SUPERDEX

Demonstration Manual

Version 3.1

All updates 1o or derivatives of the SUPERDEX™ computer software provided herein
are copyrighted and may not be copied except for archival purposes, 1o replace a
defective copy, or for program error verification by Licensee. Copyrighted material
may not be copied onto any media (e.g. magnetic tape, paper tape, disc memory
cartridges, read-only memory, eic) for any other purposes. The authorization to
duplicate copyrighted materials hereunder shall not be construed to grant the
Licensee or Licensee's customer the right to use copyrighted SUPERDEX material in
any manner other than which is provided in this agreement or otherwise approved in
writing by Dr. Wolfgang Matt or Bradmark Technologies.

(c) 1988 Bradmark Technologies, Inc.

Released March, 1962

IMAGE, TurbolMAGE, and TurboIMAGE/XL are trademarks of Hewlett-Packard Company

dBASE is a tfrademark of Ashton-Tate Corporation

SUPERDEX is a trademarked product names of Bradmark Technologies, inc. for the SI-IMAGE
package developed and implemented by Dr. Wolfgang Matt

About this manual

This manual, when used in conjunction with the demonstration database and programs supplied, will
give you an introduction to SUPERDEX which will let you experience various SUPERDEX retrievals
performed using search criteria which you provide.

No knowledge of the SUPERDEX package is assumed for this demonstration,

This manual is arranged in the following format:

Section 1 gives an /nfroduction of the demonstration package and explains how to set up the demo
environment.

Section 2 describes SUPERDEX by leading you through the interactive COBOL demenstration
programs provided, thus allowing you to experience firsi-hand SUPERDEX's powerful retrieval
capabilities and amazing speed. Data values are suggested but you are free to choose any value(s)
you want. An explanation which includes data structures, program operation and how the demo
works is given for each demo.

Section 3 reviews the SUPERDEX index structures used in the demonstration database and
explains how they are utilized throughout the demos. This is followed by a discussion on how to
configure a new SUPERDEX access path.

Appendix A shows the OEDB Demoe dalabase structure utilized throughout the SUPERDEX demos.

Appendix B contains listings of the COBOL source programs used in the SUPERDEX demos in
section 2.

Table of contents

Section 1: Introduction............ crersersaressesarenrannrnrannes ererensasssssieares rereeresarasaenes - 11
FBAIUPES .. ittt e eee e e e e e ettt sera st e e e e ae s e e ae et e e e e n bt eeesnenenenenaan 1-1
COBOL demonstration Programs.. ... e csree e eraessreens 1-1
Domonstration database...................cccv it 1-1
DB A DA BB S . coeeeoieeeeiiiiee e eet et eeeea———aeeeanmttraraseraaa st eee e trrersennn————rs 1-2
Loading the SOTWAre ... et eeneeae e s i-2
Running the demonstrations ... e 1-2

Section 2: COBOL demo reerrevesvessrnrnraversrnerrantrenrrnnn rrereererererreriaseiserisesne 2-3
Running the demonstrations. ... 2-3
SImMPle KOY ABMIO ..o et et ss s s et a e e e e 2.4

F ot T R TR 1= 1 TP 2-4
RUNMING the QBMO ..o ettt st e e e e neasan s e arrnns 2-4
Further demonstralionocov vt s e eee e s s i s reaa s 2-7
HOW 1he demo WOMKS.........oiiieiicrereeir s s e s e s s sesese s e e e amvevamnsan e eceases 2-7
Concatenated Key demo ... 2-9
ADOUE e Qom0 ottt et ettt s 2-9
RUNNING the GeIMO ...t et et easassssbb e s e e eens 2-10
Further demonstratiOnceevei e e s e as s r e e 2-11
HOW 1he demo WORKSottt r e e e e e e e e e e e e e e e eessrbans s eneens 2-12
Keywordod Key demo.. ... 2-13
ADOULTNE GEIMIO......ooiii it e e e s s e s s e cecr et at e s s e r e s e raae s 2-13
RUNNING The eIMI0.. it rres et a e e rer s s s s r e e saae 2-14
Further demonstralion .. e aee s 2-15
HOW the O8Im0 WOIKS ... oviiieieeeees e sttt res e ereereras s sassaarsrassrnrerenssesancenn 2-15
Grouped KBy demMOttt bbb nan 2-16
ADOUL The QeIMI0. ..o reee e as s e e rraeeeeesae s e e s an s smnnneeeanens 2-16
RUnniNG the demMO ... e aa e e 2-17
FUMNET GemMONSITAHON . ..o ae e e e e e s veeee e ansann 2-18
HOW He Qom0 WOTKS ..ot e e st earearnraneesarnnes 2-18
Relational access demo - multiple criteria.............cocoiiic 2-20
ADOUL The QIO ettt et st e e e e e e e e e vt v a vt e v e v e s s s sttt anas 2-20
Running the demio ... e e 2-20
Further demonstraliono s 2-22
HOW The demos WOTK. ..ot er e e e e e e sae s s r e s s e rrnasssrrsaaserres 2-22
Relational access demo - mulliple datasels ..o 2-23
AU TNE IO ittt 1ttt et st e e eaeaas s e ee s st absen e rranaesrans 2-23
RUNNING the demOot sae e e crceem e e enreernes 2-24
Furher GemoOnStIation eveeee e e e erssrr e resbererss e rsr v s sarsrrasanessrreas 2-25

HOW The om0 WOTKS .ottt ieeecteess s s e ramtaaseaerrerereese e bbb aneaaebrsiasssneben 2-26

Section 3: SUPERDEX indeX SHUCIUIESveecvvrvemecririnsisescsissenraecsosesssassens 3-27

SUPERDEX paths Hetreee e eree e teaet bt eerateeaaraesaabeeaanree e r At e e Y e s e nsnnennetennenees 3-27
Configuring SEPaths ..o e es it ar e s e erraes 3-28
Creating @a New SI-Path ... e e 3-28
Appendix A: Demo database SIrUCIUIecccrrvevviiveernnireresrrnneseressenrisssansns A-32
Appendix B: COBOL SOUICe Programs ...t B-35
Simple Koy Domo ...t a e s e e e e es B-36
Concatenated Key DOmo ...ttt vttt st naes B-42
Keyworded Key Demottt et e e ne s B-48
Grouped Koy DemMO ...ttt ne s B-52

Relational Access Demo - multipledatasets ..., B-58

Section 1 Introduction

Features

This demonstration facility gives you the ability to interactively experience SUPERDEX's enhanced
data retrieval capabilities which include:

multiple keys in master and detail datasets

concatenated keys containing multiple fields

sorted sequential retrieval

automatic keywording and keyword retrieval

generic and partial-key retrieval

grouping of functionally-equivalent fields

multiple value lookup

relational access across multiple fiekds, datasets, and dalabases

COBOL demonstration programs

These features are shown by use of five COBOL programs which call replacement IMAGE™
compatible SUPERDEX intrinsics. The replacement SUPERDEX intrinsics have the same names as,
and are funclionally equivalent to, the regular IMAGE intrinsics; they use the same methods that you
would use in your programs.

Edited listings of the demonstration source programs are included in Appendix 8 of this manual, with
complete sources contained in the DEMO.SUPERDEX files.

Demonstration database

A pattial order entry database (called OGEDB) is provided to faciliiate the interaclive demos. It
contains only four datasets which are used as follows:

CUSTOMERS Stand-alone manual master containing 1000 customer entries; IMAGE
search Rern is CUSTOMER-NUMBER.

ORDER~HEADERE Manual master containing 2620 order headers; IMAGE search ilem is
ORDER-NUMBER.

ORDER-LINES Detail dataset, related to ORDER-HEADERS, containing 10245 line items
related to order headers; IMAGE search item is ORDER-NUMBER,

s8I Siand-alone detail dataset in which all SUPERDEX index structures are
maintained. Contains only the item 8L

A complete database layout is contained in Appendix A of this manual.

Database access

Although the entries in this database can be accessed by their IMAGE search items, this
demonstration utilizes SUPERDEX access techniques only.

Loading the software

First, load the SUPERDEX software from the installation tape, following the separate SUPERDEX
foading instructions.

Then, logon:

1HELLO MGR.SUPERDEX, DEMO

Once you have done this, you are ready to run through the demonstrations.

Running the demonstrations

The demonstration programs utilize VPLUS forms, so you must use a terminal or be running a
terminal emulator that supports VPLUS.

Remember to TAB between fields and use the ENTER key when you're done wrth a screen. If you
want to clear a value entered in a field, type or sPACE over the old value, or press the CLEAR DISPLAY
key.

1-2 Introduction Version 3.1 March 1992

Section 2 COBOL demo

Running the demonstrations

To run the COBOL demonstration programs, type

: COBOLDEMO

at the MPE colon prompt (do not type the 3) to display the foliowing menu:

Bradmark Technologies
SUPERIDEX

Demonastration

1. Simple Key Demo

2. Concatenated Key Demo
3. Keyworded Key Demo

4. Grouped Key Demo

5. Relaticnal Access Demo

Enter Selection _

SUPERDEX is a trademarked product name of Bradmark Technologiles for the SI-IMAGE
package developed and implemented by Dr. Wolfgang Matt

Five separate demonstration programs which are described on the following pages may be run from
this main menu.

Simple key demo

About the demo

A simple SUPERDEX key is very much like an IMAGE search item except that its capabilities are
extended in various ways, such as:

M sorted sequential retrieval
W generic and partial key retrieval
B less-than, greater-than, and range retrieval

The Simple Key Demo illustrates how 10 use a simple Si-key {SUPERDEX key) 1o locate customer
entries in the master dataset called CUSTOMERS,

Running the demo

Select option 1 from the Main Menu and press ENTER to proceed to the Simple Key Demo.

2-4 COBOL demo Version 3.1 March 1992

The following screen is displayed:

Simple Xey Demo

Customer Direction (F,B}

Customer Name Customer #

The first input field is for the customer name fo be searched for, The second field indicates whether
entries should be returned in forward (ascending) or backward (descending) alphabetical order (F for
forward or B for backward).

Type
UNITED AIRLINES
inthe Customer field. Enter
¥

inthe Direction field. When you press ENTER, SUPERDEX returns the corresponding entry:

UNITED AIRLINES 00021125489

Version 3.1 March 1992 COBOL demo 2-5

This is very much like performing an IMAGE DBFIND against a search ftem value, However, unlike
IMAGE, SUPERDEX also supports partial key and generic retrievals. Change the value in the
customer field to

UNITED@

and press ENTER. All entries that start with "UNITED" are displayed:

UNITED AIRLINES 0002112949
UNITED ALLOYE & STEEL 0002100649
UNITED BUSINESS EQUIPMENT 0002100652
UNITED CEREBRAL PALSY ASSN 00021060400
UNITED CHURCH HOME 0002100304
UNITED FUND BUFF & ERIE pog2100401
UNITED IMPORT MOTORS INC 000210£700
UNITED PRESBE CHURCH 0002100509

Similar to MPE's :LISTF command, the @ character tells SUPERDEX to malch zero or more
characters in the position where the @ is specified; the difference is that with SUPERDEX, characlers
following the @ are ignored. If you specify a customer of just @ SUPERDEX will retrieve all 1000
entries in the dataset.

SUPERDEX automatically returned the entries in ascending sequential order because ¥ is still in the
Direction field

To try a descending order retrieval using a new wildcard, type
UNIZE@
in the first field. Change the Direction fieldto
B
and press ENTER. The ? matchcode is used as a place-holder and represents a single alphanumeric

character (like in :LISTF). All entries that start with *UNI" and contain an *E” in the fifth position
which is foliowed by alpha or numeric character(s} are displayed;

UNIVERSITY BOOKETORE GOG2100606
UNITED PRESE CHURCH 0002100509
UNITED IMPORT MOTORS INC 0002160700
UNITED FUND BUFF & ERIE 0002100401
UNITED CHURCH HOME 0002100304
UNITED CEREBRAL PALSY ASSN 0002160400
UNITED BUSINESS EQUIPMENT 0002100652
UNITED ALLOYS AND STEEL 0002100649
UNITED AIRLINES 0062112949

Note that entries are now returned in descending order.

26 COBOL demo Version 3.1 March 1992

In the Customer field, type
>=UN@<=UNI@

and press ENTER. This locates a range of entfies starting with "UN" through *UNL" inclusive:

UNIVERSITY RBROOKSTORE 0002100606
UNITED PRESBE CHURCH g002100509
UNITED IMPORT MOTORS INC 00862100700
UNITED FUND BUFF & ERIE 002100401
UNITED CHURCH HOME 0002100304
UNITED CEREBRAL PALSY ASSN 0002100400
UNITED BUSINESS EQUIPMENT Q002100652
UNITED ALLOYS AND STEEL 0002100648
UNITED AIRLINES 0002112949
UNITARIAN CHURCH 0002100207
UNDERWRITERS SALVAGE CO Go02100347
Further demonstration

You are beginning to see the ease-of-use, flexibility and power of SUPERDEX Si-keys.

Try out additional values to further experiment with simple Sl-keys. You may want to familiarize
yourself with the following new operators by imbedding them in values for the Customer field:

>=value greaterthan or equal-io retrieval
<=value less-thanh or equallto retrieval
<>value not-equal-to retrieval

Press the 18 key when you are done to retumn to the Main Menu.

How the demo works

Although SUPERDEX offers amazingly fast and powerful refrievals, it is surprisingly easy to
implement. SUPERDEX attempts to lock and feel as much like IMAGE as possible so it is simple to
learn and use.

The retrievals in this demonstration were accomplished by accessing SUPERDEX index structures
contained in a special stand-alone detail dataset named S1. Each unigue relationship is referred to as
an S/-path and It is accessed in very much the same way as accessing an IMAGE path. In this
demo, an Sl-path exists for customer name.

