
SUPERDEX
Demonstration Manual

Version 3.1

All updates to or derivatives of the SUPERDEX™computer software provided herein
are copyrighted and may not be copied except for archival purposes, to replace a
defective copy, or for program error verification by Licensee. Copyrighted material
may not be copied onto any media (e.g. magnetic tape, paper tape, disc memory
cartridges, read-only memory, etc.) for any other purposes. The authorization to
duplicate copyrighted materials hereunder shall 110tbe construed to grant the
Licensee or Licensee's customer the right to use copyrighted SUPERDEX material in
any manner other than which is provided in this aqreernent or otherwise approved in
writing by Dr. Wolfgang Matt or Bradmark Technoloqies.

(c) 1988 Bradmark Technolclgies, Inc.

Released March, 1992

IMAGE, TurboIMAGE, and TurbolMAGElXL are trademarks of Hewlett-Packard Company

dBASE is a trademark of Ashton-Tate Corporation

SUPERDEX is a trademarked product names of Bradmark Technologies, Inc. for the SI-IMAGE
package developed and implemented by Dr. Wolfgang Matt

About this manual

This manual, when used in conjunction with the demonstration database and programs supplied, will
give you an introduction to SUPERDEX which will let you experience various SUPERDEX retrievals
performed using search criteria which you provide.

No knowledge of the SUPERDEX package is assumed for this demonstration.

This manual is arranged in the following format:

Section 1 !~ivesan Introduction of the demonstration package and explains how to set up the demo
environment.

Section 2 describes SUPERDEX by leading you through the interactive COBOL demonstration
programs provided, thus allowing you to experience first-hand SUPERDEX's powerful retrieval
capabilities and amazing speed. Data values are suggested but you are free to choose any value(s)
you want. An explanation which includes data structures, program operation and how the demo
works is given for each demo.

Section 3 reviews the SUPERDEX index structures used in the demonstration database and
explains how they are utilized throughout the demos. This is followed by a discussion on how to
configure a new SUPERDEX access path.

Appendix A shows the OEDB Demo database structure utilized throughout the SUPERDEX demos.

Appendix B contains listings of the COBOL source programs used in the SUPERDEX demos in
section 2.

Table of contents

Section 1: Introduction 1-1
Features 1-1
COBOL demonstration programs 1-1
Demonstration database 1-1
Database aceess 1-2
Loading the software 1-2
Running the demonstrations 1-2

Section 2: COBOL demo 2-3
Running the demonstrations 2-3
Simple key demo 2-4

About the demo 2-4
Running the demo 2-4
Further demonstration 2-7
How. the demo works 2-7

Concatenated key demo 2-9
About the demo 2-9
Running the demo 2-10
Further demonstration 2-11
How the demo works 2-12

Keyworded key demo 2-13
About the demo 2-13
Running the demo 2-14
Further demonstration 2-15
How the demo works 2-15

Grouped key demo 2-16
About the demo 2-16
Running the demo 2-17
Further demonstration 2-18
How the demo works 2-19

Relational access demo - multiple criteria 2-20
About the demo 2-20
Running the demo 2-20
Further demonstration 2-22
How the demos work 2-22
Relational access demo - multiple datasets 2-23
About the demo 2-23
Running the demo 2-24
Further demonstration 2-25
How the demo works 2-26

Section 3: SUPERDEX index structures 3-27
SUPERDEX paths 3-27

Configuring SI-paths 3-28
Creating a new SI-path 3-28

Appendix A: Demo database structure A-32

Appendix B: COBOL source programs B-35
Simple Key Demo 8-36
Concatenated Key Demo 8-42
Keyworded K,ey Demo 8-48
Grouped Key Demo 8-52
Relational AQC8SS Demo - multiple datasets 8-56

Section 1 Introduction

Features

This demonstration facility gives you the ability to interactively experience SUPERDEX's enhanced
data retrieval capabilities which include:

• muHiple keys in master and detail datasets
• concatenated keys containing muHiple fields
• sorted sequential retrieval
• automatic keywording and keyword retrieval
• generic and partial-key retrieval
• grouping of functionally-equivalent fields
• muHiple value lookup
• relational access across multple fields, datasets, and databases

COBOL demonstration programs

These features are shown by use of five COBOL programs which call replacement IMAGETM
compatible SUPERDEX intrinsics. The replacement SUPERDEX intrinsics have the same names as,
and are functionally equivalent to, the regular IMAGE intrinsics; they use the same methods that you
would use in your programs.

Edited listings of the demonstration source programs are included in Appendix B of this manual, with
complete sources contained in the DEMO.SUPERDEX files.

Demonstration database

A partial order entry database (called OEOB) is provided to facilitate the interactive demos. It
contains only four datassts which are used as follows:

CUSTOMERS Stand-alone manual master containing 1000 customer entries; IMAGE
search item is CUSTOMER-NUMBER.

ORDER-HEADE~.S Manual master containing 2620 order headers; IMAGE search item is
ORDER-NUMBER.

ORDER-LINES Detail dataset, related to ORDER-HEADERS, containing 10245 line items
related to order headers; IMAGE search item is ORDER-NUMBER.

SI Stand-alone detail dataset in which all SUPERDEX index structures are
maintained. Contains only the item Sl.

A complete database layout is contained in Appendix A of this manual.

Database access

Although the entries in this database can be accessed by their IMAGE search items, this
demonstration utilizes SUPERDEX access techniques only.

Loading the software

First, load the SUPERDEX software from the installation tape, following the separate $UPERDEX
loading instructions.

Then,logon:

I,HELLO HGR.SUPERDEX,DEHO

Once you have done this, you are ready to run through the demonstrations.

Running the demonstrations 1
The demonstration programs utilize VPLUS forms, so you must use a ter inal or be running a
terminal emulator that supports VPLUS. I

!

Remember to TAB between fields and use the ENTER key when you're done Iwith a screen. If you
want to clear a value entered in a field, type or SPACE over the old value, or press the CLEAR DISPLAY

key.

1-2 Introduction Version 3. 1 March 1992

Section 2 COBOL demo

Running the demonstrations

To run the COBOL demonstration programs, type

I ,CQBOLDEKO
at the MPE colon prompt (do not type the:) to display the following menu:

Demonstration

Bradmark Technologies

SUP E R D E X

l. Simple Key Demo

2. Concatenated Key Demo

3. Keyworded Key Demo

4. Grouped Key Demo

5. Relational Access Demo

Enter Selection

SUPERDEX is a trademarked product name of Bradmark Technologies for the SI-IMAGE
package developed and implemented by Dr. Wolfgang Matt

Five separate demonstration programs which are described on the following pages may be run from
this main menu.

~- ~- -----~--~---------~~~-~. -.~~~---~~----~----------------~~------~~-

Simple key demo

About the demo

A simple SUPERDEX key is very much like an IMAGE search item except that its capabilities are
extended in various ways, such as:

• sorted sequential retrieval
• generic and partial key retrieval
• less-than, greater-than, and range retrieval

The Simple Key Demo illustrates how to use a simple SI-key (SUPERDEX key) to locate customer
entries in the master dataset called CUSTOMERS.

Running the demo

Select option 1 from the Main Menu and press ENTER to proceed to the Simple Key Demo.

2-4 COBOL demo Version 3.1 March 1992

The following screen is displayed:

Customer _ Direction (F,B) _

Simple Jtey Demo

===
Customer Name Customer #

The first input field is for the customer name to be searched for. The second field indicates whether
entries should be returned in forward (ascending) or backward (descending) alphabetical order (F for
forward or B for backward).

Type

UNITED AIRLINES
in the Customer field. Enter

F

in the Direction field. When you press ENTER.SUPERDEX returns the corresponding entry:

IUNITED AIRLINES 0002112949

Version 3.1 March 1992 COBOL demo 2-5

This is very much like performing an IMAGE DBFIND against a search item value. However, unlike
IMAGE, SUPERDEX also supports partial key and generic retrievals. Change the value in the
Customer field to

UNITED@
and press ENTER. All entries that start with ·UNITED" are displayed:

UNITED AIRLINES
UNITED ALLOYS & STEEL
UNITED BUSINESS EQUIPMENT
UNITED CEREBRAL PALSY ASSN
UNITED CHURCH HOME
UNITED FUND BUFF & ERIE
UNITED IMPORT MOTORS INC
UNITED PRESB CHURCH

0002112949
0002100649
0002100652
0002100400
0002100304
0002100401
0002100700
0002100509

Similar to MPE's :LlSTF command, the @ character tells SUPERDEX to match zero or more
characters in the position where the @ is specified; the difference is that with SUPERDEX, characters
following the @ are ignored. If you specify a customer of just @, SUPERDEX will retrieve all 1000
entries in the dataset.

SUPERDEX automatically returned the entries in ascending sequential order because F is still in the
Direction field.

To try a descending order retrieval using a new wildcard, type

UNI?E@
in the first field. Change the Direction field to

B

and press ENTER. The? matchcode is used as a place-holder and represents a single alphanumeric
character (like in :LlSTF). All entries that start with "UNI" and contain an "E" in the fifth position
which is followed by alpha or numeric character(s) are displayed:

UNIVERSITY BOOKSTORE
UNITED PRESB CHURCH
UNITED IMPORT MOTORS INC
UNITED FUND BUFF & ERIE
UNITED CHURCH HOME
UNITED CEREBRAL PALSY ASSN
UNITED BUSINESS EQUIPMENT
UNITED ALLOYS AND STEEL
UNITED AIRLINES

0002100606
0002100509
0002100700
0002100401
0002100304
0002100400
0002100652
0002100649
0002112949

Note that entries are now returned in descending order.

2-6 COBOL demo Version 3. 1 March 1992

In the customer field, type

>=UN@<=UNI@
and press ENTER. This locates a range of entries starting with ·UN" through ·UNI," inclusive:

UNIVERSITY BOOKSTORE
UNITED PRESB CHURCH
UNITED IMPORT MOTORS INC
UNITED FUND BUFF & ERIE
UNITED CHURCH HOME
UNITED CEREBRAL PALSY ASSN
UNITED BUSINESS EQUIPMENT
UNITED ALLOYS AND STEEL
UNITED AIRLINES
UNITARIAN CHURCH
UNDERWRITERS SALVAGE CO

Further demonstration

0002100606
0002100509
0002100700
0002100401
0002100304
0002100400
0002100652
0002100649
0002112949
0002100207
0002100347

You are beginning to see the ease-of-use, flexibility and power of SUPERDEX SI-keys.

Try out additional values to further experiment with simple SI-keys. You may want to familiarize
yourself with the following new operators by imbedding them in values for the customer field:

>=value
<=value
«i-velue

greater-than or equal-to retrieval
less-than or equal-to retrieval
not-equal-to retrieval

Press the f8 key when you are done to return to the Main Menu.

How the demo works

Although SUPERDEX offers amazingly fast and powerful retrievals, it is surprisingly easy to
implement. SUPERDEX attempts to look and feel as much like IMAGE as possible so it is simple to
learn and use.

The retrievals in this demonstration were accomplished by accessing SUPERDEX index structures
contained in a special stand-alone detail dataset named Sl. Each unique relationship is referred to as
an S/-path and it is accessed in very much the same way as accessing an IMAGE path. In this
demo, an SI-path exists for customer name.

The program uses SUPERDEX's DBFIND mode 1 followed by a DBGET mode 5 or 6 which specifies
the SI-path in the item parameter of DBFIND. Doing a DBFIND on the manual master CUSTOMERS
may seem odd -- IMAGE's DBFIND works only for details -- but SUPERDEX's replacement intrinsics
also operate on master datasets because the dataset name is declared in the dset parameter of
DBFIND.

Version 3.1 March 1992 COBOL demo 2-7

SUPERDEX's DBFIND mode 1 accepts arguments that contain special operators, such as @ and?
In this program, the customer you specify is passed as the argument for DBFIND and the number of
qualifying entries is returned by SUPERDEX in words 5 and 6 of the status array. The entries are
retrieved and displayed in sorted order with DBGET 5 or 6 and, as in IMAGE, return an end-of-chain
or beginning-of-chain condition.

