>PART-DESCRIPTION << gdoes not exist in ORDER-HEADERS but in ORDER-LINES »>»>
ITEM LENGTH IS 13 WORDS. ENTER NEW LENGTH {- =BYTES) Ir DESIRED -return
ITEM 2 >refurn

SI~PATH >return

DATASET >ORDER-LINES

SI-FATH >PART-DESCRIP/G

ITEM 1 >PART-DESCRIPTION

SI-PATH >return

DATASET »

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-27

Defining Si-paths that are hoth keyworded and grouped

As shown above, a grouped Sl-path may be defined as keyworded, in which case every Si-key in the
group is treated as keyworded.

The Sl-path in this example is both keyworded and grouped, as defined simply by appending /K fo
the Si-path name when first declared:

SI-PATH >CUADD/XK

ITEM 1 >CUARDDL

ITEM LENGTH IS 13 WORDS. ENTER KEYWORD LENGTH >§

BENTER MINIMUM NUMRER OF CHARACTERS PER KEYWORD {1-4) »1
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY >4

ITEM 2 >refurn

SI-PATH >CUADD/G

ITEM 1 >CUADD2

SI-PATH »

Defining custom Si-paths

For custom Si-paths, for which the Si-key is generated by the SIUSER procedure, specify an
arbitrary Sl-path name and RETURN for the first Sl-subkey:

DATASET >SHIP

S8I-PATH >CUSTOM-ID

ITEM 1 >retumn

ENTER SI-XEY LENGTH >4

ENTER AVERAGE NUMBER OF INDICES PER ENTRY >4
SI-PATH >

The St-key length represents the length, excluding the Si-extension, that is returned in the indices
parameter of the SIUSER procedure. The average number of indices represents the average value
of the index count returned in the first word of the index parameter of SIUSER.

if the database is enabled for NLS (Native Language Supportt}, the following question is also asked:

USE NL.S-SORTING (N/Y} >

This determines whether NLS colialing sequences are used for ordering entries for this Si-path,
Because numeric data is sorled the same, respond N if the Sk-path contains only numeric data fields;
ctherwise respond Y.

3-28 Configuration / Establishing Sl-indices Version 3.1 March 1992

Defining independent Sl-paths

For independent Si-paths that are not associated with any dataset, enter a SPACE and RETURN for the
dataset and an arbitrary Sl-path name:

DATASET >space + return
SI-PATE >DOCUMENT-NAME
ENTER SI-INDEX LENGTH »>10
SI-PATH >

The Sl-index length represents the length of the entire Si-index: both the Si-key and Si-extension.
This must be at jieast 2 words long.

If the database is enabled for NLS {Native Language Support), the following question is also asked:

USE NLE-SORTING (N/Y) >

This determines whether NLS collating sequences are used for ordering entries for this Si-path.
Because numeric data is sorted the same, respond N if the Si-path contains only numeric data fields;
otherwise respond Y. ‘

Defining keyword exclusion Si-path
The special independent Sl-path named KWEXCLUDE is reserved for words exciuded from

keywording (as defined in the file KWEXCLUD, which should already exist in the same group/account
as the database). Enter space for the dataset and KWEXCLUDE for the Sl-path:

DATASET > space + return
SI-PATH >KWEXCLUDE
ENTER KEYWORD LENGTH »5
SI-PATH >

The keyword length represents the significant length of each exclusion word. Refer to the Excluding
words from keywording chapter in this section for a discussion.

- Deferring indexing
By default, SIMAINT will proceed to the extension phase (if required) and indexing phase once all
configuration information has been specified, as indicated by a response of RETURN at the DATASET>

prompt. You may instead want to defer indexing until a more convenient time, since # does require
exclusive database access.

Version 3.1 March 1982 Configuration / Establishing Sl-indices 3-29

To facilitate this, SIMAINT is capable of completing the extension phase (if required) and saving the
newly-configured Sl-definitions but deferring the indexing phase until explicitly specified. This is
accomplished by responding /N to the paTaseETs> prompt, as shown:

DATASET>/N

To proceed with indexing when convenient, rerun SIMAINT against the same database and hit
RETURN at the DATASET > prompt.

Extension phase -- specifying Sl-dataset(s) capacity

Once all definitions have been entered, SIMAINT proceeds to calculate the capacities for every Si-
dataset. The calculated Si-dataset capacities are worst-case calculations which are sufficient for
storing the Si-indices that are required based on the current capacities of the datasets they
represent. (Refer to the Infernal Structures appendix for more information about how the Sl-dataset
capacity is calculated.)

it SIMAINT.PUB is being run, the capacities are displayed and the opportunity is given to override
them. The program then proceeds to add the Si-lem and Sl-datasel(s) into the database.

CALCULATED CAPACITY OF SI-DATASET 241
DESIRED CAPACITY (RETURN = CALCULATED CAPACITY) >400

CALCULATED CAPACITY OF SII-DATASET 1460

DESIRED CAPACTITY (RETURN = CALCULATED CAPACITY} »>250
EXTENSION STARTED - DO NOT INTERRUPT

EXTENSICON SUCCESSFUL

With SIMAINT.PUB, the configuration process is now complete and the program proceeds to create
the Sl-indices.

If SIMAINT.NOPRIV is being run, the Si-item characteristics and calculated Sl-dataset capacliies are
displayed and a job stream is created 1o facilitate configuration once the Si-item and Si-dataset(s)
have been added:

CAPACITY OF SI-DATASET

THE CALCULATION IS BASED ON THE CURRENT BLOCKMAX OF 512 WORDS
CREATE SI-ITEM AS FOLLOWS 4X254 (508 WORDS)

CREATE SI-DATASET WITH CAPACITY OF 241

CREATE SI1-DATASET WITH CAPACITY OF 160

3-30 Configuration / Establishing Sl-indices Version 3.1 March 1992

With SIMAINT.NOPRIV, it is now necessary for you to manually create the Sl-item and Sl-dataset(s),
as described in the Internal structures appendix. The Slkitem should be created with the
characteristics shown, and the Sl-datase! capacity(ies) should be set at least as high as the
recommended capacity(ies). Once this is done, stream the job created by SIMAINT to configure and
create the Sl-paths.

¥ you have configured SUPERDEX to utilize a separate Sl-index base, use SIMAINT.NOPRIV to
calculate the capacities for the Sl-dataset(s) but do not append /3 to the database name. Once the
capacities have been determined, create the Si-index base as described in the [nternal structires
appendix.

Now, having created the Sl-item and Sl-dataset(s} and perhaps the Si-index base, stream the job
created by SIMAINT.NOPRIV to actually configure the Si-paths. I using a separate Sl-index base,
append /3 to the primary database name when re-running SIMAINT.

indexing phase - progress display

Once the extension is compieted, SIMAINT proceeds to generate the Sl-path definitions and Si-
indices. Extensive progress reporting is displayed during the indexing phase.

Each non-independent Sl-path must go through three processes. First, the records in the dataset
must be read, called the INPUT phase. Next the created indices for the Sl-path must be sorted,
called the SORT phase. Finally the indices must be written out to the Si dataset, called the QUTPUT
phase.

Version 3.1 March 1992 Configuration / Establishing Sl-indices 3-31

During the INPUT and OUTPUT phases a display of the number of entries read, or indices added,

the percentage complete, the elapsed time, and the elapsed CPU seconds are displayed at a regular
predefined interval. During the SORT phase, no progress reporting can be displayed until after the

SORT is completed.

PROCESSING SI-PATH KWEXCLUDE OF

PROCESSING SI-PATH CUSTOMER-NAME OF CUSTCMERS # OF ENT: 10063
INPUT: 1003 RECCRDS 1860 % CPU 0:00:01.2 Elapsed 0:00:45
SORT: 10603 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 1003 INDICES 100 % CPU 0:00:00.9 Elapsed 0:00:02

PROCESSING SI-PATH CUSTOMER-NAME-KW COF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECORDS 100 % CPU 0:00:02.7 Elapsed 0:00:06
SORT: 2803 INDICES CPU 0:00:00.0 Elapsed 0:00:460
QUTPUT: 2788 INDICES 100 % CPU 0:00:01.6 Elapsed 0:40:03

PROCESSING SI-PATH ADDRESSLI-CITY~EW OF CUSTOMERS # OF ENT: 1043
INPUT: 1003 RECCRDS 100 % CPU 0:00:04.3 Elapsed 0:00:07
SORT: 4448 INDICES CPU 0:00:00.0 Elapsed 0:00:00
QUTPUT: 4417 INDICES 100 & CPU (¢:00:02.6 Elapsed 0:00:03

TOTAL TIME: CPU 0:00:17.7 Elapsed 0:00:40

END OF PROGRAM

ll%Noﬁce that the number of records read during the INPUT phase was always the same as the
or ENT:, but the number of indices sorted and written out either match the number of entries
or is larger. This is because in an Si-path that is not a one-to-one path (only simple paths or
simple-concatenated paths are one-to-one paths) will create more indices than number of
records.

The number of indices written ot may be less than then number sorted because all duplicate
Sl-indices are not added. In other words, if a record has the same word in a keyworded Si-path
only one Sl-index will be added.

The default interval for updaling the progress report is 1000 records or indices. This can be
overridden by setting the JCW SICQUNT. The valid values for this JCW are 100 to 32767, inclusive.
if the value is not valid, then 1000 will be used.

3-32 Configuration / Establishing Si-indices Version 3.1 March 1992

Example of configuring and establishing Sl-indices for a database

A complete example of an entire SIMAINT configuration session for a database follows:

1RUN SIMAINT.PUR.SUPERDEX
SIMAINT VERSION 3.1 (06DECS1) COPYRIGHT DRE. MATT / IABG (1%88,1991)

DATABASE > CEDB

DATABASE HAS NOT BEEN INITIALIZED FOR SUPERDEX
AFTER THE DIALOG PHASE THE PROGRAM WILL GC INTO PRIVILEGED MODE TO ADD
THE SI-DATASET(S} TO THE DATABASE

DATASET > space +return

S1-PATH > RWEXCLUDE

ENTER KEYWORD LENGTH > 4

SI-PATH > return

DATASET > CUSTOMERS

SI-PATH > CUSTOMER-NAME

ITEM LENGTE IS 15 WORDS.ENTER SHORTER LENGTH (- =BYTES)IF DESIRED> return
ITEM 2 > return

S1-PATH > CUSTOMER-NAME-KW/K

ITEM 1 > CUSTOMER-NAME

ITEM LENGTH IS 1% WORDS. ENTER KEYWORD LENGTH > 4
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD > 1
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY > 6
ITEM 2 > return

SI~PATH > ADDRESSI-CITY-KEW/K

ITEM 1 > ADDRESS-1

TTEM LENGTH IS 12 WORDE. ENTER KEYWORD LENGTH > 4
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD > 1
ENTER AVERAGE NUMBER OF XKEYWORDS PER ENTRY > 4
ITEM 2 > refurn

SI-PATH > ADDRESSI-CITY-XKW/G

ITEM 1 > CITY

ST-PATH > returp

DATASET » ORDER-HEADERS

SI-PATH » CUSTOMER-NUMBER

ITEM 2 > relurn

SI-PATH »> return

DATASET > ORDER-LINES

S8I-PATH > ORDER-PART

ITEM 1 > ORDER-~-NUMBER

ITEM 2 > PART-NUMBER

ITEM LENGTH IS 7 WORDS.ENTER SHORTER LENGTH (- =BYTES)IF DESIRED > return
ITEM 2 > return

SI-PATH > PART-ORDER

ITEM 1 > PART-NUMBER

ITEM LENGTH I$ 7 WORDS.ENTER SHORTER LENGTH (- =BYTES}IF DESIRED > return
ITEM 2 > ORDER-NUMBER

ITEM 3 » return

SI-PATH > return

DATASET > return

Version 3.1 March 1992 Configuration / Establishing Sl-indices

3-33

CALCULATED CAPACITY OF SI-DATASET 752
DESIRED CAPACITY {RETURN =
EXTENSION STARTED -~ DO NOT INTERRUPT
EXTENSION SUCCESSFUL

PROCESSING SI-PATH KWEXCLUDE QOF

PROCESSING SI-PATH CUSTOMER-NAME

CALCULATED CAPACITY)

OF CUSTOMERS

>1600

INPUT: 1003 RECORDS 100 % CPU 0:00:01.3
SORT: 1003 INDICES CPU 0:00:00.0
curPpuT: 1003 INDICES 100 % Cru 0:00:00.9
FROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS
INPUT: 1003 RECORDS 100 % CPU 0:00:03.0
SORT: 3046 INDICES CPU 0:00:00.0
OUTPUT: 3032 INDICES 100 % CPU 0:00:01.8
PROCESSING SI-PATH ADDRESSL-CITY-KW OF CUSTOMERS
INPUT: 1003 RECORDS 100 % CPU 0:00:04.6
SORT: 4375 INDICES CPU 0:006:00.0
oUTPUT: 4344 INDICES 100 % CPU 0:00:02.6
PROCESSING SI-PATH CUSTOMER-NUMBER OF CORDER-HEADERS
INPUT: 2620 RECORDS 106 % CPU G:00:02.4
SORT: 2620 INDICES CPU 0:006:00.0
OQUTPUT: 2620 INDICES 100 % CPU 0:00:01.4
PROCESSING SI-PATH ORDER-PART OF ORDER~LINES
INPUT: 9272 RECORDS 100 % CPU 0:00:09.1
SORT: 8272 INDICES CPU 0:00:00.1
QUTPUT: 8272 INDICES 100 % CPU 0:00:06.8
PROCESSING EI-PATH PART-ORDER QOF ORDER-LINES
INPUT: G272 RECCRDE i60 % CPU 0:00:08.1
B0RT: 9272 INDICES CPU 0:00:00.2
CUTPUT: 9272 INDICES 100 38 CpPU 0:00:07.3
TOTAL TIME CPU 0:00:57.8

END OF PROGRAM

4 OF ENT:
Elapsed §:
Elapsed {:
Elapsed ¢

OF ENT:
Elapsed 0
Elapzed 0
Elapsed 0

OF ENT:

Elapsed 0:
Elapsed {:
Blapsed 0:

OF ENT:
Elapsed 0:
Elapsed 0:
Elapsed 0:

OF ENT:
Elapsed 0:
Elapsed 0:
Elapsed 0:

OF ENT:
Elapsed 0:
Elapsed 0:
Elapsed 0:
Elapsed 0:

1003
00:02
00:00

100:01

1003

1004:03
00:00
:00:02

1003
00:05
006:00
006:03

2620
00:03
00:00
00:02

9272
00:10
80:00
00:09

9272
0G:10
00:00
00:09
06:27

3-34 Configuration / Establishing Si-indices

Version 3.1 March 1982

Running SIMAINT in batch

SIMAINT can be run in batch, and uses dialog similar fo on-line. The method for creating a job
stream by which to run SIMAINT in batch is to build a job file using the SCHEMA entry-point after all
paths have been defined.

The discrepancies between on-line and batch use are:

B all prompts are displayed during baich, while during on-line the prompis are variable
depending on answers

| a line containing only a SPACE is represented in baich by a blank line

W 2 iine containing only @ RETURN {which is normally specified in a batch job as a blank line) is
represented by a line containing a double slash (/ /) in the first two character positions

SIMAINT will QUIT (not TERMINATE) normally upon encountering any error in batch, permitting
festing of the system JCW.

Running SIMAINT with a ; STDIN option will cause SIMAINT to execute as if in balch.

Version 3.1 March 1982 Coenfiguration / Establishing St-indices 3-35

Section 4 Programming

Overview

This section discusses the various methods utilized in programming with SUPERDEX and gives
examples of various types of SUPERDEX access.

Although the SUPERDEX intrinsics are discussed throughout this section, they are documented fully
for reference in the [ntrinsics section.

Chapter 1 Locking
Function in this secltion examines various Locking sirategies available in SUPERDEX, both
explicit and implicit, as well as multiple DBOPENSs and other locking considerations.

Chapter 2 Adding, updating, and deleting entries

Function discusses Adding, updating. and deleting entries using DBPUT, DBUPDATE, and
DBDELETE. Also covered are custom indices, the DBPUTIX and DBDELIX
intrinsics, and independent Sl-paths.

Chapter 3 Qualifying entries with DBFIND

Function describes various methods of Qualifying entries with DBFIND. All the various access
methods are shown, including keyword and grouped retrieval, as well as lookups that
involve a single set, multiple Si-paths in a single set, multiple sets, and muttiple
bases.

Chapter 4 Retrieving entries with DBGET

Function looks at Retrieving entries with DBGET in sorted sequential order using modes 5, 6,
15, and 16, as well as methods for reading masters and their related details and Si-
indices only,

Chapter 5 Additional programming considerations

Function examines Additional programming considerations, such as :PREParing programs
and programming language variations.

Chapter 6 Native Language Support

Function describes special considerations that must be made when using HP's Native
Language Support facility, for adding, updating, and indexing entries and qualifying
entries with DBFIND.

Locking

Because the Sl-indices may require changes with every DBPUT, DBUPDATE, DBDELETE,
DBPUTIX, and DBDELIX, it is necessary 1o lock the Sl-dataset(s) whenever these intrinsics are
called against SUPERDEX'ed datasets and the database is DBOPENed in mode 1,

SUPERDEX has several strategies for locking the Si-dataset(s) when necessary:

explicit locking of all datasets, including the Sl-dataset(s)

implicit locking of all the datasets that are not expliciily focked (entry dataseis as well as Si-
dataset(s})

implicit locking of the Si-datasel(s) only

implicit focking and unlfocking of the Si-datasetl(s) via a separate DBOPEN of the base
implicit locking and unlocking of the Sl-datasel{s) contained in a separate Sl-index database
via a separate DBOPEN of the Sl-index base

Explicit locking of all datasets

If you do not want SUPERDEX to perform any implicit locking, add the Sl-dataset{s} to the program's
lock descriptor, using an item of @.

Implicit locking of all the datasets

SUPERDEX is capable of automatically performing all required locking (both DBLOCKs and
DBUNLOCKS]) in any program against all the datasets in a database, including those that do not have
associated Sl-paths. [n order to utilize this method, the program must not lock the datasets that have
related St-paths.

When an application calls DBPUT, DBUPDATE, or DBDELETE with no covering lock, SUPERDEX
automatically locks the dataset that contains the data entries, modifies it, and then unlocks it. It then
locks the appropriate Si-dataset, modifies it, and then unlocks . Both locks are applied at the
dataset level.

This methed is very efficient but because the lock against the Si-dataset is applied at the dataset

level, it is recommended that any locking performed by programs be done at the dataset level to
avoid waiting for item-level locks.

4-2 Programming Version 3.1 March 1992

implicit locking of the Sl-dataset(s)

Existing programs that already lock do not need to be modified for SUPERDEX. SUPERDEX is
capable of automatically performing a set-level lock against the appropriate Sl-dataset when required.

This method requires that SUPERDEX lock an Sl-dataset when another lock against the dataset
containing the entries is being held. To accomplish this, MPE requires that the program and the
group and account in which it resides have MR (multi-rin} capability. (By granting MR capability, it is
possible that an undetected conflicting lock inherent in a program will result in a deadlock, whereas
the result without MR capability would be an IMAGE error.) A deadiock could occur, however, if a
separate program performs a base-level lock during the window between the set-level lock against an
entry dataset and the Si-dataset. If such a condition exists--with a separate program performing
base-level locks concurrently with another program performing set-level locks against a dataset that
contains Sl-paths, either locking should be done explicitly or SUPERDEX should be configured to
maintain its Sl-indices in a separate Sl-index base, as explained below.

SUPERDEX determines whether fo implicitly lock the Sl-dataset(s) by checking the lock descriptor
when the program calis DBLOCK. If an Si-dataset (S! - 8I7) is not included, SUPERDEX
automatically performs a sel-level lock against the appropriate Sl-dataset. The lock is released when
the program calis DBUNLOCK, unless SUPERDEX was configured to lock and unlock via a separate
DBOPEN (as discussed below).

In this method, SUPERDEX locks only one Si-dataset, so if a logical transaction consists of multiple
DBPUTs, DBUPDATES, or DBDELETES involving multiple datasets with Si-paths, all these datasets'
Sl-indices must be contained in the same Si-dataset in order {0 be coverad by the implicit iock. If this
is not the case, the program must explicitly lock all related Sl-datasets; allernately, SUPERDEX may
be configured to perform a separate DBOPEN or maintain its Sl-indices in a separate Si-index base,
as discussed below, o eliminate this requirement.

Implicit locking and unlocking of the Si-dataset(s) via separate DBOPEN

Because IMAGE does not have a selective unlock facility, the Si-dataset lock placed by SUPERDEX
in the previous method is released when the program calls DBUNLOCK. This strategy could impede
throughput of multiple dalabase users if the delay between the DBPUT, DBUPDATE, or DBDELETE
call and the DBUNLOCK call is significant.

I@:[t is recommended that SUPERDEX be configured to perform a separate DBOPEN for
each process through which all Sl-dataset locking will be done. With this method, all
entry-dataset locks are done via the first DBOPEN, and all Sl-dataset locks via the
sacond DBOPENM. This permits SUPERDEX to call DBUNLOCK immediately after
modifying its Sl-indices, although the dataset lock placed via the first DBOPEN may still
be held. An additional benefit is that logical iransactions against multiple datasets whose Sl-
indices are in separate Si-datasels are locked for accordingly. This method requires MR
capability.

Version 3.1 March 1992 Programming 4-3

Implicit locking and unlocking of the Sl-dataset(s) in Sl-index base

if SUPERDEX has been configured to maintain all the Sl-indices for a database in a separate Si-
index base, a separate DBOPEN is automatically performed against the Sl-index base and a set-
level lock automatically applied to the appropriate Sl-dataset in the Sl-index base.

In this case, no SUPERDEX locking is required against any datasets in the primary base containing
the data entries, since only the root Sl-dataset exists and it is only read and not written.

This strategy is recommended for users who do not want the overhead of transaction logging of
intrinsics used by SUPERDEX to maintain the Si-indices in addition to the regular logging of
transactions against data entries. Using this method, logging may be either enabled or disabled on
the Si-index base while enabled on the primary base.

Because programs must hold two locks simultaneously (against both the entry dataset in the primary
base and an 8i-index dataset in the Sl-index base) this method requires MR capability.

4-4 Programming Version 3.1 March 1992

Adding, updating, and deleting entries

Adding and deleting entries with DBPUT and DBDELETE

Entries are added and deleted using SUPERDEX's DBPUT and DBDELETE intrinsics, which are
identical 1o their IMAGE counterparts except they additionally maintain the associated Sl-indices.

For bases that are enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBPUT and DBDELETE that does not already specify them. The DBEND is imposed
regardiess of whether or not the DBPUT or DBDELETE is successful,

Updating entries with DBUPDATE

Entries are updated using SUPERDEX's DBUPDATE intrinsic, which is identical to its IMAGE
counterpart except that a delete and add of any relaled Sl-indices is internally performed.

If DBUPDATE specifies neither the @ fist nor a Jist that includes all the Si-subkeys whose values are
being changed, SUPERDEX will automatically perform one or more rereads (DBGET mode 1) with
various /ists when performing the DBUPDATE. This is both inefficient and causes the current #ist to
change without the knowledge of the program, and therefore any subsequent calls done without re-
initializing the fist may be faulty. It is therefore recommended that the @ fist or a list that contains all
Sl-subkeys be used when calling DBUPDATE.

in the event that DBUPDATE is performed against a dalabase that was DBOPENed in mode 2, no
Si-keys may be updated since this would require that a DBPUT and DBDELETE be performed
against the corresponding Si-dataset, which may not be done in DBOPEN mode 2. If this is
attempted, condition word -41 ("DBUPDATE WILL NOT ALTER A SEARCH OR SORT
ITEM"}) is returned.

For bases that are enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBUPDATE that does not already specify them. The DBEND is imposed regardless of
the success of the DBUPDATE.

DBGET used to locate entry for DBUPDATE or DBDELETE

If the DBGET used to locate an entry for updating or deletion specifies a fist that does not include all
Sl-subkeys, SUPERDEX may internally change the fist. The Jist will be changed for DBUPDATE if it
does not include all Sl-subkeys whose values are being changed; for DBDELETE, alt Si-subkeys in
the dataset must be included. Refer to the Retrieving eniries with DBGET chapter [ater in this
section for a discussion.

Version 3.1 March 1992 Programming 4-5

Determining Sl-key value

Normally, SUPERDEX automatically determines, based on its configuration, the Sl-key and Si-
subkey values to inciude in the Si-indices.

There are instances, however, in which the Sl-key value is not represented in the data entry in any
straightforward manner and SUPERDEX is therefore unable to determine it. Some examples of this
are as follows:

B Date reformatting
Date must be converted from yy/mm/dd format into Julian or other format

® Upshifting
SUPERDEX only upshifts Si-keys for Sl-paths that are configured as keyworded. You may want
to upshift Sl-keys for non-keyworded Si-paths

B Compound indexing
SUPERDEX aliows a maximum of four Sl-subkeys in an Si-key, which may be insufficient

M SOUNDEX
A SOUNDEX system whereby sound-alike searching is possible may be desired

SUPERDEX provides two different facilities for addressing these needs: the SIUSER procedure, and
the DBPUTIX and DBDELIX intrinsics.

Custom Sl-indices with SIUSER

SIUSER is a user-wrilten procedure that is used by SUPERDEX to compute one or more custom 5i-
indices for entries whenever DBPUT, DBUPDATE, or DBDELETE is called and whenever SIMAINT
is run.

SIUSER requires that the database, dalaset, and Sh-path be defined in s base, dsef, and item
parameters and that the full data entry be supplied in #ts buffer parameter. SIUSER retumns the
number of Sl-indices created and their values in the index parameter.

Explicit Sl-index management with DBPUTIX and DBDELIX

The DBPUTIX and DBDELIX intrinsics explicitly add and delete Sl-indices, and are useful for
generating custom Si-indices in addition to those automatically generated by DBPUT and removed by
DBDELETE.

The common method for establishing multiple Si-indices for an entry, over and above those
generated by DBPUT, is to first call DBPUT 1o add the entry to the dataset and create the configured
Sl-indices, and then cali DBPUTIX as many times as necessary to establish the additional Sl-indices.
The same technique is used with DBDELETE and DBDELIX to remove Si-indices.

DBPUTIX and DBDELIX require that the database, dataset, and Si-path be defined in their base,

dset, and ffern parameters and that the full Sl-index, inchiding the Sl-extension, be supplied in the
buffer parameter.

4-6 Programming Version 3.1 March 1992

For a master set, the Sl-extension is the entry's IMAGE search field value, which for DBPUT may be
retrieved from the buffer parameter and for DBDELETE may be gotien from the fist used by the
DBGET that located the entry for deletion. For a detail sel, the Sl-extension is the entry's relative
record number, which is returned in words 3-4 of the sfafus array from the DBPUT or DBDELETE.

Independent Si-paths

The DBPUTIX and DBDELIX intrinsics are also used for independent indexing, in which the entities
being indexed do not reside in IMAGE datasets.

DBPUTIX and DBDELIX against independent Si-paths require that the base parameter identify the
database in which the Si-indices are contained and the dsef parameter be left blank or set to 200.
The Si-path is defined in the ffem parameter, and the full Si-index, including an appropriate Si-
exiension, is provided in the buffer parameter.

Version 3.1 March 1932 Programming 4-7

Qualifying entries with DBFIND

in IMAGE, entries in a detail dataset are normally accessed by using DBFIND to locate the head of a
chain {which is contained in a related master dataset) for a specified search field value {commonly
called a "key value"), and then the associated entries are subsequently retrieved via DBGET mode b
of 6. An entry in a master dataset is normally accessed via DBGET mode 7, based on the search
field value specified.

SUPERDEX also uses DBFIND and DBGET to access dataset entries. The same techniques are
used for both master and delail datasets in the same way.

in SUPERDEX, DBFIND does much more than locate the chain head for a specified key value: it
qualifies multiple entries based on various criteria, and may be called multiple times in succession to
refine the selection using various fields, datasets, and databases.

Cnce entries have been qualified with DBFIND, they may be retrieved in ascending or descending
sorted sequential order with DBGET mode b and 6 or new DBGET modes 15 and 16.

Effectively, qualifying and retrieving entries in a master or detail dataset using an Sl-path is just like
qualifying and retrieving entries in a detail set using an IMAGE path.

Summary of DBFIND options
Whereas IMAGE's DBFIND works only on detail datasets, SUPERDEX's DBFIND works on:

W detail datasets
B master datasets
B Si-indices only, which may reference external files

Based on how Sl-paths are configured, DBFIND can qualify entries by any of the following:

| any word in a keyworded Sl-key

B 2 combination of Si-subkey values in a concatenated Sl-key

B a value that occurs in multiple Si-keys that are grouped

B any subitemn in a compound IMAGE item that is configured as an Sl-key

DBFIND can qualify entries generically by any of the following, as specified in the argument by
conditional and relational operators:

start with a specified value (partial key)
contain a specified value {embedded key)
greater-than or equal-to a specified value
less-than or equal-to a specified value
not equal to a specified vaiue

in a range of two values

4-8 Programming Version 3.1 March 1992

DBFIND also permits multiple generic or exactly-matching values to be specified in an argument,
which permils the use of range and Boolean operations to find all qualifying entries:

M by an AND combination of muitiple values
R by an OR combination of multiple values
B by an AND NOT combination of multiple values

in performing relational access, multiple successive DBFINDs may be calied and their results
ANDed, ORed, and AND NOTed by Boolean operators. This dynamically achieves the foliowing
operations:

B refine a selection with additional criteria

B undo a selection (revert to resufts of prior DBFIND)
B gualify by multiple Si-keys in a single dataset

B qualify by multiple datasets in a database

M qualify by multiple databases

New Relational Operator

A new option has been added for those situations where several relational DBFINDs are being
executed and the relation tables overflow.

if a DBFIND contains an argument with two or more values to be OR'ed together, and then AND'ed
to the pervious DBFIND, an overflow can occur even when it is possible that the net result of qualified
records would fit in the table. Two new DBFIND operators have been added to make this process
possible; [] and $. The [] will automatically copy the active Sl-subset to the backup Sl-subset
and clear the active Si-subset. The § will then AND the search value to the backup Sl-subset,
placing the qualified entiies in the active Si-subset.

The net result of this process is that the record qualified by the additional DBFIND will not
automatically be written to the active Si-subset, but will first be qualified against the backup Si-
subset. This means that the active Si-subset will never contain more records than the backup Sl-
subset, eliminating most table overfiows.

To illustrate the process:

1. DBFIND on path NAME with argument [A@] places the records that qualified into the active
Sl-subset.

2. DBFIND with argument [] will replace the backup Sl-subset with the active and create an
empty active Si-subset.

3. DBFIND on path DATE with argument [9111@)$[91212@}$ will process each
selection separately. First all the records in the backup Sl-subset with a DATE of 9111@
will be copied to the active Sl-subset, then the records in the backup Sl-subset with a DATE
of 9112@ will be copied to the active Sl-subset.

Steps 2 and 3 could be combined into a single DBFIND on path DATE with an argument of
[1[{91111@]8$[{9112@]5.

Before these new operators, steps 2 and 3 would have been in a single DBFIND on path DATE with
argument [9111Q@] [9112@] |&.

Version 3.1 March 1992 Programming 4-9

Indexed access vs. relational access

internally, one of two access methods is used in qualifying entries with DBFIND: indexed access or
relational access.

With indexed accessed, DBFIND locates the first qualifying Sl-index that matches the specified
argument in the Sl-path defined by the ffem parameter. With indexed access, the B-tree in the
corresponding Sl-dataset is accessed, and all qualifying entries form a logicat Sl-chain. Entries on
the Sl-chain are returned using DBGET by reading up or down the B-tree and retrieving the
corresponding entries cne-by-one.

With relational access, Sl-indices are gqualified using the same method but are then copied to form a
vitual Sl-chain In the active Si-subsel. Entries are retrieved using DBGET by reading up or down
this virtual Sl-chain. The advantage is that unlike indexed access, the Sl-chains contained in the
active Si-subset are available for combination with entries located by subseguent DBFIND calls.

To recap, indexed access retrieves entries by directly reading a logical Si-chain in the Sl-dataset;
relational access first forms the logical Si-chain and then copies it {o form a virlual Sl-chain in the
active Sl-subset.

Indexed access is used for retrievals that can be accomplished by accessing a single Sl-chain. This
accounts for most retrievals, and is used by default.

Relational access is used for Boolean retrievals that require the use of multiple Sl-chains, such as in
performing retrievals against multiple St-paths, sets, and bases by using muttiple DBFIND calls. ltis
only invoked when explicitly specified by enclosing the argument value{s) in square brackets ([1),
or enclosing the complete argument with tilde and semi-colon (" . .. 7).

DBFIND modes

Typically, most DBFINDs are performed using either mode 1 or mode 10. Either mode may be used
for both indexed and relational access methods, although they are treated identically when
performing relational access. In indexed access, both modes perform the same function, except
mode 10 does not return the qualifying number of entries in the status array (always returns a count
of 1) and may therefore be considerably more efficient than mode 1. Mode 10 should be used
instead of mode 1 in indexed access whenever possible for efficiency.

Modes 1nn and 2nn in indexed access read nn words of the argument and set the Sl-pointer before
or after the first qualifying entry, respectively. [f nn is prefixed by a minus sign (=), they read nn
bytes instead of words. These modes are refinements and therefore do not handle as many
argument constructs as modes 1 and 10, but are useful for certain circumstances, such as
approximate match retrieval in which no qualifying vaiue exists which sets the Si-pointer to the
nearest qualifying entry. These modes are also useful in the unlikely event that a combination of
symbols used to represent a SUPERDEX operator (e.g. >=) conflicts with a value in an Sl-key in a
data entry.

410 Programming Version 3.1 March 1992

Modes 1nn and 2nn may also be used in relational access against a viriual Si-chain in the active Si-
subset if a null itemn is specified. Refer to Positioning on virtual Si-chain later in this section for a
discussion.

Modes 100 and 200 position the Sl-pointer at the logical beginning and end of the dataset (lowest
and highest entry in ascending sorted sequential order) or a virtual Sl-chain in the active Sl-subset,
respectively.

DBFIND arguments used for indexed access

For indexed access, if DBFIND is called in mode 1 or 10 and the specified argument vaiue is not the
full Sl-key value, either the buffer must be padded with spaces or the argument value must be
terminated by:

B for alphanumeric fields, a single blank followed by a single @

W for alphanumeric fields, a single @ (used for pantial-key retrieval)

W for numeric fields, a single blank
For DBFIND modes 1 and 10 in indexed access, ASCI| numbers may be specified for most numeric
tems (data types |, J, P, B, and Z) i prefixed with ==, >=, <=, or <> or, if appropriate, a -
(negative sign) -- the === operator simply converts an ASCIl value specified to binary format for
comparison.
llﬁaTi'le exception is data type K, for which values must be specified in binary.
For concatenated Sl-keys that contain Si-subkeys of mixed data types (alphanumeric vs. numeric)
and for which the first Sl-subkey is numeric, an ASCII value may be specified in modes 1 and 10 for
the tirst Si-subkey only.
When performing relational access against numeric items, the argument must be specified in ASCII. |
For data types P and Z, SUPERDEX's DBFIND treats unsigned and positive values equivalently.

Real numbers (items of data type R) may include embedded decimal points (.), exponential signs
(E), and positive (+} and negative (=) signs.

Version 3.1 March 1992 Programming 4-11

DBFIND mode/argument examples

| Simple Si-key: alphanumeric X12

mode| argument gescription

1 GOLDENBERG exact match on "GOLDENBERG"

10 GOLDENBERG same, but does not return the number of qualifying entries in the
status array

1 GOLD@ all that start with "GOLD"

102 | coud same

1 G?PLD the values "GELD" and "GOLD"

1 QPLIDR the values "GELD," "GOLD,” "GOLDEN," and "GOLDBERG"

1 FOLD the values "BOLD,” "COLD," "FOLD,"” and "GOLD"

1 PX7744008 all that start with "PX." followed by any two characlers,
followed by 4400, followed by anything

1 PX77448 all with "PX" followed by any two characters, followed by "44."
followed by anything

1 >=AG<=BE all in the range between "A" and "B," inclusive

1 <>87@ all except those that begin with 87"

100 | (ignored) the first alphabetical value in the dataset on the specified Si-path

200 {ignored) the last alphabetical value in the dataset on the specified Si-path

| Simple Si-key: numeric R2

mode | argument description

1 >=1000 greater than or equal to 1000

1 >=123.4E5 greater than or equal to the specified number

1 <=100 less than or equal to 100

1 >=100<=1000 all in the range between 100 and 1000, inclusive

Simple Sl-key: numeric 24

mode| argument description

1 1234 exact match on the value 1234

102 1234 same

~103 | 123 exact match on 123

any 0034 the value 34 {leading zeroes must be specified)

any 000J the signed value -1 (leading zeroes must be specified)

1 >=1234 all greater than or equal to 1234

1 <=000J all tess than or equal to the signed value -1

1 >=23<=24 all in the range between 23 and 24 inclusive (leading zeroes need

not be specified if prefixed with ==, >=, <=, Or <>)

412 Programming Version 3.1 March 1992

Concatenated Si-key: X4 + X4

mode| argument description

1 ABCD® "ABCD" in the first Si-subkey, any value in the second Si-subkey

1 ABCD1234 exact match on both Si-subkeys: "ABCD" and "1234"

104 | Ascpiasg same

-108 | amcpi234 same

1 T2P?1234 "1234" in the second Sl-subkey, any value in the first Sl-subkey

10 77?71234 same, bui does not return the number of qualifying entries in the
status array

-111 | ABCD123456 condition word -31 (*sap Mopg"), because the Sl-key iength was
exceeded

Concatenated Sl-key: X4 + 11 {values undetlined are specified in binary)

|

mode| argument description

-106 | aRcpi234 exact match on "ABCD" in the first Si-subkey and 1234 in the
second Sl-subkey (where 1234 is specified in binary)

-105 § aBeD1234 condition word -31 ("BAD MODE"), because I1 requires 2 byles
and therefore mode -106 should be used

1 ABCDE alt with "ABCD" in the first Sl-subkey, and any value in the second
Si-subkey (the exira character is ignored)

10 ABCDE same, but does not return the qualifying number of entries in the

status array

Concatenated Sl-key: 11 + X4 (values underlined are specified in binary)

mode| argument description

103 1234ABCD exact match on the value 1234 in the first Si-subkey and "ABCD"
in the second Si-subkey {where 1234 is specified in binary)

-103 | 1234A all with 1234 in the first Si-subkey and "A" leading the second SH
subkey (truncated value)

1 12342 all with 1234 in the first Si-subkey (the extra character is ignored)

1 >=1234 all greater than or equal to 1234

1 <=2599 all less than or equal to 2999

1 >=-100<=100 all greater than or equal to -100 {negative 100) and less than of
equal 1o 100 (positive 100}

101 | spaces condition word -31 ("sap Mope"), because the mode exceeds the|
argument iength

1 1234 all equal to 12624 (first word, value *12*, converted from ASCI

value to binary value)

Version 3.1 March 1892

Programming 4-13

[Concatenated SI-Key: Z4 + X4 |

mode| argument description

104 1234ABCD exact match on the value 1234 in the first Sl-subkey and “ABCD"
in the second Si-subkey

-106 | 123428 exact match on 1234 in the first Sl-subkey and "AB" in the second
Sl-subkey

1 1234 all with 1234 as the first Sl-subkey

1 1234ABCD same (the value for the second Si-subkey Is ignored)

any | 0034 the value 34 (leading zetoes must be specified)

1 D034ABCD same (the vaiue for the second Sl-subkey is ignored)

1 »=1234ABCD results unpredictable; any characters specified after the first Sl
subkey renders the entire argument invalid

1 »21234ABc=1234A8 same

Finding entries in a concatenated Sl-key

In searching for entries using a concatenated Si-key, the entire concatenated value is considered.
This permits an entry to be located by very specific criteria. For example, a concatenated Sl-key
comprised of an X2, X4, and X4 and containing the three Si-subkey values "PH," "1234," and
"ABCD" would be located by:

argument = PH1234ABCD

if the concatenated Sl-key is comprised of Si-subkeys that are all alphanumeric (data types X or U,
as in the previous example}, DBFIND modes 1 and 10 may be used to qualify entries using a full or
patliat Sl-key value,

Irs.I*l‘, however, the Sl-subkeys are of both alphanumeric and numeric data types, modes
1nn and 2nn must be used. An exception is that if the leftmost Sl-subkey is alphanumeric, a
partial value appended with an @ may be specified to match on the leftmost alphanumeric SI-
subkey(s).

Finding entries in a group
Searching for entries in multiple Si-keys in a dataset that are grouped together is completely
transparent--DBFIND treats an Sl-path containing a group of Si-keys as # it were a single Sl-key and

unconditionally searches all Sl-keys in the group.

For example, if the items PHONE-1, PHONE-2, and PHONE-3 ware grouped fogether in an Si-path,
a phone number contained in any of the three fields would be searched for in a single DBFIND call.

For searches against an Sl-key in a group which is shorter than the other Sl-keys in the same group
and is therefore padded with spaces, it is necessary to either pad the argument with spaces or
perform a partial-key retrieval when calling DBFIND.

4-14 Programming Version 3.1 March 1992

Finding entries in a super-group

Searching for entries in multiple Sl-keys in multiple sets in a database that are super-grouped
together qualifies master entries based on the contents of the Sl-keys that form the super-group.

For example, if the book itle is contained in the master dataset BOOK, the book author is contained
in a related detail set AUTHOR, and the book summary is contained in the related detail set
SUMMARY, and the three sets are super-grouped together based on book number, a specified value
would be searched for in all three datasets. Master entries that contain the specified value in the title
would qualify, as well as master entries that contain the specified word in either related detail dataset.

To qualify master entries, DBFIND is called against the master set specifying the Si-path name of the
super-group in the item parameter, as shown:

dataset = BOOX
St-path = BOOK~KEY
argument = PLANG@

Finding entries in a compound IMAGE item

- 8l-keys that contain compound IMAGE items are automatically handied as if they were grouped; all

subitems are always searched when the Sl-path is referenced in the itern parameter,

Finding entries by keyword

Searching for the occurrence of a keyword in an Sl-path that has been configured as keyworded is
completely transparent: the keyword is simply specified in the argument parameter.

If a given keyword occurs more than once in a single data entry, the entry is always returned only
once. However, if multiple words in a single entry meet the search criteria, the entry will by default be
returned multiple times. For example,

argument = PLAN@

an entry containing the value "THE PLANNING COMMISSION'S NEW PLAN” would be returned
twice. To prevent entries from being returned multiple times, specify relational access by placing a
tilde {7) in front of the "argument” and placing a semi-colon (;) at the end of the "argument”.

"PLAN;

m!f the length of a keyword specified exceeds the keyword length configured for the referenced
Si-path, the keyword value is truncated to the configured keyword length and matching is done
based on the truncated value. Because of this, it is possible that entries with keywords that
exceed the configured keyword length will be erroneously qualified. For example, a keyworded
Si-key with a configured keyword length of 4 words (B characters) containing the value
"INDUSTRIOUS" would be qualified by an argument of "INDUSTRIAL," since only 8 characters
are indexed and matched on.

Version 3.1 March 1882 Programming 4-15

Finding entries using a partial key

DBFIND can search for entries using a partial key value, with the @ character. The @ is treated as a
wildcard (as in :LISTF) that stands for any number of any characters.

For example, to find all entries that begin with GENERAL™
argument = GENERAL@
| The partial key value specified is compared with the entries.
The @ can be used up to two times within an argument. This is accomplished by surrounding the
requested argument with << »>. The format is <<A@BEC>>. Which means that this argument
will qualify records that begin with an A, having a B anywhere in the middle, and ending witha C. If
only one @ is provided, there is an implied @ at the end of the argument (e.9.<<A@B>> is identical
fo <<A@B@>>).
| For example, to find all entries that begin with "GE" and contain "AL"
| argument = <<GE@AL>>
ﬁ‘i‘he @ can also be used as the first character in an argument. For example, <<@0WN>> will
return BROWN and CROWN.
Finding entries using a generic key
The ? and # characlers facilitate generic searches. The ? represents a single alphanumeric

character and the # a single numeric character (as in :LISTF). They may occur multiple times
anywhere in the value, for example:

argument = 8TR?NG
would locate "STRING," "STRONG," and "STRUNG."
| argument =AP#I3@
lWOLl[d locate "AP1J379C," "AP8J3AQ4," anvd "AP4J3", but "APBJ3826" would not qualify.