The program uses SUPERDEX's DBFIND mode 1 followed by a DBGET mode 5 or 6 which specifies
the Si-path in the item parameter of DBFIND. Doing a DBFIND on the manual master CUSTOMERS
may seem odd -- IMAGE's DBFIND works only for details -- but SUPERDEX's replacement intrinsics
also operate on master datasets because the dataset name is declared in the dset parameter of
DBFIND. :

Version 3.1 March 1892 COBOL demo 2-7

SUPERDEX's DBFIND mode 1 accepts arguments that contain special operators, such as @ and 2.
in this program, the customer you specify is passed as the argument for DBFIND and the number of
qualifying entries is returned by SUPERDEX in words 5 and 6 of the status array. The entries are
retrieved and displayed in sorted order with DBGET 5 or 6 and, as in IMAGE, return an end-of-chain
or beginning-of-chain condition.

A complete copy of the source program appears in Appendix B and in the file
SDEMOSK.DEMO.SUPERDEX.

2-8 COBOL demo Version 3.1 March 1992

Concatenated key demo

About the demo

A concatenated Sl-key consists of the values of two or more fields concatenated together. This not
only permits entries {0 be located by the combination of values for the various concatenated fields
(thereby avoiding lengthy chained reads) but it also imposes extended sorting capabilities.

This demo shows

B concatenated keys containing multiple fields
M extended sorted sequential retrieval

The Concatenated Key Dema illustrates the use of a concatenated Si-key to locate order line ftems in
the ORDER-LINES detail dataset.

Version 3.1 March 1992 COBOL demo 2-8

Running the demo
Select option 2 from the Main Menu and press ENTER to proceed to the Concatenated Key Demo,

The following screen is displayed:

Concatenated Xey Demo

Order Number Part Number

Order # Part Number Part Description

The first input field is for the order number to search for and the second field is for the part number
contained in each order line tem. Entries must match on both fields in order to qualify.

Specify the Order Number
701257

in the first field and the Part Number
8CM1511

in the second field. When you press ENTER, SUPERDEX returns the corresponding entry:

0000701257 SCMIB11 COPYSETS CANARY CASB 1065

2-10 COBOL demo Version 3.1 March 1692

With the capability of specifying values for both fields, we were able to avoid a lengthy chained read
of the order's chain.

As seen in the Simple Key Demo, SUPERDEX supports partial key retrievals by using @; however,
the @ is not required when doing a concatenaied key retrieval {the reason is explained later under
How The Demo Works). Change the value in the second field to

8CM

and press ENTER. All entries with the specified order number and part numbers starting with *SCM"
are displayed.

0000701257 SCMIZL2 FOLDER MANILA LTR 1/ 1120
0000701257 SCM1IS511 COPYSTES CANARY CASBE 1065
0000701257 SCM153-8T PADS TELEPHONE MESSA 1250
0000701257 SCMB35-8T PAD SCRATCH 3X5 9120 1230
0000701257 SCMBS8-8T PAD SCRATCH SX8 912 1235
0000701257 SCMBTO PAD STENO GREGG RULE 1240
0000701257 SCMBT84 PAD STENC PITMAN RUL 1245
Q000701257 SCHMB014-8T PAD LEGAL CANARY PER 1215
0000701257 SCM%11-8T PAD LETTER CANARY B- 1210

0000701257 SUMALZLZ FOLDER MANILA LGL 1/ 1125

Note that entries are displayed in ascending aiphabetical order by both order number and part
number. This is because all values contained in a concatenated Si-key are used for sorting
purposes; this permils extended sorting by muttiple fields to be accomplished without the use of
sorted chains. In fact, SUPERDEX concatenated Si-keys permit sorted chains to be eliminated
entirely, thus permitiing more flexible sorting while averting potential performance problems.

Further demonstration

You may try out additional order number and part number combinations. Because of the way the
program is written, you must specify a full order number in the first field but you may specify partial
part numbers of any iength in the second field.

Clear the value in the second field so that only the order number 701287 is specified and press
ENTER. Then, try varying the part number and see the resulis. Also try the order numbers
915066,711155, and 929461 with various part numbers.

Press 18 when you are done to return to the Main Menu.

Version 3.1 March 1992 COBOL demo 2-11

How the demo works

This program accesses an Si-path that represents a concatenated Sl-key which is comprised of the
order number and part number.

The program performs a partial-key retrieval on part number without the use of an @ in the argument
as in the Simple Key Demonstration; the partial-key retrieval is accomplished using a special DBFIND
mode that restricts the number of characters on which SUPERDEX matches.

in the demonstration database, order number is an 12 em and part number is an X114 Rem; their
combined length is 18 bytes. For the retrieval using order number 701257 and part number S8CM,
it was only necessary to maich on the first 7 bytes of the concatenated Si-key value (4 bytes for the
12 item and the first 3 bytes of the X14 tem). Therefore, DBFIND was called with a mode of -107
and an argument of 70612578CM. The mode reflects the base value of 100 plus the number of
significant bytes (in this case 7). The mode is then made negative {if the mode were not negative, it
would specify 7 words rather than bytes.)

The program is hard-coded 1o impose a DBFIND mode of at least -104 (the full length of the order
number). It then determines the length in bytes of the part description specified and adds the two
together. This permits retrievals using either the full order number, nio part number, or any number of
jeading characters of the patt number.

Note that the number of gualifying entries is not displayed in this demo program. This is because
only DBFIND mode 1 returns the entry count in the sfatus array. This program used mode -104
which is more efficient and provides additional functionality.

A complete copy of the source program appears in Appendix B and in the file
SDEMOCAT.DEMO.SUPERDEX.

2-12 COBOI demo Version 3.1 March 1992

Keyworded key demo

About the demo

A keyworded Sl-key is just like a simple Si-key except that every significant word contained in the
key may be searched on. For example, the customer "BRADMARK TECHNOLOGIES" could be
located by BRADMARK or TECENOLOGIES.

This demo shows

B keyword retrieval
W generic and partial-keyword retrieval

The Keyworded Key Demo illustrates the use of a keyworded Sl-key 1o locate customers stored in

the CUSTOMERS master dataset. It is the same type of retrieval as in the Simple Key Demo using
the same CUSTOMER-NAME field but this time it is configured as a keyworded Sl-key.

Version 3.1 March 1992 COBOL demo 2413

Running the demo

Select option 3 from the Main Menu and press ENTER 1o proceed 1o the Keyworded Key Demo.

The following screen is displayed:

Reyworded Key Demo

Enter any word from a customer's name

Customer Name Customer #

To do generic keyword retrieval, you may specify any word contained in any customer name. Type

FRANK

and press ENTER. All the customers that contain the word "FRANK" are displayed:

CIMINELLT FRANK CONST 0000300057
RIFPPLE J FRANK 000180G0510

it does not mafter where in the field the keyword occurs but # must be separated by spaces or
special characlers,

2-14 COBOL demo Version 3.1 March 1992

SUPERDEX also supports partial-keyword retrieval. Append an @ 1o the specified value
FRANK@

and press ENTER. All entries that contain words that start with "FRANK" are displayed:

CIMINELLI FRANK CONET 0000300057
RIPPLE J FRANK 0001800510
FRANKENSTEIN WM D 6000800628

As in the Simple Key Demonstration, you may use @ and/or ? 1o perform partial-keyword or generic
keyword searches,

Further demonstration

Try using additional keyword values to further experiment with keyworded Si-keys. You may inciude
the @, 2, >=, <=, and <> operators described in the Simple Key Demo.

Note that you will not have any success using the values AB8N, ABSOC, CO, COMPANY, CORP, or
INC -- these common words have been exciuded from keywording (by entering them in a special file
named KWEXCLUD) to conserve disk space and optimize retrieval speed.

If you specify just @ in the input field, you will find that the program indicates that 2780 entries qualify
-- gven though there are only 1000 entries in the dataset! This is because each keyword occurrence
is included in the entry count (returned in the sfafus array) and the program is reporting this value,
This count does not, however, include the exciuded words "ASSN," "ASSOC," elc,

Press 18 when you are done to return to the Main Menu.

How the demo works

This program is almost identical to the Simple Key Demo program. The main difference is that a
keyworded Sl-path is referenced and therefore all access against the Sl-path is trealed as
keyworded.

In SUPERDEX, an Sl-path may be configured as keyworded or not keyworded. This is strictly a
configuration option specified when the Sl-path is established; it does not impact any subsequent
processing. Keywording is performed automatically when entries are DBPUT, DBUPDATEed, and
DBDELETEed, or whenever DBFIND is used. There is no difference in handling a keyworded Si-
path versus a non-keyworded Si-path.

A complete copy of the source program appears in Appendix B and in the file
SDEMOKW.DEMO.SUPERDEX.

Version 3.1 March 1992 COBOL demo 2-15

Grouped key demo

About the demo

A grouped Sl-key permits multiple fields in a dataset to be handled as if they were a single field. For
example, if three fields contain people’s names and you need 1o locate a specific person, all three
fields wouid be searched in a single simultaneous operation.

This demo shows
B grouping of functionally equivalent fields
B multiple keys in master and detail datasets
B’ generic and partial-key retrieval
The Grouped Key Demo illustrates the use of a grouped Si-key to locate customers stored in the

CUSTOMERS master dataset by either address or city. These two fields are combined to form a
group and the group is configured as keyworded ic allow access to any word in either field.

2-16 COBOL demo Version 3.1 March 1992

Running the demo
Select option 4 from the Main Menu and press ENTER to proceed to the Grouped Key Demo.

The foliowing screen is displayed:

Grouped Key Damo

Enter any word from the address fields or the city field

Customer Name Address City

Versior: 3.1 March 1982 COBOL demo 2-17

You may specify any word contained in any address or city. Type

EKENMORE

and press ENTER. All the customners that have an address on "KENMORE" Avenue or are in the city

of "KENMORE" are displayed:

BARBER-COLMAN CO 1249 MILITARY RD KENMORE
CASSETTA AGENCY CO INC 810 KENMORE AVE BUFFALC
¢ BN 3174 DELAWARE AVE KENMCRE
CEGLIA LAWRENCE 2070 SHERIDAN DR KENMORE
C 8 F DESIGNS INC 61 GARDENWOOD LANE KENMORE
CENTURY 21 GOLD JACKET 3411 DELAWARE AVE KENMORE
CECOS ENVIRONMENTAL INC 2321 KENMORE AVENUE BUFFALC
CHECKERCAR CLUB OF AMERICA 46953 TERMAINE AVE. ¥ ENMORE
CHECKPOINT FOREIGN CAR 487 KENMORE AVE BUFFALO
F B L ASBOCIATED AGENCIES 860 ENGLEWCOD AVE KENMORE
FASO CHARLES P. AGENCY B&0 ENGLEWCOD AVE KENMCRE
HOOL COMPANY INC 2225 KENMCRE AVENUE BUFFALO
IMMCO DIAGNCSTICS INC 963 KENMORE AVE BUFFALO
KOCH RICHARD J CPA 1026 ENGLEWOCD AVE. KENMORE
DAKELAND AUTOMOTIVE 536 NIAGARA FALLS BLVD KENMCRE

it does not matter where the specified keyword or partial-keyword occurs in either field so long as it
occurs in one of them. Note that the customer name is displayed for information only -- it is not
included in the group and therefore may not be searched on.

Further demonstration

You may try additional values to further experiment with grouping. Try including the @, 2, »>=, <=,
and <> operators already described.

Try the values AMEERST, NIAGQR, and WILLIAMR for interesting results,

if you specify just @ in the input fiekd, you will find that although the dataset contains only 1000
entries, the program indicates that 4414 entries gualify. This is because each keyword occurrence in
both the address and city field is included in the entry count (returned in the sfatus array) and the
program is reporting this value.

Press 18 when you are done to return o the Main Menu.

2-18 COBOL demo Version 3.1 March 1992

How the demo works

In SUPERDEX, an Si-path may be configured as grouped or not grouped. A grouped Sl-path may
be keyworded or not keyworded. in this example, the Sl-path is configured as both grouped and
keyworded; it is comprised of the address and cily fields. Other fields, such as a second-line
address, can also be included in the group, if desired.

Whether an Sl-path is configured as grouped or not is completely transparent to programs. Grouping
is performed automatically when entries are DBPUT, DBUPDATEed, DBDELETEed or whenever

DBFIND is called. Keywording is also transparent so there is no difference when handiing a grouped
Si-path vs. a non-grouped Sl-path.

A compiete copy of the source program appears in Appendix B as well as in the fie
SDEMOGRP.DEMO . SUPERDEX.

Version 3.1 March 1992 COBO!L deme 2-19

Relational access demo - multiple criteria

About the demo

Before proceeding to the last demo program, we must introduce another very powerful concept which
applies to the demo programs run thus far:

W relational access using multipie values for a field

We have shown how SUPERDEX permits both generic and partial-key retrievals by using the @, 2,
»=, <=, and <> operators. However, these capablilities may not always be sufficient to adequately
qualify the entries you want. Therefore, you may sometimes find it useful to use a technique called
Relational Access 1o further qualify entries.

