
Cognos(R)

Application Development Tools
PowerHouse(R) 4GL

VERSION 8.4E

QDESIGN REFERENCE

QDESIGN Reference

Axiant 4GL

3.4E

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

QDESIGN Reference

QDESIGN REFERENCE

Product Information

This document applies to PowerHouse(R) 4GL Version 8.4E and may also apply to subsequent releases. To check for newer versions of this
document, visit the Cognos support Web site (http://support.cognos.com).

Copyright
Copyright © 2007, Cognos Incorporated. All Rights Reserved

Printed in Canada.

This software/documentation contains proprietary information of Cognos Incorporated. All rights are reserved. Reverse engineering of this
software is prohibited. No part of this software/documentation may be copied, photocopied, reproduced, stored in a retrieval system,
transmitted in any form or by any means, or translated into another language without the prior written consent of Cognos Incorporated.

Cognos, the Cognos logo, Axiant, PowerHouse, QUICK, and QUIZ are registered trademarks of Cognos Incorporated.

QDESIGN, QTP, PDL, QUTIL, and QSHOW are trademarks of Cognos Incorporated.

OpenVMS is a trademark or registered trademark of HP and/or its subsidiaries.

UNIX is a registered trademark of The Open Group.

Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corporation.

FLEXlm is a trademark of Macrovision Corporation.

All other names mentioned herein are trademarks or registered trademarks of their respective companies.

All Internet URLs included in this publication were current at time of printing.

While every attempt has been made to ensure that the information in this document is accurate and complete, some typographical or
technical errors may exist. Cognos does not accept responsibility for any kind of loss resulting from the use of the information contained in
this document.

This page shows the publication date. The information contained in this document is subject to change without notice. Any improvements or
changes to either the product or the publication will be documented in subsequent editions.

U.S. Government Restricted Rights. The software and accompanying materials are provided with Restricted Rights. Use, duplication, or
disclosure by the Government is subject to the restrictions in subparagraph (C)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, or subparagraphs (C) (1) and (2) of the Commercial Computer Software - Restricted Rights at
48CFR52.227-19, as applicable. The Contractor is Cognos Corporation, 15 Wayside Road, Burlington, MA 01803.

Information about Cognos Products and Accessibility can be found at www.Cognos.com.

http://support.cognos.com

QDESIGN Reference 3

About this Book 9

Overview 9
Conventions in this Book 9
Getting Help 10
Cognos PowerHouse 4GL Documentation Set 10
Cognos PowerHouse Web Documentation Set 11
Cognos Axiant 4GL Documentation Set 12

Chapter 1: Introducing QDESIGN and QUICK 13
About PowerHouse 13
Introducing QDESIGN 15

The Sections of a QDESIGN Screen Design 16
Introducing QUICK 17

Chapter 2: QUICK User Interface 19
Using QUICK Screens 19

Menu Screens and Data Screens 19
QUICK Screen Commands 19
Moving from Screen to Screen 20
Entering Data 21
Changing Data During Data Entry 22
Saving or Updating Data 23
Finding Data 24
Changing Data in Find or Select Mode 25
Adding Data in Find or Select Mode 26
Deleting Data 26
Running Reports and Volume Updates 26
Miscellaneous Commands 27
Advanced User Interface Features 27
Overlayed Screens 27
Messages 27
Help 28
Entering Action Commands 28
Fixed and Scrolling Data Fields 29
Pop-up Data Entry Windows 30
Selection Boxes 30

QKView (Windows) 31
Configuration 31
Settings 32
QKView Considerations 33
The QKView Menus 35

Input Modes 37
Terminology (MPE/iX) 37
Device Settings (MPE/iX) 37
Read Types (MPE/iX) 38
Supporting QDESIGN Syntax 39
Program Parameters 39
Field Mode 40
Panel Mode 40
Compatible Block Mode (MPE/iX) 42

Table of Contents

4 PowerHouse(R) 4GL Version 8.4E

Multiple Command Processing 49
Command Sources 49
Input Buffers 49
Order of Processing 51
Error Handling 52
Examples 53

Partial-Index Retrieval in QUICK 56
Limitation on Retrieval from B-Tree Indexes (MPE/iX) 56
Scrolling Primary and Detail Records 57

Screen Designer Options 57
Screen User Commands 57
Cache Contents 58
Scrolling Commands 58

Screen Threads 60

Chapter 3: QDESIGN Statements 61
Summary of QDESIGN Statements 61
ACCESS 64
ACTIONMENU 70
ALIGN 74
BUILD 76
CANCEL 78
CLUSTER 79
COMMAND 84
CURSOR 88
[SQL] DECLARE CURSOR (query-specification) 94
[SQL] DECLARE CURSOR(stored procedure) 96
DEFINE 98
DESCRIPTION 101
DRAW 102
EXIT 104
FIELD 105
FILE 126
GENERATE 143
GO 146
HILITE 147
ITEM 151
KEY 156
MENUITEM 164
QSHOW 168
query-specification(SELECT) 169
QUIT 172
REPORT 173
REVISE 176
RUN 178
SAVE 181
SCREEN 182
SELECT 198
SET 199
SHOW 206
SKIP 208
SUBSCREEN 210
TARGET 216
TEMPORARY 217
THREAD 221
TITLE 226
TRANSACTION 228

QDESIGN Reference 5

USE 233

Chapter 4: QDESIGN Procedures Overview 235
Default Procedures and Designer-Written Procedures 235
Procedure Sequence Guidelines 237
QDESIGN Verbs and Control Structures 237
Writing Procedures 238

Procedural Statements 238
Verb and Procedure Compatibility 239
Testing Processing Status Using Predefined Conditions 243

Testing Record Status 243
Testing Record Retrieval Status 245
Testing User Response Status 245
Testing Processing Modes 245

Testing Entered Values in Designer-Written Field Processing Procedures 246

Chapter 5: QUICK's Processing Modes 247
Understanding the Relationship Between QDESIGN and QUICK 247
Understanding QUICK's Processing Modes 247
Entry Mode Processing 248

The Initialization Phase 248
The Entry Phase 248
The Correction Phase 248
The Update Phase 249

Find Mode Processing 250
The Initialization Phase 250
Path Determination Phase 250
The Retrieval Cycle Phase 250
Notes on Find Mode 251

Select Mode Processing 252
Append Mode Processing 252

Procedures and Verbs Used in Append Mode Processing 252
Action Field Commands Used in Append Mode Processing 253
Append Mode Processing and Primary Record-Structures 253
Append Mode Processing and Detail Record-Structures 253
Notes on Append Mode Processing 253

Chapter 6: Customizing QUICK with QKGO 255
QKGO: The QUICK Execution-Time Parameter File-Set 255

Alternatives to Custom QKGO file-sets 255
Starting QKGO 256
Exiting QKGO 257
Choosing Options on QKGO Screens 257
Getting Help 257
Performing Lookups in Fields on QKGO Screens 257

The Construction and Maintenance Screen 258
Specifying QKGO File-Sets 259
Creating QKGO File-Sets 259
Copying and Converting QKGO File-Sets 259
Modifying or Deleting a QKGO File-Set 259
Physical QKGO File-Sets 260
Changing Values in the Subscreens 260

The Execution-Time Parameter Values Screen 261
Using QKGO to Adjust Execution-Time Parameters 264
Screen Tables and Work Area Parameters 264
External Subroutines 266

The Action Field Commands Screen 268
The Action and Data Field Commands Screen 269

6 PowerHouse(R) 4GL Version 8.4E

The Data Field Commands Screen 270
The Dynamic Function Keys Screens 271

Action Field Commands 272
The Edit DFK Definitions Screen 273

Action Field Commands 274
The DFK Definition Entry Screen 275
The Terminal Interface Configuration Screen 278

The TIC System of Screens 278
Modifying an Existing Terminal Interface Configuration 278
Creating your own Terminal Interface Configuration Group 279
The Command Binding Screens 279
Action Field Commands 281

The Color Display Attributes Screen (OpenVMS) 281
The Custom Commands Binding Screen 281

Custom Command Binding Options 282
Modifying TIC Files 283

Introduction 283
The Format of a TIC File 283
QUICK Commands 285

QUICK Initialization File 290

Chapter 7: QDESIGN Procedures 293
QDESIGN Procedure Summary 293
APPEND 295
BACKOUT 298
DELETE 300
DESIGNER 303
DETAIL DELETE 307
DETAIL FIND 309
DETAIL POSTFIND 311
EDIT 312
ENTRY 314
EXIT 317
FIND 318
INITIALIZE 322
INPUT 324
INTERNAL 326
MODIFY 328
OUTPUT 331
PATH 333
POSTFIND 338
POSTPATH 340
POSTSCROLL 342
POSTUPDATE 344
PREENTRY 347
PRESCROLL 349
PREUPDATE 351
PROCESS 353
SELECT 356
UPDATE 357

Chapter 8: QDESIGN Verbs and Control Structures 361
Summary of QDESIGN Verbs and Control Structures 361
ACCEPT 364
BEGIN...END 370
BLOCK TRANSFER 372
BREAK 375
[SQL] CALL 376

QDESIGN Reference 7

CLEAR 378
[SQL] CLOSE 379
COMMIT 380
DELETE 381
[SQL] DELETE 382
DISABLE 384
DISPLAY 385
DO BLOB 387
DO EXTERNAL (MPE/iX) 390
DO EXTERNAL (OpenVMS) 398
DO EXTERNAL (UNIX) 406
QDESIGN - DO EXTERNAL (Windows) 412
DO INTERNAL 417
EDIT 418
ERROR 420
[SQL] FETCH 424
FOR 425
GET 431
IF 435
INFORMATION 437
[SQL] INSERT 438
LET 440
LOCK 442
MEMOLOG (MPE/iX) 448
NULL 449
[SQL] OPEN 450
PERFORM APPEND 451
PROMPT 452
PUSH 454
PUT 455
REFRESH 459
REQUEST 460
RETURN 463
ROLLBACK 465
RUN COMMAND 466
RUN REPORT 469
RUN RUN 471
RUN SCREEN 473
RUN THREAD 478
SELECT 481
SEVERE 484
START 485
STARTLOG (MPE/iX) 486
STOPLOG (MPE/iX) 487
UNLOCK 488
[SQL] UPDATE 489
WARNING 491
WHILE 492
WHILE RETRIEVING 495

Chapter 9: Debugger 501
Debugger Overview 501

General Terms 501
Running Debugger 502
Compiling Screens for Debugger 502
Running Screens with Debugger (MPE/iX) 503
Running Screens with Debugger (OpenVMS, UNIX, Windows) 503

8 PowerHouse(R) 4GL Version 8.4E

Setting Breaks in a Screen 504
Getting Help 504
Exiting Debugger 504
Continuing Execution 505

Displaying Source Code 505
Finding Text in the Source Code 506
Controlling Execution 507

Breakpoints 508
Stepping 508
Watchpoints 508
User Break 509

The Screen Environment 509
Transcript of the Debugging Session 510

Chapter 10: Debugger Commands 511
Debugger Command Summary 511
BREAK 513
BYE 515
CLEAR 516
CONTINUE 517
DISPLAY 518
EXAMINE 520
EXIT 522
FIND 523
GO 525
LET 526
LIST 528
NEXT 530
PREVIOUS 531
QSHOW 532
SAVE 533
SCREEN 534
SCROLL 536
SHOW 537
STEP 542
TYPE 543
USE 545
User Break 546
WATCH 547

Index 549

QDESIGN Reference 9

About this Book

Overview
This book is intended for experienced PowerHouse users who require a concise summary of
QDESIGN statements.

Chapter 1, "Introducing QDESIGN and QUICK", introduces QDESIGN, QUICK, and the other
PowerHouse components and utilities.

Chapter 2, "QUICK User Interface", provides information about the QUICK user interface,
including Panel input mode, partial-index retrieval in QUICK, and multiple command processing.
All QUICK function keys are discussed.

Chapter 3, "QDESIGN Statements", provides concise summaries and detailed information about
QDESIGN statements. Syntax summaries, detailed syntax discussions, and examples are provided
for each QDESIGN statement, where applicable.

Chapter 4, "QDESIGN Procedures Overview", introduces you to QDESIGN's default and
supplementary procedures.

Chapter 5, "QUICK's Processing Modes", describes how QDESIGN's procedures are called by
QUICK screen user actions. QUICK's three basic modes of operation (Entry, Find, and Select) are
discussed.

Chapter 6, "Customizing QUICK with QKGO", describes the QKGO utility. With QKGO, you
can customize QUICK's operating characteristics.

Chapter 7, "QDESIGN Procedures", provides concise summaries and detailed information about
QDESIGN procedures. Syntax summaries, detailed syntax discussions, and examples are
included, where applicable.

Chapter 8, "QDESIGN Verbs and Control Structures", discusses verbs and control structures that
you can use to control processing in QDESIGN procedures.

Chapter 9, "Debugger", provides information about using the QUICK Interactive Debugger to
analyze and control QUICK screens as they run.

Chapter 10, "Debugger Commands", provides concise summaries and detailed information about
Debugger commands. Syntax summaries, detailed syntax discussions, and examples are provided
for each Debugger command, where applicable.

Conventions in this Book
This book is for use with MPE/iX, OpenVMS, UNIX, and Windows operating systems. Any
differences in procedures, commands, or examples are clearly labeled.

In this book, words shown in uppercase type are keywords (for example, SAVE). Words shown in
lowercase type are general terms that describe what you should enter (for example, filespec).
When you enter code, however, you may use uppercase, lowercase, or mixed case type.

10 PowerHouse(R) 4GL Version 8.4E

About this Book

Getting Help
For more information about using this product or for technical assistance, visit the Cognos Global
Customer Services Web site (http://support.cognos.com). This site provides product information,
services, user forums, and a knowledge base of documentation and multimedia materials. To
create a case, contact a support person, or provide feedback, click the Contact Us link at the
bottom of the page. To create a Web account, click the Web Login & Contacts link. For
information about education and training, click the Training link.

Cognos PowerHouse 4GL Documentation Set
PowerHouse 4GL documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Objective Document

Install
PowerHouse 4GL

Cognos PowerHouse 4GL & PowerHouse Web Getting Started book. This
document provides step-by-step instructions on installing and licensing
PowerHouse 4GL.

Available in the release package or from the following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web Release and Install Notes.
This document provides information on supported environments, changes,
and new features for the current version.

Available in the release package or from the following website:

http://support.cognos.com

Get an
introduction to
PowerHouse 4GL

Cognos PowerHouse 4GL Primer. This document provides an overview of
the PowerHouse language and a hands-on demonstration of how to use
PowerHouse.

Available from the PowerHouse 4GL documentation CD or from the
following website:

http://powerhouse.cognos.com

Get detailed
reference
information for
PowerHouse 4GL

Cognos PowerHouse 4GL Reference documents. They provide detailed
information about PowerHouse rules and each PowerHouse component.

The documents are
• Cognos PowerHouse 4GL PowerHouse Rules
• Cognos PowerHouse 4GL PDL and Utilities Reference
• Cognos PowerHouse 4GL PHD Reference
• Cognos PowerHouse 4GL PowerHouse and Relational Databases
• Cognos PowerHouse 4GL QDESIGN Reference
• Cognos PowerHouse 4GL QUIZ Reference
• Cognos PowerHouse 4GL QTP Reference

Available from the PowerHouse 4GL documentation CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

About this Book

QDESIGN Reference 11

Cognos PowerHouse Web Documentation Set
PowerHouse Web documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Objective Document

Start using
PowerHouse Web

Cognos PowerHouse Web Planning and Configuration book. This
document introduces PowerHouse Web, provides planning information
and explains how to configure the PowerHouse Web components.

Important: This document should be the starting point for all PowerHouse
Web users.

Also available from the PowerHouse Web Administrator CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Install
PowerHouse Web

Cognos PowerHouse 4GL & PowerHouse Web Getting Started book. This
document provides step-by-step instructions on installing and licensing
PowerHouse Web.

Available in the release package or from the following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web Release and Install Notes.
This document provides information on supported environments, changes,
and new features for the current version.

Available in the release package or from the following website:

http://support.cognos.com

Get detailed
information for
developing
PowerHouse Web
applications

Cognos PowerHouse Web Developer’s Guide. This document provides
detailed reference material for application developers.

Available from the Administrator CD or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Administer
PowerHouse Web

The PowerHouse Web Administrator Online Help. This online resource
provides detailed reference material to help you during PowerHouse Web
configuration.

Available from within the PowerHouse Web Administrator.

12 PowerHouse(R) 4GL Version 8.4E

About this Book

Cognos Axiant 4GL Documentation Set
Axiant 4GL documentation includes planning and configuration advice, detailed information
about statements and procedures, installation instructions, and last minute product information.

For More Information
For information on the supported environments for your specific platform, as well as last-minute
product information or corrections to the documentation, refer to the Release and Install Notes.

Objective Document

Install Axiant 4GL Cognos Axiant 4GL Web Getting Started book. This document provides
step-by-step instructions on installing and licensing Axiant 4GL.

Available in the release package or from the following website:

http://support.cognos.com

Review changes
and new features

Cognos Axiant 4GL Release and Install Notes. This document provides
information on supported environments, changes, and new features for the
current version.

Available in the release package or from the following website:

http://support.cognos.com

Get an
introduction to
Axiant 4GL

A Guided Tour of Axiant 4GL. This document contains hands-on tutorials
that introduce the Axiant 4GL migration process and screen customization.

Available from the Axiant 4GL CD or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Get detailed
reference
information on
Axiant 4GL

Axiant 4GL Online Help. This online resource is a detailed reference guide
to Axiant 4GL.

Available from within Axiant 4GL or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

QDESIGN Reference 13

Chapter 1: Introducing QDESIGN and QUICK

Overview
This chapter introduces QDESIGN and QUICK and provides an overview of the other
PowerHouse components and utilities.