Both matchcodes may be used in combination with each other, along with the @ wildcard, for
example: ‘

| argument =AP2JT#@

would additionally find "APBJ3826," "AP7JBAM," and "APZJ277." in this example, the @ acts as the
terminator because the argument Is not surrounded with << >>.

The matchcodes may also be used to locate entries in which the desired value does nat begin in the
first position; for example:

argument = 27RT?N

would locate "BARTON," "BURTON,"” "MARTIN," and "MORTON."

4-16 Programming Version 3.1 March 1992

This technique is especially useful for generic searches on concatenated Sl-subkeys, by specifying
wildcard conditiona! operators for the unspecified Si-subkeys. These three examples perform generic
searches on the first, second, and third Sl-subkeys, respectively, of a concatenated Si-key consisting
of an X2, X4, and X4 field with the value "PH1234ABCD™

argument = PH@
argument =221234Q
argument = 222?2?2ABCD

llg:’Imas%teaci of specifying a ? at the beginning of an argument, It is more efficient to define
and ofiset.
Finding entries greater than or equal to a specified value

Greater-than-or-equal-to searches are accomplished using the >= relational operator to prefix the
value. For example, to find all entries greater than or egual to 1000:

argument =>=31000
SUPERDEX does not have a greater-than operator: > is not recognized and is therefore treated as a
regular character. To accomplish a greater-than search, add one to the value being searched for:

argument =>x%1001

If the field being searched is of IMAGE data type R, specify the value in the following format:

argument =>=1000<>1000

Finding entries less-than or equal-to a specified value

Less-than-or-equal-to searches are accomplished using the <= relational operator o prefix the value.
For example, to find all entries less than or equal to 500:

argument = <=500

SUPERDEX does not have a less-than operator: < is not recognized and is therefore treated as a
regular character. To accomplish a less-than search, subtract one from the value being searched for:

argument = <=499
if the field being searched is of IMAGE data type R, specify the value in the following format:

argument = <21000<>1000

Version 3.1 March 1882 Programming 417

Finding entries not equal to a specified value

To find entries not equal to a particular value, use the <> reiational operator. For example, to find all
unpaid orders:

argument = <>PAID
The <> operator may aiso be embedded within an argument to perform a Boolean AND NOT
retrisval. For example, to find all the entries with ZIP-CODES (an X6 item) beginning with "900" but
not in "90039™: :

argument =900Q@<>90039

Finding entries in a range of values

The >= and <= relaticnal operations may be used in combination to specify a range. For example,
1o find all the entries that start with letiers between "A" and "D," inclusive:

argument = >=AQ@<=D@

Pattern-matching and/or exclusion may optionally be performed within a range, allowing entries to be
qualified that not only fall between two values but alsc conform to a specific patiern. For example:

argument = $¥##AA>=8910Q@<=8912@

would find entries that fall between the values "8910" and "8912" and additionally contain "AA" as the
fifth and sixth characters.

@%e argument following >=, <= and <> may NOT contain embedded ? or # characters

DBFIND arguments used for relational access

For relational access, any of the previous arguments used for indexed access may be specified, and
operate in the same way.

Uniike indexed access, however, search values specified in ASCIH for retrieval against a binary field
are automatically converted (and therefore do not need {o be prefixed by the == conversion operator).

There are three ways to specify argumenits for relational access: the SQL Notation, the infix Notation,
and the Reverse Polish Notation.

@:The SQL Notation is the use of "AND", “"OR", and "NOT" as Boolean operators to specify the
relationship between the argument values. If the SQL Notation is to be used, the entire
argument must begin with the tilde (7) character and end with the semi-colon (7). The
operators can be in either upper- or lower-case, including any combination of both. The
argument must be left justified and contain no embedded spaces within each argument value
unless the argument value is enclosed in quotes.

4-18 Programming Version 3.1 March 1992

For example, an argument of "JONES @ OR SMITHQ@; is not a valid argument, |

!

SQL Notation Operators

Oper | Description Format
AND | AND'ed ~¥X ARD v;
or | OR'ed ~X OR y;
NoT | AND NOT’ed -x NOT v;

B@Enﬁx Notation is the use of "#", ", ", and "=" as Boolean operators. The use of Infix Notation
also requires the entire argument to begin with the tilde (7) and end with the semi-colon ().

There must not be any spaces within the entire argument.
"JONES@, SMITH@: is notvalid. it mustbe "JONES@,SMITHR@;.

For example, the argument

Infix Notation Operators

Oper | Description Format
* AND'ed ~X4Y }
. OR'ed ~X, Y3
- AND NOT'ed ~X=Y;

ISy When Reverse Polish Notation (RPN) is used, each argument value must be enclosed within
square brackets ([1), and the entire argument must be terminated by a blank or @ (a value

within square brackets needs no trailing character).

Reverse Polish Notation Operators

]

Oper | Description Format

& AND'ed [x]yl&
I OR'ed X1yl
'& | AND NOT'ed (x1iylis

Version 3.1 March 1992

Programming 419

DBFIND mode/argument examples

| Relational retrievals

mode; argument description
1 [GOLD2] all that start with "GOLD"
1 ~GOLD@; same

[>=AB] [«<=B@l&
~>»=AR AND «<=B@;
~>=A84+<=BE;

[AG)] [B2] |

~A® OR RGE;
~AR, B@;
[>=AQ) [AB@] !&

~>»=AR NOT AB®;
~>=AR-ABG;

all in the range between "A" and "B", inclusive
same
same

all that begin with "A" or "B"
same
same

all greater than or equal to those that begin with "A", except those.
that begin with "AB"

same

same

Finding entries by ANDing multiple values

Boolean operators (AND, +, &), and only those entries that qualify based on all specified values are

’A DBFIND argument may contain multiple values that are ANDed together with one of the AND

selected.

For example, to find all the entries in a grouped Si-path that contain both the values "JOHN" and
"CHICAGO™

argument

argument
argument

L |

“CHICAGO AND JOHN;
“CHICAGO+JOHN:
[CHICAGO] [JOHN] &

SQL Notation
infix Notation
Reverse Polish Notation

@In the above example "CHICAGO" was specified first and "JOHN" second. This was done
because "CHICAGO" appears on fewer entries than "JOHN". It is faster and more efficient o
specify the less common value first when performing relational access retrievals.

4-20 Programming

Version 3.1 March 1892

Finding entries by ORing muitiple values

Multiple values in a DBFIND argument may be ORed together using one of the OR Boolean
operators (OR, ,, |), and entries that qualify based on any specified value are selected.

For example, to find all the entries in a keyworded Sl-path that contain the word "FITTING,”
"NIBBLE," or "CONNECTOR™

argument = "FITTING OR NIBBLE OR CONNECTOR; SQL Notation
argument = "FITTING,NIBBLE, CONNECTOR; Infix Notation
argument = [FITTING] [NIBBLE] | [CONNECTOR] | Reverse Polish Notation

Finding entries by AND NOTing multiple values

Multiple values in a DBFIND argument may be AND NOTed together using one of the AND NOT
Boolean operators (RO'T, =, ! &), and entries that qualify based on one value and not another are
selected.

For example, to find all the entries in a non-keyworded Si-path that begin with "NEW" except those
that begin with the value "NEW YORK":

argument = "NEW@ NOT "NEW YORK":; SQL Notation
argument = “NEW@=-"NEW YORK"; Infix Notation
argument = [NEW@] [NEW YORK]!& Reverse Polish Notation

Bg,ii'u:iclemtally, the same retrieval could alsc be performed more efficiently using indexed
access:

argument = NEW@<>"NEW YORK"

Finding entries with combined Boolean operators

The Boolean operators used by SUPERDEX allows very powerful combinations of operations to be
specified.

For example, to find all the entries in a keyworded Si-key that contain both the words "COMB" and
"BIND" or "HOLD" and "DRILL" but not any word beginning with "FASTEN™

argument =" (COMB and BIND) or (HOLE and DRILL) not FASTENG;
SQL Notation
argument = " (COMB+BIND) , (HOLE+DRILL) ~FASTENQ@;
infix Notation
argument = [COMB] [BIND] &[HOLE] [DRILL] & | [FASTENG@] &
Reverse Polish Notation

Version 3.1 March 1992 Programming 4-21

Processing of Boolean Operators for SQL Notation

Al the lowest level, all processing of the arguments occur in Reverse Polish Notation. Therefore, the
SQL Notation will be converted internally first to the Infix format and then to the RPN format.

Most of the examples and tables foliowing will reference the SQL format. When the Infix format or
RPN format is referenced, the example will be marked as such.

|Since the SQL format is first converted to Infix, following are several examples of the conversion.

| SQL Notation to Infix Notation Processing: I

SQL Argument Infix Argument
~CHICAGO and JOEN; CHICAGO+JOHN
~FITTING OR NIBBLE or CONNECTOR; FITTING, NIBBLE, CONNECTOR
~NEW@ not "NEW YORK"; NEW@-"NEW YORK™
~A@ OR BG OR C@; A@,.B@,C@

| For information on how the Infix Notation is processed, see the following section.

Processing of Boolean Operators for infix Notation

At the lowest level, all processing of the arguments occur in Reverse Polish Notation. Therefore, the
Infix Notation wili be converted internally to the RPN format.

Most of the examples and tables following will reference the SQL formal. When the infix format or
RPN format is referenced, the example will be marked as such.

| Eoliowing are several examples of the conversion.

!infix Notation to Reverse Polish Notation Processing:

infix Argument RPN Argument
~CHICAGO+JOHN; [CHICAGO] {JOHN]&
~PITTING, NIBBLE, CONNECTOR; {FITTING] [NIBBLE] | [CONNECTOR] |
~NEW@~*NEW YORK"; [NEWa] [NEW YORK]!&
~A@, B@, C&; [Adl [B@]i[cel|

4-22 Programrming Version 3.1 March 1992

Active and backup Sl-subsets

Besides the active Si-subset in which the 8l-chain selected by an argument using one of the Boolean
operators is copied, a backup Sl-subset is used when processing arguments that contain more than

one value.

The internal processing of the argument specified in the previous example is done as follows (RPN is
used to define the process):

[COMB]

[BIND] &

[HOLE]

[DRILL] &

[FASTEN@] ! &

The Si-chain that is formed by the selection is stored in the active Si-subset

A Boolean ANDing is performed between the result of this selection and the
virtual Sl-chain contained in the active Si-subset

The virtual Sl-chain contained in the active Si-subset is transferred to the backup
Sl-subset, and the resulting Si-chain is stored in the active Sl-subset {replacing
the existing Sl-chain)

An ANDing is performed in the same manner as above

The contents of the backup Si-subset and the active 8i-subset are ORed, and the
resuiting Si-chain is stored in the active Sl-subset. The Sl-chain stored in the
backup Sl-subset is deleted.

The negated result of the selection is ANDed with the Si-chain in the active SI-
subset, with the resulting Sl-chain stored in the active Si-subset, replacing the
existing Si-chain

For consistency and efficiency, specify a Boolean operator foliowing each bracketed value except the
first (leftmost), as shown:

[a@] [B@] | [ce] |

Alternately, specifying the argument value

[ae]sejice] ||

will also select the desired entries but will destroy the backup Si-subset.

However, the argument value

[a@] [BE][ce][De] |||

will not work.

Version 3.1 March 1992 Programming 4-23

The effects of the various operations on the active and backup Sl-subsets is summarized in the
foliowing table. All of the arguments are defined as RPN since this is the only way to directiy
manipulate the active and backup Sl-subsets using all of the special arguments.

argument i Si-chain in active Sl-subset Si-chain in backup Sl-subset
& ANDed with backup deleted

| ORed with backup deleted

'& AND NOTed with backup deleted

[x] replaced by x replaced by old active
[x1& ANDed with x unchanged

(x| ORed with x unchanged

[xX]t& AND NOTed with x unchanged

[x]$ ORed with active after x unchanged

is ANDed with backup

/ unchanged replaced by active

[1 erased replaced by active

\ replaced by backup deleted

N\ unchanged deleted

\/ replaced by backup unchanged

B swapped with backup swapped with active
\N[x] replaced by x unchanged
/[x1& ANDed with x replaced by old active
/Ix1] ORed with x replaced by old active
JIX11&] ANDNOTed with x replaced by old active
tix]l& inverts and ANDs with x unchanged

[*] replaced by projection replaced by old active

Successive refinement

The complex DBFIND argument lllustrated previously may be broken up into several DBFIND calls
rather than being performed in a single call.

For example, the SQL arguments would be:

1. DBFIND argument= = (COMB and BIND):
2. DBFIND argument= "oxr (HOLE and DRILL);
3. DBFIND argument= "not FASTENG;

The result is the same as when using a single DBFIND call with the complete argument containing
muttiple values. After each DBFIND, the number ot gualifying entries in the Si-chain (stored in the
active Sl-subset) is returned in the sfafus array, and this may be reported to the user to decide at any
stage whether or not to continue.

The / operator may be used to save an intermediate result in the backup Sl-subset and retrieve it
laler using the \, operator.

4-24 Programming Version 3.1 March 1992

Positioning on a virtual Sl-chain

A similar technique 1o that described above may be used to position at the beginning or end of or at
any entry on a virtual Si-chain in the active Si-subset.

DBFIND modes 1nn and Znn may be used {o position on the entry whose S!-key value matches the
specified argument, if no matching entry exists, the internal Sl-pointer is set to the location where the
entry would reside. The following parameters could be used:

dset = CUSTOMER-MASTER
mode =-103

ftem =3 or 0

argment = ABC

In this example, the Si-pointer would be positioned at the Sl-index for the customer ABC.

This same technigue may aiso be used for going o the beginning of (rewinding) or end of a virtual Si-
chain, using modes 100 and 200, respectively. The entries could then be retrieved with DBGET
modes 15 and 16.

Determining entry count of a virtual Si-chain
in addition to being able 1o locate and retrieve entries on any virtual Si-chain in the active Sl-subset, it

is possible to determine the number of entries on any virtual Si-chain by calling DBFIND in mode 1
with a special argument, as shown:

base = QUST

dset = CUSTOMER-MASTER
mode =1

item =3 o0r0Q

argument = @@

This returns the entry count for the Si-chain that corresponds with the base and dataset specified in
the base and dset parameters. .

Finding entries using multiple Sl-paths in a dataset

This same technique of using multipie DBFIND calls to refine a selectzon works not only on a single
Sl-path in a dataset but on multiple Sl-paths.

For example, 1o find all customers that start with "GENERAL" and are located in "LOS ANGELES,"
two DBFIND calls would be performed and their results combined. The first DBFIND call would
include these parameters:

ftem = CUSTOMER~NAME
argument = " GENERALQ@;

Version 3.1 March 1892 Prograrmming 4-25

The second DBFIND cali would specify a different Sl-path and the argument that corresponds with
that Si-path, as well as a Boolean operator indicating how the resufts should be combined:

item =CITY
argument ="and “LOS ANGELESY;

The AND on the second DBFIND call indicates that the two sets should be ANDed. The second set
can instead be logically ORed or AND NOTed, by specifying OR or NOT instead of AND.

For example, to find all the customers who have not placed any orders since January 1, 1891 OR
have an average order amount of fifty dollars or less, two DBFIND calls are performed with the OR
operator prefixing the argument on the second DBFIND:

item = LAST~ORDER~-DATE
argument = "<«=901231;

item = AVE«ORDER«AMT
argument ="0or <m50;

Finding entries using muitiple datasets

The same technigue may be used to qualify entries across multiple datasets by using multiple
DBFIND calls, each specifying a different dataset.

It is preferred that both datasets contain a common #em that is used in an Si-subkey in each set. In
this case, the common item forms a logical linkage between the two sets, and is referred to as the S/-
fink.

E’“ is required that the item assigned as the Sl-link be configured as an Sl-subkey in the
Sl-path that the DBFIND is being called against; alternately, for Si-paths against a master
dataset, it may be the IMAGE search master field.

if there is no common item between the datasets defined as an Si-subkey, a projection may be
performed, as will be explained later,

Let's ook at an example that locates all the customers that are slow paying for orders and currently
have unpaid orders. The customers are contained in the CUSTOMER-MASTER dataset which has
CUSTOMER-NUMBER as its search field and a simple Si-path called AVG-DAYS-TO-PAY. The
orders are contained in the ORDER-DETAIL set, which has an Sl-path called ORDER-STATUS
which is comprised of the Sl-key items ORDER-STATUS and CUSTOMER-NUMBER.

Both datasets have the CUSTOMER-NUMBER in common, so this defines the Si-ink used to
logically join the two sets. The Si-link is declared as a second vaiue in the #em parameter on one or
both DBFIND calls, in addition to the Sl-path name, in this format:

itern = Si-path,Sl-link

4-26 Programming Version 3.1 March 1992

To accomplish the search, DBFIND is first called to locate all the unpaid orders with the specified S!-
path and Si-link:

dset = ORDER-~DETAIL
item = ORDER~STATUS , CUSTOMER~-NUMBER
argument =" UNPAID;

Then, DBFIND is called again {o locate all the customers that take an average of more than 45 days
{0 pay. An AND prefixes the argument value to cause the virlual sets to be ANDed:

dset = CUSTOMER~MASTER
ftem = AVG«DAYE~TO-PAY , CUSTOMER~NUMBER
argument ="and >=45;

Alternately, the virtual sets could have been ORed or AND NOTed by substituting the OR or NOT
operator in place of the AND operator.

After both DBFIND calls are completed, DBGETs couid be performed against CUSTOMER-MASTER
to retrieve the qualifying entries.

in this example, there are two virfual Si-chains in the active Sl-subset. For this reason, the AND is
done on the values of the Si-link. |f instead there were only one Si-chain in the active Sl-subset, the
AND would be done on the Sl-extension (the search field value for masters or relative record number
for details; refer to the internal structures appendix for more information about the layout of the Sl-
subset).

Finding corresponding entries in multiple datasets

When DBFIND is called in succession against multiple datasets, one Sl-chain per datase! is placed
into the active Sl-subset. Entries may be retrieved from any of these virtual Si-chains, independent
of one another, simply by using DBGET with the appropriate dataset specified in the dsef parameter.

Since the entries on these Si-chains are logically related by the Si-link, 1t is often desirable to find
entries on one or more of the Slchains whose Sklink values malch a specified value, thereby
performing a search against a virtual Si-chain in the active Si-subset rather than against entries in a
dataset.

This technique is facilitated by performing a DBFIND on each Sl-chain with the exact Sl-link value
specified in the argument parameter and ; or 0 specified in the e parameter. 1t is the "null item”
that causes the DBFIND to act on the active Sl-subset rather than the datasel. The exact SI-

link value must be specified.

For example, to find all the customers whose Sl-link value is equal to "ACME" call DBFIND with the
following:

dset = CUSTOMER-MASTER
mode =1

ftem =3 or 0

argument = ACME

Subsequent DBGETs in mode 5 or 6 will access the sub-selected entries that have an Si-link value of
"ACME.” while DBGET modes 15 and 16 will access the entire virtual Sl-chain.

Version 3.1 March 1992 Programming 4-27

Finding entries using mulitiple databases

Entries in mufltiple databases may be located in very much the same way as those in multiple
datasets. Again, multiple DBFIND calls are used with an Si-link, but each has a different value for
the base parameter. [f a different item in each base is used as the Sl-link, they must be configured
with the same length.

SUPERDEX requires that DBFINDs against multiple databases be logically linked together. [f both
DBFIND calls are performed in immediate succession (with no intermediate intrinsic calls) and
therefore use the same status array, SUPERDEX automatically links the bases together, and no
specification is required by the program.

If intermediate calls are performed, the program must logically link the bases. To facilitate this,
DBFIND returns a unique number in the second word of the stafus array (unused by IMAGE). The
program must retrieve this number from the status array of the first DBFIND and specify it in the
second word of the status array in the second DBFIND,

Let's look at an example of two databases, one containing customers and the other sales history.
We want o determine sales trends of books to schools in the CUST base by reviewing historical data
in the SALES base.

The relevant sets in each base have the common item CUSTOMER-NUMBER, so this item will be
used as the Sl-link. If no common item exists, a projection may be done, as we will see shortly.

The first DBFIND call locates the customers that are schools using a keyworded Si-key. The
argument values are partial keys being ORed together:

base = CUST

dgset = CUSTOMER~MASTER

item = CUSTOMER~ID,CUSTOMER-NUMBER

argument = "SCHOOL@ or UNIVERSITY® or COLLEGE@;

The second DBFIND call accesses the appropriate dataset in the other database:

base = SALES

dset = PART~SUMMARY

ftem = VENDOR~-ID, CUSTOMER~NUMBER
argument = "and (MCMILE@ or MCGRAWE):

l‘a&‘Both calls specify the Sk-link as the second value in the ifern parameter. Also, the use of AND
at the beginning of the argument in the second DBFIND call tells SUPERDEX to AND its resulis
with the previous DBFIND call,

As always, the OR or NOT operator could have been used instead of the AND operator to perform an
OR or AND NOT retrieval between databases.

4-28 Programming Version 3.1 March 1992

Finding entries in multiple sets and bases using projecticn

in the last two examples, a common ftem exists between the two datasets and databases being
searched, and was defined as the Si-link. For situations in which there is no common item but a
logical relationship exists, projection may be used.

A projection is an operation that permits two datasets that do not contain a common item to be linked
together, providing each has an item in common with a third dataset. For this discussion, we'll refer
to the first dataset as set A, the second dataset as set B, and the third {linking) dataset as set C. The
projection reassigns the Sl-link from the item set C has in common with set A to its item in cornmon
with set B, thereby forming a logical relationship between set A and set B, even though they do not
contain a common item.

A projection is invoked by a separate DBFIND against set C which is called between the DBFINDs
against set A and set B. Internally, a projection takes the Sl-link values returned internally by the
DBFIND against set A (which are stored in the active Sl-subset), iooks up the corresponding entries
in set C, and replaces them with the Si-link values that will be used for set B. The Sl-link for set A
and set B are both defined by item name or number in the fem parameter, as shown:

item = Sl-path,new Si-link

where S/-Path is a concatenated Si-Path that is comprised of the ofd Si-link as SI-Subkey-1 and the
new S/-iink as any other Si-Subkey.

Let's look at an example that locates all quotations for earthquake coverage given to policyholders in
Los Angeles in November and December of 1987. This requires four DBFIND calls against three
datasets, with the second DBFIND call performing the projection.

The first DBFIND locates all policyholders in Los Angeles, with Si-link specified in the iem
parameter:

dset = INSURED-MASTER
item = CITY, POLICY-NUMBER
argument = "WLOS ANGELES"“;

The next DBFIND performs the projection, as designated in the argument by the special * (asterisk)
operator, The ftem specifies the Si-link used in the previous DBFIND, as well as the Si-link that will
be used in the next DBFIND:

dset = QUOTE~MASTER
item = POLICY-NUMBER, QUOTE~NUMBER
argument = [*)

The third DBFIND accesses the same dataset in which the projection was performed and locates all
the entries in the specified date range. The new Si-link is specified in the #em parameter;

dset = QUOTE-MASTER
ftem = QUOTE~DATE, QUOTE~NUMBER
argumen! = and >=871101<=871231;

Version 3.1 March 1982 Programming 4-29

The final DBFIND locates all the entries in another dataset that are of the requested coverage type:

dset = QUCTE~DETAIL
itern = COVERAGE~TYPE,QUOTE~NUMBER
argument ="and EQ;

Notice that the last two DBFIND calls used ANDs in the argument to logically AND the resuits.

l‘gni?'rc;jactinn uses all qualifying Si-link values contained in the active Si-subset in locating
entries. If there is more than one Sl-chain in the active Sl-subset, entries may qualify
more than cnce. Therefore, a projection should only be performed when there is only
one Sl-chain in the active Sl-subset.

Circumstances in which the Sl-link must be specified

As described, the Si-link is a common item that is configured in an Sl-subkey in each set and which
is used to form a logical linkage between the two sets. it is required that the temn assigned as the SI-
link be configured as an Si-subkey in a concatenated Si-key; afternately, for Si-paths against a
master dataset, it may be the IMAGE search master field.

The Si-link need not be specified in all cases involving relational access against multiple datasets
and/or databases, and may be omitted on some DBFIND calls. The following rules govern the
specification of the Sl-link:

1. For relational access between two different Sl-paths within the same dataset, the Sl-link is not
required. The Boolean operations are based only on the Si-extension {the search field value for
a master or relative record number for a detalf).

2. For relational access between two datasets in the same database, the Si-link must be specified
for the first DBFIND call but not the second, although there is no harm in specifying it for both
DBFIND calls. in this case, the value of the Si-link is used for comparison instead of the SI-
extension. The Sl-link need not be specified for a manual master for which the IMAGE search
field is the default Sl-link.

3. For relational access between databases, the Sllink is always used for comparison and must
always be specified for every DBFIND call. (Additionally, # intermediate calls between
databases are performed, the bases must also be logically related via word 2 of the status array,
as described previously.)

Qualifying entries in the active Si-Subset

While S|-Subsets were designated for relational retrievals, they can be very usefu! for ultra fast
access since they can be considered as in-memory datasets.

An in-memory dataset is created by a DBFIND call, where the Si-Link is specified and the argument

is a relational argument. This Si-Subset acts like a dataset with Si-Link as a SUPERDEX key. You
can access this set by DBFIND utilizing most of the SUPERDEX features.

4-30 Programming Version 3.1 March 1992

For example, first create an Sl-Subset for customer "ACME".

dataset = CUSTOMER-MASTER

mode = 1

ftem = CUSTOMER~NAME , CRDER~NUMBER
argument = "ACME;

Now do a selection on this S1-Subset with order-number 70123:

dataset = CUSTOMER-MASTER
mode e 1

ftem = soro;

argument = 70123

Instead of using mode 1, the special modes 1nn and 2nn can be used to retrieve partial keys in
sotted order. Partial key retrieval using the @ operator and the ? or # match characters are
NOT available,

Bg?in-memory datasets can be especially useful for applications where you expect many
DBFINDs to fail, or when you need the same information frequently, since you get this
information without any disc access.

Preparing the argument

The many argument operators available with SUPERDEX allow very advanced and powerful
retrievals using the simple DBFIND mode 1. Arguments can contain one or more of the following in
various combinations:

M the @ << >», 7, and # conditional operators
MW the <=, »=, and <> relational operators

B the AND, OR, and NO? Boolean operators

M the +, ,, and - Boolean operators

B the &, 1,and 1 & Boolean operators

W the %, /, \, §, and ~ special operators

Allowing these generalized arguments for DBFIND modes 1 and 10 permits standard lookup routines
to perform many lypes of retrievals, with the argument determining the type and scope of access.
Complex arguments may be prepared for DBFIND calls by several methods.

The simplest method, which requires little or no reprogramming, is to have users specify the entire
argument themselves, including multiple values and various operators, and have the program pass
them literally to DBFIND.

Ancther method is to assign function keys to facilitate various retrieval capabilities. The user could
enter a string and hit a function key, and the program could read the function key label and
concatenate the appropriate operator to the specified value to form the argument.

Various other methods are available for programmatically constructing the DBFIND argument, such
as prompting the user with various selection boxes to check off or enter values into.

Version 3.1 March 1992 Programming 4-31

Effect of DBFIND on the Si-pointer and current path

Like IMAGE, SUPERDEX returns a condition word of zero for successful DBFIND calls and non-zero
if an error or exception is detected.

in IMAGE, calling DBFIND against a master set returns condition word -21 ("SPECIFIED
INTRINSIC I8 NOT ALLOWED ON MASTER SET'"); in SUPERDEX, no error is returned
because it is a valid operation.

ﬁ;‘Sinr::e the condition word -21 is not returned on the master dataset for a DBFIND, some
generic access programs may need modification. If a DBFIND is used to determins whether
a cdataset is a master or detail, this will not work. If a master dataset has at least one Si-Path,
the DBFIND will not return the -21, but can return the condition word -52 (see following).

If the specified ftem is neither a valid Sl-path nor IMAGE path, condition word -52 ("ITEM
S8PECIFIED IS8 NOT AN ACCESSIBLE SEARCH ITEM IN THEE SPECIFIED
BET"} is returned, '

If DBFIND does not find an entry that matches the specified argument, condition word 17 ("NO
ENTRY FOUND") is returned. If the Si-path name is the same as the IMAGE search field name
and the SUPERDEX DBFIND against the Si-path fails, an IMAGE DBFIND is automatically
performed against the search field. Hf called in mode 1 or 10, the Sl-pointer is not set and the current
path is reset to the datasetl's current IMAGE path. Therefore, if the condition word is ignored and
subsequent DBGETs are called, they will operate on an IMAGE path (the current IMAGE path for a
detail set or the synonym chain for a master set) rather than the Sl-path.

if DBFIND is called with mode 1nn or 2nn, the Sl-pointer is set immediately before or after the
nearest qualifying entry and the current path is set to the appropriate Sl-path and does not change.
For example, DBFIND mode 102 with an argument of BRAC may not jocate a matching entry but will
set the Sl-pointer before "BRADMARK," the nearest qualifying entry. Then, DBGET mode 15 or 16
may be used 1o retrieve the entries in ascending or descending order.

The following table summarizes the effects of DBFIND on the Si-pointer and current Si-path:

mode condition word = 0 condition word <> 0

1 before entry current path not set ***

10 before entry current path not set **

100* before first (alphabetical) entry current path not set

inn before entry if cw = 17, before next entry
200 after last (alphabetical) entry current path not set

ann after entry if cw= 17, afier next entry

* may be followed by either DBGET mode 5 or 15 or mode 6 or 16 and will start at either the
beginning or end of the dataset, respectively, as compatible with IMAGE

" if using relational access, the current path is retained

*** if using relational access, the current path is retained; otherwise, defaults fo current IMAGE
path

4-32 Programming Version 3.1 March 1992

Retrieving entries with DBGET

Entries that are located with DBFIND may be returned in ascending sorted sequential order with
modes 5 and 15 and descending order with modes 6 and 16.

Like IMAGE, modes 5 and 6 return condition words 14 and 15 ("BEGINNING OF CHAIN' and
“END OF CHAIN") when all qualifying entries on the Si-chain have been returned. Modes 15 and
16 continue to return entries in sorted sequential order that are not part of the Sl-chain, like greater-
than-or-equal-to and less-than-or-equal-to retrievals.

DBGETs with Un-initialized Sl-chain

if the Sl-chain has not been established or the Sl-pointer is outside of the current Si-chain, this could
be the result of:

W DEBFIND with mode other than 1 or 10
N DBFIND that does not find a match (returns condition word 17}
W DBGET mode 4

in these cases, DBGET modes 15 and 16 should be used instead of modes 5 and 6; otherwise, the
results are unpredictable.

Repositioning on an Si-chain

if reading an Sl-chain (not an Si-subset) along an Si-path that has a unique relationship (one Si-
index per data record, unlike with a keyworded Si-path), DBGET mode 4 can be used to reposition
on the Si-chain. An appilication for this is, for example, implementing a “previous page” function
when displaying entries on a terminal. This can be programmed by keeping an internal list of relative
record numbers of the first entry on each page and then returning to any page by calling DBGET
mode 4 foliowed by DBGET mode 5s in a loop.

To reposition on an Sl-chain after switching to a different Si-path or IMAGE path in the same dataset,
save the relative record number before switching paths, then o return, call DBFIND mode 10 with the
original search argument followed by DBGET mode 4 using the saved record number. From here,
DBGET medes 5, 6, 15, and 16 may be performed normally.

Reading Sl-indices only

it is desirable for efficiency 1o restrict the DBGETSs to reading only the Sl-indices rather than actually
retrieving the entries from the datasets whenever possible.

When performing indexed access, the full Sl-index including the Sl-extension {search field value for a
master dataset or relative record number for a detail) is returned. For relational access, the Si-link (if
specified) and Si-extension are returned.

Version 3.1 March 1992 Programming 4-33

Several operations that may be accomplished by reading Sl-indices:

B validating the format of any value in an Sl-index, which always includes the search field value
for Sl-paths related to master datasets,

W intermediate storage of the Sl-extension io facilitate resetting the Si-pointer to its former
position, such as after changing Si-paths

B testing for the presence or absence of a value in muitiple Sl-paths by reading them in paraliel

To read Sl-indices only, use a list of ! with DBGET modes 5, 6, 15, or 16,
To retrieve the entry associated with any Si-index, use DBGET mode 1 (reread current entry).

IIQ,The 1 listis never transferred to IMAGE; therefore, the Jist in use before the ! was declared will
still be active.

Reading multiple Si-indices with a single DBGET

When using the ! list to read Si-indices only, it is possible to read multiple Sl-indices with a single
DBGET, equivalent to calling DBGET multiple times in a loop.

This is facilitated by an optional Si-counter parameter, which specifies the number of Sl-indices to
returmn. If not specified, the default Sl-counter value is 1. The Sl-counter is a numetic literal
immediately following the !, as shown:

fist = Y 8f-counter
fist =150

if a beginning-of-chain or end-of-chain condition is detecled during the DBGET call, the returned
indices are less than the requested number of indices. The number of indices returned is contained
in word 5-6 of the status array. The Si-Pointer is positioned at the first/last index.

E>Ii using an Slcounter, be sure to use a buffer large enough fo accommodate all the SI-
indices that will be returned.

Ep'Fhe Sl-counter parameter cannot be used with any list construct other than 1.

DBGET used to locate entry for DBUPDATE

If the DBGET used to locate an entry for updating specifies neither the @ fisf nor a list that includes ali
the Si-subkeys whose values are being changed, SUPERDEX will automatically petform one or more
rereads (DBGET mode 1) with various fists when performing the DBUPDATE.

This is both inefficient and causes the current fisf to change without the knowledge of the program,
and therefore any subsequent calls done without re-initializing the fisf may be faulty. 1t is therefore
recommended that the @ /isf or a /ist that contains all Sl-subkeys be used when calling DBGET
before DBUPDATE or when calling DBUPDATE.

4-34 Programming Version 3.1 March 1992

DBGET used to locate entry for DBDELETE

Similarly, if all Si-keys are not included in the Jisf of the DBGET used to locate an entry for deletion,
SUPERDEX will automatically change the fist to @ (unless it is already @ or 7).

Because the current /ist may change and therefore any subsequent calls done without re-initializing

the fist may be fautlty, it is recommended that the @ /st or a list containing all Si-keys be used when
calling DBGET before DBDELETE (the ; fist may also be used but is inefficient).

Effect of DBGET on the Sl-pointer and current path

Like IMAGE, SUPERDEX returns a condition word of zero in the status array for successful DBGET
calls and non-zero if an error is detected.

in addition, DBGET modes 5 and 6 performed on a master set read down and up the Sl-chain,
whereas in IMAGE, they read down and up the current synonym chain.

if the ftem specified is neither a valid Skpath nor IMAGE path, condition word -52 {"ITEM
BPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE SPECIFIED
BET") is returned.

The foliowing table summarizes the effects of DBGET on the Si-pointer and current Sl-path:

mode/relationship condition word = 0 condition word <> 0
5or 15" before next entry if cw= 15, no change
6 or16* after previous entry if ow =14, no change
other unique on entry no change

other non-unique no change no change

* if switching from miode 5 or 15 to mode 6 or 16, the same entry is not returned twice.

Serially Reading All Entries

Like IMAGE, SUPERDEX will allow a serial read through a dataset using DBGET mode 2. This will
return the records in the same order as IMAGE.

if you wish to sequentially access all the records in sorted order by any path, initialize the path using
DBFIND mode 100, and retrieve them with DBGET mode 15, This will return the records in sorted
order, based on the Si-Path defined, and return a condition word of 11 {End-of-file}, as DBGET mode
2 does.

For master datasets, using DBFIND mode 100 and DBGET mode 15 can be faster and more efficient

than DBGET mode 2. SUPERDEX does not need 1o read each biock in the dataset, while IMAGE
needs to read sach block to see if any records exist in the block.

Version 3.1 March 1992 Programming 4-35

Additional programming considerations

Summary of effects of Sl-intrinsics on the Si-pointer and current Si-path
The table below indicates the effects of various intrinsics on the Si-pointer and current Si-path.

In performing a DBPUT, DBPUTIX, DBDELETE, DBDELIX, or DBUPDATE against an Si-path for
which more than one Si-index may point to the same record (a n-o-one relationship referred to below
as a non-unique relationship as in keywording, grouping, compound tems, and SHUSER), the position
of the Sl-pointer does not change--regardless of whether or not a unique relationship exists for a
given entry.

intrinsic/mode condition word = 0 condition word <> 0
DBFIND mode 1 before entry current path not set ***
DBFIND mode 10 before entry current path not set ***
DBFIND mode 100* before first entry current path not set
DBFIND mode 1nn before entry if cw= 17, before next entry
DBFIND mode 200 afler last entry current path not set
DBFIND mode 2nn after entry it cw= 17, after next eniry
DBGET modes 5/156** before next entry if cw= 15, no change
DBGET modes 6/16** after previous entry it ew = 14, no change
DBGET other modes unique on entry no change

DBGET other modes nonh-unique | no change no change

DBPUT no change no change

DBPUTIX no change no change

DBUPDATE no change no change

DBDELETE no change no change

DBDELIX no change no change

* may be followed by either DBGET mode 5 or 15 or mode 6 or 18 and will start at either the
beginning or end of the dataset, respectively, as compatible with IMAGE

** if switching from mode 5 or 15 to mode 6 or 16, the same entry is not returned twice

*** if using relational access, the current path is retained

Testing for the existence of SUPERDEX;
New DBINFO mode 311 is provided o test for the presence of SUPERDEX, and returns information
about the Si-paths configured for a specified dataset. It is designed for programs that are run against

the same database on various systems, of which sorme do hot contain Si-paths.

Additionally, new DBINFO mode 312 may be used to determine the characteristics of a specific Si-
path.

4-36 Programming Version 3.1 March 1992

Calling SUPERDEX intrinsics in Privileged Mode
= All SUPERDEX intrinsics should be called in user mode. If called in Privileged Mode (after a call
to GETPRIVMODE), contact Bradmark's Technical Support for information on possible
problems.
PREParing programs
Programs that access SUPERDEX’ed databases must be :PREPped with DS and optionally, MR
capability; DS capability is not required for Native Mode programs under MPE/XL. Programmers who
:PREP programs that use SUPERDEX will need one or both of these capabilities added 1o their users
with :ALTUSER. Users running the programs do not require additional capabilities.
All SUPERDEX intrinsics automatically extend the stack, by:
3 * 5/-dataset block size

An additional 1 or 2 Kwords of stack space is required if performing relational access.

Programs should be :PREPped with a larger MAXDATA parameter value of at least 2 - 3 times the
block size (in words) of the Si-dataset. Some programs will need 1o be executed with ;NOCB.
BASIC/3000

'ﬂ‘tf using BASIC/3000, please contact Bradmark's Technical Support for instructions.

BRW (Business Report Writer)

SUPERDEX is capable of interfacing to HP's Business Report Writer package. The Full PowerHouse
option is required for the BRW interface. Please see the Business Report Write interface in the
Fourth-Generation Language User Manual.

Business Basic

If using SUPERDEX with Business Basic, make sure the necessary SL segments have been properly
copied, as explained in the Installation chapter of the Configuration / Establishing $l-indices section.
Please see the Business Basic Interface supplement.

c

No special considerations exist for programs written in C.

Version 3.1 March 1992 Programming 4-37

COBOL
COBOL programs that call SORT using INPUT PROCEDURE and OUTPUT PROCEDURE require a
large amount of stack space, and calling an Si-intrinsic from INPUT or OUTPUT PROCEDURE may
cause a stack overflow. If this happens, limit the amount of stack used for sorting in COBOL
programs by including the following command in source programs and then recompiling:

$CONTROL BORTSBPACE = nnnnn
where nnnnn is the number of words allocated for soiting, between 0 and 24000.
if COBOL programs are wiitten in COBOL or COBOLIl that does not support $CONTROL
SORTSPACE yet, then use the USING statement.
FORTRAN
No special considerations exist for programs wriften in FORTRAN, although SORTINIT may be used
to restrict stack usage for sorting if necessary.

Pascal

No special considerations exist for programs written in Pascal, although SORTINIT may be used to

restrict stack usage for sorting if necessary.

PowerHouse

= SUPERDEX has interfaces to Cognos' PowerHouse modules QUICK, QUIZ, and QTP available,
with separate software and documentation. Contact your Bradmark sales representative or
distributor for information and a demonstration.

RPG

if the IMAGE intrinsics are being coded and called directly by the programmer, SUPERDEX does not

require an interface. if the intrinsics are not handled in this manner, SUPERDEX can not be used

with RPG.

SPL

No special considerations exist for programs written in SPL, altthough SORTINIT may be used to
restrict stack usage for sorting if necessary.

4-38 Programming Version 3.1 March 1992

TRANSACT

Programs written in TRANSACT are converted quite easily to use SUPERDEX. Basically, the Si-path
name is placed into the key register, the search argument into the argument register, and
FIND(CHAIN), FIND(RCHAIN), of PATH is called against a master or detail dataset. Please
see the TRANSACT Interface supplement for more information and documentation.

PROTOS

SUPERDEX does not require an interface with PROTOS.

Version 3.1 March 1992 Programming 4-39

Native Language Support

Adding, updating, and indexing entries

When Native Language Support (NLS) is activated for a database, Sl-indices are generated by
SIMAINT, DBPUT, DBPUTIX, DBUPDATE and SI-USER according to HP's documented NLS
collating sequences. This may result in some confusion because indexing may be done differently
with and without NLS.

The following table shows how Sl-indices for a concatenated Si-key would be sorted with and without
NLS:

with NLS without NLS Keywords without NLS
PAPER 100 PAPER 100 PAPER 100
PAPER 400 PAPER 400 PAPER 200
Paper 300 PAPERBAG 150 PAPER 300
paper 200 Paper 300 PAPER 400
PAPERBAG 150 paper 200 PAPERBAG 150

Qualifying entries with DBFIND

To qualify the entries with the Sl-keys shown above, the argumenis PAPERGE, Paper@, and
paper@ are treated equivalentiy and ali of the above entries are returned in the order shown in the

left column.

= Since the different representations of the same word are stored as distinct indices,
there are circumstances where the same entry may gualify more than once.

4-40 Programming Version 3.1 March 1982

Section 5 Intrinsics

Overview

This section describes the various Sl-intrinsics provided with SUPERDEX as enhancements o the
IMAGE intrinsics as well as the new DBERASE, DBPUTIX, DBDELIX intrinsics and SIUSER
procedure.

Chapter 1 Enhancements
Description Briefly documents the Enphancements o the Sl-intrinsics over their IMAGE
counterparts,

Each subsequent chapter documents one or more intrinsics, including a discussion of
sach, their syntax (if different than IMAGE), and parameters (if different than
IMAGE). The intrinsics are listed in alphabetical order by name.

Enhancements

For every IMAGE intrinsic there is an equivaient SUPERDEX intrinsic that has the same name and
uses the same parameters. Some additional parameter values are available to achieve new

functionaiity.

The enhancements to standard IMAGE intrinsics are summarized alphabetically by intrinsic in the
table on the following page.

Because most Sl-intrinsics are functionally and syntactically identical to their IMAGE counterparts,
the changes are transparent; therefore, generally only variations are documented here.

Summary of intrinsic

DBBEGIN no changes; automatically imposed if missing on DBPUT, DBUPDATE,
DBDELETE, DBPUTIX, and DBDELIX and base enabled for logging. MDBX
not supported.

DBCLOSE no changes

DBDELETE autornatically maintains Sl-indices

DBDELIX new intrinsic; explicitly deletes Si-index

DBEND no changes; automatically imposed if missing on DBPUT, DBUPDATE,
DBDELETE, DBPUTIX and DBDELIX and the base is enabled for logging.
MDBX not supported.