Running the demo

To illustrate the concept of Relational Access, go back to the Simple Key Demo {option 1) and type
the foliowing (including the trailing vertical bar)

"UNITED@ OR CENTRALQ@:;

inthe Customer field. Type

F

in the Direction fiekd and press ENTER. The following entries are displayed:

CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
UNITED
UNITED
URNITED
UNITED
UNITED
UNITED
UNITED
UNITED

BFLO PROJECT CCRP.
PK UNITED METH
AUTO WRECKING
CITY RESTORATN
ANESTHESIA SVCE
ORGAN SERVICE
CHURCH HOME
CEREBRAL PALSY ASSN
FUND BUFF & EBRIE
PRESE CHURCH
ALLOYS & STEEL
BUSINESS EQUIPMENT
IMPORT MOTCORS INC
AIRLINES

0060300209
000030023¢
00G0300384
00G0300427
0000300527
0000300559
00021060304
0002160400
0002100401
0002100509
0002100649
00062100652
0002100700
0062112849

2-20 COBOL demo

Version 3.1 March 1882

As illustrated, SUPERDEX selected all the entries that begin with either "CENTRAL" or "UNITED."
This was accomplished by beginning the argument with a tilde (7) and ending it with a ;. When the
argument is surrounded with these characters, the words AND, OR and NOT {the boolean
operators) may be included in the argument itself.

To further illustrate the Relational Access concept, exit this demo and go to the Keyworded Key
Demo (option 8). Type

FRANK@

and press ENTER. The foliowing entries are displayed:

CIMINELLI FRANK CONST 0G003000587
RIPPLE J FRANK 0001800510
FRANKENSTEIN WM D 0000600628

Now, change the value to
“FRANK NOT FRANKENSBTEIN;

and press ENTER. This displays all the entries that contain a word starting with "FRANK" and not
"FRANKENSTEIN."

CIMINELLT FRANK CONST 0000300057
RIPPLE J FRANK 6001800510

To further demonstrate the power and flexibility of Relational Access within an Sl-key, exit this demo
and go to the Grouped Key Demo {oplion 4). Specify

"KENMORE AND BUFFALO;

to display all the entries that contain both *"KENMORE" and "BUFFALQ" in elther the address or city
field. "KENMORE" appears only in the address fieild and "BUFFALO" appears only in the city field
because there are no entries in the database for customers with "BUFFALO" in the address field or
*KENMORE" in the city field. If there were, they would also qualify for selection.

CASSETTA AGENCY <O INC 810 KENMORE AVE BUFFALO
CECOS ENVIRONMENTAL INC 4321 KENMORE AVENUE BUFFALO
CHECXPOINT FOREIGN CAR 487 KENMORE AVE BUFFALO
HOOD COMPANY INC 2225 KENMORE AVENUE RUFFALO
IMMCO DIAGNOSTICS INC 963 KENMORE AVE BUFFALO
LOEFFLER F.H. COMPANY INC 328 KENMORE AVE. BUFFALO

Version 3.1 March 1992 COBO! demo 2-21

Several values with corresponding boolean operators may be specified at one time or in multiple
operations (using multiple successive DBFINDs). Type

“KENMORE ;

and press ENTER. Note that 17 entries are displayed (the entry count is not shown because it is not
returned by this programy).

Now, replace the value in the field with

-

AND BUFFALO;
and press ENTER. SUPERDEX remembers the qualifying entries that were found previously and

uses them for comparison in the next operation. Now only six entries qualify. Using this technique,
you may use successive DBFINDs {o refine the selscted entries by additional criteria.

Further demonstration

Experiment with the Simple Key, Keyworded Key, and Grouped Key demo programs using boolean
operations to get a greater understanding of Relational Access between vaiues in an Si-key.

Several values may be specified with their comresponding boolean operators. For example, the
combination

~({value1 and vaiue2) OR vaiue3 NOT valued;
is interpreted as "all the entries that contain valie? AND value2 OR value3 AND NOT value4."

Press 18 when you are done 1o return to the Main Menu.

How the demos work

The three demo programs used to explain Relational Access were the very same programs that were
run when illustrating indexed (non-relfational) access; they accessed the same Si-paths as before.
Whether the value specified is a single value or a multipie values, the vaiue specified is transparent to
the programs. Both types of retrievals are supported by the same Sl-paths with the same code.

In writing programs for relational access, you may prefer to impose the tilde, ;, and/or boolean
operators programmatically and instead present the user with an individual field for each value and
function keys to specify the boolean operators. There are many methods for forming the complete
value with the required delimiters and operators.

Regardless of how the delimited value is formed, it is passed as the argument for DBFIND mode 1,
exactly as shown. SUPERDEX kcates the corresponding entries and retums the qualifying number
in words 5 and 6 of the status array, just as with non-relational access,

Cther features are available for further managing the resulis of multipie DBFIND calls, inciuding the
ability to refine and undo the results of successive DBFINDs.

2-22 COBOL demo Version 3.1 March 1992

Relational access demo - multiple datasets

About the demo

As we've seen, refational access may be performed within a single field by specifying multiple values
for the field and combining them by use of boolean operators.

Relational access can also be used o compare against multiple fields, datasets, and even multiple
databases by using similar methods and boolean operators.

This demo shows

W relational access across multiple datasets
This example finds all the order line items that exist for a specified customer and contain a specified
part number; this is not a trivial task since there is not a path between the CUSTOMERS master and
ORDER-LINES detail. Therefore, a logical relationship must be formed via the ORDER-HEADERS

master dataset. To add even greater flexibiiity, this program permits a partial-key or generic value to
be specified for either field.

Version 3.1 March 1992 COBOL demo 2-23

Running the demo
Select option 5 from the Main Menu and press ENTER to proceed to the Relational Access Demo.

The following screen is displayed:

Relational Accese Demo

Enter a Customer Name and a Part Number

Cugtomer Name Part Number

Order # Part # Part Description Quan Price

The first input field is for the customer name and the second field is for the part number contained in
each order line item for the specified customer. Entries must match on both fields in order to qualify.

Type

UNITED CHURCH@
in the first field. Type

e

in the second field and press ENTER. This specifies that SUPERDEX should locate all the order line
iterns for the customer whose name begins with "UNITED CHURCH."

2-24 COBOL demo Version 3.1 March 1992

A total of 65 entries are found, starting with:

Q000701193
0600701193
0000701193
0600701193
00006701193
0000701193
0000701193
0000701193
0000701193
0006701193
0000701193
00007011893
0000701193
0000701193
Q000701193

A626765N
Y4403CR
R$530605
SRA
BCMRCZ1BE
G27-12
C15-BLK
BCMRCZ1BX
WES40290
710-01
482~2

332-01-RED-M
334-01-GRN-M
331-01-BLU-M

SCM1312

BNDR, POST, 11 X 17,G6N
PUNCH,1 HOLE,1/4 DIA
TAPE, EMBOSE, 1/2X144 RL,BK
SR-B STAPLE REMOVER
REFILL, F/CLIC,MED, 2FK,BE
CQoL SHEET

DISPENSER

REFILL, F/CLIC,MED, 2PK,BK
S0-CLASP 9X12 ENVELOPES
JUST FOR COPIES

#100080 MONGOL PENCIL
WRITE BROS

FEN

WRITE BROS

21-1/3 LTR FILE FOLDERS

4 107.
1 1
6 16
i 0
2 23
1029
1 4
2 23
i 6
2 3
Z 3
12 1
12 1
24 2
i 3

80

.69
W50
.68
.52
W61
.22
.52
.01
.12
.06
.08
.08
.16
.82

in order to narrow down the records selecied, change the Part Number to

3@

and press ENTER. This specifies that only the line items whose parl numbers begin with *33" for the
customer whose name begins with "UNITED CHURCH" should be displayed. SUPERDEX now
returns only the four following entries:

0000701193 332-01L~RED~M
00006701193 334-01-GRN-M
4000701193 331-01-BLU-M
0000928312 334-01-GRN-M

WRITE BROS

PEN

WRITE BROZ

PEN, BALLPOINT, MED PT,CGN

1z 1.08
12 1.08
24 2.16
12 1.08

Further demonstration

You may try out additional customer name and part number combinations by using a full, generic, or

partial key for each value.

Note that this demo program automatically encloses the values of both fields with a ™ and ; so you
do not need to include the ™ and ; in the values specified. Doing so would cause an additional set of
brackets to be imposed and, therefore, no entries would be found. Also, because this program
disaliows retrievals against more than one customer at a time, the Customer Name specified

must qualify only one entry.

Press t8 when you are done to return to the Main Menu.

Version 3.1 March 1992

COBOL deme 225

How the demo works

The program must perform three distinct DBFINDs against three separate Sl-paths io accomplish the
retrieval,

First, SUPERDEX must locate the specified customer name in the CUSTOMERS master dataset and
retain the corresponding CUSTOMER-NUMBER. This is done via the simple customer Sl-path using
a SUPERDEX DBFIND mode 1 against CUSTOMERS with the specified customer name,
surrounded by a = and ;, as the argument.

Next, the retained customer number must be looked up in the ORDER-HEADERS master dataset to
iocate the corresponding order number{s). This is done via a special operation called a projection,
which is accomplished simply by calling DBFIND mode 1 against ORDER-HEADERS and specifying
an argument of ~ and 3.

The final DBFIND performs a boolean AND between the entries located in the ORDER-HEADERS
dataset and the order line items in the ORDER-LINES dataset by using the common item ORDER-
NUMBER in the ifern parameter and the part number, surrounded by ™ and 7, as the argument.

These same techniques may be used to perform relational retrievals against multiple databases by
simply aftering the value of the base parameter.

A complete copy of the source program appears in Appendix B and in the file
SDEMOPRJ.DEMO .SUPERDEX.

2-26 COBOL demo Version 3.1 March 1892

Section 3 SUPERDEX index structures

SUPERDEX paths

Now that we've seen the quick and powerful retrievals that can be accomplished by SUPERDEX, let's
take a look at the index structures that were used to facilitate them.

To do so, exit to MPE and type
SIMAINTLIST

and press RETURN. When prompled, enter the databése nhame
OEDB

and RETURN to list the SUPERDEX structures:

RUN SIMAINT.PUB.SUPERDEX,LIST

SIMAINT.PRIV VERSION 3.1 {23JANSZ} COPYRIGHT DR. MATT / IABG (1888,15%91)

DATABASE >CEDB
THE FOLLOWING SI-PATHS AND ITEMS ARE DEFINED:

DATASET SI-PATH ITEMS/LENGTHS
10001 KWEXCLUDE 4
CUSTOMERS
10062 CUSTOMER-NAME CUSTOMER-NAME 15
100803 CUSTOMER~-NAME~KW/K CUSTOMER-NAME 8
10004 ADDRESS1~CITY~KW/K ADDRESS-1 4
10004 ADDRESS1-CITY-KW/K CITY 4
ORDER~LINES
10005 ORDER-PART ORDER-NUMBER 2 PART-NUMBER 7
10006 PART-ORDER PART-NUMBER 7 CRDER~-NUMBER 2
CRDER-HEADERS
10067 CUSTOMER-~NUMBER CUSTOMER-NUMEER 2
TOTAL TIME : CPU 0:00:02.2 Elapsed 0:00:04

END OF PROGRAM
DEMO.SDX31:27> PSCREEN

Listed here are seven Si-paths which relate to eight Sl-keys in the database. They are as follows:

KWEXCLUDE

CUSTOMER~-NAME

CUSTOMER~NAME-KW

ADDRESS81~CITY~KW

ORDER~-PART

PART-ORDER

CUSTOMER~NUMBER

Configuring Sli-paths

Special stand-alone Si-path used for excluding unneeded words from
keywording, such as for excluding "CORP" and "INC" in the Keyworded
Key Demos,

Simple Sl-path used for generic, partial-key, range, and other retrievals
by CUSTOMER-NAME in the CUSTOMERS dataset. Used in the Simple
Key Demos.

Same as CUSTOMER-NAME, but configured as keyworded (as noted by
the /K following the Sl-path name} with a keyword length of 8 words (16
characters). Used in the Keyworded Key Demos.

Grouped Sl-path consisting of the ADDRESS-1 and CITY fieids, shown
as two separate entries above. Note the /K indicating that it is also
configurad as keyworded. Used in the Grouped Key Demos.

Concatenated Sl-path consisting of the ORDER-NUMBER and PART-
NUMBER for each line #em in the ORDER-LINES dataset. Used in the
Concatenated Key Demos.

Same as ORDER-PART, but order of items is reversed, Used in the
datase! Relational Access demo.

Simple Si-path related to the ORDER-HEADERS dataset, consisting of
the CUSTOMER-NUMBER. Used in the Relational Access Demo using
multiple datasets.

The Sl-paths that have been used up to this point were created for you by using SUPERDEX's
configuration program, SIMAINT. This program establishes the required index structures and creates
the indices for the data entries which currently exist in the database; the indices are stored in the
stand-alone detail dataset named S1.

The following section on creating new Sl-paths demonstrates how the SIMAINT program works.