About PowerHouse
PowerHouse 4GL is an application development environment that allows you to create business
applications quickly and easily.

Components
PowerHouse 4GL is divided into the following separate, yet integrated components:

PowerHouse Dictionary

The PowerHouse dictionary is the foundation of PowerHouse applications. As the backbone of all
PowerHouse systems, the PowerHouse dictionary stores definitions of the data used by your
PowerHouse applications.

There are two dictionary types—PDC and PHD. PDC dictionaries exist as a single file and have a
.pdc extension (OpenVMS, UNIX, Windows) or file code 655 (MPE/iX). PHD dictionaries exist
as five indexed files and have a .phd extension. PHD dictionaries are OpenVMS-specific.

For more information about the PHD dictionary, see the PHD Reference and PowerHouse Rules
books. See also the section, "PowerHouse Dictionary on OpenVMS", in Chapter 1, "Introducing
the PowerHouse Dictionary", in the PDL Reference.

PDL

The PowerHouse Definition Language (PDL) allows you to create and maintain a PowerHouse
dictionary.

PDL source code can be compiled in either the PDL or PHDPDL (OpenVMS) compiler.

PDL Compiler

PDL compiler is the component that compiles PDL source statements to a PowerHouse dictionary.
Dictionaries generated with the PDL compiler have a .pdc extension (UNIX, Windows,
OpenVMS) or file code 655 (MPE/iX).

PHDPDL Compiler (OpenVMS)

PHDPDL is an OpenVMS-specific component that compiles PDL source statements to a
PowerHouse dictionary. Dictionaries generated with PHDPDL have a .phd extension.

PHD Screen System (OpenVMS)

PHD is a screen interface to PHD dictionaries. You can initiate PHD with the POWERHOUSE or
POW command.

For more information about running PHD, see Chapter 1, "Running PowerHouse", in the
PowerHouse Rules book.

14 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing QDESIGN and QUICK

QDESIGN and QUICK

QUICK is an interactive screen processor with a powerful development tool: QDESIGN. As a
screen designer, you use QDESIGN to build data entry and retrieval screen systems. QUICK
screens are used by data-entry operators and other end-users to process data quickly or to browse
effortlessly through their files.

QUICK includes an interactive debugger that lets you analyze and control QUICK screens as they
run.

QUIZ

QUIZ is the PowerHouse report writer. It takes the information you request and gives it a
structure. Your information is automatically displayed in columns with headings. The key to the
simplicity of QUIZ lies in its relationship with the data dictionary. QUIZ references the rules and
standards defined in the data dictionary by the application designer when it formats your report.

QTP

QTP is a high-volume transaction processor. It gives you the power to change the data in your files
in one sweep. Because QTP is easy to use and designed for fast, high-volume file updating, it
should be used by someone who is familiar with the implications of updating active files.

QTP includes a trace facility that lets you debug QTP requests.

Utilities
PowerHouse also contains the following data dictionary utilities:

QSHOW

QSHOW is the data dictionary reporting program. It allows you to view and obtain
cross-reference information about the contents of your PowerHouse dictionaries. It also allows
you to generate PDL source for a PowerHouse dictionary.

QUTIL

QUTIL is a utility that creates and deletes non-relational files and databases.

ITOP (MPE/iX)

ITOP is an IMAGE to PDL conversion utility that generates PDL statements directly from an
existing IMAGE database.

QCOBLIB (MPE/iX)

QCOBLIB is a utility that generates COBOL definitions from a PDL dictionary.

PHDMAINTENANCE (OpenVMS)

PHDMAINTENANCE creates and manages PHD dictionaries. It is also referred to as
PHDMAINT.

PHDADMIN (OpenVMS)

PHDADMIN is a run-time utility for administering security classes in PHD dictionaries.

PowerHouse-Related Products

Axiant 4GL

Axiant 4GL is a visual Windows-based development environment for creating PowerHouse
applications. With Axiant 4GL, you can build applications that can be deployed in a variety of
thin-client, fat-client, mobile, stand-alone, and server-only architectures. Axiant 4GL gives
PowerHouse a Window-like user interface.

Chapter 1: Introducing QDESIGN and QUICK

QDESIGN Reference 15

PowerHouse Web

Introducing QDESIGN
QDESIGN is the PowerHouse screen development component. Screen designers use QDESIGN
statements and procedures to create QUICK screens.

Like the other PowerHouse components, QDESIGN is tied closely to the PowerHouse dictionary.
QDESIGN uses the data definitions stored in the PowerHouse dictionary when generating screens
for use in QUICK.

Unlike third generation languages, QDESIGN handles a large amount of background procedural
processing automatically. In effect, QDESIGN can be split into two distinct yet closely tied layers:
• the Design layer is made up of QDESIGN statements. Statements in the Design layer are

entered primarily by the screen designer, although many can be generated automatically by
QDESIGN itself. The statements in the Design layer influence the procedures that QDESIGN
generates in the Procedural layer.

• the Procedural layer is made up of QDESIGN procedures. Procedures in the Procedural layer
are either generated automatically (based on the statements in the Design layer) or are
explicitly coded by the screen designer.

16 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing QDESIGN and QUICK

All QUICK screens incorporate both the Design and the Procedural layers. Whenever possible,
you should restrict your coding efforts to the Design layer, and allow QDESIGN to handle the
procedural layer for you automatically. You should code procedures only when a desired result
cannot be achieved with QDESIGN statements.

The Sections of a QDESIGN Screen Design
The statements that you use in the Design layer fall into three categories:

The Screen Section

Controls how QUICK actions or menus are presented in a menu bar that extends across the
terminal screen.

Note: On Windows, QUICK runs in a Console window, whereas on other platforms, QUICK runs
on a terminal or terminal emulator. For simplicity, the word 'terminal' will be used throughout
this book.

The Data Section

Defines and controls how the QUICK screen processes data, including which files and
record-structures are accessed, as well as how they are accessed. In addition, the data section
controls how items are initialized.

The Layout Section

Controls how screen entities such as fields, string literals, and lines appear on QUICK screens.

The following table lists the statements that fall into QDESIGN screen, data, and layout sections:

The section statements must be entered in the following order:
1. screen
2. data
3. layout

Screen Section Data Section Layout Section

ACTIONMENU ACCESS ALIGN

DESCRIPTION CURSOR CLUSTER

KEY [SQL]DECLARE CURSOR (query specification)
1 COMMAND

MENUITEM [SQL]DECLARE CURSOR (stored procedure)
1 DRAW

SCREEN DEFINE FIELD

FILE GENERATE

ITEM HILITE

query-specification (SELECT) SKIP

SELECT SUBSCREEN

TARGET THREAD

TEMPORARY TITLE

TRANSACTION

1 This statement can precede the SCREEN statement.

Chapter 1: Introducing QDESIGN and QUICK

QDESIGN Reference 17

The remaining QDESIGN statements fall into none of the three sections. They control how
QDESIGN itself works rather than operational characteristics of the QUICK screens that are
being developed. These statements include BUILD, CANCEL, EXIT, GO, QSHOW, QUIT,
REVISE, SAVE, SET, SHOW, and USE.

For details about QDESIGN statements and how they work, see Chapter 3, "QDESIGN
Statements".

Introducing QUICK
Screens that have been created with QDESIGN are run with QUICK, the PowerHouse screen
processing component. Screen designers can use QUICK and the Interactive Debugger to test the
screens and prototypes that they've developed in QDESIGN.

For information about QUICK screen use, see Chapter 2, "QUICK User Interface".

For information about QUICK processing, see Chapter 5, "QUICK’s Processing Modes".

For information about the Interactive Debugger, see Chapter 9, "Debugger" and Chapter 10,
"Debugger Commands".

18 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing QDESIGN and QUICK

QDESIGN Reference 19

Chapter 2: QUICK User Interface

Overview
This chapter discusses how the QUICK user interface works. It includes information about
• using QUICK screens
• QKView (Windows)
• input modes
• multiple command processing
• partial-index retrieval
• scrolling primary and detail records
• screen threads

Using QUICK Screens
This section describes how to use the standard QUICK screen commands in Field mode. For
details on how to use Panel mode and Compatible Block mode, see "Input Modes" (p. 37). For
details on screen threads, see "Screen Threads" (p. 60).

For lists of QUICK commands, see "QUICK Commands" (p. 285) and "QUICK Screen
Commands" in Chapter 5, PowerHouse Rules.

In any particular application, you can add, change, or remove commands. As well, there may be
alternative commands that are specific to the terminal you are using. You can get a list of these
alternative commands using the QKGO system or by looking at the TIC files. For more
information, see "The Terminal Interface Configuration Screen" (p. 278) and "Modifying TIC
Files" (p. 283).

Most input is completed using the Enter or Return key, depending on the terminal or terminal
emulator you’re using. In this section, where Enter is used, it stands for either the Enter or Return
key as is required in your specific case. Using the Enter key is also the default for the Accept and
Input Completion commands.

Menu Screens and Data Screens
There are two types of QUICK screens: menu screens and data screens. Most applications begin
with a menu screen that lists a number of screens, commands, and programs. Complex
applications may have several menu screens, each acting as an introduction to a new part of the
application.

Data screens are used to enter and retrieve the data in your application. Entering data on a data
screen is like filling out a form. The fields on the data screen correspond to the blanks on the
form. Most data fields are identified by an ID-number and a label.

Data screens can also provide access to other screens, commands, and programs.

QUICK Screen Commands
When you first access a screen, you are usually prompted in the Action field, which often appears
in the top left-hand corner of a screen. You must enter an Action command to process the data on
your screen or to move to another screen. The default command mnemonic is shown in
parentheses after the command name. You can use the QKGO system to change the default
mnemonic.

20 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface

You can move, remove, or change the name of the Action or Mode field.

When you first invoke a data screen, you must choose a mode, unless the startup mode has been
set by the calling screen. There are three modes you can use in QUICK: Entry mode, Find mode,
and Select mode. To choose a mode, enter the appropriate mode command: Entry (E), Find (F), or
Select (S).

When you specify a mode, it is displayed in the Mode field as E, F, or S. The Mode field normally
appears to the left of the Action field. However, you can move or remove the Mode field.

Action Commands

Action commands are commands that apply to a whole screen. These commands
• set screen processing modes to Enter, Find, or Select
• process data
• move you through a system of screens
• show you help information about a screen
• invoke application specific "designer" commands
• select items on the screen by their ID-number
• perform screen actions such as starting data entry or updating data

Data Commands

Data commands are commands that control data entry. You enter data commands in data fields.
These commands let you
• move between data entry fields
• complete or back out of data entry
• request information and help

Using Function Keys to Enter Commands

PowerHouse supports function keys on some terminals and the equivalent emulators as well as in
QUICK for Windows.

Action and data commands are assigned or "mapped" to one or more function keys by default.
Simply press the appropriate function key to enter the command you want to use. See "The
Terminal Interface Configuration Screen" (p. 278) for more information on using the QKGO
system to list the function key mappings. You can also use the QKGO system to change the
configuration or map other commands to keys and key sequences.

Moving from Screen to Screen
You can move from one screen to another by entering the ID-number of the screen you want in the
Action field. To return to the previous screen, use the Return command (^). If you're at the first
screen in your application, this command takes you out of the application.

Stopscreens

Some screens, usually menus, are stopscreens. A screen system designed with stopscreens allows
you to move up several levels in a screen hierarchy with the Return to Stop command (^^). This
command moves you up the screen hierarchy until you hit a stopscreen. If there are no stopscreens
above you in the system, the command takes you out of the application.

Moving to the First Screen

You may also make the Return to Start command (^^^) available. This command allows you to
return directly to the first screen in the system from any other screen in the system. Any
stopscreens are bypassed.

Chapter 2: QUICK User Interface

QDESIGN Reference 21

Entering Data
To add new data to your files and tables, move to the correct screen and use the Enter command
(E). QUICK automatically starts prompting you to enter data in the first data field on your screen.

To enter a value into a data field, type in the data then press the Enter key. Enter is the default
Input Completion or Accept command. Any time you make an entry QUICK can't accept, a
message is displayed and you're prompted for another entry. When QUICK accepts your entry,
you are prompted to enter data in the next field.

Moving From Field to Field During Data Entry

When you enter data in a data entry screen, it's easy to move from field to field. When you press
the Enter key in a field, QUICK takes you to the next field. In most cases, QUICK lets you skip to
the next field even if you don't enter a value.

You can add default values that appear in the data fields that you skip.

To skip a field, press the Enter key without entering any data in the data field. However, some
fields require you to enter data in them before you can continue with the rest of the screen.

You can also enter the following commands to move from field to field when you're in Entry
mode. These commands produce the same effect as entering data in each field along the way.
PowerHouse fills in defaults for the fields that you skip, and won't let you skip required fields.

Skip All (??)
Prompts you for an action after you have made entries in all required fields. Otherwise, this
command takes you to every required field on the current screen.

Skip Cluster (/)
Takes you forward to the first field of the next group.

Skip to a field ID-number (/n)
Takes you forward to the specified field. If there are any required fields before the field, it takes
you to the required field first. You can't use this command to back up.

Backup (\)
Backs you up to the previous field.

Full Field Processing

You can use a QKGO option so that you are notified audibly if you enter data that exceeds the
field size. You can then edit or delete the data in the field.

You can use a FIELD statement option to specify that you should be prompted in the next field
automatically once you enter data that fills the field.

Entering Numbers

QUICK automatically displays numbers according to the specifications you build into your
application. You can enter numbers without worrying about the format, so
• don't enter dollar signs and commas
• don't enter leading or trailing zeros
• do enter negative numbers with a minus sign before or after the number
• do enter fractional values (if allowed) with a decimal character (usually a period)
• enter one zero for a value of zero

For example, if you enter
3112.7

QUICK might redisplay the number as
$3,112.70

22 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface

Entering Dates

The format you use to enter dates is determined by the specifications you build into your
application. The month format is either three characters, i.e. JAN, or two digits, i.e. 01. You can
enter dates with or without a separator character. The separator character usually used to separate
the parts of a date is a slash (/). You may or may not be required to enter dates with the century,
and based on the application specifications, the date may be displayed with or without a century.
For example, if you enter
070214

the date might be displayed as
2007/02/14

Your specifications may require another character or a space as a separator character. If you enter
the Help command (?) in the field, QUICK displays a help message with information on the
format.

In many applications, entering a single zero in a date field is used to signify that no date exists. Do
not enter 6 or 8 zeros as that is an invalid date.

Entering Null Values

To enter a null value into a relational column, use the Enter Null Value command (~). In most
cases, columns where null values are allowed are initialized to NULL and a specific entry is not
required. Simply skip the field. The Enter Null Value command is used to change a non-null value
to a null value.

Rapid-Fire Entry

You can make more than one entry in a single field by separating each entry with the Separator
command (;). When you press the Enter key to complete the concatenated entry, QUICK accepts
the entries as if each was entered separately. When you use rapid-fire entry to skip screens, the
intervening screens aren't displayed.

The Duplicate Command

Entering the Duplicate command (_) duplicates the last entry in the field. This command works
even if the last entry in the field was made on the previous screenload of entries.

Completing the Entry Process

The entry process leads you through all the fields on a screen. When you complete the last field, or
use the Skip commands, you are prompted for the next action. You can now make corrections, if
necessary.

Changing Data During Data Entry
When you complete the entry process, QUICK prompts you in the Action field to either save the
data on file with an Update command or make any corrections before you update.

To correct a mistake, enter the field ID-number of the field you want to correct and reenter the
correct data when you’re prompted in the field. Once you’ve entered a value, QUICK again
prompts you in the Action field.

If many changes are required, you may be able to correct several fields at once by entering a range
of ID-numbers, for example 5/9. This lets you move through fields 5, 6, 7, 8, and 9 to make the
necessary corrections before QUICK prompts you for your next Action command.

Some fields don't have their own ID-numbers, but share an ID-number with a previous field. To
reach any one of these fields, enter the shared ID-number. QUICK prompts you through each of
the fields that share that ID-number before prompting you for your next Action command.

If you don't enter a value when you are prompted in a field, QUICK leaves the current value
unchanged.

You can also delete an entry, or all the entries on the screen, while making corrections. For more
information on the Delete command, see "Deleting Data" (p. 26).

Chapter 2: QUICK User Interface

QDESIGN Reference 23

Recalling Data

To edit the data in a field, enter the Recall command (<Ctrl-B>) to return the last value you
entered. When you recall the data, the cursor remains at the end of the data.

Saving or Updating Data
When you enter or change data in a screen, you are actually modifying a copy of the original
values. The information in the original file or table is not changed until you enter an update
command.

If you try to leave a screen or change modes without updating, QUICK prompts you for
confirmation. Repeating the command tells QUICK that you do not want to save any data entered
since the last update.

The Update Commands

All of the update commands store all the data that is on the screen. The update commands differ
in what they do after the data has been stored.

You can specify that an update command run additional checks on the data. This ensures that the
data is accurate and complete. If there are errors in your data, the application will not allow the
update process to continue. You must correct the errors in your data and try to update again.

Update (U)
Stores the data, then clears the fields for more entries (in Entry mode), or retrieves the next
screenload of data (in Find mode).

Update Next (UN)
Stores the data, then clears the fields for more entries (in Entry mode), or retrieves the next
screenload of data (in Find mode). The Update Next command is used on screens with repeating
fields.

Update Stay (US)
Stores the data, then keeps the current screenload of data on the screen.

Update Return (UR)
Stores the data, then returns you to the preceding screen.

Updating with Repeating Fields

The Update and Update Next commands function differently with screens that have repeating
groups of fields. These screens usually have two types of data. For example, a screen may have
two different sections: the first section applies to an employee; the second allows you to enter data
about a number of expenses for that employee. The second section is organized around repeating
groups of fields. For example, each group might consist of the fields for an expense, an amount,
and a date.