A complete copy of the source program appears in Appendix B and in the file
SDEMOSK.DEMO.SUPERDEX.

2-8 COBOL demo Version 3.1 March 1992

Concatenated key demo

About the demo

A concatenated SI-key consists of the values of two or more fields concatenated together. This not
only permits entries to be located by the combination of values for the various concatenated fields
(thereby avoiding lengthy chained reads) but it also imposes extended sorting capabilities.

This demo shows

• concatenated keys containing multiple fields
• extended sorted sequential retrieval

The Concatenated Key Demo illustrates the use of a concatenated SI-key to locate order line items in
the ORDER-LINES detail dataset.

Version 3.1 March 1992 COBOL demo 2-9

Running the demo
Select option 2 from the Main Menu and press ENTER to proceed to the Concatenated Key Demo.

The following screen is displayed:

Order Number _ Part Number _

Concatenated Key Demo

===
Order # Part Number Part Description

The first input field is for the order number to search for and the second field is for the part number
contained in each order line Hem. Entries must match on both fields in order to qualify.

Specify the Order Number

701257
in the first field and the Part Number

seM1511
in the second field. When you press ENTER, SUPERDEX returns the corresponding entry:

0000701257 SCM1511 COPYSETS CANARY CA9E 1065

2-10 COBOL demo Version 3. 1 March 1992

With the capability of specifying values for both fields, we were able to avoid a lengthy chained read
of the order's chain.

As seen in the Simple Key Demo, SUPERDEX supports partial key retrievals by using @; however,
the @ is not required when doing a concatenated key retrieval (the reason is explained later under
How The Demo Works). Change the value in the second field to

seK
and press ENTER. All entries with the specified order number and part numbers starting with ·SCM"
are displayed:

0000701257 SCM1312 FOLDER MANILA LTR 1/ 1120
0000701257 SCM1511 COPYSTES CANARY CA9B 1065
0000701257 SCM153-ST PADS TELEPHONE MESSA 1250
0000701257 SCM835-ST PAD SCRATCH 3X5 9120 1230
0000701257 SCM858-ST PAD SCRATCH 5X8 912 1235
0000701257 SCM870 PAD STENO GREGG RULE 1240
0000701257 SCM8784 PAD STENO PITMAN RUL 1245
0000701257 SCM9014-ST PAD LEGAL CANARY PER 1215
0000701257 SCM911-ST PAD LETTER CANARY 8- 1210
0000701257 SCMA1312 FOLDER MANILA LGL 1/ 1125

Note that entries are displayed in ascending alphabetical order by both order number and part
number. This is because all values contained in a concatenated SI-key are used for sorting
purposes; this permits extended sorting by multiple fields to be accomplished without the use of
sorted chains. In fact, SUPERDEX concatenated SI-keys permit sorted chains to be eliminated
entirely, thus permitting more flexible sorting while averting potential performance problems.

Further demonstration

You may try out additional order number and part number combinations. Because of the way the
program is written, you must specify a full order number in the first field but you may specify partial
part numbers of any length in the second field.

Clear the value in the second field so that only the order number 701257 is specified and press
ENTER. Then, try varying the part number and see the results. Also try the order numbers
915066,711155, and 929461 with various part numbers.

Press f8 when you are done to return to the Main Menu.

Version 3.1 March 1992 COBOL demo 2-11

How the demo works
This program accesses an 51-path that represents a concatenated 51-key which is comprised of the
order number and part number.

The program performs a partial-key retrieval on part number without the use of an @ in the argument
as in the Simple Key Demonstration; the partial-key retrieval is accomplished using a special DBFINO
mode that restricts the number of characters on which SUPEROEX matches.

In the demonstration database, order number is an I2 item and part number is an X14 item; their
combined length is 18 bytes. For the retrieval using order number 701257 and part number SCH,
it was only necessary to match on the first 7 bytes of the concatenated 51-key value (4 bytes for the
I2 item and the first 3 bytes of the X14 item). Therefore, DBFINO was called with a mode of -107
and an argument of 701257 SCH. The mode reflects the base value of 100 plus the number of
significant bytes (in this case 7). The mode is then made negative (if the mode were not negative, it
would specify 7 words rather than bytes.)

The program is hard-coded to impose a DBFINO mode of at least -104 (the full length of the order
number). It then determines the length in bytes of the part description specified and adds the two
together. This permits retrievals using either the full order number, no part number, or any number of
leading characters of the part number.

Note that the number of qualifying entries is not displayed in this demo program. This is because
only DBFINO mode 1 returns the entry count in the status array. This program used mode -104
which is more efficient and provides additional functionality.

A complete copy of the source program appears in Appendix B and in the file
SOEMOCAT.DEMO.SUPERDEX.

2-12 COBOL demo Version 3.1 March 1992

Keyworded key demo

About the demo

A keyworded SI-key is just like a simple SI-key except that every significant word contained in the
key may be searched on. For example, the customer "BRADMARK TECHNOLOGIES" could be
located by BRADMARK or TECHNOLOGIES.

This demo shows

• keyword retrieval
• generic and partial-keyword retrieval

The Keyworded Key Demo illustrates the use of a keyworded SI-key to locate customers stored in
the CUSTOMERS master dataset. It is the same type of retrieval as in the Simple Key Demo using
the same CUSTOMER-NAME field but this time it is configured as a keyworded SI-key.

Version 3. 1 March 1992 COBOL demo 2-13

Running the demo

Select option 3 from the Main Menu and press ENTER to proceed to the Keyworded Key Demo.

The following screen is displayed:

Xeyworded Xey Demo

Enter any word from a customer's name

===
Customer Name Customer #

To do generic keyword retrieval, you may specify any word contained in any customer name. Type

FRANK
and press ENTER. All the customers that contain the word "FRANK" are displayed:

CIMINELLI FRANK CONST
RIPPLE J FRANK

0000300057
0001800510

It does not matter where in the field the keyword occurs but it must be separated by spaces or
special characters.

2-14 COBOL demo Version 3. 1 March 1992

SUPERDEX also supports partial-keyword retrieval. Append an @ to the specified value

FRANK@

and press ENTER. All entries that contain words that start with "FRANK" are displayed:

CIMINELLI FRANK CONST
RIPPLE J FRANK
FRANKENSTEIN WM D

0000300057
0001800510
0000600628

As in the Simple Key Demonstration, you may use @ and/or? to perform partial-keyword or generic
keyword searches.

Further demonstration

Try using additional keyword values to further experiment with keyworded SI-keys. You may include
the @, ?, >=, <=, and <> operators described in the Simple Key Demo.

Note that you will not have any success using the values ASSN, ASSOC, CO, COMPANY, CORP, or
INC .. these common words have been excluded from keywording (by entering them in a special file
named KWEXCLUD) to conserve disk space and optimize retrieval speed.

If you specify just @ in the input field, you will find that the program indicates that 2790 entries qualify
-- even though there are only 1000 entries in the dataset! This is because each keyword occurrence
is included in the entry count (returned in the status array) and the program is reporting this value.
This count does not, however, include the excluded words "ASSN," "ASSOC," etc.

Press f8 when you are done to return to the Main Menu.

How the demo works

This program is almost identical to the Simple Key Demo program. The main difference is that a
keyworded SI-path is referenced and therefore all access against the SI-path is treated as
keyworded.

In SUPERDEX, an SI-path may be configured as keyworded or not keyworded. This is strictly a
configuration option specified when the SI-path is established; it does not impact any subsequent
processing. Keywording is performed automatically when entries are DBPUT, DBUPDATEed, and
DBDELETEed, or whenever DBFIND is used. There is no difference in handling a keyworded SI-
path versus a non-keyworded SI-path.

A complete copy of the source program appears in Appendix B and in the file
SDEMOKW.DEMO.SUPERDEX.

Version 3.1 March 1992 COBOLdemo 2-15

----------------_ ..__ . --

Grouped key demo

About the demo

A grouped SI-key permits multiple fields in a dataset to be handled as if they were a single field. For
example. if three fields contain people's names and you need to locate a specific person, all three
fields would be searched in a single simultaneous operation.

This demo shows

• grouping of functionally equivalent fields
• multiple keys in master and detail datasets
• generic and partial-key retrieval

The Grouped Key Demo illustrates the use of a grouped SI-key to locate customers stored in the
CUSTOMERS master dataset by either address or city. These two fields are combined to form a
group and the group is configured as keyworded to allow access to any word in either field.

2·16 COBOL demo Version 3.1 March 1992

Running the demo

Select option 4 from the Main Menu and press ENTER to proceed to the Grouped Key Demo.

The following screen is displayed:

Customer Name Address City

Grouped Key Demo

Enter any word from the address fields or the city field

===

Version 3.1 March 1992 COBOLdemo 2-17

You may specify any word contained in any address or city. Type

KENMORE

and press ENTER. All the customers that have an address on "KENMORE" Avenue or are in the city
of "KENMORE" are displayed:

BARBER-COLMAN CO 1249 MILITARY RD KENMORE
CASSETTA AGENCY CO INC 810 KENMORE AVE BUFFALO
C B N 3174 DELAWARE AVE KENMORE
CEGLIA LAWRENCE 2070 SHERIDAN DR KENMORE
C S F DESIGNS INC 61 GARDENWOOD LANE KENMORE
CENTURY 21 GOLD JACKET 3411 DELAWARE AVE KENMORE
CECOS ENVIRONMENTAL INC 2321 KENMORE AVENUE BUFFALO
CHECKERCAR CLUB OF AMERICA 4693 TERMAINE AVE. KENMORE
CHECKPOINT FOREIGN CAR 487 KENMORE AVE BUFFALO
F B L ASSOCIATED AGENCIES 860 ENGLEWOOD AVE KENMORE
FASO CHARLES P. AGENCY 860 ENGLEWOOD AVE KENMORE
HOOD COMPANY INC 2225 KENMORE AVENUE BUFFALO
IMMCO DIAGNOSTICS INC 963 KENMORE AVE BUFFALO
KOCH RICHARD J CPA 1026 ENGLEWOOD AVE. KENMORE
LAKELAND AUTOMOTIVE 536 NIAGARA FALLS BLVD KENMORE

It does not matter where the specified keyword or partial-keyword occurs in either field so long as it
occurs in one of them. Note that the customer name is displayed for information only -- it is not
included in the group and therefore may not be searched on.

Further demonstration

You may try additional values to further experiment with grouping. Try including the @, ?, >=, <=,
and <> operators already described.

Try the values AMHERST, NIAG@, and WILLIAM@ for interesting results.

If you specify just @ in the input field, you will find that although the dataset contains only 1000
entries, the program indicates that 4414 entries qualify. This is because each keyword occurrence in
both the address and city field is included in the entry count (returned in the status array) and the
program is reporting this value.

Press f8 when you are done to return to the Main Menu.

2-18 COBOL demo Version 3. 1 March 1992

How the demo works

In SUPERDEX, an SI-path may be configured as grouped or not grouped. A grouped SI-path may
be keyworded or not keyworded. In this example, the SI-path is configured as both grouped and
keyworded; it is comprised of the address and city fields. Other fields, such as a second-line
address, can also be included in the group, if desired.

Whether an SI-path is configured as grouped or not is completely transparent to programs. Grouping
is performed automatically when entries are DBPUT, DBUPDATEed, DBDELETEed or whenever
DBFIND is called. Keywording is also transparent so there is no difference when handling a grouped
SI-path vs. a non-grouped SI-path.

A complete copy of the source program appears in Appendix B as well as in the file
SDEMOGRP .DEMO.SUPERDEX.

Version 3. 1 March 1992 COBOL demo 2-19

Relational access demo - multiple criteria

About the demo

Before proceeding to the last demo program, we must introduce another very powerful concept which
applies to the demo programs run thus far:

• relational access using multiple values for a field

We have shown how SUPERDEX permits both generic and partial-key retrievals by using the @, ?,
>=, <=, and <> operators. However, these capabilities may not always be sufficient to adequately
qualify the entries you want. Therefore, you may sometimes find it useful to use a technique called
Relational Access to further qualify entries.