Creating a new Si-path

The CUSTOMERS dataset contains three fieids for phone numbers:

PHONE-AREA-CODE phone number area code {first three digits)

PHONE-PREFIX
PHONE-SUFFIX

phone number prefix {middie three digits)
phone number suffix {last four digits)

328 SUPERDEX index structures Version 3.1 March 1992

Creating a grouped S!-path which links PHONE-PREFIX and PHONE-SUFFIX together will permit a
customer o be located by either value using a one prompt in a single operation (just like Address and
City gid in the Grouped Key Demo). it will also permit all the customers with a specified prefix to be
identified.
Run the SIMAINT program by typing:

SIMAINT
and press RETURN. Then, specify the database name

CEDB

and press RETURN. SIMAINT lists the datasets that have related Si-paths and prompts for a dataset:

RUN SIMAINT.PUB.SUPERDEX

SIMAINT.PRIV VERSION 3.1 (23JANSZ) COPYRIGHT DR. MATT / IABG (1988,1991)

DATABASE »>0OEDB
SI-PATHS EXIST FOR THE FOLLOWING SETS:

CUSTOMERS

ORDER-LINES

CRDER-HEADERS

ENTER NAME OF SET TO BE MODIFIED OR NEW NAME
DATASET >

Al the dataset prompt, enter
CUSTOMERS

and press RETURN. Its related Si-paths are displayed and you are prompted for the name of an Si-
path:

DATASET >CUSTOMERS
THE FOLLOWING SI-PATHS AND ITEMS ARE DEFINED:

CUSTOMER~NAME CUSTOMER-NAME L =15
CUSTOMER-NAME-KW/K CUSTOMER-NAME L = 4
ADDRESS1-CITY-KW/K ADDRESS-1 L =4
ADDRESS1-CITY-KW/K CITY L =4

ENTER SI-PATH WITH OPTION /D /R /G OR NEW NAME
SI~-PATH >

Version 3.1 March 1992 SUPERDEX index structures 3-29

Specify the new Sl-path name
PHONE-PRFX~-BUFX
and RETURN. Enter
?

and RETURN when prompted for an item name:

SI-PATH >PHONE~PRFX-SUFX

ITEM 1 >7
CUSTOMER-NUMBER CUSTOMER-ABRBR CUSTOMER-NAME ADDRESES-1 ADDRESS-2
CITY STATE ZIP-CODE PHONE-AREA-CODE PHONE-PREFIX

PHONE~SUFFIX

ITEM 1 >

This causes SIMAINT {o list the items in the dataset and re-prompt. Now, specify the first item
PHONE~PREFIX

{o be included in the group and RETURN twice:

ITEM I >PHONE-PREFIX
ITEM 2 >RETURN

When prompted for the next Si-path, enter the same Sl-path name as before but append /G:
PHONE-PRFX~8UFX/G

This indicates that you are configuring the Sl-path as grouped:

SI-PATH >PHONE-PRFX-SUFX/G
ITEM 1 >

Now, specify the second item to be included in the group
PHONE-SUFFIX

as shown:

ITEM 1 >FPHONE-SUFFIX
SI-PATH >

3-30 SUPERDEX index structures Version 3.1 March 1992

Press RETURN for the next two prompts and wait a few moments while the new Si-path is created;

3I-PATH >RETURN
DATASET >RETURN

PROCESSING £I-PATH PHONE-PRFX-SUFX OF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECCRDS 100% CPu 0:00:03.2 ELAPSED 0:00:03
SORT: 2006 INDICES CPU 0:00:00.9 ELAPSED 0:00:01
CUTPUT: 1700 INDICES 100% CPU 0:00:01.9 ELAPSED 0:00:02

TOTAL TIME: CPU £:00:09.8 ELAPSED 0:02:06

END OF PROGRAM

Version 3.1 March 1992 SUPERDEX index structures 3-3t%

Appendix A Demo database structure

The following pages illustrate the dataset layouts for the OEDB demo database. Only the dataset SI
and item S| were added to facilitate SUPERDEX access.

DATA SET: CUSTCOMERS

Fld Itm Srt End Itm Size/ Array Srch Sort

Items: No. No. Loc Loc Typ Lngth S8ize Item Item
CUSTCOMER-NUMBER 1 1 1 2 I 2 1 X
CUSTOMER-ABRBR 2 11 3 4 X 4 1
CUSTOMER~NAME 3 2 5 12 X 30 1
ADDRESS-1 4 3 20 32 X 26 1
ADDREES-2 5 4 33 4% X 26 1
CITY) 5 46 53 X 16 1
STATE 7 6 54 54 X 2 1
ZIP-COGE 8 7 55 56 I 2 1
PHONE-AREA-CCODE g 8 57 57 I 1 1
PHONE-PREFIX 10 9 58 s8I 1 1
PHONE-SUFFIX 11 1@ 59 5% I 1 i

DETA SET: ORDER-

Items:

ORDER-NUMBER
CORDER-TYPE
ERTRY-DATE
PO-NUMBER
CUSTOMER-NUMBER
SHIP-TO-NUMBER
BRANCH-LOCATION
NEXT~LINE-NUMBER
PAYMENT-TERMS
ATTENTION-CODE
TAX~PAYAEBLE
SALES-TAR~PCT
BILLED-VALUE
ENTRY-VALUE
SHIPMENT-DATE
ORDER-WEIGHT
FREIGHT-CHARGE
CARRIER-USED
CARTON~QUANTITY
PRICE~CODE
CONFIRM-DATE
LAST~INVOICE-DTE
BACK-ORDER-CODE
PICKING-CODE
BILLING-CODE
CONSOLIDATE~CODE
SALES-REP-CCDBE
BACKORDER-STATUS
HOLD-CODE
FREIGHT-TRUCK
VALUE-CODE
ORDER-STATUS

HEADERS
Fld ftm
No. No.

1 12
2 13
3 14
4 15
5 1
6 42
7 16
8 17
g 18
10 19
i1 20
12 21
13 22
14 23
i 24
16 25
17 26
18 27
19 28
206 29
21 30
22 31
23 32
24 33
25 34
26 35
27 36
28 37
29 38
30 39
31 40
3z 41

Srt
Loc

U1 by W e

12
14
15
16
17
18
18
20
22
24
26
27
28
30
31
32
33
34
36
37
38
39
40
42
43
44
46
47

End Itm Size/ Array S8rch Sort
Loc Typ Lngth Size

E-N VI)

11
13
14
15
16
17
1B
19
21
23
25
26
27
29
30
31
32
33
35
36
37
38
39
41
42
43
45

46

47

g B b bt bt DY bd B bed D R Rt D bd b b b b bed b B B B R e B B

L T N R R R SIS RS 0 QS A N S NI N RN S I = S SO N R S R

L I I T T o T S N T e I e T e e O S e L

Item Item

X

Version 3.1 March 1992

Demo database structure A-33

DATA SET: ORDER-LINES

Items:

ORDER-NUMBER
INVOICE~LINE~NO
PART-TYPE-CODE
PART-NUMBER
PART-DESCRIPTION
PART-ENTRY-DATE
QUANTITY-ORDERED
UNIT-OF-MEASURE
QTY-PER-FACKAGE
LINE-ITEM-PRICE
URIT-PRICE
UNIT-COST
PRICE-DISCOUNT
QUANTITY-SHIPPEDR
BACK-ORDER-NEED
SHIP~DATE
PICKING-LIST
BILL-CODE
PREV-QTY-SHIPPED
PART-HOLD-CODE
INVOICE-REF~NO
PRICE-DIFFERENTL
STOCK-LOCATION
BKCORD-INDICATOR
PART-PRICE-CODE
COMMERCIAL~STAT
INVOICE-CODE
PACKAGE-WEIGHT
LINE-ITEM~STATUS

DATA BET: BI

Items:

ST

Fld Itm
No. No.
1012

2 43

3 44

4 45

5 46

& 47

7 48

8 49

g 54
10 51
11 52
12 53
13 54
14 5%
15 586
16 57
17 58
18 59
1% 60
20 61
21 62
22 63
23 76
24 64
25 65
26 66
27 67
28 68
29 69
Fid Itm
No. No.
71

Srt
Loc

i to

25
26
27
28
29
31
33
35
36
37
38
39
40
41
42
43
45
46
54
51
52
56
57
58

grt
Loc

1

End Itm Size/ Array S8rch Sort
Lec Typ Logth Size

R R R R I =T e T T T o B o I~ S I S AT S S - S I = - - T -

[

o S et R S T~ I 8 R e e T el T 2 A S e I S S S - S R S o AT - S N i 6]

R N T T T T R S e e e i T T T S S R N S S S T

Item Item

X

End Itm Size/ Array Srch Sort
Tvp Lngth Size

Loc

508

X

254

Item Item

A-34 Demo database structure

Version 3.1 March 1892

Appendix B COBOL source programs

The sources for the COBOL demonstration programs appear on the following pages with comments,
These programs were written in COBOLSS and use VPLUS.

Simple Key Demo

SCONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-1ID. KEY-DEMOC.

AUTHOR. BRADMARK TECHNOLOGIES

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SCREEN-BUFFER.
02z SCREEN-KEY-VALUE PIC X(31}.
(02 SCREEN-DIRECTION FPIC X.
G2 DATA-LINES.
05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.

10 SCREEN-LINE PIC X(78}.
01 BUFFER-LENGTH PIC S9(4; COMP.
01 ARRAY-INDEX PIC 89(4) COMP.

01 IMAGE-BUFFER.
02 IMAGE-CUSTOMER-NUMEER PIC 38(9) COMP.
02 IMAGE-CUSTOMER-NAME PIC X(30}.

01 TEMP-LINE,

G2 TEMP-CUSTOMER-NAME PIC X(30}.

02 FILLER PIC X VALUE SPACES.

02 TEMP-CUSTOMER-NUMBER PIC 9{10} USAGE DISPLAY.
01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.
01 FORM-KEYS PIC 59(4) COMP VALUE 1.
01 NUMBER-OF-KEYS PIC S9(4) COMP VALUE 8.
01 KEY~BUFFER PIC X(128).
01 MESSAGE-BUFFER FIC X{72).
01 MESSAGE-BUFFER-LENGTH PIC S9(4] COMP.
01 ACTUAL-LENGTH PIC 594} COMP.

B-36 COBOL source programs Version 3.1 March 1992

01 QUALIFY-BUFFER.
02 ENTRIES-FOUND
02 FILLER

* Entries Qualified,.

01 GET-MCDE

LINKAGE SECTION.

PicC
Pic

24,229,
X{66} VALUE

{More Entries Below}".

01 IMAGE.
02 IMAGE-STATUS.
65 Cw PIC
05 IMAGE-ENTRY-LENGTH PIC
05 IMAGE-RECORD-NUMBER PIC
05 IMAGE~CHAIN-LENGTH PIC
05 IMAGE-LAST-ON-CHAIN PIC
05 IMAGE~FIRST-~-ON-CHAIN PIC
02 ITEM.
05 ITEM-VALUE PIC
02 IMAGE-SET.
05 SET-VALUE PIC
02 PASSWORD.
05 PASSWORD-VALUE PIC
02 BASE.
05 BASE-ID PIcC
0% BASE-VALUE PIC
02 LIST.
05 LIST-VALUE PIC
02 MCDES.
05 MODE]L PiC
05 MODEZ PIc
05 MODE3Z PIC
05 MODE4 PIC
05 MODES PIC
05 MODES pPIC
05 MODET PIC
05 MCDES FIC
02 DUMMY PIC

FIic

58 (4)
59{4)
89(9)
55(9)
§%(9}
59{9)

59(4) COMP.

COMP.
COMP.
COMP.
COMP .
COMP.
COMP.

X{is6}.

Xile).

X{16}.

XX

X{32}).

COMP.
COMF.
COMP.
COMP,
COMP .
COMP.
COMP.
COMP.

COME.

Version 3.1 March 1992

COBOL source programs B-37

01 COMAREA,

02
o2
02
02
02
02
02
02
G2
02
02
G2
02
G2
02
G2

PROCEDUR

BEGIN.
MOVE
MOVE
MOVE
MOVE

MOVE
MOVE
CALL
CALL

CALL

PERF

VSTATUS PIC 8%(4} COMP.
VLANGUAGE PIC XX.
COMAREA-LENGTH PIC S8{4} COMP.
FILLER PIC X{4).
LAST-KEY PIC 8%{4) COMP.
NUMERRORS PIC 894} COMP.
WINDOWENH PIC ¥X.

FILLER PIC XX.
LABELCFTION PIC S89(4} COMP.
FORM-NAME PIC X{16}.
HEXT-FORM~-NAME PIC X{i63}.
REPEATAPP PIC 89{4) COMP.
FREEZAPP PIC 891{4) COMP.
FILLER PIC XX.
VBUFFER-LENGTH PIC 894} COMP.
FILLER PIC X{(64}).

E DIVISION USING IMAGE,COMAREA.

"n" TO DONE.

SPACES TO SCREEN-BUFFER.
SPACES TO MESSAGE-BUFFER.

72 TO MESSAGE-BUFFER-LENGTH.

*CUSTCMERS; * TC SET-VALUE.

*SIMPLEKEY" TO NEXT-FORM-NAME.

*VGETNEXTFORM" USING COMAREA.

VGETKEYLARELS® USING CCMAREA,FORM-KEVS, NUMBER-OF-KEYS,
KEY-BUFFER.

INTRINSIC *.LEN." USING SCREEN-BUFFER,GIVING,
BUFFER~LENGTH.

CRM UNTIL DONE IS EQUAL TC "y*

MOVE "n* TO END-OF-SCREEN

c

C

M

C

C

ALL "VPUTBUFFER” USING COMAREA, SCREEN-BUFFER
BUFFER-LENGTH
ALL "VSHOWFORM" USING COMAREA

OVE SPACES TO MESSAGE-BUFFER
ALL "VPUTWINDOW® USING COMAREA, K MESSAGE-BUFFER,
MESSAGE-BUFFER-LENGTH

ALL “VREADFIELDS® USING COMAREA

B-38 COBOL source programs Version 3.1 March 1992

IF LAST-KEY IS ZEROC THENW
CALL *VFIELDEDITS® USING COMAREA
PERFORM UNTIL NUMERRORS IS ZERD
CALL “VERRMSG" USING COMAREA,MESSAGE-BUFFER,
MESSAGE-BUFFER-LENGTH, ACTUAL-LENGTH
CALL "VPUTWINDOW®" USING COMAREA,MESSAGE-BUFFER,
MESSAGE-BUFFER-~LENGTH
MOVE " G* TO WINDOWENH
CALL “VSHOWFORM® USING COMAREA
CALL “VREADFIELDS" USING COMAREA

MOVE " H™ TO WINDOWENH

MOVE SPACES TO MESSAGE-BUFFER

CALL "VPUTWINDOW* USING COMAREA,MESSAGE-BUFFER,
MESSAGE-BUFFPER-LENGTH

CALL "VFIELDEDITS" USBING COMAREA

IF LAST-KEY IS EQUAL TO & THEN
MOVE ZERO TO NUMERRORS
MOVE *v* TG DONE
END-1F
END- PERFORM

IF LAST-KEY IS ZERO THEN
CALL "VGETBUFFER™ USING COMAREA,
SCREEN~BUFFER, BUFFER~LENGTH

MOVE "n" TO NO-ENTRIES

AR R A EREERESEEE SRS EE LSRR ERESEEERESEAR SRR EREERRREEREEREEEREEREERERESERERESEEEE]

* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE "ITEM" AND *

*

*

*

*

vLIsT.