On this type of screen, you enter repeating groups while the first section of the screen stays the
same. With a screen designed this way, the Update command saves all the data on the screen, but
clears only the repeating groups. In Entry mode, you are then prompted to enter another set of the
repeating groups. In Find mode, you are shown the next set of repeating groups.

If you have not entered data in all of the repeating groups, Update will save the data in all of the
fields and prompt you for data in the first, non-repeating, section, for example, for a new
employee. If you've filled all of the repeating groups and you want to start with new data in the
first section, use the Update Next command. This command saves all the data and always prompts
you to enter data in the first section, whether you have filled in all of the repeating groups or not.

24 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface

Finding Data
Find mode gives you fast retrieval using key and index values. To choose Find mode, enter the
Find command (F) in the Action field, and QUICK will prompt you for a value in the first index
field. If you enter a value in the field, PowerHouse retrieves all data for that value. If you press the
Enter key without entering a value, PowerHouse prompts you for a value in the next index field, if
there is one.

Instead of finding a specific data record, you may want to browse through all of them. If you
don't enter a value for any key or index, QUICK displays the first screenload of data it finds and
prompts you for an action.

The Next Data command, pressing the Enter key, lets you see the next screenload of data. After
the last screenload of data has been displayed, PowerHouse clears the fields and prompts you for
an action. You can stop the process at any time by entering another Action command (such as
Enter or Find) instead of the Next Data command.

Selecting Data

When you're finding data, PowerHouse prompts you for values at index fields. However, you may
want to be more selective and retrieve data using different non-index values.

To select data:
1. Enter the Select command (S) in the Action field.
2. Enter key or index values as you do when finding data. When prompting for key or index

values is completed, QUICK prompts you for an action.
3. Enter a field ID-number to establish your selection criteria. QUICK prompts you for a value in

that field.
4. Enter the value.
5. Enter other selection values by choosing field ID-numbers and entering values.
6. When you’ve finished entering values, enter the Next Data command in the Action field to

begin retrieving data based on your selection criteria.

Retrieving Data by Partial Index

When you select data, you can also retrieve information based on a pattern that describes certain
values.

When you're finding or selecting data, you can use the generic retrieval character (@) to retrieve
data based on part of a value. This is called partial-index retrieval. For example, if you want to see
data records for just those employees whose surnames begin with M, enter M@ in the LastName
field. If you enter M@@, PowerHouse finds data records for all surnames that start with the letter
M and continues through the alphabet to find all surnames up to, and including, those that start
with the letter Z.

The generic retrieval character must always be the last character in partial-index retrievals.

Retrieval using the generic retrieval character is only available for character fields. This feature
does not work with numeric or date type items.

Pattern Matching

When you're selecting data, you can use the generic retrieval character (@) and several other
characters to create patterns that indicate selection values. Patterns are made up of the following
special characters, called metacharacters:
• ^ matches Any single letter.
• # matches Any single digit.
• ? matches Any single letter, digit, or other character.
• @ matches Zero or more characters (letters, digits, or anything else).
• !0 matches A null entry (nothing).

To indicate that the value is a pattern, precede the value with a percent sign (%). For example, if
you enter
%^^#

Chapter 2: QUICK User Interface

QDESIGN Reference 25

in a field, QUICK retrieves all data for which the values in this field match the pattern
^^#

such as Ab2, pd3, and cy4.

The question mark (?) represents any single letter, digit or other character. For the entry
%^^#?

QUICK finds values such as Fk83, So2b, CY7K, etc. All ordinary characters (for example, the
alphabet) and numbers match themselves in patterns.

You can use the at-sign (@) in pattern matching anywhere in your pattern. For example, entering
%@TH

retrieves all values ending in "th", "TH", "Th", or "tH".

You can specify that uppercase and lowercase letters match letters in the same case as those in the
pattern. Case-sensitive pattern matching is accomplished by entering %% to start the pattern. The
pattern
%%@th

matches all values ending in "th", but not values ending in "TH", "Th", or "tH".

For more information on pattern matching, see "Pattern Matching in PowerHouse" in Chapter 5,
PowerHouse Rules.

Getting More Data

Next Data (by default the Enter key)
QUICK may retrieve more than one screenload of data when you use Find or Select mode. Each
time you press the Enter key a new screenload of data is retrieved. You can see all the screenloads
by pressing the Enter key until all the data has been retrieved.

Next (N)
On screens with repeating groups of fields, pressing the Return key retrieves a new screenload of
repeating groups, before going on to the next screenload of all new data. The Next command lets
you skip directly to the next screenload of all new data.

Previous Data (\)
Depending on the file system used, you may be able to move backwards to the previous screenload
of data using the Previous Data command.

Scrolling Records

If you have a screen with repeating groups of fields, set up as scrolling records, you may be able to
move the data display back and forth using the First Record (FR), Last record (LR), Next Record
(NR), and Previous Record (PR) commands. For more information, see "Scrolling Primary and
Detail Records" (p. 57).

Interrupting Retrieval

In Find and Select modes, you can stop the retrieval process while you're waiting for a screenload
of data to appear. Type the User Break command to stop the retrieval process. The User Break
command is <Ctrl-Y> on MPE/iX and <Ctrl-C> on OpenVMS, UNIX, and Windows.

Changing Data in Find or Select Mode
You can change data only when it's on the screen. If the data isn't on your screen you must first
use Find or Select mode to retrieve it.

You can change data in a single field by following this procedure:
1. Enter a field ID-number in the Action field. QUICK prompts you in the field.
2. Enter a new value, or edit the existing value.
3. Press the Enter key to complete the correction. QUICK returns you to the Action field.

26 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface

You can correct more than one field at a time by entering a range of ID-numbers in the Action
field, as in
5/9

When you press the Enter key, QUICK takes you to the first field of the specified range. In this
example it would be field 5. Every time you press the Enter key, QUICK takes you to the next field
in the range. When the last field specified in the range is reached and you have finished altering
your data, QUICK returns you to the Action field for your next command.

Once you've made all your changes to the data on the screen, save the changes on file with one of
the update commands (Update, Update Stay, Update Next, or Update Return).

Adding Data in Find or Select Mode
If your screen is designed with repeating groups of fields, and you are in Find or Select mode, you
can add more data to a screen by entering the Append command (A) in the Action field. First, you
must use Find or Select mode to retrieve the existing data. Then enter the Append command.
QUICK prompts you in the first empty field in the first empty repeating group. If no repeating
groups are empty, QUICK clears all of the repeating groups and prompts you in the first field of
the first group.

Deleting Data
To delete data from your files or tables, first retrieve the data that you want to delete using the
Find or Select command. When PowerHouse prompts you for an action, enter one of the
following Delete commands:

Delete (D)
Removes all entries from the screen. The data is actually deleted when the screen is updated.

Delete Occurrence (D-n)
Removes one of a repeating group of fields by specifying the ID-number of the group after the
hyphen. The group is actually deleted when the screen is updated.

Delete Range (D-n/n)
Removes a range of repeating groups by specifying a range of ID-numbers after the hyphen. The
groups are actually deleted when the screen is updated.

Delete Safeguards

QUICK safeguards against accidental deletions by retaining the deleted data until you actually
update. To take the final step, enter one of the Update commands. The data is now permanently
deleted.

If you change your mind about deleting an entry after entering a Delete command, enter the Find
command. PowerHouse warns you that the data has been changed but not updated. Enter the
Find command again to confirm your entry, and to find your data. Once you find it, you can
change it.

Keep in mind that if you're entering data in Entry mode, and have not yet recorded your data by
updating, a Delete command takes immediate effect and all the data on your screen is lost.

Running Reports and Volume Updates
You can add instructions to your application that allow you to run reports or make volume
changes using QUIZ or QTP. When you enter the option's ID-number in the Action mode, you
may see a system message telling you that the report is running or that the update is taking place.

Chapter 2: QUICK User Interface

QDESIGN Reference 27

Responding to Prompts

When you select an option that initiates a report or a volume update, you may see a prompt
asking you to specify which data to include. A prompt allows you to specify particular types of
information to include in your report or volume update.

For example, if a report includes a prompt to specify patient numbers, you may see:
Enter Patient Number:

At this point, enter one value for Patient Number. PowerHouse may prompt you for another
value. The prompting continues until you press the Enter key without typing a value. Enter the
values the same way you would on a data screen.

Miscellaneous Commands

Refreshing Your Screen

Sometimes your QUICK screen can become cluttered with system messages. The Refresh Screen
(<Ctrl-G>) and Refresh All (<Ctrl-W>) commands will refresh your screen. These commands can
be entered in the Action field or in a data field.

Getting Information

Entering the Information command (I) in the Action field displays the name and creation date of
the screen.

Printing

To print a copy of your current screen, enter the List command (L) in the Action field. To print a
copy of your current screen and all screens that lead to it, enter the List All command (L@) in the
Action field. These commands send copies of the screens to the designated file QKLIST.

Advanced User Interface Features
QDESIGN lets you create screens with optional features that make them easier to use. These
features include:
• overlayed screens
• multiple-line messages and pop-up message windows
• full screen help and pop-up help windows
• command processing using the Action field, Action bars, and field marking
• fixed and scrolling data fields
• pop-up data entry windows
• scrolling Selection boxes

Overlayed Screens
In QUICK, you can only work with one screen at a time. However, more than one screen can be
visible if you have created screens that are smaller than the terminal window. Pop-up screens are
often like this.

When a new screen is called, it overlays the display from preceding screens. The called screen is
the "active" screen, and this screen maintains control until you exit from it.

When you exit from a screen, it is removed from display and all previously overlayed information
is restored.

Messages
You may see messages on a QUICK screen in either the message line or a pop-up message window.

Every screen has a one-line area for a message line that extends across the terminal window. You
don't have to respond to messages presented here.

28 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface

For multiple-line messages, the screen above the message line is cleared to present the multiple-line
message, along with the prompt "Press Enter to continue". When you respond, the underlying
information is restored.

Messages can also be displayed in a pop-up window.

After you read the displayed message, press the Enter key. QUICK closes the pop-up window and
restores the display.

If the pop-up window is smaller than the length of the message text, the window scrolls. The
bottom border of the window appears as a dashed line to indicate that there is more text below.
To scroll within the window, enter the Scroll Up, Scroll Down, Page Up, and Page Down
commands. By default, these commands correspond to the Cursor Up, Cursor Down, Page Up,
and Page Down keys. Once text has scrolled, the top border of the window appears as a dashed
line, indicating there is more text above.

Help
QUICK supports a Help system that presents information about the screen and data fields when
you enter a help request.

If you request help for a screen, the help message you get relates to the entire screen. If you request
help in a field, the help message relates to that particular field.

Two levels of help are available to you: Help (?) and Extended Help (??). Help is a one-line
description presented in the standard message area for information messages. Extended Help is
more detailed, multiple-line information.

You can present Extended Help information as a full screen display or in a pop-up help window.

If you have implemented Extended Help as a full screen display, a request for Extended Help
clears the screen and displays help information. You can move through the displayed information
one page at a time.

If you have implemented Extended Help as a pop-up window, a request for Extended Help calls
up a pop-up help window. You scroll through Help information in a pop-up help window in the
same way as in a pop-up message window. Press the Enter key to close the window.

Entering Action Commands
You can enter Action commands
• in the Action field
• from an Action bar
• using field marking
• using a function key

Using the Action Field

The Action field is an optional prompt area on the screen in which you enter Action commands.

Using an Action Bar

The Action bar is an optional way of presenting and selecting available Action commands. An
Action bar is an inverse line that displays a list of commands or menus from left to right across the
screen like a menu.

To move across the Action bar, use the Next and Previous Option screen commands. By default,
these commands correspond to the Cursor Right and Cursor Left keys. As you move, the current
selection is highlighted.

When you've selected the Action bar option you want, press the Enter key. If you select an Action
command, PowerHouse processes the Action and returns to the Action bar. If you select an Action
menu, the menu opens with the first menu item highlighted.

If all the menu options can't be displayed at one time, the bottom border of the menu appears as a
dashed line to indicate there are more menu options.

Chapter 2: QUICK User Interface

QDESIGN Reference 29

You can scroll through the Action menu using the Move Up, Move Down, Page Up, and Page
Down commands. By default, these commands correspond to the Cursor Up, Cursor Down, Page
Up, and Page Down keys. When you reach the bottom of the Action menu, any additional menu
options appear one line at a time as you scroll downward. At the same time, the top-most items
disappear, and the top border appears as a dashed line to indicate there are more menu options
above.

If you open an Action menu and want to return to the Action bar without selecting any of the
displayed menu items, enter the Cancel command. The default Cancel command varies by
terminal. It is often function key 8.

After you select an Action menu item, press the Enter key. QUICK closes the Action menu,
processes the action, then returns to the Action bar.

Using Field Marking

Field marking lets you choose a screen item for processing by pointing directly at the item
ID-number. Field marking is also referred to as Full Screen Selection.

With field marking, you use the cursor keys to move through the IDs and labels one at a time. An
inverse highlight marks the current ID-number or label. Press the Enter key to choose the item(s)
with the highlighted ID-number.

If a data field is marked, QUICK prompts you for data. If a subscreen is marked, that subscreen is
invoked. If a command is marked, that command executes.

The Next and Previous Option commands move you to either the next or previous field and
changes the mark highlight. By default, these commands correspond to the Cursor Right and
Cursor Left keys.

Using Function Keys

You may be able to use function keys to enter Action commands at any time. See "Using Function
Keys to Enter Commands" (p. 20).

Changing Action Modes

You can create QUICK screens that let you use a combination of Action field, Action bar, and
Field marking to enter Action commands. To select the Action mode you want, use the Action
Field, Action Bar, and Field Mark commands. Typically, function keys are mapped to these
commands.

When a command is selected in any Action mode, QUICK executes the command, then reprompts
using the current Action mode. If the current Action mode is

Action field (ACT)
QUICK reprompts at the Action field prompt.

Action bar (BAR)
QUICK reprompts at the Action bar.

Field marking (MARK)
QUICK reprompts at the current marked field

Fixed and Scrolling Data Fields
You can create three kinds of data fields in which to enter information:
• fixed
• horizontal scrolling
• multiple-line vertical scrolling

30 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface

Fixed Fields

Fixed fields are displayed entirely on the screen. You can edit while entering data by using the
infield editing commands. For more information, see "The Terminal Interface Configuration
Screen" (p. 278) and "Modifying TIC Files" (p. 283).

To complete an entry in a data field, press the Enter key.

Horizontal Scrolling

Horizontal scrolling lets you enter data into fields that are shorter than the data items they
represent. Scroll indicators identify horizontal scrolling fields. You can edit within a field while
entering data by using the infield editing commands. For more information, see "The Terminal
Interface Configuration Screen" (p. 278) and "Modifying TIC Files" (p. 283).

Scrolling horizontal displays are like a moving frame, letting you see a data field a portion at a
time. For example, if you have a comment field that's 120 characters long with a data entry field
30 characters long, you can see only 30 characters of the field at a time.

During data entry and editing modes, displayed information scrolls as required as you add or
delete information.

When you’ve finished entering data, press the Enter key.

Multiple Line Vertical Scrolling

Multiple-line scrolling fields are similar to horizontal scrolling fields, except that data is entered
on several lines, and the field scrolls vertically a line or page at a time. Scroll indicators identify
multiple-line scrolling fields. You can edit within a field while entering data by using the text
editing commands. For more information, see "The Terminal Interface Configuration
Screen" (p. 278) and "Modifying TIC Files" (p. 283).

You can enter one or more paragraphs of data into a multiple-line field. Each paragraph starts on
a new line. Long paragraphs are automatically wrapped onto the next line. To start a new
paragraph use the New Paragraph command. The default for the New Paragraph command varies
by terminal. When you’ve finished entering data, press the Enter key.

Pop-up Data Entry Windows
Pop-up data entry windows let you use a multiple-line scrolling pop-up window to enter and
change information in a data field.

You enter and edit information in a pop-up data entry window in the same way as you would in a
multiple-line scrolling field.

To switch between the pop-up data entry window and the data field, use the Popup Toggle
command (+).

Selection Boxes
Selection boxes let you enter and change information in a data field. You choose a value from a
predefined list which contains acceptable values for the active field. Values appear in a pop-up list.

To open a Selection box, enter the Select Box command (#) in a data field. The Selection box
appears with the first item highlighted. If the box contains more values than those displayed, the
bottom border appears as a dashed line to indicate there are more values above.

Use the Move Up, Move Down, Page Up, and Page Down commands to scroll through the
Selection box. When you reach the bottom, any hidden values appear one line at a time as you
scroll downward. At the same time, the top-most values disappear, and the top border appears as
a dashed line to indicate more values above.

To select a value, press the Enter key.

If you don't want to choose a value, enter the Cancel command to return to the prompt.

Chapter 2: QUICK User Interface
QKView (Windows)

QDESIGN Reference 31

QKView (Windows)
QKView is a Windows shell client for QUICK on Windows. QKView runs QUICK as a
subprocess. It is essentially a terminal emulator that traps the output that would normally go to
the Command Prompt window and interprets it as graphic output. User input is passed to QUICK
as if it came directly from the Command Prompt window.

To start QKView, run it from the Start menu or from a Command Prompt window in the same
manner as you would run QUICK.

Configuration
QKView requires a configuration to identify the location of the QUICK executable. As well, you
can specify a working directory and the program parameters that you would normally specify for
QUICK.

Creating and Maintaining a Configuration File

When you start QKView you must enter a configuration or load an existing configuration.