DBERASE new intrinsic; erases dataset and associated Sl-indices in a fast mode

DBERROR no changes, no enhancement intrinsic provided

DBEXPILAIN no changes, no enhancement intrinsic provided

DBFIND - works the same on master and detail dataset
- new mode 10 works same as mode 1 but does not return qualifying entry

count
- new modes 100-2899 position Sl-pointer
- argument may contain multiple values and operators
- multiple calis perform dynamic queries on multiple fields, sets, and bases
- can qualify a master entry based on its related detail entries in a super-group
- the results of the current and previous DBFIND are maintained

DBGET - works the same on master and detail datasets
-~ modes § and 6 retrieve entries in ascending and descending sorted order
- new modes 15 and 16 return ail entries in the dataset aiphabetically
- new ! fist reads Sl-indices only; optional Si-counter returns muftiple Si-indices

DBINFO new modes 311 and 312 return information about SUPERDEX configuration

PBLOCK no changes; conditionally imposed for DBPUT, DBUPDATE, DBDELETE,

DBPUTIX, and DBDELIX
DBMEMO _ignored if logging is not enabled
DBOPEN - internally establishes SUPERDEX configuration

- replaces first word of IMAGE base name with the SDU number, instead of the
DEU number

82 Intrinsics

Version 3.1 March 1992

DBPUT

- automatically maintains Sl-indices
- entries with blank Sl-keys are by defaull not indexed

DBPUTIX new intrinsic; explicitly adds Si-index
DBUNLOCK no changes; conditionally imposed for DBPUT, DBUPDATE, DBDELETE,
DBPUTIX, and DBDELIX

DBUPDATE - automatically maintains Sl-indices
- may be used to update Si-keys

DBXBEGIN not supported

DBXEND not supported

DBXUNDO not supported

SITRANSLATE new procedure to convert an argument from Infix Notation to Reverse Polish
Notation

SIUSER new user-written procedure; permits customer-defined Si-indices

Version 3.1 March 1992 Intrinsics 5-3

DBBEGIN intrinsic

| There are no syntax changes to the DBBEGIN intrinsic.

if the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs (and DBENDs)
around several intrinsics, if a DBBEGIN is not already in effect. Those intrinsics are:

R DBPUT

B DBPUTIX
B DBDELETE
W DBDELIX
B DBUPDATE

The DBEND is imposed regardless of whether or not the intrinsic call is successful.

If the DBPUTIX and DBDELIX intrinsics are used in combination with DBPUT and DBDELETE, the
program should explicitly call DBBEGIN before the DBPUT or DEDELETE, and DBEND afler the
DBPUTIX or DBDELIX.

[mMuﬁipie database transactions (MDBX) is not supported at this time.

5-4 Intrinsics Version 3.1 March 1882

DBCLOSE intrinsic

The DBCLOSE intrinsic is the same as in IMAGE, although it additionally releases the run-time
SUPERDEX structures.

WSUPERDEX may be configured to perform two DBOPENSs against a database for greater
efficiency. If this is the case, two DBCLOSES are also performed automatically.

if the Sl-indices are kept in a separate Si-index base, SUPERDEX automatically DBOPENs and
DBCLOSES the Sl-index base.

Version 3.1 March 1992 Intrinsics 5-5

DBDELETE intrinsic

Functionally the same as IMAGE, with the addition that corresponding Sl-indices are automatically
deleted, including super-grouped Sl-indices and custom-defined Sl-indices generated by the SIUSER
procedure.

Locking

A DBDELETE against a SUPERDEX'ed set may also intemally access the corresponding Si-dataset
to delete related Sl-indices. This should be taken into consideration when locking, since the
appropriate Si-dataset must be locked during a DBDELETE, which may be done implicitly or
explicitly. Refer to the Locking chapter of the Programming section for a discussion of the various
locking methods,

Logical transactions

if the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBDELETE that does not already specify them. The DBEND is imposed regardless of
whether or not the DBDELETE is successful.

DBGET used to locate entry for DBDELETE

if alt Sl-keys are not included in the list of the DBGET used {0 locate an entry for deletion,
SUPERDEX will automatically change the fistfo @ {uniess it is already @ or }).

Because the current Jist may change and therefore any subsequent calls done without re-initializing
the list may be faully, # is recommended that the @ /st or a list containing all Sl-keys be used when
calling DBGET before DBDELETE (the ; Jisf may also be used but is inefficient), unless the
database has been opened by SUPERDEX a second time (see Section 3).

56 Intrinsics Version 3.1 March 1992

DBDELIX intrinsic

DBDELIX is a SUPERDEX intrinsic used to explicitly delete Si-indices from B-trees (its counterpart is
the SUPERDEX DBPUTIX intrinsic, which explicitly adds Si-indices).

The DBDELIX infrinsic accesses only the appropriate Si-dataset and is used to maintain independent
indices. H also provides a method for deleting custom Slindices in addition io those removed
automatically by DBDELETE.

Refer to the Adding, updating, and deleting entries chapter of the Programming section for further
discussion.
Syntax DBDELIX (base, dset,mode, status, item,buffer)

The DBDELIX intrinsic is syntactically similar to DBDELETE except that the list parameter is replaced
by an ftern parameter and the buffer parameter contains the full Si-index, including the Si-extension.

Parameters

Base The base-ID (same as IMAGE).

Dset Name or number of the dataset in which the corresporkding data entry exisls.
If accessing an independent Si-path, this parameter should be left blank or set to
200.

Mode An integer with the value 1.

Status Only the condition word is set.

item The name of the Si-path from whose B-tree to delete the specified Sl-index.

Buffer The full Sk-index value including the extension. The extension may be:

M the search fieki value for a master dataset
M the relative record number for a detail dataset
B a suitable user-defined value for independent Sl-paths

Version 3.1 March 19492 Intrinsics 8-7

Locking

A DBDELIX against an Si-path internally accesses the corresponding Sl-dataset to delete one or
more Sl-indices. This should be taken into consideration when locking, since the appropriate Si-
dataset must be locked during a DBDELIX, which may be done implicitly or explicitly. Refer to the
Locking chapter of the Programming section for a discussion of the various locking methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBDELIX that does not already specify them. The DBEND is imposed regardless of
whether or not the DBDELIX is successful. If DBDELIX is used in combination with DBDELETE, the
program should include a DBBEGIN before the DBDELETE and the DBEND afier the DBDELIX.
Error handling

Since SUPERDEX uses standard IMAGE messages to report all errors and exceptional conditions,
the same messages that are used by DBDELETE are displayed for DBDELIX.

5-8 [Intrinsics Version 3.1 March 1882

DBEND intrinsic

There are no syntax changes to the DBEND intrinsic.

If the base is enabled for logging, SUPERDEX automatically imposes DBENDs (and DBBEGINS)
around several intrinsics if a DBBEGIN is not aiready in effect. Those intrinsics are:

m DBPUT

B DBPUTIX
M DBDELETE
8 DBDELIX
B DBUPDATE

The DBEND is imposed regardiess of whether or not the intrinsic call is successful,

if the DBPUTIX and DBDELIX intrinsics are used in combination with DBPUT and DBDELETE, the
program should explicitly call DBBEGIN before the DBPUT or DBDELETE, and DBEND after the
DBPUTIX or DBDELIX.

(=g Multiple Database Transactions (MDBX) are not supported at this time.

Version 3.1 March 1992 Intrinsics 5-9

DBERASE intrinsic

DBERASE is a SUPERDEX intrinsic that erases the contents of a dataset and also removes all
corresponding Sl-indices for all associated Sl-paths. Ht is considerably faster than DBDELETEing all
entries.

Ali entries in the dataset are read serially and erased, then the comresponding Si-indices are erased.
As with DBDELETE, a master datasel cannot be erased if any of is eniries have related detail
entries--if they do, the erase will not be performed at all.

Syntax DBERASE (base,dset,mode,status)

Parameters

Base The base-ID (returned by DBOPEN).

Dset The name or number of the master or detail dataset to erase.

Mode An integer with the value 1.

Status Standard IMAGE sfatus amay. Only the condition word is set (to zero if
successful or to one of the IMAGE condition words returned by DBDELETE #
unsuccessful).

510 [ntrinsics Version 3.1 March 1992

Improved speed in exclusive access mode

Although erasing a dataset with DBERASE is much faster than using DBDELETEsS, its speed can be
increased further If run in exclusive access mode by logging on as the database creator and
executing the following DBUTIL commands:

tRUN DBUTIL.PUB,SYS
>>DISABLE base¢ FOR ILR

TLR is disabled.
>>DITBABLE base FOR LOGGING

Logging is disabled.
>>ENABLE base FOR AUTODEFER

Autodefer is enabled.
>>RBXIT

END OF FROGRAM

Don't forget to reset these run-time options back to their original status using the ENABLE command
after the DBERASE has completed.

Recovery after abnormal abort
if the DBERASE fails due 10 a program abort, system failure, or other interruption, erase the dataset
using a utility (such as DBGENERAL) or delete any remaining entries using QUERY.PUB.SYS and

use the SIMAINT utility to reorganize all Sl-paths related to the dataset. If SIMAINT is unable to
successiully recover the database, use the SIMAINT with the DBLOAD entry-point.

Version 3.1 March 1992 Intrinsics 511

DBERROR and DBEXPLAIN intrinsics

There are no changes to the DBERROR or DBEXPLAIN intrinsics, and no enhancement intrinsics
are required.

The error conditions reported by DBERROR and DBEXPLAIN are standard IMAGE efror messages,
but may reflect errors encountered not only on the dataset containing the entries but also against an
Si-dataset. :

When analyzing an error, keep in mind that & may be related to an Si-datase! rather than (or in
addition to) the dataset containing the entries, even though the entry dataset may be reported as
being in error. The same is true when SUPERDEX is configured to maintain its Sl-indices in a
separate Sl-index base: an error on the Sh-index base will be reported against the primary base
containing the data entries.

Refer to the table of SUPERDEX intrinsic efror and exceptional conditions in the Error _and
exceptional conditions appendix for different types of etrors, their meanings, and recommended
actions.

Detecting structural inconsistency

If there is an inconsistency between a B-tree and its corresponding dataset such that an Sl-index
refers to a non-existent entry, condition word 17 ("No ENTRY roUND") is returned. This would be
caused by deleting an entry but not its related Si-index. In this case, the Sl-path should be
reorganized using the SIMAINT utility.

i an internal inconsistency within a B-tree is detected (due to program abori, system failure, etc.),
condition word 18 (“BrokEN cHAIN") is retumed. In this case, reorganize all Si-paths using the
SIMAINT with the DBLOAD entry-point.

Refer to the Maintenance and wutilities section for reiated information.

5-12 Intrinsics Version 3.1 March 1892

DBFIND intrinsic

DBFIND accesses an Si-path and seis the Sl-pointer within that Sl-path's B-tree for subsequent
DBGETs. In addition to IMAGE, DBFIND works on both master and detail sets.

In using DBFIND against Sl-paths, the argument may contain partial keys as well as generic values,
relational operations, ranges, and muttiple values which are logically combined via boolean operators,
For keyworded Sl-paths, the argument may contain a keyword; for concatenated Sl-keys, it may
contain a concatenated value; both may include partiat and generic keys, etc.

If qualifying entries using a super-grouped Sl-path, DBFIND must be called against the master set,
although entries in all datasets in the super-group will be used to qualify the master entries.

SUPERDEX allows multiple DBFIND calls in succession to qualify entries across multiple Sl-paths,
datasets, and even multiple databases. A similar technique may be used o refine a selection,
whereby further qualification may be performed against entries already found.

Refer to the Qualifying entries with DBFIND chapter of the Programming section for further
discussion arndd examples,

Parameters

Base Same as IMAGE

Dset In addition to IMAGE, master sets as well as detail sets may be specified by
nama or number. If the Si-path is super-grouped, must be a master set.

If accessing an independent Sl-path, this parameter should be left blank or set to
200.

Mode While IMAGE allows only a single mode {mode 1) for DBFIND, SUPERDEX
extends the capabilities of mode 1 while maintaining compatibility, and provides
several additional modes for use on Sl-paths. '

Mode 1 Fully compatible with IMAGE mode 1. Also aliows multiple values and various

operators to be included in the argument (explained later). f no entry is found
that matiches the argument, condition word 17 ("NO ENTRY FOUND") is
returned.

anmg DBFIND mode 1 returns the number of qualifying entries in
words 56 of the status array.

Version 3.1 March 1992 Intrinsics 513

Mode 10

Mode 100

Mode 1nntinn

Mode 200

Mode 2nn/-2nn

Status

5-14

Intrinsics

Same as mode 1, but does not return the number of qualifying entries in the
status array and is therefore more efficient.

In mode 1, not only is the Si-pointer set to the first qualifying Sl-index entry, but
the B-tree is traversed to locate all qualifying Sk-indices. I is more efficient to
only set the Si-pointer, so mode 10 should be used in place of mode 1 whenever
the number of qualifying entries is not required.

in mode 10, the chain enlry count in the sfatus array is always set to 1, for
compatibility with programs that cali DBFIND and test to make sure that the chain
count is not zero.

Positions the Sl-pointer before the first Si-index in the B-tree (i.e. before the
lowest alphabetical entry in the set in ascending order). In this mode, the
argument is ignored and may be left blank.

Reads nn words of the argument and sets the Si-pointer before the first qualifying
Skindex entry. lf no malching enfry exisis, condition word 17 ("NO ENTRY
FOUND") is returned but the Si-pointer is set immediately before the nearest-
matching Si-index. If prefixed with a minus sign (=), reads nn byles instead of
words.

Positions the Si-pointer after the last entry, in ascending order {i.e. after the
highest alphabetical entry in the set). In this mode, the argument is ignored and
may be left blank,

Reads nn words of the argument and sets the Si-pointer after the last qualifying
Sl-index entry. If no maiching entry exists, condition word 17 ("NO ENTRY
FOUND") is returned but the Sl-pointer is set immediately after the nearest-
matching Si-index. If prefixed with a minus sign (-}, reads nn bytes instead of
words,

Same as IMAGE, although the chain count (words 5-6) is set by mode 1 only; in

mode 10, the chain count is set o a constant value of 1. In relational access
mode, the chain count reflects the total number of Sk-indices in the active Si-
subset,

The first-on-chain and last-on-chain pointers (words 7-10) are set only for IMAGE
paths and not Si-paths, unless the SISETLINK JCW has been set fo 1. If the
SISETLINK JCW has been set, the first-on-chain and last-on-chain values will
contain the correct values for the given Si-path.

Additionally, a unique internal number utilized in performing logically-related
DBFINDs against muttiple databases is either returned or specified in word 2,
which is unused by IMAGE.

SUPERDEX returns a condition word of 0 in the first word on a successful call
and a non-zero condition word on an unhsuccessful call, like IMAGE; however, a
SUPERDEX DBFIND with a mode of 1nn or 2nn may return a condition word 17
error {"NO ENTRY FOUND") while still setting the Si-pointer before or after the
nearest qualifying entry, respectively.

Version 3.1 March 1892

item

Specifies either an IMAGE path or an Si-path. if an IMAGE path, the name or
number of the IMAGE search field is specified as usual. If an Sl-path, the name
or number of the Si-path or the fiem number of the first Sl-subkey in the Sl-key is

specified.

m,i\' there is more than one Sl-path that starts with the same i{em
number, or if the Sl-path is an independent Si-path, the Sl-path name
or number must be specified.

If the Si-path number is to be used, it is recommended that the numbers NOT be
hard-coded in the program. A DBINFO mode 312 should be called against the
path to retrieve the Si-path number. Si-path numbers are assigned dynamicatlly,
based on the configuration of the database. Therefore, if Si-paths are added or
deleted the Si-path number for any Si-path may change.

If both an IMAGE path and an Sl-path with the same name exist in the same
dataset and DBFIND is called in mode 1, SUPERDEX will use the Sl-path instead
of the IMAGE path. If the search of the Si-path is unsuccessful, the IMAGE: path
is used. if the IMAGE-path search is unsuccessful, the condition word is set {o
17.

Iin performing successive DBFINDs against multiple datasets, a common item
used to logically link the datasels together {called the S/-link) may additionally be
specified. H is required that the item assigned as the Si-link be configured as an
Sl-subkey; alternately, for Sl-paths against a master dataset, t may be the
IMAGE search field.

The Si-fink is separated from the Si-path name by a comma, with the combined
value terminated by a SPACE or } as shown:

Sl-path, Si-link;

if the Si-path is passed as an item number rather than a name, the item number
of the Sl-link shouid be specified in the second word of the itern array.

if performing a projection, which is used to logically link two datasets that do not
contain a commoen item by reassigning the Si-link, the fem parameter takes the
form:

Si-path, new Sl-link;

To locate entries that have been found by previous DBFINDs in the active SI-
subset rather than in the dataset, specify a null temof 0 or ;.

Version 3.1 March 1992 intrinsics 5-15

Argument

5-16

intrinsics

In IMAGE, the DBFIND argument must specify an exact search field value. In
SUPERDEX, the argument for DBFIND modes 1 and 10 may contain:

an exact Sl-key value {or concatenated value)

a single @

a partial Sl-key value with one or two @ surrounded with << >>

a generic Sil-key value containing one or more embedded ?s (the

aiphanumeric matchcode) or #s {the numeric matchcode)

a partial Si-key value preceded by either the »>=, <=, or <> relational

operators

a range of two or more values with embedded relational operators (e.g.

>=AQ<=B@)

an ASCl! value prefixed by ==, which causes the vaiue to be converted to

binary for comparison

multiple Si-key values, with the argument beginning with the tilde (7) and

ending with the semi-colon {7), and including one or more of the boolean

operators AND, OR, or NOT (specified in SQL Notation)

W muitiple Si-key values, with the argument beginning with the tilde (") and
ending with the semi-colon (3}, and including one or more of the boolean
operators +, ,, or - (specified in infix Notation)

® multiple Sl-key values, delimited with square brackets ([]), and including

one or more of the boolean operators &, |, or ! & (specified in Reverse Polish

Notation)

the special operators, such as /, \, and §, used for manipulating the active

Sl-subset and backup Si-subset

the special operator ”, used for swapping the active and backup Si-subsets

the special operator *, used for projection

the special operator @@, which rewinds the virtual Si-chain, and in mode 1

returns its entry count

many combinations of these construcls

The following operators may be embedded in the argument for DBFIND modes 1
and 10:

[Conditional operators

@ any variable number of alphanumeric characters
? any single alphanurmeric character
i any single numeric character

I Relational operators

>= | greater than or equal o
<= | less than or equalto
<> | notequalto

Version 3.1 March 1992

l Boolean operators

SQL Notation
AND | and
OR or
NOT | and not
infix Notation
+ and
. of
and not
Hevorse Polish Notation
& and
| or
1& and not

| Special Operators (for successive DBFIND calls) |
& ANDs backup Sl-subset with active Si-subset, replaces active with
resull, deletes backup
| ORs backup with active, moves result into active, deletes backup
1& | AND NOTs backup with active, moves result into active, does not
change backup
moves copy of active into backup
moves backup into active, deletes backup
swaps the active and backup
[1 replaces backup with active, erase active
[#] | performs a projection
@@ | rewinds virtual Sl-chain; returns entry count in mode 1

e PN

@in modes 100 and 200, the argument value is ignored.

Keywords If DBFIND is called against a keyworded Sl-path and the length of the specified
keyword exceeds the keyword length configured for the Si-path, the specified
keyword is truncated to the keyword length and matching is done on the truncated

value,

Terminator if DBFIND is calied in mode 1 or 10 and the specified argument is not the full Si-
key value, either the buffer must be padded with spaces or the argument value
must be terminated by:

m for alphanumeric fields with arguments not surrounded with << >>, a single
sPACE followed by a single @

B/ for alphanumeric fields with arguments not surrounded with << >>, a single
@ (used for partial-key retrieval)

M for alphanumeric fields with the argument surrournded with << >>, up to two
@s.

M| for numeric fields, a single SPACE

M for arguments beginning with the tilkde (™), the semi-colon () |

m for arguments ending with a] or boclean operator, a single SPACE or an @

Version 3.1 March 1992 Intrinsics B-17

Delimiters

Booleans

Refinement

Data types

5-18

Intrinsics

If an argument begins with a tilde (") and ends with a semi-colon (2), or an
argument value is enclosed in square brackets, this specifies that SUPERDEX
should perform a relational retrieval:

“>=C@:;
[>=C@]

The tilde and semi-colon are required when using the SQL Notation or Infix
Notation operators. The square brackets are required when using the Reverse
Polish Notation operators. Using these relational accesses prevents entries from
being returned more than once when the search criteria would qualify them
multiple times.

Boolean operations between multiple values may be specified in a DBFIND
argument in SQL Notation, Infix Notation, or Reverse Polish Notation, as used in
HP calculators. In RPN, the operator always follows the values being compared,
while the other two require the operator to precede the vaiue(s). For example:

“"A@ or BG or >=P@; SQL Notation
"AG,BG,>=P@; Infix Notation
[AG] [BQ] | [>=P@] | Reverse Polish Notation

These locate all entries that begin with "A" or "B", or that begin with "P" or an
alphabetically higher letter.

The special operators for managing the active and backup Sl-subsets may be
used alone or in combination in the argument, if used alone, DBFIND will manage
the Si-subsets but not select any new entries. Alternately, the special operator(s)
may be used to prefix any argument value and both the selection and Sl-subset
management operations will be performed in the same intrinsic call.

For DBFIND medes 1 and 10 in indexed access, ASCIH numbers may be
specified for most numeric items (data types |, J, P, R, and Z) if prefixed with ==,
>=, <=, Of <> or, i appropriate, a - (negative sign)--the == operator simply
converts an ASCH value specified to binary format for comparison.

@The exception is data type K, for which values must be specified in
binary.

For concatenated Si-keys that contain Si-subkeys of mixed data types
{(alphanumeric and numeric) there are many different ways to specify data. Refer
to the Finding entries in a concatenated Si-key paragraph in Section 4.

When performing relational access, the argument must be specified in ASCIL
Values are automatically converted to binary for comparison with binary data
values (do not prefix the argument with the == conversion operator).

For data types P and Z, SUPERDEX's DBFIND treals unsigned and positive
values equivalently. For data type P, the sign is held in the last nibble (4 bits); for
type Z, the sign is over-punched in the last byte.

Real numbers (items of data type R) may include embedded decimal points (,),
exponential signs (B), and positive (+) and negative (~)} signs.

Version 3.1 March 1892

Restrictions

Data type Z

A few restrictions exist in arguments that may be specified:

for range searches, the first value specified (start point) must be less than the
second value (end point)

for range searches {as well as searches that use values that start with the
<z, »=, or <> relational operators), a ? embedded in a value is not
recognized as an operator but as a reguiar character

the @ wildcard may only be specified as the last character in a value, unless
the argument value is surrounded with the << >> operators. Any characters
that follow an @ are ignored except when performing a range or not-equalio
retrieval

exclusions (values preceded by <>) must be the last value in the argument

Additional restrictions exist in arguments that may be specified for Si-keys of data
type L

a ? or @ embedded in a value is not recognized as an operator but as a literal
character. As the Sl-key is numeric, this could result in "ILLEGAL ASCII
PIGITE" in COBOL or as condition word 17.

leading zeroes must be specified unless the argument is prefaced with the
operator ==, <=, >=, <> of relational access is being used.

mode 1nn or 2nn must be used to qualify entries when using a partial key
value for both simple and concatenated Si-keys

for concatenated Si-keys, mode 1nn or 2nn must be used to qualify entries if
the full Sl-key value is specified

for concatenated Sl-keys that contain Si-subkeys of mixed data types and for
which the first Si-subkey is numeric, a numeric value may be specified in
mode 1 or 10 for the first Si-subkey only. Characters specified after the first
Si-subkey will cause unpredictable results. Use mode 1nn or 2nn to qualify
partial or full concatenated Si-keys

Version 3.1 March 1992 intrinsics. 519

Effect of DBFIND on the Si-pointer and current path

The following table summarizes the effects of DBFIND on the Si-pointer and current Sl-path:

mode condition word = 0 condition word <> 0
1 before entry current path not set**
10 before entry cutrent path not set**
100* before first entry current path not set
inn before entry if cw= 17, before next entry
200 after iast entry current path not set
2nn after entry if cw == 17, after previous entry

* may be foliowed by either DBGET mode 5 or 15 or mode 6 or 16 and will start at either the
beginning or end of the dataset, respectively, as compatibie with IMAGE
** if using relational access, the current path is retained

520 Intrinsics Version 3.1 March 1992

DBGET intrinsic

Modes 5 and 6 return entries on a logical Sl-chain rather than a physical IMAGE chain. Also,
DBGET mode 5 and 6 work the same in both master and detail sets (in IMAGE, mode 5 and 6
DBGETSs against a master set traverse the synonym chain, and are rarely used).

New modes 15 and 16 are available. These modes operate the same as modes 5 and 6, except they
continue to retrieve entries even after the Sl-keys no longer match the argument, all the way to the
end or beginning of the set. Effectively, they perform greater-than-or-equal to and less-than-or-equal
to retrievais, respectively.

Also, the new 1 Jisf construct is available for reading Sl-indices only, for greater efficiency.

If the next- and previous-record numbers in the chain are required, set the JCW SISETLINK to 1.
SUPERDEX will place the next- and previous-record numbers into the status array. This inciudes
any DBGET mode, or if relational access is being executed.

Refer to the Refrieving entries with DBGET chapter of the Programming section for further

discussion.

Parameters

Base

Dset

Mode

Mode 4

Mode 5

Same as IMAGE

Same as IMAGE--sets may be specified by name or number.

If accessing an independent Si-path, this parameter should be left blank or set to
200.

Modes 5 and 6 are enhanced 1o work on Sl-paths, and new modes 15 and 16
permit retrieval of entries in addition 1o those qualified by the previous DBFIND,
Mode 4 continues to function as in IMAGE.

if the Si-Path in the DBFIND is a one-to-one relationship index (simple index Si-
path or concatenated Sl-path) and no relational accessing was executed, this
mode, in conjunction with modes 5 and 6, functions the same as IMAGE.

if relaticnal access was executed, or the Si-Path is nol a one-lo-one index, sef

the JCW SISETLINK to 1 and SUPERDEX will function the same as IMAGE.

Mode 5 continues to function as in IMAGE i the DBGET is performed on an
IMAGE path,

Version 3.1 March 1992 intrinsics 521

Mode 6

Mode 15

Mode 16

Status

List

1 st

5.22

Intrinsics

Mode 5 against an Sl-path returns alf entries qualified by the previous DBFIND in
ascending sorled sequential order if index access was used. Once all qualifying
entries have been returned, the condition word is set to 15 ("Exp or cHAIN").

Mode 6 continues to function as in IMAGE if the DBGET is performed on an
IMAGE path.

Mode 6 against an Sl-path returns all entries qualified by the previous DBFIND in
descending sorted sequential order if indexed access is used. Once all qualifying
entries have been returned, the condition word is set to 14 ("BEGINNING oF
CHAIN").

Same as mode 5, but continues to retrieve entries in ascending sorted sequential
order even afier the Sl-keys no longer match the argument (greater-than-or-
equal-to retrieval).

Same as mode 6, but continues to retrieve eniries in descending sorted
sequential order even after the Si-keys no longer match the argument (less-than-
or-equal-to retrieval).

| When using modes 5, 6, 15, ard 16 against an Sl-path, only the first four words of

the sfatus array confain accurate information, unless the JCW SISETLINK has
been set to 1.

if the JCW SISETLINK has been set to 1, words 7-8 and 9-10 will be sent to the
previous- and next-record numbers on the chain.

Same as IMAGE, but additional considerations for subsequent DBUPDATE and
DBDELETE exist, and a new list is avallable.

If the SIEXTLEN JCW was used to configure a concatenated Sl-key with more
than four non-contiguous Sl-subkeys, it is required that all items that were not
explicitly referenced when defining the Sl-key be included in the Jist in the order in
which they appear in the dataset before calling DBUPDATE or DBDELETE.

The ! list returns the Sl-index rather than the data entry. This is much faster
than any other /ist construct because SUPERDEX needs to access only an Sl
dataset. :

Version 3.1 March 1992

Si-counter

DBUPDATE

DBDELETE

Several functions can be accomplished with the § Jist by reading only the Sl-index
rather than the entire data entry, for example:

W pattern matching and character validation

W intermediate storage of an Sl-index to reset the Si-pointer after changing to
another Si-path

B checking for the existence of common Sl-indices in two datasets, by
alternately reading Sl-paths from each set

if the corresponding data entry is needed for any Sl-index {to DBUPDATE or
DBDELETE the data entry, for example) use DBGET mode 1 (reread current
entry) with a /ist other than ! to read &,

The 1 list is never seen by IMAGE, so the current list before the ¥ /st was
specified will still be active (i.e. the % list may still be used as usual).

In reading an independent Si-path, only the ! listis allowed.

If using the ! list, an Sl-counter may optionally be appended as numeric literal to
specify the number of Sl-indices that should be returned by a single DBGET cal,
in the format:

¥ Sl-counter

The Si~counteris erminated by ; or blank

if the DBGET used to locate an entry for updating specifies neither the @ /ist nor a
fist that includes alf the Si-subkeys whose values are being changed, SUPERDEX
will automatically perform one or more rereads {DBGET mode 1) with various fists
when performing the DBUPDATE.

This is both inefficient and causes the current /st to change without the
knowledge of the program, and therefore any subsequent calls done without re-
initializing the fist may be faulty. It is therefore recommended that the @ /istor a
list that contains all Sl-subkeys be used when calling DBGET before DBUPDATE
of when calling DBUPDATE.

ig%ﬁljsing the /2 database option in SIMAINT to allow two DBOPENS to be
performed sliminates this list concemn.

Similarly, if all Si-keys are not included in the fist of the DBGET used to locate an
entry for deletion, SUPERDEX will automatically change the fist to @ (unless it is
already @ or 7).

Because the current fist may change and therefore any subsequent calls done
without re-initializing the fist may be faulty, #t is recommended that the @ listora
fist containing all Si-keys be used when calling DBGET before DBDELETE {the ;
list [null list] may also be used, but is inefficient).

II@Using the /2 database option in SIMAINT to aliow two DBOPENS to be
performed eliminates this fist concern.

Version 3.1 March 1892 Intrinsics 5-23

Buffer Same as IMAGE.

Argument Ignored for modes 5, 6, 15, and 16,

Effect of DBGET on the Sl-pointer and current path

The following table summarizes the effects of DBGET on the Si-pointer:

other unique
other non-unigue

on entry
no change

mode/relationship condition word = 0 condition word <> 0
5or15* before next entry f ow = 15, no change
6or16* after previous entry f ow = 14, no change

no change
no change

* if switching from mode 5 or 15 to mode 6 or 16, the same eniry is not returned twice

5-24 ntrinsics

Version 3.1 March 1992

DBINFO intrinsic

Same as IMAGE with additional modes 311 and 312 implemented o return information about the
SUPERDEX Sl-path configuration for a database.

Parameters

Base

Qualifier

Mode

Mode 311

Base-id (same as IMAGE).
For mode 311, name or number of the dataset for which to return Sl-path
information.

For mode 312, name of the dataset to which the Sl-path is related foliowed by the
name of the Si-path for which to return information, delimited by ;, as shown:

dataset name; Si-path name

Alternately, the dataset number may be specified as an integer followed by the Sl-
path name of up to 16 characters (with no delimiter):

dataset number Si-path name

Or, the dataset number may be specified as an integer followed by the item
number of the first 8i-subkey as an integer (with no delimiter):

dataset number ftem number

Wlf there are multiple Si-paths related to a dataset that contain the same
item as the first Sl-subkey, the Si-path that appears first in the SI-
definitions is returned,

In addition, the path number can be used in the same format as #em number

above. '

All IMAGE modes are acceplable.

Mode 311 is used to check for presence of SUPERDEX and to retrieve
information about the Sl-paths related to a specified dataset.

Version 3.1 March 1992 Intrinsics 525

Mode 312

Status

Buffer

5-26

Intrinsics

Mode 312 is used to determine the characteristics of a specific Sl-path related to

a dataset.

This mode is intended for use in determining whether an Si-path is keyworded or

grouped and, for grouped paths, the items that are included in the group.

Only the condition word is set.

For mode 311, information about the related Sl-paths is returned as the number
of Sl-paths followed by 16 words of information for each Sl-path, in the following

format:
word | description
1 number {count) of Si-paths
2-9 Sl-path name of Sl-path #1
10 ftem number of first Si-subkey of Sl-path #1; 0 for custom index
11 length in words of first Si-subkey of Si-path #1
12 ftem number of second Si-subkey of Sl-path #1 (0 if not configured)
13 tength in words of second Si-subkey (0 if not configured)
14 item number of third Sl-subkey of Sl-path #1 (0 if not configured)
16 length in words of third Si-subkey (0 not configured)
16 item number of fourth Sl-subkey of Sl-path #1 (0 I not configured)
17 length in words of fourth Sl-subkey (C if not configured)
18-33] same information for Si-path #2
34-49! same information for Si-path #3

same information for additional paths

ng?The space required for BUFFER is not larger than the length of the Sl-item.

For grouped Sl-Paths the information is returned only once. Use Mode 312
to find all members of the group. For Super-grouped Sl-Paths use mode 312

for all related details.

Version 3.1 March 1992

For mode 312, information about the Sl-path is returned in the following format:

word

description

1
2

compound ftem flag (1 # IMAGE compound item, otherwise ()

grouped Sl-path flag (1 if grouped Sl-path, 2 if super-grouped,
ctherwise 0)

keyworded Si-path flag {1 if keyworded Si-path, otherwise 0)

index blanks flag (1 i blank values are indexed, otherwise 0)

Si-path number

offset for first Si-subkey

ofiset for second Si-subkey (0 i not configured)

offset for third Si-subkey {0 if not configured)

length in words of Sl-index

tength in words of Sl-key

number of Sl-subkeys (0 for non-concatenated Si-keys)

number of Sl-keys in group (0 for non-grouped Si-paths)

minimum keyword length (O for non-keyworded Sl-paths)

average number of Si-indices {0 for non-keyworded and non-custom
Si-paths)

item number of first Si-subkey of first Si-key in group (0 for non-
grouped Sl-paths)

item number of first Sl-subkey of second Si-key in group (undefined if
non-grouped St-paths)

for additional Si-keys in group

Versiont 3.1 March 1892 Intrinsics 5-27

DBLOCK intrinsic

IThere are no syntax changes to the DBLOCK intrinsic,

Based on its configuration, SUPERDEX may automatically apply a dataset-level DBLOCK against
one or more datasets, including the appropriate Si-dataset, when a program calls any of the following
intrinsics:

m DBPUT
M DBPUTIX

W DBDELETE

B DBDELIX

m DRUPDATE

If the database is configured for a separate DBOPEN for locking, SUPERDEX calls both DBLOCK

and DBUNLOCK against the appropriate Si-dataset. Refer to the Locking chapter at the beginning of
the Programming section for a complete discussion about SUPERDEX and locking.

5-28 Intrinsics Version 3.1 March 1892

DBMEMO intrinsic

DBMEMO is the same as in IMAGE, butt if called against a database for which logging is not enabled,

is ignored.

Version 3.1 March 1992

Intrinsics

5-2¢

DBOPEN intrinsic

The DBOPEN intrinsic is the same as in IMAGE, although it establishes the run-time SUPERDEX
structures and is therefore slightly slower, Additionally, #t does NOT set the first word of the data
base variable as IMAGE does. SUPERDEX storss the pointer to the SUPERDEX User area (SDU)
in the first word. This then aliows SUPERDEX to retrieve the pointer for the IMAGE DBU from within
the SDU, thus ALL calls 1o the data base must be executed by SUPERDEX.

BS" SUPERDEX may be configured to perform two DBOPENS against a database for greater
efficiency: all access and locking of dataseis containing data entries are performed via the
first open, while all access and locking of the Si-datasets are performed via the second open.
Refer to the Locking chapter of the Prograrmming section for a discussion,

if the Sl-indices are kept in a separate Sl-index base, SUPERDEX automatically DBOPENs (and
DBCLOSES) the Sl-index base.

5.30 Intrinsics Version 3.1 March 1892

DBPUT intrinsic

Functionally the same as in IMAGE, except entries with blank $i-keys, and concatenated Sl-keys for
which the first Sl-subkey is blank, are not indexed whereas in IMAGE they would all be placed on a
null chain. This may be overridden as a configuration option.

Appropriate Sl-indices, including Si-indices for super-grouped Sl-paths and custom Slhindices
generated by the SIUSER procedure, are automatically added into the B-trees when DBPUT is
called.

LIST parameter

The Jisf parameter used when calling DBPUT must include not only the IMAGE search fields but all
fields configured as Sl-subkeys or Si-keys. If the list does not include all IMAGE search fields and
Si-keys, condition word -53 ("DBPUT IS8 MISSING A SEARCH OR SORT ITEM" is
returned. :

Locking

A DBPUT against a SUPERDEX'ed dataset may also internally access the corresponding Sl-dataset
to add corresponding Sl-indices. This should be {aken into consideration when locking, since the
appropriate Sl-dataset must be locked during a DBPUT, which may be done implicitly or explicitly.
Refer to the Locking chapter of the Programming section for a discussion of the various locking
methods.

Logical transactions
If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs

around each DBPUT that does not already specify them. The DBEND is imposed regardiess of
whether or not the DBPUT is successful.

Version 3.1 March 1992 intrinsics 5-31

DBPUTIX intrinsic

DBPUTIX is a new SUPERDEX intrinsic used to explicitly add Sl-indices into B-trees (its counterpart
is the new DBDELIX intrinsic, which explicitly deletes Sl-indices).

The DBPUTIX intrinsic accesses only the appropriate Sl-dataset and is used to maintain independent
indices. It also provides a method for adding custom Si-indices in addition to those maintained
automatically by DBPUT.

Refer to the Adding, updating, and deleting entries chapter of the Programming section for further
discussion.

Syntax DBPUTIX (base,dset, mode, status,tem,buffer)

The DBPUTIX intrinsic is syntactically similar to DBPUT except that the list parameter is replaced by
an ftem parameter and the buffer parameter contains the full Sl-index, including the Si-extension,

Parameters

Base The base-ID (same as DBPUT).

Dset Name or number of the dataset in which the corresponding data entry exists.
If accessing an independent Sl-path, this parameter shouid be left blank or set to
200.

Mode An integer with the value 1.

Status Only the condition word is sef.

ltem The name of the Sl-path in whose B-tree to add the specified Si-index.

Buffer The full St-index value inciuding the Sl-extension, which is:

M the search field value for a master dataset
M the relative record number for a delail dataset
B a suitable user-defined value for independent Sl-paths

5.32 Intrinsics Version 3.1 March 1892

Locking

A DBPUTIX against an Sl-path internally accesses the corresponding Sl-dataset to add one or more
Slindices. This should be taken into consideration when locking, since the appropriate Sl-dataset
must be locked during a DBPUTIX, which may be done implicitly or explicitly. Refer to the Locking
chapter of the Programming section for a discussion of the various locking methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBPUTIX that does not already specify them. The DBEND is imposed regardiess of
whether or not the DBPUTIX s successful. If DBPUTIX is used in combination with DBPUT, the
program should include a DBBEGIN before the DBPUT and the DBEND after the DBPUTIX.

Error handling

Since SUPERDEX uses standard IMAGE messages to report all errors and exceptional conditions,
the same messages that are used by DBPUT are displayed for DBPUTIX.

Version 3.1 March 1992 Intrinsics 5-33

DBUNLOCK intrinsic

| There are no syntax changes to the DBUNLOCK intrinsic.

If the database is configured for a separate DBOPEN for locking, SUPERDEX calls DBUNLOCK
(after DBLOCK) against the appropriate Sl-dataset. Refer to the Locking chapter at the beginning of
the Programming section for a complete discussion about SUPERDEX and locking.

5-34

intrinsics

Version 3.1 March 1892

DBUPDATE intrinsic

Functionally the same as IMAGE, except it may also be used to change the value of an Sl-key.
IMAGE does not permit critical fields (search and sort fields) to be updated by DBUPDATE.

Sl-indices for super-grouped Sl-paths and custom Sl-indices generated by the SIUSER procedure
are automatically maintained by SUPERDEX when DBUPDATE is calied. It is required that the full
{@) /istbe used in this case.

DBOPEN mode 2

if the database is opened in mode 2, DBUPDATE cannot be used to update fields used in Si-keys,
since this may require that an internal DBPUT and DBDELETE be performed against the
‘corresponding St-dataset, which cannot be done in DBOPEN mode 2. If this is attempted, condition
word -41 ("DBUPDATE WILL NOT ALTER A SEARCH OR ESORT ITENM"}isreturned.

Locking

A DBUPDATE against a SUPERDEX'ed set may also internally access the corresponding Sl-dataset
to add and delete corresponding Si-indices. This should be taken into consideration when locking,
since the appropriate Sl-dataset must be locked during a DBUPDATE against an Sl-key, which may
be done implicitly or explicitly. Refer to the Locking chapter of the Programming section for a
discussion of the various locking methods.

Logical transactions

if the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBUPDATE that does not already specify them. The DBEND is imposed regardiess of
whether or not the DBUPDATE is successful.

DBGET used to locate entry for DBUPDATE

it the DBGET used to focate an entry for updating specified a lisf that does not include all the Sl-keys
in the dataset that are being changed, SUPERDEX will automatically perform one or more rereads
{DBGET mode 1) with various fists. This is both inefficient and causes the current Jist to change
without the knowledge of the program, and therefore any subsequent calls done without re-intializing
the fist may be faulty.

It is therefore recommended that the @ /ist or a list that contains all Si-subkeys be used when calling
DBGET before DBUPDATE or when calling DBUPDATE; otherwise, DBUPDATE may internally
change the list.

@Using the /2 database option in SIMAINT to allow two DBOPENS to be performed eliminales
this list concern, .

Version 3.1 March 1992 Intrinsics 5-35

DBXBEGIN intrinsic

B2 pynamic transaction intrinsics (DBXBEGIN, DBXEND, DBXUNDO) are not supported at this
{ime.

5-36 Intrinsics Version 3.1 March 1992

DBXEND intrinsic

= Dynamic transaction intrinsics (DBXBEGIN, DBXEND, DBXUNDO) are not supported at this

time.

Version 3.1 March 1992

Intrinsics 5-37

DBXUNDO intrinsic

B pynamic transaction intrinsics (DBXBEGIN, DBXEND, DBXUNDO) are not supported at this
time.

$-38 Intrinsics Version 3.1 March 1952

SITRANSLATE intrinsic

SITRANSLATE is an procedure to transiate input from infix notation to the Reverse Polish Notation.

Infix operators are + (AND), - (AND NOT), and , {comma) (OR). The input string is evaluated from
left to right, with no precedence between operators. Parentheses can be used to change the order of
evaluation.

Operands containing imbedded blanks must be delimited by double quotes (). The input string must
be terminated by a biank.

The OPERATOR parameter aliows one infix operator to be supplied programmatically. This is useful
in applications prompting the user only for operands.

Parameters

Operator (byte)

Values allowed are "+", "=", *, " and blank (no operator supplied)

Input {byte array) Input string to be translated, terminated by blank, in infix notation.
Output {byte array) Output string of transiation, terminated by blank, in Reverse Polish
Notation.
Error (integer) Zero {0} upon successful operation.
Examples
1) OPERATOR= blank
INPUT = NEW-"NEW YORK"
OUTPUT = [NEW][NEW YORK]!&
2) OPERATOR= blank
INPUT = {(COMB+BLIKD), (HOLD+DRILL)-PASTENG
OQUTPUT = [coMB][BLINDI&[HOLD] [DRILL)&| [FASTENG]!&
3 OPERATOR= +
INPUT = *LOS ANGELES"
QUTPUT = {[L0S ANGELES]&
4 OPERATOR= plank
INPUT = +*LOS ANGELES*
QUTPUT = [LOS ANGELESl&

Version 3.1 March 1992

Intrinsics 5-39

SIUSER procedure

SIUSER is an optional user-written procedure that is invoked by SUPERDEX to compute one or more
custom Sl-indices for entries whenever DBPUT, DBUPDATE, or DBDELETE is called and from the
SIMAINT utility. 1t is useful for establishing Si-indices that cannot be composed of dataset fields as
they are represented but which can be calculated using values in the data entry, as well as for Si-
indices that require:

more than four non-contiguous Si-subkeys
date conversion

reordering

upshifting

stripping

other parsing

ﬁ»ASK customers should contact Bradmark's Technical Support office for additional information.