CREATION OF THE INDEX.

VARIABLES FOR THE COORESPONDING SUPERDEX DBFIND AND DBGET.

THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE

BE RETRIEVED BY THE THE RESULTING DBGET'S

*

x

*

THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO

*

*

*

IS SRR AR RS A AR LSRR SR SRR RS AR AR LR R AR EEREREEESEEEEEEREEEREEREREERESEERSS]

MOVE *CUSTOMER-NAME:*" TO ITEM-VALUE
MOVE *CUSTOMER-NUMEER, CUSTOMER-NAME; " TO LIST-VALUE

Version 3.1 March 1982

COBOL source programs B-38

B A A S SRR RS EAREEEREEERREAEELEE LR AR RRERRRRERREREERERSEEEEEESEEEEEE LSRR EEEEEEE]

* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOUSLY LOADED INTC THE ITEM PARAMETER. THE DBFIND *
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TC THE REQUESTED *
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS *
tE R A S S EE RS A EE SRR R SRS SRR NS SRR SRR R ER R RS RS R R R R R R RS R R R R R AR R R EERR]
CALL. "DBFIND* USING BASE, IMAGE-SET, MODEIL,
IMAGE~STATUS, ITEM, SCREEN~KEY-VALUE

IF CW IS NOT ZERO THEN
MOVE SPACES TO DATA-LINES
MOVE "No Qualifying Entries Found® 7C
MESSAGE-BUFFER
CALL "VPUTWINDOW® USING COMAREA,MESSAGE-BUFFER,
MESSAGE-BUFFER- LENGTH
MCVE "y* TCO NO-ENTRIES
ELSE
MOVE IMAGE-CHAIN-LENGTH TO ENTRIES-FOUND
END-IF
END-IF
ELSE
IF LAST-KEY I8 EQUAL TO B THEN
MOVE "v" TO DONE
END-IF
END-IF

IF {(LAST-KEY IS5 EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TO "n-
MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

IR R S R R R R R R R R E R R R RS S EE AR E R R SRR R R R R R R LR R A SRR R RS SR EREE SRR R EREERERE]

* READ THE CHAIN FORWARD OR BACKWARD, DEPENDING ON USER REQUEST *
LA A RS SR SRS REEEREEREEEESEEEERRESEREEEREESEEEEEARES SR EREREESESESESSEEERESESSEE]
IF SCREEN-DIRECTION IS EQUAL TO "B* THEN
MOVE & TO GET-MCDE
ELSE
MOVE 5 TC GET-MODE
END-IF

PERFORM UNTIL END-OF-SCREEN IS5 EQUAL TO "y~

B-40

COBOL source programs Version 3.1 March 1992

E R AR SR EEE R R A SR A SRS EEERERE SR EEERE SRR S NEEEERSEEREERERNEEREEREEEEEREESESESSE]

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE *
* DATASET WHICH CORRESPOND TO THE QUALIFYING ENTRIES RETRIEVED FROM *
* THE PREVIOUES DBFIND. *
LA AR AL E RS S S ER RS SRS R RS R iR RS AR RS RS SEERRE R SRR EREESEREESR]
CALL "DBGET" USING BASE, IMAGE-SET,GET-MODE,
IMAGE-STATUS, LIST, IMAGE- BUFFER, DUMMY

IF CW IS NOT EQUAL TC ZERO THEN
MOVE "y * TO END-QOF-SCREEN
MOVE *End of Current Entries* TO MESSAGE-BUFFER
CALL *"VPUTWINDOW® USING COMAREA,MESSAGE-BUFFER,

MESSAGE~BUFFER~LENGTH

ELSE
MOVE IMAGE~-CUSTOMER-NUMBER TO TEMP-CUSTOMER-NUMBER
MOVE IMAGE-CUSTOMER-NAME TC TEMP-CUSTCOMER-NAME
MOVE TEMP-LINE TO SCREEN-LINE{ARRAY~INDEXD
ADD 1 TO ARRAY-~INDEX

IF ARRAY-INDEX IS GREATER THAN 16 THEN
MOVE *y" TC END-OF-~SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL "VPUTWINDOW" USING COMARER,

MEZSSAGE~BUFFER, MESSAGE~BUFFER~LENGTH
END-IF
END-IF
END- PERFORM
END-IF
END-PERFORM,

MOVE ZERC TO LAST-KEY

EXIT PROGRAM.

Version 3.1 March 1992 COBOL source programs B-41

Concatenated Key Demo

$CONTROL SURBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-~ID. CONCATENATE-DEMO.
AUTHCR. BRADMARK TECHNOLOGIES.

ENVIRONMENT DIVISION.

DATA DIVISION,.
WORKING~STORAGE SECTION.

01 SCREEN-BUFFER,
02 SCREEN-KEY-VALUE.
05 SCREEN-ORDER-NUMBER PIC ${10} USAGE 15 DISPLAY.
05 SCREEN-PART-XEY PIC X(14}.
05 PART-ARRAY REDEFINES SCREEN-PART-KEY.
10 CHARACTER~ABRRAY OCCURS 14 TIMES.
15 FILLER PIiC X.
02 DATA-LINES.
05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.
10 SCREEN-LINE PIC X({78).

01 IMAGE-BUFFER.

02 OMNUMB PIC 85(9) COMP.
02 ITMPRT PIC X{14).
02 ITMDES PIC X{26).

01 DISPLAY-LINE.

02 DISPLAY-OMNUMB PIC 9(1C) USAGE IS DISPLAY.
02 FILLER PIC XX.

02 DISPLAY-ITMPRT PIC X{(14).

02 FILLER PIC XX.

02 DISPLAY-ITMDES PIC X({26}.

(1 KEY-VALUE,

02 ORDER-NUMBER PIC $91{9) COMP.
02 PART-KEY PIC X{14}.
01 FIND-MODE PIC B51(4) COMP.
01 BUFFER-LENGTH PIC 8%{4) COMF.

B-42 COBOL source programs Version 3.1 March 1992

01
01
0z
01

01
01
01

01
01
01

0z

ARRAY-INDEX

DONE

END-OF-SCREEN
NO-ENTRIES

FORM-KEYS
NUMBER~-OF-KEYS
KEY-BUFFER

MESSAGE-BUFFER
MESSAGE-~-BUFFER-LENGTH
ACTUAL~LENGTH

LINKAGE SECTION.
01 IMAGE.
02 IMAGE-STATUS.

02

02

02

62

02

02

05
65
05
05
a5
05

CW
IMAGE-ENTRY-LENGTH

IMAGE-RECORD-NUMBER

IMAGE-CHAIN-LENGTH

IMAGE-LAST-ON-CHAIN
IMAGE~-FIRST-ON-CHAIN

ITEM.

05

ITEM-VALUE

IMAGE-SET.

65

SET-VALUE

PASSWORD .

)

PASSWORD-VALUE

BAGE.

05
05

BASE-ID
BASE~VALUE

LIET.

65

LIST-VALUE

MODES.

05
05
05
G5
05
05
05
05

MODEL
MODEZ
MODE3
MODE4
MODESL
MODEG
MODE?
MODES

02 DUMMY

PIC
PIC
PIC
PIC
PIC
PIC

PIC

FIC

PIC

FIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC
FIC
PIC
PIC

PIC S58{4) COMP.
PIC X.
PIC X.
PIC X.

PIC £5{4) COMP VALUE 1.
PIC 85{4) COMP VALUE B.
PIC X({128}.

PIC X(72).
PIC 8%{4) COMP.
PIC 5%{4) COMP.

PIC §8{4) CCOMP.

59 {4) COMP.
59{4) COMP.
59(9) COMP.
59(9) COMP.
59(9) CCMP.
S9{9) COMP.
X(i6) .
X{1&}.
X{16} .

XX.

X{32).
X(200}.
59{4) COMP.
89 (4) COMP.
5% {4) COMP.
59(4) COMP.
S9(4) COMP.
38 (4) COMP.
59(4) COMP.
S9 {4} COMP.
$9 (4] COMP.

Version 3.1 March 1992

COBOL source programs B-43

01 COMAREA.

02 VSTATUS PIC 88 {4}

02 VLANGUAGE PIC XX.

02 COMAREA-LENGTH PIC s59(4)

02 FILLER PIC X(4}.

02 LAST-KEY PIC 55(4)

02 NUMERRORS PIC 5%{4)

02 WINDOWENH PIC XX.

02 FILLER PIC XX.

02 LABELOPTION PIC S55{4)

02 FORM-NAME PIC X(186)}.
02 REXT-FORM-NAME PIC X{16).
02 REPEATAPP PIC 89(4)

02 FREEZAPP PIC 89{4)

02 FILLER PIC XX.

02 VBUFFER-LENGTH PIC 894}

02 FILLER PIC X(64).

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE *n' TO DONE.

MOVE SPACES TO SCREEN-BUFFER,

MCOVE SPACES TO MESSAGE-BUFFER.

MOVE 72 TO MESSAGE-BUFFER-LENGTH.

MOVE *CONCATENATE' TO NEXT~FORM-NAME.
CALL 'VGETNEXTFORM' USING COMAREA.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-COF-KEYS

KEY-BUFFER.

CALL INTRINSIC *'.LEN.' USING SCREEN-RBUFFER GIVING

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO 'y
MOVE 'n*® TO END-OF-SCREEN

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER

BUFFER-LENGTH
CALL 'VSHOWFORM' USING COMAREA
MOVE SPACES TC MESSAGE-BUFFER

CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH

CALL 'VREADFIELDS* USING COMAREA

IFr LAST-KEY IS ZERC THEN
CALL ‘'*VEFIELDEDITS' USING COMAREA

B-44 COBOL source programs

Version 3.1 March 1892

PERFORM
CALL

CALL

MOVE

CALL

MOVE

MOVE

CALL

CALL

UNTIL NUMERRORE IS ZERO
'VERRMSG' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER~LENGTH ACTUAL-LENGTH
'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
' G' TO WINDOWENH
CALL 'VSHOWFORM' USING COMAREA
'VREADFIELDS® USING COMAREA

* H' TO WINDOWENH

SPACES TO MESSAGE-BUFFER

'VPUTWINDOW'® USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH

'VFIELDEDITS' USING CCOMAREA

IF LAST-KEY IS EQUAL TC & THEN
MOVE ZERO TO NUMERRORS
END-IF
END-PERFORM

IF LAST-XKEY IS NOT EQUAL TO B THEN

CALL
CALL

'VFINISHFORM' USING COMARER
'VGETBUFFER' USING COMAREAR SCREEN-BUFFER

BUFFER-LENGTH

PERFORM FIND-LENGTH~OF-DESCRIPTION

LA R AR R AR SRR EERSREEEEEEE LRSS RS R RS EEElE R AT E R R R E AR E R R EEEEEESEEEEE RSN

* THE NEXT TWO MOVES CONCATENATES THE USER ENTERED VALUES TO BUILD THE *

* ARGUMENT NEEDED IN THE DBFIND.

AR E S SR E S SRR EREEE SRR SRS R SRR ERR R E RS RS ES R R R R EE RS EER R SRR R R XSRS RS
MOVE SCREEN-ORDER-NUMBER TC ORDER-NUMBER
MOVE SCREEN-PART-KEY TO PART-KEY

RS SRR R R R SRS EEEEEESEESSEREREERERASSEREERERRSEEENE SRS R AR EE SRR EEEEEESESEEEEEESE]

* THE FIND MODE DEFAILTS TC A VALUE OF -104. THE DEFAULT VALUE

* TELLS SUPERDEX THAT THERE ARE 4 BYTES IN THE KEY. FOR EACH

* CHARACTER THAT THE USER ENTERS IN THE SECOND SCREEN FIELD THE

* VALUE IN THE PARENTHESIS IS INCREMENTED

LRSS EESEEERRREREE Al RS R RS R SRS R SRR R RRRE S RES SRRt RlRE LR EEEEEEEERSES

COMPUTE FIND-MODE = 0 - {100 + 4 + I}

MOVE

MOVE

‘n' TO NO-ENTRIES

'ORDER-LINES;' TO SET-VALUE

*

*

*

*

*

Version 3.1 March 1932

COBOL source programs

B-45

R R A E R R R S R SRR R E R R RS RS S R AR R RS R R RS R R R R E SRR R R AR R RS E R R R R SRS LR R EEEE R EEREEEEESE]

* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE “ITEM* AND *

* *LIST* VARIABLES FOR THE CORREESPONDING SUPERDEX DBFIND AND DEGET. *
* THE TTEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE *
* CREATION COF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TC *
* BE RETRIEVED BY THE THE RESULTING DBGET'S *