To create a configuration and save a configuration file, follow these steps:
1. Click the QUICK menu and select the Configuration entry.
2. The Configuration dialog opens. Enter the information as follows:

QUICK Program Parameters
Enter the program parameters that you would normally use on the QUICK command line if
you were running QUICK in a Command Prompt window. Do not enter the QUICK
executable, only the program parameters. Program parameters are passed to QUICK and are
used in the same way as if QUICK was started directly. The debug program parameter is
ignored. This entry is optional.
Working Directory
This is the location that you would normally start QUICK from, not necessarily the QUICK
installation location. It may be easier to provide a working directory than to use the procloc
program parameter. The default is the PowerHouse 4GL installation directory. Environment
variables can be used in the location. This entry is optional.
QUICK location
This is the location of the QUICK executable which will be the installation location. When
you click the Browse button, the default location is the PowerHouse 4GL installation
location. Environment variables can be used in the location. This entry is required.
Application Banner Image
This is a bitmap image (.bmp) that is displayed just above the screen. By default it occupies
the three lines above the screen. The number of lines can be specified in Settings. It is scaled as
required. Only one image can be specified per configuration and it remains visible for the
duration of the session. This entry is optional.

3. Click OK.
4. To save the configuration as a file (.qfg), click the File menu and select the Save or Save As

entry. Browse to the desired location, enter a file name, and click OK.

To load an existing configuration file, follow these steps:
1. Click the File menu and select Open, or click the Open icon on the Toolbar.
2. Browse to the Configuration file location, select the file, and click Open. The last used

location is the default starting point when browsing.

To make changes to an existing Configuration file, follow these steps:
1. Load the existing Configuration file.
2. Click the QUICK menu and select the Configuration entry.
3. Make the desired changes and click OK.
4. Click the File menu and select the Save or Save As entry.

32 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
QKView (Windows)

Using the Configuration File

After you load a configuration file, you run QUICK by clicking the QUICK menu and selecting
Run or by clicking the Run button on the Toolbar. QKView responds by running QUICK as a
subprocess passing the program parameters specified in the QUICK Program Parameters entry.

If you specify the auto program parameter, and it specifies a screen name (.qkc) or a QKGO file
(.qkg or .qki) that specifies a First Screen, that screen is loaded immediately.

If you specify a Configuration file after the QKView executable name in a shortcut, QKView loads
the Configuration file immediately and will start any screen specified by the auto program
parameter. When you start QKView in this way and start a screen automatically, QKView will
terminate automatically when you exit the start screen unless you check "Disable auto exit" in the
Settings dialog.

This is also how QKView will operate if Configuration files have been associated with QKView
and you double click on a Configuration file.

Once QUICK is running under QKView, use QUICK as you would if it were running in a
Command Prompt window.

Settings
The Settings dialog is opened when you click the QUICK menu and select Settings. You can also
click the Settings button on the Toolbar. Settings are user specific and are saved in the Windows
registry. The values are saved from session to session. The options are:

Banner Image Lines
Specifies the number of lines that the application banner image occupies above the screen. The
application banner image is identified in the Configuration file. Banner image lines are not part of
screen lines. The image specified in the configuration is scaled as required. If no image is specified
in the configuration, no space is used. The range is 1 to 5 lines. The default is 3 lines.

Function Key Lines
Specifies the number of lines that function key buttons will occupy below the screen. Function key
lines are not part of screen lines. If function keys are not enabled by clicking Function Keys in the
View menu, no space is used. The range is 2 to 5 lines. The default is 3 lines.

Show splash screen at startup
Signifies whether the QKView splash screen shows at product start.

Auto exit when QUICK session ends
Indicates whether QKView exits automatically when the top-most screen is exited. This option is
only effective if a first screen is specified as described in "Using the Configuration File" (p. 32).

Style
Indicates whether the line drawing style is sunken or raised. The default is raised.

Thickness
Indicates whether the line drawing style is thin, medium, or thick. The default is medium.

Show fixed pitch fonts only
Specifies whether only fixed pitch fonts are shown in the Font dialog box. Even though QKView is
a Graphic interface for QUICK, QUICK itself is character based and screen spacing is based on
rows and columns. Very few proportional fonts will look pleasing to the user or scale properly if
the user resizes the window. Fixed pitch fonts are recommended with QKView.

Chapter 2: QUICK User Interface
QKView (Windows)

QDESIGN Reference 33

QKView Considerations

COMMAND and RUN COMMAND

In QUICK, the COMMAND statement and the RUN COMMAND verb start a subprocess within
QUICK but any prompting and output appear in the same Command Prompt window as QUICK.
Since QKView is running QUICK as a subprocess, any additional subprocess cannot communicate
with QKView. Therefore, the COMMAND statement and RUN COMMAND verb in QUICK
open a separate Command Prompt window when QUICK is running under QKView.

If you do not want a Command Prompt window to open, specify the NOCONSOLE option on
the COMMAND statement or RUN COMMAND verb. You would use this option if you were
running a command that did not require any input and you do not want to see any output.

The CLEAR, REFRESH, and RESPONSE options are oriented towards command output
appearing in the Command Prompt window where QUICK is running. Since QKView opens a
separate window, these options aren’t normally needed, however, if they are specified, they will be
used.

For reports, the recommended solution is to write the report to a file and then read the file with a
text editor. This provides a viewer-like interface to the report along with Windows printing
capability.

Function Keys

You can use function keys for QUICK commands in the same way as you would on a terminal or
in a terminal emulator. To display or hide the eight function keys, toggle the Function Keys entry
under the View menu. You cannot change the number of function keys that are visible.

The default setting for the Function Key Support Mode in QKGO is Fixed Standard. In QKI the
FUNCTION_KEY_MODE setting is 1. You can disable function keys in QKGO or by setting
FUNCTION_KEY_MODE to 0. Dynamic function keys are also available by using the
appropriate setting in QKGO or by setting FUNCTION_KEY_MODE to 2.

The other function key settings in QKGO work in the same manner as they do for terminals on
other platforms.

Dynamic function keys use the key definitions from the KEY statement.

Loading Function Keys
You can load QKView’s function key contents and labels in a similar manner as you would load a
terminal’s function keys. When the function key is pressed or the function key image is clicked, the
function key contents are transmitted to QUICK as if they were entered by the user. QKView
recognizes two escape sequences that you issue using INFORMATION verbs. For details on using
the INFORMATION verb, see "INFORMATION" (p. 437). You cannot load QUICK’s function
keys because QUICK runs in a Command prompt window.

You construct the commands using an expression and issue them with the INFORMATION verb
with the NOW option. The NOW option tells QUICK to execute the verb immediately and send
the message contents to the display. Without the NOW option, the value is sent to the display
buffer to wait for a user prompt. You must also specify the term program parameter as
term=windows-any

The any option tells QUICK to ignore any escape sequences rather than converting them into a
question mark (?). This may cause issues if your data contains unprintable characters.

The escape sequence for labels is

esc#key-length-label
• esc is one byte containing the escape character, decimal 27.
• # is the command to set the label.
• key is a two-digit function key number starting at 0. Key 1 is 00, key 2 is 01, and so on.

QKView supports a maximum of 8 function keys.
• length is a two-digit label length preceded and followed by a hyphen. The value range is 0 to

16.

34 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
QKView (Windows)

• label is the label text. Do not use quotes unless you want quotes to appear in the label. The
maximum label size is 16 characters in two lines of 8 characters. In other words, the first 8
characters is the first line and the second 8 characters is the second line. It’s best to specify all
16 characters.

The escape sequence for contents is

esc%key-length-contents
• esc is one byte containing the escape character, decimal 27.
• % is the command to set the contents.
• key is a two-digit function key number starting at 0. Key 1 is 00, key 2 is 01, and so on.
• length is a two-digit contents length preceded and followed by a hyphen. The value range is 0

to 80.
• contents is the contents to be loaded into the key. Do not use quotes unless you want the

quotes to be included in the value sent to QUICK. The maximum length is 80 characters.

To clear key labels and contents, use a length of zero and no label or contents value.

Since the escape character is a nonprinting character, the sequence is typically put together using
expressions. The following example shows how to set a function key and how to clear it. Always
set the key label before the key contents. Note that the DEFINE statement to extract the escape
character takes into account that the Windows platform is little endian, so the byte order is
reversed.
> DEFINE ESC_CHAR_NUM INT SIZE 2 = 27
> DEFINE ESC_CHAR CHAR SIZE 1 = CHAR(ESC_CHAR_NUM)[1:1]
> TEMPORARY ESC_MSG VARCHAR*80
> TEMPORARY KEY_NUM INT*2
> TEMPORARY KEY_LBL CHAR*16
> TEMPORARY KEY_CMD CHAR*80
. . .
> PROC DESIGNER SETK NODATA ; DESIGNER procedure to set a key
> BEGIN
> LET KEY_LBL = " FIND Boston "
> LET KEY_NUM = 4 ; This is function key 5
> LET ESC_MSG = ESC_CHAR + "#" + ASCII(KEY_NUM,2) + "-16-" + KEY_LBL
> INFO MESSAGE = ESC_MSG NOW
> LET KEY_CMD = "F;BOS"
> LET KEY_NUM = 4
> LET ESC_MSG = ESC_CHAR + "%" + ASCII(KEY_NUM,2) + "-05-" + KEY_CMD
> INFO MESSAGE = ESC_MSG NOW
> END
> PROC DESIGNER CLRK NODATA ; DESIGNER procedure to clear a key
> BEGIN
> LET ESC_MSG = ESC_CHAR + "#04-00-" ; Sets the label to nothing
> INFO MESSAGE = ESC_MSG NOW
> LET ESC_MSG = ESC_CHAR + "%04-00-" ; Sets the contents to nothing
> INFO MESSAGE = ESC_MSG NOW
> END

A function key cannot be both loaded and used as a dynamic function key. QUICK resets dynamic
function keys automatically when the context (action or data) changes and when the screen is
refreshed. To ensure that there is no conflict, when a label value is set for any function key,
dynamic or not, QKView also clears that function key's contents. This means that you must set
the label for a key before you set the contents.

If you specify a key as disabled using the KEY statement, as in
> KEY 5 ACTION AND DATA DISABLE

QUICK does not refresh the key and ignores it otherwise, so you can load a disabled key and what
you loaded will be transmitted and used by QUICK as if the user entered the value. This is also a
convenient way of highlighting in the KEY section that a key is being used procedurally.

Chapter 2: QUICK User Interface
QKView (Windows)

QDESIGN Reference 35

Since you use INFORMATION verbs to load the keys, you can't load the keys in data context.
The INFORMATION verb execution will always be in action context. As well, do not attempt to
use a loaded function key in action context and a dynamic function key in data context by only
specifying ACTION DISABLE on the KEY statement, or vice versa because QUICK resets the keys
when you switch contexts. This means that you can't use a key as a dynamic key in one context
and a loaded key in another.

The QKView Menus

File

New
Clears the current configuration.

Open...
Opens the Open dialog allowing you to browse to a Configuration file to load. This command is
also available as an icon on the Toolbar.

Save
Saves the current configuration in the currently loaded Configuration file. This command is also
available as an icon on the Toolbar.

Save As...
Opens the Save As dialog allowing you to choose a location and file name to save the current
configuration.

Exit
Exits QKView.

Edit

Copy
Copies selected text to the Windows clipboard. This command is also available as an icon on the
Toolbar.

Paste
Pastes the contents of the Windows clipboard to the cursor location. This command is also
available as an icon on the Toolbar.

View

Toolbar
Toggles the Toolbar.

Status Bar
Toggles the Status Bar.

Function Keys
Toggles the Function Keys.

QUICK

Configuration...
Opens the Configuration dialog. This command is disabled when QUICK is running. See
"Configuration" (p. 31).

36 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
QKView (Windows)

Run
Starts QUICK using the program parameters in the QUICK Program Parameters entry. This
command is also available as an icon on the Toolbar.

Stop
Terminates QUICK. Normally QUICK should be terminated by leaving the start screen. This
command is available in case of problems.

Font...
Opens the Font dialog allowing you to choose the desired font. Only the Font and Font Style
selections have any effect.

Settings...

Opens the Settings dialog. This command is also available as an icon on the Toolbar. See
"Settings" (p. 32).

Help

About QKView...
 Shows the QKView About box. This command is also available as an icon on the Toolbar.

Chapter 2: QUICK User Interface
Input Modes

QDESIGN Reference 37

Input Modes
QUICK provides three modes of input processing:

• Field mode, (previously documented as character mode), where each field is treated as a
separate entity. All prompting and editing is done on a field by field basis. The user makes
an entry in a field and sends the individual field for editing. To send the field, the user
presses [Enter] or [Return] depending on the device.

• Panel mode, where some or all fields are processed as a block under procedural control.
The user makes entries in all active fields and sends that block of fields for editing. To
send the data, the user presses [Enter] or [Return] depending on the device setting.

• Compatible Block mode (MPE/iX), which supports Hewlett Packard terminals’ block
mode setting. All the fields are considered one block which is unknown to QUICK until
the data is sent as a block for editing. There is no prompt or response at the fields while
entering data. The user makes entries in all fields and presses [Enter] to send the fields for
editing.

Terminology (MPE/iX)
In the following sections, the term "HP Block mode" refers to the Block mode capability of HP
Block mode terminals. The term "Compatible Block Mode" refers to the input processing mode
used by PowerHouse. In the discussion of Compatible Block mode, the term "Block mode" is used
since a distinction is not required. Since HP Block mode is always active when using Compatible
Block mode, the term "Block mode" can accurately refer to both the terminal setting and the
input processing mode.

The term "Character mode" refers to the Character mode capability of HP Block mode terminals.
Field mode refers to the field input processing mode used by PowerHouse. In previous releases,
this was documented as "Character mode".

The term "Panel mode" refers to the Panel input processing mode used by PowerHouse. In
previous releases, this was referred to as "Panel Block Mode".

The following table explains how each of these input modes functions with various devices, device
settings, and read types:

Device Settings (MPE/iX)
Device settings are specific to block mode capable HP terminals and indicate whether the terminal
will transmit data by block or not. This has nothing to do with the method of input processing. To
use HP Block mode, the SCREEN statement must include BLOCKMODE option.

The device setting is controlled using the following options:

INPUT B|C|SAME option
Puts the terminal in HP block mode or character mode.

the B|C screen command
Toggles a screen between HP block mode or character mode.

Device Device Setting Read Type Field Mode
Panel
Mode

Compatible
Block Mode

Terminal Character Mode Character ✔ ✔

Terminal Character Mode Line ✔ ✔

Terminal Block Mode not applicable ✔ ✔ ✔

PC using Axiant or
PowerHouse Web

not applicable not applicable ✔ ✔

38 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Input Modes

the Input Mode Execution Time Parameter in QKGO (B|C)
Sets the default start up device setting. If the initial screen specified in QKGO uses the
BLOCKMODE option of the screen statement, it can be started in either HP Block mode or
Character mode.

Read Types (MPE/iX)
QUICK can read data from a terminal character by character and react to each character in
context as it is read. Alternatively, it can read a block of data at a time using lineread input
processing, however that block must be terminated by a termination indicator such as [Return] or
[Enter].

QUICK provides the benefits of both of these models by dynamically switching between the two
models, based on where input is required in the given screen. QUICK either processes input by
way of lineread input processing or by using single character processing depending on the current
application context.

The read type, which determines whether QUICK uses single character reads, is specified using the
READ program parameter. Valid options for the READ program parameter are:

CHAR
This option forces QUICK to run the entire application with the use of single character
processing. Character read signifies that QUICK will request one character from the terminal
at a time.

LINE
This option means that the entire application runs without the use of single character
processing. Line read indicates that QUICK will take data from the terminal in a character
stream that stops when a carriage return is entered. This program parameter is equivalent to
LINEREAD.

When no parameter is provided, the default processing is the equivalent of READ=LINE for
standard fields and the equivalent of READ=CHAR when a user interface feature requires single
character processing.

With a HP Block Mode terminal setting, the number of characters that QUICK receives is
whatever is available in the update fields when [Enter] key is pressed, so the type of read is
meaningless.

Feature Requiring Single Character Processing
The following is a list of features where single character processing is activated when no READ
program parameter is used:

Automatic Next Fields
Reverse Fields
Action Bars
Pull Down Menus
Select Boxes
Field Mark Mode
Horizontal Scrolling Fields
Vertical Scrolling Fields
Pop-up Windows

Line Editing and Lineread Processing
Fields not requiring single character processing are handled using lineread processing. The
following is a list of line editing commands and their default key assignments for HP terminals:

Line Editing Command Default Key

Clear Field Control K

Chapter 2: QUICK User Interface
Input Modes

QDESIGN Reference 39

 Whenever the last keyboard character entered before a [Return] is from the previous table, the
field display is updated, and the user is prompted for more input in the same field. If the last
keyboard character entered before a [Return] is not from the table, it signals end of input, and
processing continues to the next field.

The dual meaning of the [Return] key (update display and input complete) when in lineread mode
provides the user with the ability to update the field display (after editing has been performed)
without causing processing to move to the next field.

Supporting QDESIGN Syntax
Syntax options which affect the use of PowerHouse input modes include:

BLOCKMODE [EXTENDED] option of the SCREEN statement (MPE/iX)
Indicates that QUICK can run this screen using HP block mode on a Block mode terminal.

PANEL|NOPANEL options of the SCREEN statement
Specifies whether or not generated procedure code will contain options and constructs (BLOCK
TRANSFER) required to process QUICK screen fields in panel mode.

Program Parameters
To override the default input modes, use the following program parameters:

CHARMODE=FIELD|PANEL
The CHARMODE program parameter applies when the device setting is Character.

The FIELD option indicates BLOCK TRANSFER control structures are ignored. Run QUICK
with the CHARMODE=FIELD to use the Field mode input model. You can use
CHARMODE=FIELD to run a Panel screen with field input.

The PANEL option indicates BLOCK TRANSFER control structures are recognized. Run QUICK
with the CHARMODE=PANEL to use the Panel mode input model.