Running the demo

To illustrate the concept of Relational Access, go back to the Simple Key Demo (option 1) and type
the following (including the trailing vertical bar)

-UNITED@ OR CENTRAL@;
in the customer field. Type

F

in the Direction field and press ENTER. The following entries are displayed:

CENTRAL BFLO PROJECT CORP.
CENTRAL PK UNITED METH
CENTRAL AUTO WRECKING
CENTRAL CITY RESTORATN
CENTRAL ANESTHESIA SVCE
CENTRAL ORGAN SERVICE
UNITED CHURCH HOME
UNITED CEREBRAL PALSY ASSN
UNITED FUND BUFF & ERIE
UNITED PRESB CHURCH
UNITED ALLOYS & STEEL
UNITED BUSINESS EQUIPMENT
UNITED IMPORT MOTORS INC
UNITED AIRLINES

2-20 COBOL demo

0000300209
0000300236
0000300394
0000300427
0000300527
0000300559
0002100304
0002100400
0002100401
0002100509
0002100649
0002100652
0002100700
0002112949

Version3.1 March 1992

As illustrated, SUPERDEX selected all the entries that begin with either "CENTRAL" or "UNITED."

This was accomplished by beginning the argument with a tilde C) and ending it with a ;. When the
argument is surrounded with these characters, the words AND, OR and NOT (the boolean
operators) may be included in the argument itself.

To further illustrate the Relational Access concept, exit this demo and go to the Keyworded Key
Demo (option 3). Type

FRANlt@
and press ENTER. The following entries are displayed:

CIMINELLI FRANK CONST
RIPPLE J FRANK
FRANKENSTEIN WM D

0000300057
0001800510
0000600628

Now, change the value to

-FRANK NOT FRANKENSTEIN;
and press ENTER. This displays all the entries that contain a word starting with "FRANK" and not
"FRANKENSTEIN. "

CIMINELLI FRANK CONST
RIPPLE J FRANK

0000300057
0001800510

To further demonstrate the power and flexibility of Relational Access within an SI-key, exit this demo
and go to the Grouped Key Demo (option 4). Specify

-KENMORE AND BOFFALO;
to display all the entries that contain both "KENMORE" and "BUFFALO" in either the address or city
field. "KENMORE" appears only in the address field and "BUFFALO" appears only in the city field
because there are no entries in the database for customers with "BUFFALO" in the address field or
"KENMORE" in the city field. If there were, they would also qualify for selection.

CASSETTA AGENCY CO INC 810 KENMORE AVE
CECOS ENVIRONMENTAL INC 2321 KENMORE AVENUE
CHECKPOINT FOREIGN CAR 487 KENMORE AVE
HOOD COMPANY INC 2225 KENMORE AVENUE
IMMCO DIAGNOSTICS INC 963 KENMORE AVE
LOEFFLER F.H. COMPANY INC 328 KENMORE AVE.

BUFFALO
BUFFALO
BUFFALO
BUFFALO
BUFFALO
BUFFALO

Version 3.1 March 1992 COBOL demo 2-21

Several values with corresponding boolean operators may be specified at one time or in multiple
operations (using multiple successive OBFINOs). Type

-KENMORE;

and press ENTER. Note that 17 entries are displayed (the entry count is not shown because it is not
returned by this program).

Now, replace the value in the field with

- AND BUFFALO;

and press ENTER. SUPEROEX remembers the qualifying entries that were found previously and
uses them for comparison in the next operation. Now only six entries qualify. Using this technique,
you may use successive OBFINOs to refine the selected entries by additional criteria.

Further demonstration

Experiment with the Simple Key, Keyworded Key, and Grouped Key demo programs using boolean
operations to get a greater understanding of Relational Access between values in an SI-key.

Several values may be specified with their corresponding boolean operators. For example, the
combination

-(value1 and value2) OR value3 NOT value4;

is interpreted as "all the entries that contain value1 AND value2 OR value3 AND NOT value4."

Press f8 when you are done to return to the Main Menu.

How the demos work

The three demo programs used to explain Relational Access were the very same programs that were
run when illustrating indexed (non-relational) access; they accessed the same SI-paths as before.
Whether the value specified is a single value or a multiple values, the value specified is transparent to
the programs. Both types of retrievals are supported by the same SI-paths with the same code.

In writing programs for relational access, you may prefer to impose the tilde, ;, and/or boolean
operators programmatically and instead present the user with an individual field for each value and
function keys to specify the boolean operators. There are many methods for forming the complete
value with the required delimiters and operators.

Regardless of how the delimited value is formed, it is passed as the argument for OBFINO mode 1,
exactly as shown. SUPEROEX locates the corresponding entries and returns the qualifying number
in words 5 and 6 of the status array, just as with non-relational access.

Other features are available for further managing the results of multiple OBFINO calls, including the
ability to refine and undo the results of successive DBFINDs.

2-22 COBOL demo Version 3.1 March 1992

Relational access demo - multiple datasets

About the demo

As we've seen, relational access may be performed within a single field by specifying multiple values
for the field and combining them by use of boolean operators.

Relational access can also be used to compare against multiple fields, datasets, and even multiple
databases by using similar methods and boolean operators.

This demo shows

• relational access across multiple datasets

This example finds all the order line items that exist for a specified customer and contain a specified
part number; this is not a trivial task since there is not a path between the CUSTOMERS master and
ORDER-LINES detail. Therefore, a logical relationship must be formed via the ORDER-HEADERS
master dataset. To add even greater flexibility, this program permits a partial-key or generic value to
be specified for either field.

Version 3.1 March 1992 COBOL demo 2-23

Running the demo

Select option 5 from the Main Menu and press ENTER to proceed to the Relational Access Demo.

The following screen is displayed:

Order # Part # Part Description Quan Price

Relational Access Demo

Enter a Customer Name and a Part Number

Customer Name _ Part Number _
===

The first input field is for the customer name and the second field is for the part number contained in
each order line item for the specified customer. Entries must match on both fields in order to qualify.

Type

UNITED CHURCH@
in the first field. Type

in the second field and press ENTER. This specifies that SUPERDEX should locate all the order line
items for the customer whose name begins with ·UNITED CHURCH."

2-24 COBOL demo Version 3. 1 March 1992

A total of 65 entries are found, starting with:

0000701193 A626765N BNDR,POST,ll X 17,GN 4 107.80
0000701193 Y4403CR PUNCH,l HOLE,l/4 DIA 1 1. 69
0000701193 R9530609 TAPE,EMBOSS,l/2X144 RL,BK 6 16.50
0000701193 SRA SR-B STAPLE REMOVER 1 0.68
0000701193 BCMRC21BE REFILL,F/CLIC,MED,2PK,BE 2 23.52
0000701193 G27-12 COL SHEET 1 29.61
0000701193 C15-BLK DISPENSER 1 4.22
0000701193 BCMRC21BK REFILL,F/CLIC,MED,2PK,BK 2 23.52
0000701193 WES40290 90-CLASP 9X12 ENVELOPES 1 6.01
0000701193 710-01 JUST FOR COPIES 2 3.12
0000701193 482-2 #100080 MONGOL PENCIL 2 3.06
0000701193 332-01-RED-M WRITE BROS 12 1. 08
0000701193 334-01-GRN-M PEN 12 1. 08
0000701193 331-01-BLU-M WRITE BROS 24 2.16
0000701193 SCM1312 21-1/3 LTR FILE FOLDERS 1 3.82

In order to narrow down the records selected, change the Part Number to

33@

and press ENTER. This specifies that only the line items whose part numbers begin with "33" for the
customer whose name begins with ·UNITED CHURCH" should be displayed. SUPERDEX now
returns only the four following entries:

0000701193 332-01-RED-M WRITE BROS
0000701193 334-01-GRN-M PEN
0000701193 331-01-BLU-M WRITE BROS
0000928312 334-01-GRN-M PEN,BALLPOINT,MED PT,GN

12
12
24
12

1. 08
1.08
2.16
1.08

Further demonstration

You may try out additional customer name and part number combinations by using a full, generic, or
partial key for each value.

Note that this demo program automatically encloses the values of both fields with a - and ; so you
do not need to include the - and ; in the values specified. Doing so would cause an additional set of
brackets to be imposed and, therefore, no entries would be found. Also, because this program
disallows retrievals against more than one customer at a time, the customer Name specified
must qualify only one entry.

Press f8 when you are done to return to the Main Menu.

Version 3.1 March 1992 COBOL demo 2-25

How the demo works
The program must perform three distinct DBFINDs against three separate SI-paths to accomplish the
retrieval.

First, SUPERDEX must locate the specified customer name in the CUSTOMERS master dataset and
retain the corresponding CUSTOMER-NUMBER. This is done via the simple customer SI-path using
a SUPERDEX DBFIND mode 1 against CUSTOMERS with the specified customer name,
surrounded by a - and ;, as the argument.

Next, the retained customer number must be looked up in the ORDER-HEADERS master dataset to
locate the corresponding order number(s). This is done via a special operation called a projection,
which is accomplished simply by calling DBFIND mode 1 against ORDER-HEADERS and specifying
an argument of - and ;.

The final DBFIND performs a boolean AND between the entries located in the ORDER-HEADERS
dataset and the order line items in the ORDER-LINES dataset by using the common item ORDER-
NUMBER in the item parameter and the part number, surrounded by - and;, as the argument.

These same techniques may be used to perform relational retrievals against multiple databases by
simply altering the value of the base parameter.

A complete copy of the source program appears in Appendix B and in the file
SDEMOPRJ.DEMO.SUPERDEX.

2·26 COBOL demo Version 3. 1 March 1992

Section 3 SUPERDEX index structures

SUPERDEX paths

Now that we've seen the quick and powerful retrievals that can be accomplished by SUPERDEX, let's
take a look at the index structures that were used to facilitate them.

To do so, exit to MPE and type

SIKAINTLIST
and press RETURN. When prompted, enter the database name

OEDB
and RETURN to list the SUPERDEX structures:

TOTAL TIME
END OF PROGRAM
DEMO.SDX31:27> PSCREEN .

CPU 0:00:02.2 Elapsed 0:00:04

RUN SIMAINT.PUB.SUPERDEX,LIST

SIMAINT.PRIV VERSION 3.1 (23JAN92) COPYRIGHT DR. MATT / IABG (1988,1991)

DATABASE >OEDB
THE FOLLOWING SI-PATHS AND ITEMS ARE DEFINED:
DATASET SI-PATH ITEMS/LENGTHS

10001 KWEXCLUDE 4
CUSTOMERS

10002 CUSTOMER-NAME CUSTOMER-NAME 15
10003 CUSTOMER-NAME-KW/K CUSTOMER-NAME 8
10004 ADDRESSI-CITY-KW/K ADDRESS-1 4
10004 ADDRESS1-CITY-KW/K CITY 4

ORDER-LINES
10005 ORDER-PART ORDER-NUMBER 2 PART-NUMBER 7
10006 PART-ORDER PART-NUMBER 7 ORDER-NUMBER 2

ORDER-HEADERS
10007 CUSTOMER-NUMBER CUSTOMER-WUMBER 2

Listed here are seven SI-paths which relate to eight SI-keys in the database. They are as follows:

KWEXCLUDE Special stand-alone SI-path used for excluding unneeded words from
keywording, such as for excluding ·CORP" and ·INC" in the Keyworded
Key Demos.

CUSTOMER-NAME Simple SI-path used for generic, partial-key, range, and other retrievals
by CUSTOMER-NAME in the CUSTOMERS dataset. Used in the Simple
Key Demos.

CUSTOMER-NAME-D Same as CUSTOMER-NAME, but configured as keyworded (as noted by
the IK following the SI-path name) with a keyword length of 8 words (16
characters). Used in the Keyworded Key Demos.

ADDRESS1-CITY-D Grouped SI-path consisting of the ADDRESS-1 and CITY fields, shown
as two separate entries above. Note the IK indicating that it is also
configured as keyworded. Used in the Grouped Key Demos.

ORDER-PART Concatenated SI-path consisting of the ORDER-NUMBER and PART-
NUMBER for each line item in the ORDER-LINES dataset. Used in the
Concatenated Key Demos.

PART-ORDER Same as ORDER-PART, but order of items is reversed. Used in the
dataset Relational Access demo.