I EA S A SR SRS EEESESSSE R LR RS ELEREEEEEREEREEEEEERLEERREERERERREREERESEREE RSN

MOVE *ORDER-PART;' TO ITEM-VALUE
MOVE 'ORDER-NUMBER, PART-NUMBER, PART-DESCRIPTION; '
TO LIST-VALUE
IR R R S R R R R R R R R R S R R R R R S RS R R RS S R R RS R R RS R R R RIS SRS A R RS R E R R E SRR R EEEEEES EEES
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOCUSLY LOADED INTO THE ITEM PARAMETER. THE DBEFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TC THE REQUESTED *
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS *
I EEEE R SR REEE SR EEEEEAE RS R RS R R RS EREEEEEEREE R ESEEE AR R SRR REEERERE SRS ESEREEESSERESH]E]
CALL 'DBFIND' USING BASE IMAGE-SET FIND-MODE
IMAGE-STATUS ITEM KEY-VALUE
IF CW I& NOT EQUAL TO 0 THEN
MOVE ‘No Qualifying Entries Found' TO
MESSAGE-BUFFER
MOVE 'y TO NO-ENTRIES
MOVE SPACES TO DATA-LINES
CALL *VPUTWINDOW' USING COMARER MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
END~IF
END-IF

END- IF

IF LAST-KEY IS EQUAL TO 8 THEN
MOVE *y' TO DONE

END-IF

IF {LAST-KEY IS EQUAL TO ZEROC OR LAST-KEY I8 EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TC 'n' THEN
MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

PERFORM UNTIL END-OFP-SCREEN IS EQUAL TO 'y

X XS R R RS S E R SRS EE R RS E E R EE R AR R E SRR EREEEE SRS S AL R AR R AR R R R AR SR EEEENS

* THE FOLLOWING DRBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE *
* DATASET WHICH CCRRESPGND TO THE QUALIFYING ENTRIES RETRIEVED FROM *
* THE PREVIOUS DBFIND. *

IR R AR RS SRR SR EE R R EEEE SR RS ARl R EEEEEREAEEREREREEEEREREEEEEEEREREEREEEEERESESS]

B-46 COBOL source programs Version 3.1 March 1992

CALL ‘'DBGET®' USING BASE IMAGE-SET MODESL IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY
IF CW IS NOT EQUAL TO ZERO THEN
MOVE ‘'y' TO END-OF-SCREEN
MOVE ‘End of Current Entrieg® T0O MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSACGE-BUFFER
MESSAGE~BUFFER-LENGTH
ELSE
MOVE SPACES TO DISPLAY-LINE
MOVE OMNUMB TO DISPLAY-OMNUME
MOVE ITMPRT TO DISPLAY~ITMPRT
MOVE ITMDES TO DISPLAY~ITMDES
MOVE DISPLAY-LINE TO SCREEN-LINE (ARRAY-INDEX]}
ADPD 1 TC ARRAY-INDEX
IF ARRAY-INDEX IS GREATER THAN 17 THEN
MOVE 'y' T0O END-OF-SCREEN
MOVE *More Entries Below' TO MESSAGE-BUFFER
CALL ‘*VPUTWINDOW' USING COMAREA MESSAGE-BUPPER
MESSAGE-BUFFER-LENGTH
END-IF
END-IF
END-PERFORM
END-IF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.

(A EEEREEEEEES SR EERE SRR RS EREEEEREEE SRR SR RS SRR SRR R ER SRR R EEREE R EE RS

* -«
* THIS ROUTINE WILL RETURN THE NUMBER OF CHARACTERS ENTERED *
* BY THE USER IN THE SECOND SCREEN FIELD. *
* *

LB R SRR RS REEEER LR RS R LR EREREER RS AL RS SRS RERESEREREEEREEEEERSEEESES]

FIND-LENGTH-OF-DESCRIPTION.
MOVE 14 TO 1.
PERFORM UNTIL (I IS EQUAL TO ZERO) OR
[{CHARACTER-ARRAY (1} 185 NOT EQUAL TO SPACE}
SUBTRACT 1 FROM I
END-FERFCRM.
FIND-LENGTH-EXIT.
EXIT.

Version 3.1 March 1992 COBOL source programs B-47

Keyworded Key Demo

SCONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. KEYWORD-DEMO.

AUTHOR. BRADMARK TECHNOLOGIES.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING~STCRAGE SECTION.

01

01

Gl

01

01

01
01
01

01
01
01

01
01
01

SCREEN-BUFFER.
02 SCREEN-KEY-VALUE
02 DATA-LINES.

PIC X(50}.

05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.
PIC X{78;.

10 SCREEN-LINE

BUFFER-LENGTH

ARRAY-INDEX

IMAGE-BUFFER.
02 IMAGE-CUSTOMER-NUMBER
02 IMAGE-CUSTOMER-NAME

TEMP-~LINE.
¢z TEMP-CUSTOMER-NAME
02 FILLER
02 TEMP-CUSTCMER-NUMBER

DONE
END-OF-SCREEN
NO-ENTRIES

FORM-KEYS
NUMBER-QF-KEYS
KEY-BUFFER

MESSAGE-BUFFER
MESSAGE~BUFFER-LENGTH
QUALIFY-BUFFER.

02 ENTRIES-FOUND

02 FILLER

PIC

PIC

58{(4)

g9 (4}

COMP.

COMP.

PIC 89(%) COMP.
PIC X{30}.

PIC X(30).
PIC X VALUE SPACES.
PIC 3{10} USAGE DISPLAY.

PIC
PIC
PIC

FIC
PIC
PIC

PIC
FIC

PIC
PIC

x.
X.
X.

85 (4}
£9 (4}

COMP VALUE 1.
COMF VALUE 8.

X{i28).

X{72)
5%(4)

COMP.

22,729,

X{66)

* Entries Found. (More Entries Below)".

VALUE

B-48 COBOL source programs

Version 3.1 March 1892

LINKAGE SECTION.
01 IMAGE.

G2

02

0z

02

02

0z

0z

02

IMAGE-STATUS.
05 CwW

05 IMAGE-ENTRY-LENGTH
05 IMAGE-RECORD-NUMBER
65 IMAGE-CHAIN-LENGTH
65 IMAGE-LAST-ON-CHAIN
05 IMAGE-FIRST-ON-CHAIR

ITEM,
05 ITEM-VALUE

IMAGE-SET.
05 SET-VALUE

PASSWORD .

05 PASSWORD-VALUE

BASE.
05 BASE-ID
0> BASE-VALUE

LIST.
05 LIST-VALUE

MODES.

05 MODE1L
05 MODE2
05 MODE3
05 MODEM4
05 MODES
05 MCDE®
&5 MODET
05 MODES

DUMMY

01 COMAREA.

02
02
02
0z
02
02
02
02
02
02
02
0z
02
02
62
02

VETATUS
VLANGUAGE
COMAREA - LENGTH
FILLER
LAST-KEY
NUMERRORS
WINDOWENH
FILLER
LABELOPTION
FORM-NAME
NEXT-FORM-NAME
REPEATAPP
FREEZAPP
FILLER
VEBUFFER-LENGTH
FILLER

PIC
FIC
PIC
PIC
pIicC
PIC

PIC

PIC

pIC

FIC
PIC

PIiC

PIiC
PIicC
PIC
PIC
PIC
PIic
PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC
FIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
FIC

89(4) COMP.
59(4) COMP.
£9(8) COMP.
S91(8) CoMP.
S9(%; COMP.
59(9} COMP.
X(16}
X({1e}.
X{16;} .

XX,

X{32}.
{2007,
S9{4) COMP.
£9(4} COMP.
59 (4) COMP.
S9(4) COMP.
88 (4) COMP.
89(4) COMP.
89 (41 COMP.
59(4) COMP.
59(4) COMP.
59(4) COMP.
XX.

89 (4) COMF.
Aid).

89 (4) COMP.
89 (4) COMP.
XX,

XX,

59(4) COMP.
X(16).
X(i6).
59(4) COMP.
89(4) COMP.
XX,

89(4} COMF.
X(64] .

Version 3.1 March 1992

COBOL source programs B-49

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE 'n' TO DORE.

MOVE SPACES TO SCREEN-BUFFER.

MOVE SPACES TO MESSAGE-BUFFER.

MOVE 72 TO MESSAGE-BUFFER-LENGTH.

MOVE 'CUSTOMERS;' TO SET-VALUE.

MOVE *KEYWORD'® TO NEXT-FORM-NAME.

CALL *VGETNEXTFORM' USING COMAREA,

CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-CF-KEYS
KEY-BUFFER.

CALL INTRINSIC '.LEN.' USING SCREEN-BUFFER GIVING
BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO 'y!
MOVE 'n' TC END-QOF-SCREEN

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH
CALL 'VSHOWFORM' USING COMAREA

MOVE SPACES TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER~LENGTH

CALL 'VREARDFIELDS' USING COMAREA
IF LAST-KEY IS ZERC THEN
CALL 'VGETBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

MOVE *‘n' TO NO-ENTRIES

IR R R E R R R SR R A R R R EEEEEE R EREEEEEEE RS AR EREEEERERR SR RERES RS S EEEELEREEEERS;

* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE "ITEM" AND *

* *LIST"™ VARIAELES FOR THE CORRESFONDING SUPERDEX DBFIND AND DBGET. *
* THE ITEM VALUE REPRESENTS THE SI-PATH iS DEFINED DURING THE *
* CREATION OF THE INDEX, THE LIST VALUE REPRESENTS THE IMAGE ITEMS TC *

* BE RETRIEVED BY THE THE RESULTING DBGET'S *
R I I I T I T I L I T TSNt Y
MOVE *CUSTOMER-~NAME-KW;*® T0 ITEM-VALUE
MOVE 'CUSTOMER~NUMBER, CUSTOMER-NAME; * TO LIST-VALUE
N E R R I s e IS TIIIIEY
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED ¥
* BY THE ITEM VALUE PREVIOUSLY LOADED INTC THE ITEM PARARMETER. THE DBFIND~
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TC THE REQUESTED *
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DRBGETS *

IR SRS EEE R EEREEEEAESE RS AR R R R R ERERS RS R R ERE SRS RE RSN RREEREEEEE R LR EEE RS RN

CALL *DBFIND' USING BASE IMAGE-SET MODEl1 IMAGE-STATUS
ITEM SCREEN-~KEY-VALUE
IF CW IS NOT ZERO THEN
MOVE 'No Qualifving Entries Found' TO
MESSAGE~BUFFER

B-50 COBOL source programs Version 3.1 March 1992

MOVE ‘y' TO NO-ENTRIES
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW® USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
ELSE
MOVE IMAGE-CHAIN-LENGTH TO ENTRIES-FOUND
END-IF
ELSE
IF LAST-KEY IS EQUAL TQ 8 THEN
MOVE 'y' TO DONE
END-IF
END-IF

IF (LAST-KEY I8 EQUAL TO 2EROC OR LAST-KEY IS EQUAL TO 1}
AND NO-ENTRIES IS EQUAL TO *n' THEN

MCOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

PERFORM UNTIL END-OF-SCREEN IS EQUAL TO 'y’
IS SRR SRS R LSRR EE R RS E RS R R R ARE RS RS RERANEE RS R EERRREEENESERENESENXEEEXEXEESEREREXES
* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE *
* DATASET WHICH CORRESPOND TO THE QUALIFYING ENTRIES RETRIEVED FROM *
* THE PREVIOUS DBFIND. *
(B A RS SRR E R R SRR RE SR EEREEEEEEREEEEERE RS EREREEERSERRESERE RS R R REREERESESEEE]
CALL 'DBGET' USING BASE IMAGE-SET MODES IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY

IF CW IS NOT EQUAL TO ZERO THEN
MOVE 'yv' TO END-OF-SCREEN
MOVE ‘'End of Current Entriles®' TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
ELSE
MOVE IMAGE~CUSTOMER~NUMBER TO TEMP-CUSTOMER-NUMBER
MOVE IMAGE-CUSTOMER-NAME TO TEMP-CUSTOMER-NAME
MOVE TEMP-LINE TC SCREEN-LINE[ARRAY-INDEX)
ADD 1 TO ARRAY-INDEX
IF ARRAY-INDEX IS GREATER THAN 15 THEN
MOVE ‘'y' 7O END-OF-SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL 'VPUTWINDOW*' USING COMAREA
MESSAGE~BUFFER MESSAGE-BUFFER~LENGTH
END-IF
END-IF
END-PERFORM
END-IF
END-PERFORM,

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.

Version 3.1 March 1892 COBOL source programs B-51

Grouped Key Demo

$CONTROL SUBPROGRANM
TDENTIFICATION DIVISICN.
PROGRAM~IED. GROUP~DEMO.

AUTHOR. BRADMARK TECHNCLOGIES.

ENVIRCNMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01

01

01

01
01
01

01

01

01
61
0l
01
01
01

SCREEN~BUFFER.
02 SCREEN-KEY-VALUE
02 DATA-LINES,

PIC

{507},

05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.

10 SCREEN-LINE

BUFFER-LENGTH

ARRAY-INDEX

DONE
END-OF-3CREEN
NO-ENTRIES

IMAGE~BUFFER.
(¢2 IMAGE-CUSTOMER
02 IMAGE~-ADDRESSI
02 IMAGE-CITY

TEMP-LINE.
02 TEMP-CUSTOMER
02 FILLER
02 TEMP-ADDRESSI1
62 FILLER
02 TEMP-CITY

FORM-KEYE
NUMBER-OF-KEYS
KEY-BUFFER
MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
GUALIFY-BUFFER.

02 ENTRIES-FOUND

02 FILLER

* Entries Qualified.

PIC

PIC

PIiC

PIC
PIC

PIC

PIiC
PIC
PIC

PIC
PIC
PIC
PIC
PIC

PIC
RIC
rIC

 PIC

PIC

PIC
PIC

Xx{78y.
SS9 (4} COMP.
59(4) COMP.

x.
X.
X

X{30}.
X{26}.
X{le).

X{30}).
X{1} VALUE SPACES.
X(26).
X{1) VALUE SPACES.
X{26}.

S8{(4}) COMP VALUE 1.
S5(4) COMP VALUE 8.
Xx(i28).