Delete Character Delete Char

Delete Previous Character Backspace

Delete to Start of Line Delete_Line

Delete Word Control_J

Input Completion/Update
Display

Return

Insert Toggle Insert_Char

Move Left One Character Cursor_Left

Move Right One Character Cursor_Right

Move to End of Line Control_E

Move to Start of Line Control_T

Recall Cursor_Up

Refresh Screen Control_G

Refresh All Control_GG

Line Editing Command Default Key

40 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Input Modes

Default: PANEL

BLOCKMODE=COMPATIBLE|PANEL (MPE/iX)
The BLOCKMODE program parameter applies when the device setting is Block.

To run HP Block mode, the QUICK screen must be compiled with the BLOCKMODE option of
the SCREEN statement and Block mode must be specified in QKGO, with the B screen command
or the INPUT option.

Run QUICK with the BLOCKMODE= COMPATIBLE program parameter to use the Compatible
Block mode input model. Run QUICK with the BLOCKMODE= PANEL program parameter to
use the Panel mode input model.

Default: COMPATIBLE

Field Mode
Field mode is the default input mode for QUICK screens.

In Field mode, the user works interactively with QUICK. QUICK displays a prompt and a user
responds with an entry. Users can clearly see when data is being entered, changed, corrected, or
found. Users know that they are responsible for updating new or changed data (except in Entry
mode on screens with the AUTOUPDATE option). You are free to arrange field prompts in any
order, supply reprompts on fields, make prompts conditional, and run subscreens and commands
at any point.

Panel Mode
Panel mode allows PowerHouse applications to accept and process one or more data fields as a
block, rather than individually. Users can move between the fields in a panel at will (using Panel
mode commands such as [Tab] or a mouse). Where Field mode processes each field individually,
and Compatible Block mode (MPE/iX) processes an entire screen of data as one block, Panel
mode lets the designer group fields and control access to fields procedurally. A control structure,
BLOCK TRANSFER, is used to group fields into panels.

Panel mode may also reduce network traffic in client/server environments, since fewer requests are
made of the server.

Data commands are ignored in a panel. They are treated as data.

To move around in a panel, use [Tab]. To send the data for processing, use [Enter] or [Return].
The equivalent of the Backout command (^) is the Fixed Standard function key F8.

If you are using dynamic function keys as opposed to Fixed Standard function keys, data context
commands will not work in a panel. You can set the Backout data context command to a specific
function key that will function as the Fixed Standard function key regardless of whether dynamic
function keys are being used. For example, to specify that F8 is to be used as the Backout
command, you would specify that the F8 key is assigned to command 2 in data context as always
rather than fixed=0. For more information, see "Modifying TIC Files" (p. 283)

Designing Screens with Panel Input

You can use the following QDESIGN syntax to specify what fields belong to what panels and to
procedurally control what happens during Panel input:

Syntax Description

PANEL option of SET
statement

Generates the necessary procedure code to support panels specified in
the screen.

PANEL option of
SCREEN statement

Generates the necessary procedure code to support panels specified in
the screen.

Chapter 2: QUICK User Interface
Input Modes

QDESIGN Reference 41

AUTOMODIFY
option of SCREEN
statement

Runs the MODIFY procedure automatically after a FIND or SELECT is
done.

BLOCK EACH|ALL
option of CLUSTER
statement

Use a CLUSTER statement with either the BLOCK EACH or BLOCK
ALL option to start the panel, then use FIELD statements to specify all
of the fields that belong in the panel, and then mark the end of the panel
with a CLUSTER statement with no options.

BLOCK TRANSFER
control structure

Defines a panel; without BLOCK TRANSFER control structures, there
are no panels in a screen. For each panel on a screen, QDESIGN
generates a corresponding BLOCK TRANSFER control structure in the
APPEND, ENTRY, MODIFY, PATH, and SELECT procedures. For
screens that have modified versions of these procedures, or procedures
that accept input (such as DESIGNER procedures), you should add
BLOCK TRANSFER control structures as necessary for each panel.

Syntax Description

42 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Input Modes

For more information about this syntax, see the appropriate statement in Chapter 3, "QDESIGN
Statements", procedure in Chapter 7, "QDESIGN Procedures", or verb or control structure
Chapter 8, "QDESIGN Verbs and Control Structures".

You can use the charmode=field program parameter to run a Panel input screen with field input.
All BLOCK TRANSFER control structures are ignored when you use this program parameter.

Compatible Block Mode (MPE/iX)
The program parameter BLOCKMODE=COMPATIBLE tells QUICK to use the Compatible
Block mode input model. QUICK ignores BLOCK TRANSFER statements and input is handled as
a block consisting of the entire screen’s data including the Action field.

Compatible Block Mode causes a Block mode terminal to run in standard HP Block mode. For
this section, Block mode is used to mean both input mode and terminal setting since a distinction
is not necessary.

In Compatible Block mode, unlike in Field mode, data on the screen is unknown to QUICK until
the user presses either [Enter] or a dynamic function key (DFK). There is no prompt or immediate
response at each field. When all the data for a screen is entered, the user presses [Enter], or a DFK
where applicable, to transmit the data to the Block mode buffer (BMB). QUICK then edits the
data. If QUICK detects errors, it marks all invalid fields with highlighting, and displays the error
message associated with the first invalid field on the message line.

If all the data passes edit processing, QUICK can then update the file and clear the screen. This
depends, however, on what initiated the data transmission- the Enter key or a dynamic function
key. For more information, see "Processing and Updating Data" (p. 46).

An important distinction between Field mode and Compatible Block mode is the difference in
timing. The difference is a result of the full screen block reads that occur in Compatible Block
mode. Until the user presses either [Enter], or a DFK, data on the Compatible Block mode screen
is unknown to QUICK. Therefore, QUICK provides no opportunity for a dialogue with the user.
As a consequence, you must review procedures written for Field mode screens to see if they make
sense for Block mode operation.

QUICK has a particular way of processing Block mode input in Entry mode. The screen image is
scanned in the reverse order of the ACCEPT verbs (From the ENTRY procedure) to determine
where it is possible to internally substitute data field commands, such as Return to Action, for the
field value. This internal optimization won’t work properly if the execution of the ACCEPT verbs
is conditional, because the actual processing sequence can change based on values entered.

In some data-processing environments, Block mode screens are more efficient than Field mode
screens. Block mode can reduce data transmission costs and I/O load on a system because reading,
editing, and writing are performed on screenloads of data rather than on individual fields of data.
In a packet-switched network (for example, a public X.25 network), transmitting a screenload of
data in one packet (as in Block mode) is cheaper than transmitting many individual packets (as in
field mode). Also, in a high-volume data entry system, editing responses don’t delay users at every
field.

MISSING option of
FOR control structure

Prompts for occurrences in a panel to ensure that input is accepted into
the first free occurrence, rather than overriding an existing occurrence.

MODIFY procedure Controls how modifications are done in Change mode or Correct mode.
When you include the PANEL option on the SCREEN or SET statement,
QDESIGN generates this procedure automatically.

SELECT procedure Controls what fields are available for selection in Select mode. When
you include the PANEL option on the SCREEN or SET statement,
QDESIGN generates this procedure automatically.

SELECT verb Used in the SELECT procedure, prompts for selection values.

Syntax Description

Chapter 2: QUICK User Interface
Input Modes

QDESIGN Reference 43

Implementing Compatible Block Mode Capability
To implement Compatible Block mode capability on your application screen, include the
BLOCKMODE option on the SCREEN statement of the design, as in

> SCREEN STAFF BLOCKMODE

Users now have the option of entering B in the Action field to use the screen in Block mode.
QUICK starts the first screen in Block mode if the Input mode QKGO parameter is set to B.

Block mode subscreens called from Character mode screens automatically start in Block mode if
the SUBSCREEN statement includes the INPUT B option. The calling screen retains its original
input mode when the subscreen exits.

If a user working in Block mode calls a subscreen that does not support Block mode, the called
screen automatically appears in Character mode.

Terminal Memory Mapping
Block mode screens are always mapped to lines 1 through 24 of terminal memory. Block
mode screens can take full advantage of application lines, but not terminal memory. When a
system of screens uses both Character mode and Block mode, you can make full use of
terminal memory by using terminal lines
• 1 through 24 Block mode screens
• greater than 24 more Character mode screens
For more information on application lines and terminal memory, see "SCREEN" (p. 182).
Switching from Block mode to Character mode (and vice versa) may cause new screen data to
be lost. The same loss can occur if one of several commands is entered at the wrong time.
QUICK issues a warning in such cases, and the data will be lost if the action is repeated. For
more information, see "Multiple Command Processing" (p. 49). Rapid-fire entry (several
commands separated by semicolons) is not valid on Block mode screens. If a rapid-fire entry
made on a Character mode screen contains commands that
• switch to Block mode
• move to a screen where Block mode is active
the portion of the command set that follows the switch to Block mode is discarded.
Input modes are considered to be local to the screen. You can switch back and forth while
retaining the Input mode for each screen. When a screen that is in Block mode calls a screen
without Block mode capability, the terminal switches into Character mode. When control
returns to the calling screen, the terminal returns to Block mode.

Implied AUTOUPDATE
When the [Enter] key is pressed, Block mode screens have an implied "autoupdate" feature that
updates records automatically after a screen of data has been successfully processed. The
AUTOUPDATE option causes a similar effect on Character mode screens in Entry mode. You can
use the NOAUTOUPDATE option on the SCREEN statement to suppress the autoupdate feature
of Block mode screens.

Extended Fields
When selecting Block mode as a capability for your screen, you should decide whether or not you
want extended fields on you Block mode terminal. Terminals issue a beep when a user enters the
last character of a field, and the cursor automatically advances to the first character of the next
field. If an entry has fewer characters than the field length, a user can tab to advance to the next
field.

It is often more convenient to extend the length of fields by one character so that a user must tab
to advance to the next field. Beeps then occur only if users enter too much data in a field. If you
want extended fields, add EXTENDED to the SCREEN statement, as in

> SCREEN STAFF BLOCKMODE EXTENDED

44 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Input Modes

Layout Considerations
To mark the end of a QUICK screen, Block mode employs a one-character record separator at the
end of the last field in a screen. Any data entered in this special character area is ignored. The last
field of a Block mode screen must never end in column 80, since this would leave no room for the
record separator.

Highlighting
Highlighting is important in Block mode. Input fields must be distinguishable from the rest of the
screen since there is no individual field prompting; invalid fields must be distinguishable from
accepted fields.

For terminals that support highlighting, the defaults are as follows:

Use the HILITE statement in QDESIGN to assign highlighting to screen entities. QUICK ignores
any highlighting features not supported by a terminal.

Entry Processing
When a user is prompted for data in Block mode, the screen is effectively isolated from the
computer until the data is transmitted. A user can tab backward or forward to any field, enter
data, erase data, or change data without any response from QUICK. Only the final entry- all data
currently showing in the fields- gets transmitted. QUICK treats unchanged fields (such as a field
with no data entered) as a null response, and assigns default values to the field’s associated item
during processing.

Don’t try to write procedures to interact with a user in Compatible Block mode, since procedures
can’t recognize any data until it is transmitted.

You shouldn’t include fields in a Block mode screen that are processed in a nonsequential order or
that are processed under conditional logic. A user can only see a highlighted block into which
entries are made. A user has no idea of the order in which you have set field prompting or if a field
is to be accepted. Therefore, the user has no way of knowing whether or not conditions are met.

Linking Block Mode Screens
In Entry mode, pressing [Enter] or a DFK with the BLOCKTRANSFER option executes all
statements. This includes COMMAND, SUBSCREEN, and THREAD statements with the AUTO
option, depending on the order in which they appear in the screen design. If there are no errors,
QUICK performs the command, the subscreen or the thread call. If QUICK detects an error in a
field before a COMMAND, SUBSCREEN, or THREAD statement, it ignores that statement until
the errors are corrected.

Considerations for Subscreens
Placing a SUBSCREEN or THREAD statement before the last FIELD statement can cause
problems in Block mode if errors occur in subsequent fields. These fields aren’t processed until
QUICK returns from the subscreen or thread. If QUICK detects an error in these fields, it won’t
back out the screen load of data, since the subscreen may have updated records passed from the
calling screen as well as related records. Backing out in such cases could corrupt the application
data.

To ensure that QUICK does not update data in the MASTER file without editing entries for all
fields on the screen, you should position SUBSCREEN, THREAD, and COMMAND statements
after all FIELD statements in Compatible Block mode design. If you must call a subscreen in the
middle of the entry sequence, you should use procedures to maintain data integrity.

The following... are highlighted in...

input fields INVERSE

invalid fields INVERSE HALFTONE

prompts for key fields INVERSE HALFTONE

function key labels INVERSE HALFTONE

Chapter 2: QUICK User Interface
Input Modes

QDESIGN Reference 45

Find and Select Mode Processing
In Find mode, there is one screen read for all requested fields highlighted at the start of the PATH
procedure. A user must enter all necessary key information at one time. In Select mode, this same
procedure is used, followed by a read for all selection criteria. Because users aren’t prompted
through a sequence of key fields, they must know when multiple key entries are necessary for
retrieval.

The PATH procedure is processed as it is in Character mode. In Find mode, entries in unprocessed
key fields or nonkey fields cause an error condition. In Select mode, QUICK treats such
unprocessed field entries as selection criteria, and skips the additional selection read.

For each screen load of data retrieved in Find mode, a user is allowed to make changes to fields on
display. Any changes cause the associated numbered DESIGNER procedures to be performed for
spot changes. Unchanged fields are not processed unless they share the same ID and a null
response is assumed. Errors cause error highlighting of invalid fields and additional reads from the
terminal until no more errors are found.

In Find mode or Select mode, pressing a dynamic function key or entering an Action field
command may affect the prompting sequence, or interrupt the process entirely. Most commands
cause QUICK to abandon the record retrieval process. For more information, see "Multiple
Command Processing" (p. 49).

If the effect of the command is not detrimental, one of the following occurs in Find mode:

In Select mode, the actions are similar:

Display Fields
A user cannot address fields with the DISPLAY option; consequently, they cannot be used for key
requests or selection. During data entry, users do not have to tab over fields with the DISPLAY
option. Such fields become part of the screen background and are not accessible to the user.

Transmitting Data
In Block mode, the process of entering new data in Entry mode, or of changing retrieved data in
Find mode, is local to the screen. QUICK does not recognize the data until a user presses either the
[Enter] key or a dynamic function key with the BLOCKTRANSFER option.

Transmission involves moving data from the terminal into QUICK’s Block Mode Buffer (BMB).
Each Block mode screen in a screen hierarchy has its own BMB. The ENTRY procedure and the
numbered DESIGNER procedures are not executed unless data has been transmitted. If you
intend to use DFKs to transmit data, these keys must have an explicit or implied
BLOCKTRANSFER option. For more information on dynamic function keys, see Chapter 6,
"Customizing QUICK with QKGO", and "KEY" (p. 156).

If a key value...
QUICK processes the
command, and then...

has already been entered retrieves records.

has not been entered reprompts for a key value.

If a key value...
QUICK processes the
command, and then...

and selection values have
already been entered

retrieves records.

has been entered, but no
selection values has been
entered

reprompts for selection
values.

has not been entered reprompts for a key value
and selection values.

46 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Input Modes

On most occasions, you will want data transmitted as part of a dynamic function key definition.
For example, an UPDATE command option with the NOBLOCKTRANSFER option updates the
file using data currently in the record buffer; the current screen data is ignored.

NOBLOCKTRANSFER is not recommended with the EXTENDED HELP command option
because EXTENDED HELP clears the current screen of data before displaying the help screen.

In some cases, you won’t want data transmitted. For example, using a SHIFT command option
with the NOBLOCKTRANSFER option presents unnecessary I/O.

Refreshing the Screen
The standard Refresh [Control-G] or Refresh All [Control-GG] commands for the Field model in
Character mode don’t refresh the screen in Block mode. If fixed standard function keys are being
used, [F4] and [F1_F4] respectively, perform these functions.

If dynamic function keys are assigned, you should specify keys to perform these functions using
the REFRESH and REFRESH ALL options and specify the NOBLOCKTRANSFER option to
prevent QUICK from transmitting corrupt screen data.

Processing and Updating Data
In standard Block mode operation, a user enters data on the screen, then presses [Enter].

In Block mode, no automatic update is provided for data on slave or menu screens. Explicit
updates can be specified. The use of dynamic function keys or command combinations (for
example, the [Enter] key with a command in the Action field) changes the standard processing and
updating.

• A DFK with the NOBLOCKTRANSFER option executes the command or series of
commands assigned to it; it does not transmit data and the BMB is ignored. No automatic
update is performed. One of the update command options can specify an update.

• A DFK with the BLOCKTRANSFER option first transmits data to the BMB, and then
performs whatever processing is associated with the current mode. The DFK then
executes the command or series of commands assigned to it. If one or more of the
commands need to process data, they use whatever data has been transferred to the BMB.
An automatic update is not performed. One of the update command-options can specify
an update.

• If a command is in the Action field when you press [Return], data transfer is performed
first. Depending on the type of command, processing associated with the current mode
may be performed before or after the command is executed. For more information, see
"Multiple Command Processing" (p. 49). An automatic update is not performed. One of
the update command options can specify an update.

Error Handling
When an edit error or a user-specified procedural error occurs during processing of the ENTRY
procedure or a numbered DESIGNER procedure, QUICK flags the current, or most recently
processed, field as an error. QUICK then continues processing in order to locate as many errors as
possible in a single screen read. To back out of any completed processing once all fields are
accepted, QUICK

In... the data...

Entry mode is moved to the BMB and
processed by the ENTRY
procedure.

Correct mode or Change
mode

in each changed field is
processed by the
default-numbered
DESIGNER procedure(s).

in any mode, where there
are no errors

is updated automatically.