CUSTOMER-NUMBER Simple SI-path related to the ORDER-HEADERS dataset, consisting of
the CUSTOMER-NUMBER. Used in the Relational Access Demo using
multiple datasets.

Configuring SI-paths

The SI-paths that have been used up to this point were created for you by using SUPERDEX's
configuration program, SIMAINT. This program establishes the required index structures and creates
the indices for the data entries which currently exist in the database; the indices are stored in the
stand-alone detail dataset named SI.

The following section on creating new SI-paths demonstrates how the SIMAINT program works.

Creating a new 51-path

The CUSTOMERS dataset contains three fields for phone numbers:

PHONE-AREA-CODE
PHONE-PREFIX
PHONE-SUFFIX

phone number area code (first three digits)
phone number prefix (middle three digits)
phone number suffix (last four digits)

3-28 SUPERDEX index structures Version 3. 1 March 1992

Creating a grouped 51-path which links PHONE-PREFIX and PHONE-SUFFIX together will permit a
customer to be located by either value using a one prompt in a single operation Oust like Address and
City did in the Grouped Key Demo). It will also permit all the customers w~h a specified prefix to be
identified.

Run the SIMAINT program by typing:

SIMAINT
and press RETURN. Then, specify the database name

OBDB
and press RETURN. SIMAINT lists the datasets that have related 51-paths and prompts for a dataset:

SIMAINT.PRIV VERSION 3.1 (23JAN92) COPYRIGHT DR. MATT / IABG (1988,1991)

RUN SIMAINT.PUB.SUPERDEX

DATABASE >OEDB
SI-PATHS EXIST FOR THE FOLLOWING SETS:

CUSTOMERS
ORDER-LINES
ORDER-HEADERS
ENTER NAME OF SET TO BE MODIFIED OR NEW NAME
DATASET >

At the dataset prompt, enter

CUSTOMERS
and press RETURN. Its related 51-paths are displayed and you are prompted for the name of an 51-
path:

ADDRESS1-CITY-KW/K ADDRESS-1
ADDRESS1-CITY-KW/K CITY

L = 4
L = 4

DATASET >CUSTOMERS
THE FOLLOWING SI-PATHS AND ITEMS ARE DEFINED:
CUSTOMER-NAME CUSTOMER-NAME L =15
CUSTOMER-NAME-KW/K CUSTOMER-NAME L = 4

ENTER SI-PATH WITH OPTION /D /R /G OR NEW NAME
SI-PATH >

Version 3.1 March 1992 SUPERDEX index structures 3-29

5pecify the new 51-path name

PHONE-PRFX-SOFX
and RETURN. Enter

?

and RETURN when prompted for an item name:

ITEM 1 >

SI-PATH >PHONE-PRFX-SUFX
ITEM 1 >?
CUSTOMER-NUMBER CUSTOMER-ABBR CUSTOMER-NAME ADDRESS-l ADDRESS-2
CITY STATE ZIP-CODE PHONE-AREA-CODE PHONE-PREFIX
PHONE-SUFFIX

This causes SIMAINT to list the items in the dataset and re-prompt. Now, specify the first item

PHONE-PREFIX
to be included in the group and RETURN twice:

l'TEM 1 >PHONE-PREFIX
ITEM 2 >RETURN

When prompted for the next 51-path, enter the same 51-path name as before but append /G:

PHONE-PRFX-SOFX/G
This indicates that you are configuring the 51-path as grouped:

ISI-PATH >PHONE-PRFX-SUFX/G
ITEM 1 >

Now, specify the second item to be included in the group

PHONE-SOFFIX
as shown:

l'TEM 1 >PHONE-SUFFIX
SI-PATH >

3-30 SUPERDEX index structures Version 3. 1 March 1992

Press RETURN for the next two prompts and waH a few moments while the new SI-path is created:

SI-PATH >RETURN
DATASET >RETURN
PROCESSING SI-PATH PHONE-PRFX-SUFX OF

INPUT: 1003 RECORDS 100%
SORT: 2006 INDICES

1700 INDICES 100%OUTPUT:
TOTAL TIME:

END OF PROGRAM

CUSTOMERS # OF ENT: 1003
CPU 0:00:03.2 ELAPSED 0:00:03
CPU 0:00:00.9 ELAPSED 0:00:01
CPU 0:00:0l.9 ELAPSED 0:00:02
CPU 0:00:09.8 ELAPSED 0:02:06

Version 3.1 March 1992 SUPERDEX index structures 3-31

Appendix A Demo database structure

The following pages illustrate the dataset layouts for the OEDB demo database. Only the dataset SI
and item SI were added to facilitate SUPERDEX access.

DATA SET: CUSTOMERS

Fld Itm Srt End Itm Size/ Array Sreh Sort
Items: No. No. Loe Loe Typ Lngth Size Item Item

CUSTOMER-NUMBER 1 1 1 2 I 2 1 X
CUSTOMER-ABBR 2 11 3 4 X 4 1
CUSTOMER-NAME 3 2 5 19 X 30 1
ADDRESS-1 4 3 20 32 X 26 1
ADDRESS-2 5 4 33 45 X 26 1
CITY 6 5 46 53 X 16 1
STATE 7 6 54 54 X 2 1
ZIP-CODE 8 7 55 56 I 2 1
PHONE-AREA-CODE 9 8 57 57 I 1 1
PHONE-PREFIX 10 9 58 58 I 1 1
PHONE-SUFFIX 11 10 59 59 I 1 1

DATA SET: ORDER-HEADERS

Fld Itm Srt End Itm Size/ Array Srch Sort
Items: No. No. Loc Loc Typ Lngth Size Item Item

ORDER-NUMBER 1 12 1 2 I 2 1 X
ORDER-TYPE 2 13 3 3 X 2 1
ENTRY-DATE 3 14 4 4 I 1 1
PO-NUMBER 4 15 5 11 X 14 1
CUSTOMER-NUMBER 5 1 12 13 I 2 1
SHIP-TO-NUMBER 6 42 14 14 K 1 1
BRANCH-LOCATION 7 16 15 15 I 1 1
NEXT-LINE-NUMBER 8 17 16 16 I 1 1
PAYMENT-TERMS 9 18 17 17 I 1 1
ATTENTION-CODE 10 19 18 18 I 1 1
TAX-PAYABLE 11 20 19 19 I 1 1
SALES-TAX-PCT 12 21 20 21 I 2 1
BILLED-VALUE 13 22 22 23 I 2 1
ENTRY-VALUE 14 23 24 25 I 2 1
SHIPMENT-DATE 15 24 26 26 I 1 1
ORDER-WEIGHT 16 25 27 27 I 1 1
FREIGHT-CHARGE 17 26 28 29 I 2 1
CARRIER-USED 18 27 30 30 I 1 1
CARTON-QUANTITY 19 28 31 31 I 1 1
PRICE-CODE 20 29 32 32 X 2 1
CONFIRM-DATE 21 30 33 33 I 1 1
LAST-INVOICE-DTE 22 31 34 35 I 2 1
BACK-ORDER-CODE 23 32 36 36 X 2 1
PICKING-CODE 24 33 37 37 I 1 1
BILLING-CODE 25 34 38 38 I 1 1
CONSOLIDATE-CODE 26 35 39 39 I 1 1
SALES-REP-CODE 27 36 40 41 X 2 2
BACKORDER-STATUS 28 37 42 42 I 1 1
HOLD-CODE 29 38 43 43 I 1 1
FREIGHT-TRUCK 30 39 44 45 I 2 1
VALUE-CODE 31 40 46 46 X 2 1
ORDER-STATUS 32 41 47 47 I 1 1

Version 3.1 March 1992 Demo database structure A-33

DATA SET: ORDER-LINES

Fld Itm Srt End Itm Size/ Array Sreh Sort
Items: No. No. Loe Loe Typ Lngth Size Item Item

ORDER-NUMBER 1 12 1 2 I 2 1 X

INVOICE-LINE-NO 2 43 3 3 K 1 1
PART-TYPE-CODE 3 44 4 4 X 2 1
PART-NUMBER 4 45 5 11 X 14 1
PART-DESCRIPTION 5 46 12 24 X 26 1
PART-ENTRY-DATE 6 47 25 25 I 1 1
QUANTITY-ORDERED 7 48 26 26 I 1 1
UNIT-OF-MEASURE 8 49 27 27 X 2 1
QTY-PER-PACKAGE 9 50 28 28 I 1 1
LINE-ITEM-PRICE 10 51 29 30 I 2 1
UNIT-PRICE 11 52 31 32 I 2 1
UNIT-COST 12 53 33 34 I 2 1
PRICE-DISCOUNT 13 54 35 35 I 1 1
QUANTITY-SHIPPED 14 55 36 36 I 1 1
BACK-ORDER-NEED 15 56 37 37 X 2 1
SHIP-DATE 16 57 38 38 I 1 1
PICKING-LIST 17 58 39 39 I 1 1
BILL-CODE 18 59 40 40 I 1 1
PREV-QTY-SHIPPED 19 60 41 41 I 1 1
PART-HOLD-CODE 20 61 42 42 I 1 1
INVOICE-REF-NO 21 62 43 44 I 2 1
PRICE-DIFFERENTL 22 63 45 45 I 1 1
STOCK-LOCATION 23 70 46 49 X 8 1
BKORD-INDICATOR 24 64 50 50 I 1 1
PART-PRICE-CODE 25 65 51 51 X 2 1
COMMERCIAL-STAT 26 66 52 55 I 2 2
INVOICE-CODE 27 67 56 56 I 1 1
PACKAGE-WEIGHT 28 68 57 57 X 2 1
LINE-ITEM-STATUS 29 69 58 58 I 1 1

DATA SET: SI

Fld Itm Srt End Itm Size/ Array Srch Sort
Items: No. No. Loe Loe Typ Lngth Size Itl2m Item

SI 1 71 1 508 X 254 4

A-34 Demo database structure Version 3. 1 March 1992

Appendix B COBOL source programs

The sources for the COBOL demonstration programs appear on the following pages with comments.
These programs were written in COBOl85 and use VPlUS.

Simple Key Demo

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. KEY-DEMO.
AUTHOR. BRADMARK TECHNOLOGIES

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SCREEN-BUFFER.
02 SCREEN-KEY-VALUE PIC X (31) .
02 SCREEN-DIRECTION PIC X.
02 DATA-LINES.

05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.
10 SCREEN-LINE PIC X (78) .

01 BUFFER-LENGTH PIC S9(4) COMPo

01 ARRAY-INDEX PIC S9 (4) COMPo

01 IMAGE-BUFFER.
02 IMAGE-CUSTOMER-NUMBER PIC S9(9) COMPo
02 IMAGE-CUSTOMER-NAME PIC X (30) .

01 TEMP-LINE.
02 TEMP-CUSTOMER-NAME PIC X(30).
02 FILLER PIC X VALUE SPACES.
02 TEMP-CUSTOMER-NUMBER PIC 9 (10) USAGE DISPLAY.

01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.

01 FORM-KEYS PIC S9(4) COMP VALUE 1.
01 NUMBER-OF-KEYS PIC S9(4) COMP VALUE 8.
01 KEY-BUFFER PIC X (128) .

01 MESSAGE-BUFFER PIC X(72) .
01 MESSAGE-BUFFER-LENGTH PIC S9(4) COMPo
01 ACTUAL-LENGTH PIC S9(4) COMPo

8-36 COBOL source programs Version 3. 1 March 1992

01 GET-MODE PIC S9(4) COMPo

01 QUALIFY-BUFFER.
02 ENTRIES-FOUND
02 FILLER

• Entries Qualified.

PIC ZZ,ZZ9.
PIC X (66) VALUE

(More Entries Below)".

LINKAGE SECTION.
01 IMAGE.