The SIUSER procedure is written by the user and installed in an SL or XL that confains the
SUPERDEX segments, Each SL or XL may contain a different SIUSER procedure, or the same
SIUSER procedure may be placed in various SLs or XLs. The SIUSER procedure is invoked once
for every DBPUT and DBDELETE and twice for each DBUPDATE (internally, the Si-index is deleted
and re-added),

E:The SIUSER procedure must be in the appropriate object code format for both the SUPERDEX
environment and the application{s) that will be updating the custom index. This means if the
application is a native-mode application, then SIUSER must be included in the SUPERDEX XL. if the
application is a compatibility-mode application, the procedure must be included in the SUPERDEX
SL. The native-mode version of SIMAINT will not access the compatibility-mode version of
SIUSER, and the compatibility-mode version of SIMAINT will not access the native-mode
version of SIUSER,

540 Intrinsics Version 3.1 March 1892

If multiple custom Si-paths have been configured, #t is necessary fo add conditional statements into
the SIUSER procedure to specify which statements are executed for which Si-path.

Syntax SIUSER (base,dset, item,buffer,index)

Parameters

The first four parameters are supplied by the program; the index value is returned by SIUSER.

Base The Base-id (returned by DBOPEN).

Dset The name or number of the dataset in which the corresponding data entry exis!s.

When called from DBPUT, DBUPDATE, or DBDELETE, its format is the same as
specified in those intrinsics. if called from the SIMAINT program, the dataset

name is used.
item The name of the Sl-path in which to add the specified Si-index.
Buffer The full data entry (@ Jisf) used in the DBPUT or DBDELETE.
Index This is an output parameter only--its value is returned by SIUSER.

The first word contains a count of the number of Si-indices to be created, foliowad
by their values in the length defined for the Si-path (use SIMAINT,LIST to look up
the length). Up to 16 indices may be returned.

To cause SUPERDEX not to generate any Indices for an entry, specify 0 in the
first word of this parameter.

SUPERDEX will automatically add the appropriate Sl-extension to form the Si-

index by appending either the entry's IMAGE search field value (if a master
dataset) or its relative record number (if a detail).

DBPUT, DBUPDATE, and DBDELETE

Slindices generated by the SIUSER procedure are automatically maintained by DBPUT,
DBUPDATE, and DBDELETE.

If DBPUT or DBDELETE is called with a list other than @, SUPERDEX will petform a reread using the
@ /ist ¥ DBUPDATE is called with a list other than @, no update of the Sl-indices will be done.

= Using the /2 database option in SIMAINT to allow two DBOPENS to be performed eliminates
this fist concern.

Version 3.1 March 1982 Intrinsics 5-41

SIMAINT utility

The SIMAINT utility, when generating or reorganizing Sl-indices, calls SIUSER from the group or
account SL or XL in the same group in which SIMAINT is localed and automatically generates the
corresponding indices. For this reason, if custom Sl-paths have been configured, either place a copy
of the SL or XL that contains the SIUSER procedure into PUB.SUPERDEX and
NOPRIV.SUPERDEX or copy SIMAINT into the group in which the SL or XL resides and run that

copy.

If an SIUSER procedure is written to access an Sl-path from within the procedure, the Sl-path that is
accessed from within the SIUSER procedure must have been configured in a previous run of
SIMAINT and may not be changed in the current run. In this case, the SIMAINT must be run with
;LIB=G or ;LiB=P.

5-42 [Inirinsics Version 3.1 March 1992

Section 6

Maintenance and utilities

This section discusses the various maintenance considerations for databases that contain Sl-paths.
it also reviews the various utility programs that may be used with SUPERDEX'ed databases.

Chapter 1

Function

Chapter 2

Function

Chapter 3
Function

Chapter 4

Function

Chapter 5
Function

Chapter 6
Function

Chapter 7
Function

Chapter 8

Database maintenance considerations
Includes tables listing the various operations that require maintenance of Sl-paths
and the type of maintenance required.

SIMAINT utility
Used to recrganize and delete Si-paths. It also describes the DBLOAD, LIST,
SCHEMA, and STRUCT options, and running SIMAINT in batch.

SUPERDEX utility \
This program is used to maintain and reorganize Sl-Paths in an on-line full screen
environment,

SIPATH utility
Will display all IMAGE keys and SUPERDEX Si-Paths information in one concise
display.

SITEST and SIREPAIR utilities
Used to check the integrity of B-trees and their cofrespondence to the data entries
they represent, and to repair the B-trees.

SICOUNT utility
This utility will display the exact compression information on Si-Paths.

SITRACE facility
Available with SUPERDEX. This facility will trace all user IMAGE intrinsic calls,
along with the SUPERDEX IMAGE intrinsic calls.

SIDRIVER utility

Chapter 9

Function

Chapter 10
Function

Chapter 11

Function

Chapter 12

ALTPROG utility
Adds capabilities to and increase MAXDATA of object program files, as required for
SUPERDEX operation.

SIBASE utility
This utility will automatically create the separate Si-Index database.

SISIZE utility
This utility will modify the capacity of the Sl dataset(s).

QUERY/3000 utility

Database maintenance considerations

Sl-indices are maintained automatically by SUPERDEX's DBPUT, DBDELETE, and DBUPDATE
intrinsics. However, because Sl-indices reference data entries by search field value or relative record
number, certain database maintenance functions will cause the Sl-indices to lose synchronization
with the data entries they map and require reorganization.

Examples of this are as follows:
| error conditions, such as a system failure
B database maintenance tasks, such as reorganizing a detail dataset

M database structural modifications, such as changing the length of an item used as an Sl-key
| modifications to the KWEXCLUD keyword exclusion file

Following are tables listing various database conditions that can require Sl-path maintenance.

Etror and exceptional conditions that can require Si-path maintenance

Type Description

Condition | System failure which is not successfully recovered by ILR or DBRECOV
Action Run SIMAINT,DBLOAD

Condition | Qverflow of insufficient capacity in Sl-dataset

Action Reorganize all Si-paths in the affected Sl-dataset using datasel/R. If unsuccessful,
run SIMAINT, DBLOAD

Condition | Failed dataset erase

Action Erase the dataset with a utility or delete any remaining entries using
QUERY.PURB.SYS, then reorganize all Sl-paths related to the dataset. |f
unsuccessful, run SIMAINT,DBLOAD.

Version 8.1 March 1992 Maintenance and utilities 6-3

Database maintenance tasks that can require $i-path maintenance

Type Description

Function | Renaming an item or dataset,

Action Run SIMAINT (without the STRUCT entry-point) and press RETURN at the
DATABET > prompt.

Function | Changing Si-key values in a dataset by a method other than the SUPERDEX
DBPUT, DBUPDATE, or DBDELETE intrinsics.

Action Reorganize the Sl-paths in the related dataset.

Function | Any function that causes entries in a detali dataset to move to different
physical locations, such as a detail dataset reorganization.

Action Reorganize all Si-paths in the related dataset.

Function | Database DBUNLOAD/DBLOAD.

Action Run SIMAINT,DBLOAD

Function | A database erase (such as with DBUTIL.PUB.SYS).

Action The SUPERDEX configuration will also be erased. MUST redefine all Sl-paths.

Function | Changing the length or data type of an item used in an Si-key.

Action Run SIMAINT,STRUCT. For iterns which the Sl-key length may not be specified
{numeric), the Sl-key length is reacljusted automnatically; otherwise, the Si-key
length is unchanged unless it would exceed the item length, in which case the Si-
key length is reduced.

Function | Changing the name of an item used in a Sl-key.

Action Run SIMAINT and press ReTURN at the DATASET> prompt.

Function | Changing the name of a dataset that has at least one Sl-path.

Action Run SIMAINT and press ReTURN at the DATABSET > prompt.

Function | Deleting all Sl-datasets.

Action Delete the Si-item.

Other conditions that can require Si-path maintenance

Type Description

Function | Modifying the keyword exclude file (KWEXCLUD).

Action Reorganize the KWEXCLUDE Si-path and all of the keyworded Sl-paths.

86-4 Maintenance and utilities

Version 3.1 March 1892

Redefining and reorganizing Sl-paths

To redefine an Si-path or all the Sl-paths related to a datasel, use the SIMAINT utility to Delete (/D)
and then redefine the configuration.

To reorganize a selected Sl-path or all the Si-paths related to a dataset, use the Reorganize {(/r)
option of the SIMAINT utility on the a specified Sl-path or dataset.

To reorganize all Sl-paths for a dataset or database while also regenerating the Si-definitions, run
SIMAINT with the DBLOAD entry point.

DBGENERAL interface

Bradmark’s general-purpose database maintenance utility, DBGENERAL., automatically performs the
appropriate maintenance tasks against SUPERDEX structures whenever necessary (DBGENERAL
version 6.0 and later).

For exampie, when erasing a dataset using DBGENERAL option 4.4, the corresponding Si-indices
are automatically removed; when reorganizing a detall dataset using option 3.6, the corresponding

Slindices are automatically reorganized; and when renaming a dataset that has Si-paths using
options 5.3 and 5.6, the internal SUPERDEX definitions are automatically updated.

Refer to the DBGENERAL User Manual for more information.

Version 3.1 March 1992 Maintenance and Utilities 6-5

SIMAINT utility

The SIMAINT utility is used for both configuring new Sl-paths and maintaining existing Sl-paths. It
also contains functions for displaying the SUPERDEX configuration for a database and regenerating
the Sl-definitions following structural changes to a database. These options are invoked by one of
the following entry points:

B {none) permits Sl-paths to be added, reorganized, and deleted

W DBLOAD reorganizes all the Si-paths for a dataset or database; regenerates the Sl-
definitions

W LIST lists all the S!-paths configured for a database

M SCHEMA generales a job stream to configure Si-paths based on current configuration

M STRUCT adjusts the Sl-definitions to compensate for changes to database structure

Afthough new Sl-paths may be defined concurrently with maintenance of existing Si-paths, only the
SIMAINT functions for reorganizing and deleting Sl-paths are discussed here--refer to the
Configuratior/Establishing indices section for discussions about and exampies of using SIMAINT to
configure new Sl-paths and group existing Sl-paths.

Access requirements
Before running SIMAINT, make sure:
| you have exclusive access to the database {except when using the LIST and SCHEMA
n si):oar:se) logged on as the database creator
M you are logged into the group and account in which the database resides
it is also recommended for performance reasons that you:
W disable ILR

® disable logaing
M do not run SIMAINT with ; LIB=G or ; LIB=P

6-6 Maintenance and utilities Version 3.1 March 1992

Input rules
These rules govern SIMAINT input:

&’ all input may be in upper- or lower-case

=W ? displays structural heip (sets and items)

W \ flushes the current response and re-prompts

¥ lengths are reported and specified in words, not bytes (unless otherwise specified), and it is
necessary to convert for alphanumeric (data types U and X} items {e.g. X20 = 10 words).

SIEXTLEN JCW for special concatenated Si-keys

if you have configured Sl-keys that contain more than four non-contiguous items by utilizing the
SIEXTLEN JCW, it is required that this JCW be set before running SIMAINT with the STRUCT or
SCHEMA entry points. To do so:

tBETICW BIEXTLEN=1

Invoking SIMAINT

Two versions of the SIMAINT program are provided, in PUB.SUPERDEX and NOPRIV.SUPERDEX.
They are identical except the PUB version uses techniques that require PM capability for improved
speed and is therefore much faster than the NOPRIV version. The PUB version should be used to
obtain the best performance.

Use the NOPRIV version, if you do not want to run the sofiware with PM capabilly and on datasets
whose block sizes are not multiples of 128 words (128, 256, 384, 512, etc.).

To invoke SIMAINT:

:RUN SIMAINT.PUB.SUPERDEX

SIMAINT VERSION 3.1 (06DECS1) COPYRIGHT DR. MATT / IABG (1988,19%81)

B 5IMAINT is run without : LIB=G or ; LIB=P.

Version 3.1 March 1992 Maintenance and utilities 6-7

Specifying the database

Specify the name of a database, as shown:

DATABASE > OEDB

= The open characteristic with which the database was oplionally defined is automaticaily retained
and need not be re-specified. However, it may be explicitly changed from single open to
separate open by appending /1 or /2 to the base name (but not to or from /3).

Specifying datasets

After specifying the dalabase name, a list of the datasets that contain Sl-paths is displayed:

SI-PATHS EXIST FOR THE FOLLOWING DATASETS:
PRED
cUsST/1
SHIP
ORDM
PART
ITEM
SSHIP
- blank -
ENTER NAME COF SET TC BE MODIFIED OR NEW NAME

SIMAINT can be run against datasets that already have related Si-paths or those for which Sl-paths
have not yet been configured. If a dataset already contains Si-paths, they are displayed.

Enter the name of a manual master or detail dataset in the current database that contains Si-paths,
optionally followed by one of the following suffixes:

/D Delete all dataset's related Si-paths
/R Reorganize all datasel's related Si-paths

This command instructs SIMAINT to reorganize all the Si-paths refated to the CUST dataset:

DATASET > CUST/R

6-8 Maintenance and utiltties Version 3.1 March 1892

= The Sl-dataset suffix (/1 through /7) with which the dataset was. optionally defined is
automatically retained and may not be overridden (to reassign a dataset's Sl-indices to the
root Sl-dataset or any other Si-daiaset, it is necessary to delete and redefine all related Si-
paths).

Specifying Si-paths

All Sl-paths related to the specified dataset and their attributes are displayed, as shown:

SI-PATHE EXIST FOR THE FOLLOWING DATASETS AND ITEMS:

CUNAME/K CUNAME L = 6
CUABD/K CUADD1 L =35
CUADL/K CUADD2 L =5
CUPHN CUPHNL L=1
CUPHN CUPHN2 L =1
CUFPHN CUPHN3 L =1
ENTER SI-PATH WITH CPTION /D /R /G CR NEW NAME

Enter the name of one of the Sl-paths shown appended by one of the following suffixes:

/D Delete specified Sl-path

/G Group specified Sl-path (refer to the Configuration/Establishing indices section)
/R Reorganize specified 8l-path

Reorganizing Si-paths

Si-paths should be reorganized periodically to maintain optimum performance, and must be
reorganized after certain database maintenance operations. Si-paths may be selected individually or
by related dataset. Alternately, all the Si-paths for a dataset or database may be reorganized by
running SIMAINT with the DBLOAD option, which also regenerates the Si-definitions.

Refer to the tables near the beginning of this section for complete details on what database
maintenance tasks require Si-path reorganization.

For super-grouped Sl-paths, the Slindices for all Si-paths configured in the super-group are
automatically reorganized whenever any Sl-path in the super-group is reorganized.

This example specifies the reorganization of all the Si-paths related to the CUST dataset:

DATASET > CUST/R
DATABET >

Version 3.1 March 1992 Maintenance and utilities 6-9

Si-paths may alternately be specified individually; for keyworded Sl-paths, the average number of
indices may be changed, as shown:

DATASET > CUST

SI-PATH » CUNAME/R

ENTER AVERAGE NUMBER OF INDICES PER ENTRY > 4
SI-~PATH >

In this example, the keyworded Sl-path CUNAME is being reorganized by suffixing #t with /R, and
the number of indlices per entry is being changed to 4.

Deleting Si-paths

Si-paths may be selected for deletion individually or by related dataset.

For super-grouped Sl-paths, all Si-paths configured in the super-group are automatically deleted
whenever any Sl-path in the super-group is deleted.

In this example, all the Sl-paths related to the SHIP dataset are deleted:

DATASET > SHIP/D
DATASET >

in this example, the Sl-path SHNAME is being deleted by suffixing it with /D;

DATASET > EBHIP

THE FOLLOWING S5I-PATHS AND ITEMS ARE DEFINED:
SHIP SHNANME L= 6

ENTER 8I~PATH WITH OPTION /D /R /G OR NEW NAME
8I-PATH > SHNAME/D

SI-PATH »

DBLOAD Entry Point

The DBLOAD entry point is used to reorganize all the Si-paths for a dataset or database. This entry
point is recommended following an operation in which dala entries are relocated in the database,
such as a DBUNLOAD and DBLOAD. It is also useful for giving users the ability to safely and easily
reorganize existing Si-paths--especially untrained users and those in tumkey environments--since
only the base name needs to be specified.

Additionally, SIMAINT,DBLOAD regenerates the SUPERDEX configuration for a database, and is
required after cerfain database maintenance functions. A complete list of database maintenance
operations that require the use of SIMAINT,DBLOAD appears in tables near the beginning of this
section.

6-10 Maintenance and utilities Version 3.1 March 1892

In this example, all the Sl-paths for the OEDB database are reorganized:

{RUN SIMAINT, PUB.SUPERDEX, DBLOAD

SIMAINT VERSION 3.1

DATABASE > OEDB
DBLOAD:

(OEDECSL)

562 B-TREE RECORDS DELETED

SI-PATHS EXIST FOR THE FCOLLOWING SETS:

- blank -
CUSTOMERS
ORDER-HEADERS
ORDER-LINES
ENTER NAME OF
DATASET > return
PROCESSING SI-PATH
PROCESSING SI-PATH

INPUT:
SORT:
OUTPUT:
PROCESSING SI-PATH
INPUT:
SORT:
QUTRUT:
PROCESSING S8I-PATH
INPUT:
SORT:
OUTPUT:
PROCESSING SI~PATH
INFUT:
SORT:
QUTPUT:
PROCESSING SI-PATH
INPUT:
SORT:
QUTPUT:
PROCESSING 8I-PATH
INPUT:
SORT:
CUTPUT:
PROCESSING SI-PATH
INPUT:
SORT:
OUTPUT:
TOTAL TIME :

END OF PROGRAM

KWEXCLUDE
CUSTOMER-NAME
1003 RECORDS
1003 INDICES
1003 INDICES

SET TO BE MORIFIED CR NEW NAME

CUSTOMER-NAME-XW OF CUSTCOMERS

1003 RECORDS
2803 INDICES
2788 INDICES

ADDRESS1-CITY-KW OF CUSTOMERS

1063 RECORDS
4448 INDICES
4417 INDICES

CUSTOMER-NUMBER OQF ORDER-HEADERS

2620 RECORDS
2620 INDICES
2620 INDICES
ORDER~TYPE

2620 RECORDS
2620 INDICES
2620 INDICES
CRDER-PART

9272 RECORDS
9272 INDICES
9272 INDICES
PART-ORDER

§272 RECORDS
8272 INDICES
9272 INDICES

OF
OF CUSTOMERS
100 ¢ CPU 0:00:01.
CPU 0:00:00.
100 & CPU 0:00:00.
1006 % CPU 0:00:02.
CPU 0:00:00
100 % CPU 0:04:01.
100 3 CPU 0:00:04.
CPU 0:00:00.
100 % CPU 0:00:02.
100 % CPU 0:00:02,
CPU 0:50:00.
100 % CPU 0:00:01.
OF ORDER-HEADERS
100 % CPU 0:00:02.
CPU 0:00:00.
100 % CPU 0:00:01.
OF ORDER-LINES
100 % CPU 0:00:068.
CPU 0:006:00.
100 & CPU 0:00:06.
OF ORDER-LINEZ
100 % CPU (G:00:08.
CPU 0:00:00.
100 % CPU 0:00:06.
CPU 0:01:03.

3w b

& OF ENT:
Elapsed {:
Eilapsed 0:
Elapsed 0

OF ENT:
Elapsed 0§
Elapsed 0:
Elapsed 0:

OF ENT:
Elapsed 0:
Elapsed §:
Elapsed 0:

OF ENT:
Elapsed 0O:
Elapsed 0:
Elapsed 0;:

OF ENT:
Elapsed 0:
Elapsed 0:
Elapsed 0:

OF ENT:
Elapsed 0:
Elapsed 0:
Elapsed 0:

OF ENT:
Elapsed {:
Elapsed 0:
Elapsed 0O:
Elapsed §:

COPYRIGHT DR. MATT / IABG {1988,1%91)

CPU 0:00:07.6 Elapsed 0:00:12

1003
0¢:02
06:00

:00:01

1003

:00:03

0000
00:04
1003
00:08
30:00
00:03
2620
00:04
00:C0
00:02
2620
00:03
g0:00
00:02
9272
00:17
a0: 00
00:08
9272
00:10
00:00
00:08
01:42

Version 3.1 March 1982

Maintenance and utifities 6-11

There are three function keys available from this screen;

l

Custom Path Screen Function Keys

Key Label Description

F1 HELP Displays the Help screen.

F2 {Not Defined)

F3 PATH Retumns to the path screen, without accepting the data currently
SCREEN displayed on the screen,

F4 (Not Defined)

F5 {Not Defined)

¥6 (Not Defined)

¥7? (Not Defined)

F8 EXIT Exits back to the Main Menu.

Once all of the data has been keyed, press the ERTER key. The process will then return to the

Path Screen.

6-26 Maintenance and utilities Version 3.1 March 1992

When running SIMAINT,SCHEMA, you are prompted for the base name and name of a file in which
to write the job stream as shown:

+RUN SIMAINT.PUB.SUPERDEX, SCHEM2

SIMAINT VERSICON 3.1 {(06DECS1) COPYRIGHT DR. MATT / IABG (19B8,19%91)

DATABASE > ORDB
SIMAINT Job File CGeneration

Enter NEW filename for SIMAINT ijob > CEDBSI

:END OF PROGRAM

if the hame of an existing file is specified, you are prompted for whether or not to overwrite it;
otherwise, a new file is created and the job stream is wrilten Into B, as shown:

{JOB MGR.SUPERDEX, DEMO
{COMMENT Patch PASSWORD if necessary !

{COMMENT TimeStamp : THU, DEC 12, 1991, 106:46 AM!
RUN SIMATINT.PUB.SUPERDEX; INFO=**

<BASE >OEDR

<DATASET >

<SI-PATH >KWEXCLUDE

<XW LENGTH >4

<SI-PATH >/7

<DATASET >CUSTOMERS
<SI-PATH >CUSTCMER-NAME
<ITEM LEN=15 - BHORTER LEN >-30

<QFFSET (IN BYTES) >1

<ITEM 2 >//

<SI-PATH >CUSTOMER~-NAME-KW/K
<ITEM 1 >CUSTOMER-NAME
<ITEM LEN=15 - KW LENGTH >4

<MIN CHARS PER KW >1

<AVERAGE KEYWORDS PER ENTRY >6

<ITEM 2 >//

Version 3.1 March 1992 Maintenance and utilities 613

Below s a description of alf of the fields:

I

Path Display Screen Fields

i.abel

Description

Dataset:
Selection Order:
8I-Path Name:
Path Type:

Key Length:
Number of Keys:

Min XKey Word Length:

Index Length:

Avg Ne Key Words:

Current dataset being accessed
Selection order of dataset

Name of the Si-path

Full description of the type of path
Byte iength of the Si-key

included in this Sl-path
index

extension) in bytes

Total number of IMAGE iterns from the dataset that are
Minimum number of characters required to create a keyworded
Total length of the Sl-index (includes the Si-key and SI-

The defined average number of keywords per record

81, s2, s3, s4 These designations are used to identify the items that are
included in a concatenated Si-path. s1 is for Sl-subkey-1, s2
for Sl-subkey-2, etc. if the Si-path is not concatenated, none
of the designations will be displayed.

Items Names of the IMAGE items included in the Sl-path

Type The IMAGE item type (as returned by DBINFO mode 102)

Length

The function keys available from this screen are:

The IMAGE itern length (as returned by DBINFO mode 102)

I

Path Display Screen Function Keys

Key Label Description .

F1 HELP Displays the Help screen.

F2 {Not Defined

F3 (Not Defined

F4 {Not Defined

F5 {Not Defined)

Fé NEXT Displays the next screen of items
SCREEN ;

F7 PREV Dispiays the previous screen of items
SCREEN :

¥8 (Not Defined)

Toreturnto the Path Screen, press the ENTER key.

6-28 Maintenance and utilities

Version 3.1 March 1892

STRUCT Entry Point

The STRUCT entry point causes SIMAINT to compare the SUPERDEX configuration with the
database structure and correct any inconsistencies found. it is used after making certain structural
changes to a database, but is automatically invoked by DBGENERAL. it should, however, not be run
after performing a DBUNLOAD/DBLOAD--the SIMAINT program should be run with the DBLOAD
option instead.

Refer {o the tables near the beginning of this section for a fist of maintenance functions that require
the use of the STRUCT option (you will note that the STRUCT option is never used after renaming
sels or items).

This example shows SIMAINT,STRUCT being used after changing the length of an itern used as an
Si-key:

+RUN SIMAINT.PUB.SUPERDEX, STRUCT

SIMAINT VERSION 3.1 (06DECS1} COPYRIGHT DR. MATT / IARBG (1988, 1881)

DATABASE > OEDB
DATASET > refurn

Running SIMAINT in batch

SIMAINT can be run in batch, and uses similar dialog as the on-line. The method for creating a job
stream by which to run SIMAINT in batch is to run SIMAINT with the , STRUCT entry-point.

The discrepancies between on-line and batch use is:

W some prompts are asked in baich at all times, while on-line the prompts are asked depending
on previous answers

M a fine containing only a SPACE is represented in batch by a blank line

B a line containing only a RETURN {which is normally specified in a batch job as a blank line)
should is represenied by a line containing a double slash (/ /) in the first two character
positions

SIMAINT will QUIT (not TERMINATE) normally upon encountering any error in batch, permitting
testing of the system JCW.

Version 3.1 March 1992 Maintenance and utilities 6-15

For existing Si-Paths, the tems already included will be displayed with an appropriate letter
designation. These CANNOT be removed or changed. Only new items can be marked.

If creating a Supergroup Si-Path for a Detail dataset only one item can be selected (using A). |f there
are no related Master dataset(s) with the same SI-Path, the process will advance o the Related
Masters Menu.

The function keys available from this screen are:

ITEM Screen Function Keys

Key Label Description

Fl HELP Displays the Help Screen.

P2 DEFINE Advances tothe Item Definition Screen

SI-ITEM3

F3 PATH Returns to the path sereen, without updating the item data
SCREEN

¥4 {Not Defined)

F5 {(Not Defined)

F6 NEXT Displays the next screen of tems
SCREEN

F7 PREV Displays the previous screen of items
SCREEN

F8 {Not Defined)

To update the data, press the ENTER key. If the items are not numeric, you must also press the ¥2
key to define the item specific information.

6-30 Maintenance and utilities Version 3.1 March 18392

Function Key Operation

The function keys are used extensively in the SUPERDEX program to allow for easy movement
through the screens. The values of each function key will change between screens, and depending
on available options, on the same screen.

There are two function keys that are always the same throughout the SUPERDEX program; F1 and
F8. F1 is the HELP function key and can be accessed at any time on any screen. F8 is the EXIT
function key. Pressing this key will return control back to the Main Menu screen, or i at the
Main Menu screen, it will exit the SUPERDEX program.

Main Menu

SUPERDEX VERSION 3.1 BRADMARK TECHNOLOGIES, INC. (C)BRADMARK 1587, 1892

1 INSTALLATION 2 PATH MAINTENANCE

1.1 Install SUPERDEX 2.1 Maintain SI-path(s)

1.2 Build sI-Index Base 2.2 » Generate Path File

1.3 add D8/MR to Prog. 2.2 > Reorg All SI-Paths
2.4 » Change SI Capacity

3 DIAGNOSTICS 4 OTHER FEATURES

3.1 General Path Info 4.1 > Command Driven Maint.

3.2 Detall Path Info

3.3 Test SI-Path{s)

3.4 » Repair SI-Path(s)

3.5 Compression Info

3.6 > Structural Change

Please enter the number
of the desired selection: _
> Exclugive Access

The Main Menu provides access to most of the programs in the SUPERDEX environment. Each
can be accessed by entering the number associated with the particular program (1. 1 through 4. 1).
Upon completion of the selected program, control will return back to this point. Refer to the other
chapters in this section for more information on each of the programs.

There are only two function keys available on this screen. F1 accesses the HELP Screen and
F8 will EXIT the SUPERDEX program.

Once the option has been keyed, press the ENTER key.

Version 3.1 March 1992 Maintenance and utilities 8-17

The Average Number of Keywords: is used to calculate the size of the son file and the
worst case capacity for the Si datasets. The default is set to the size of the field, divided by seven
(7}, always rounded up. For example, a CUSTOMER-NAME item defined in IMAGE as an X30
would have a default of 5 (30 divided by 7 equals 4.29, then rounded up to 5). A 60 character
description ftem would be defaulted fo 9 (60 divided by 7 equals 8.57, rounded to 9). This value
must be 16 or less.

The function keys available from this screen are:

! Item Definition Screen Function Keys]
Key Label Description
F1 HELP Displays the tielp Screen,
F2 (Not Defined)
¥3 ITEM Returns to the Item Screen, without updating the item data
SCREEN
¥4 (Not Defined)
F5 {Not Defined)
F6 {Not Defined)
¥7 {Not Definad)
8 EXIT | Exits backiothe Main Menu

To update the data, press the ENTER key. Once the data has been updated, the process will return
tothe Path Screen.

$-32 Maintenance and utilities Version 3.1 March 1892

Dataset Menu

AUG 28, 19881 SUPERDEX BASE MENU 10:53 AM

Please enter base name: Password (Dflt=Creator):
SUPERDEX Open parameter {(l(Default),Z,3}:

(P 9.9.9.0.9.0.0.6.6.9.0.0.9.0.0.4 D-9.0:0.6.9.0.0.6.0.9.0.5.0.6.0.4 P #9505 5:600680.9.0.0.94
0,9:0:6.9.6.6.0.9.9,0.0:9..0.0.4 LD 9:8.6.9.0.9.6.9.0.8,6:9.9.0.94 (P 9.9.9.0.5:0.0.90.0:0.9.6.0.9:¢
hP.00.6.9.0.0.0.0.0.0.6:9.6.9.94 D :4.0.8.0.0.8.0.6.6.0..6.6.0.4 (0.09:6.8.0.0.0.9.0.4.0.9$:¢.9 4
(P $5.0.00.00.0.0000.0.0.04 Y 3.6.0.6:0.8.0.0.9.5.0.5.0.0.0.¢ (P.9.0.09.99.0.4.0.0.6.9¢.004
9,9:0:9.4.4.0.0.9.6.0.0.9.9.9.04 D ©.0.0.9.0.0.0.9.0.9.0.9.¢.0.9.¢ hP:9.0.5:0.016.9:9.6.0.6,9.¢.6.9:4
(P 00.6:9.0.00.00.0.¢9.89.04 S §.9:9.0.9.0.0.6.4.9:9.6.0.0.64 (99.9:9.0.6:0.0.9.9.0.9.0.4.6.0.4
QP 0:99.0.00.80.0.0.0.0.0.0.0.4 P-8.6.9.4.4.8.0.9.6.5:0.0.0.0.04 P 5.80.6:0.000:0.0.9.6044
(P.9.9,99.0.0.6.0.9.9.0.0:0.0.0.4 .6.9.0.6.0.$.9.9.9.0.6:0.0.0.9.4 (:0.9.8.0.9.¢.9.0.46.0.9.9¢.94
0.9.9.9:0.0.0.9.9.9.9.9.9.0.6.9.4 LD 6.6:9.00.6.8.0.5:5:0.9.0.9.94 (:0.6:4:9.6.6.06 00056964
pF8.0.0.9:08.6.8.0.9.04:69.6.4 D 0.8.0 0:9.0.4:6.0.9:0.0.0.¢.9.4 WP S 8.808:4.4.096.0.0.44.9.1
P 0. 0.8.0.9.9.0.0.4.4.8:0.0.8.0.4 D 5.9.9.0.90.8.9.9.9.0.5.0¢.6.¢ P 9.0.0.0.6:0.89.6.0.0.0.0 5.0
(P:09.6.0.4.0.6.0.9.0.0.00.9.0.4 — PREAAXRAERXEELRELX (P 8. 60.0.0:0.90.00.0566.94
) 0.0.9.0.9.9.0.6.9.0.0.6.0.9.9.4 LY. 4.9.9.9.¢.0.0:0.9.6.9.$.6.0.9.¢ ():8:0.8.0.9.6.9.6.0.0.0.0.99.0.4
[P 0.0.0:60.00.6:5.4.6¢9.0.9.4¢ D:9.0:6.9.6,0.0.0:9.0.5.0.0.0.9.4 (0.99.9.9.0:0.6.0.0.0.9.:6.0.5.9 4

RR - Reorganize all paths for dataset
"DD* -~ Delete all paths for dataset
SUPERDEX (C)} Bradmark Technologies, Inc. 1991

The Dataset Menu is actually a subscreen of the Base Menu. Once a database has been
selected, all the datasets in the database are displayed. There are three sections of columns that
include dataset names and options.

The first column is 1o select a dataset for maintenance during this execution. To select a dataset,
enter ohe or two letters (A-Z) in the two character field. The dalasets are processed in the
alphabetical order of this two character field (i.e. A is processed before B and 2 is processed before
Ad).

There are two reserved designations; RR and DD. The RR is used to specify that all of the Si-Paths
in the dataset should be reorganized. The DD is used to specify that all of the Si-Paths in the
dataset should be deleted.

The second column is used to specify which St dataset (valid values: 1-7, or the default-blank) should
be ysed when adding Sl-Paths. |f the dataset already contains at least one SI-Path, this field must
be left empty.

The third column is a display-only field used to denote whether the dataset already has existing Si-
Paths. If the * (asterisk) is displayed, the dataset has at least one SI-Path defined for it. If this field
is blank, the dataset has no Si-Paths associated with i.

Version 3.1 March 1992 Maintenance and utilities 6-19

Grouped item Offset Screen

10:53 AM

Starts

ITEM

Aug 28, 1651 SUPERDEX GROUPED ITEM QFFSET SCREEN
Dataset: Selection Order: _
S8I-Path Name:
5I-Subkevi: Key Length:

STARTING STARTING STARTING

POSITION ITEM POSITION ITEM POSITICN

SUPERDEX {{) Bradmark Technologies, Inc. 1581

The Grouped Item Offset Screen is used 1o accept the offset {starting position in
characters) of each grouped item. This screen is only displayed for those grouped paths that are of

an alphanumeric type.

Each grouped item has a default offset of 1, which can be either accepted or overridden. The

maximum offset for any tem cannot excede the length of the item itself.

For existing paths that are having additiona!l tems grouped to them, this screen will only display the

new items being grouped (currently existing grouped items will not be displayed).

There are two function keys available for this screen.

Grouped Item Offset Screen Function Keys

Key Label Description

Fi HELP Displays the Help Screen.
¥F2 {Not Defined)

F3 (Not Defined)

F4 {Not Defined)

F5 {Not Defined)

¥eé {Not Defined)

F7 {Not Defined)

F8 EXIT Exits back to the Main Menu.

Once all of the data has been keyed, press the ENTER key . The process will then return to the

PATH screen.

6-34 Maintenance and utilities

Version 3.1 March 1892

Path Screen

ARUG 28, 19981 SUPERDEX PATH SCREEN 10:53 aM
Dataget: Selection Order: ___

SI-Path Name: Action: _ Delete _ Reorg _ Display

Path Type: _ Group _ Supergroup . Keyword _ Biank _ Custom

{Default Path Type is Simple/Concatenated)

Existing Paths:

).0.0.0.9.6.0.0:0.9.0.0.0.80.0.4
h09.0.0.8.60.66.06.0.900.1
$.60.99.00.0.60.00.969.94
P09 5040086966404
).8.9:9.9:6.9.90.9.6.9.9.0.¢.9.4
1.9.6.0.0,9.6.9.9,0.9.¢9.9.0.9.4
PSS S E509.0.0.00.9.0.04
b:0.9.0.0.0.9.0.8.0:¢.0.8:9.6.0.4
p.0.0.0.8:0.:0.9.9:6.06.9.9.9.9.4
)6 0.0.0.0.0.0.9.9.9.9.0.0.0.0.4
h0.6.9.0:6.5.0.9.6.6.0.¢.5094
p.E0 4 4.0:0.0.6.6.0.4005.904
B8 09.0.99.0.6.0.0.6.0.0.5.64

0.9:0.0.9.0.8.0.0:9.0,0.0.¢.0.9.4
1:0.6.6.0.4.6.0.9.0.8.0.0.9 6,64
J.69.9.0.0.9.9.0.9.0.6.0.0.9,0.4
$.0.0.0.0.9.9.0.8.9:9.0.9.9.6.¢.4
$:9.0.0.9.9.0.9.9.0.0.0.4.9.9.0.4
O R0.0.00.0.0.90.0.9.0.0.9.4
0:9:9.9.9.9.9.0.0.9.8,0.9.0.0.9.4
h00:08.00.0.96.0.9.90.0.44
B9 840.0.0.09.000.900.04
1:9.0.0.4:0.0.0.6.8.9 0.9.9:9.9.
b 64.0.0.0.8.0.0.59.0.9.9.0.64
P 6.0.0.9.0.9.0.9.9.0.9,9.9.0.4
BRSSO 4SS 4.8:9.0.94

).9.9.6.0.6.0.0.9.9.0.0.90.0.0.4
b9, 6.0.59.0.0.990609.0.¢4
$:9..5.0.0.0.0.9.9.9.0:9.0.9.4
$95.000804.08009.60.¢
):9.9.6..0.0.0.4.9.0.0.¢.9.9.9.
B:0.0.9.0.9.0.9.0.9..0.0.5.¢6.1
$:0,0.8.8.0.0.0.6.9.8.0.90.9.0.4
DA S5O0 0000099004
1:0:9.8.0.0.0.0.8.0.0.0:99.0.0.4
EXXEEX KK XX LEXXEX
$:9.0.0.9.9.8.0.0.6.9.6.9.9.9.9.4
P 4.9.6.0.9.00.0.9.9.0.0.4
JHN 4060090905004

).9,6.6.0.9.8.0.0.4.0.9:9..0.0.4
$.9.0.0.6.9.8.0.9.0.60.9.664
1:0.9.9.9.9.6.0.0.9.9.90.9 0.6
P00 9004856000604
$9.0.0:9.0.6.0.8.9.0.9.0.0.6.4.
p9.9.9.9.0.9.9.0.0.0.0.9.9904
10.0.0.0:9.8.0.6:9.0.0.0:0 .04
b:4.9.0.0,9:0.0.0.0.6,0.6.0.9,9¢
1.9.04.00.69999049.694
1:0.6.0.9.0.0.0.4.9.8.0.8.9.6.94
):0.9.0.0.0.6.0.9.9,0.9.0.0.0.6 4
$.9.9:6.6.0.6.0.0.0.9.0.0.9.0.4 4
P09 V009 08000944

SUPERDEX () Bradmark Technologies, Inc. 1951

The Path Screen is the primary processing screen for the Si-Paths. it is used to execute
several functions, including creating new Si-Paths, deleting Si-Paths, reorganizing Si-Paths and
maintaining Sl-Paths. This screen is not used to maintain the SI-Paths for the **SPECIAL#**
dataset {(refer to the Special Path Screen).

The first two fieids are display only fields. They display the current dataset being processed and the
selection order value entered from the Dataset Menu.

The next field is the SI~-Path Name:. This field is used to enter the name of either an existing
SI-Path or a new Si-Path, if the name entered is an existing SI-Path, only the Action: options
and the Group option are available. If the name entered is not an existing Si-Path, the Action:
options is not available. If you wish to modify the Path Type: on an existing SI-Path (other than
Group), it must first be deleted and then added back.

The Action: options are next. As stated earlier, these options are only available for existing Si-
Paths. The Delete option will mark the SI-Path to be deleted. The Reorg option will mark the
SlI-Path to be reorganized, and the Display option will advance to the Path Display
Screen. To select one of these options enter any character, such as X, in the field. if any of these
options are selected, no other options can be selected,

Version 3.1 March 1962 Maintenance and wtilities 621

The Group Name: is used to enter the group name of where the database is located. It is set to
either the current logon GROUP or to the qualified database group name from the Database
Menu, if it was specified. Again, the Password: field is used to enter the group iogon password,
if necessary.

The Account Name: is displayed, and can not be modified. if an ACCOUNT password exist, it
must be entered in the Password: field.

= if this is the first SUPERDEX modification made to the database there will be questions
about capacities for the S| datasets during the maintenance process. The processes
will use the defauit values for the capacities calculated by SIMAINT. These are always
the worst case calcuiation based on the capacity of the user datasei(s} with the
SUPERDEX indices, therefore none of the options selected will fail because of a full Sl
dataset. Once the process has completed, an adjustment to the capaclty of the Si
dataset(s) may be done.

The function keys available from this screen are:

| Path Display Screen Function Keys

Key Label Description

Fl HELP Displays the Help Screen.

F2 DATA Returns fo the paraset Menu for addition maintenance

SCREEN

F3 {Not Delined)

F4 {Not Defined)

F5 (Not Defined)

Fé {Not Defined)

F7 {(Not Defined)

F8 EXIT Returns back to the Main Menu and does not save the entered
information

To update the data, press the ENTER key. If on-line was chosen, the process will run the
maintenance program, SIMAINT, dispiaying the progress as it processes, and then return to the
Main Menu. lf the selection 10 execute the process in batch immediately was chosen, the job file
will be streamed and the process will return to the Main Menu. If the choice was made to save
the job file, the information will be saved and the process will returnto the Main Menu.

6-36 Maintenance and utilities Version 3.1 March 1892

Special Path Screen

AUG 28, 1891 SUPERDEX SPECIAL PATH SCREEN 10:53 AM
Dataset: Selection Order: ___
SI-Path Name: Action: _ Delete

Path Length [2/63): Use NLS-Sorting {Y/N): _

{answer only if * is displaved)

Existing Faths:

Len Path Len Path Len Path

[1 I 0.9.9.9.9.0.8.0.8.9.9.0.9.6.5.(LEID.9.9.0.0.9.9.$.9.0.9.6.6:0.6.0.4 LI .0.9.9.9.0.6.0.0.0.0.0.4.0.0.0.4
LD 40.9.0.0.5.0:0.0.0.9.0.0.9.9.4 LTI 9.0.9.6.0.6.0:0.9.9.0.9.0.¢ ¢.4 L ED 9.0.0.0.0.0:00.4.0.0.4.0.0.0.
LR 2 A 0.0:0.00:8.0.0.6.0.6.0.9.0.6 L2 D $09.0.8.00.0.0.:0:0.0.6.6.04 #H# KEXEAKAAAAKLEEXK
L D 9.9.9.9.9.9.9.9.0.9.8.9.5.9.6:4 LE D0 80.0.0.8.9.00.0.0.6.9.6.94 L2 D 0.9.9.0.0.9.6.9.09.00.6.9.0.4
WL E:9.0.0.9.0.0.0.5.0.8.04.5.0.0.4 L1 B O.0.0.0.0.0 00.0.0.0.0.0.0.64 L D 9.9.0.9.9.0.9.6.9.0:0.0.09.0.4
2 6. 6.0:9:9.0.4:¢.0:9.0.0.0.0.9:¢ (XD S0 40.0.00.0.0 5004694 LE D 0.06:0.0:0.6.0.9.0.0.0.89.0.4

LA B 0.9.6.0.0:9.0.9.9.0.0:0.0.64
LN 6.0.99.9:9.996:9.0:090.9.4
L2 I $.5.0.9.0.6.0.0.0:0.0.0.0.0:9 ¢
LE BV O.9.9.0.0.0.09.9.0.9.9.9.0:0.4
#4 XM FXAAXXELELEK

LRI 0.9.6.9.0.8.0.09.0.0.0.0.0.84
LE D 6.0:0.0.6.6.99.0,0.0.0.0.0,0
4 KXAERRXHEREEXEXEL
LE R0 9.6.9.5.9.99.0.06.0.0.0.94
LD 0.0.8.0.0.0.0.6.9.0.6:6:0.0.94

L2 ED 0 0.0.0.0.0:0.0.0.0.0.9.909.01
LEED0.9.9.9:0.0.9:0.0.9.010.0.0.9 4
L2 D .05 8.0.009.0.0:0.6.0.4
LE AP SS9 0.9.0.9.9.09.0:89.04
L I 9$.6.0.0.9.0.0.9950.9.0.04

+ » * * »* o* * » e * *
L B S I N

L * * £l *

SUPERDEX {C) Bradmark Technclogies, Inc. 1951

This screen is the processing screen for #**SPECIAL¥* Si-Faths. ##SPECIAL*#* Sl-Paths
include the Independent Sl-Paths and the keyword exclude Si-Path, KWEXCLUDE (see Section 3 for
more information). It is used to create or delete **SPECIALww Si-Paths.