Chapter 2: QUICK User Interface
Input Modes

QDESIGN Reference 47

1. Performs the BACKOUT procedure, if specified (in Entry or Append mode only).
2. Restores all record buffers to their original state (in Entry or Append mode only).
3. Marks any invalid fields with error highlighting.
4. Displays an error message for the first invalid field encountered.
5. Positions the cursor at the field associated with the displayed error message.

Also, any errors cause QUICK to discard all commands in the Pending Screen Input Buffer (PSIB).
For more information, see "Multiple Command Processing" (p. 49).

When errors are flagged, the user must either fix the errors or abandon the current data by
clearing the screen in Entry mode. The user may also back out of the screen in Correct of Change
mode.

The SEVERE, ERROR, and RETURN verbs also interrupt processing. The SEVERE and ERROR
verbs have different effects, depending on the type of procedure they’re used in. Generally, their
action is similar to that for edit errors. RETURN causes QUICK to leave the current screen and
move to the next highest screen. In the highest-level screen, RETURN causes QUICK to issue a
screen-ID prompt, unless the first screen option of QKGO specifies a screen name.

QUICK handles errors differently when they are detected after the update phase has begun. In this
instance, no fields are directly associated with errors, so any message must specify information
about the changes that the user must make to correct the errors. The processing performed in the
entry and correction phases is not backed out. QUICK now treats any further changes to the fields
entered on the screen as corrections to accepted data. The ENTRY procedure is not performed
again.

Important Considerations for Block Mode
When working in Block mode, the following should be taken into consideration:

• Set up the procedures to process fields in the same way that they are entered by the user-
left-to-right, and to top-to-bottom. Avoid the OMIT, IF, DISPLAY ON, and NOENTRY
options on FIELD statements.

• The VERTICAL option of the CLUSTER statement for the Field model in Character
mode prompts for entry from top to bottom following a column or columns of fields. The
VERTICAL option is not used in Block mode for more than one column of fields since
users always tab between fields in Block mode from left to right, and top to bottom.

• QUICK performs an unprocessed field check before starting the update sequence. This
implies that any fields on the screen which have had data entered into them, and which
had no ACCEPT performed on them, cause an error. The update sequence is not
performed until this problem is corrected.

• Character mode users who infrequently switch to Block mode may be inclined to browse
through records in Find mode by pressing [Enter], just as they would press [Return] in
Character mode. These are not identical actions- the [Enter] key in Block mode transmits
data to the BMB, and updates it. This could cause excessive I/O in Find mode.
ITEM statements with the FINAL option (for example, a time-stamped item) or
procedures in the screen design may change values in the record buffers. This would
automatically update the record. A designer should provide a NEXT or NEXT DATA
command-option if DFKs are being used.

• If the NOAUTOUPDATE screen option is used, data will not be automatically updated by
pressing [Enter].

• All input to Block mode screens is isolated from QUICK until [Enter] or a DFK with the
BLOCKTRANSFER option is pressed. Therefore, typing data into fields linked by the ID
SAME option may not produce the same messages that would result if the data were
entered in the Field model in Character mode.

For example, in a Block mode screen where
• a series of fields linked by the ID SAME option, and
• one or more of the fields have the NOCHANGE option

48 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Input Modes

you can change data in a field with the NOCHANGE option. No error message is issued from
QUICK, but the change is ignored. To receive the appropriate messages in Block mode, make sure
that all fields have ID-numbers. (Depending on the options used, QUICK may not recognize fields
without ID-numbers as valid input fields).

• Do not perform updates directly or indirectly from the ENTRY procedure unless they
never need to be backed out. In the case of an error in a field, the user is prompted to
correct the error. If the user corrects the errors, the update may be repeated; if not,
QUICK has no way of forcing a backout.

• Do not use the ACCEPT or PROMPT verbs for the same field more than once within any
single screen read. Any subsequent ACCEPT or PROMPT verbs for the same field results
in a null response.

• Avoid complicated REQUEST verb sentences for path determination in Find mode. The
user is not prompted in a sequence and may enter data in any field on the screen.

• To procedurally test the Input mode, use the predefined conditions BLOCKMODE and
CHARACTERMODE. For more information, see "Predefined Conditions in QDESIGN"
in Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules book.

In Block mode, processing of field-related verbs differs from Character mode. For Block mode,
QUICK follows some or all of the steps detailed in ACCEPT verb, Chapter 12.

• In Block mode, FIELDTEXT is the size of the current field entry, without any trailing
blanks. In Change mode and Correct mode, however, if a value is changed to spaces,
FIELDTEXT has a size of one.

Mode Verb QUICK follows steps...

Block ACCEPT 1 to 7

PROMPT 1 to 3, 6

REQUEST 1 to 3, 6

DISPLAY 8 to 10

Chapter 2: QUICK User Interface
Multiple Command Processing

QDESIGN Reference 49

Multiple Command Processing
QUICK can receive commands from a multitude of QDESIGN features, as well as from screen
users. Multiple command processing is QUICK's strategy for handling commands it receives from
all these sources.

Command Sources
QUICK can receive commands from any of the following sources:

The above command sources can be used separately or together. For example, you can design a
Dynamic Function Key (DFK) that calls a DESIGNER procedure which includes the
PRECOMMANDS and POSTCOMMANDS options and several PUSH verbs.

Input Buffers
QUICK has two types of input buffers:

Pending Screen Input Buffer (PSIB)

Each screen has its own PSIB. PSIBs are Last In=First Out (LIFO) buffers that establish the order
in which conditional command lists are processed, as in:

Command Source For more information, see ...

Screen users (discrete and rapid-fire
entries)

"QUICK Screen Commands" in Chapter 5,
"PowerHouse Language Rules", in the PowerHouse
Rules book

Function keys (p. 271), (p. 273), and (p. 275)

ACTIONMENU statements (p. 70)

MENUITEM statements (p. 164)

DESIGNER procedures
(PRECOMMANDS and
POSTCOMMANDS options)

(p. 303)

PUSH verbs (p. 454)

Buffer Description

Pending Screen Input Buffer (PSIB) Stores conditional command lists.

Rapid-Fire Buffer (RFB) Stores user-entered commands and/or data.

50 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Multiple Command Processing

QUICK does not pass commands between calling screens' and subscreens' PSIBs. When calling a
subscreen, QUICK saves the calling screen's PSIB, opens the subscreen's PSIB, and then continues
processing on the subscreen. When returning to a calling screen, QUICK clears the subscreen's
PSIB, re-opens the calling screen's PSIB, and then continues processing on the calling screen.

Although QUICK doesn't pass commands between calling screens' and subscreens' PSIBs, you can
simulate this effect. For more information, see (p. 54).

PSIBs and Conditional Command Lists

You use conditional command lists on KEY, ACTIONMENU, and MENUITEM statements,
PUSH verbs, and DESIGNER procedures to send commands to QUICK. The general form of a
conditional command list is:
command-list [IF condition

[ELSE command-list IF condition]...
[ELSE command-list]]

For more information about conditional command lists, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

When QUICK receives a conditional command list, it puts it on the current PSIB. The conditional
command list is removed from the PSIB for processing immediately unless QUICK receives other
conditional command lists, in which case it is pushed further down in the PSIB.

When a conditional command list is removed from the PSIB for processing, QUICK evaluates the
conditions, if any, and then processes the resulting command list. The commands in the command
list are executed in the order in which they're specified by the designer.

A Special Note About PUSH Verbs

Unlike the other command sources, you can specify several PUSH verbs in a row for execution
under procedural control, as in
> PUSH LAST RECORD
> PUSH NEXT DATA

Be aware, however, that this is different from entering
> PUSH LAST RECORD, NEXT DATA

In the first example, LAST RECORD is put on the PSIB first, followed by NEXT DATA. Due to
the PSIB's LIFO configuration, the commands are removed for processing in the order NEXT
DATA, LAST RECORD. This is the opposite of the second example, where the commands are
processed in the order in which they're specified, that is, LAST RECORD, NEXT DATA.

Rapid-Fire Buffer (RFB)

The RFB is shared by all screens in a PowerHouse application. The RFB is a First In=First Out
(FIFO) buffer that stores all user-entered commands and/or data prior to processing, as in:

When QUICK receives discrete or rapid-fire user entries, it puts them on the RFB in the order in
which they are entered, and removes them for processing in the same order.

Chapter 2: QUICK User Interface
Multiple Command Processing

QDESIGN Reference 51

Order of Processing
Depending on the current context, QUICK requires either an Action command or a Data field
entry. QUICK looks for its next command or entry according to the following phases (these phases
are indicated on the processing flowchart on the next page):

Phase Description

1. Process commands in the
current PSIB.

Causes QUICK to give priority to programmatically-entered
commands (which are stored in PSIBs). This ensures that
designer-controlled features perform as expected, regardless of
user entries.

2. Process entries in the
RFB.

Causes QUICK to process all discrete and rapid-fire user entries
before prompting for new entries.

3. Accept new user input. Prompts for new entries only when none are available in the PSIB
or the RFB. This results in commands being put on PSIBs, entries
being put on the RFB, or both, which causes QUICK to return to
phase 1.

52 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Multiple Command Processing

Error Handling
The way QUICK handles command-related errors depends upon whether it is in Action context or
Data context.

Action Context

When QUICK is in Action context, it requires an Action command. Anything other than a valid
Action command causes QUICK to clear the PSIB and the RFB, issue an error message, and
prompt for new input at the Action field.

Data Context

When QUICK is in Data context, it requires a Data field entry (this could be either a Data
command or data for the field). A data field entry that does not comply with the field's type, size,
picture, or EDIT procedure conditions causes QUICK to clear the RFB, issue an error message,
and prompt for new input at the field in which the error occurred.

A simple rule of thumb about data context is this: if an entry wouldn't work if it were entered as
one of a series of discrete entries, it won't work with multiple command processing either.

Start

Exit

Exit

Action field
command
wanted?

Phase 1:
PSIB empty?

Phase 2:
RFB empty?

Phase 3: Prompt
user at Data field

First entry
a Data field
command?

 Execute Data field
command or
process data

Execute
Data field
command

Phase 1:
PSIB empty?

Phase 2:
RFB empty?

Phase 3: Prompt
user at Action field

Execute
Action field
command

First entry an
Action field
command?

Error condition:
clear PSIB and
RFB

Prompt user
at Action field

(Data field
entry wanted)

Yes

No

No Yes

NoYes

No

Yes

No

Yes

No

Yes Yes

No

Chapter 2: QUICK User Interface
Multiple Command Processing

QDESIGN Reference 53

Examples
Multiple command processing allows you to design very powerful automatic features into your
applications. The following examples show some innovative design techniques that take
advantage of multiple command processing.

Multiple Retrieval Paths

In the following example, several retrieval paths are predefined as menu items. Users simply select
the appropriate retrieval path from the menu, rather than entering retrieval criteria in data fields:
> SCREEN XMPL4 ACTIONBAR STARTUP
> FILE EMPLOYEES
> TEMPORARY MY_PATH CHAR*10 RESET AT STARTUP
> ACTIONMENU LABEL "Retrieval Paths"
> MENUITEM LABEL "Retrieve via Employee No" &
> ACTION DESIGNER RTV1
> MENUITEM LABEL "Retrieve via Last Name" &
> ACTION DESIGNER RTV2
.
.
.
> MENUITEM LABEL "Retrieve All Employees" &
> ACTION DESIGNER RTV5
.
.
.
> PROCEDURE DESIGNER RTV1 NODATA
> BEGIN
> LET MY_PATH = "EMP#"
> PUSH FIND
> END
>
> PROCEDURE DESIGNER RTV2 NODATA
> BEGIN
> LET MY_PATH = "LNAME"
> PUSH FIND
> END
.
.
.
> PROCEDURE DESIGNER RTV5 NODATA
> BEGIN
> LET MY_PATH = "ALL"
> PUSH FIND
> END
>
> PROCEDURE PATH
> BEGIN
> IF MY_PATH = "EMP#"
> THEN REQUEST EMPLOYEE
> ELSE IF MY_PATH = "LNAME"
> THEN REQUEST LASTNAME
.
.
.
> END
>
> PROCEDURE FIND
> BEGIN
> IF MY_PATH = "EMP#"
> THEN GET EMPLOYEES VIA EMPLOYEE
> IF MY_PATH = "LNAME"
> THEN GET EMPLOYEES VIA LASTNAME
.
.
.
> IF MY_PATH = "ALL"

54 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Multiple Command Processing

> THEN GET EMPLOYEES SEQUENTIAL
> END

Passing Parameters Between Screens

Although commands are not passed between calling screens' and subscreens' PSIBs, the following
example shows how you can simulate this effect:
> SCREEN XMPL5
> FILE EMPLOYEES PRIMARY
> TEMPORARY ACTION_FLAG CHAR*1
.
.
.
> PROCEDURE DESIGNER COPY
> BEGIN
> LET ACTION_FLAG = "C"
> RUN SCREEN XMPL5A PASSING EMPLOYEES, ACTION_FLAG
> END
> BUILD

> SCREEN XMPL5A RECEIVING EMPLOYEES, ACTION_FLAG
> FILE EMPLOYEES MASTER
> FILE BILLINGS PRIMARY
.
.
.
> TEMPORARY ACTION_FLAG CHAR*1
.
.
.
> PROCEDURE DESIGNER MOVE NODATA &
> PRECOMMAND FIND
> BEGIN
.
.
.
> END
> PROCEDURE DESIGNER COPY NODATA &
> PRECOMMAND FIND
> BEGIN
.
.
.
> END
>
> PROCEDURE INITIALIZE
> BEGIN
> IF ACTION_FLAG = "C"
> THEN PUSH DESIGNER COPY
> IF ACTION_FLAG = "X"
> THEN PUSH DESIGNER MOVE
> END

Creating Your Own Actions

In addition to the standard Entry, Find, and Select modes, you can design custom actions that
assist users with commonly-performed or tedious routines. In the following example, custom
actions make short work of changing an employee's address or position.

The MY_PUSH_FLAG condition allows the FIND command unless the ADDR procedure was
executed by the XFER procedure (below). If the latter is true, then the employee has already been
found by the XFER procedure's FIND command.

The XFER procedure executes the ADDR procedure because it assumes that if the employee has
been transferred, then he/she has also had a change of address.
> SCREEN XMPL6 ACTIONBAR STARTUP
> FILE EMPLOYEES
> TEMPORARY MY_PUSH_FLAG CHAR*4

Chapter 2: QUICK User Interface
Multiple Command Processing

QDESIGN Reference 55

.

.

.
> ACTIONMENU LABEL "Actions"
> MENUITEM LABEL "Add Employee" ACTION ENTRY
> MENUITEM LABEL "Find Employee" ACTION FIND
> MENUITEM LABEL "Change Employee's Address" &
> ACTION DESIGNER ADDR
> MENUITEM LABEL "Transfer Employee" &
> ACTION DESIGNER XFER
.
.
.
> FIELD EMPLOYEE
.
.
.
> FIELD STREET ;ID 4
> FIELD CITY ;ID 5
> FIELD STATE ;ID 6
> FIELD ZIP ;ID 7
.
.
.
> FIELD BRANCH ;ID 10
> FIELD POSITION ;ID 11
.
.
.
> PROCEDURE DESIGNER ADDR NODATA &
> PRECOMMAND FIND IF MY_PUSH_FLAG <> "XFER" &
> POSTCOMMAND UPDATE
> BEGIN
> PUSH ID 4 TO 7 ;IDs for street, city, state, zip
> END
>
> PROCEDURE DESIGNER XFER NODATA &
> PRECOMMAND FIND
> BEGIN
> LET MY_PUSH_FLAG = "XFER"
> PUSH ID 10 TO 11, DESIGNER ADDR ;IDs for branch
> ;and position
> END

56 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Partial-Index Retrieval in QUICK

Partial-Index Retrieval in QUICK
Data records from indexed files can be retrieved by index, by partial-index (generically), or by
indexed sequential access. To perform partial-index retrieval, the index must be a character-type
item. When an index has more than one segment, generic retrieval can be used on any
combination of the character segments of the index. Partial-index retrieval is available directly to
the user. If the user enters M@ in an index field, all data records will be retrieved where the index
begins with the letter M. If the user enters M@@, all data records will be retrieved where the index
begins with letter M to the highest value (that is the last segment value). The default generic
retrieval character is the at-sign (@).

You can also program retrieval, either by setting the last nonblank character of the search value to
@ or @@, or by defining, in the data dictionary, an index that is shorter than the actual file index
and starts in the same position. Partial-index retrieval can be disabled with the NOGENERIC
option. To perform sequential retrieval on a specific index, the VIA and SEQUENTIAL options
are used together.

In Find mode, when QUICK is prompting for index values for an indexed file, @@ can be added to
a value used for partial-index retrieval. The @@ may make the entered value too large for the
field; if this is the case, the entry is rejected with an error message. For example, an entry of
GL@@ should retrieve data records from an indexed file from the first index value starting with
GL, and continuing upwards through the alphabet. If the linkitem field was only two characters
long, the entire @@ is cropped, leaving the two characters GL. Generally, for the use of @@ to be
effective, the linkitem field length must be at least two positions greater than the partial-index
value. However, if @@ is concatenated to a value in the expression of a USING option, the
retrieval works correctly, and @@ is not truncated or dropped.

Limitation on Retrieval from B-Tree Indexes (MPE/iX)
The following limitation exists on B-Tree indexes.

If the set of records being retrieved is from a wildcard, ranged or partial key search, the "super
chain" of records that satisfies the search criteria can be corrupted by a directed read from the
dataset. Results of reads from the super chain after a directed read can be unpredictable.