02 IMAGE-STATUS.
05 CW PIC S9(4) COMPo
05 IMAGE-ENTRY-LENGTH PIC S9(4) COMPo
05 IMAGE-RECORD-NUMBER PIC S9(9) COMPo
05 IMAGE-CHAIN-LENGTH PIC S9(9) COMPo
05 IMAGE-LAST-ON-CHAIN PIC S9(9) COMPo
05 IMAGE-FIRST-ON-CHAIN PIC S9(9) COMPo

02 ITEM.
05 ITEM-VALUE PIC X(16) .

02 IMAGE-SET.
05 SET-VALUE PIC X(16).

02 PASSWORD.
05 PASSWORD-VALUE PIC X(16).

02 BASE.
05 BASE-ID PIC XX.
05 BASE-VALUE PIC X (32) .

02 LIST.
05 LIST-VALUE PIC X(200) .

02 MODES.
05 MODEl PIC S9(4) COMPo
05 MODE2 PIC S9(4) COMPo
05 MODE3 PIC S9(4) COMPo
05 MODE4 PIC S9(4) COMPo
05 MODES PIC S9(4) COMPo
05 MODE6 PIC S9(4) COMPo
05 MODE7 PIC S9(4) COMPo
05 MODES PIC S9(4) COMPo

02 DUMMY PIC S9(4) COMPo

Version 3.1 March 1992 COBOL source programs B-37

01 COMAREA.
02 VSTATUS PIC S9(4) COMPo
02 VLANGUAGE PIC XX.
02 COMAREA-LENGTH PIC S9(4) COMPo
02 FILLER PIC X (4).
02 LAST-KEY PIC S9(4) COMPo
02 NUMERRORS PIC S9(4) COMPo
02 WINDOWENH PIC XX.
02 FILLER PIC XX.
02 LABELOPTION PIC S9(4) COMPo
02 FORM-NAME PIC X(16) .
02 NEXT-FORM-NAME PIC X(16) .
02 REPEATAPP PIC S9(4) COMPo
02 FREEZAPP PIC S9(4) COMPo
02 FILLER PIC XX.
02 VBUFFER-LENGTH PIC S9 (4) COMPo
02 FILLER PIC X (64) .

PROCEDURE DIVISION USING IMAGE,COMAREA.
BEGIN.

MOVE "n" TO DONE.
MOVE SPACES TO SCREEN-BUFFER.
MOVE SPACES TO MESSAGE-BUFFER.
MOVE 72 TO MESSAGE-BUFFER-LENGTH.

MOVE "CUSTOMERSi" TO SET-VALUE.
MOVE "SIMPLEKEY" TO NEXT-FORM-NAME.
CALL "VGETNEXTFORM" USING COMAREA.
CALL ·VGETKEYLABELS· USING COMAREA,FORM-KEYS,NUMBER-OF-KEYS,

KEY-BUFFER.
CALL INTRINSIC ".LEN." USING SCREEN-BUFFER,GIVING,

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO "y"
MOVE "n" TO END-OF-SCREEN

CALL "VPUTBUFFER" USING COMAREA,SCREEN-BUFFER
BUFFER-LENGTH

CALL "VSHOWFORM" USING COMAREA

MOVE SPACES TO MESSAGE-BUFFER
CALL "VPUTWINDOW" USING COMAREA,MESSAGE-BUFFER,

MESSAGE-BUFFER-LENGTH

CALL "VREADFIELDS" USING COMAREA

8·38 COBOL sourceprograms Version3. 1 March 1992

IF LAST-KEY IS ZERO THEN
CALL "VFIELDEDITS" USING COMAREA
PERFORM UNTIL NUMERRORS IS ZERO

CALL "VERRMSG" USING COMAREA,MESSAGE-BUFFER,
MESSAGE-BUFFER-LENGTH,ACTUAL-LENGTH

CALL "VPUTWINDOW " USING COMAREA,MESSAGE-BUFFER,
MESSAGE-BUFFER-LENGTH

MOVE " G" TO WINDOWENH
CALL "VSHOWFORM" USING COMAREA
CALL "VREADFIELDS" USING COMAREA

MOVE " H" TO WINDOWENH
MOVE SPACES TO MESSAGE-BUFFER
CALL "VPUTWINDOW· USING COMAREA,MESSAGE-BUFFER,

MESSAGE-BUFFER-LENGTH
CALL "VFIELDEDITS· USING COMAREA

IF LAST-KEY IS EQUAL TO 8 THEN
MOVE ZERO TO NUMERRORS
MOVE My. TO DONE

END-IF
END-PERFORM

IF LAST-KEY IS ZERO THEN
CALL "VGETBUFFER" USING COMAREA,

SCREEN-BUFFER,BUFFER-LENGTH

MOVE On" TO NO-ENTRIES

* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE "ITEM" AND *
*
* "LIST" VARIABLES FOR THE COORESPONDING SUPERDEX DBFIND AND DBGET.
*
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE
*
* CREATION OF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO *
*
* BE RETRIEVED BY THE THE RESULTING DBGET'S
*

MOVE "CUSTOMER-NAME;" TO ITEM-VALUE
MOVE "CUSTOMER~NUMBER,CUSTOMER-NAME;" TO LIST-VALUE

Version 3.1 March 1992 COBOL source programs 8-39

*
*

*
*

*

*
*

*

----------~ .. _--------------_._-----

* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOUSLY LOADED INTO THE ITEM PARAMETER. THE DBFIND *
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS

CALL "DBFIND" USING BASE,IMAGE-SET,MODE1,
IMAGE-STATUS,ITEM,SCREEN-KEY-VALUE

IF CW IS NOT ZERO THEN
MOVE SPACES TO DATA-LINES
MOVE "No Qualifying Entries Found" TO

MESSAGE-BUFFER
CALL "VPUTWINDOW " USING COMAREA,MESSAGE-BUFFER,

MESSAGE-BUFFER-LENGTH
MOVE Ny' TO NO-ENTRIES

ELSE
MOVE IMAGE-CHAIN-LENGTH TO ENTRIES-FOUND

END-IF
END-IF

ELSE
IF LAST-KEY IS EQUAL TO 8 THEN

MOVE "yO TO DONE
END-IF

END-IF

IF (LAST-KEY IS EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TO "n"

MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

**
* READ THE CHAIN FORWARD OR BACKWARD, DEPENDING ON USER REQUEST
**

IF SCREEN-DIRECTION IS EQUAL TO "B" THEN
MOVE 6 TO GET-MODE

ELSE
MOVE 5 TO GET-MODE

END-IF

PERFORM UNTIL END-OF-SCREEN IS EQUAL TO "y"

8-40 COBOL source programs Version 3. 1 March 1992

*
*

*

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE
* DATASET WHICH CORRESPOND TO THE QUALIFYING ENTRIES RETRIEVED FROM
* THE PREVIOUS DBFIND.

CALL "DBGET" USING BASE,IMAGE-SET,GET-MODE,
IHAGE-STATUS,LIST,IMAGE-BUFFER,DUMMY

IF CI(,lIS NOT EQUAL TO ZERO THEN
MOVE "y" TO END-OF-SCREEN
MOVE "End of Current Entries" TO MESSAGE-BUFFER
C.A.LL"VPUTWINDOW" USING COMAREA,MESSAGE-BUFFER,

MESSAGE-BUFFER-LENGTH
ELSE

MOVE IMAGE-CUSTOMER-NUMBER TO TEMP-CUSTOMER-NUMBER
MOVE IMAGE-CUSTOMER-NAME TO TEMP-CUSTOMER-NAME
MOVE TEMP-LINE TO SCREEN-LINE (ARRAY-INDEX)
ADD 1 TO ARRAY-INDEX

IF ARRAY-INDEX IS GREATER THAN 16 THEN
MOVE "y" TO END-OF-SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL "VPUTWINDOW" USING COMAREA,

MESSAGE-BUFFER,MESSAGE-BUFFER-LENGTH
END-IF

END-IF
END-PERFORM

END-IF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.

*
*
*

Version 3. 1 March 1992 COBOL source programs 8-41

Concatenated Key Demo

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. CONCATENATE-DEMO.
AUTHOR. BRADMARK TECHNOLOGIES.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SCREEN-BUFFER.
02 SCREEN-KEY-VALUE.

05 SCREEN-ORDER-NUMBER
05 SCREEN-PART-KEY

PIC 9(10) USAGE IS DISPLAY.
PIC X (14) .

05 PART-ARRAY REDEFINES SCREEN-PART-KEY.
10 CHARACTER-ARRAY OCCURS 14 TIMES.

15 FILLER
02 DATA-LINES.

05 SCREEN-LINE-ARRAY
10 SCREEN-LINE

01 IMAGE-BUFFER.
02 OMNUMB
02 ITMPRT
02 ITMDES

01 DISPLAY-LINE.
02 DISPLAY-OMNUMB
02 FILLER
02 DISPLAY-ITMPRT
02 FILLER
02 DISPLAY-ITMDES

01 KEY-VALUE.
02 ORDER-NUMBER
02 PART-KEY

01 FIND-MODE

01 BUFFER-LENGTH

8-42 COBOL source programs

PIC X.

OCCURS 18 TIMES.
PIC X (78) .

PIC S9(9) COMPo
PIC X (14) .
PIC X (26) .

PIC 9 (10) USAGE IS DISPLAY.
PIC XX.
PIC X(14) .
PIC XX.
PIC X (26) .

PIC S9(9) COMPo
PIC X(14).

PIC S9(4) COMPo

PIC S9(4) COMPo

Version 3. 1 March 1992

01 ARRAY-INDEX PIC S9(4) COMPo
01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.

01 FORM-KEYS PIC S9 (4) COMP VALUE 1.
01 NUMBER-OF-KEYS PIC S9(4) COMP VALUE 8.
01 KEY-BUFFER PIC X (128) .

01 MESSAGE-BUFFER PIC X(72) .
01 MESSAGE-BUFFER-LENGTH PIC S9(4) CaMP.
01 ACTUAL-LENGTH PIC S9(4) CaMP.

01 I PIC S9(4) COMPo

LINKAGE SECTION.
01 IMAGE.

02 IMAGE-STATUS.
05 CW PIC S9 (4) COMPo
05 IMAGE-ENTRY-LENGTH PIC S9 (4) COMPo
05 IMAGE-RECORD-NUMBER PIC S9(9) COMPo
05 IMAGE-CHAIN-LENGTH PIC S9(9) COMPo
05 IMAGE-LAST-ON-CHAIN PIC S9(9) COMPo
05 IMAGE-FIRST-ON-CHAIN PIC S9(9) COMPo

02 ITEM.
05 ITEM-VALUE PIC X(16).

02 IMAGE-SET.
05 SET-VALUE PIC X(16).

02 PASSWORD.
05 PASSWORD-VALUE PIC X(16) .

02 BASE.
05 BASE-ID PIC XX.
05 BASE-VALUE PIC X(32) .

02 LIST.
05 LIST-VALUE PIC X (200) .

02 MODES.
05 MODEl PIC S9(4) COMPo
05 MODE2 PIC S9(4) COMPo
05 MODE3 PIC S9(4) COMPo
05 MODE4 PIC S9(4) COMPo
05 MODE5 PIC S9(4) COMPo
05 MODE6 PIC S9(4) COMPo
05 MODE7 PIC S9(4) COMPo
05 MODE8 PIC S9(4) COMPo

02 DUMMY PIC S9(4) COMPo

Version 3.1 March 1992 COBOL source programs 8-43

01 COMAREA.
02 VSTATUS PIC S9(4) COMPo
02 VLANGUAGE PIC XX.
02 COMAREA-LENGTH PIC S9(4) COMPo
02 FILLER PIC X(4) .
02 LAST-KEY PIC S9(4) COMPo
02 NUMERRORS PIC S9(4) COMPo
02 WINDOWENH PIC XX.
02 FILLER PIC XX.
02 LABELOPTION PIC S9(4) COMPo
02 FORM-NAME PIC X(16) .
02 NEXT-FORM-NAME PIC X(16) .
02 REPEATAPP PIC S9(4) COMPo
02 FREEZAPP PIC S9(4) COMPo
02 FILLER PIC XX.
02 VBUFFER-LENGTH PIC S9(4) COMPo
02 FILLER PIC X(64) .

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE 'n' TO DONE.
MOVE SPACES TO SCREEN-BUFFER.
MOVE SPACES TO MESSAGE-BUFFER.
MOVE 72 TO MESSAGE-BUFFER-LENGTH.