The first two fields are display only fields. They display ®**SPECIAL** for the dataset nhame and
the selection order value entered from the Dataset Menu.

The next field is the SI~Path Name:. This field is used to enter the name of either an existing
Si-Path or a new Si-Path. If the name entered is an existing Si-Path, only the Action: Delete
option can be selected. if the name entered is not an existing SI-Path the ‘Action: option is not
available. [If you wish to modify an existing Si-Path, it must first be deleted and then added back.

The Action: Delete optionis next. As stated earlier, this option is only available for existing
SI-Paths, To mark the path for deletion, key any character, such as X, in the field.

The next two fields, Path Length and NLS-sorting, are for new Sl-Paths. The Path
Length is used to define the entire length, in words, for the new path, and can be any numeric
value between 2 and 63. The NLS~Sorting option will only accept a value if an * (asterisk) is
displayed next to the field. The asterisk will only be displayed if the database has been marked for
Native-Language, other than English. [f the NLS collating sequence should be used to sort the
indices, type ¥, otherwise the defauit N will be used. Only select NLS if the independent path will
contain alphanumeric data. if it will contain only binary numeric values, use the default of N.

Version 3.1 March 1992 Maintenance and Ulilities 6-23

SIPATH Example

:RUN SIPATH.FUB.SUPERDEX

SIPATH Version 3.1
DATARBASE-OCEDB . DEMG .. SUPERDEX
BASSWORD>

IMAGE (Y/N)» Y

NUMBER OF DATA SETS 4

¥r IMAGE KEYS **»

L4

DATA SET *** **x* GET TYPE *** ** KEY/PATHS **

CUSTOMERS MANUAL MASTER
CRDER-HEADERS MANUAL MASTER
CGRDER-LINES DETAIL DATASET

g1 DETAIL DATASET

CUSTOMER~NUMBER
ORDER-NUMBER
'ORDER~-NUMBER
NO PATHS

*** SUPERDEX KEYS ***

xrx DATA GET *** *** QT.PATH *** TYPE KEY

- ITEM(3)
CUSTOMERS
SI-PATH# = 10002 CUSTOMER-NAME SIM 30 34
- CUSTOMER~NAME X 30
{OFFSET = i SUBKEY LENGTH
SI-PATH# = 10003 CUSTOMER-NAME-KW K 8 12
- CUSTOMER-NAME X 30
{OFFSET = 1 SURBKEY LENGTH
SI~PATHE = 10004 ADDRESSI-CITY-KW GK g 12
~ ADDRESS-1 X 26
{OFFSET = 1 SUBKEY LENGTH
- CITY X 16
SI-PATH# = 10005 CUSTOMER-NUMBER SIM 4 4
- CUSTOMER-NUMEER I 2
(OFFSET = 3 SUBKEY LENGTH

{12DEC81Y Copyright Bradmark Technologies,

inc.
DATA KEY
TYPE LNGTH
1 2
I 2
1 2

INDEX NGO OF MIN KW AVE NO
LENGTH LENGTH KEYS LENGTH KWDS

1
30}

1 1 &
8)

2 1 4
a)

1
4)

6-38 Maintenance and utilities

Version 3.1 March 1992

Custom Path Screen

AUG 28, 1981 SUPERDEX CUSTOM PATH SCREEN 10:53 AaM

Datasel: Selection COrder: __

8I-Path Name:

SI~KEY Length (2/63}: __

Average number of indexes per record (1/16):
Use NLS-sorting (Y/Ni: _
(answer only if *** is displayed}

SUPERDEX (C} Bradmark Technologies, Inc. 1981

The Custom Path Screenis used to enter the information for a custom path (set Secficn 3 for
more information). Since a custom path does not have any IMAGE items, this screen is used instead
of the Ttem Screen used for regular Si-Paths.

The first three fields are display only fields. They display the current dataset being processed, the
selection order value entered from the Dataset Menu, and the name of a new 81-Path from the
Path Screen.

The next field, SI-KEY Length is used to define the length, in words, for the new path not
inciuding the Sl-Extension (see Appendix B for more information), and can be any numeric value
between 2 and 83, inclusive,

Next is the Average number of indexes per record field. This is used to calculate
the proper capacity for the corresponding S! dataset and to calculate the proper size for sorting the
indexes. The value can be any numeric value from 1 to 16.

Finally, the NLS~-Sorting opticn will only accept a value i an * {asterisk) is displayed next to the
field. The asterisk will only be displayed if the database has been marked for Native-Language other
than English. the NLS collating sequence should be used to sort the indices, type ¥, otherwise the
default N will be used. Only select NLS if the custom path will contain alphanumeric data. I it
will contain only binary numeric values, use the default of N.

Version 3.1 March 1992 Maintenance and utilities 6-25

SITEST and SIREPAIR utilities

The SITEST utility is used for checking the integrity of the SUPERDEX B-trees and their
correspondence to the data entries they represent. Additionally, SITEST verifies the KWEXCLUDE
keyword exclusion Sl-path against the KWEXCLUD disk file.

SIREPAIR adds the capability to actually repair the SUPERDEX B-trees, so they will match the data.
SIREPAIR will repair 1% of the indexes based on the number of entries in the dataset. There is an
upper limit of one million indexes that can be repaired. This Is because the process of repairing the
indexes is slower than the process of reorganizing the indexes. If more than 1% of the indexes are
corrupted, it shows maijor corruption on the B-tree and therefore the B-free should be completed
reorganized. This can only happen when a maintenance program is executed without the
SUPERDEX libraries included during the process.

inconsistencies are reported by an ASCli/octalVhex dump of the Si-indices in error. Also, each
inconsistency indicates whether it is an Sl-index with no corresponding entry or an entry with no
corresponding Si-index.

Access requirements
| Before running SITEST or SIREPAIR, make sure:
B ycu have shared (DBOPEN mode 5) access 10 the database
M you are logged on as the database creator

B you are logged into the group and account in which the database resides

Because SITEST and SIREPAIR do extensive locking, it is recommended that they not be run during
heavy user access.

The rules and processes of SIREPAIR are the same as SITEST. Therefore, first SITEST will be
covered, then the differences between SITEST and SIREPAIR.

invoking SITEST

Two versions of the SITEST program are provided, in PUB.SUPERDEX and NOPRIV.SUPERDEX.
They are identical except the NOPRIV version does not use techniques that require PM capability.
The PUB version should be used to obtain the best performance.

Use the NOPRIV version if you do not want to run software with PM capability and on datasets
whose block sizes are not even multiples of 128 words (128, 256, 384, 512, elc).

6-40 Maintenance and utilities : Version 3.1 March 1832

Path Display Screen

AUG 28, 1891 SUPERDEX PATH DISPLAY SCREEN 10:53 AM
Dataset: Selection Order: __
8I-Path Name:
Path Type:
Key Length: __ Number of Kevs: ___ Min Xey word length: ___
Iindex Length: _____ Avg No Key Words: ___
{or Avg No of Indexes for Custom Index)
ITtems Type Length Items Type Length
s1 - g2 -
83 - S4 -

EERRREEEEY
EERERREEEN

SUPERDEX {C) Bradmark Technologies, Inc. 1991

The Path Display Screen is used to display all related information about a path. Sl-Paths
that have been added during this execution of SUPERDEX, along with the previously existing Si-
Paths can be displayed. Of course, all of the fields on this screen are display only.

Version 3.1 March 1992 Maintenance and Utilities 627

Specifying mode of operation
SITEST has two modes of operation:

Mode 1 checks the integrity of the B-tree itseff and does not validate its relationship to the data
entries.

Mode 2 checks the integrity of the B-tree (same as mode 1) and the correspondence of the Si-
indices to the data entries they represent. Mode 2 is slower than mode 1 but performs a more
thorough analysis.

MODE (1=TREE, 2=FULL)} >

Mode 1 processing

if mode 1 was selecled, SITEST processes each B-tree in succession and displays the phase
TREETEST while processing. Once the processing has completed, the number of Sl-indices
checked is displayed:

MODE (1=TREE, 2=FULL} > 1

PROCESSING SI-PATH KWEXCLUDRE oF

TreeTest 0 INDICES CPU 0:00:00.0 Elapsed 0:00:00
PROCESSING SI-PATH CUSTOMER-NAME CF CUSTOMERS

TreeTest 1003 INDICES CPU 0:06:00.3 Elapsed 0:00:01
PROCESSING SI-PATH CUSTOMER-NAME-XW OF CUSTOMERS

TreeTest 3059 INDICES CPU 0:00:00.4 Elapsed 0:00:01
PROCESSING SI-PATH ADDRESSI-CITY-KW OF CUSTOMERS

TreeTest 4418 INDICES CPU 0:00:00.5 Elapsed 0:00:01
PROCESSING SI-PATH CUSTOMER-NUMBER OF ORDER-HEADERS

TreeTest 2620 INDICES CPU 0:00:00.2 Elapsed 0:00:80
PROCESSING SI-PATH ORDER~TYPE OF ORDER-HEADERS

TreeTest 2620 INDICES CPU 0:00:00.2 Elapsed 0:00:00
FROCESSING SI-PATH ORDER-PART OF ORDER-LINES

TreeTest 9272 INDICES CPU 0:00:01.7 Elapsed (0:00:03
PROCESSING SI-PATH PART-ORDER OF ORDER-LINES

TreeTest 9272 INDICES CPU 0:00:01.7 Elapsed 0:00:03

END OF PROGRAM

6-42 Maintenance and utilities Version 3.1 March 1842

tem Screen

AUG 28, 1991 SUPERDEX ITEM SCREEN 14:53 AM

Dataseb: Selection Order: ___

SI-Path Name:

Path Type:
Items in Dataset:
15,8 0.5:0.9 §:9:0.9.0.9.0.9.6.4 D 0.5:0.0.5:09.0.0.0.4.6.0.0.0.4 p68.6.6.4.0:009.6688.0.04 F8.0.9.60.0060.9.900004
P 0.6.9.0.8.6.0.6.0.0.60.0.0.6.4 $0.5.6:0.9.0.0.0.9.4.5.9.0.9.0.4 AL EHS 00008094 P 0.9.0.0.0.5.9.9.0.0.09.6.0.0.4
POV 09 0.00.0.8.0900.0.61 b 0.0.0:6.00.605.6.6:0.0.¢0.4 h.4:0:6.0.4:5:0.8.0.09.45.6.6 b4 0.0.5.0.80:0.0.8.0.0.00.9.1
)3 9:8.99.9.9.9.9.0.0:9.0.6.64 ZAXAXEX AR AR AINX 000 8.00.0868.0.0.0060.). 0.0:0.0.0:0:0.0.0.6.0.0.6.5.0.¢
).6:0.0.6:0.0.0:0.0.9.0.0.6.0.0.4 $-4.0.0.0.0.0.6.0:9.0.0.06.69.4 p.9.0.0.05.9.6.9.9.0.9.9.0.0.0:4).8.€.0.0.0.0.0.0.0.9.0.0.00,0.4
1.6:6.9.9:6,0.:0.9.0.4.9.0.6.0.0.4 p.0:0.9.0.9.4.6.0.9.0.0.0.0.0.0.4 PO E 00800000000)6.5.0.5.6.8.9.0.8.0.0.4,6.5.4 .4
1.6:9.9.9.0.0.0.9.6.09.0.9.0.9.4 h O E00000.4.0.890.0.0.0:4 P 9.0.0.0.0.0.0 000909044 $9.9:0.0.0.0:0.5.0.0.0:0.9.0.0¢
). 5.6.0.0.9.6.9.0.9.0.0.9.9.09 4 1 0.9.9.0.9.6.6:0.9.5.6.9.9.0:0.4 p9.0.9.9.859.9 ¢.6.60.9.¢.04 PO909.6.9.0.0.0.8.0.6.09.9.4
1:6.90:0.0.0.0.8.0.0.0.905.4.0.4 P 09.6.8.0.6.0:0.0.0.0.9.0.0.4 RO A T E AKX)OO0 000.0.0.0.0.0.084
p.E9.0:0.0.0:9.9.9.80:0.6.0.0:4 h99 0.0 0.6.0.0.9.0:0.9.0.9.0.4 O S0 000.0.0.0.0.0.0.6.5.94 1.0 0.0.0.9:0:9.0.90.6.9.0.9.0:4
P00 005.05006.600.004 h:0:0.0.4.0.:6.0.8:0.0:0.9.8.0.0.4 DA 0005080090600 B 0099 9.9.9.6.50.0.0.9.9.6.4
}.69:0.9.0.6.9.9.0.0.0.0:0.9.0.4 h99.0:0.0.0.0.0.0.9-0.0.¢.0.0¢)9, 0-90.0€0.0.9.0:0.0.6.0.44 .0:0.0.9.9.0.0 0.9 0.6.9.:0.0.0.4

SUPERDEX {C) Bradmark Technologies, Inc. 1991

The Item Screen is used lo select the IMAGE item(s) that will be included in the SI-Path being
buili. If the Sl-Path already exists, the IMAGE item(s) that were selected previously will be marked
appropriately. Otherwise, no items will be mark.

The first four fields are all display only and are passed from the Path Screen. The Dataset:
is the name of the dataset being accessed, the Selection Order: is the selection order
keyed from the Dataset Menu, the SI~-Path Name: is the name of the Si-Path being
accessed, and the Path Type: is the description of the type of the SI-Path as defined on the
Path Screen.

Next, is a table of the IMAGE item names that are contained in the dataset. The first field is used to
select the item for inclusion in the SI-Path. The field can be any group of two characters (i.e. A, CX,
FF, B, elc.). A designation can only be used once per SI-Path,

Numeric designations are not allowed, except when adding a Concatenated Si-Path. In this cass,
the SI-SUBKEY-1 must be marked with an Al, SI-SUBKEY-2 must be marked with an A2, SI-
SUBKEY-3 with A3, and SI-SUBKEY-4 with A4.

If the Si-Path was NOT marked as grouped on the Path Screen, then the items must be marked
with A1, A2, A3, A4 or A {if a simple SI-Path),

If a new S1-Path is being created with the same name as an IMAGE ftem, the IMAGE item will be
designated with A1, and can not be modified.

When creating a new grouped SlI-Path, it is important to designate the IMAGE [tem you want first in
the group as A (please refer to Section 3 for information on the first item in a group).

Version 3.1 March 1892 Maintenance and Utilities 6-29

PROCESSING
TreeTest
INPUT

SORT
COMPARE
PROCESSING
TreeTest
INPUT

SORT
COMPARE
PROCESSING
TreeTest
INPUT

SORT
COMPARE
PROCESSING
TreeTest
INPUT

SORT
COMPARE
PROCESSING
TreeTest
INPUT

SORT
COMPARE

S1-PATH
3062
1004
3077
3062

SI-PATH
4418
1064
4449
4418

SI-PATH
2620
2620
2620
2620

SI~PATH
g272
272
8272
8272

SI-PATH
9272
8272
9272
9272

END OF PROGRAM

CUSTOMER-NAME-KW OF CUSTOMERS

INDICES CPU 0:00:00.4 Elapsed
RECORDS 100 & CPU 0:00:02.4 Elapsed
INDICES CPU 0:00:00.0 Elapsed
INDICES 100 % CPU 0:00:01.4 RElapsed
ADPDRESSL-CITY-KW OF CUSTOMERS

INDICES CPU 0:00:00.% Elapsged
RECORDS 100 % CPU 0:00:03.7 Elapsed
INDICES CPU 0:00:00.0 Elapsed
INDICES 100 % CPU 0:00:02.1 Elapsed
ORDER-TYPE OF ORDER-HEADERS
INDICES CPU 0:00:00.2 Elapszed
RECORDS 100 % CPU 0:00:02.2 Elapsed
INDICES CPU 0:00:00.0 Elapsed
INDICES 100 % CPU 0:00:01.1 Elapsed
ORDER-PART OF ORDER-LINES

INDICES CFU £:00:01.5 Elapsed
RECORDS 160 % CPU 0:00:08.6 Blapsed
INDICES CPU 0:00:00.0 Elapsed
INDICES 100 % CPU 0:00:05.4 Elapsed
PART-ORDER OF ORDER-LINES

INDICES CPU £:00:01.6 Elapsed
RECORDS 100 % CPU 0:00:08.% Elapsed
INDICES CPU 0:00:00.0 Elapsed
INDICES 100 % CPU 0:00:05.8 Elapsed

§:00:00
0:00:03
§:00:00
0:00:02

0:00:031
0:060:04
G:00:00
0:00:02

0:00:00
0:00:02
0:60:00
0:00:01

0:00:
0:00:09
0:00:00
06:00:06

G2

02
i0
00
66

0:00:
3:00;:
0:00:
0:00:

For each inconsistency detected, the Sl-index is displayed with a counter indicating the relative
position in the B-tree. 1f the counter is on the left side of the output, it indicates an Sl-index with no
corresponding entry; if the counter is on the right side, there is an entry with no corresponding Si-

index.

Running SITEST in batch

SITEST can be run in batch, and uses the same dialog as on-line. The method for creating a job
stream by which to run SITEST in batch is to anticipate the on-fine prompts and provide responses

for them.

SITEST will QUIT (not TERMINATE) normally upon encountering any error in balch, permitting
testing of the system JCW.

6-44 Maintenance and utilities

Version 3.1 March 1892

Item Definition Screen

AUG 28, 1981 SUPERDEX ITEM DEFINITION SCREEN 10:53 AM
Dataseb: Selection Qrder: __
SI-Path Name:
Path TPype:
Item: Item Selection Order: __

Item length (in bytes):

Srtarting Position {in bvtes):

Minimum Number cf Characters: - {1 « 4}
per Keyword (Keyword only)
Average Number of Keywords: — {1 - 16)

per record (Keyword only)

SUPERDEX {C) Bradmark Technologies, Inc. 1991

The Ttem Definition Screen is used to define detailed information about the IMAGE
tems that were selecied on the previcus screen. This screen will only allow information for fields
based the Sl-Path type and the IMAGE item type. For example, a numeric fem will not be displayed
because the IMAGE definition must be used, or if the Si-Path is not a keyword path the fields marked
Keyword only do notapply.

The first four fields are ali display only and are passed from previous screens, the Dataset: isthe
name of the dataset being accessed, the Selection Order: is the selection order keyed from
the Dataset Menu, the SI~-Path Name: is the name of the Si-Path being accessed, and the
Path Type: is the description of the type of the SI-Path as defined on the Path Screen.

The next two fielkds, Item: and Item Selection Order: are also display fields (Passed
fromthe Item Screen).

The Item length: field is used to enter the length of the SI-Subkey in bytes. By default, for
non-keyworded Si-Paths, the iength will be set to the length of the IMAGE item. For keyworded Si-
Paths, the length will be defaulted tc eight (8) bytes.

The Starting Position: is used to define the position of where the index should begin. For
non-keyworded Si-Paths, the value can be any starting position (relative to 1), as long as the starling
position is not jonger then the length of the IMAGE item. For keyworded Si-Paths, this value wili be
forced to one (1).

The next two fiekds are only valid for keyworded Si-Paths. The first, Minimum Number of
Characters:, is used to define the minimum number of characters that must be in the word
before it will be index. The default is two (2). This means that single character words, such as "a’
will not be indexed. The valid values are 1 through 4, inclusive.

Version 3.1 March 1992 Maintenance and Utilities 6-31

SICOUNT utility

SICOUNT was created to provide the exact compression information in the B-trees. SUPERDEX
compresses B-trees based on the full index values for a physical 5! data record. This means all of
the indexes in a given physical Sl data record will be compressed the same.

SUPERDEX begins compressing with the left most word and will compress up to the whole length of
an SIINDEX, including the SI-EXTENSION. The default size of the SIHTEM is set with this
compression algorithm taken into consideration. It is possible to increase, or decrease, the
compression by manually setting up the SI-IITEM and S dataset structures (atthough this is not
recommended). Depending on the data and the type of items in the Si-Path, a smaller SI-ITEM can
produce a greatly increased compression ratio.

(%) Since there are several items to consider, contact Bradmark Technical Support before
adjusting the structure of the SI-iTEM and Si datasets.

SICOUNT will nct only provide the information on the compression, but will also give the height of the
B-irees, the number of leaf and tree records, and the number of indexes in the path.
Invoking SICOUNT

Two versions of the SICOUNT program are provided, in PUBSUPERDEX and
NOPRIV.SUPERDEX. They are identical except the NOPRIV version does not use techniques that
require PM capability. The PUB version should be used to obtain the best performance.

Use the NOPRIV version if you do not want to run software with PM capability and on datasets
whose block sizes are not even multiples of 128 words (128, 256, 384, 512, elc.).

To invoke SICOUNT:

:RUN SICOUNT.PUB.SUPERDPEX

B 51cOUNT is run without 3 LIB=G or ; LIB=P.

Specifying the database

Specify the name of a SUPERDEX'ed database, as shown:

DATABASE > OEDB

6-46 Mainfenance and utilities Version 3.1 March 1892

Related Masters Screen

Aug 28, 1981 SUPERDEX RELATED MASTERS SCREEN 10:53 AM

SELECT WITH AVAILABLE MASTERS | REQUIRED MASTERS UNQUALIFIED MASTERS
AN IXI

i
I
i
|
!
i
I
{
|
|
i
i
{
i
!
|
!

SUPERDEX (C) Bradmark Technologles, Inc. 19%1

The Related Master Screen is used to identify the related Master datasets to be included
in the Supergrouped path being built. This screen has three columns of Master datasets identified.
The AVAILABLE MASTERS column lists those master datasets that can optionally be included in the
current Supergrouped path. The REQUIRED MASTERS column lists those master datasets that
must be included in the current Supergrouped path (e.g. the same path already exists in a particular
master set). The UNQUALIFIED MASTERS column identified those master datasets that cannot be
included in the current Supergrouped path,

Mark any desired optional master dataset(s) to be included in the current Supergrouped path with an
"X". This program will automatically create the necessary paths for each of the master selected
datasets (or modify the existing master path to become a Supergrouped path).

| Related Masters Screen Function Keys

Key Label Description

F1 HELP Displays the Help Screen.
F2 {Not Defined)

F3 (Not Defined)

F4 {Not Defined)

F5 {Not Defined)

Fé {Not Defined)

»7 (Not Defined)

- P8 EXIT Exits back fo the Main Menu.

Once all of the data has been keyed, press the ENTER key . The process will then return to the
PATH screen.

Version 3.1 March 1992 Maintenance and Utilifies 8-33

Following is a table explaining all of the itemns displayed:

Label

Description

Keylength

BTree Height

Tree Records
Contiguous palrs
Leaf Records

Keys

LenPrefix

#Records
#Keys

Avg Keys/Rec
Max Keys/Rec

Cptimal Keys/Rec

The total iength of the Sl-index, including the Sl-extension, in
words.

The height of the B-tree. This will defined the maximum number of
physical I-Os to qualify a record. If the B-tree records are in
memaory, there will be no physical {-Os.

The total number of physical records that make up the B-tree.

The number of physical records included in the B-tree, that are
contiguous in the Sl-dataset {Also called *index Efficiency”). The
percentage of efficiency is also reporied.

The number of physical records that are located on the bottom of
the tree,

The total number of Sl-indices in the B-tree.

The number of words in the Sl-index that are compressed. "0" is
no compression. *3" is three words compressed in every index in
the physical record.

The number of physical records that are compressed at the level,

The number of Sk-indices that are compressed at the level.

The average number of Sl-indices that are contained on one
physical record.

The maximum number of Sl-indices that are contained on one of
the physical records.

The optimal number of Si-indices thal can be contained on one
physical record.

6-48 Maintenance and utilities

Version 3.1 March 1992

Execute Screen

AUG 28, 1981 SUPERDEX EXECUTE SCREEN 10:53 AM

(1} Execute On-line
{2} Execute in Batch
(3} Bave Job file [Enter file namel:

flle.group

{1} Modify Index Structure and Populate Indices
{2} Modify Index Structure, only

Job Name:
User Name: Password:
Group Name: Password:

Account Name: XXXAXXXZ Password:

SUPERDEX (<€) Bradmark Technologies, Inc. 1991

This screen is used to select how the modification process should be executed. By default, the
process wili execute the SUPERDEX maintenance program, SIMAINT, as a son process using the
information captured.

The first field is used to select the execution option. 1, the default, runs the process immediately on-
line, 2 streams the process for balch immediately, and 3 is used to save the information entered in a
job file that can be streamed at a later time.

if 2 was chosen, a job file named SIBCHFLE will be created and streamed. If for some reason
SIMAINT does not complete successfully (i.e. the S| dataset did not have enough free space to add
the new index), this file will not be automatically purged. Otherwise, It will be purged by the job
stream itseff. If 3 was chosen, the second field is used to enter a valid MPE file name {with the
group optional) to save the job file.

The third field selects whether the process will only define the new SUPERDEX index structure, or
will also populate the SUPERDEX indices for the new siructure. The default is to popuiate the
indices during the definition execution. To not process the indices, simply enter 2 and at some later
point, it may be necessary 1o reorganize the newly created indices.

The last group of fields are used 1o define the logon necessary for the job file. The Job Name: is
an optional name that defauits to SIBATCH and can be modified.

The User Name: and Password: are required fields for logon. The name will default to the

current logon USER name and can be modified. The password field is used to enter the user's logon
password, if it exists.

Version 3.1 March 1992 Maintenance and Utilities 6-35

SITRACE utility

SITRACE is used to trace all IMAGE intrinsics and SUPERDEX intrinsics called in a program. U is
very useful for debugging of logging all data base updates with SUPERDEX.
Activating SITRACE

To active the trace, the JCW SI-TRACE has to be set 1o a non-zero value before running the
program to be traced:

¢t8ETJCW SITRACE = 1 (or 111 for more detail)

Function

When processing DBOPEN, SUPERDEX checks if the SITRACE JCW is set to a non-zero value. If
s0, an internal flag is set o generate trace information.

ﬂg'rhe JCW is checked only by DBOPEN, so it must be set before opening the data base.

BREAKing a running program and RESUMEing it after setfting the JCW will produce trace
information only for data bases opened after the BREAK.

Redirection of Output

Trace output is sent to the file SITRACEF, which is defaulted to $STDLIST and opened with
AccessOptions "share” and "append®. This allows you

a) 1o trace access via severai access paths (multiple DBOFENS to one or more databases),
and
b) to append more trace information to an existing file.

Output can be redirecied by specifying a file equation for SITRACEF.

6-80 Maintenance and utilities Version 3.1 March 1992

SIPATH utility

SIPATH is a program that will display the IMAGE keys and chains, along with the SUPERDEX
SIPATH information. This information is given in a concise and is complete.

To use SIPATH, simply:

:RUN SIPATH.PUB.SUPERDEX

At this point you will be asked to enter the data base name you wish to lcok at.

The data base name can be fully quaiified with group and account. You must have correct access
to look at data bases outside your logon group or account. Entering RETURN at the data base
name will exit SIPATH.

Type
Code

Description

B???
C
cG
CK
cus
G
GK
IND
X
KEX
s
sC
SCK
sSIM
SK

index blank values

Concatenated Index
Concatenated-Grouped Index
Concatenated-Grouped-Keyworded index
Custom Index

Grouped Index

Grouped-Keyworded index

independent Index

Keyworded Index

Keyword Exclude (ndex

Supergrouped Index
Supergrouped-Concatenated Index
Supergrouped-Concatenated-Keyworded Index
Simpie Index

Supergrouped-Keyworded Index

Version 3.1 March 1892 Maintenance and Utjlities 6-37

SIDRIVER utility

SIDRIVER is a utiiity which permits IMAGE intrinsics to be “driven” interactively for various utility
functions. It executes an intrinsic and returns the elapsed and CPU times.

The commands are very similar to HP's DBDRIVER utility. There have been some modifications and
additions to the standard DBDRIVER utility to support all advanced SUPERDEX retrieval capabilities,
new intrinsic parameters and modes, and new intrinsics. To execute:

tRUN SIDRIVER.PUB.SUPERDEX

= Only the differences between SIDRIVER and DBDRIVER are documented.

The modified commands are:

B new format is #{;base), whete:
#is a number 1 to 5 (used to assign multiple databases)
{;base] is the base name 1o open (only used during open)

o] Always upshifted
It Always upshifted
1l Always upshifted

The new commands are:
P Password parameter, if lower case is necessary

ISTON Set a switch to always print the status array after a call
ISTOF Turns status print off

IOCON Report octal status, in addition to decimal

fOCOF Turns octal status print off

MHXON Reportl hex status, in addition to decimal

MHXOF Turns hex status print off

New intrinsics are caflable by the following commands:

DE DBERASE
pX DBDELIX
PX DBPUTIX

This version of SIDRIVER does not support the PRIV entry point and canh be excecuted in either
compatibility mode or native mode, depending on your machine.

68-52 Maintenance and utilities Version 3.1 March 1992

ORDER-HEADERS

SI-PATHE = 10006

SI-PATH# = 10007
ORDER-LINES

SI-PATH# = 10008

SI-PATH# = 10009

SI-PATHE = 10010
8z

SPECIAL PATHS
SI-PATHE = 10001

DATABASE> RETURN

END OF PROGRAM

CUSTOMER~NUMBER

-~ CUSTOMER~NUMBER T

{OFFSET =
ORDER-NUMBER
- ORDER-NUMBER
(QFFSET =

ORDER-PART

~ ORDER~NUMBER
(OFFSET =

~ PART-NUMBER
{(CFFBET =

PART-ORDER

- PART-NUMBER
(OFFEET =

- ORDER-NUMBER
{OFFSET =

PART-DESCRIPTION
- PART-DESCRIPTION

{(OFFSET =

KWEXCLUDE

SIM 4

2

1 SUBKEY
BSIM 4
i ;

1 SUBKEY
< 1B

I 2

1 SUBKEY
X 14

1 SUBKEY
c 18
X 14

1 SUBKEY
I 2z

1 SUBKEY
K 8
X 26
I SUBKEY

LENGTH
4

LENGTH

2z

LENGTH

LENGTH
22

LENGTH

LENGTH
12

LENGTH

12

H]

it

#

ft

4}

Version 3.1 March 1992

Maintenance and Uitilities 6-38

Specify the Sl dataset(s) Capacities

You will now be asked to enter the desired capacities for each of the Sl datasels you want to create,

Enter the CAPACITIES for esach set separated by comma's OR
enter one CAPACITY followed by @ to be used for ALL sets: 25008

From here, the program will build the new Si-index database and all the requested Si datasets.

NUMBER OF ERROR MESSAGES: 0
ROCT FILE CEDBSI CREATED.

The dataset OEDRBRSI was successfully built. You may now proceed
with your SUPERDEX installation.

This program will also add the necessary S item and S| dataset to the database being indexed. This
is necessary because the S| dataset in the main database instructs SUPERDEX that the indices are
being maintained in a separate database.

6-84 Maintenance and utilities Version 3.1 March 1982

To invoke SITEST:

+tRUN SITEST.PUB.SUPERDEX

SITEST VERSION 3.1 (12DECY1) COPYRIGHT DR. MATT/IABG (195%1)

B 5/TEST is run without 3 LIB=G or ; LIB=P.

Specifying the database

Specify the name of a SUPERDEX'ed database, as shown:

DATABASE > OEDB

Specifying datasets

Specify @ to diagnose all datasets, the name of a dataset that contains Si-paths, or SPACE « RETURN
to diagnose a independent Si-path:

DATA SET > @

Specifying Si-paths

if a value other than @ was specified for dataset, a prompt is issued to determine whether to
diagnose a specific Sl-path for the current dataset or all Si-paths for the dataset. Enter an Si-path
name or & to diagnose all Sl-paths for the dataset:

SI PATH > @&

Version 3.1 March 1992 Maintenance and Utilities 6-41

Specifying the datasets

Specify the name of the appropriate S| dataset that you want to change the capacity for:

SETNAME: SI1

If you want to review a list of the Si datasets available for capacity change, enter a *2" in the dataset
field and a list of the available S| datasets will be displayed:

Enter the name or number of the detall set to have its capacity changed.
Enter the name of number of one of the detail sets in this base:

¥ Dataset Type Capacity Entries % Full

1 511 Detail 1500 1079 71.9

2 812 Detail 3 0 G
Enter the dataset NAME or NUMBER:

SETNAME: S5T1

The prograrn will now display some supporting information about the dataset identified for capacity
change:

The new capaclity may be specified in any of the following formats

v

Absolute capscity number (e.g. “5501n}
Relative change +/ - number fe.g. "+500"}
Percent change +/- change % (e.g. "-25%"}
CTA trending 1f available for set {e.g. "C"}

Current set capacity 1500 (71.9% full}

Current High Water Mark 13128

Current get entries ;1079

Current blocking factor p

Current block size 1024 words

Current file size : 6016 sectors

6-86 Maintenance and utilities

Version 3.1 March 1892

Mode 2 processing

if mode 2 was selected, SITEST processes each B-tree in succession and dispiays the phase
TREETEST while performing the B-tree check. Foliowing the TREETEST, the phases INPUT,
SORT, and COMPARE are executed and displayed accordingly. Once the processing of each Sl
path is completed, the number of Si-indices checked is displayed:

MODE (1=TREE, 2=FULL} > 2
PROCESSING S8I~PATH KWEXCLUDE OF
TreeTest 0 INDICES CPU 0:00:00.0 Elapsed 0:00:00

PROCESSING SI-PATH CUSTOMER-NAME OF CUSTOMERS

TreeTest 1804 INDICES CPU 0:00:00.2 Elapsed 0:80:00
INPUT 1004 RECCRDS 100 & CPU 0:00:00.9 Elapsed 0:00:01
SORT 1004 INDICES CPU 0:00:00.0 Elapsed 0:00:00
COMFPARE 0 INDICES

*** Inconsistency: Kevs from £1 Chain vs. Keys from Datasef ***=*¥
51 Key # Key Value (SI Chain or Dataset) DSet Key #

652105 051524 020055 020116 047440 D44516 0£42165 054040 957
T E £ T - N O I K o E X

54 45 53 54 20 2D 20 4E 4F 20 49 4E 44 45 58 20
020040 020040 020040 020040 020040 020040 £2004C 000020

20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 10
172107

e G

Fg 47

57 052105 053524 020055 020116 047440 051105 $41517 051104

TR g T - N C R E c O R D

54 45 53 54 20 2D 20 4E 4F 20 52 45 43 4F 52 44

020040 020040 020040 020040 020040 020040 £20040 000041

[}

20 20 20 20 20 20 20 20 20 20 20 20 20 20 G0 21
164216

1004 INDICES FROM &I CHAIN, 1004 INDICES FROM DATASET COMPAEED
2 ERROR(S} found

Version 3.1 March 1992 Maintenance and Utilities 6-43

ALTPROG utility

The ALTPROG utility is used to add capabilities to and increase the MAXDATA of object program
files. Native Mode programs on MPE/XL cannot be changed with ALTPROG.

ALTPROG unconditionally:

8| adds DS and MR capability

¥ increases MAXDATA to 32000
Access requirements
Before running ALTPROG, make sure;

B you have write access 1o the program files
B you are logged into the group and account in which the program files reside

Invoking ALTPROG
To invoke ALTPROG:

:RUN ALTPROG.PUEB.SUPERDEX

ALTPROG V1.0 (38Jan®0) CCOPYRIGHT TAEG

Changes PROG File{s): Capabilities DS, MR are switched ON,
MAXDATA is set to 32000,

Specifying the program file

Specify the name of an object program file, which may be qualified with group name. The @ wildcard
may be specified for either program file name or group name or both, as shown:

Expects File Specificaticon in LISTF format

Enter File Specification {RETURN to end program] : @.PROG

658 Maintenance and utilities Version 3.1 March 1892

Invoking SIREPAIR

As stated earlier, while discussing SIREPAIR, we will only identify the differences. |

To invoke SIREPAIR: |

sRUN SIREPAIR.PUB.SUPERDEX;LIB=P

SIREPAIR Version 3.1 (12DECS1) COPYRIGHT DR. MATT/IABRG (1991)

B 5)REPAIR MUST be executed with ; LIB=P

Specifying Input
The input for database, datasets, and si-paths are the same for SIREPAIR as they are for SITEST. |

Specifying request before update

SIREPAIR will now prompt to see if the updating shouki be done immediately, or should the user
specify that the si-path should be repaired.

PROMPT BEFCRE REPAIR (Y,N) >

After this, SIREPAIR will do the same processing as SITEST mode 2. After it displays the indexes
that are corrupt, it will prompt the user if the previous question was answered yes.

Repalr this path ? (Y¥,N} >

If the Si-path should be repaired, SIREPAIR will repair the reported problems and then go on to the
next Si-path.

Version 3.1 March 1992 Maintenance and Utilities 6-45

QUERY/3000 utility

QUERY/3000 is compatible with SUPERDEX in that any entries added, deleted, or modified in
QUERY while referencing the SUPERDEX SL wili automatically adjust the Sl-indices, although no
advanced retrieval capabilities are available.

To use QUERY to add, delete, and update entries, copy QUERY.PUB.SYS into a group or account in
which the SUPERDEX SL segments reside (e.g. new group SUPERDEX.SYS), and then run it to
reference the SL:

:RUN QUERY.SUPERDEX.SYS;LIB=G

It is recommended that QUERY be run to reference the SUPERDEX SL only for adding, updating,
and deleling entries and not for retrieving eniries,

If using QUERY via the SUPERDEX SL. to find entries using a positive value in an item of data type P
or Z for which an identically-named Si-path exists, qualifying entries may be returned twice. This is
because QUERY internally issues two DBFINDs--one with a signed argument, one with an unsigned
argument--whereas SUPERDEX treats them identically. To avoid this, configure the Si-paths with
names different than the item names.

660 Maintenance and utilities Version 3.1 March 1992

Specifying datasets

Specify @ to diagnose all datasets, the name of a dataset that contains Sl-paths, or SPACE + RETURN
{o diagnose a independent Si-path:

DATA SET > @

Specifying Sl-paths

it a value other than @ was specified for dataset, a prompt is issued to determine whether fo
diagnose a specific Si-path for the current dataset or all 8l-paths for the dataset. Enter an Si-path
name or @ to diagnose all S-paths for the dataset:

51 PATH > @

Process

At this point SICOUNT will process the Si-Paths selected and will display detailed information about
each path:

KeyLength
BTree Helght

Tree Records
Leaf Records
Keys

i

A H

LenPrefix #Records 4Keys Avg.Keys/Rec Max Keys/Rec Optimal Keys/Rec
CPU 0:00:00.0 Elapsed 0:00:00

Version 3.1 March 1892 Maintenance and Utilities 6-47

The first is the DATASET prompt:

DATASET

Enter the name of the dataset that is located in the database opened by the user program to use
against the selection. Press return 1o exit SuperSELECT.

Next, the STPATH prompt will be displayed:

SIPATH>

Enter the Si-Path name to use against the selection. The SI-Path must be one that is located in the
dataset specified in the previous prompt. Pressing return will cause SuperSELECT o return to the
DATASET prompt,

Finally, the argument will be prompted for:

ARGUMENT>

Enter any valid SUPERDEX argument, including relational and Boolean operators. Once the
argument has been entered the message "Record written”, will be displayed for verification to
the user,

SuperSELECT will then prompt for more arguments, until RETURN is pressed at the prompt. This
aliows for multiple search values to be entered. When RETURN is pressed, SuperSELECT will back
up 1o prompt for another Sl-Path.

:RUN SUPERSEL.PUB.SUPERDEX

SuperSELECT Version 3.1 (12DECY91)} Copyright Bradmark Technologles, Inc. {1951)
DATASET> CUSTOMERS
SIPATH> CUSTOMER-NAME~XKW
ARGUMENT>

~UNI@ AND CHU®;

Record written

ARGUMENT >

RETURN

SIPATH> RETURN

DATASET> RETURN

End of Program

1 RUN USERPROC

in the above example, SuperSELECT is used to change the serial search in USERPROG. When
USERPROG executes, a SUPERDEX selection against the CUBTOMER~NAME-XKW keyworded Si-

7-2 SuperSELECT Version 3.1 March 1892

Here is an example of SICOUNT,

SICOUNT VERSION 3.1 {18NOV21) COPYRIGHT DR. MATT / IABG (1991}
DATABASE > QEDB
DATA SET > CUSTOMERS

PROCESSING SI~PATH CUSTOMER-NAME OF CUSTOMERS

KeyLength = 17

BTree Height = 3

Tree Records = 39

Contiguous palrs = 37 { 97.37 %)

Leaf Records = 36

Kevs = 1004

LenPrefix #Records #Keys Avg.Keys/Rec Max Keys/Rec Optimal Keys/Rec
0 26 £79 26 28 29
1 10 280 Z5 29 30

CPU 0:006:00.4 Elapsed 2:00:01

PROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS

KeyLength = &

BTree Helght = 2

4 Tree Records = 37

Contiguous palrs = 35 (97.22 %)

Leaf Records = 36

Keys = 3062

LenPrefix #Records #iKeys Avg.Keys/Rec Max Keys/Rec Optimal Keys/Rec
0 3z 2601 81 83 84
1 3 284 98 98 99
4 1 132 132 132 249

CPU 0:00:00.4 Elapsed 0:00:00

PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS

KeyLength = 6

BTree Height = 2

Tree Records = 43

Contiguous pairs = 48 {100.00 %)

§ Leaf Records = 48

¥ Keys = 4418

LenPrefix #Records #Keys Avg.Keys/Rec Max Keys/Rec Optimal Keys/Rec
0 41 3353 82 83 84
1 3 288 96 98 99
4 4 730 183 248 249

CPU 0:00:00.4 Elapsed 0:006:00

Version 3.1 March 1892 Maintenance and Ulilities

If the SuperSELECT temporary file still exists, SuperSELECT will then display a message and ask if
the older file should be purged.

Error Closing SuperSELECT file:!
Temporary f£ile already exists. Purge File (Y/N)7?

if the older temporary file should be purge, enter ¥, otherwise enter N.

SuperSELECT - Method 3

Method 3 of SuperSELECT is used primarily for a process that will accept the argument values from
the user, and then a batch job is run, using the values. This allows a simple program to be written
that will prompt the user for the arguments and then write the selection criteria to a flat file. The
batch job will always run SuperSELECT, specifying that the fiat file shouki be used.

This is done by running SuperSELECT like:

:1RUN SUPERSEL.PUB.SUPERDEX; INFO="+*ARGFILE"

This tells SuperSELECT to read the dataset, Si-path, and argument from the file ArGFiLE. The file
name can be fully quaiified, including the group and account. The format of the § INFO string is:

:RUN SUPERSEL.PUB.SUPERDEX; INFO="+filoname.group.account”

The file layout is similar o the » INFO string format used in method 2. It should be a unnumbered
flat file, that includes the dataset name, si-path name, and the argument, separated by semi-colon,
and no blank lines:

dataset;sipathl;argumentl;
dataset;sipathZ;argument2;

For our example, the ArsFILE would contain one line:

CUSTOMERS ; CUSTOMER-NAME-KW; ~UNI@ AND CHU@;

7-4 SuperSELECT Version 3.1 March 1992

Examples:

A. Redirect output to another free terminal:
sFILE BITRACEF ;DEV=nn

B. Append output to an existing trace file:’
:FILE BITRACEF=oldtrace,OLD
C. Create a new file and redirect output to it:

tBUILD mytrace;REC=-80,3,F,ASBCII;DIBC=1000
:FILE SITRACEF=mytrace,OLD

D. Specify file to be created by SUPERDEX:
¢tFILE BITRACEF=mytrace,NEW;REC=-80,3,F,A8CII;DIBC=1000;8AVE
E:'Exawnpies A, B, and C allow a trace access via multiple access paths (multiple DBOPENS to

one or more databases), whereas D only allows a trace access via the access path of the first
DBOPEN.

Since QUERY first issues a DBOPEN with an empty BASE parameter and mode 0 {to get
TurbolMAGE version information) before prompting, example D is can not be used (only the first
DBOPEN will be traced, and nothing else).