Since PowerHouse uses directed reads as part of its Update process, the following actions are
taken to prevent corrupted reads:
• For Master datasets, the Find sequence is stopped if any item in a record is changed.
• For Detail datasets, the Find sequence is stopped if the value of the key that was used for

retrieval is changed.
• For Detail datasets, the Find sequence is stopped if, after changing an item other than the

retrieval key, PowerHouse finds that another user has changed the key used for retrieval in the
last record read from the super chain between the time the record was originally read and the
time PowerHouse tries to read the next record from the super chain.

For Detail datasets, PowerHouse will attempt to reestablish its position after a directed read and
continue reading.

Chapter 2: QUICK User Interface
Scrolling Primary and Detail Records

QDESIGN Reference 57

Scrolling Primary and Detail Records
QUICK uses a cache to scroll forwards and backwards through primary and detail
record-structures. The cache allows both screen designers and end users to work with more
records than can be displayed on the screen.

When a record-structure is cached, QUICK stores in memory all of its record buffers as well as the
record buffers for the record-structures associated with the cached record-structure.

You use the CACHE option on the FILE statement to specify how many record buffers for a
primary or detail record-structure are to be cached.

You use the OCCURS option on the FILE statement to display multiple occurrences of a
record-structure on a screen. This occurrence window serves as a window into the cache. The
number of records in the cache can be greater than or equal to the occurrence window. If this
option is not used, then the occurrence window size is one. If the CACHE option is not specified,
then the cache is set to the number of occurrences. If neither is specified, then both the cache size
and the occurrence window size is one.

Screen Designer Options
In addition to the CACHE and OCCURS option on the FILE statement, the PRESCROLL and
POSTSCROLL procedures and the FOR control structure are available:

For more information about these procedures, see (p. 293).

For more information about the FOR control structure, see (p. 425).

Screen User Commands
Screen users use the following Action commands for scrolling forward and backward through the
set of records in the cache:

Cache
Occurrence
Window

034 Jacob
053 Jacques
075 Jason

Procedure Description

PRESCROLL Provides designer control before QUICK performs any scrolling.

POSTSCROLL Provides designer control after QUICK performs the scrolling but before
the screen is refreshed.

FOR Accesses all records in the cache. The MISSING option accesses the
unused entries in the cache, and the DISPLAY option accesses only those
cached records currently displayed on the screen.

FIRST RECORD LAST RECORD

NEXT NEXT DATA

NEXT RECORD

PREVIOUS DATA PREVIOUS RECORD

58 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Scrolling Primary and Detail Records

Cache Contents
When a SECONDARY record-structure occurs with a cached record-structure, the SECONDARY
record-structure is cached as well; for every record buffer of the cached record-structure, there is
an associated record buffer for the SECONDARY record-structure. The same is true for any
SECONDARY record-structure that occurs with the implied cached SECONDARY
record-structure. The cached secondary records do not affect the cache limit specified by the
CACHE n option.

Any other record-structure that is linked to the cached record-structure is also cached. This
includes DELETE, AUDIT, and DESIGNER record-structures as well as temporary items.

Scrolling Commands
The commands for scrolling through the cache are dependent on whether the CACHE option was
specified for the PRIMARY or DETAIL record-structure and whether the OCCURS option was
used.

Cached PRIMARY Record-Structure

With a screen that has a cached PRIMARY record-structure
> FILE ...PRIMARY OCCURS n CACHE

or
> FILE ...PRIMARY CACHE

then the table below describes what QUICK does when the following QUICK commands are
issued:

Cached DETAIL Record-Structure

With a screen that has a cached DETAIL record-structure
> FILE ...PRIMARY

or
> FILE ...DETAIL OCCURS n CACHE

QUICK Command Action

NEXT DATA Scroll the occurrence window down one full window length. On the
QUICK screen, you will see the next set of n data records.

If the OCCURS option has not been specified, then this command is
the same as NEXT RECORD.

NEXT Same as Next Data.

NEXT RECORD Scroll forward one PRIMARY record.

PREVIOUS DATA Scroll the occurrence window up one full window length. On the
QUICK screen, you will see the previous set of n data records.

If the OCCURS option has not been specified, then this command is
the same as PREVIOUS RECORD.

PREVIOUS RECORD Scroll backwards one PRIMARY record.

FIRST RECORD Move the occurrence window to the top of the cache. On the QUICK
screen, you will see the first n data records in the cache.

LAST RECORD Move the occurrence window to the bottom of the cache. On the
QUICK screen, you will see the last n data records in the cache.

Chapter 2: QUICK User Interface
Scrolling Primary and Detail Records

QDESIGN Reference 59

then the table below describes what QUICK does when the following QUICK commands are
issued:

QUICK Command Action

NEXT DATA Scroll the occurrence window down one full window length. In Find
mode, and there are insufficient data records in the cache, read the
necessary DETAIL records from the file. If there are no more
DETAIL data records, advance to next PRIMARY data record and
clear the cache.

NEXT Clear the cache and advance to the next PRIMARY data record.

NEXT RECORD Scroll forward one DETAIL record.

PREVIOUS DATA Scroll the occurrence window up one full window length. On the
QUICK screen, you will see the previous set of n detail data records.
If at the beginning of the cache, display first records from the cache.
If attempt to scroll back past the beginning of the cache, display
warning message saying no more records.

PREVIOUS RECORD Scroll backwards one DETAIL record.

FIRST RECORD Move the occurrence window to the top of the cache. On the QUICK
screen, you will see the first n DETAIL data records in the cache.

LAST RECORD Move the occurrence window to the bottom of the cache. On the
QUICK screen, you will see the last n DETAIL data records in the
cache.

60 PowerHouse(R) 4GL Version 8.4E

Chapter 2: QUICK User Interface
Screen Threads

Screen Threads
Separate screen threads let an application have more than one screen hierarchy active at the same
time. For example, the following code generates a system of screens in which users can browse
parts in the Parts screen while entering orders in the Orders screen:
> SCREEN MENU
> THREAD ORDERS
> THREAD PARTS
.
.
.

Screen threads can be used with QUICK in the host environment or with Axiant 4GL in the
client/server environment.

You use the THREAD statement and RUN THREAD verb to specify a new screen thread. They
specify the screen to be loaded as the root of a new screen thread. They are functionally equivalent
to the SUBSCREEN statement and RUN SCREEN verb except that no passing or receiving lists
are possible. If the SHARED option is specified and the thread already exists, then you go to that
screen without creating a new instance of the screen.

Once a new thread is started, you can move from one thread to another using the Toggle
command (T).

For more information about threads, see (p. 221) and (p. 478).

QDESIGN Reference 61

Chapter 3: QDESIGN Statements

Overview
This chapter provides a detailed reference of QDESIGN statements. For each statement you'll find
• formal syntax
• syntax summaries
• detailed syntax descriptions
• detailed discussions
• examples

QDESIGN syntax that is specific to PowerHouse Web or that has differences in the context of
PowerHouse Web is described in the Chapter 7 of the PowerHouse Web Developer’s Guide.

Summary of QDESIGN Statements
The following table summarizes the purpose of each QDESIGN statement:

Statement
Screen
Section Purpose

ACCESS Data Specifies or overrides record-structure access methods.

ACTIONMENU Screen Specifies the action taken by an Action bar item.

ALIGN Layout Changes the default positioning of objects on a screen.

BUILD n/a Compiles the current screen design, optionally listing
generated procedures.

CANCEL n/a Cancels the screen design specifications.

CLUSTER Layout Groups a set of screen entities.

COMMAND Layout Executes an operating system command or runs
a program.

CURSOR Data Identifies and describes how a cursor, table, or view is used
by the screen.

[SQL] DECLARE
CURSOR
(query-specification)

Data Defines a set of data as a run-time view.

[SQL] DECLARE
CURSOR (stored
procedure)

Data Calls a stored procedure.

DEFINE Data Assigns a name to an expression.

DESCRIPTION Screen Allows screen designers to enter extended help messages
for a screen or a field.

62 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements

DRAW Layout Draws lines and boxes on a screen.

EXIT n/a Ends a QDESIGN session.

FIELD Layout Creates fields on the screen that correspond to items for
data entry and display.

FILE Data Identifies and describes a record-structure accessed by the
screen.

GENERATE Layout Generates FIELD statements based on dictionary
definitions of record-structures specified in FILE
statements.

GO n/a Runs QUICK from QDESIGN.

HILITE Layout Assigns highlighting features to screen entities.

ITEM Data Assigns values to items or performs sums and balances on
items.

KEY Screen Specifies a dynamic function key (DFK).

MENUITEM Screen Specifies the action taken by a drop-down menu item.

QSHOW n/a Runs QSHOW from QDESIGN.

query-specification
(SELECT)

Data Defines a collection of rows that will be accessible when
the cursor is opened.

QUIT n/a Terminates QDESIGN.

REPORT Layout Executes QUIZ.

REVISE n/a Invokes an editor to edit files from within QDESIGN.

RUN Layout Executes QTP.

SAVE n/a Saves QDESIGN source statements in a permanent file.

SCREEN Screen Names the screen and specifies its characteristics.

SELECT Data Applies a selection condition to retrieved data records.

SET n/a Changes default settings for a QDESIGN session.

SHOW n/a Displays available record-structures and/or items as
defined in the data dictionary.

SKIP Layout Skips lines to a specific line or to an alignment group.

SUBSCREEN Layout Invokes a lower-level screen.

TARGET Data Calculates the record number in a direct or relative file for
storing a newly-created record.

TEMPORARY Data Creates a temporary item that is not defined in the data
dictionary.

THREAD Layout Specifies a screen thread.

Statement
Screen
Section Purpose

Chapter 3: QDESIGN Statements

QDESIGN Reference 63

TITLE Layout Positions text on the screen.

TRANSACTION Data Defines transactions used for relational files.

USE n/a Processes QDESIGN source statements contained in a file.

Statement
Screen
Section Purpose

64 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ACCESS

ACCESS
Specifies or overrides record-structure access methods.

Syntax
ACCESS [option]...

Options

BACKWARDS

Reverses the sequence in which the data records are normally read.

Limit: Valid only for C-ISAM, DISAM, RMS ISAM, and IMAGE datasets with keyed access.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

GENERIC|NOGENERIC

GENERIC allows partial-index retrieval. NOGENERIC prevents partial-index retrieval.

Limit: Not valid for IMAGE indexes, unless they are B-Tree or OMNIDEX indexes.

Default: GENERIC

OPTIONAL

Continues processing even if the access fails. If no data record is found, QUICK creates a data
record containing initial values for each item. These values are taken from the data dictionary and
any ITEM statements. If no initial values are specified in the data dictionary or an ITEM
statement, character items are initialized to spaces, and numeric and date items are initialized to
zero.

Limit: Not valid for PRIMARY files.

ORDERBY item [ASCENDING|DESCENDING]
[,item [ASCENDING|DESCENDING]]...

Allows the ordered retrieval of records in a relational table or view by any column (or
combination of columns) defined in the table or view.

If the ORDERBY option occurs with the VIAINDEX option, ordering is performed according to
the columns of the ORDERBY option and the ordering imposed by the VIAINDEX option is
ignored.

If the ACCESS statement is associated with a CURSOR statement, ORDERBY is used to build a
substitution value for the ORDERBY substitution-variable. If there is no ORDERBY
substitution-variable on the DECLARE CURSOR for the table, then PowerHouse attempts to find
the right place for one.

Note: Some relational databases have sorting restrictions for certain datatypes. For sorting
restrictions, refer to your relational database reference manual.

Limit: Valid only for relational files.

Default: ASCENDING

ACCESS Options

BACKWARDS GENERIC|NOGENERIC OPTIONAL

ORDERBY REQUEST SEQUENTIAL

sql-substitution UNIQUE USING

VIA VIAINDEX

Chapter 3: QDESIGN Statements
ACCESS

QDESIGN Reference 65

REQUEST field [,field]...

Prompts the screen user for a value in each named field. An entered value can be used as an index
value, or as a means to calculate such a value. An entered value can also be used as a value in a
selection condition.

Limit: Valid only for record-structures in PRIMARY files.

SEQUENTIAL

Accesses the record-structure sequentially.

Limit: Valid only for record-structures in PRIMARY files.

Limit: The USING and SEQUENTIAL options can't be used in the same ACCESS statement. The
VIA and SEQUENTIAL options are compatible in the same ACCESS statement for indexed files
only.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

sql-substitution...

An sql-substitution can be specified for any substitution variable defined on the DECLARE
CURSOR statement. Two default sql-substitutions, WHERE and ORDERBY, will be inserted in
generated SQL statements even if the corresponding substitution-variables do not exist on a
DECLARE CURSOR statement.

The VIA and USING options are used to build a substitution for the default substitution-variable:
WHERE. The ORDERBY and ORDERED options are used to build a substitution for the default
substitution-variable: ORDERBY.

The syntax for an sql-substitution is:
substitution-variable (text)

For more information about substitutions and substitution-variables, see Chapter 1, "About
PowerHouse and Relational Databases", in the PowerHouse and Relational Databases book.

Limit: Any sql-substitutions must appear before any other options.

UNIQUE

Forces a re-evaluation of the USING expression and a "get first" access for each data record read.
UNIQUE overrides chained-type access to indexed files.

MPE/iX, OpenVMS: For direct files, and relative files, UNIQUE allows calculation of the data
record number for each individual data record.

Limits: Valid for PRIMARY, DETAIL, and SECONDARY files. Not valid when the ACCESS
statement applies to a CURSOR statement.

USING expression [,expression]...

The USING, VIA, and VIAINDEX options control data retrieval.

The USING option accesses an associated file using the results of a specified expression as
• the value for corresponding segments
• MPE/iX, OpenVMS: the data record number for record-structures in direct files or relative

files
• the column value in a relational table

For direct files or relative files (MPE/iX, OpenVMS), there can be only one value which QUICK
interprets as a record number.

For indexed files or IMAGE databases (MPE/iX), there can be more than one value (for
segmented indexes), but QUICK interprets the values as a single index value in that file.

66 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ACCESS

If the record-structure belongs to a direct file, there can only be one expression specified, which
must be numeric. Otherwise, a series of expressions can be specified which correspond one-to-one
with the segments established by either the VIA or VIAINDEX options. If neither the VIA nor the
VIAINDEX option is specified, and the record-structure has only one associated index, this index
is used as if the VIAINDEX option had been specified except that index retrieval order will not be
enforced.

If a record-structure is a relational table, there can be several values in the USING option which
QDESIGN interprets as the values of the columns in the table. The VIA or VIAINDEX options
must be used to indicate which columns the values belong to if more than one index is in use or if
no index is used.

If the VIA option is specified, the number of expressions specified must correspond one-to-one
with the number of linkitems specified on the VIA option.

If the VIAINDEX option is specified and the VIA option isn't specified, the number of expressions
specified may be less than or equal to the number of segments contained within the specified
index. There must always be at least one expression.

Due to the logic of NULL value processing, placing NULL in a USING expression for any segment
should be avoided, as it will never result in a match.

Limit: 255 expressions.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of a
multi-segment index, unless the index is a B-Tree or OMNIDEX index. An expression must be
specified for every segment of the index.

VIA linkitem [,linkitem]... [ORDERED[ASCENDING|DESCENDING]]

The USING, VIA, and VIAINDEX options control data retrieval.

Accesses the record-structure via the specified linkitem. A linkitem is an item declared as a
segment of an index declared in the data dictionary, or a column in a table of a relational database
declared in the data dictionary.

When a VIA list is used in combination with the USING option, there must be a one-to-one match
between the USING expressions and VIA linkitems. This option is valid for indexed files, IMAGE
databases (MPE/iX), and relational tables only.

For indexed files, and IMAGE databases (MPE/iX), the series of linkitems declared must define a
series of segments contained within the index structure associated with the record-structure. In
this case, the first linkitem is the first segment within the index structure, the second linkitem is the
second segment, and so on.

For relational tables, a series of linkitems may represent any series of columns in a table as long as
the VIAINDEX option is not specified. If VIAINDEX is specified, a series of linkitems must be a
series of segments contained within a specific index structure: match the first linkitem to the first
segment, the second linkitem to the second segment, and so on.

If the ACCESS statement is associated with a CURSOR statement, the ORDERED option is used
to build a substitution value for the ORDERBY substitution-variable and the VIA options are
used to build substitution values for the WHERE substitution-variable. If there is no ORDERBY
variable on the DECLARE CURSOR for the table, then PowerHouse attempts to find the right
place for one.

Limit: 255 segments.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of a
multi-segment index, unless the index is a B-Tree or OMNIDEX index. The series of linkitems
must include all of the segments in the index.

ORDERED[ASCENDING|DESCENDING]
Allows the ordered retrieval of records in a relational table or view by the columns specified in the
VIA option (or combination of columns) defined in the table or view.

The ORDERED option is a convenient method of specifying ORDERBY items when the items to
be specified are the same as those in the VIA list.

Chapter 3: QDESIGN Statements
ACCESS

QDESIGN Reference 67

If the ORDERED option occurs with the VIAINDEX option, which also imposes an ordering, the
ordering is done by the columns of the VIA option. The implicit ordering imposed by the
VIAINDEX option is ignored.

Limit: 255 segments. ORDERED is valid only when the VIA option is used with one or more
linkitems.

Default: ASCENDING

VIAINDEX indexname

The USING, VIA, and VIAINDEX options control data retrieval.

The VIAINDEX option names an index of an indexed file, IMAGE database (MPE/iX), or
relational table. When VIAINDEX is used with the USING option, there can be as many USING
values as there are segments in the index, or fewer values than the index segments. In the latter
case, the values are matched to the index segments in order, starting from the first segment; the
leftover segments are not used. When using VIAINDEX, the retrieval always follows the order
specified by that index.

Use VIA instead of VIAINDEX with relational tables. By explicitly referencing an index with the
VIAINDEX option, it becomes harder to change the database definitions. If the index is deleted,
then the source code must be modified. If VIA is used instead, the index can be deleted and the
screen continues to work properly.