MOVE 'CONCATENATE' TO NEXT-FORM-NAME.
CALL 'VGETNEXTFORM' USING COMAREA.
CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-OF-KEYS

KEY-BUFFER.
CALL INTRINSIC' .LEN.' USING SCREEN-BUFFER GIVING

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO 'y'
MOVE 'n' TO END-OF-SCREEN

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

CALL 'VSHOWFORM' USING COMAREA
MOVE SPACES TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH

CALL 'VREADFIELDS' USING COMAREA

IF LAST-KEY IS ZERO THEN
CALL 'VFIELDEDITS' USING COMAREA

8-44 COBOL source programs Version 3.1 March 1992

PERFORM UNTIL NUMERRORS IS ZERO
CALL 'VERRMSG' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH ACTUAL-LENGTH
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
MOVE ' G' TO WINDOWENH

CALL 'VSHOWFORM' USING COMAREA
CALL 'VREADFIELDS' USING COMAREA

MOVE' H' TO WINDOWENH
MOVE SPACES TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
CALL 'VFIELDEDITS' USING COMAREA

IF LAST-KEY IS EQUAL TO 8 THEN
MOVE ZERO TO NUMERRORS

END-IF
END-PERFORM

IF LAST-KEY IS NOT EQUAL TO 8 THEN
CALL 'VFINISHFORM' USING COMAREA
CALL 'VGETBUFFER' USING COMAREA SCREEN-BUFFER

BUFFER-LENGTH

PERFORM FIND-LENGTH-OF-DESCRIPTION

**
* THE NEXT TWO MOVES CONCATENATES THE USER ENTERED VALUES TO BUILD THE *
* ARGUMENT NEEDED IN THE DBFIND.
**

MOVE SCREEN-ORDER-NUMBER TO ORDER-NUMBER
MOVE SCREEN-PART-KEY TO PART-KEY

* THE FIND MODE DEFAILTS TO A VALUE OF -104. THE DEFAULT VALUE
* TELLS SUPERDEX THAT THERE ARE 4 BYTES IN THE KEY. FOR EACH
* CHARACTER THAT THE USER ENTERS IN THE SECOND SCREEN FIELD THE
* VALUE IN THE PARENTHESIS IS INCREMENTED

COMPUTE FIND-MODE = 0 - (100 + 4 + I)

MOVE 'n' TO NO-ENTRIES

MOVE 'ORDER-LINES;' TO SET-VALUE

Version 3.1 March 1992 COBOL source programs 8-45

*

*
*
*
*

*~**
* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE "ITEM" AND *
* "LIST" VARIABLES FOR THE CORRESPONDING SUPERDEX DBFIND AND DBGET. *
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE *
* CREATION OF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO *
* BE RETRIEVED BY THE THE RESULTING DBGET'S *
**

MOVE 'ORDER-PART;' TO ITEM-VALUE
MOVE 'ORDER-NUMBER, PART-NUMBER, PART-DESCRIPTION; ,

TO LIST-VALUE
**
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOUSLY LOADED INTO THE ITEM PARAMETER. THE DBFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED *
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS *
**

CALL 'DBFIND' USING BASE IMAGE-SET FIND-MODE
IMAGE-STATUS ITEM KEY-VALUE

IF CW IS NOT EQUAL TO 0 THEN
MOVE 'No Qualifying Entries Found' TO

MESSAGE-BUFFER
MOVE 'y' TO NO-ENTRIES
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
END-IF

END-IF

END-IF
IF LAST-KEY IS EQUAL TO 8 THEN

MOVE 'y' TO DONE
END-IF

IF (LAST-KEY IS EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TO 'n' THEN

MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

PERFORM UNTIL END-OF-SCREEN IS EQUAL TO 'y'

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE
* DATASET WHICH CORRESPOND TO THE QUALIFYING ENTRIES RETRIEVED FROM
* THE PREVIOUS DBFIND.

8-46 COBOL sourceprograms Version3. 1 March 1992

*
*
*

CALL 'DBGET' USING BASE IMAGE-SET MODES IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY

IF CW IS NOT EQUAL TO ZERO THEN
MOVE 'y' TO END-OF-SCREEN
MOVE 'End of Current Entries' TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

MOVE SPACES TO DISPLAY-LINE
MOVE OMNUMB TO DISPLAY-OMNUMB
MOVE ITMPRT TO DISPLAY-ITMPRT
MOVE ITMDES TO DISPLAY-ITMDES
MOVE DISPLAY-LINE TO SCREEN-LINE(ARRAY-INDEX)
ADD 1 TO ARRAY-INDEX
IF ARRAY-INDEX IS GREATER THAN 17 THEN

MOVE 'y' TO END-OF-SCREEN
MOVE 'More Entries Below' TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
END-IF

END-IF
END-PERFORM

END-IF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.
**
*
* THIS ROUTINE WILL RETURN THE NUMBER OF CHARACTERS ENTERED

BY THE USER IN THE SECOND SCREEN FIELD.

*

*
*
**

FIND-LENGTH-OF-DESCRIPTION.
MOVE 14 TO I.
PERFORM UNTIL (I IS EQUAL TO ZERO) OR

(CHARACTER-ARRAY (I) IS NOT EQUAL TO SPACE)
SUBTRACT 1 FROM I

END-PERFORM.
FIND-LENGTH-EXIT.

EXIT.

*
*
*

Version 3.1 March 1992 COBOL source programs 8-47

Keyworded Key Demo

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. KEYWORD-DEMO.
AUTHOR. BRADMARK TECHNOLOGIES.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SCREEN-BUFFER.
02 SCREEN-KEY-VALUE PIC X(50).
02 DATA-LINES.

05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.
10 SCREEN-LINE PIC X(78).

01 BUFFER-LENGTH PIC S9(4) COMPo

01 ARRAY-INDEX PIC S9(4) COMPo

01 IMAGE-BUFFER.
02 IMAGE-CUSTOMER-NUMBER PIC S9(9) COMPo
02 IMAGE-CUSTOMER-NAME PIC X(30) .

01 TEMP-LINE.
02 TEMP-CUSTOMER-NAME PIC X(30).
02 FILLER PIC X VALUE SPACES.
02 TEMP-CUSTOMER-NUMBER PIC 9(10) USAGE DISPLAY.

01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.

01 FORM-KEYS PIC S9 (4) COMP VALUE 1.
01 NUMBER-OF-KEYS PIC S9(4) COMP VALUE 8.
01 KEY-BUFFER PIC X (128) .

01 MESSAGE-BUFFER PIC X(72) .
01 MESSAGE-BUFFER-LENGTH PIC S9(4) COMPo
01 QUALIFY-BUFFER.

02 ENTRIES-FOUND PIC ZZ,ZZ9.
02 FILLER PIC X(66) VALUE

• Entries Found. (More Entries Below) ".

8-48 COBOL source programs Version 3. 1 March 1992

LINKAGE SECTION.
01 IMAGE.

02 IMAGE-STATUS.
05 CW PIC S9(4) COMPo
05 IMAGE-ENTRY-LENGTH PIC S9(4) COMPo
05 IMAGE-RECORD-NUMBER PIC S9(9) COMPo
05 IMAGE-CHAIN-LENGTH PIC S9(9) COMPo
05 IMAGE-LAST-ON-CHAIN PIC S9(9) COMPo
05 IMAGE-FIRST-ON-CHAIN PIC S9(9) COMPo

02 ITEM.
05 ITEM-VALUE PIC X(16).

02 IMAGE-SET.
05 SET-VALUE PIC X(16) .

02 PASSWORD.
05 PASSWORD-VALUE PIC X(16).

02 BASE.
05 BASE-ID PIC XX.
05 BASE-VALUE PIC X(32) .

02 LIST.
05 LIST-VALUE PIC X(200),

02 MODE8.
05 MODEl PIC 89(4) COMPo
05 MODE2 PIC 89(4) COMPo
05 MODE3 PIC S9(4) COMPo
05 MODE4 PIC S9(4) COMPo
05 MODES PIC S9(4) COMPo
05 MODE6 PIC 89(4) COMPo
05 MODE7 PIC 89(4) COMPo
05 MODE8 PIC S9 (4) COMPo

02 DUMMY PIC S9 (4) COMPo
01 COMAREA.

02 VSTATUS PIC 89(4) COMPo
02 VLANGUAGE PIC XX.
02 COMAREA-LENGTH PIC S9(4) COMPo
02 FILLER PIC X(4) .
02 LAST-KEY PIC S9(4) COMPo
02 NUMERRORS PIC S9(4) COMPo
02 WINDOWENH PIC XX.
02 FILLER PIC XX.
02 LABELOPTION PIC 89(4) COMPo
02 FORM-NAME PIC X (16) .
02 NEXT-FORM-NAME PIC X (16) .
02 REPEATAPP PIC 89(4) COMPo
02 FREEZAPP PIC 89(4) COMPo
02 FILLER PIC XX.
02 VBUFFER-LENGTH PIC S9(4) COMPo
02 FILLER PIC X(64) .

Version 3.1 March 1992 COBOL source programs 8-49

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE 'n' TO DONE.
MOVE SPACES TO SCREEN-BUFFER.
MOVE SPACES TO MESSAGE-BUFFER.
MOVE 72 TO MESSAGE-BUFFER-LENGTH.

MOVE 'CUSTOMERS;' TO SET-VALUE.

MOVE 'KEYWORD' TO NEXT-FORM-NAME.
CALL 'VGETNEXTFORM' USING COMAREA.
CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-OF-KEYS

KEY-BUFFER.
CALL INTRINSIC '.LEN.' USING SCREEN-BUFFER GIVING

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO 'y'
MOVE 'n' TO END-OF-SCREEN

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

CALL 'VSHOWFORM' USING COMAREA

MOVE SPACES TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH

CALL 'VREADFIELDS' USING COMAREA
IF LAST-KEY IS ZERO THEN

CALL 'VGETBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

MOVE 'n' TO NO-ENTRIES
**
* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE "ITEM" AND
* "LIST" VARIABLES FOR THE CORRESPONDING SUPERDEX DBFIND AND DBGET.
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE
* CREATION OF THE INDEX. THE LIST VALUE ~EPRESENTS THE IMAGE ITEMS TO
* BE RETRIEVED BY THE THE RESULTING DBGET'S
**

MOVE 'CUSTOMER-NAME-KW;' TO ITEM-VALUE
MOVE 'CUSTOMER-NUMBER,CUSTOMER-NAME;' TO LIST-VALUE

**
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED *
* BY THE ITEM VALUE PREVIOUSLY LOADED INTO THE ITEM PARAMETER. THE DBFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS
**

CALL 'DBFIND' USING BASE IMAGE-SET MODEl IMAGE-STATUS
ITEM SCREEN-KEY-VALUE

IF CW IS NOT ZERO THEN
MOVE 'No Qualifying Entries Found' TO

MESSAGE-BUFFER

8-50 COBOL source programs Version 3.1 March 1992

*
*
*
*
*

*
*

MOVE 'y' TO NO-ENTRIES
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

MOVE IMAGE-CRAIN-LENGTH TO ENTRIES-FOUND
END-IF

ELSE
IF LAST-KEY IS EQUAL TO 8 THEN

MOVE 'y' TO DONE
END-IF

END-IF

IF (LAST-KEY IS EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TO 'n' THEN

MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

PERFORM UNTIL END-OF-SCREEN IS EQUAL TO 'y'

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE *
* DATASET WHICH CORRESPOND TO THE QUALIFYING ENTRIES RETRIEVED FROM *
* THE PREVIOUS DBFIND. *

CALL 'DBGET' USING BASE IMAGE-SET MODE5 IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY

IF CW IS NOT EQUAL TO ZERO THEN
MOVE 'y' TO END-OF-SCREEN
MOVE 'End of Current Entries' TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

MOVE IMAGE-CUSTOMER-NUMBER TO TEMP-CUSTOMER-NUMBER
MOVE IMAGE-CUSTOMER-NAME TO TEMP-CUSTOMER-NAME
MOVE TEMP-LINE TO SCREEN-LINE (ARRAY-INDEX)
ADD 1 TO ARRAY-INDEX
IF ARRAY-INDEX IS GREATER THAN 15 THEN

MOVE 'y' TO END-OF-SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA

MESSAGE-BUFFER MESSAGE-BUFFER-LENGTH
END-IF

END-IF
END-PERFORM

END-IF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.