Version 3.1 March 1982 Maintenance and Utilities 6-51

The screen file is a file built and designed by the programmer. it simply has a two (2) character
command code, followed by a 78 character command or comment:

COXXXAXEAAXELAX XXX XEXXELLEXXXXXLEAXAXAXX LXK
A.Command or Comment
A.Command Code

The valid command codes are;

Code Command Description

Spaces Any comment or blank Does nothing, only for internal comments.

AA DATASET; STPATH; ACCEPT-ARGUMENT: Accepts any valid
SuperSELECT argument from the user, and writes
out the data.

D Any string, including escape | DISPLAY: Displays the Command portion without a

sequences carriage return,

DC Any string, including escape | DISPLAY-CARRIAGE RETURN: Displays the

sequences Command portion and then executes a carriage

Dp Any string, including escape return,

sequences DISPLAY-PROMPT: Displays the Command portion,
then waits for the user to press RETURN. No data is
accepted.

R Any valid program name RUN: Executes the program specified as a son
process. No rRun parameters are valid.

S DATASET; SIPATH; ARGUMENT; | SET: Sets a fixed argument value for the dataset and
St-path

76 SuperSELECT

Version 3.1 March 1892

SIBASE Utility

The SIBASE utility is provided to allow you to automatically create an Si-Index database, which is a
separate database used to hold the indexes. This option is mainly chosen for those databases that
are enabled for logging. By moving the indexes to a separate database, the log files will not fili up
with the accesses lo the S| datasel(s).
Access Requirements
Before running SIBASE, make sure:

B No other process is accessing the database

W You are logged on as the CREATOR of the database in the group and account in which the

database resides

invoking SIBASE

To invoke SIBASE:

:RUN SIBASE.PUB.SUPERDEX

SIBASE VERSION 3.1 (30DECY91) COPYRIGHT BRADMARK TECHNOGIES, INC (1881}

Specifying the database

Specify the name of the SUPERDEX'ed database, as shown:

Please enter the PRIMARY data base name, (ENTER to exit)}: QOEDB

Specifying the number of Sl datasets to build

Specify the number of S| datasets you wish to build. Up to seven (7) different SI datasets can be
buitt if desired.

Please enter the NUMBER of 5I datasets you wish to build=> 2

Version 3.1 March 1992 Maintenance and Utilities 6-53

SISIZE Utility

The SISIZE utility is provided to allow you to change the capacity of an Si (SUPERDEX Index)
dataset. The Sl sel(s) can reside in either the original database being indexed or the external Si-
index database. This utility will only function on Si type datasets.
Access Requirements
Before running SISIZE, make sure:

B No other process is accessing the database

B You have a current backup of the database

B You are logged on as the CREATOR of the database in the group and account in which the

database resides

Invoking SISIZE

To invoke SISIZE:

+RUN SISIZE.PUB.SUPERDEX

SISIZE VERSION 3.1 (30DECS1) COPYRIGHT BRADMARK TECHNOLOGIES, INC. {15%1)

Specifying the database

Specify the name of the SUPERDEX'ed database, as shown:

SOURCE DATABASE: CEDB
PASSWORD: (N/A}

IS The PASSWORD is not applicable if you are the CREATOR of the database.

Confirmation of the backup

You will be asked to verify that a current backup of the database does exist:

Do you have a current backup of the Database ? (Y/N} : ¥

Version 3.1 March 1992 Maintenance and Utilities 6-55

Retrieving all entries in a set in ascending sorted order

This example retrieves all the entries in the ORDER dataset in ascending sorted sequential order. It
uses DBFIND mode 100 to position at the alphabetic beginning of the set, and DBGET mode 15 to
perform a greater-than-or-equal-to retrieval.

WORKING-STORAGE SECTION.

01 ORDER.
05 CUST-NUMBER PIC 9(86)
05 CRDER-~NUMBER PIC 9(6).
05 CRDER-DATE PIC 9(8).
05 ARTICLE-NUMBER PIC 9{(10}.
05 AMOUNT PIC G9{1l) COMP-3.
01 BASE PIC X({8) WVALUE * OEDB *.
01 DSET PIC X{16} VALUE "ORDER "
01 ITEM PIC X{16} VALUE "ORDER-DATE "
01 LIsT PiC XX VALUE "@".
01 STAT.
0L CONDITION-WORD PIC $9(4) COMP.
05 STATZ PIC S9(4} COMP.
05 STAT3-4 PIC 881{9) COMP.
05 STATE-6 PIC S5(9) COMP,
05 STATT-8 PIC 89(%) COMP.
05 STATS-10 PIC 88(%) COMP.
01 MODELS PIC S9{(4} COMP VALUE 15.
01 MCDELIGO PIC 89(4) COMP VALUE 100.
01 DUMMY PIC X.

A-2 Program examplies Version 3.1 March 1992

Specifying the new capacity:
Specify the desired capacity for the S| dataset as follows:

Enter new capacity : 2500

The program will now display some additional supporting information:

Proposed capacity : 2500 {43.2% full)
Proposed file size : 10016 sectors
Change in file size : +4000 sectors

The program will ask for verification of the new capacity:

Iz the new capacity of 2500 correct ? {(Y¥/N) : ¥

The program will now execute the requested capacity change while displaying the following
information:

Capacity change in progress --
1079 entries copied

Detail ser change successfully completed

At this point, the program will prompt for another dataset. You may enter the name of another Si
dataset or press RETURN to exit the program.

Version 3.1 March 1992 Maintenance and Utilities 657

Retrieving all entries in a set in descending sorted order

This example retrieves ali the entries in the ORDER datase! in descending sorted sequential order. It
uses DBFIND mode 200 to posltion at the alphabetke beginning of the set, and DBGET mode 16 fo
perform a less-than-or-equal-o retrieval.

WORKING-STORAGE SECTION.

{1 ORDER.
05 CUST-NUMBER PIC ${6)
G5 ORDER-NUMBER PIC S(6}.
05 ORDER-DATE PIC S(6}.
Q% ARTICLE-NUMBER PIC 9(10)
G5 AMOUNT PIC 9(11) COMP-3.
01 BASE PIC X(8) VALUE ™ OQEDB .
01 DSET PIC X(16) VALUE *ORDER ..
01 ITEM PIC X(16) VALUE *ORDER-DATE .
01 LIsT PIC XX VALUE "@*.
01 STAT.
05 CONDITION-WORD PIC S2{4) COMP.
05 STATZ PIC 38%(4) COMP.
05 STAT3-4 FIC 59(%) COMF.
05 STATS-6 PIC S9(S) COMP.
05 STAT7-8 PIC S%(9) COMP.
05 STAT9-1¢ PIC S9({9) COMP.
01 MODELlé6 PIC S9(4) CCMP VALUE 16.
01 MODEZGD PIC S%(4) COMP VALUE 200.
01 DUMMY PIC X,

A-4 Program examples Version 3.1 March 1992

ALTPROG will optionally verify for each program file whether to change or not. Respond Y to be
prompted for each program file or N to change ali program files without verification:

Verify before changing file ? (Y/N} N
Processing Account AR, CGroup PROG

Processing File ARADDHS. PROG.AR

Processing File ARADDRP.PROG.AR

WARNING: Native Mode Program ARCHGRP.PROG.AR nct changed.
Processing File ARREPSM, PROG.AR

Processing File ARREPDM.PROG.AR

**x* File ARREPDM.PROG.AR could not be opened :

EXCLUSIVE VIOCLATION: FILE BEING ACCESSED (FSERR 90}
Processing File ARREPTT.PROG.AR

As shown above, ALTPROG displays an error message for each program file that it cannot change.

Once all program files in the specified fileset are changed, ALTPROG prompts for a new file
specification. Enter #, or hit RETURN {o exit the program:

Enter File Specification (RETURN to end program) : RETURNM

END OF PROGRAM

Running ALTPROG in batch

ALTPROG cannot be run in batch.

Version 3.1 March 1992 Maintenance and Utilities 6-59

Retrieving entries using a partial or generic key

This example Hlustrates a partial-key retrieval against the CUST dataset, in which the Sl-path CUST-
NAME is accessed. The user enters a value, and the program appends an @ 1o perform partial-key
refrieval,

WORKING-STORAGE SECTION.
CusT.

0L CUST-NUMBER
05 CUST-NAME

01

01

o1

05

CUST~ADDRESS1

05 CUST-ADDRESS2

SEARCH-NAME

BASE
DEET
ITEM
LIST
ARGUMENT

STAT.

05
a5
G5
o0&
6

G5

CONDITION-WORD
STATZ
STATI-4

5 STATE-6
5 STATT-8

STATS-10

MCDE1
MCDES
DUMMY

PIC
PIC
PIC
PIic

FIC

PIC
PIC
PIC
pic
PIC

PIC
PIiC
ric
PIC
PIC
PIC

S{6).

{200
X{(20}.
X120} .

VALUE
VALUE
VALUE
VALUE

COMP.
COMF.
COMP.
COMP.
COMP.
COMP.

COMP VALUE

* OEDB .
"CUST .
"CUST-NAME ..
e,

[

COMF VALUE §.

A-8 Program examples

Version 3.1 March 1892

Section 7 SuperSELECT

SuperSELECT was create to provide a simple means of changing serial reads to SUPERDEX reads
with no program changes 1o existing software. This is especially helpful when using third-party
software, or when source code is not available.

SuperSELECT works by interrupting a serial read being executed and replacing #t with a SUPERDEX
read. it can be executed using one of four methods.

The only restriction is that the multi-database relational access is not available. This is because
SuperSELECT does not open or process any data. It sets some switches and builds a temporary file
of the selection information. When the user program executes, the serial read will be intercepted and
the data stored in the temporary file will be used to replace the serial read with a SUPERDEX read.

= Within any of the four methods of execution, it is important to remember that onily

datasets and SI-Paths that exists in the database that the user program serially reads
are valid.

invoking SuperSELECT

There are no special requirements to invoke SuperSELECT. Simply execute SuperSELECT
immediately prior o the normal execution of the user program.

SuperSELECT - Method 1

The first method for executing SuperSELECT is for testing and on-the-fly selections. SuperSELECT
will loop through the prompts, allowing multiple arguments for a single SI-Path, multiple Sl-Paths for a
single dataset, and multiple datasets for a singie database. This allows for full relational access

within the database of the user program.

Run the SuperSELECT program:

+RUN SUPERSEL.PUE.SUPERDEX

SuperSELECT Version 3.1(12DECS1;Copyright Bradmark Technologles, Inc.

At this point SuperSELECT will loop through three prompts.

Retrieving entries using a concatenated key

This example shows a lookup against the concatenated Si-key comprised of the items ORD-DAT
{X8) and ARTICLE-NUMBER (X10). The DBFIND mode -116 represents the combined length, in
byies, of the two fields.

WORKING-STORAGE SECTION.
01 ORDER.

01

"
S

o1
01

01

0%
05
13
05
05

CUST-NUMBER
ORDER-NUMBER
ORDER-DATE
ARTICLE-KUMBER
AMOUNT

BAST
DBET
TTEM
LIsT
ARGUMENT .

45
05

SI~

SEARCH-DATE
SEARCH-ARTICLE

T.
CONDITION~WORD
STATZ

STAT3-4
STATH-6
STAT7 -8

STATS-10

MCDE

MODES
DUMMY

PIC
PIC
PIC
PIC
PIc

PIC
PIC
PIC
PIC

PIic
PIC
PIicC
PIcC
ric

PIC

PIC
FI1C

W

n

|45 [£5]
\SO\WD WD WD WD

[Cn RNV R4 SRV e S SN Y

& 4]
e
~

e 3]
- W

VALUE
VALUE
VALUE
VALUEL

COME.
COMP.
COMP.
COMP.
COMP.
COMP .

COMP-3,

* OEDB *.
"ORDER "
"ORDER-DATE "
M@ﬂ‘

COMP VALUE ~116.
COMP VALUE 5.

A-8 Program examples

Version 3.1 March 1992

Path in the CUSTOMERS dataset will be done. The records selected will be the records that contain
a word starting with UNT and a word staring with CHG.

if SuperSELECT is executed twice, before any serial read program, the temporary file will still exist.
SuperSELECT will then display a message and ask if the older file should be purged.

Error Closing SuperSELECT filed
Temporary f£ile already exists. Purge Pile (Y/N)?

if the older temporary file should be purge, enter Y, otherwise enter N.

SuperSELECT - Method 2

The second method for running SuperSELECT is used primarily prior to a batch run of a program,
where there will only be one argument entered and that argument is known prior to when the batch
job executes.

On the RUN command, the ; INFQ string is used {o pass the dataset name, Si-Path name, and the
single argument value. For example;

+RUN SUPERSEL.PUB.SUPERDEX; INFO="CUSTOMERS; CUSTOMER-NAME-KW; ~UNI@ AND CHU@;*

SuperSELECT Version 3.1{12DECS%1)Copyright Bradmark Technologies, Inc.
DATASET>

CUSTOMERS

SIPATH>

CUSTOMER-NAME-KW

ARGUMENT>

~UNI@ AND CHUE@;

Record written

This run command will set the same selection criteria as the example for method 1. The format of
the ; INFO string is:

:RUN SUPERSEL.PUB.SUPERDEX; INFO="dalasel; si-path; argurment; »

The rules for dataset, sipath, and argument are the same as described in the introduction of
SuperSELECT.

Version 3.1 March 1992 SuperSELECT 7-3

Retrieving entries in a range of values

This example locates ali the entries in the range between START-DATE and END-DATE. The »=
and <= operators are embedded with the values entered to form the argument.

WORKING-STORAGE SECTION.

01 ORDER.
05 CUST-NUMBER PIC 9(6}
05 ORDER-NUMBER PIC 9(6}.
05 ORDER-DATE PIC 2{6).
05 ARTICLE-NUMBER PIC $(10).
05 AMOUNT PIC 9(11}) COMP-3.
01 BASE PIC X(8}) VALUE * OEDB ".
01 DSET PIC X{16) VALUE "ORDER "
01 ITEM PIC X(16) VALUE "“ORDER-DATE v
01 LIST PIC XX VALUE "@".
01 ARGUMENT.
05 FILLER PIC XX VALUE ">=~
G5 START-DATE PIC 91(&).
0% FILLER PIC XX VALUE “*<=",
0% END-DATE IC 9(6}).
05 FILLER PIC X VALUE "@*.
01 STAT.
05 CONDITION-WORD PIC 59{4) COMP,
05 STAT2 PIC 2%{4) COMP,
05 STATI-4 PIC 89{%] COMP.
05 STATS-6 FIC S9{9) COMP,
08 STAT7-8 PIC S%(3) CcoMp.
05 STATS-10 PIC 88{9) COMP.
01 MODREL PIC £3{4) COMP VALUE 1.
4l MODES FIC 89(4} COMP VALUE 5.
1 puUMMY PIC X.

A-10 Program examples Version 3.1 March 1992

When SuperSELECT runs it will display the values as it processes:

iRUN SUPERSEL.PUB.SUPERDEX; INFO="AARGFILE"

SuperSELECT Version 3.1(12DEC91)Copyright Bradmark Technologies, Inc.
DATASET>

CUSTOMERS

SIPATH>

CUSTOMER - NAME - KXW

ARGUMENT>

~UNI€ AND CHUE;

Record written

If the SuperSELECT temporaty file still exists, SuperSELECT will then display a message and ask if
the oider file should be purged.

Error Cleosing SuperSELECT file!
Temporary file already exists. Purge File (Y/N)*?

If the older temporary file should be purge, enter ¥, otherwise enter N.

SuperSELECT - Method 4

Method 4 is a very powerful and user-friendly way to execute SuperSELECT on-line. It is used to
allow a user to run SuperSELECT, input the argument(s), and automatically run the user's program,
alt through a data-entry screen.

This allows for great flexibility and autormnation for SuperSELECT, without having to train the user on
how SuperSELECT works, Screens can be customized to maich the appearance that the user
expects, which will allow SuperSELECT to become an integral part of the user's application.

Before SuperSELECT is executed, enter a file equation for B8SCREEN, which can be fully qualified.
Then run SuperSELECT without the ;INFO siring. SuperSELECT will open and process the
customized screen.

:PILE SSSCREEN=CUSTOM.group.account
:RUN SUPERSEL.PURB.SUPERDEX

Version 3.1 March 1992 SuperSELECT 7-8

Retrieving entries using multiple values

This example illustrates a search using multipie values OR'ed together. The user is prompted for
names of cities in a loop, with one city entered per prompt, and presses RETURN when all cities have
been specified. The program strings together the cities entered, delimits them with square brackets
and embeds | operators to form a single argument for DBFIND.

WORKING-STORAGE SECTION.

01 CUsST.
05 CUST-NUMBER PIC 9{6).
05 CUST-NAME PIC X{20}.

05 CUST-ADDRESS] PIC X{20).
05 CUsT-ADDRESSZ PIC X{20).

01 CITY PIC X({20}.
01 BASE PIC X{8) VALUE " OEDB =,
01 DSET PIC X{16} VALUE "CUST -
01 ITEM PIC X(16) VALUE “CUST-OFFICE .
01 LIST PIC XX VALUE *=@*.
01 ARGUMENT PIC X200} .
01 STAT.
0S5 CONDITION-WORD PIC 89(4) COMP.
05 STATZ PIC S5(4) COMP.
05 STAT3-4 PIC 89{9) COMP.
05 STATE-6 PIC B89(92) COMPF.
05 STATT-8 PIC 89(%) COMP.
(% STAT9-10 PIC 591(9) COMP.
01 MCDEL PIC S9(4) COMP VALUE 1.
01 MCDES PIC S89(4) COMP VALUE 5.
01 DUMMY PIC X.
81 ITERATION PIC S9(4) COMP VALUE 0.

A-12 Program examples Version 3.1 March 1992

Following is an example (the Command Codes are in bokd for documentation purpose):

This is an example of a SuperSELECT Screen file.

All of the commands codes are used in this example. Of

course, they can be used in any order, and they are not

case sensitive.
bC{escaps home and cloar)
DC SuperSELECT Example
D
DC Thisg is an example cof how SuperSELECT screen files should be
DC built. This example will prompt for a part description
DC keyword for dataset ORDER-LINES and Si-Path PART-DESC.
DC It will alsc force an argument of *8* (shipped) for the
pC SI-Fath SHIPPED-FLAG.
DC
De First, is the prompt for PART-DESC.
De

fnotice we do not carriage reburn nowl
I Please enter the Part Description argument:
AAORDER~-LINES; PART-DESC;
DC
Next, we force the shipped status.

& ORDER-LINES; SHIPPED-FLAG:S;

Dp Press RETURN to continue:
Now start the user's program
R USERPROG

Now, the screen display of how to execute SuperSELECT with method 4 and what Is displayed:

:FPILE BSS5CREEN=USERSCRN
tRUN SUPERSEL.PUB.SUPERDEX
{screen is homed and cleared}
SuperSELECT Example

This is an example of how SuperSELECT screen files should be
built. This example will prompt for a part description
keyword for dataset ORDER-LINES and SI-Path PART-DESC.
It will alszo force an argument of *s8* (shipped) for the
S§I-Path SHIPPED-FLAG.

Pirst, is the prompt for PART-DESC.

Please enter the Part Description argument: -~-RED AND BEARG;

Press RETURN to continue: RETURN

At this point the user's program {usErproG) from the R command would be executed. The program
may display the report on the screen, or actually write out a print file.

Version 3.1 March 1892 SuperSELECT 77

Refining and undoing a selection

The following exampie illustrates a generalized search routine in which the user is prompted in a loop
for full or partial keywords contained in pari descriptions and whether {o AND, OR, or AND NOT each
pair, undo the last selection, or display the qualifying entries, start a new search, or exit. After each
keyword is entered, DBFIND is called and the number of qualifying entries is displayed, so the user
can decide whether to continue 1o refine the selection; i too few entries qualify, the user can undo the
last selection and impose an alternate keyword.

WORKING-STORAGE SECTION,

01 BABE PIC X (8} VALUE = QEDB *.
01 DSET PIC X{16} VALUE "PART "
01 ITEM PIC X{16) VALUE “PART-DESCRIPTION".
01 LIsST PIC XX VALUE "@".
01 ARGUMENT PIC X({260) VALUE SPACE.
01 STAT.
0% CONDITION-WORD PIC S%(4) COMP.
05 STAT2 PIC 59(4) COMP.
05 STAT3-4 PIC S8%1(%) COMP.
0% STATS5-6 PIC 89(5) COMP.
0% sTATT7-8 PIC 82(%} COHP.
05 gTAT9-10 PIC 39(9) COMP.
01 MODE1 PIC s8(4) COMP VALUE 1.
01 MODES PIC 88{4) COMP VALUE 5.
01 SEARCH-STRING PIC X{20Q).
01 WHAT-TO-DO PIC X.
01 RELOP PIC XX SPACE,
01 QUALIFY PIC Z(8;%.
01 PART-ID.
0% PART-NUMBER PIC X({10}.

45 PART-DESCRIP PIC X{50}).

A-14 Program examples Version 3.1 March 1992

Appendix A COBOL Program examples

Examples of COBOL programs that perform various types of SUPERDEX access appear on the
following pages, as shown below:

Retrieving all entries in a set in ascending sorted order
Retrieving all entries in a set in descending sorted order
Retrieving entries using a partial or generic key

Retrieving entries using a concatenated key

Retrieving entries in a range of values

Retrieving entries using multiple values

Refining and undoing a selection

Retrieving entries using multiple Si-paths in a single dataset
Retrieving entries using muitiple datasets

Retrieving entries using multiple databases

Retrieving entries in multiple sets and bases using projection
Reading Si-indices only

Customizing Sl-key value(s) with SIUSER

Manually adding Sl-indices with DBPUTIX

Manually deleting Sl-indices with DBDELIX

Adding Si-dataset to the lock descriptor

Calling SITRANSLATE

PROMPT-STRING.
DISPLAY “"Enter part description keyword:*.
ACCEPT SEARCH-STRING.
STRING ARGUMENT DELIMITED BY SPACE
“ DELIMITED BY SIZE
SEARCH-STRING
DELIMITED BY SPACE
@i~ DELIMITED BY SIZE
RELOP DELIMITED BY SPACE
INTO ARGUMENT.

CALL "DBFIND® USING BASE, DSET, MODELl, S2TAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0 AND <> 17
GO TO DB-ERRCR.

MOVE STATE-£ O QUALIFY.

DISPLAY QUALIFY "entries gualify.".
MOVE "/" TO ARGUMENT.

MOVE " " T0O RELGOP.

GC TO PROMPT-WHAT-TO-DO.

DISPLAY-PART-ID.
CALL *DBGET" USING BASE, DSET, MODES, &7TAT, LIET, PART-ID, DUMMY
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 15
DISPLAY "End of Selection”
MOVE SPACES T0O ARGUMENT

G0 TO PROMPT~STRING

ELSE
GO TO DB~ERROR.
DIZPLAY PART-NUMBER " " PART-DESCRIP.

GO TC DISPLAY-PART-ID.

A-16 Program examples Version 3.1 March 1982

PROCEDURE DIVISION.

MAIN.
PERFORM CGPEN-BASE.
CALL *"DBFIND®" USING BASE, DSET, MCODEL10O, STAT, ITEM,
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY *no entry” STOP RUN
ELSE
GO TO DB-ERRCR.

DISPLAY “Cust#
PERFOREM GET-NBXT
STOP RUN.

Order4 Date Article
UNTIL CONDITION-WORD =

Amount".
il

GET-NEXT SECTION.
CALL “DBGET" USING BASE, DSET, MODELS,
IF CONDITION-WORD <> 0 AND <> 11 GO TO DB-ERROR.
DISPLAY CUST-NUMBER " " ORDER-NUMBER * * CRDER-DATE "
ARTICLE~NUMBER * AMOUNT.
GET-NEXT-EXIT.
EXIT.

oUMMY.

STAT, LIST, ORDER, DUMMY.

Version 3.1 March 1992

Program examples A-3

PROCEDURE DIVIESION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY “Enter customer number:™.
ACCEPT SEARCH-CUST.

DISPLAY *Enter first order date:".
ACCEPT START-DATE.

DISPLAY "Enter last order date:".
ACCEPT END-DATE.

CALL *“DBFIND" USING BASE, DSEYT, MODELl, STAT, ITEM1, ARGUMENTL.
IF CONDITION-WORD <> {
IF CONDITION-WORD = 17
DISPLAY "no entry”
STOP RUN
ELSE
GO TO DB-ERROR.

CALL "DBFIND" USING BASE, DSET, MODELl, STAT, ITEMZ, ARGUMENTZ.
IF CONDITION-WORD <> O
IF CONDITION-WORD = 17
DISFLAY "no entry”
STOPE RUN
LSE

GO TC DB-ERRCR.

DISFPLAY *“Cust# Crder# Date Article Amount™.
PERFORM GET-NEXT STATS-5 TIMES.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WCORD <> 0
GO TO DB-ERROR.
DISPLAY CUST-NUMBER * " ORDER-NUMBER * " ORDER-DATE * *
ARTICLE-NUMEBER * " AMOUNT.

GET-NEXT-BXIT.
EXIT.

A-18 Program examples Version 3.1- March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OFPEN-BASE.

CALL "DEFIND* USING BASE, DSET, MODEZC0, STAT, ITEM, DUMMY.

1P CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "no entry"”
STOP RUN
ELSE
GG TO DB-ERROR.

DISPLAY "Cust# Order# Date Article Amount*.
PERFORM CGET-NEXT UNTIL CONDITION-WORD = 10.
STOP RUN.

GET-NEXT SECTION,
CALL "DBGET” USING BASE, DSET, MODEI6, STAT, LIST, CRDER, DUMMY.
IF CONDITION-WORD <> 0 AND <> 10 GO TC DB-ERROR.
DISPLAY CUST-NUMBER * * ORDER-NUMBER * ¥ ORDER-DATE *
ARTICLE-NUMBER " " AMOUNT.

GET~-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program exampies A-5

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN~BASE.

DISPLAY "Enter customer name:".
ACCEPT SEARCH-NAME.

STRING " [" DELIMITED BY STZE
SEARCH-NAME DELIMITED BEY SPACE
el DELIMITED BY SIZE

INTC ARGUMENTIL1.
DISPLAY "BEnter first order date:".

ACCEPT START-DATE.
DISPLAY *"Enter last order date:*.
ACCEPT END-DATE,

CALL “DBFIND" USING BASE, DSETL, MODEl, STAT, ITEM1, ARGUMENTL.

IF CONDITION~WORD <> {
IF CONDITION-WORD =17
DISPLAY *ne entry*
STOP RUN
ELSE
GO TO DB-EZRROR.

CALL *DBFIND®* USING BASE, DSETZ, MODEl, STAT, ITEMZ, ARGUMENT2.
IF CONDITICN-WORD <> §
IF CONDITION-WORD = 17
DISPLAY *nc entry*
STOP RUN
ELSE
GG TO DB-ERROR.

DISPLAY "Cust# Name Qrder# Date®
" Articie ".
PERFORM GET-CUST UNTIL CONDITION-WORD <> 0.

GET-CUST SECTICN.
CALL *DBGET" USING BASE, DSET1, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> §
GO TC GET-CUST-EXIT.
CALL *DBFIND®™ USING BASE, DSETZ, MODEl, STAT, NULL-ITEM,
CUST-NUM OF CUST.
JF CONDITION-WORD <> 0
GO TC DB-ERROR.
PERFORM GET-ORDER STATS-6 TIMES.

GET-CUST-EXIT.
EXIT.

A-20 Frogram examples Version 3.1 March 1892

PROCEDURE DIVISION.

MAIN,
PERFORM OPEN-BASE.

DISPLAY “Enter customer name:".
ACCEPT SEARCH-NAME.
STRING
SEARCH-NAME DELIMITED BY SPACE
“@* DELIMITED BY SPACE
INTO ARGUMENT.

CALL ®"DBFIND" USING BASE, DSET, MODEl, STAT, ITEM, ARGUMENT.

IF CONDITION-WORD <> O
IF CONMNDITION-WORD =17
DISPLAY "no entry"
STOFR RUN
ELSE
G0 TO DB-ERRCR.

DISPLAY v"Custd Name Addresar.
PERFORM GET-NEXT STATL-6 TIMES.
STCP RUN.

GET-NEXT SECTION.
CALL ¥DBGET" USING BASE, DSET, MODESL, STAT, LIST, CUST,
IF CONDITION-WORD <> 0O
G0 TO DB~ERROR.
DISPLAY CUST-NUMBER " " CUST-NAME * * CUST-ADDRESS1
" " CUST-ADDRESEZ.

DUMMY .

Version 3.1 March 1892

Program examples

A-7

Retrieving entries using multiple databases

This example lusirates a relational retrieval between two databases. The user is prompted for a
customer name and a starting and ending date for the customer’s orders. A partial-key DBFIND is
performed 1o locale the customer, and the HISTORY-FLAG on the customer record is checked to
see if additional orders exist in the OEHIST history database. If so, these orders are also looked up
with DBFIND (using the | operator to perform an OR operation, and the & operator to relate the two
DBFIND calls), and all related orders are returned and displayed.

WORKING-STCRAGE SECTICN.

01 ORDER.

05 CUST-NUM PIC 2(6).

05 ORDER-NUM PIC 8(&).

05 CRDER-DATE PIC 8(6).

0% ARTICLE-NUM PIC 8{10}.

0% AMOUNT PIC 8{11l} COMP-3.
01 cusT.

05 CUsT-NUM PIC 9({6).

0% CUST-NAME PIC X(20}.

05 CUST-ADDRESS1 PIC X{20}.

05 CUST-ADDRESS2 PIC X(20}.

05 HISTORY-FLAG PIC X.
01 SEARCH-NAME PIC X{20C}.
01 BASEL PIC X(8) VALUE " OEDB .
01 BASEZ PEIC X{8) VALUE ® OERIST".
01 DSET1 PIC X(16) VALUE "CUST "
01 DSETZ FIC X{16} VALUE "ORDER "
01 ITEMI PIC X{16} VALUE "CUST-NAME ".
01 ITEMZ PIC X{2Z) VALUE "ORDER-DATE,CUST-NUM".
01 RNULL-ITEM PIC X VALUE ;"
01 LIsST PIC XX VALUE r@~.
01 ARGUMENTL PIC X{24).
01 ARGUMENTZ.

05 FILLER PIC XXX VALUE “[»>=",

05 START-DATE PIC S{&).

05 FILLER PIC XX VALUE "<=".

05 END-DATE PIC 96},

05 FILLER PIC X VALUE *1*,

05 RELOP PIC XXX.
01 STAT.

05 CONDITION-WORD PIC S89(4) COMP.

0% STAT2 PIC 88(4) COMP.

0% STAT3-4 PIC 59(%) COMP.

05 STATH-6 PIC S8(8) COMP.

05 STAT7-8 PIC 89(%) COMP.

05 STATSG-10 PIC 89(5) COMP.
01 MODEL PIC 59(4} COMP VALUE 1.
01 MODES PIC S%{4) COMP VALUE 5.
Gl DUMMY FIC X.
01 ID-SAVE PIC 59{4) COMP.
1 BASE PIC X(8B).

A-22 Program examples Version 8.1 March 1932

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY *“Enter corder date:”.
ACCEPT SEARCH-DATE.

DISPLAY "Enter article number:™.
ACCEPT SEARCH-ARTICLE.

CALL "DBFIND® USING BASE, DSET, SI-MODE, STAT, ITEM, ARGUMENT.

IP CONDITION-WORD <» 0
IF CONDITION-WORD = 17
DISPLAY “no entry”
STOFP RUN
ELSE
GO TO DB-ERROR.

DISPLAY “Cust# Orderd Date Article Amount”.
PERFORM GET-NEXT UNTIL CONDITION-WORD = 15.
TOP RUN.

GET-NEXT SECTICN.

CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, ORDER, DUMMY.

IF CONDITION-WORD <» 0 AND <» 1%
GO TO DE-ERRCR.

DISPLAY CUST-NUMBER " " ORDER-NUMBER " " ORDER-DATE *

ARTICLE-NUMBER " " AMOUNT,

GET-NEXT-BXIT.
EXIT.

"

Version 3.1 March 1992

Program examples A-8

GET-CUST SECTION.

IF CONDITION-WORD <> 0
G0 TO GET-CUST-EXIT.
CALL *DBFIND"™ USING BASEl, DSETZ, MODEL,
CUST-NUM OF CUST.
IF CONDITION-WORD <> 0 AND <> 17
GO TO DB-ERRCR.
MOVE BASEl TO BASE.
PERFORM GET-CRDER STATS-6 TIMES.
CALL "DBFIND® USING BASEZ, DSETZ, MODEL,
IF CONDITION-WORD <» { AND <> 17
GO TO DB-ERROR.
MOVE BASEZ TO BASE.
PERFORM GET-ORDER STATS-6 TIMES.

GET-CUST-EXIT,.
EXIT.

GET-ORDER SECTION.
IF CONDITION-WORD <> {

GO TO DB-ERROR.
DISPLAY CUST-NUM OF CUST * * CUST-NAME *

GET-ORDER-EXIT.
EXIT.

CALL *DBGET" USING BASE, DSET1, MODES, STAT,

CALL "DBGET" USING BASE, DSET2, MODELS, STAT,

LIsT, CUST, DUMMY,

STAT, NULL-ITEM,

STAT, NULL-ITEM, CUST-NUM OF CUST.

ORDER-NUM " " ORDER-DATE " " ARTICLE-NUM.

LIST, ORDER, DUMMY.

A-24 Program examples

Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BAZE.

DISPLAY "Enter first order date:".
ACCEPT START-DATE.

DISPLAY *Enter last order date:"™.
ACCEPT END-DATE.

CALL “DBFIND" USING BASE, DSET, MODEL, STAT, ITEM, ARGUMENT.

IF CONDITIOHN-WCORD <> 0
IF CONDITION-WORD = 17
DISPLAY "nc entry"
STOP RUN
ELEE
GO TG DB-ERROR.

DISPLAY "Cust# Order# Date Article Amount®.
PERFORM GET-NEXT STATSE-6 TIMES.
SETOP RUN.

GET-NEXT SECTION.
CALL *DBGET" USING BASE, D&ET, MODES, STAT, LIST, ORDER,
IF CONDITION-WORD <> 0
GO TO DB-ERRCR.
DISPLAY CUST-NUMBER " " ORDER-NUMBER " “ CORDER-DATE "
ARTICLE~NUMBER " * AMOUNT.

GET-NEXT-EXIT.
EXIT.

DUMMY .

Version 3.1 March 1892

Program examples A-11

CALL *"DBFIND" USING BASE, DSET1, MODEL, ITEM1, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "Entry not found”
STOP RUN
ELSE
GC TO DB~ERROR.

MOVE " [*]" TG ARGUMENT.
CALL "DBPRIND" USING BASE, DSETZ, MODRELl, ITEMZ, ARGUMENT.
IF CONDITION~-WORD <» 0
IF CONDITION-WORD = 17
DISPLAY "No corresponding entry in QUOTE-~-MASTER®
STOP RUN
ELSE
GC TO DB-ERROR.

DISPLAY "Enter start date:*.
ACCEPT SEARCH-DATE-START.
DISPLAY “Enter end date:®.
ACCEPT SEARCH-END-DATE.

STRING *{>=" DELIMITED BY SIZE
SEARCH-DATE-START DELIMITED BY SFACE
“agm¥ DELIMITED BY SIZE
SEARCH~DATE~END DELIMITED BY SPACE
"1 DELIMITED BY SIZE

INTO ARGUMENT.

CALL “DBFIND" USING BASE, DSETZ, MODEl, ITEM3Z, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "No entry in specified date range"
STCP RUN
ELSE
G0 TO DB-~ERROR.

DISPLAY “Enter coverage type:”.
ACCEPT SEARCH-TYPE.

STRING * (" DELIMITED BY SIZE
SEARCH-TYPE DELIMITED BY SPACE
"ie" DELIMITED BY SIZE

INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET3, MODELl, ITEM4, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY *"No entry with this coverage type*
STOP RUN
ELSE
GO TO DB-ERROR.

A-26 Program examples Version 3.1 March 1992

PROCEDURE BIVISION,

MATIN.
PERFORM OPEN-BASE.

GET-CITIES.
DISPLAY “Enter city:*.
ACCEPT CITY.
IF CITY <> SPACE
IF ITERATION = 0

STRING " [* DELIMITED BY SIZE

CITY DELIMITED BY SPACE
“] DELIMITED BY SIZE
INTO ARGUMENT
MOVE 1 TO ITERATICN
GO TO GET-CITIES
ELSE

STREING ARGUMENT DELIMITED BY SPACE
" DELIMITED BY SIZE
CITY DELIMITED BY SPACE
11" DELIMITED BY SPACE

INTO ARGUMENT
GO TO GET-CITIES.

CALL "DBFIND" USING BASE, DSET, MODEL, STAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0
IF QONDITION-WORD = 17
DISPLAY "no entry"
STOPF RUN
ELSE

GO TO DB-ERROR.

DISPLAY "Cust# Name

PERFORM GET-NEXT STATL-~6 TIMES.
STOFP RUN.

Address®.

GET-NWEXT SECTION.

CALL *DBGET" USING BASE, DSET, MODELS, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0
GO TO DB-ERROR.
DISPLAY CUST-KUMBER "

¥ CUST-NAME
* " CQUET-ADDREESSZ.

" CUST-ADDRESS]

GET~-NEXT-EXIT-
EXIT.

Version 3.1 March 1992 Program examples A-13

Reading Sl-indices only

In this example, the concatenated Si-key for the ORDER dataset is comprised of the CUST-
NUMBER and AMOUNT. By using the ! list, only the Sl-indices are returned; because the
AMOUNT is part of the Si-key, sufficient information is available in the Sl-index without having to
read the corresponding data entries.

WORKING-STORAGE SECTION.
0L BI-INDEX

05 CUST-NUMBER PIC 9{6}.
0% AMOUNT PIC 8{11} COMP-3,
05 FILLER PIC S1{9} COMP.
01 TOTAL PIC ${11} QOMP-3,
01 TOTAL-OUT PIC Z{B8)9.95.
01 BASE PIC X({8}) VALUE " OEDEB .
01 DSET PIC X(1l6) VALUE "ORDER ",
i ITEM PIC X {16} VALUE "CUST-NUMBER "
01 LIST PIC XX VALUE "i;*".
01 ARGUMENT PIC 9(6).
01 STAT.
05 CONDITION-WORD PIC S9(4) COMP.
05 8TATZ PIC 89(4) COMP.
05 gTATI-4 PIC 59(89) COMP.
05 STATH~6 PIC 89(8) COMP.
05 STATT-8 PIC S89(9) COMP.
05 STATS-10 PIC 5%(%) COMF.
01 SI-MCDE PIC 89(4}) COMF VALUE -106.
1 MCDES PIC 88(4) COMP VALUE 5.
01 DUMMY PIC X.

A-28 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MATIN.
PERFCRM OPEN-BASE.
G0 TO PROMPT~STRING.

PROMPT-WHAT-TO~DO,
DISPLAY "Enter mode: [Alnd, [©lr, and {Nlot, [Ulndo,".
DISPLAY ™ {Dlisplay, new [Slearch, [Elxit:-
ACCEPT WHAT-TC-DO.
IF WHAT-TO-DO *E"
STOP RUN.
IF WHAT-TO-DO = “g*
MOVE SPACE TO ARGUMENT
RELOP
GO TO FPROMPT-STRING.
IF WHAT-TO-DO = "yU*
MOVE *\/* TO ARGUMENT
MOVE SPACE TC RELOP
G0 TO PROMPT-WHAT-TO-DO.
IF WHAT-TO-DO = *A™
MOVE “&* TO RELCPE
GO TO PROMPT-STRING.
IF WHAT-TO-DO = *O"
MOVE " 1" TO RELOP
GC TO PROMPT-STRING.
IF WHAT-TO-DO = "N*
MOVE "!&" TO RELOP
GO TO PROMPT-STRING.
IF WHAT-TO-DO = "D*
FERFCREM DISPLAY~PART-ID
GO TQ PROMPT-WHAT-TO-DO.

H

GG TO PROMPT-WHAT-TO-DO.

Version 3.1 March 1992 Program examples A-15

Customizing Sl-key value(s) with SIUSER

This example shows an SIUSER procedure that buiids a custom Sl-key in the ORDER-DETAIL
dataset consisting of the second half of the ARTICLE-NUMBER (digits 5 through 10} and the
ORDER-DATE for the ARTICLE-DATE Si-path. For the ASCH-DATE si-path it converts the passed
double integer date (LAST-UPDATE) in the CUSTOMERS dataset 1o ASCI so generic and patial
lockups can be done,

IDENTIFICATION DIVISION.
FROGRAM-ID. SIUSER.
ENVIRONMENT DIVISICN,.
CONFIGURATION SECTION.

DATA DIVISION.
WORKING-STORAGE SECTION

01 CRDER.
05 CUST-NUMBER PIC 9{&}.
05 CRDER-NUMBER PIC 9(6&}.
05 ORDER-DATE FIC 9(6)
05 ARTICLE-NUMBER.
10 FILLER PIC 5999,
10 ARTICLE-CODE PIC §(6).
05 AMOUNT PIC 9(11) COMP-3.

01 CUSTOMERS.

05 CUST-NUMBER PIC 9(6).
05 CUST-NAME PIC X{30).
05 CUST-ADDRESS PIC X (50}
05 LAST-UPDATE PIC 881(%) COMP.

LINKAGE SECTION.

0L BASE PIC X(8}.

01 DSET PIC X(16}.

01 ITEM PIC X{1&).

01 BUFFER PIC X(2000)

01 INDEX-BUF,
05 INDEX-COUNT PIC S9(4) COMP.

05 IB-INDEX PIC X(50).
0% IB-ARTICLE-DATE REDEFINES IB-INDEX.
10 INDEX-ART-CODE PIC 21{6).

10 INDEX-DATE PIC 9{6}).
0% IB-ASCII-DATE REDEFINES IB-INDEX.
10 INDEX-AD-YY PIC 9%.
10 INDEX-AD-MM PIC 99,
10 INDEX-AD-DD PIC 99.

A-30 Program examples Version 3.1 March 1992

Retrieving entries using multiple Si-paths in a single dataset

This example shows a relational access retrieval involving two Si-paths in a single datasel. Two
DBFIND calls are performed in succession, with square brackels imposed and the & boolean
operator appended to the argument in the second DBFIND.

WORKING-STORAGE EECTION,.
01 ORDER.

65 CUST-NUMBER PIC
65 ORDER-NUMBER Fic
05 ORDER-DATE PIC
05 ARTICLE-NUMBER PIC
05 AMOUNT PIC
01 BASE PIic
01 DESET PIC
01 ITEMl PIicC
01 ITEMZ PIiC
1 LIsT PIC
01 ARGUMENTL.
G5 FILLER PIC
05 SEARCH-CUST PIC
05 FILLER PIic
01 ARGUMENTEZ.
65 FILLER PIcC
05 START-DATE PIC
05 FILLER PIC
65 END-DATE PIC
05 FILLER PIC
01 sTAT.
05 CONDITION-WORD PIC
05 STATZ PIC
05 STATI-4 pIcC
05 STATS-6 PIC
05 STATT-8 PIC
05 STATS-10 PIC
01 MODEL PIC
01 MODES PIC
01 DUMMY PIC

COMP~3.

VALUE *
VALUE
VALUE
VALUE
VALUE

CERB ",

g

VALUE " [*.

VALUE

u} L

VALUE

VALUE *<=",

VALUE

COMP .
COMP.
COMP.
COMP .
COMP.
COMP.

 COoMP VALUE 1.
} COMP VALUE 5.

"ORDER "
"CUST-NUMBER .
"ORDER~DATE "

Version 3.1 March 1992

Program examples A-17

PROCEDURE DIVISION.

MAIN.
PERFORM QPEN-BASE.

DISPLAY "Enter customer number:™.
ACCEPT SEARCH-CUST.

DISPLAY "Enter first order date:™.
RCCEPT START-DATE.

DISPLAY "Enter last order date:™.
ACCEPT END-DATE.