{72y,

89 (4) COMP.

22,%%9.
X(66) VALUE

{More Entries Belowl".

B-52 COBOL source programs

Version 3.1 March 1992

LINEAGE SECTION.
01 IMAGE.

02

02

02

62

02

G2

0z

G2

IMAGE-STATUS.
05 W

05 IMAGE-ENTRY-LENGTH
05 IMAGE~RECORD~NUMEER
05 IMAGE-CHAIN-LENGTH
05 IMAGE-LAST-ON-CHAIN
05 IMAGE~FIRST-ON-CHAIN

ITEM.
0% ITEM-VALUE

IMAGE-SET.
05 SET-VALUE

PASSWORD.

05 PASSWORD-VALUE

BASE.
05 BASE-ID
05 BASE-VALUE

LIST.
05 LIST-VALUH

MODES.

0% MODEL
05 MODE2
05 MODE3
05 MODE4
05 MODES
05 MODEG
05 MODE?
05 MODES

DUMMY

01 COMAREA.

02
02
02
02
0z
02
02
02
02
02
02
02
02
02
G2
02

VSTATGS
VLANGUAGE
COMAREA-LENGTH
FILLER
LAST-KEY
NUMERRORS
WINDOWENH
FILLER
LABELOPTION
FORM-NAME
NEXT-FORM-NAME
REPEATAPP
FREEZATP
FILLER
VBUFFER~LENGTH
FILLER

PIC
FIC
PIC
PIC
FIC
PIC

PIC

FIC

PIC

PIC
FIC

FIC

PIC
BIC
FiC
PIC
BIC
PIC
PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
pPIC
PIC
pIC
PIC

89 (4) COMP.
S9(4) COMP.
89 (9) COMP.
58(9) COMP.
S9(9) COMP.
8% (9) COMP.
x{16]

X{16)
X116} .

XX

X{32).
X(200).
S9{4) COMP.
S9(4) COMP.
£9(4) COMP.
$9(4) COMP.
S9(4) COMP.
$9(4) COMP.
$9{4) COMP.
§9(4) COMP.
S9(4) COMP.
S9(4; COMP,
XX

891(4) COMP,
A4y,

891(4) COMP.
59 (4) COMP.
XX,

XX.

S9(4) COMP.
X{16}).
X(16}).
S58(4; COMP,
S8 (4] COMP.
XX.

89(4) COMP.
X{64}).

Version 3.1 March 1992

COBOL source programs B-53

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE 'n' TO DONE.

MOVE SPACES TO SCREEN-BUFFER.

MOVE SPACES TO MESSAGE-BUFIPER.

MOVE 72 10 MESSAGE-BUFFER-LENGTH.

MOVE 'CUSTOMERS;' TO SET-VALUE,

MOVE 'GROUPKEY' TO NEXT-FORM-NAME.

CALL 'VGETNEXTFORM®' USING COMAREA.

CALL 'VGETKEYLABELS'® USING COMAREA FCRM-KEYS NUMBER-OF-KEYS
KEY-BUFFER.

CALL INTRINSIC *.LEN.' USING SCREEN-BUFFER GIVING
BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TG 'y*
MOVE *n' TC END-OF-SCREEN

CALL 'VPUTRBUFFER® USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH
CARLL 'VSHOWFORM' USING COMAREA

MOVE SPACES TO MESSAGE~BUFFER
CALL 'VFUTWINDOW' USING COMAREA MESSAGE-BUFFER
MEESAGE~BUFFER~LENGTH
CaLL 'VREADFIELDZ' USING COMAREA

TP LAST-KEY IS ZERO THEN
CALL 'VGETBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

MCOVE 'n' TO NO~ENTRIES

LR A EZ S R R R R R A RN A R R R R E R R EEEE R SR ERE R R SRR R R AR EERE R ERE SRR EEREEREREEREEESE

* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE “ITEM®" AND *

* *LIST* VARIABLES FOR THE CORRESPONDING SUPERDEX DEFIND AND DBGET. *
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE *
* CREATICN OF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO *
* BE RETRIEVED BY THE THE RESULTING DBGET'S *

IR S EEEEE SRR AL R SRR SRS SRR ERE AR RR s Rl SRS AR Rl ERS R ERRl R EEE SR AR SRS S

MOVE 'ADDRESS1-CITY-KW;' TC ITEM-VALUE
MOVE ‘CUSTOMER-NAME,ADDRESS-1,CITY;* TO LIST-VALUE
IFEEE RSN EEE LSS SRR AR AR RS R E SR A AR AR R AR E Rt Rl Rl Ll sl el Ran sl RS B AR R RS RES]
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOUSLY LOADED INTC THE ITEM PARAMETER. THE DBFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED *
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS *

I E R R R R E R A R L R RS R R R RS S S S S RS S SR ELE SRR SRR SRS R NEREE R R REAE R RERER R RER S EREEEER

B-84 COBOL source programs Version 3.1 March 1992

CALL 'DBFIND' USING BASE IMAGE-SET MODEL IMAGE-STATUS
ITEM SCREEN-KEY-VALUE
IF CW IS NOT ZERO THEN
MOVE SPACES TC DATA-LINES
MOVE ‘'y' TO NO-ENTRIES
MCOVE *No Qualifying Entries Found*® TO
- MESSACE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESEAGE-BUFFER-LENGTH
ELSE
MOVE IMAGE-CHAIN-LENGTH TO ENTRIES-FOUND
END-IF
ELSE
IF LAST-XEY I8 EQUAL TO 8 THEN
MOVE 'y' TO DONE
END-1F
END~IF

IF (LAST-XKEY I8 EQUAL TO ZERO OR LAST-KEY I8 EQUAL TO 1}
AND NO-ENTRIEE I& EQUAL TO 'n' THEN
MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

PERFORM UNTIL END-OF-SCREEN IS EQUAL TC 'y

LR R R RS E RS SRR AR R RS R RN SR EEEREEEEE SRR R LR R R SRR R Rl ERERERERREEERERERESESE]

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE
* DATASET WHICH CORRESPOND TC THE QUALIFYING ENTRIES RETRIEVED FROM
* THE PREVIOQUS DBFIND.

&

*

*

[E R R E R R A RS R AR SR AR SRR R R A REE R SRR EEE R LR SRR AR AR R RS EREEE SRR RS SRR L EEE

CALL *"DBGET' USING BASE IMAGE-SET MODELR IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY
IF CW IS8 NOT EQUAL TO ZERD THEN
MOVE ‘'y* TO END-OF-SCREEN
MOVE *End of Current Entries' TO MESSAGE-BUFFER
CALL *VPUTWINDOW' USING COMAREA MESSAGE-~-BUFFER
MESSAGSE-BUFFER-LENGTH
ELsE
MOVE IMAGE-CUSTOMER TC TEMP~CUSTCOMER
MOVE IMAGE~ADDRESSL TO TEMP-ADDRESS]
MOVE IMAGE-CITY TO TEMP-CITY
MOVE TEMP-LINE TO SCREEKN-LINE{ARRAY-INDEX)

ADD 1 TO ARRAY-INDEX

IF ARRAY-INDEX IS GREATER THAN 15 THEN
MOVE ‘y' TO END-OF~SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
END-IF
END-IF
END~PERFORM
END-TIF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM,

Version 3.1 March 1992 COBOL source programs

Relational Access Demo - multiple datasets

SCONTROL SUBPROGRAM
IDENTIFICATION DIVISION,
PROGRAM-ID. PROJECTION-DEMO.
AUTHOR. BRADMARKX TECHNOLOGIES.

ENVIRONMENT DIVISICHN,

DATA DIVISION.
WORKING~STORAGE SECTION.

01 SCREEN-BUFFER.
02 SCREEN-COMPANY PIC X{30}.
02 SCREEN-ITEM PIC X{14}.
G2 DATA~LINES.
05 SCREEN-LINE-ARRAY OCCURS 15 TIMES.
10 SCREEN-LINE PIC X{(78).

01 BUFFER-LENGTH PIC £5{4) COMP.

01 COUNT-ITEM.
02 COUNT-ITEM-~-VALUE PIC XX VALUE '@@".

01 FIND-ITEM.
02 FILLER PIC X VALUE '[°.
(02 FIND-ITEM~VALUE PIC X({15).
02 FILLER REDEFINES FIND-ITEM-VALUE.
0% ITEM-CHARACTER-ARRAY OCCURS 15 TIMES.
10 FILLER PIC X.

01 FIND-CUST.
02 FILLER PIC X VALUE '['.
02 FIND-CUSTOMER~VALUE PIC X(31;.
02 FILLER REDEFINES FIND-CUSTCOMER-VALUE.
05 CUST-CHARACTER-ARRAY OCCURS 31 TIMES.

10 FILLER PIiC X.
01 ARRAY-INDEX PIC 89104} COMP.
01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.
01 FORM-KEYS PIC 891(4) COMP VALUE 1.
01 NUMBER-OF-KEYS PIC £%{4) COMP VALUE 8.
01 XKEY~BUFFER PIC X(128).

B-568 COBOL source programs Version 3.1 March 1992

01
01

MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
01 QUALIFY-BUFFER.
02 ENTRIES-FOUND
02 FILLER
* Entries Qualified.

PIC X{(72}.
PIC S9(4) COMP.

PIC 22,229,
PIC X!{66} VALUE
{More Entries Below)™.

01 CUSTOMER-NUMBER PIC 86(9) COMP.
01 IMAGE-BUFFER.
02 IMAGE-CRDER-NUMBER PIC 89(9) COMP.
02 IMAGE-ITEM-KEY PIC X{14).
02 IMAGE-ITEM-DESCRIPTION PIC X{26).
02 IMAGE-QUANTITY-ORDERD PIC 895(4}) COMP.
02 IMAGE-LIST-PRICE PIC 8%{9} COMF.
01 LIST-PRICE PIC S{5}VSS COMP.
01 TEMP-LINE.
02 TEMP-ORDER-NUMBER PIC 8{10}) USAGE IS DISPLAY.
02z FILLER PIC XX VALUE SPACES.
02 TEMP-ITEM-XKEY PIC X(14).
02 FILLER PIC XX VALUE SPACES.
02 TEMP-ITEM-DESCRIPTION PIC X(26).
02 FILLER PIC XX VALUE SPACES.
02 TEMP-QUANTITY-ORDERD PIC Z2,277.
02 FILLER PIC XX.
02 TEMP-LIST-PRICE PIC Z,229.99.
01 PROJECTION-ARG PIC X(4) VALUE *'[*1;'.
01 I PIC 59{5) COMP.
LINKAGE SECTION.
01 IMAGE.
0Z IMAGE-STATUS.
05 Cw PIC £91(4}) COMP.
05 IMAGE-ENTRY-LENGTH PIC S8(4) COMP,
05 IMAGE-RECORD-NUMBER PIC S9(%) COMP.
05 IMAGE-CHAIN-LENGTH PIC 85(9) COMP.
05 IMAGE-LAST-ON-CHAIN PIC $9(8; COMP.
05 IMAGE-FIRST-ON-CHAIN PIC S9(%} COMP.
02 ITEM.
G5 ITEM-VALUE PIC X(16}.
02 IMAGE-SET.
05 SET-VALUE PIC X{16}
02 PASSWORD.
05 PASSWORD-VALUE PIC X{16).

Version 3.1 March 1992

COBOL source programs B-57

02 BAZE.

05 BASE-ID PIC XX,
{5 BASE-VALUE PIC X(32).
02 LIST.
05 LIST-VALUE PIC X{200)
02 MODES.
05 MODEL PIC 89(4;
05 MODE2Z : PIC 59(4)
05 MODE3 PIC 8943
05 MODE4 PIC 858(4}
05 MODES PIC S59{4}
05 MODE6 PIC 89{4)
05 MODE7 PIC S5 (4)
05 MODES PIC 894}
02 DUMMY PIC 88{4)
01 COMAREA.
02 VSTATUS PIC S9{4}
02 VLANGUAGE PIC XX.
02 COMAREA-LENGTH PIC 88{4}
02 FILLER PIC X(4}.
02 LAST-KEY PIC 594}
02 NUMERRORS PIC 8% {4}
02 WINDOWENH PIC XX.
02 FILLER PIC XX.
(2 LABELOPTION PIC $9(4)
02 FORM-NAME PIC X({16).
02 NEXT-FORM-NAME PIC X({16}.
02 REPEATAPP PIC 89{4}
02 FREEZAPP PIC $%{4)
02 FILLER PIC ZX.
02 VBUFFER-LENGTH PIC 85{(4)
02 FILLER PIC Xi&4).
PROCEDURE DIVISION USING IMAGE COMAREA.

BEGIN.
MOVE 'n' TO DONE.
MOVE SPACES TO SCREEN-BUFFER.
MOVE SPACES TO MESSAGE-BUFFER.
MOVE 72 TO MESSAGE-BUFFER-LENGTH.
MOVE *PROJECTION' TO NEXT-FORM-NAME.
CALL 'VGETNEXTFORM' USING COMAREA.

COMP.
COMP,
COMP.
COMP.
COMF.

COMP.

COMP.
COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

coMP .,

COMPE.

CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-OF-KEYS

KEY-BUFFER,

CALL INTRINSIC '.LEN.' USING SCREEN-BUFFER GIVING

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TC ‘y*
MOVE 'n' TO END-OF~SCREEN

B-58 COBOL source programs

Version 3.1 March 1982

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH
CALL 'VSHOWFORM® USING COMAREA

MOVE SPACES TO MESSAGE~-RUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER~LENGTH

CALL 'VREADFIELDS' USING COMAREA

IP LAST-KEY I8 ZERO THEN
CALL 'VGETBUFFER® USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

(AR A AR ERE RS ER R RSl R R AR RS R R R RS RRESEER RS EEEEE R RS EEEEREEZERE R RS

* INGERT THE SUPERDEX RELATIONAL OPERATORS INTC THE CUSTOMER NAME *

LA AR R AR SRS LR R R R R R RS SRR SRR ERE R R R E R RS R AR R EEE R R EEEE RS EEEEERE Y

PERFORM MAKE-FIND-CUST

MOVE ‘'CUSTOMERS;' TO SET-VALUE

LR R R R ERAERE AR RERREEERESBEEERE AR ERAEERAREEEEEEEEEERRRARRRRRERREEEEEEEEEEEEESEESSXSS

* THE FOLLOWING MOVE STATEMENT IS USED TO INITIALIZE THE "ITEM® *
* VARIABLE FOR THE FIRST SUPERDEX DBFIND. *
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE *
* CREATION OF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO *
* BE RETRIEVED BY THE THE RESULTING DBGET'S *

(AR R RS EASSEERARE LR R REEESEEEE RS SRR AR R Rl ERERESREREEEEER RS EEEE R R R R ERERER:]

MOVE 'CUSTOMER-NAME;' TO ITEM-VALUE
MOVE 'n*' TC NO-ENTRIES

LA B A S SEAE R R R SRR EEELEREEREERESERERER L SRS EEEEEEE SRRt SRR R R R R ERESERSESEESE]

* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOUSLY LOADED INTO THE ITEM PARAMETER. THE DBFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED *
* SCREEN ENTRY VALUE. *
(A RS SR EEE SRS RS LSS SR RS A ER RS EEEEEESERERAEEEREREEEEEEEE RN EEEE R EEEE S EEEREEEREEESEEX]
CALL 'DBFIND' USING BASE IMAGE~SET MODEL IMAGE-STATUS
ITEM FIND-CUST
IF CW IS8 NOT ZERO THEN
MOVE ‘y*' TO NO~ENTRIES
MOVE 'No Qualifving Entries Found® TO
MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESSAGE~BUFFER-LENGTH

Version 3.1 March 1892 COBOL source programs B-58

ELSE
IF IMAGE-CHAIN-LENGTH IS NOT EQUAL TC 1 THEN
MOVE 'y TO NO-ENTRIES
MOVE *More than one Entry Qualified' TO
MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
ELSE

RS E RS E AR REEEER AR EEEE R RAEEEEE Rl RS EEERS Rl RSEERREE SRRl EE R RN

* HERE I8 WHERE THE PROJECTICN FROM THE ORDER-HEADERS DATASET *
* I8 PERFORMED. FIRST THE NAME OF THE IMAGE DATASET THAT THE FROJECTION *
* WILL, BE PERFORMED AGRINST IS5 MOVED INTO THE SET PARAMETER. *

L EE R R R EEE RS EEE S RS AR R EEREEEE SRR EEREREES R LR X RSS R RS SR ER SR R R AR SRR REEEE S

MOVE 'ORDER-HFADERS;' TO SET-VALUE
HEXFFRT AT F R AT A TR T RS ST T AT AT T FRA AR A R A T AR I AR T AT TR Y TR T T Y
* SECONDLY THE SI-PATH NAME OF THE PROJECTION IS MOVED TG THE ITEM *
* PARAMETER *

RS EREA R EEREEEE RS SRR EEERSEREEEERESERREEEEREE R EEEREERERSEESEEERESENESERNESSEEEESESSENS’

MOVE *CUSTOMER-NUMBER;® TO ITEM-VALUE
2 SRS SRS EREESEREEESEESREEEEREE SR NSEREEEENEESEEREEREEEERESSENENESENRESEIEEENENENRSSZEESSEE]
* THE PROJECTION IS PERFORMED BY USING A DBFIND WITH THE PROJECTION *
* ARGUMENT (*[*];"). *
I EEE RS S E S ERS SR SR ESEREERAENERE R REEEEES SRS ENEERES RS EERESEENXLRESEEENEEENSNEENLNNEELNS.J
CALL 'DBFIND' USING BASE IMAGE-SET MODE1
IMAGE-STATUS ITEM PROJECTION-ARG

IF CW IS NOT ZERO THEN
MOVE "y’ TC NO-ENTRIEE
MOVE ‘No Crders Found for the Customer' TO
MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER
MEZSAGE-BUFFER-LENGTH

ELSE
IR A AR RS S SRR ERE RS EEAEREER R RS RS SRR ES AR R EEERESRERERESR AR EEEE R RS RESEERESEEN]
* HERE IS WHERE THE CRDER-LINES ARE QUALIFIED BY A BOOLEAN “AND® *
* OPERATION BETWEEN THE ALREADY QUALIFIED ORDER-HEADERS ENTRIES *
* AND THE ORDER-LINES DATA SET. *

I EE R SRR RS EEE S EEER RS SR LSRR RS R R ESERE R RN RS EARERERE SRR EREREEESEENS

I EE S SR NS SRR RS RS S R RS R SRR RS R R RS Rl R SRR R EERRREREEREEEEEEAEERERESESE]

* INSERT THE SUPERDEX RELATIONAL OPERATORS INTO THE PART NUMBER *
(B R R A E SR REE RS EEEEE R L SR AR RS EERENEEEERRERREESEREEREERREEEEEEE R EEESESE]
PERFORM MAKE-FIND-ITEM
MOVE 'ORDER-LINES;' TO SET-VALUE
(S SRR S S EEREE RS RS R R RS RER SRR RSl R RS ERES RS R S SR ERSREEREREEEEEESESS]
* THE SI-PATH THAT CONTAINS THE PART NUMBER AND THE ORDER NUMBER, *
* IN THAT ORDER, IS MOVED TO THE ITEM ARGUMENT OF THE DEFIND. *

IR R R R R A R E R E S RS RS E SR EE R E SR R ERE R EREEEREEEEREREEEREESE R E R EEEEEIESEEEEEESEEEE]

B-80 COBOL source programs Version 3.1 March 1992

MOVE *PART-ORDER;* T0 ITEM-VALUE

LR RS AR AR SRR EEEAEE RS SRR RS R R R R R R R RS E R E R R R R ESE SRS SRR SR EEE R ERE RS EREEXR.]

* THE DRFIND WILIL. PERFORM THE BOCLEAN “AND*" BETWEEN THE TWO SETS. *
* THE *"AND" CPERATOR ("&"} WAS MOVED INTO THE ARGUMENT PARAMETER *
* BY THE MAKE-FIND-ITEM PROCEDURE. *

IR R R RS EE SRR EE SR EEEEEEEEEEER R EE R R A SRR SRR RN RIS R SRR R RERA R AR R RESEEY

CALL ‘DBFIND' USING BASE IMAGE-SET MODEL
IMAGE-STATUS ITEM FIND-ITEM

IF CW NOT EQUAL ZERC THEN
MOVE 'y' TO NO-ENTRIES
MOVE 'No Items Found for the Customer’
TO MESSAGE-RUFFER
MOVE SPACES TC DATA-LINES
CALL *VPUTWINDOW' USING COMAREA
MESSAGE~BUFFER MESSAGE~BUFFER-LENGTH
ELSE
IR A S SRR EEEE SRR RS RS RS RS R EE R RS SRS EEREEERAEEREEREEEEEEEEEE & EE S EESEEESESEJXES
* THE NEXT DBFIND IS NEEDED TO DETERMINE THE NUMBER OF QUALIFYING *
* ENTRIES IN THE ITEM DATASET. THE CHAIN LENGTH VALUE OF THE IMAGE *
* STATUS ARRAY CONTAINED THE TOTAL NUMBER OF FOUND ENTRIES BY THE *
* THREE DBFIND'S. THE NULL ITEM INSTRUCTE SUPERDEX TO COUNT THE *
* QUALIFYING ENTRIES OF THE DATASET SPECIFIED BY THE SET PARAMETER *

IR EE R A RS EER SR LR R EREEEE R RS R R R R R R R R R R R R RS LR R R LR EREEEER RS EREESER]

MOVE *;' TO ITEM-VALUE

CALL 'DBFIND* USING BASE IMAGE-SET MODEL
IMAGE-STATUS ITEM COUNT-ITEM

MOVE IMAGE-CHAIN-LENGTH TO
ENTRIES-~FOUND
END-IF

END-IF
END-IF
END-TIF ELSE
I¥ LAST-KEY IS EQUAL TC 8 THEN

MOVE 'y' TO DONE
END-IF

END-IF

IF (LAST-XEY IS EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TC 'n' THEN
MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX
MOVE
*ORDER-NUMBER, PART-NUMBER, PART-DESCRIPTION, QUANTITY-OR
- 'DERED, UNIT-PRICE; ' TO LIST-VALUE

PERFORM UNTIL END-OF-SCREEN IS EQUAL TC 'y

Version 3.1 March 1892 COBOL source programs B-61

AR E R E R R R EEE R R R RS S E R RS RS RS R R R R R R R EE RS R R R R RS R EEREREEREREREEREE S EEE

* THE FOLLOWING DBGET IS USEDR TO RETRIEVE INFCRMATION FROM THE IMAGE *
* DATASET WHICH CORRESPONDS TO THE QUALIFYING ENTRIES RETRIEVED FRCOM *
* THE PREVICUS DBFIND. *
IEE SRS S A S LR RS ERE TS E SRR RS R RS R R EE R SR E R I EE R E S EE NS EE R R EE R R R E E N R R RS EEE SR NS N
CALL 'DBGET®' USING BASE IMAGE-SET MODES IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY
IF CW IS NOT EQUAL TO ZERO THEN
MOVE 'y' TO END-OF-SCREEN
MOVE ‘End of Current Entries' TO MESSAGE-BUFFER
CALL *VPUTWINDOW®' USING COMAREA MESSAGE-BUFFER
MESSAGE-BUFFER-LENGTH
ELSE
MOVE IMAGE-ORDER-NUMBER
TO TEMP-ORDER-NUMBER
MOVE IMAGE-ITEM-KEY
TO TEMP-ITEM-KEY
MOVE IMAGE~ITEM-DESCRIPTION
TC TEMP-ITEM-DESCRIPTION
MOVE IMAGE-QUANTITY-ORDERD
TO TEMP-QUANTITY-ORDERD
COMPUTE LIST-PRICE = IMAGE-LIST-PRICE / 100 *
IMAGE-QUANTITY-ORDERD
MOVE LIST-PRICE TO TEMP-LIST-PRICE

MOVE TEMP-LINE TO
SCREEN-LINE{ARRAY~INDEX)

ADD 1 TC ARRAY-INDEX

IF ARRAY-INDEX IS GREATER THAN 15 THEN
MOVE ‘'y' TO END-OF-SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL 'VPUTWINDOW® USING COMAREA

MESSAGE-BUFFER MESSAGE-BUFFER-LENGTH
END-IF
END~IF
END-PERFORM
END-IF
END-PERFORM.

MOVE ZERC TO LAST-KEY

EXIT PROGRAM.

B-62 COBOL source programs Version 3.1 March 1992

LA S A E R A RS R R A LSS E R SRR LR AR REESEEERERREEEREEEREE SRR RS RSt A SRR EEESE]

* THIS ROUTINE BUILDS THE ARGUMENT FOR THE DBFIND ON THE CUSTOMER*
* DATASET. THE ARGUMENT IS PRECEDED BY A '[' AND IS TERMINATED BY*
* A ']*. THE SQUARE BRACKETS ARE THE OPERATORS FOR THE RELATIONAL *
* SUBSYSTEM OF SUPERDEX. *
(A A E AR E SRS RS RS R RS R RS RRREEREEREERERSRER SRS EERESEEREER R R R R RE SRS EEES NS
MAKE~FIND-CUST.

MOVE SCREEN-CUSTOMER TO FIND-CUSTOMER-VALUE.

MOVE 30 TO I.

PERFORM UNTIL (I IS EQUAL TO ZERO} OR

(CUST-CHARACTER-ARRAY (I) IS NOT BQUAL TCQ SPACE)
SUBTRACT 1 FROM I

END- PERFORM.

ADD 1 TO I.

MOVE '}' TO CUST-CHARACTER-ARRAY(I).

MAKE~FIND-CUST-EXIT.
EXIT.

IR R RS SR RS ERAR SRR ER RS EREREREAE SRS R RS RS ER SRR SRRl RERERERERERE SRR EEREERS

* THIS ROUTINE BUILDS THE ARGUMENT FOR THE DBFIND ON THE ORDER-NUMBER
* DATASET. THE VALUE OF THE ENTRY I8 PRECEDED BY A *[* AND IS

*

*

* FOLLOWED BY A *]1'. AFTER THE ']', A '&'" IS APPENDED TC THE STRING.THE *

* ‘&' IS SUPERDEX'S OPERATOR FOR A LOGICAL AND.

*

I E R EEE R EE EEEE S LA EEEE N E S R RS E R RS E S E A SRR E RS R SRR EE R R SRR RS R R RN EE SRR RS R R EEREEES TN

MAKE-FIND-ITEM.
MOVE SCREEN-ITEM TO FIND-ITEM-VALUE,
MOVE 14 TO I.
PERFORM UNTIL (I IS EQUAIL TC ZERS) OR
(ITEM-CHARACTER~ARRAY (I} I8 NOT EQUAL TC SPACE)
SURTRACT 1 FROM I
END-PERFORM.
ADD 1 TO I.
MOVE *1' TC ITEM-CHARACTER-ARRAY(I).
ADD 1T TO I.
MOVE ‘&' TO ITEM~CHARACTER-ARRAY(I).

MAKE-FIND-ITEM-EXIT.
EXIT.

Version 3.1 March 1982

COBOL source programs B-63