Version 3.1 March 1992 COBOL source programs 8-51

Grouped Key Demo

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM -ID . GROUP-DEMO.
AUTHOR. BRADMARK TECHNOLOGIES.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SCREEN-BUFFER.
02 SCREEN-KEY-VALUE PIC X(50).
02 DATA-LINES.

05 SCREEN-LINE-ARRAY OCCURS 18 TIMES.
10 SCREEN-LINE PIC X (78) .

01 BUFFER-LENGTH PIC S9(4) COMPo

01 ARRAY-INDEX PIC S9(4) COMPo

01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.

01 IMAGE-BUFFER.
02 IMAGE-CUSTOMER PIC X (30) .
02 IMAGE-ADDRESSl PIC X (26) .
02 IMAGE-CITY PIC X (16) .

01 TEMP-LINE.
02 TEMP-CUSTOMER PIC X(30) .
02 FILLER PIC X (1) VALUE SPACES.
02 TEMP-ADDRESSl PIC X (26) .
02 FILLER PIC X(l) VALUE SPACES.
02 TEMP-CITY PIC X(26) .

01 FORM-KEYS PIC S9(4) COMP VALUE 1.
01 NUMBER-OF-KEYS PIC S9(4) COMP VALUE 8.
01 KEY-BUFFER PIC X(128) .
01 MESSAGE-BUFFER PIC X (72) .
01 MESSAGE-BUFFER-LENGTH PIC S9(4) COMPo
01 QUALIFY-BUFFER.

02 ENTRIES-FOUND PIC ZZ,ZZ9.
02 FILLER PIC X(66) VALUE

• Entries Qualified. (More Entries Below)·.

8-52 COBOL source programs Version 3.1 March 1992

LINKAGE SECTION.
01 IMAGE.

02 IMAGE-STATUS.
OS CW PIC S9(4) COMPo
OS IMAGE-ENTRY-LENGTH PIC S9(4) COMPo
OS IMAGE-RECORD-NUMBER PIC S9(9) COMPo
OS IMAGE-CHAIN-LENGTH PIC S9(9) COMPo
OS IMAGE-LAST-ON-CHAIN PIC S9(9) COMPo
OS IMAGE-FIRST-ON-CHAIN PIC S9(9) COMPo

02 ITEM.
OS ITEM-VALUE PIC X(16).

02 IMAGE-SET.
05 SET-VALUE PIC X(16).

02 PASSWORD.
05 PASSWORD-VALUE PIC X(16).

02 BASE.
05 BASE-ID PIC XX.
05 BASE-VALUE PIC X (32) .

02 LIST.
05 LIST-VALUE PIC X(200).

02 MODES.
05 MODEl PIC S9(4) COMPo
05 MODE2 PIC S9(4) COMPo
05 MODE3 PIC S9(4) COMPo
05 MODE4 PIC S9(4) COMPo
05 MODES PIC S9(4) COMPo
05 MODE6 PIC S9(4) COMPo
05 MODE7 PIC S9(4) COMPo
05 MODE8 PIC S9(4) COMPo

02 DUMMY PIC S9 ('1) COMPo

01 COMAREA.
02 VSTATUS PIC S9 ('1) COMPo
02 VLANGUAGE PIC XX.
02 COMAREA-LENGTH PIC S9 ('1) COMPo
02 FILLER PIC X(4) .
02 LAST-KEY PIC S9(4) COMPo
02 NUMERRORS PIC 89(4) COMPo
02 WINDOWENH PIC XX.
02 FILLER PIC XX.
02 LABELOPTION PIC S9(4) COMPo
02 FORM-NAME PIC X(16) .
02 NEXT-FORM-NAME PIC X(16) .
02 REPEATAPP PIC 89(4) COMPo
02 FREEZAPP PIC S9(4) COMPo
02 FILLER PIC XX.
02 VBUFFER-LENGTH PIC S9(4) COMPo
02 FILLER PIC X(64) .

Version 3.1 March 1992 COBOL source programs 8-53

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE 'n' TO DONE.
MOVE SPACES TO SCREEN-BUFFER.
MOVE SPACES TO MESSAGE-BUFFER.
MOVE 72 TO MESSAGE-BUFFER-LENGTH.

MOVE 'CUSTOMERSi' TO SET-VALUE.

MOVE 'GROUPKEY' TO NEXT-FORM-NAME.
CALL 'VGETNEXTFORM' USING COMAREA.
CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-OF-KEYS

KEY-BUFFER.
CALL INTRINSIC' .LEN.' USING SCREEN-BUFFER GIVING

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO 'y'
MOVE 'n' TO END-OF-SCREEN

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

CALL 'VSHOWFORM' USING COMAREA

MOVE SPACES TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
CALL 'VREADFIELDS' USING COMAREA

IF LAST-KEY IS ZERO THEN
CALL 'VGETBUFFER' USING COMAREA SCREEN-BUFFER

BUFFER-LENGTH

MOVE 'n' TO NO-ENTRIES
**
* THE FOLLOWING MOVE STATEMENTS ARE USED TO INITIALIZE THE "ITEM" AND
* "LIST" VARIABLES FOR THE CORRESPONDING SUPERDEX DBFIND AND DBGET.
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE
* CREATION OF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO
* BE RETRIEVED BY THE THE RESULTING DBGET'S
**

MOVE 'ADDRESS1-CITY-KWi' TO ITEM-VALUE
MOVE 'CUSTOMER-NAME,ADDRESS-l,CITYi' TO LIST-VALUE

**
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED
* BY THE ITEM VALUE PREVIOUSLY LOADED INTO THE ITEM PARAMETER. THE DBFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED *
* SCREEN ENTRY VALUE AND HOLD THEM FOR THE FOLLOWING DBGETS
**

8-54 COBOL sourceprograms Version3. 1 March 1992

*
*
*
*
*

*

*

CALL 'DBFIND' USING BASE IMAGE-SET MODEl IMAGE-STATUS
ITEM SCREEN-KEY-VALUE

IF CW IS NOT ZERO THEN
MOVE SPACES TO DATA-LINES
MOVE 'y' TO NO-ENTRIES
MOVE 'No Qualifying Entries Found' TO

.MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

l-IIOVEIMAGE-CHAIN-LENGTH TO ENTRIES-FOUND
END-IF

ELSE
IF LAST-KEY IS EQUAL TO 8 THEN

MOVE 'y' TO DONE
END-IF

END-IF

IF (LAST-KEY IS EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TO 'n' THEN

MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX

PERFORM UNTIL END-OF-SCREEN IS EQUAL TO 'y'

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE
* DATASET WHICH CORRESPOND TO THE QUALIFYING ENTRIES RETRIEVED FROM
* THE PREVIOUS DBFIND.

CALL 'DBGET' USING BASE IMAGE-SET MODES IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY

IF CW IS NOT EQUAL TO ZERO THEN
MOVE 'y' TO END-OF-SCREEN
MOVE 'End of Current Entries' TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

MOVE IMAGE-CUSTOMER TO TEMP-CUSTOMER
MOVE IMAGE-ADDRESS1 TO TEMP-ADDRESS1
MOVE IMAGE-CITY TO TEMP-CITY
MOVE TEMP-LINE TO SCREEN-LINE (ARRAY-INDEX)

ADD 1 TO ARRAY-INDEX
IF ARRAY-INDEX IS GREATER THAN 1S THEN

MOVE 'y' TO END-OF-SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
END-IF

END-IF
END-PERFORM

END-IF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.

Version 3.1 March 19~~2 COBOL source programs 8-55

*
*
*

Relational Access Demo - multiple datasets

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. PROJECTION-DEMO.
AUTHOR. BRADMARK TECHNOLOGIES.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SCREEN-BUFFER.
02 SCREEN-COMPANY
02 SCREEN-ITEM

PIC X(30).
PIC X(14).

02 DATA-LINES.
05 SCREEN-LINE-ARRAY OCCURS 15 TIMES.

10 SCREEN-LINE PIC X(78) .

01 BUFFER-LENGTH PIC S9(4) COMPo

01 COUNT-ITEM.
02 COUNT-ITEM-VALUE PIC xx VALUE '@@' •

01 FIND-ITEM.
02 FILLER PIC X VALUE ' [' .
02 FIND-ITEM-VALUE PIC X(l5) .
02 FILLER REDEFINES FIND-ITEM-VALUE.

05 ITEM-CHARACTER-ARRAY OCCURS 15 TIMES.
10 FILLER PIC X.

01 FIND-CUST.
02 FILLER PIC X VALUE ' ['.
02 FIND-CUSTOMER-VALUE PIC X(31).
02 FILLER REDEFINES FIND-CUSTOMER-VALUE.

05 CUST-CHARACTER-ARRAY OCCURS 31 TIMES.
10 FILLER PIC X.

01 ARRAY-INDEX PIC S9(4) COMPo

01 DONE PIC X.
01 END-OF-SCREEN PIC X.
01 NO-ENTRIES PIC X.
01 FORM-KEYS PIC S9(4) COMP VALUE l.
01 NUMBER-OF-KEYS PIC S9(4) COMP VALUE 8.
01 KEY-BUFFER PIC X (128) .

8-56 COBOL source programs Version 3. 1 March 1992

01 MESSAGE-BUFFER PIC X (72) .
01 MESSAGE-BUFFER-LENGTH PIC S9(4) COMPo

01 QUALIFY-BUFFER.
02 ENTRIES-FOUND PIC ZZ,ZZ9.
02 FILLER PIC X(66) VALUE. Entries Qualified. (More Entries Be Low) " .

01 CUSTOMER-NUMBER PIC S9(9) COMPo

01 IMAGE-BUFFER.
02 IMAGE-ORDER-NUMBER PIC S9(9) COMPo
02 IMAGE-ITEM-KEY PIC X(14) .
02 IMAGE-ITEM-DESCRIPTION PIC X(26) .
02 IMAGE-QUANTITY-ORDERD PIC S9(4) COMPo
02 IMAGE-LIST-PRICE PIC S9(9) COMPo

01 LIST-PRICE PIC 9(S)V99 COMPo

01 TEMP-LINE.
02 TEMP-ORDER-NUMBER PIC 9 (10) USAGE IS DISPLAY.
02 FILLER PIC XX VALUE SPACES.
02 TEMP-ITEM-KEY PIC X(14) .
02 FILLER PIC XX VALUE SPACES.
02 TEMP-ITEM-DESCRIPTION PIC X (26) .
02 FILLER PIC XX VALUE SPACES.
02 TEMP-QUANTITY-ORDERD PIC Z,ZZZ.
02 FILLER PIC XX.
02 TEMP-LIST-PRICE PIC Z,ZZ9.99.

01 PROJECTION-ARG PIC X (4) VALUE ' [* 1; , .
01 I PIC S9(S) COMPo

LINKAGE SECTION.
01 IMAGE.

02 IMAGE-STATUS.
05 CW PIC S9(4) COMPo
05 IMAGE-ENTRY-LENGTH PIC S9(4) COMPo
05 IMAGE-RECORD-NUMBER PIC S9(9) COMPo
05 IMAGE-CHAIN-LENGTH PIC S9(9) COMPo
05 IMAGE-LAST-ON-CHAIN PIC S9(9) COMPo
05 IMAGE-FIRST-ON-CHAIN PIC S9(9) COMPo

02 ITEM.
05 ITEM-VALUE PIC X(16) .

02 IMAGE-SET.
05 SET-VALUE PIC X(16) .

02 PASSWORD.
05 PASSWORD-VALUE PIC X(16).

Version 3.1 March 1992 COBOL source programs 8-57

02 BASE.
05 BASE-ID
05 BASE-VALUE

PIC XX.
PIC X(32).