CALL "DBPIND® USING BASE, DSET, MCDEL, STAT, ITEMI, ARGUMENTI.
IF CONDITION-WORD <> 0
IFr CONDITION-WORD = 17
DISPFLAY *"no entry™
STOP RUN
ELSE
GO TO DB~ERROR.

CALL *DBFIND"™ USING BASE, DSET, MODELl, STAT, ITEMZ., ARGUMENTZ.
IF CONDITION-WCORD <> 0
IF CONDITION-WORD = 17
DISPLAY "no entry”®
STCP RUN
ELSE
GO TO DE-ERROR.

DISPLAY "Cust# Orders# Date Article Amount".
PERFORM GET-NEXT STATE-£ TIMES.
STOP RUN,

GET-NEXT SECTION.
CaLL "DBGET* USING BASE, DSET, MODES, STAT, LIST, CRDER, DUMMY.
IF CONDITION-WORD <> 0O
GO TC DB-ERROR.
DISPLAY CUST-NUMEER " » ORDER-NUMBER * * ORDER-DATE " 7
ARTICLE-NUMEER " " AMOUNT.

GET-NEXT-EXIT.
EXIT.

A-18 Program examples Version 3.1 March 1992

Retrieving entries using multiple datasets

This example performs a relational access retrieval against the datasets CUST and ORDER which
both contain the common item CUST-NUM. Two DBFIND calls are performed in succession with
varying parameters, and DBGETs are petformed against both datasets to retrieve all the qualifying

entries.

WORKING-STORAGE SECTION.

01 ORDER.

05 CUsST-NUM

05 ORDER-NUM

05 ORDER-DATE

05 ARTICLE~NUM
0% AMOUNT

CusT.

05 CUST-NUM

0L CUST-NAME

05 CUST-ADDRESE]
05 CUST-ADDRESSZ

01

SEARCH-NAME

a1
01
01
C1
01
01
€1
Qi
61

BASE

DEET1

DSET2Z

ITEML

TTEMZ
NULL-ITEM
LIST
ARGUMENT1
ARGUMENTZ .
05 FILLER
05 START-DATE
05 FILLER
05 END-DATE
05 FILLER
01 BTAT.

05 CONDITION-WORD
05 STATZ

05 STAT3~4

0% =STATS-6

05 STATT-8

0% STATS-16
MODEL

MODES

DUMMY

01
01
01

PIC
PIC
PIC
PIC
PIC

PIC
PIC
FIC
PIC

PIC

PIC
PIC
PIC
PIC
FIC
PIC
ric
PIC

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
FIC

994
9{6}.
E:9 4
a6},
REX

VALUE " OQEDB ",

VALUE *“CUST "
VALUE “ORDER v
VALUE *CUST~-NAME ..
VALUE
vaLUE *;"
VALUE "@".

VALUE "[»=7.

VALUE "<=".

VALUE "lg ",

COMP.
COMP,

COMP,

COME.

COME.

COMP.

COMP VALUE 1.
COMP VALUE 5.

"ORDER-DATE, CUST-NUM".

Version 3.1 March 1882

Program examples A-18

FROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter custiomer name:"™.
ACCEPT SEARCH-NAME.

STRING *[" DELIMITED BY BIZE
SEARCH-NAME DELIMITED BY SPACE
@i DELIMITED BY SIZE

INTO ARGUMENTI.
DISPLAY "Enter first order date:™,

ACCEPT START-DATE.
DISPLAY "Enter last order date:*™.
ACCEPT END-DATE.

CALL "DBFIND" USING BASE, DSET1, MODEl, STAT, ITEM1, ARGUMENTI.

IF CONDITION-WORD <> O
IF CONDITICN-WORD =17
DISPLAY *no entry"
STOP RUN
ELSE
GO TO DB-ERROR.

CALL *DBFIND" USING BASE, DSETZ, MODEl, STAT, ITEM2, ARGUMENTZ.
IF CONDITION-WORD <> O
IF CONDITION-WORD = 17
DISPLAY *no entry”
STOP RUN
ELSE
G0 TO DB~ERROR.

DISPLAY "Cust# Name Order# Date”
- Article *,
PERFORM CGET-CUST UNTIL CONDITION-WORD <> 0.

GET-CUST SECTION.
CALL "DBGET" USING BASE, DSETL, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0
GO TO GET-CUST-EXIT.
CALL *"DBFIND" USIKG BASE, DSETZ2, MODEl, STAT, NULL-ITEM,
CUST-NUM OF CUST.
IF CONDITION~WORD <> 0
G0 TO DB-ERRCR.
PERFORM GET-ORDER STATS-6 TIMES.

GET-CUBT-EXIT.
EXIT.

A-20 Program examples Version 3.1 March 1992

GET-ORDER SECTION.
CALL "DBGET® USING BASE, DSET2, MODESL, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0
GO TO DB-ERROR.
DISPLAY CUST-NUM OF CuUsT » * CUST-NAME * *
ORDER-NUM * " ORDER-DATE * * ARTICLE-NUM.

GET-QORDER-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-21

Retrieving entries using multiple databases

This example illustrates a relational retrieval between fwo databases. The user is prompted for a
customer name and a starting and ending date for the customer's orders. A partiai-key DBFIND is
performed to locate the customer, and the HISTORY-FLAG on the customer record is checked to
see if additional orders exist in the OEHIST history database. if so, these orders are also looked up
with DBFIND (using the | operator to perform an OR operation, and the & operator to relate the two
DBFIND calls), and all related orders are returned and dispiayed.

WORKING-STCRAGE SECTION.

01 ORDER.

05 CUST-NUM PIC 9(6}.

05 ORDER-NUM FIC 9(6).

05 ORDER-DATE PIC 9(6).

05 ARTICLE-NUM PIC 2{190).

0% AMOUNT PIC ${11) COMP-3.
01 CUsT.

05 CUST-NUM PIC 91(6).

05 CUST-NAME PIC X{Z0)

05 CUST-ADDRESEL PIC X{Z0)

05 CUST-ADDRESS2 PIC X{20}

05 HISTORY~FLAG PIC X.
01 SEARCH-NAME PIC X{20}.
01 BASEL PIC X(8) VALUE " OEDB .
01 BASEZ PIC X{8) VALUE * COEHIST".
01 DSET1 PIC X{16) VALUE "CUsT "
01 DSET2 PIC X(16) VALUE "ORDER .
01 ITEML PIC X (16} VALUE ®“CUST-NAME v
01 ITEM2 PIC X(22Z) VALUE “CRDER-DATE,CUST-NUM".
01 NULL-ITEM T X VALUE ;"
g1 LIsT PIC %X VALUE =@".
01 ARCGUMENT1 PIC X(24}).
01 ARGUMENTZ.

05 FILLER PIC XXX VALUE "[>=".

05 START-DATE PIC S (&},

0% FILLER PIC XX VALUE "<=".

05 END-DATE PIC S(6].

05 FILLER PIC X VALUE *]".

05 RELOP PIC XXX.
01 8TAT.

05 CONDITION-WORD PIC 5%(4) COMP.

05 sTAT2 PIC $9(4) COMP.

05 STAT3-4 PIC 89(9) COMP.

05 STATS-6 PIC 8%{%) COMP.

05 STATT-8 PIC 8%8(9) COMP.

05 STAT9-10 PIC S%(9) COMP.
01 MODEL PIC S9(4) COMP VALUE 1.
61 MODES PIC 88(4) COMP VALUE &,
01 DUMMY PIC X.
01 ID-sAVE PIC 89(4) COMP.
01 BASE PIC X({B)

A-22 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MARTIN.
PERFORM CPEN-BASEL.

DISPLAY “Enter customer name:".
ACCEPT SEARCH-NAME.

STRING " [* DELIMITED BY SIZE
SEARCH-NAME DELIMITED BY SPACE
ch DELIMITED BY SIZE

INTO ARGUMENTL.
DISPLAY *Enter first order date:*.
ACCEPT START-DATE.
DISPLAY *Enter last order date:*".
ACCEPT END-DATE.
CALL *DBFIND® USING BASEL, DPDSETI, MODEL, STAT, ITEML,
ITF CONDITION-WORD <> ¢
IF CONDITION-WORD = 17
DISPLAY “no entry®
STOP RUN
ELSE
GO TO DB-ERROR.

IF HISTORY~FLAG = SPACE
MOVE *& " TC RELOP
ELSE
MOVE SPACE TO RELOP.

CALL "DBFIND” USING BASEL, DSET2, MODEL, STAT, ITENMZ,
IF CONDITION-WORD <> 17 AMD <> §
GC TO DB~ERROR.

IF HISTORY-FLAG <> SPACE
MOVE STATZ TO ID-SAVE
PERFORM COPEN-BASE2
MOVE ID-SAVE TO STATZ
MOVE *l& " T0O RELCP

ARGUMENTI .

ARGUMENTZ .

CALL "DBFIND" USING BASEZ, DSETZ, MODELl, STAT, ITEMZ, ARGUMENTZ

IF CONDITION-WORD <> 17 AND <> 0
GO TO DB-ERROR.

IF sTATS-6 = O
DISPLAY *"no entry"
STOP RUN.

DISPLAY "Cust# Name Order$é Date
PERFORM GET-CUST UNTIL CONDITION-WORD <> 0.
STOP RUN.

Article *.

Version 3.1 March 1992

Program examples

A-23

GET-CUST SECTION.
CALL *“DEGET* USING BASE, DSET1, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-~WORD <> 0
GO TO GET-CUST-EXIT.
CALL "DBFIND* USING BASE1l, DSET2, MODEl, STAT, NULL-ITEM,
CUST-NUM OF CUST.
IF CONDITION-WORD <> 0 AND <> 17
GO TO DB-ERROR.
MOVE BASE1 TO BASE.
PERFORM GET-ORDER STATS-6 TIMES.
CALL *DBFIND* USING BASEZ, DSET2, MODELl, STAT, NULL-ITEM, CUST-NUM OF CUST.
IF CONDITION-WORD <> ¢ AND <> 17
GO TO DB-ERROR.
HMOVE BASEZ TO BASE.
PERFORM GET-ORDER STATS-6 TIMES,

GET-CUST-EXIT.
EXIT.

GET-ORDER SECTION.
CALL “DBGET" USING BASE, DSET2, MODEL. STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0
GG TO DB-~ERROR.
DISPLAY CUST-NUM OF CUST * " CUST-NAME * "
ORDER-NUM " " ORDER-DATE " " ARTICLE~-NUM.

GET-ORDER-EXIT.
EXIT.

A-24 Program examples Version 3.1 March 1992

Retrieving entries in multiple sets and bases using projection

This example locates all the quotations for earthquake insurance coverage given to policyholders in
Los Angeles in November and December of 1987. This requires four DBFIND calls against three
datasets, with the second DBFIND performing the projection.

WORKING-STORAGE SECTION.

01 BASE PIC X{8} VALUE " INSURE ™.

41 DSET1 PIC X{1i6} VALUE "INSURED-MASTER *.
01 DBET2 PIC X{16} VALUE "QUOTE-MASTER "
01 DSET3 PIC X{16} VALUE "QUOTE-DETAILL "
01 ARGUMENT PIC X (26},

01 INSURED-MASTER.
05 POLICY-NUM PIC S{8}.
0% CITY PIC X{20}.

01 QUOTE-MASTER.

05 QUOTE-NUM PIC 4(6).
05 QUOTE-DATE PIC 21(86).
35 POLICY-NUM PIC ©{8).

01 QUOTE-DETAIL.
05 QUOTE-NUM BIC §9{8}.
0% COVERAGE-TYPE PIC XX,

01 ITEMI PIC X {32} VALUE "“CITY, POLICY-NUM".

01 ITEM2 PIC X(32) VALUE "POLICY-NUM, QUOTE-NUM".

1 ITEM3 PIC X{32) VALUE "QUOTE-DATE, QUCTE-NUM".

01 ITEM4 PIC X{3Z} VALUE "COVERAGE~TYPE, QUOTE-NUM".
01 SEARCH~CITY PIC X(20}.

01 SEARCH-DATE-START PIC 9(6}.
01 SEARCH-DATE-END PIC 2(6).

01 SEARCH-TYPE PIC XX.
01 MODEL PIC 8%(4} COMP VALUE 1.
01 MODES PIC 89(4) COMP VALUE 5.

PROCEDURE DIVISION,

MAIN.
DISPLAY "Enter city:*.
ACCEPT SEARCH-CITY.

STRING " [* DELIMITED BY SIZE
SEARCH-CITY DELIMITED BY SPACE
" DELIMITED BY SIZE

INTO ARGUMENT.

Version 3.1 March 1992 Program examples A-25

CALL "DBFIND™ USING BASE, DSET1, MODEl, ITEM1, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "Entry not found-
STOP RUN
ELSE
GO TO DB-ERROR.

MOVE *[*]* TO ARGUMENT.
CALL "DRBFIND* USING BASE, DSETYZ, MODELl, ITEMZ2, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY “No corresponding entry in QUOTE-MASTER"
STCF RUN
ELSE
GO TO DRBR-ERROR.

DISPLAY "Enter start date:”®.
ACCEPT SEARCH-DATE-START.
DISPLAY *Enter end date:".
ACCEPT SEARCH-END-DATE.

STRING " [>=* DELIMITED BY SIZE
SEARCH-DATE-START DELIMITED BY SPACE
R DELIMITED BY SIZE
SEARCH-DATE-END DELIMITED BY SPACE
“lan DELIMITED BY SBIZE

INTO ARGUMENT.

CALL *DBFIND" USING BASE, DSETZ, MODELl, ITEM3, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "No entry in specified date range*
STOP RUN
ELSE
GG TO DB-ERROR.

DISPLAY "Enter coverage type: ™.
ACCEPT SEARCH-TYPE.

STRING " [" DELIMITED BY SIZE
SEARCH-TYPFE DELIMITED BY SPACE
"is" DELIMITED BY SIZE

INTO ARGUMENT.

CALL *DBFIND* USING BASE, DSET3, MODELI, ITEM4, ARGUMENT.
IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "No entry with this coverage type"
STOF RUN
ELSE
GC TO DB-ERROR.

A-26 Program examples Version 8.1 March 1992

GET-CRDER.

CALIL. "DBGET" USING BASE, DSET3, MODES, STAT, LIST, QUOTE-DETAIL, DUMMY.

IF CONDITION-WORD <> O
IF CONDITION-WORD = 15
DISPLAY "End of selection”
STOFP RUN
ELEE
GG TO DB-ERROR.

DISPLAY QUOTE-NUM OF QUOTE-DETAIL *
GC TO GET-ORDER.

" COVERAGE-TYPE.

Version 3.1 March 1982

Program examples A-27

Reading Sl-indices only

In this example, the concatenated Sl-key for the ORDER dataset is comprised of the CUST-
NUMBER and AMOUNT. By using the ! list, only the Skindices are returned; because the
AMOUNT is part of the Si-key, sufficient information is available in the Si-index without having to
read the corresponding data entries.

WORKING-STORAGE SECTION.

01

01
01

01
01
01
01
01

01

-
o

01
01

SI-INDEX

05 CUST-NUMBER
05 AMOUNT

05 FILLER
TOTAL
TOTAL-OUT

BASE
DSET
ITEM
LIET
ARGUMENT

STAT.

05 CONDITION-WORD
05 STATZ

05 STATI-4

05 STATS-6

05 STAT7-8

05 STATS-10

SI-MODE
MODES
DUMMY

PIC 9(8&).

PIC 9(11) COMP-3.
PIC 9(3} COMP.
PIC 2{11) COMP-3.
PIC Z{(B}9.95.

PIC X{B) VALUE " OQEDB =~.

PIC X{i6} VALUE "ORDER "
PIC X{16} VALUE “CUST-NUMBER .
PIC XX VALUE "i;*".

PIC 3(6).

PIC 8%{4} COMP.
PIC 5904} COMP.
PIC SS({%} COMP.
PIC 89(9) COMP.
PIC S9({9) COMP.
PIC SS1{9) COMP.

} COMP VALUE ~106.
PIC 88{(4) COMP VALUE 5.

A-28 Program examples

Versjon 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE,

DISPLAY *Enter customer number:®.
ACCEPT CUST-NUMBER.
MOVE CUST-NUMBER TO ARGUMENT,

CALL *DBFIND® USING BASE, DSET, SI-MODE, STAT, ITEM, ARGUMENT.

IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17
DISPLAY "no entry”
STO?P RUN
ELSE
GO TO DB-ERROR.

PERFORM GET-NEXT UNTIL CONDITION-WORD = 15.
MOVE TOTAL T0 TOTAL-OUT.

DISPLAY *Total for customer: * TOTAL-QUT.
STOP RUN.

GET-NEXT SECTION.

CALL "DBRGET" USING BASE, DSET, MODES, STAT, LIST, SI-INDEX, DUMMY.

IF CONDITION-WORD <> {0 AND <> 15
GO TO DB-ERRCR.
ADD AMOUNT TO TOTAL.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1892

Program examples A-29

Customizing Si-key value(s) with SIUSER

This example shows an SIUSER procedure that builds a custom Sl-key in the ORDER-DETAIL
dataset consisting of the secorxd haff of the ARTICLE-NUMBER {digits 5 through 10) and the
ORDER-DATE for the ARTICLE-DATE Sl-path. For the ASCII-DATE si-path it converts the passed
double integer date (LAST-UPDATE) in the CUSTOMERS dataset to ASCH so generic and partial
lookups can be done.

IDENTIFICATION DIVISION.
PROGRAM-ID. SIUSER.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

DATA DIVISICN.
WORKING-STORAGE SECTION
01 ORDER.

05 CUST-NUMBER PIC 2(6).
65 ORDER-NUMBER PIC G(6}.
05 ORDER-DATE PIC &{6}.
05 ARTICLE-NUMBER.
12 FILLER PIC 999%.
10 ARTICLE-CODE PIC 8(&)}.
05 AMOUNT PIC 8{1l1) COMP-3.

¢1 CUSTOMERS,

05 CUST-NUMBER PIC 8{6).
05 CUST-NAME PIC X{30:.
05 CUST-ADDRESS PIC X{50).

05 LAST-UPDATE PIC 8%(S5) COMP.

LINKAGE SECTION.

01 BASE PIC X({&}.

01 DSET PIC X{16).
01 ITEM PIC X(16]).
01 BUFFER PIC X(2G00).

01 INDEX-BUF.
05 INDEXR-COUNT PIC 59({4) COMP.
05 IB-INDEX PIC X(50).
05 IB-ARTICLE~DATE REDEFINES IB~INDEX,
10 INDEX-ART-CODE PIC S({6;.

10 INDEX-DATE

PIC 9(&}.

05 IR~ASCII-DATE REDEFINES IB-~INDEX.
10 INDEX-AD-YY PIC 89.
10 INDEX-AD-MM PIC $9.
10 INDEX-AD-DD PIC 98.

A-30 Program examples

Versionn 3.1 March 1992

PROCEDURE DIVISION USING BASE, DSET,

USER.

*

IF DSET =
ITEM =
MOVE
MOVE
MOVE

MOVE
MOVE

"ORDER-DETATIL" AND
"ARTICLE-DATE

BUFFER TC ORDER

1 70 INDEX-CCUNT

SPACES TO IB-INDEX
ARTICLE-CODE TO INDEX-ART-CODE
ORDER-DATE TC INDEX-DATE

GOBACK.

IF DSET =
ITEM =
MOVE
MOVE
MOVE

COMPUTE INDEX-AD-YY

"CUSTOMERS" AND

"ASCII-DATE"

BUFFER TO CUSTOMERS

1 70 INDEX~COUNT

SPACES TO IB-INDEX
LAST-UFDATE /

i

ITEM, BUFFER,

1600000

COMPUTE INDEX~AD-MM = (LAST-UPDATE - INDEX-AD-YY}

COMPUTE INDEX-AD-DD

1

LAST-UPDATE -

GORACK.

ITEM and DSET did not match any of cur custom SI-Paths.

GOBACK.

INDEX-AD-YY -

INDEX~BUF.

/ 10000
INDEX-AD-BD

Version 3.1 March 1992

Program examples A-31

Manually adding Sl-indices with DBPUTIX

in this example, the user is prompted for information about a new customer, including the customer's
initials, if any. The customer is DBPUT into the CUST dataset, and if any initials are specified, a
separate Sl-index is created with the initials. (This permits the customer to later be accessed by s
name or #ts initials). The customer number assigned is determined by reading the last record in the

dataset using DBFIND mode 200 followed by DBGET mode 6 and incrementing it by one.

WORKING-STORAGE SECTION.

0l

01

01
01
01
01
01
0%

01
01
01
01

cusT,
05 CUST-NUMBER
05 CUsST-NAME

CUsT-INDEX.
05 CUST-INITIALS
05 CUST-NUMBER-X

BASE

DSET

ITEM

LIET
INDEX-LIST
ARGUMENT

STAT.

05 CONDITION~WORD
05 STATZ

05 BTATI-4

05 STATE-6

0% STATT-8

05 STATY-10

MODEL
MODES
MODEZOD
DUMMY

PIC

PIC X(

PIC
PIC

FIC
PIC
PIC
PIC
PIC
PicC

pIiC
PIC
Fic
PiC
PIC
PIC

PIC
PIC
PIC
PIC

VALUE
VALUE
VALUE
VALUE
VALUE

COMP.
COMP.
COMP.
CCOMP.
COoMP.
COMP.

" QEDB .
"CUST
=CUST-NUMBER
=@,

" .n
LR

COMP VALUE 1.
COMP VALUE 6.
COMP VALUE 200.

A-32 Program examples

Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

CALL
IF CONDITION-WORD <> ©

GO TO DB-ERROR.
CALL "“DBGET" USING BASE, DSET,
ADD 1 TO CUST-NUMBER,
DISPLAY "Enter customer name H
ACCEPT CUST-NAME.
DISPLAY “Enter customer initials:*.
ACCEPT CUST-INITIALS.

CALL "DBPUT" USING BASE, DSET, MODEL,
IF CONDITION-WORD <> @
GO TO DB-ERROR.

IF CUST-INITIALS <> SPACE
MOVE CUST~-NUMBER TO CUST-NUMBER-X.
CALL "DBPUTIX"
CUST-INDEX.
IF CONDITION-WORD <> 0
GO TO DB-ERRCR.

DBFIND USING BASE, DSET, MODEZ0O,

USING BASE, DSET, MODEL,

STAT, ITEM, DUMMY.

MODE&, STAT, INDEX-LIST, CUST-NUMBER.

8TAT, LIST, CUST.

STAT, ITEM,

Version 3.1 March 1992

Program examples A-33

Manually deleting Si-indices with DBDELIX

This example deletes the customer entry and all associated Si-indices that were added in the last
example, using DBDELETE and DBDELIX.

WORKING-STORAGE SECTION.

o1 cusT.
0% CUST-NUMBER PIC {6} .
05 CUST-NAME PIC X{20)

01 CUST-INDEX.
05 CUST-INITIALS PIC X{&).
05 CUST-NUMBER-X PIC 9(6}

01 BASE PIC X(8) WVALUE ™ OEDB *.
01 DSET PIC X{1l6} VALUE "CUST *.
01 ITEM FIC X(16) VALUE *CUST-NUMBER ..
01 LIST PIC XX VALUE *@".
01 INDEX-LIST PIC XX VRLUE "1;".
01 ARGUMENT PIC X{2G).
01 STAT.
05 CONDITION-WORD PIC 8S(4) COMP.
05 STAT2 PIC S9(4) COMP.
05 STAT3-4 PIC S9(98) COMP.
05 STATHE-6 PIC S%(8) COMP.
05 QTATT-B PIC 88(%) COMP.
G5 STATS-10 PIC S89(%) COMP.
01 MODEL PIC 89{(4; COMP VALUE 1.
01 MODES PIC S9(4) COMP VALUE &.
01 MCDE7 PIC S5(4) COMP VALUE 7.
01 MODELC PIC 85{(4) CCOMP VALUE 10.
01 DUMMY PIC (X).

A34 Program examples Version 3.1 March 1992

PROCEDURE DIVISICN.

MATHN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer number to delete:*.
ACCEPT CUST-NUMBER.

CALL *DRGET" USING BASE, DSET, MODE7, STAT, LIST, CUST-NUMBER.

IF CONDITION-WORD <> 0
IF CONDITICN-WORD = 17
DISPLAY "No entry® -
STOP RUN
ELSE
GO TO DB-ERROR.

CALL "DBDELETE" USING BASE, DSET, MCODELl, STAT.

IF CONDITION-WORD <> 0O
GC TC DB-ERROR.

MOVE ALL *?" TO CUST-INITIALS.
MOVE CUST-NUMBER TO CUST-NUMBER-X.

CALL "DBFIND" USING BASE, DSET, MODE1(0, STAT,

IF CONDITION-WORD <> 0
GO TO DB-ERROR.

ITEM, CUST-INDEX.

CALL "DBGET" USING BASE, DSET, MODES, STAT, INDEX-LIST, CUST-INDEX, DUMMY.

IF CONDITION-WORD <> 0 AND <> 15
GO TO DE-ERROR.

CALL *“DBDELIX" USING BASE, DSET, MODEl, STAT,

CUsT-INDEX.
IF CONDITION-WORD <> 0
GO TO DB-ERRCR
ELSE
STOP RUN.

Version 3.1 March 1992

Program examples A-35

Adding Si-dataset to the lock descriptor

This example shows the root Sl-dataset being added to the lock descriptor, which already includes
the CUST and SHIP datasets. The tock descriptor is used by DBLOCK modes 5 and 6.

WORKING-STCRAGE SECTION.

01 DB-LOCK-DESCRIPTOR.
05 LOCK-COUNT PIC S%${4) COMP VALUE 3.
05 LOCK-ENTRY.

10 LOCK-1-LENGTH PIC $8{4) COMP VALUE 22.

10 LOCK~1-DSET PIC X{i6} VALUE =CUST; "
10 LOCK~1~ITEM PIC X{16) VALUE "@; ".

10 LOQK~1-VALUE PIC X{08

10 LOCK-2-LENGTH PIC 8914

}
}
)
10 LOCK-1-RELOP PIC X{02) VALUE *=*®,
)
) COMP VALUE 22.
)
)

10 LOCK-2-DSET PIC X{16) VALUE "“SHIP; "
10 LOCK-2-ITEM PIC X{16) VALUE "@; .
10 LOCK-2-RELOP PIC X{02} VALUE "=*"

10 LOCK-2~VALUE PIC X{0d

10 LOCK-3-LENGTH PIC 89(4} COMP VALUE 22.

10 LOCK-3-DSET PIC X{16} VALUE "SI; ..
10 LOCK-3-RELCP PIC X{(02Z} VALUE "="

)
}
}
10 LOCK-3-ITEM PIC X{l6} VALUE “&; "
)
10 LOCK-3-VALUE PIC X{08)

A-36 Program examples Version 3.1 March 1992

Calling SITRANSLATE

This example iliustrates calling SITRANSLATE after accepting an argument. The code is the same
as the partial-key retrieval example, except for the call to SITRANSLATE and the WORKING-

o

o oo oo oo
[G W N vt

0%

01
01

STORAGE modiications.
WORKING-STORAGE SECTION.
01 CUsT.
05 CUST-NUMBER Pic
05 CUST-NAME PicC
05 CUST-ADDRESS1 PIC
05 CUsST-ADDRESS2 PIC
SEARCH-NAME PIC
BASE PIC
DEET PIC
ITEM PIC
LIsT PIC
BITRANSLATE-AREA.
05 OPERATOR
05 INPUT-ARGUMENT
05 CUTPUT-ARGUMENT
05 SITRANS-ERROR
STAT.
0% CONDITION-WORD PIC
0% sTart2 PIC
05 STAT3-4 PIC
05 SBTATS-6 PIC
05 STATT-8 PIC
05 STAT9-10 PIC
MODEL PIC
MODES PIC
DUMMY PIC

01

* OEDB *.
"CUsST
*CUST-NAME
II@M.

VALUE SPACES.
VALUE SPACES.
VALUE SPACES.

4} COMP VALUE ZEROES.

COMP VALUE 1.
COMP VALUE 5.

9(6).
X(20}.
X(20}.
X{20}.
X(20}.

X{8} VALUE
X(i6) VALUE
X(ie} VALUE
XX VALUE
PIC X
PIC X{20}
PIC X{20}
PIC 89¢

89 (4) COMP.
59{4) COMP.
5% (9) COMP.
S% (3} COMP.
£9{9) COMP.
85(9) COMP.
S%(4)

86 (4}

X.

Version 3.1 March 19982

Program examples

A-37

PROCEDURE DIVISION.

MAIN,
PERFORM OPEN-BASE.

DISPLAY "Enter customer name:*.
* Accept the input argument
ACCEPT INPUT-ARGUMENT.

* Make gure the CFERATOR and OUTPUT-ARGUMENT are initialized
MOVE SPACES TO OPERATOR, CUTFUT-ARGUMENT.
* The first three parameters must be passed using the *8* in COROL

CALL “"SITRANSLATE® USING

@CPERATOR, @INPUT-ARGUMENT,

@OUTPUT-ARGUMENT, SITRANS-ERROR.

* The SITRANS-ERROR should always be zero.

* the error number and exit.

* Notice in the call to DBFIND,
* modifications.
CALL
CUTPUT-ARGUMENT.
IF CONDITION-WORD <> §
IF CONDITION-WORD =17
DISPLAY "no entry®
STOP RUN
ELSE
GO TO DB-ERROR.

DISPLAY *Cust# MName
PERFORM GET-NEXT STATLH-6 TIMES.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE,
IF CONDITION-WORD <> 0
GO TO DB-ERROR.
DISPLAY CUST-NUMBER "
= CUST-ADDRESSZ.

DSET, MODES,

* CUST-NAME *

GET-NEXT-EXIT.
EXIT.

"DBRFIND" USING BASE, DSET. MODEIL,

If not, display the

use CUTPUT-ARGUMENT with no

STAT, ITEM,

Address*.

STAT, LI8T, CUST, DUMMY.

" CUST-ADDRESE1

A-38 Program examples

Version 3.1 March 1892

Appendix B Internal structures

Si-dataset structure

Between one and eight Sl-datasels may be allocated for any database, Each dataset is a standalone
detail set with the name S|, conditionally followed by the relative set number 1-7,

The root Sl-dataset contains the SUPERDEX definitions and must always exist--even if it does not
contain any B-frees. It is normally named 8l, but may alternately be named S10 if and only if a
regular dataset named S| already exists.

if built by SIMAINT, the block size of each Sl-dataset is equal to the database BLOCKMAX at the
time the set is created. :

The Sl-datasels must appear consecutively in the dataset list in continuous numeric order starting
with Sl {i.e. Sl or SI0 immediately followed by SI1, $12, etc.).

Additionally, write access must be granted to all user classes configured for write access to any
SUPERDEX'ed dataset in the database.

Si-dataset capacity

The capacity of the Sl-dataset is based on the space reguired to store the Si-indices, which depends
on the actual value of the Sl-keys. The calculation of the recommended Si-dataset capacity is
performead by the SIMAINT wtility under the assumption that the values of all Sl-keys are different--
the worst case condition. If there are many occurrences of the same Sl-key values--especially for
keyworded Sl-paths--the actual space requirements may be considerably less than that calculated.

if you foresee this situation and there are B-trees for several Si-paths stored in a single Si-dataset,
you may override the recommended capacity and specify one that is lower. 11 is safer, though, to use
the recommended capacity and reduce it after the Sl-indices have been generated. In fact, SIMAINT
verifies that the Si-dataset capacities are sufficiently high based on the worst-case calculation.

‘@It is also important to note that the Sl-dataset capacities calculated by SIMAINT do not
allow for future capacity changes in the datasets they index nor additional Si-paths that
may be added at some later time. You may want to specify higher Sl-dataset capacities
to leave room for dataset capacity increases and additional Sl-paths.

SIMAINT initially generates B-trees that are optimized for space utilization. When performing heavy
updates to the Sl-indices, this optimization may be lost and the B-tree must expand. Therefore, it is
recommended that 20 percent free space be left in each Skdataset to accommedate this situation.
The extra space utilized can always be regained by reorganizing all the Sl-paths in the Sl-dataset.

Sl-item
The item named SI which is the only fiekd in each Si-dataset.

The Sl-item is built as a compound item by the SIMAINT.PUB dtility program in the format nX254,
where n is the subitem count as determined by the block size of the Si-dataset, with a maximum
value of 16.

Alternately, as some software systems do not permit compound Hems, multiple individual items may
be defined instead. These items should be named Sit - Sin, with nthe same as the subitem count,

Additionally, write access must be granted to all user classes configured for write access to any
SUPERDEX'ed dataset in the database.

Sl-index base

A separate daiabase which may be optionally used to maintain the Sl-indices, rather than locating
them in the primary database with the data entries. If ulilized, Si-dalasets starting with S11 reside in
the Si-index base; the root Sl-dataset (Sl or $10), which contains only the Sl-definitions, must reside
in the primary database. Both the primary and Sl-index base must contain the Si-item.

The Sl-index base must reside in the same group and account as the primary base. lts name must
be the same as the primary base with S as the last two characters. For database names of 4
characters or less, append Si; for § or 6 character database names, replace the last one or two
characters with 81. For example, the Si-index base for the base OEDB would be OEDBSI; for
CUSTDB, it would be CUSTSL

The Sl-index base may contain additional items and datasets in addition to the Si-tem and SI-
dataset(s), and the Sl-datasets must be in consecutive order. The block size and blocking factor of
the Si-dataset(s) must be the same as that of the root Si-dataset in the primary base. Additionally,
the Sl-index base must have the same user classes and passwords as the primary base.

Sl-index

The Si-index is comprised of an Si-key foliowed by an Sl-extension. The Si-index differs for Si-paths
related to master and detail datasets.

For master sets, the Si-index consists of up to three Si-subkeys plus the IMAGE search field value
as shown:

! Si-index I
Si-key i Sl-extension |
l Si-subkey 1 | Si-subkey2 | Si-subkey 3 | IMAGE search field value |

The search field may be specified as the last significant Sl-subkey of a concatenated Sl-key. In this
case, the search field value is contained only once and is used for both selection and indexing.

B-2 internal structures Version 3.1 March 1892

For detail sets, up to four Sl-subkeys are allowed, followed by a double-word relative record number:

| Sl-index -]
] , Sl-key } Sl-extension |
| Sl-subkey 1 | Si-subkey2 | Sl-subkey3 | Sl-subkey 4 | Detail relative record number I

There are compression techniques that are used to save space when there are repeating Sl-key
values. For example, the Si-key vaiue will not be slored twice if there are two records with the same
Sl-key and different master key values or relative record numbers.,

Additionally, no duplicate Sl-indices are stored. This means that if a detail record has a keyworded
key, if a word is repeated in the fiekd, there will only be one Si-index for that record.

Sl-pointer

The Sl-pointer consists of the last Sl-index accessed plus one bit indicating whether the pointer is
located in front of or after the current Si-index.

Sl-subset

An extra data segment (XDS) that contains the results of a DBFIND performed in relational access
mode. Ordinarily, the Sl-subset contains only the Si-extensions that map the qualifying entries, as

shown:

Master set:
| IMAGE search field value i

Detail setl:
| relative record number !

The contents of the Si-subset are used for comparison with subsequent DBFIND calis.

if an Sl-ink is specified in addition to the Si-path in the DBFIND i#tem parameter, the Si-subset also
contains the value of the Si-link, as shown:

Master sel: :

[Sl-link | IMAGE search field value |
Detail set:

{S1-link | relative record number |

in this case, both the Si-link and Si-extension are used for comparison. Also, the value of the Si-link
is used to determine the sorting order when entries are returned.

Version 3.1 March 1892 Internal structures B-3

Appendix C Maximum limits

The following table identifies SUPERDEX's internal limits. Most limits are not checked, and results

when exceeded are unpredictable,

SUPERDEX maximum limils

Facility Maximum Limit
Number of Datasets per database with Sl-paths 188
Number of Sl-paths per database (with Si-index length under 30 words) 400
Number of Si-paths per database (with Si-index length of 99 words) 270
Number of Sl-paths per dataset (with an Si-item length of 508 words) 22
Number of Sl-paths per dataset (with an Sl-item length of 1016 words) 53
Si-index length 127 words
Si-subkey fength 63 words
Number of Sl-indices per Sl-dalaset (with average Si-index length of 10 words) 102,400,000
Number of Sl-indices per Si-dataset (with average Sl-index length of 30 words) 68,266,000
Number of Sl-indices per Sl-dataset (with average Sl-index length of 99 words) 20,686,000
Number of keywords per simple Sl-key {or first Si-subkey when concatenated) 16
Number of items allowed in a grouped Sl-path 32
Number of words in the keyword exclude path (with length of 4 words) 18,000
Total number of qualified entries in both Si-subsets (without Si-link):

Detail dataset 300,000
Total number of gualified entries in both Si-subsets (without Si-ink):

5 word Master key (i.e. X10) 200,000

2 word Master key {i.e. 12) 300,000

AppendixD Error and exceptional conditions

SUPERDEX intrinsic error and exceptional conditions

SUPERDEX returns standard IMAGE condition codes and messages upon encountering an error or
exceptional condition. These condition codes and messages describe SUPERDEX conditions that
are equivalent to IMAGE conditions.

Also, because SUPERDEX uses standard IMAGEL intrinsics to manage ils B-tree structures, an error
may indicate a probiem in the Sl-dataset rather than the dataset referenced by the dset parameter.
Additionally, if SUPERDEX has been configured to maintain its Sl-indices in a separate Sl-index
base, an error may indicate a problem in the Si-index base rather than the base referenced by the
base parameter.

Some of the more common and noteworthy condition word values that may be returned by various
intrinsics in accessing a SUPERDEX'ed base and what they mean are shown in the SUPERDEX
intrinsic error and exceptional conditions tabie on the following pages.

SUPERDEX utility error and exceptional conditions

The SUPERDEX utility error and exceptional conditions {able lists the various error messages
that could be issued by the SIMAINT utility program, their meanings, and their cotrective actions,
Program failures related to SUPERDEX

Programs that are run through the SUPERDEX SL or XL require certain capabilities and sufficient

stack; otherwise, an error will occur. The Program failures related to SUPERDEX table lists these
errors, their causes, and remedies. :

SUPERDEX intrinsic error and exceptional conditions

Type Condition word/description

Message -21 BAD PASSWORD

Intrinsic DBOPEN

Meaning Inconsistency in Sl-definitions.

Action Use SIMAINT,STRUCT against the database.

Message -31 BAD (UNRECOGNIZED) DBFIND MODE: »xx

Intrinsic DBFIND mode 1nnor 2nn

Meaning The length imposed by the specified mode exceeds the length of the argurnent
vaiue.

Action Specify a mode that does not exceed the argument length.

Message -41 DBUPDATE WiLL NOT ALTER A SEARCH OR SORT ITEM

intrinsic DBUPDATE

Meaning Database was opened in mode 2 and an update against one or more Sl-key was
attempted.

Action Use a DBOPEN mode other than mode 2 if updating Sl-keys.

Message -52 ITEM SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE
SPECIFIED SET

intrinsic DBFIND

Meaning The specified item is neither an IMAGE key or a SUPERDEX Si-path.

Action Use SIPATH to show the configured IMAGE keys and SUPERDEX Si-paths.

Message -53 DBPUT LIST IS MISSING A SEARCH OR SORT ITEM

intrinsic DBPUT

Meaning All IMAGE keys and SUPERDEX Si-keys are not included in the fist parameter.

Action Change the /list to include all IMAGE keys and SUPERDEX Si-keys.

Message 10 BEGINNING OF FILE

Intrinsic DBGET mode 16

Meaning After calling DBFIND mode 100 or 200 and DBGET mode 16, the entry with the
lowest alphabetic Si-key in the dataset has been returned.

Action Depends on the program design.

Message 11 END OF FILE

inirinsic DBGET mode 15

Meaning After calling DBFIND mode 100 or 200 and DBGET maode 15, the entry with the
highest aiphabetic Sl-key in the dataset has been returned.

Action Depends on the program design.

Message 14 BEGINNING OF CHAIN

Intrinsic DBGET mode 5 or 15

Meaning In mode 5, the entry with the lowest aiphabetic Si-key that matches the specified
DBFIND argument has been returned. In mode 15, the entry with the lowest
alphabetic Sl-key in the dataset has been retumed.

Action Depends on the program design.

D-2 Error and exceptional conditions Version 3.1 March 1892

Message 15 END OF CHAIN

Intrinsic DBGET mode 6 or 16 -

Meaning In mode 6, the entry with the highest alphabetic Si-key that matches the specified
DBFIND argument has been returned. in mode 16, the entry with the highest
alphabetic Sl-key in the dataset has been retumed.

Action Depends on the program design.

Message 16 THE DATA SET IS FULL

intrinsic DBPUT

Meaning Either the dataset referenced in the dsef parameter or the Sl-dataset that
corresponds with the dset is full (the dset with be displayed in either case).

Action Increase the capacity of the dset, or the Sl-dataset.

Message 17 THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE

Intrinsic DBFIND

Meaning 1. No entry exists that matches the specified argument.

2. An Si-index that has no corresponding data record was detected.

Action 1. Even though an error is returned, if called in mede 1nn or 2nn, the internal Si-
pointer is set and DBGET mode 15 and 16 may be used to retrieve the entries with
Si-keys greater than and less than the specified argument,

2. Reorganize the suspected corrupt Sl-path using SIMAINT.

Message 18 BROKEN CHAIN - FORWARD AND BACKWARD POINTERS NOT
CONSISTENT

Intrinsic DBGET

Meaning Possible inconsistency in B-tree, due to program abort or system failure

Action Reorganize the Sl-paths related to the suspected dataset, or all the Sl-paths in the
database.

Message 60 DATABASE ACCESS DISABLED

Intrinsic DBOPEN

Meaning The copy of SUPERDEX has expired, or the database has not been stamped by a
new version of SIMAINT.

Action If a current version SUPERDEX is availabie, either demo or permanent, run

SIMAINT against the database, otherwise delete the Sl-item and Sl-dataset(s)
from the database.

Version 3.1 March 1992 Error and exceptional conditions D-3

SUPERDEX utility error and exceptional conditions

Type Description

Message CAPACITY EXCEEDS MPE LIMIT - S| DATASET CANNOT BE CREATED

Meaning The capacity cakeulated for a newly defined Si-dataset requires a worst-case
dataset file that exceeds the MPE imits,

Action Specify additional Sl-dataset as necessary, or specify a smaller capacity size,

Message CAPACITY OF Sin DATASET NOT SUFFICIENT - NO LOADING
RECOMMENDED CAPACITY FOR Sin: x00000xxx

Meaning The capacity of the current Sl-dataset is not high enough to accommodate the new
Sl-indices, so the Si-path configuration is saved but no Sl-indices are generated.
Change the capacity of the Si-dataset indicated to at least the recommended

Action capacity, and run SIMAINT to populate the related Si-paths.

Message COMPOUND ITEM NOT ALLOWED HERE

Meaning A compound ftem was specified for an Si-subkey as other than the first Si-subkey

Action Coempound tems may only be used as the first Sl-subkey in an Sl-key

Message CREATOR ACCESS REQUIRED

Meaning You are not logged on as the creator of the database you are attempting to
access.

Action Log on as the creator of the database and rerun the process.

Message DEFINITIONS CANCELLED FOR CURRENT DATASET

Meaning \, was entered afier defining an Si-path for a dataset, so any Si-paths defined for
this dataset in the current run of SIMAINT are flushed

Action None (status message only)

Message EXTENSION FAILED - DATABASE IS OK

Meaning An error was detected during processing, but the database was not damaged.

Action Correct the condition that caused the error and rerun SIMAINT.

Message EXTENSION FAILED - PLEASE GO TO BACKUP OF DATABASE

Meaning An error was detected during the exiension phase of SIMAINT and the database is
damaged.

Action Correct the error condition displayed, restore the database from backup, and rerun
SIMAINT.

Message FILE ERROR ACCESSING SI-DATASET

Meaning An MPE file system error was detected while accessing the newly-created Si-
dataset.

Action Correct the error condition displayed, and rerun SIMAINT.

Message FILE ERROR ACCESSING NEW ROOT FILE

Meaning An MPE file system error was detecled while accessing the newly-rebuilt database
root file.

Action Correct the condition that caused the erfor, and rerun SIMAINT.

Message FILE ERROR ACCESSING OLD ROOT

Meaning An MPE file system error was detecled while accessing the current database root
file,

Action Correct the condition that caused the efror, and rerun SIMAINT.

Message GROUPING NOT ALLOWED FOR THIS SI-PATH

Meaning An independent Si-path was configured as grouped.

Action This configuration is illegal.

D-4 Error and exceptional conditions Version 3.1 March 1992

Message

NONEXISTENT DATASET

Meaning A dataset name was specified that does not exist in the database.

Action Enter 2 for a list of datasets.

Message ILLEGAL OPTION

Meaning An unrecognized suffix was specified on either the database, dataset or the SI-
path name.

Action Valid database suffixes are /1, /2, and /3. Valid dataset suffixes are /1 - /7,
/D, and /R. Valid Si-path suffixes are /B, /D, /G, /K, and /R.

Message ILLEGAL OPTION - NO CORRESPONDING SI-DATASET EXISTS

Meaning Either the referenced Sl-dataset (specified via dataset/n) does not exist, or the Si-
datasets do not appear in numerical consecutive order in the database.

Action The assigned Sl-dataset does not exist and SIMAINT.PUB was not executed, so
the Si-dataset must be built by hand. In the latter case, the Sl-datasets must
appear in sequential order.

Message INPUT ERROR READING DATASET

Meaning A file system error was detected when reading the dataset. .

Action Print a copy of the error tombstone and call Bradmark Technical Support Q

Message INPUT SORTLIB: TOO MANY RECORDS

Meaning The average number of keywords specifisd in configuring a keyworded 81-path or
average number of indices for a custom Sl-path is not high enough.

Action Use SIMAINT to reorganize the Sl-path, and speacify a higher average number of
keywords or indices.

Message INVALID SI-DATASET

Meaning 1. For a database with one or more Sl-paths, the root Sl-dataset has been
corrupted.

2. For a database with no Si-paths, a regular dataset named Sl already exists.

Action 1. Erase the root Si-dataset using a utility (i.e. DBGENERAL) or delete all its
entries, and redefine all Si-paths for the database.

2. Configure SUPERDEX with a root Sl-dataset of SI0 (refer to Section 3
ConfiguratiorVEstablishing Sl-indices for defails).

Message ITEM NOT TYPE U OR X - SI-PATH CANNOT BE KEYWORDED

Meaning The specified item may not be configured as the first Sl-subkey in a keyworded Si-
path because it is not alphanumeric (data type U or X).

Action Numeric data types are hot supported for keywording.

Message ITEM NOT IN DATASET :

Meaning The specified item does not exist in the current dataset.

Action Enter ? for a list of Hems in the current dataset.

Message LENGTH CONFLICT IN GROUP

Meaning The item specified for grouping is of a longer length than other items in the group.

Action Configure the longest Si-key in the group first.

Message MAXIMUM OF 199 SETS EXCEEDED

Maaning Creating the configured Sl-datasel(s) would cause the database to have more
than 199 dataset (99 for non-Turbo IMAGE databases).

Action Specify fewer Sl-datasets.

Version 3.1 March 1992 Error and exceptional conditions D-5

Message NO SI-PATHS DEFINED FOR SPECIFIED DATASET

Meaning A dataset was specified with a suffix of /D or /R, but no Sl-paths are related to
the dataset

Action /D and /R are only allowed on datasets with existing Si-paths,

Message ODD NiBBLES NOT ALLOWED

Meaning The specified item is of data type P and its subitem length is odd.

Action The subitem length for type P iterns must be even.

Message Si-PATH ALREADY EXISTS

Meaning An Sl-path with the specified name already exists for the dataset.

Action Specify a unique Si-path name or append /G to group the Sl-path.

Message Si-PATH DOES NOT EXISTS

Meaning An Sl-path that does not exist in this database was specified with either /D, /G,
or /R.

Action Specify the name of an existing Si-path.

Message SORTLIB ERROR: TOO MANY INPUT RECORDS

Meaning The average number of keywords specified in configuring a keyworded Si-path or
average number of indices for a custom Sl-path is not high enough.

Action Reorganize the Si-path, and specify a higher average number of keywords or
indices,

Message TOO MANY Si-PATHS DEFINED FOR dataset

Meaning More Si-paths have been specified for a related dataset than the maximum limit.

Action Refer to the table in the Appendix C Maximum Limits, or call Bradmark Technical
Support for information on how to define more. ®

Message TURBO IMAGE IS REQUIRED TO EXTEND DATABASE

Meaning SIMAINT.PUB was run against an non-Turbo IMAGE database, and there were no
Si-paths defined previously.

Action Add the Si-tem and Si-dataset(s) manually and then rerun SIMAINT to configure
the Sl-paths, or convert the non-Turbo IMAGE database to a TurbolMAGE
structure,

Message TYPE CONFLICT IN GROUP

Meaning The item specified for grouping is of a different data type than the already existing
Si-path.

Action All items in a group must be of the same data type.

Message WARNING: ILR ENABLED

Meaning Non-critical message indicating the ILR is enabled for the database when SIMAINT
is executed, and therefore processing may be slower.

Action in the future, disable ILR prior to executing SIMAINT.

Message WARNING: LOGGING ENABLED

Meaning Non-critical message indicating that logging is enabled for the database when
SIMAINT is executed, and therefore processing may be slower.

Action In the future, disable logging prior to executing SIMAINT.

Message WARNING: RUN WITHOUT ;LiB=G OR ;LIB=P

Meaning Non-critical message indicating that SIMAINT was run with ; LIB=G or } LIB=P,
therefore processing may be slower.

Action Run SIMAINT without specifying any external libraries.

D-6 Error and exceptional conditions Version 3.1 March 1992

Message WARNING! INCONSISTENCY DETECTED. RERUN WITH ,STRUCT

Msaning An inconsistency between the database structure and the SUPERDEX
configuration was detected,

Action Run SIMAINT, STRUCT against the database.

Message WARNING! OPTION IGNORED, PREVIOUS DEFINITION RETAINED

Meaning The specified Si-dataset option does not match the existing Sl-dataset option for
the dataset.

Action Once an Si-path has been defined for a dataset, the Sl-dataset option can not be

modified. To change the Si-dataset, the existing Si-path(s) must be deleted and
reconfigured with the new Si-dalaset option specified.

Version 3.1 March 1992 Error and exceptional conditions D-7

Program failures related to SUPERDEX

Type Error/Description

Message STACK OVERFLOW (PROGRAM ERROR #20)

Cause Available program stack space is insufficient for SUPERDEX access.

Remedy Increase stack by 2 - 3 Kwords or more.

Message PROCESS QUIT; PARM = 61 (PROGRAM ERROR #18)

Cause Availabie program stack space Is insufficient for SUPERDEX access.

Remedy Increase stack by 2 - 3 Kwords or more.

Message PROCESS QUIT; PARM = 62 (PROGRAM ERROR #18)

Cause Exceeds available SUPERDEX table

Remedy Call Bradmark Technical Support, '&

Message PROCESS QUIT; PARM = 63 (PROGRAM ERROR #18)

Cause Exceeds available SUPERDEX table

Remedy Call Bradmark Technical Support. &

Message PROCESS QUIT; PARM = 64 (PROGRAM ERROR #18)

Cause Exceeds available SUPERDEX table

Remedy Call Bradmark Technical Support. ¥

Message ILLEGAL CAPABILITY (LOADER ERROR #39)

Cause Group and/or account where program resides lacks capabilities granted to
program.

Remedy Determine which capabilties group and/or account lack and add them.

Message ILLEGAL CAPABILITY (RUN-TIME ERROR #2)

Cause Program referencing SUPERDEX SL. or XL ifacks DS and conditionally MR
capability.

Remedy Add DS capability and, if required by locking strategy, MR capability to program,

D-8 Error and exceptional conditions Version 8.1 March 1992

Business Basic interface

Installation

BUSINESS BASIC does not call IMAGE intrinsics directly; rather, it calls its own special intrinsics in
the system SL or XL {e.g. BB_DBPUT) which in tumn call the IMAGE intrinsics. For this reason, it is
not sufficient to simply run programs to access the SUPERDEX SL/XL, since their IMAGE externals
will still be resolved in the system SL/XL and the SUPERDEX intrinsics will be bypassed.

The solution is to place both the BUSINESS BASIC intrinsics and SUPERDEX intrinsics in the same
group or account SL or XL. This way, the BUSINESS BASIC intrinsics call the SUPERDEX intrinsics
rather than the standard IMAGE intrinsics.

Unfortunately, this is often a somewhat invoived process, since HP does not provide a USL
containing the BUSINESS BASIC intrinsics. |If is therefore necessary to make a copy of the system
SL/XL, purge all the segments that are not reserved for BUSINESS BASIC, add in the SUPERDEX
intrinsics segments, and then use this new SL/XL as the SUPERDEX SL/XL.

The following job stream creates an SL that contains both the BUSINESS BASIC and SUPERDEX
intrinsics in a new group BBASIC.SUPERDEX, which it builds. Before streaming #t, :RELEASE
SL.PUB.SYS and then :SECURE it when done.

1J0OB MAXEBBSL, MGR.SUPERDEX; OUTCLASS=, 1

{CONTINUE

' PURGEGROUP BBASIC

INEWGROUP BBASIC

'SEGMENTER

8L, SL.PUB.SYS

COPYSL 1,5L.BBASIC;USERFORMAT

EXIT

IBUILD LIST.BBASIC;REC=-80,1,F,ASCII;DISC=20000,32,8;DEV=DISC
FFILE SEGLIST=LIST.BBASIC,OLD;SAVE

I SEGMENTER

8L SL.BBASIC

LISTSL

EXIT

FCOPY FROM=LIST.BBASIC;TO=PURGESL.BBASIC;NEW; SUBSET="SEGM", 1
'PURGE LIST.BBASIC

'EDITOR

TEXT PURGESL.BBASIC
CHANGEQ 29/80," *,ALL
CHANGEQ 1, "PURGESL *,ALL
CHANGEQ 16/20,",".ALL
ADDQ .1

SL SL.BBASIC

/i

ADDQ

CLEANSL

Usl, SIUSL.PUB.SUPERDEX
ADDSL SIPROCO

ADDSL SIPROCL

ADDSL SIPROC2

ADDSL SIPROC3

ADDSL: SIPROC4

COFYSL 1

EXIT

/Y

LISTQ 1

WHILE

FINDQ “HPBBY

DELETEQ *

KEEP PURGESL.BBASIC,UNN;EXIT
{RUN SEGDVR. PUB.SYS; STDIN=PURGESL.BBASIC
'PURGE PURGESL.BBASIC
VEOT

Once created, copy the new SL into the account in which the object programs reside, either in the
PUB group or the group in which the programs reside.

= For Native Mode Business Basic, please contact Bradmark's Technical Support for information
on copying the XL.

Running programs

All programs that access databases that have been modified for SUPERDEX access must be run
through an SL or XL that contains both the BUSINESS BASIC intrinsics and the SUPERDEX
intrinsics, using ; LIB=P (if the SL/XL is in the PUB group) or ; LIB=@G {if the SL/XL is in the object
program group).

For programs run interactively, HPBB.PUB.SYS and HPBBCNFG.PUB.SYS must be copied to a
group/account in which the SUPERDEX SL. or XL resides and HPBB run with ; LIB=P or ; LIB=G.

SUPP-2 Supplement Version 3.1 March 1992

Adding, updating, and deleting entries
BUSINESS BASIC programs are run through SUPERDEX's SL or XL, so that entries added,

updated, and deleted from BUSINESS BASIC programs also cause the Sl-indices to be added,
updated, and deleted automatically.

Qualifying and retrieving entries

Entries are qualified and retrieved in BUSINESS BASIC using the same methods as for other 3rd
generation languages, with SUPERDEX's DBFIND and DBGET.

Because BUSINESS BASIC's DBFIND does not have a mode parameter, it always calls
SUPERDEX's DBFIND in mode 1. Fortunately, the majority of SUPERDEX retrievals can be
accomplished with only DBFIND mode 1.

For retrievals that can only be performed by SUPERDEX using a mode other than 1, such as
approximate match retrieval, SUPERDEX's DBFIND intrinsic may be calied as an external procedure.

ISy SUPERDEX does not suppon the floating-point decimal elements as SUPERDEX Path
ltems for Native Mode Business Basic at this time.

Version 3.1 March 1992 Supplement SUPP-3

TRANSACT interface

Installation

TRANSACT.PUB.SYS is copied to a group/account where the SUPERDEX SL. or XL resides and run
with LIB=G or ; LIB=P. UDCs, menus, job streams, etc... must be changed accordingly.

If using Native Mode TRANSACT/XL, it is also necessary 1o duplicate the module named HP30138
from XL.PUB.SYS into the SUPERDEX XL. This can be facilitated using the COPYXL command of
the LinkEditor.

it is recommended that Si-paths be detined in the data dictionary, although they may alternately be
defined in programs that access them.

It defining Si-paths in the dictionary, they should not be specified as elernents in any files. Each SI-
path should be configured as TYPE X (aiphanumeric) with a SIZE iong enough to accommodate the
Sl-key length plus operators and multiple values. It is recommended that Si-paths be identified using
an appropriate DESCription 1c distinguish them from items.

Adding, updating, and deleting entries

TRANSACT Is run through SUPERDEX's SL or XL, so that entries added, updated, and deleted from
TRANSACT programs also cause the Si-indices to be added, updated, and deleted automatically.

Using (CHAIN)

TRANSACT has the capability of updating or deleting entire detail data sets using the {(CHAIN)
option. Because SUPERDEX modifies the IMAGE pointers, it is possible to confuse IMAGE during a
(CHAIN) process, especially when doing PROCEDUREs within the (CHAIN) process.
Therefore, it is recommended NOT to use the (CBAIN) option for GPDATES or DELETEs. A
FIND (CHAIN) shouid be used to find the chain, followed by individual record UPDATES.

Qualifying and retrieving entries
Entries are qualified and retrieved using the same method as chained retrieval of entries in detail

datasets. The Sl-path name is placed into the key register and the SUPERDEX search argument
into the argument register.

SUPP-4 Supplement Version 3.1 March 1992

If Sl-paths were not defined in the dictionary, define each Si-path in the program, for example:

DEFINE (ITEM) :
CUSTOMER-NAME-XW X {40)}):
ADDRESS-CITY-KW X{40}:
PART-ORDER X(20);

Then, place the search argument (as defined for SUPERDEX's DBFIND intrinsic} into the argument
register by moving it to the item that represents the Si-path, as shown:

MOVE S/-path = “argument*;

Then, place the St-path name to be accessed into the key register, as shown:

SET(XEY} LIisT(S8/-palh;

To retrieve entries in ascending sored order:

FIND(CHAIN) dalasel;

or in descending order:

FIND(RCHAIN) dataset;

To return the number of qualifying entries in the status register, use the same technique as for an
IMAGE path:

PATRE dalasel;

This same method is used when performing relational access against multiple Sk-paths and datasets:
just set the key and argument registers as shown and perform one or more PATH commands as
necessary against the dataset(s). For example, when using the RPN boolean format, make sure to
enclose values in square brackets and append the appropriate boolean opetator as required when
performing relational access.

Version 3.1 March 1992 Suppiement SUPP-5

Match register

Entries that are retrieved using an Si-path may be restricted using the match register, as for IMAGE
paths. It may, however, be more efficient to instead configure the Si-path fo use a concatenated SI-
key that includes the field being matched on as an Si-subkey. In this case, the concatenated value
(for both fields) would be specified in the argument register. The advantage is that only the entries
that match on both fields would be initially selected, rather than selecting entries that qualify on one
field and fittering out those that do not maich on the other.

LIST change

TRANSACT programs (including those compiled with FASTRAN) use the % fist once the Jist Is first
established. SUPERDEX may change the /ist, especially when updating an entry. For this reason, it
is recommended to inciude all the fields that are used as Si-keys in the J/ist or use the @ fist when
updating entries.

PROC DBFIND

The vast majority of SUPERDEX retrievals can be performed using the methods described, which
access SUPERDEX's DBFIND intrinsic in mode 1.

For retrievals that can only be performed by SUPERDEX using a mode other than 1, such as
approximate match retrieval, SUPERDEX's DBFIND intrinsic may be called as an external procedure
using PROC DBFIND. Once this has been called, qualifying entries can be retrieved using:

FIND{CHAIN) dafasel, LIST={(@), STATUS:

SUPP-6 Supplement Version 3.1 March 1992

FASTRAN

The FASTRAN compiler from Performance Software Group may be used to compile and prepare
TRANSACT programs that use SUPERDEX. These programs would be run through the SUPERDEX
SL or XL using ;LIB=G or ;LIB=P, just as interpreted TRANSACT programs. Additionally,
existing object programs would require that DS and MR capability be added, which could be done
with the ALTCAP . PUB . FASTRAN program.

Alternately, the SUPERDEX procedures may be prepared directly into FASTRAN object programs,
which would be run without specifying ; LIB=G or ; LIB=P. In this case, DS and MR capability
would be included in the program capability list on the ¢ PREP. To do so, with the FASTRAN UDCs
(UDC . PUB. FASTRAN) set locally:

:FASTCOMP source, , $NULL, options << ¢reatas USL in $OLDPASS >

tFABTSEG << FASTRAN segmenter >»
=MAIN systemname, SOLDPASS

=»INCLUDE PSTN®*LIBC',LUSL.PUB.FASTRAN
=INCLUDE SIPROCO,SIUSL.PUB.SUPERDEX
=INCLUDE SIPROC1,SIUSL.PUR.,SUPERDEX
=INCLUDE SIPROCZ, 8IUSL.PUB.SUPERDEX
«INCLUDE SIPROC3, SIUSL,.PUB.SUPERDEX
=INCLUDE SIPROC4, SIUSL.PURB,SUPERDEX
=PREP object; CAP=IA, BA, DS, MR

=EXIT

1 SAVE object

Version 8.1 March 1992 Supplement SUPP-7

NetBase interface

Installation and configuration

SUPERDEX is installed and configured as documented in the SUPERDEX User Manual, with the
foliowing restrictions.

SUPERDEX is installed for each dalabase on each systemn using a separate Sl-index database to
maintain the Sl-indices rather than maintaining the Sl-indices in the primary database. Refer to the
Separate database for Sl-indices chapter in the Configuration/Establishing Sl-indices section of the
SUPE User Manual for instructions.

The SUPERDEX SL is located at the group level in the same group as object programs, with the
NetBase SL located at the account level (PUB group). Programs are run with ; LIB=G.

If programs are already located in the PUB group, it is necessary to move them o a different group in
which the SUPERDEX 8L resides. NetBase's SCANJOB program or MPEX's %EDIT command may
be used for changing "LIB=P" to "LIB=G" in job streams and UDCs.

Note that due to the way in which NetBase handles the CREATEPROCESS intrinsic, any program

which is created as the son process of another program is automatically directed to the same SL. as
the father program--regardiess of the LIBSEARCH parameter used in the CREATEPROCESS call.

SIGROUPSL JCW

in order for SUPERDEX to access the NetBase procedures in the account 8L, it is necessary to set a
special JCW, as shown:

:SETIJCW SIGROUPSL = 1

Unless the SIGROUPSL JCW is set, SUPERDEX will bypass the NetBase procedures aftogether.

It is recommended that the SETJCW command be included in a system wide logon UDC to make
sure that it is set for alf users at all times.

SUPP-8 Supplement Version 3.1 March 1992

Shadowing

In enabling databases for shadowing, only each primary database which contains the data is enabled.
Shadowing is not enabled on any Sl-index base.

A special version of the NBPOST program which has been : PREPped with the SUPERDEX
procedures is run on the remote system to automatically perform the necessary SUPERDEX indexing
on the remote system whenever entries on the local system are added, updated, and deleted.

Network File Access

SUPERDEX procedures are resolved on the local system and the resulting IMAGE procedure calls
are transported to the remote system where they are resclved by IMAGE.

Version 3.1 March 1992 Supplement SUPP-8

INDEX

L 2T 15, 2-12, 3-14, 416
SCONTROL SORTSPACE=nnnNN

/3

DBOPEN e, 3019, 3431
- SO ORIt 3-11, 3-21, 3-25, 3-26
M s 3-19, 3-21, 6-5,6-8, 69
G, 2-17, 2-20, 3-10, 3-21, 3-25, 3-26, 3-28, 69
Ko 2-8, 3-9, 3-21, 3-24, 3-25, 3-26, 3-27, 3-28
o 330

R 3918, 321, 6-5, 628, 6-9

e 8- 10
; list

Nulblist. o 435, 546, 5223

............................ e 175, 2-11, 4-18

.. 19, 2-15 4-11, 417

1-9, 2-15, 4-11, 4-18

P st 1-8, 2-15, 4-11, 4-17
e 2-12, 3-14, 4-16

Version 3.1 March 1992

Account

Capabilitiescoivmiiniim i
Active Sl-subset..
AGING BIMIBS ..o e
ALTACCT .o snn s ssssrssss s ersssseen
ALTGROUP L.orrcsimnsresssssss e nrrsess
ALTPROG

ACCOSS TEQUINSMEMS ...

Bunning in Bateh ..o
ALTPROG.PUB.SUPERDEX
ALTUSER............

Boolaan oparalors ...,
DBFIND ...
Muitiple value retrioval ..., -
AND HOT i imsesessasassssassrssssreniss
DBEIND ...
Application programs
integrating SUPERDEX
Approximate match retrieval
Ascending sorted retrieval............cccocoveeeeiine, .
Autodeter .
AtOmAtic MASIE! ... s
Repiacing with SI-path........crernvvnsnne,
Vs B-tree......ococeceniiiren

B-tree

Standalone.......ocv e 2025

Vs automatic master....... 111

Backup Shsubset.........ccorvcnie e 4-23

BASIC/3000.......ccovcccrrrercnierres 1-18, 3-3, 437
Batch

SIMAINT e 3-35
Blank S1Key ..o ccrrnsereesennnas 3211, 5231
BLOCKMAX ..ottt ettt ssssnssanans B-1
Boolaan operationsvcvrccencrennnn. 2721, 448
Boolean operators ... 1-10, 4-23, 4-27, 4-28, 4-30

o 15, 420
.. 15, 4-21
1-5, 4-21

. 1-8, 4-2%

Index

i

B (Continued)

Business BasiC.......ccervrvnninnnnn i-18, 3-3, 437

Native Mode ..o ncirsnerenns SUPP-2
BUSINESS BASIC interface......ovovecceinnierens SUPP-1
Business Beport Writer

CLanguage ... 1-18, 4-37
Calling SITRANSLATE ... AST
Capabilities
ACCOUND oo 1018, 343
GIOUD. ..o 1218, B3
PIOGram ...cooumvnrernerscrer e 1918, 3-4, 4-37

Capacity

Shdataset ..o 3980
Chain CoUNt .. S0 14
Chains

Vs Shindices ..o B T
COBOL..corvrr e, 1418, 4-38, A1

$CONTROL SORTSPACE=nDANN ... 4-38
Combined boolean operatorS. .. 421
Complex DBFIND ..o isserrerserrrsn e 424
Compound femi ..., 1-12, 3-9, 4-8

Restrictons.........occvcnnnecnmccnad 1
Compound 8l-key

Keywording........cooooooe e 228
Concatenated Sl-key 1-8, 2.5, 2-24, 3-8, 4-8

DBAIHNG . cevrerr e eer s e 322

ReSHICHONS. ..ottt
Retrieval ... AR
Vs sorted Chaing......oceec s $-11
Condition word
Condiion word =21 ... s
Condiion word -41 ..o
Condition word =52 ...
Condition word -53 ...
Conttion Word 14 .o
Condition Word 15 ..o
Condition word 17c....coe
Conditionword 18 ... 5 12
Corresponding entries
Craating
Shdatasel .. 3916
SIIOM e 3 16

i Index

Current path
DBFIND ..o e 4-32

SIUSER procedure ..., 224, 4-6, 5-40
Customization sting......c..ccorvmreccercnvcevsnne 3214

Dofining.. ..o cremrrene e 3-18
Database maintenance.......coceveeeieeeececen, 04
Dataset

Defining.....ccccnennnere . 319

Defining associated Si-datasets 3-20
Date reformatting
DBBEGIN (... recrerersees e

SEIHNSIC ..o
DBCLOSE

SEHMINSIC e 585
DRDELETE. ..o cornnranennnnenss 435, 510

Si-infrinsic

St-intrinsic ...
DBERASE

DBERROR

SHAMINSIC e e srsreree e 512
DBEXPLAIN

SHMNSIC oo 512

Version 3.1 March 1992

D {Continued)

DBFIND

AND NOT ..o
Argument....

cerreerene 18, 4021
v 11, 4-18

Compound HemM.......ccevvsiiconnnne 415
Concatenated SHKeY .ovicrincenicnennn, 4-14
Corresponding entries ... 4-27
Current Path ..o 4-32

Examples A4-12
Genaric retrieval ..., 4018
Graater-than. ... 4-17
Group SHKeY ..o B0 1
Independent SEKeY ..o 2-26
Indexed acCass ... 4011
Keyword SEKeY . ..oooveceeececvesae e 40158
LOSS-haN oo
MOGOS ccencccnrieerienennee e 20 11, 4010
Multiple calls............ .
Multiple databases ... veercvencnnnn, 428
Multiple datasets ... 426
Multiple sels/bases

PIOjecton. s, 028
Multiple Sl-paths........ooi e 4-25
Notequal........ e, 418
OR e 421
Partiad retrieval ... 4218
Pattern matehing ... e veememcecin,, 4418
Projection

Multiple sets/bases...........c...ccocvereeenn. 4-28
Felational aCCes5 ... 4518
Restrictionsc...... e, 5018
SHHNTINSIC o 5-13
Si-pointer.... ..4-32

Super-grouped SEKeY ..., 4-15
DBGENERAL interface.........ocoooeeececrn e &5

Current path “
Independent S-Keycvccencnesen, 20268
Retrievingentries ... 4033
SHNNSIC e, B2
SEPOINteT .o, 4235

Version 3.1 March 1992

DBINFO

Shintrinsic e 528
BBLOCK

SREINSIC ..o 5.28
DBMEMO

SNEINSIC...coco e 529

DBOPEN

SMEFINSIC .. 5-30
DBPUT

BBPUTIX i,
Example........c..ocoeveenn
Locking ...

DBUNLOCK
ShFINSIC oot 5-34
DBUPDATE

DBXBEGIN
SHADITINSIC e ereneeenn 536
DBXEND
SHNFINSIC oo eesr e sess st ionas 5-37
DBXUNDO
Shintrinsic...

Deferring indexing
SIMAINT e 3-28
Deisting

Deleting entrias R 3.
Descending sorted refrieval ... mreeinns s Ad
DS capability oo 3-3, 3-4, 4-37

ALTPROG (v smnereries i 058
Dynamically-joined indices..........cccvecinins 2-23

Index iii

Effects of Sl-intrinsics
Currentpath.............coco e 4-36
SEPOINEL oo 436
EHiclency ..o pe2ed, 2-6
Generic refrieval ..o 2-12
Keywording.........ccooeeervnininivcniiennes 2-9, 3-89
Parfiad retrieval.............cooooeccr e 212

Enty points

Error handling
Compatibility

Erors .o 63
File systemoorvvcvscrcivcnncnnn 21, D-8
Programs ..., 341, DB

Exceptional conditions ... 853

Exciusion words
Bafining...oooei e 328
Keywording..........coccoovvevcnnnrc 310, 3412

Explicit 100KING.......cvv e AR
EXBMPIE.....ccoeircerrrr e arrsierinseeerecnenneceenner P36

Extension phase

Extra Data Segments.......ccovvvvermv oo 308

FASTRAN oo 8038, SUPPSY
Firston-chaif ... e S0 14
FORTRAN....... ...1-18, 4-38
BORTINIT.....oooiiireereeee e 4238
FOERRORS. ...t
Function Keys
SUPERDEX({Program)ccovrvereervemvrcnecnna 6-17

Generic refrieval 1-8, 2-11, 3-14, 4-8, A-6

EffiCIBNCY v sriers e rinseessesenas 212
Greater-than

Retrioval .o
Group

Capabilitiescccevevivnievee 1218
Grouped refrieval ... 1-9, 2-17

v Index

Grouped SHKaY .ovveceenerenne feeeeetrtrrarnene 310,48
Compound Bem ..o ivirrcreee e e e 3-9
DBFIND..oomees v v s s 4-14
[07:114T: 7 SO OO OUYOOUPORRS. ==

Restricionscccecvrienns .

Path. .o e, S8
IMPHCI FOCKING o 4.2
independent Sl-key ... 1-10, 2-25, 3-11

ACCESEING ..o 4-7

DefNiNg o
index value

SIUSER pProcadurevvvienmsesnrenne e
Indexed 80CESS ..o

Vs Relational access "

Vs rejational 80085,
Indexing phase

SIMAINT oo eerrenmrr e 3-31
Infix Notation......coeeeeveenenen. 1-12, 4-18, 4-19, 5-39

Processing........ocoooveeeeeeeeeeeee e 4.22
INFO

SIMAINT-
InStallalion. ..o e OB
Intrinsics

Compatibility.........covvveccrirreerccncericicenene 1417

Errors and exceptional conditions......... D-1,D-2
ltem:

Parameler erneeeeneseaneeaeseeeseees S8

S-path, SEENK e e 4-26

JCW
SIEXTLEN. ... 522 67, 614
SISETLINK v B2 14, 8221, 6222
Job siream
SIMAINT L eeeiiae 613

Version 3.1 March 1982

Keyword
Average number of indices ... 2-8
Average number of keywords ... 3-9
Buplicate words in SEKY ... 2-9
EfGIONcY .o
Exclusion words ...
Hyphenated words
KWEXCLUDE Slpath.....cooo oo nvireccens 2-8
Length ... e e 208, 348, 3412
Maximum iu'mts .. 28
Minimum number of characters............ 2-8, 3-9
Keyword refrieval ...
Compound item
Koyword Shkey .oovveevannon
DEBEFINDcoh e
Defiting ..o
Grouped ...
RestricHonso
KWEXCLUD
Dafasit Flle oo 313

MPE fiie vererenneer B3, 6-40
KWEXCLUDE Slnpath.......... 2-8, 3-10, 3-12, 6-40
Defining ..o 320, 3-29

LASHON-CNAIN ... 5414
{ess-than

DBFIND ..o A2 1T

Retrieval ..o 1-8, 2-15
Lif=

SIMAINT .., Dd2

Deafining numberoveveieveenn, 319
DBPUTIX ..o e
DBUNLOCK
DBUPDATE ..ot
Explicit example ... ARB6
ISt e 42
Introduction... ..., 1418
Separate DBOPEN ... 4-3

Version 3.1 March 1992

Separate Skindex base.......oviviciceennns 4-4
Set-level......
SIREPAIR
BITEST . s

Master dataset

Access vs detail datasel ... 1-11

MUIDIe KBYS ... cverercsn i B0
Master search field

RESTICHON. ..ocverre e sesisss et snensnne 311
MAXDATAoocorrrrmerrerrreneeirensreriinvens 1018, 3-4, 4-37

ALTPROG ..o e e 6-58
Maxtmum HMHS. .o C-1
Mode 2

DBOPEN ...ttt e 4.5, 5-35
Mode 311

DBINFO ... 4-38, 5-25
Mode 312

DBINFO ...t 8236, 5225
Modes

S TE ST et 6-42
MPE file

KWEXCEUD v 6-3, 6-40
MPE BB flE ... 2-25

Program capabilities 4-37
MR capability............... 118, 3-3, 3-4, 4—3 4-4 4-37

ALTPROG 6-53
Multiple @ SIgNS ..o e 1.5, 415
Multiple criteria ..o 2028
Multiple databases ... verees P22

DBFIND 28
Multiple datasets ..
Multiple field tatrieval

MUIPIE KBYS....ocveececee e crererenenrrenreneeer s nane 2-3
Multipie retrieval

Multiple databases........ccvveevecinininniinnnn, A-22

Multiple datasets..., A-19

Multiple SEPaths ... A-17

PIOIBOHON . .o s rcevrsans e e e
Multiple sets/bases

DBFIND

Projection ... 4-29

Multiple BI-Keys ..., 1-8

Index v

M (Continued)

Mulliple Si-Paths
Singledataset. ... A 1T
Muitiple value retrieval

ORG. s A-12
N

Native Language Support

................................. 1-19, 2-7, 3-28, 3-29, 4-40
Native Mode;Business Basicveeeriens SUpPP-2
Negative values

BOMING e ene et 2-7
NetBase inferface.... WSupP-g
NLS v . 1-19, 2-7, 3-28, 3-29, 4-40
NOCB .. 1-19, 3-4, 4-37
NOT...... reresrenererenn @R

Boolean operaforscoceeeeeervcreceeee e 105
Not-etual

DBFIND v A0 1S

Retrioval ..o 20 158
Null list

b 1] USSP 4-35, 5-6, 523
O
Offset
Slhpath oo 3R3

OB i 1-10, 2-21, 4-9
Boolean operators ... 105
Multiple value retrieval...........ccocccreve A T2

Pararneter

Partiad retrioval ... 1-8, 2-11, 314, A6
DBFIND e AR 16

SORTINIT
Path Numbers
Pattern ratching

DBFIND v cevnrsesssesnr s 4-18
PowerHoUSe.covvr e eveesceaeenn. 1718, 4-38
Privitege Mode and SUPERDEX ..., 4.37
Procedure

SIUSER e, 5240

vi Index

Processing
InfiX Notation ..o 4-22
SQL Notalion ... 4-22
Program
Capabiities........cooccimercacnsenreians 1-18, 4-37
ErOIS oo scrrr s es s D-1,D-8
Projection.......c.. i 4-28, 515
DBFIND
Multipie s6ts/bases.vrerecrrrennns 4-29
Refrioval..........ccveresscnrenresnseri e A-25
SHINK oot ecteeene s vesne e ee e eeemenees 4-26
Q
L OO UU S U P S
Qualified entries.......
Qualifying entries
OVBIVIBWoreererinisssssne e ereenrersnan
QUERY/B00C......cccecerivinecaeenns
QUACHK e e e
QUIZ e nrermssrass e e sis e sresas
R
Range
DBFIND ..ot e rennarns 4-18
Retrieval........ciiicrinininnn 1-8, 2-15, A-10
Reading SHNCCES ..ot A28
Real numbers

RBEOVETY ... rsrsass s srne
DBERASE ... crasnnarneesrinns
Redefining SPath ... rrerrerrns &-5
Refining ratrieval............ccvnevrcerieisessrnsnns A-14
Related detali datasets ... vereerneeerns 219
Relational access 3-8, 4-8, 4-11, 4-30, 4-33

DBFIND ...ttt nre s 4-18
Efficiency.......coov.e. aeaerneassetee g senen 22
Multiple criteria refrieval 1-10, 2-21
Muitiple databasesvvvveeviansserrinenn 1-10, 2:23
Multiple datasetscooeieiiiiininns 1-10, 2-23
Muitipie fields ... 1-10, .23
V5 indexed actess .. rvreervisnnns 1-16, 410
Relational Operator
Reorganizing
Shpath.......crri e 321,65
Restrictions
DBFIND.....coierree et 519

w311
12, 4-18, 4-19, 5-39
37

Reverse Polish Notation. N
Root Sl-aatasel..o ien

Version 3.1 March 1952

H (Continued)

BPG e 1-18, 4-38
BPN i 4-18, 4-1¢

Sample applications.........ccoooci e 1-7
BOMFCOION ..t 4-10
Sequential ACCess ... 4-35
Sorial ACCOSS ..ciereieeeeecn s 4035
Setlavel locking. ... 4-3
8i
BefNIon ..o 1-13
Sirootdatasel...............
Shchain
Definfion oot e 1-14
ROpPOSIEONING. ..o, 4-33
SECOUNBI ..o 4-34, 523
Definition ... 1014
Sl-dataset

CrOBUNG.....oovooeecereereeesssseeasessmseermrae st
Defining mulliple...
Definition ...

Sl-definitions
Dafitilion ..o 1-14
Sl-extension
Definifionccooe e,
independent SI-Key ...,
Si-index
Dafinion .o 3713

Managing explicitly ... 4-6
Reading......coiiee e 522
ShindeX BASEcovvircrerccrreeraeseeser e I, B 12

Shucture.......oevvene B-2
SINAICOS ..oty ne e 63
Reading ... 4-33, A-28
Reading muitiple indices ..o, 4-34
VS ChaiNS ..ot
SHTINSIC oo
DBBEGIN ...
DBDELETE (v 6
DBBELIX e 54, 57

Version 3.1 March 1982

DBEXPLAINo v 5 12
DBFIND ..o 513

DBUPDATE ...t aseses 5-35
DBXBEGIN ..o emrrrcrrreereremmrranssssrsiecreesnnas 536
DBXEND....cooreer e essiaessseaseaene e

DBXUNDOD
Definlion ... s

Sl-key vaiue
Detarmining ..ot 4-6
Shink ... 27, &8, 4-26, 4-28, 4-29, 4-30, 5-15
DofiniBon ... e 14

DOIGHNG..cvvenrrsrrrssesicesssrersssssnnnrens 321, 610
KWEXCLUDE ...ooo.ovoeeiestseeeeseeessssssnssnns 6-40

Heorganizing...........cevevrienern. 321, &8, 8-9
Starting Position..........c.covcinnii. 3-23
Si-path, Si-link

Index vii

S (Continued)

SEPOINEBT ... eecrers e eeeemeseeorermins 2-13, 5-13
DBFIND v rerennn e 3R
Effeci i ESUUOUUTURIOIORIN 520
DBGET v cncesccrnessneeerevssenrans 4-35
Effech. e 524
[B7-71] Tk o1 FO OV PSRV 115
Effects of SIHNHINSICS ..o e 4-36

Structure....

ShSUBKOY ..o e 2-5
DBRNIIONcecvvvcveerrreescneceerensssnereeeaesrrnee 1-13
SESUBSE . .o 18
ACHVE. ..o creeieecee e e 4-23
Baokup. .o e ases 4-23
DOfHON. ..o +14
Internal strUCtUTe. ..o e B-3

SIBASE LIl oo 8453
SICOUNT v e 1o, G048

PUB vs NOPRIV versions..............coeocne... 546
SIDRIVER ..o e 14, 6282
SIEXTLEN JCW. ... 2-5, 3-18, 3-23,5-22, 6-7, 6-14
SIMAINT e 306, B-6

Access requirements...........ccc e 317,66

DBLOAD entry point............... 511,512,610

Befault Progress Interval........c.cocoiviiiccees 332

Deferning Ingexitg ..o crensnrenn . 3708

Dialog phase......covirccrn 3 17

EnhancementS.......cvcnvnmicosmmmnesannen 128

Entry points

Errors and exceptional conditionsB-1, D-4

FUl BCTeen .o B 16
INFO o 3 14, 3415
INPUL LIS oo 3017, 677
Job stream......coovivn e B0 13

BB i e e 542
LIST entry £0Ind oo 3-15, 612
NOPRIV.SUPERDEXccovevitsssnsrsrenns 318
OPHONS .o 66
Performance ... ccrninsnvecs e 3217, 646
PUB vs NOPRIV versions...........cccoveeeveenna, &7
PUB SURERDEX ... 316

Restricions.........ovccovicnccccnrrecsnnn. 316
Running in batch. ..., 615
SCHEMA entry point ... coceceevmnecrcrnncnnns 612
Sl-indices

Establishing. oo 316
STRUCT enlry point......cceveveie e 615

Simple SFKeY o 203, 3-8
DefiniNg. ... oo 3921

viii Index

SIPATH ... reraar s esneans 8-37
Enhancoments 1-8
SIREPAIR ...ttt 1-4, §-40
ACCass requitemantsccoeeeenecnennn. 6-40
IWOKING .. 645
LOCKING ot 6-40
Specying INPUt ... erreecsreennraenens 645

Specifying request before update €-45
SISETLINK JCW e 5214, 5221, 522
SISIZE Ultity
BITEST ..o serissn e e asssvsressrassnses

AcCcass requIremantscvvvernecevireessees 6-40

MOGBScoveiiirrnri e ercsrcsreresrarserrressens 642

PUB vs NOPRIV VaISionsocccvesciiiniinns 640

Runningin batch ... €-44

TREETEST ..o sasrasrssnamarenans 6-42
SITRACE ..o eeegens &50
SITRANSLATE

Calling example. ... enre e A-37

EXAMPIB .o ey 539

SIHNTISIC ..o enr e renns 539
SIUSER procedure...................3-11, 4-6, 5-6, 5.40

@ HSE et 541

Custom ShKeyoorcrereerenereens 224

EXBMPIB ..o oo crecnnrarereresssass e snssseenes A-30

Indhex VaIUB ... 5-41
SIUSL.PUB.SUPERDEX.....ocv e ccrrreiecreneeseneeeans 32
SLPUB.SUPERDEX....cvvvcrvmrmerenrcreresssmssanas 32
Sorfed chalfis........cvcrrrcr e rcececnieene 25,27

Vs concatenated SI-Key........covvvvennnnnn 1-11
Sorted sequential access 27, 38

Sorted sequentisd order ..., 4-33
Sorted saquential retrieval.........cvceeceerrinsiiinnns 1-8
ASCENANG ..o e A-2
Descending.....ocvcvvnreererrns s A4
SORTINIT
FORTRAN ..o cverceesvercrsren s cersssmenans 4-38
PASCAI ...eeceaeermseemecera oo rararesesassnes 4-38
SOUNDEX evrereenersarserisan et 46
Special characters..........ccccumvveenina peerivsssnan 3-14
BPLuvrcirnriciscrvannrassnrsasrare s sarsns st nrerserasnns 1-18, 4-38
SORTINIT 1t srsees 4-38
SQL Notation ..o 1412, 4418
Processing........ et e 422
Stack
Hequiremenis
Stack OVerflow ...
Starting Position
SEPEIN. s 3-23
Status array
Compatibility............oovveriermececeecrcmicceneenes 1-17
Super-grouped refrieval...........cicienn 1-8, 2-19

Version 3.1 March 1892

S {Continued)

Super-grouped Sl-key...........on 3210, 3-20, 5413

DBEIND oo ane e 4-16 VAMHSE TROMIOTY ..o crseassass e esemeeens 3-5

Dafining i 2B Virtuad Si-chain. s 25

Keyworged ... e 3.7 Entry count ... 4525
SUPERDEX VISIMAGE ... crscesssss oo 1218

Testing for existence.cvevrivnnrinees
SUPERDEX and Privilege Modea ..
SUPERDEX M................ 2-8, 2-17, 2-19, 2-21, 2-23 X
SUPERDEX(Program).......ccevaimeieoinin 1-4, 616

ACCSS regquIrements ... 818 KOG et as et 35

Base MenU ..o 6-18 XLPUBSUPERDEX ..covoiemrrcnreesivirscsmrmmnniens 3-2

Custom Path Screen.........ccocevvvvvcreennns 825

Datasel MenU.........ooovecrmrrc v crerrns 619

Execute Menu ..o 6-35

FUnGHon Keys ... imnninnesservneevnenee B0 17

INFO SIING. ..o 6-16

Internal table. ..o B 16

IVORING. v ...6-16

iom Definition Screen ... 6231

HOM SCIOEN ..o ireereece e eesarnnins 629

Main MENU.....ocvvnincnmrrcssccsinson. 8017

Path Display Screen ..o 827

Path Screen62t

Special Path Sereen. .o
SuUperSELECT e, 1o, 7ot

IVOKING e £

MEtOG 1 oo estarsasnneenns P

Method 2 e 723

METhOT 3 v cersrrersvrrrrnr s rassrnsae e eces Fo8

MethoG 4 ..ot riees 12D
SWAP TABLE ..o 35
Swedish language....

TRANSACT ...
TRANSACT interface ...,
Transaction logging

Compatibilityoocrmrnernrnares e 1-17
TREETEST

SITEST .ot sssasas s svarer g4z

. 1-18, 3-3, 4-30
verrerenncen. SUPP-4

Undoing retrieval ..., 1512, A-14
Updatingentries.........cicieie . 405
Upshifting. .o 2024, 446

Version 3.1 March 1992 index ix