02 LIST.
05 LIST-VALUE PIC X(200) .

02 MODES.
05 MODEl
05 MODE2
05 MODE3
05 MODE4
05 MODES
05 MODE6
05 MODE7
05 MODE8

PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC S9(4) COMPo

02 DUMMY PIC S9(4) COMPo

01 COMAREA.
02 VSTATUS
02 VLANGUAGE
02 COMAREA-LENGTH
02 FILLER
02 LAST-KEY
02 NUMERRORS
02 WINDOWENH
02 FILLER
02 LABELOPTION
02 FORM-NAME
02 NEXT-FORM-NAME
02 REPEATAPP
02 FREEZAPP

PIC S9(4) COMPo
PIC XX.
PIC S9(4) COMPo
PIC X(4).
PIC S9(4) COMPo
PIC S9(4) COMPo
PIC XX.
PIC XX.
PIC S9(4) COMPo
PIC X(16) .
PIC X(16) .
PIC S9(4) COMPo
PIC S9(4) COMPo

02 FILLER PIC XX.
02 VBUFFER-LENGTH PIC S9(4) COMPo
02 FILLER PIC X(64).

PROCEDURE DIVISION USING IMAGE COMAREA.
BEGIN.

MOVE 'n' TO DONE.
MOVE SPACES TO SCREEN-BUFFER.
MOVE SPACES TO MESSAGE-BUFFER.
MOVE 72 TO MESSAGE-BUFFER-LENGTH.
MOVE 'PROJECTION' TO NEXT-FORM-NAME.
CALL 'VGETNEXTFORM' USING COMAREA.
CALL 'VGETKEYLABELS' USING COMAREA FORM-KEYS NUMBER-OF-KEYS

KEY-BUFFER.
CALL INTRINSIC '.LEN.' USING SCREEN-BUFFER GIVING

BUFFER-LENGTH.

PERFORM UNTIL DONE IS EQUAL TO 'y'
MOVE 'n' TO END-OF-SCREEN

8-58 COBOL source programs Version 3. 1 March 1992

CALL 'VPUTBUFFER' USING COMAREA SCREEN-BUFFER
BUFFER-LENGTH

CALL 'VSHOWFORM' USING COMAREA

MOVE SPACES TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH

CALL 'VREADFIELDS' USING COMAREA

IF LAST-KEY IS ZERO THEN
CALL 'VGETBUFFER' USING COMAREA SCREEN-BUFFER

BUFFER-LENGTH

* INSERT THE SUPERDEX RELATIONAL OPERATORS INTO THE CUSTOMER NAME

PERFORM MAKE-FIND-CUST

MOVE 'CUSTOMERS;' TO SET-VALUE
**
* THE FOLLOWING MOVE STATEMENT IS USED TO INITIALIZE THE "ITEM"
* VARIABLE FOR THE FIRST SUPERDEX DBFIND.
* THE ITEM VALUE REPRESENTS THE SI-PATH AS DEFINED DURING THE
* CREATION OF THE INDEX. THE LIST VALUE REPRESENTS THE IMAGE ITEMS TO
* BE RETRIEVED BY THE THE RESULTING DBGET'S
**

MOVE 'CUSTOMER-NAME;' TO ITEM-VALUE
MOVE 'n' TO NO-ENTRIES

**
* THE FOLLOWING DBFIND IS USED BY SUPERDEX TO SCAN THE INDEX AS DEFINED
* BY THE ITEM VALUE PREVIOUSLY LOADED INTO THE ITEM PARAMETER. THE DBFIND*
* DETERMINES ALL CORRESPONDING ENTRIES WHICH QUALIFY TO THE REQUESTED *
* SCREEN ENTRY VALUE.
**

CALL 'DBFIND' USING BASE IMAGE-SET MODEl IMAGE-STATUS
ITEM FIND-CUST

IF CW IS NOT ZERO THEN
MOVE 'y' TO NO-ENTRIES
MOVE 'No Qualifying Entries Found' TO

MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH

Version 3.1 March 1992 COBOL source programs 8-59

*

*
*

*
*

*

*

ELSE
IF IMAGE-CHAIN-LENGTH IS NOT EQUAL TO 1 THEN

MOVE 'y' TO NO-ENTRIES
MOVE 'More than one Entry Qualified' TO

MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

* HERE IS WHERE THE PROJECTION FROM THE ORDER-HEADERS DATASET
* IS PERFORMED. FIRST THE NAME OF THE IMAGE DATASET THAT THE PROJECTION *
* WILL BE PERFORMED AGAINST IS MOVED INTO THE SET PARAMETER.

MOVE 'ORDER-HEADERS;' TO SET-VALUE

* SECONDLY THE SI-PATH NAME OF THE PROJECTION IS MOVED TO THE ITEM
* PARAMETER

MOVE 'CUSTOMER-NUMBERj' TO ITEM-VALUE

* THE PROJECTION IS PERFORMED BY USING A DBFIND WITH THE PROJECTION
* ARGUMENT ("[*J;").

CALL 'DBFIND' USING BASE IMAGE-SET MODEl
IMAGE-STATUS ITEM PROJECTION-ARG

IF CW IS NOT ZERO THEN
MOVE 'y' TO NO-ENTRIES
MOVE 'No Orders Found for the Customer' TO

MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

* HERE IS WHERE THE ORDER-LINES ARE QUALIFIED BY A BOOLEAN "AND"
* OPERATION BETWEEN THE ALREADY QUALIFIED ORDER-HEADERS ENTRIES
* AND THE ORDER-LINES DATA SET.

* INSERT THE SUPERDEX RELATIONAL OPERATORS INTO THE PART NUMBER *

PERFORM MAKE-FIND-ITEM
MOVE 'ORDER-LINES;' TO SET-VALUE

**
* THE SI-PATH THAT CONTAINS THE PART NUMBER AND THE ORDER NUMBER,
* IN THAT ORDER, IS MOVED TO THE ITEM ARGUMENT OF THE DBFIND.
**

*
*
*

*
*

*

*

*
*

*
*

8-60 COBOL source programs Version 3. 1 March 1992

MOVE 'PART-ORDER;' TO ITEM-VALUE
**
* THE DBFIND WILL PERFORM THE BOOLEAN "AND" BETWEEN THE TWO SETS.
* THE "AND" OPERATOR ("&") WAS MOVED INTO THE ARGUMENT PARAMETER
* BY THE MAKE-FIND-ITEM PROCEDURE.
**

CALL 'DBFIND' USING BASE IMAGE-SET MODEl
IMAGE-STATUS ITEM FIND-ITEM

IF CW NOT EQUAL ZERO THEN
MOVE 'y' TO NO-ENTRIES
MOVE 'No Items Found for the Customer'

TO MESSAGE-BUFFER
MOVE SPACES TO DATA-LINES
CALL 'VPUTWINDOW' USING COMAREA

MESSAGE-BUFFER MESSAGE-BUFFER-LENGTH
ELSE

**
* THE NEXT DBFIND IS NEEDED TO DETERMINE THE NUMBER OF QUALIFYING
* ENTRIES IN THE ITEM DATASET. THE CHAIN LENGTH VALUE OF THE IMAGE
* STATUS ARRAY CONTAINED THE TOTAL NUMBER OF FOUND ENTRIES BY THE
* THREE DBFIND'S. THE NULL ITEM INSTRUCTS SUPERDEX TO COUNT THE
* QUALIFYING ENTRIES OF THE DATASET SPECIFIED BY THE SET PARAMETER
~~*************************

MOVE ';' TO ITEM-VALUE

CALL 'DBFIND' USING BASE IMAGE-SET MODEl
IMAGE-STATUS ITEM COUNT-ITEM

MOVE lMAGE-CHAIN-LENGTH TO
ENTRIES-FOUND

END-IF
END-IF

END-IF
END-IF ELSE
IF LAST-KEY IS EQUAL TO 8 THEN

MOVE 'y' TO DONE
END-IF

END-IF

IF (LAST-KEY IS EQUAL TO ZERO OR LAST-KEY IS EQUAL TO 1)
AND NO-ENTRIES IS EQUAL TO 'n' THEN

MOVE SPACES TO DATA-LINES
MOVE 1 TO ARRAY-INDEX
MOVE
'ORDER-NUMBER,PART-NUMBER,PART-DESCRIPTION,QUANTITY-OR
'DERED,UNIT-PRICEi' TO LIST-VALUE

PERFORM UNTIL END-OF-SCREEN IS EQUAL TO 'y'

Version 3.1 March 1992 COBOL source programs 8-61

*
*
*

*
*
*
*
*

* THE FOLLOWING DBGET IS USED TO RETRIEVE INFORMATION FROM THE IMAGE *
* DATASET WHICH CORRESPONDS TO THE QUALIFYING ENTRIES RETRIEVED FROM *
* THE PREVIOUS DBFIND. *

CALL 'DBGET' USING BASE IMAGE-SET MODE5 IMAGE-STATUS
LIST IMAGE-BUFFER DUMMY

IF CW IS NOT EQUAL TO ZERO THEN
MOVE 'Y' TO END-OF-SCREEN
MOVE 'End of Current Entries' TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA MESSAGE-BUFFER

MESSAGE-BUFFER-LENGTH
ELSE

MOVE IMAGE-ORDER-NUMBER
TO TEMP-ORDER-NUMBER

MOVE IMAGE-ITEM-KEY
TO TEMP-ITEM-KEY

MOVE IMAGE-ITEM-DESCRIPTION
TO TEMP-ITEM-DESCRIPTION

MOVE IMAGE-QUANTITY-ORDERD
TO TEMP-QUANTITY-ORDERD

COMPUTE LIST-PRICE = IMAGE-LIST-PRICE I 100 *
IMAGE-QUANTITY-ORDERD

MOVE LIST-PRICE TO TEMP-LIST-PRICE

MOVE TEMP-LINE TO
SCREEN-LINE (ARRAY-INDEX)

ADD 1 TO ARRAY-INDEX
IF ARRAY-INDEX IS GREATER THAN 15 THEN

MOVE 'y' TO END-OF-SCREEN
MOVE QUALIFY-BUFFER TO MESSAGE-BUFFER
CALL 'VPUTWINDOW' USING COMAREA

MESSAGE-BUFFER MESSAGE-BUFFER-LENGTH
END-IF

END-IF
END-PERFORM

END-IF
END-PERFORM.

MOVE ZERO TO LAST-KEY

EXIT PROGRAM.

8-62 COBOL source programs Version 3. 1 March 1992

* THIS ROUTINE BUILDS THE ARGUMENT FOR THE DBFIND ON THE CUSTOMER*
* DATASET. THE ARGUMENT IS PRECEDED BY A '[' AND IS TERMINATED BY*
* A 'J'. THE SQUARE BRACKETS ARE THE OPERATORS FOR THE RELATIONAL*
* SUBSYSTEM OF SUPERDEX. *
**
MAKE-FIND-CUST.

MOVE SCREEN-CUSTOMER TO FIND-CUSTOMER-VALUE.
MOVE 30 TO I.
PERFORM UNTIL (I IS EQUAL TO ZERO) OR

(CUST-CHARACTER-ARRAY(I) IS NOT EQUAL TO SPACE}
SUBTRACT 1 FROM I

END-PERFORM.
ADD 1 TO I.
MOVE 'J' TO CUST-CHARACTER-ARRAY(I}.

MAKE-FIND-CUST-EXIT.
EXIT.

* THIS ROUTINE BUILDS THE ARGUMENT FOR THE DBFIND ON THE ORDER-NUMBER *
* DATASET. THE VALUE OF THE ENTRY IS PRECEDED BY A '[' AND IS *
* FOLLOWED BY A 'J'. AFTER THE 'J', A '&' IS APPENDED TO THE STRING.THE *
* '&' IS SUPERDEX'S OPERATOR FOR A LOGICAL AND.

MAKE-FIND-ITEM.

MOVE SCREEN-ITEM TO FIND-ITEM-VALUE.
MOVE 14 TO I.
PERFORM UNTIL (I IS EQUAL TO ZERO) OR

(ITEM-CHARACTER-ARRAY(I) IS NOT EQUAL TO SPACE}
SUBTRACT 1 FROM I

END-PERFORM.
ADD 1 TO I.
MOVE 'J' TO ITEM-CHARACTER-ARRAY(I).
ADD 1 TO I.
MOVE '&' TO ITEM-CHARACTER-ARRAY(I).

MAKE-FIND-ITEM-EXIT.
EXIT.

Version 3.1 March 1992 COBOL source programs 8-63

*