Limit: Not valid when the ACCESS statement applies to a CURSOR statement.

Discussion
The ACCESS statement is part of the data section of your screen design. The ACCESS statement
specifies record-structure access and can be used to alter the default PATH and FIND procedures
QDESIGN normally generates. Using the ACCESS statement is preferable to modifying the PATH
and FIND procedures directly.

Where to Enter the ACCESS Statement

ACCESS statements must follow the FILE or CURSOR statement for the record-structure to
which they refer, and must come before any other FILE, CURSOR, DEFINE, or TEMPORARY
statements.

Specifying Multiple ACCESS Statements

You can specify multiple ACCESS statements for the PRIMARY file. QDESIGN constructs PATH
and FIND procedures based on all specified ACCESS statements, in the order in which they occur.
This allows you to create QUICK screens that, in Find mode, prompt first for the segments of one
index, then for the segments of a second index, and so on until the screen user enters a non-null
response to one of the prompts. QUICK then uses the index that corresponds to the segments for
which values were entered.

Effects of the ACCESS Statement on Record Retrieval

Once you include an ACCESS statement for a record-structure, QDESIGN leaves all access
specifications up to you. For record-structures in primary files, if you don't include an ACCESS
statement for a given index, that index isn't available for data record retrieval if you specified an
ACCESS statement for another index. In the same way, if you don't include an ACCESS statement
for sequential access after you specified an ACCESS statement, sequential retrieval isn't available
in Find mode for that QUICK screen.

The USING and SEQUENTIAL options are incompatible in the same ACCESS statement. The
VIA and SEQUENTIAL options are compatible in the same ACCESS statement for indexed files
only.

Linking Record-structures with the ACCESS Statement

If there is only one segment, QDESIGN tries to match its value to a value of that item. If the
record-structure accessed has more than one index, use the VIA or VIAINDEX option to indicate
which segment QDESIGN should use to establish the linkage.

68 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ACCESS

For more information on record retrieval, see (p. 137).

Retrieving Data in QUICK

QUICK determines retrieval information for data records of a file according to the following
steps:
1. QUICK looks for either procedural retrieval specifications on the GET verb, or a LOOKUP

option on the FIELD statement.
2. If Step 1 fails, QUICK looks for retrieval specifications from ACCESS statements associated

with the file (for non-PRIMARY record-structures only).
3. For indexed record-structures, QDESIGN assumes indexed retrieval and the minimum

required specification is the linkitem name. If the record-structure has only one index,
QDESIGN assumes indexed retrieval using that index. Nothing more is required.
If there is more than one index, QDESIGN looks for generated (by automatic item
initialization) or specified ITEM statements with the INITIAL and FIXED options for the
linkitems of the record-structure. The first such ITEM statement found determines the index
used to retrieve the data records of the file. The index value used for retrieval is the value of
the linkitem at the time the retrieval is attempted.

The retrieval specifications referred to in steps 1 and 2 allow you to control the way that QUICK
retrieves data records. These retrieval specifications are:

Note that the REQUEST option is valid only in the ACCESS statement, and not in any of the
other statements specified above in steps 1 and 2. All of the other retrieval specifications are valid
in each of the statements specified in steps 1 and 2.

If any of these retrieval specifications are used in step 1, they will override the same option on any
ACCESS statement; however, any other options will still be used.

Controlling Data Record Retrieval Explicitly in QUICK

There are four ways in which you can use QDESIGN syntax to override or alter QUICK's
assumptions about data record retrieval for certain record-structures. You can use
• a NOSEQUENTIAL option on the SCREEN statement
• ACCESS statements with BACKWARDS, NOGENERIC, OPTIONAL, REQUEST,

SEQUENTIAL, UNIQUE, USING, VIA, and VIAINDEX options
• LOOKUP options with BACKWARDS, NOGENERIC, OPTIONAL, SEQUENTIAL, USING,

VIA, and VIAINDEX options
• procedures

Ascending/Descending Index Support

You can specify segments of an index in either ascending or descending order. When PowerHouse
generates database retrieval requests as the result of an explicit VIAINDEX index, it generates the
sorting specification in the request to match the order declared when the index was defined.

Example
ACCESS statements control how the CUSTOMERS file is accessed in Find mode.

The following examples illustrate how to use the ACCESS statements to control how QUICK
accesses files and cursors.

QUICK prompts first for the segment CUSTOMERKEY of the CUSTOMERS index, then for the
segment CUSTOMERNAME of the CUSTOMERNAME index. If no entries are made in either
field, then QUICK retrieves CUSTOMERS data records sequentially.

BACKWARDS GENERIC|NOGENERIC OPTIONAL

REQUEST SEQUENTIAL UNIQUE

USING VIA VIAINDEX

Chapter 3: QDESIGN Statements
ACCESS

QDESIGN Reference 69

> SCREEN MODCUST
>
> FILE CUSTOMERS PRIMARY
> ACCESS VIAINDEX CUSTOMERS &
> USING CUSTOMERKEY OF CUSTOMERS &
> REQUEST CUSTOMERKEY
> ACCESS VIAINDEX CUSTOMERNAME &
> USING CUSTOMERNAME OF CUSTOMERS &
> REQUEST CUSTOMERNAME
> ACCESS SEQUENTIAL

> SQL DECLARE EMPLIST CURSOR FOR &
> SELECT EMPLOYEE, FIRST_NAME, LAST_NAME, &
> BRANCHES.BRANCH, BRANCH_NAME &
> FROM EMPLOYEES, BRANCHES &
> WHERE EMPLOYEES.BRANCH = BRANCHES.BRANCH
> SCREEN EMPBRANCHC
> CURSOR EMPLIST PRIMARY KEY EMPLOYEE
> ACCESS VIA EMPLOYEE REQUEST EMPLOYEE
> ACCESS VIA LAST_NAME REQUEST LAST_NAME
> ACCESS SEQUENTIAL

Sequential access could have been disabled by omitting the ACCESS SEQUENTIAL statement
following the first two ACCESS statements.

For an example of how the ACCESS statement influences the generated PATH procedure,
see (p. 333).

When retrieving records, the ORDERED option ensures that if you specify a LAST_NAME value,
and a generic FIRST_NAME value, the records will be displayed for a particular LAST_NAME in
order of FIRST_NAME.

The following example illustrates how to use the ORDERED option to control the order that
QUICK will display data records in. When retrieving records, the ORDERED option ensures that
if you specify a LAST_NAME value, and a generic FIRST_NAME value, the records will be
displayed for a particular LAST_NAME in order of FIRST_NAME.
> SCREEN EMPLOYEE_DISPLAY
>
> FILE EMPLOYEES IN EMPL_DB PRIMARY OCCURS 4
> ACCESS VIA EMPLOYEE &
> REQUEST EMPLOYEE
> ACCESS VIA LAST_NAME, FIRST_NAME ORDERED &
> REQUEST LAST_NAME, FIRST_NAME
> ACCESS SEQUENTIAL
> TITLE &
> " EMPL. NO SURNAME FIRST NAME START DATE"
> CLUSTER OCCURS WITH EMPLOYEES
> ALIGN (1,,4) (,,16) (,,30) (,,53)
> CLUSTER OCCURS WITH EMPLOYEES
> FIELD EMPLOYEE OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD FIRST_NAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD LAST_NAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD DATE_JOINED OF EMPLOYEES REQUIRED NOCHANGE
> BUILD

70 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ACTIONMENU

ACTIONMENU
Specifies the action taken by an Action bar item.

Syntax
ACTIONMENU [option]...

Options
The options are ACTION, LABEL, MENUKEY and NOMENUKEY.

ACTION conditional-command-list

Specifies what command(s) the Action bar item executes and, optionally, under what conditions.

The general form of the conditional command list is:
command-list [IF condition

[ELSE command-list IF condition]...
[ELSE command-list]]

command-list
One or more commands separated by commas. The general form of a command list is:
command [, command]...

For a list of the available commands, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

condition
A condition is a logical test that has the general form:
[NOT] condition [AND|OR [NOT] condition]...

For more information about conditions or conditional command lists, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

LABEL string

Displays a specified string on the Action bar.

A string is a series of displayable characters (letters, numbers, or special characters) in double or
single quotation marks. The string is aligned to the left margin of the Action bar and separated
from any previous string by one space.

The Action bar always extends across the entire terminal window. Each ACTIONMENU
statement adds a new label that extends across the screen from left to right. One blank precedes
and follows each label.

By default, the Action bar is positioned on the same line as the first screen line. You can change
the position by using the ON LINE option of the ACTIONBAR screen option.

Default: If no LABEL is specified, QUICK provides a default label of 5 spaces.

{MENUKEY char}|NOMENUKEY

MENUKEY assigns a short-cut menu key that users can press to select an Action bar item when
they're in the Action bar. MENUKEY overrides default menu keys applied by the MENUKEYS
option of the SET statement.

The menu key character should be unique among all the items in the Action bar. If the menu key
character is not a character in the item label, then it is displayed in brackets at the end of the label.

Limit: The character can be an uppercase letter, a lowercase letter, or a number, but not a special
character.

NOMENUKEY ensures that no menu key is assigned to an Action bar item, even if the
MENUKEYS option of the SET statement is used.

Chapter 3: QDESIGN Statements
ACTIONMENU

QDESIGN Reference 71

Menu keys are highlighted with an underline by default. You can change the highlighting by using
the HILITE statement.

For more information about adding and customizing menu keys for your menu-driven QUICK
screens, see (p. 147), (p. 164), and (p. 199).

Discussion
The ACTIONMENU statement is part of the screen section of your screen design. The
ACTIONMENU statement, together with the MENUITEM statement and ACTIONBAR option
of the SCREEN statement, enable Action bar definition. By including a Return action in the
ACTIONBAR, you can leave the screen. For more information, see Chapter 2, "QUICK User
Interface".

Action Bars

An Action bar presents a list of QUICK actions or menus in a menu bar that extends across the
terminal window. You can invoke an Action command by selecting the appropriate entry in the
Action bar or pull down menu as an alternative to entering the action at the Action field prompt.

With an Action bar, you can associate commands with a more descriptive label, and also show all
the commands that are available to the user.

Adding an Action Bar to Your Screen Design

To create an Action bar:
1. Specify the ACTIONBAR option of the SCREEN statement.
2. Use the ACTIONMENU statement to define the menus and actions you want to place on the

Action bar.
3. Use the MENUITEM statement to define the actions for each menu to be pulled down from

the Action bar.

Action Bar Menus and Actions

The Action bar can contain both menus and actions. To specify a menu, enter the
ACTIONMENU statement without indicating an action option, as in
> ACTIONMENU LABEL "EMPLOYEES"

To specify the action that's performed, use the ACTION option, as in
> ACTIONMENU LABEL "CREATE" ACTION ENTRY

You can specify any QUICK Action command as an ACTION option. If the action requires an
ID-number or ID-number range as a parameter, you can specify these explicitly or you can obtain
the ID-numbers at run time by using the MARK or PROMPT options, as in
> ACTIONMENU LABEL "PROMPT FOR ID" ACTION ID PROMPT
> ACTIONMENU LABEL "MARK" ACTION ID MARK

If you specify PROMPT, QUICK prompts you for ID-number values with a prompt box. If you
specify MARK, QUICK determines the value from the current FIELDMARK setting. If there is no
current MARK and MARK has been specified, QUICK prompts for the ID-numbers.

If you don't want your Action bar to have pull-down menus, exclude MENUITEM statements
from your design statements. Instead, you can specify Action commands in the Action bar.

But if you want to specify a pull-down menu, enter MENUITEM statements after the
corresponding ACTIONMENU statement, as in:
> ACTIONMENU LABEL "EMPLOYEES"
> MENUITEM LABEL "LOCATE" ACTION FIND
> MENUITEM LABEL "NEW" ACTION ENTRY

If you specify MENUITEM statements following the ACTIONMENU statement, QDESIGN
constructs a menu that appears to "pull down" from the Action bar when the Action menu is
selected.

72 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ACTIONMENU

Each MENUITEM statement creates a new entry on the menu. The menu can accommodate any
size label and any number of items: the menu border adjusts to accommodate the largest menu
label, and the menu scrolls to fit the number of menu items.

Generally, menus pull down from the Action bar; that is, they appear below the corresponding
Action menu on the Action bar. However, if you specify that the Action bar appear on the last
three lines of the terminal, the menus pop up above the Action bar.

Action Bars and Action Fields

You can specify that both an Action bar and an Action field appear on a screen. When the screen
runs, only one mode is active at a time, but you can switch between the two modes. This way, you
can make a limited set of commands available through an Action bar for the novice user but still
enable an Action field for the more experienced user.

If both the Action bar and Action field are available, the screen initially runs Action field
prompting mode by default. To specify that the Action bar should be the initial mode, add the
STARTUP option to the ACTIONBAR option of the SCREEN statement.

If the Action field and Action bar appear on the same line, only the current prompting mode is
visible. If they are not on the same line, both the Action bar and Action field are visible, but
QUICK only prompts you at the active mode.

Example
The statements in the following example create an Action bar complete with menu keys for each
ACTIONMENU item. When you select an option and enter the Accept command, or press a
menu key, QUICK executes the associated action.

The warning message means that since you've positioned the Action bar at the bottom of the
screen, and there's no room for drop-down menu items to drop down, they'll drop "up" instead.
However, since this screen has no MENUITEM statements, the message can be ignored.
> SCREEN POSITIONSMAINTENANCE &
> NOACTION &
> MODE AT 1,70 &
> FIELDMARK &
> MESSAGE ON LINE 23 &
> ACTIONBAR ON LINE 24
W Menus will appear on screen lines preceding ACTIONBAR line.
> ACTIONMENU LABEL "Enter" ACTION ENTRY &
> MENUKEY "E"
> ACTIONMENU LABEL "Find" ACTION FIND &
> MENUKEY "F"
> ACTIONMENU LABEL "Find Next" ACTION NEXT DATA &
> MENUKEY "N"
> ACTIONMENU LABEL "Delete" ACTION DELETE &
> MENUKEY "D"
> ACTIONMENU LABEL "Update" ACTION UPDATE &
> MENUKEY "U"
> ACTIONMENU LABEL "Screen Help" ACTION EXTENDED HELP &
> MENUKEY "H"
> ACTIONMENU LABEL "Quit" ACTION RETURN &
> MENUKEY "Q"
.
.
.

The resulting screen looks like this:

Chapter 3: QDESIGN Statements
ACTIONMENU

QDESIGN Reference 73

In the previous example, the ACTIONBAR option of the SCREEN statement specifies that the
POSITIONS_MAINTENANCE screen has an Action bar, and that the Action bar appears on line
24. Each ACTIONMENU statement defines the label that appears on the Action bar and the
corresponding Action command.

The statements in the next example create an Action bar with pull-down menus. When you select
one of the commands on the Action bar and press [Accept] QUICK presents you with another list
of commands. Move the highlight to the command you want and use the Accept command to
execute it.
> SCREEN ADDRESS_PULLDOWN &
> NOACTION &
> MODE AT 23,60 &
> ACTIONBAR ON LINE 1
>
> ACTIONMENU LABEL "Help" ACTION EXTENDED HELP
>
> ACTIONMENU LABEL "Search"
> MENUITEM LABEL "Next" ACTION NEXT DATA
> MENUITEM LABEL "Find" ACTION FIND
> MENUITEM LABEL "Select" ACTION SELECT
>
> ACTIONMENU LABEL "Update"
> MENUITEM LABEL "Stay" ACTION UPDATE STAY
> MENUITEM LABEL "Next" ACTION UPDATE NEXT
> MENUITEM LABEL "Return" ACTION UPDATE RETURN
> MENUITEM LABEL "Update" ACTION UPDATE
>
> ACTIONMENU LABEL "Exit" ACTION RETURN

74 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ALIGN

ALIGN
Changes the default positioning of objects on a screen.

Syntax
ALIGN [alignment-group]...

alignment-group

Sets the horizontal position of the ID-number, label, and data positions of subsequent fields. The
general form of an alignment group is:
([[ID] column1] [,[[LABEL] column2] [,[[DATA] column3]]])

The ID, LABEL, and DATA keywords are used only for documentation. As a result, the
specification for an alignment group can be shortened to:
([column1] [,[column2] [,[column3]]])

Limit: Column numbers can range from 1 to 131 (you must have a 132 column terminal to
successfully use column values greater than 80). There can be a maximum of 20 alignment groups.
An alignment group must contain at least one number.

Default alignment: (ID 1, LABEL 4, DATA 21) or (1,4,21)

Discussion
The ALIGN statement is part of the layout section of your screen design. It governs the default
positioning of everything that follows it in the screen design until either another ALIGN statement
or the end of the layout section is encountered. The first entity positioned after an ALIGN
statement is positioned at the start of the first alignment group.

Suppressing Field ID-Numbers and Labels

You can suppress the LABEL or DATA portions of a field by omitting column numbers in an
alignment group. To omit a column number in an alignment group, include commas to delimit the
omissions.

For example, the statement
> ALIGN (,,25)

suppresses the display of both ID-numbers and labels for all fields that follow, and positions the
DATA portion of the fields in column 25.

Similarly, the statement
> ALIGN (12,,15)

sets just the ID and DATA portions of the alignment group, but the statement
> ALIGN (12,15,30)

sets the ID, LABEL, and DATA portions.

If the ID-number is suppressed, the ID SAME option is assumed. If the LABEL is suppressed, the
NOLABEL option is assumed.

Specifying the ALIGN statement without options resets the alignment to the default values.

Using Multiple Alignment Groups

With multiple alignment groups, fields are positioned from left to right across the screen until all
groups are filled. Once a line is filled, fields are positioned from left to right on the next line.

Other Positioning Attributes

The ALIGN statement doesn't override specific positioning (specified with the AT option) in
COMMAND, FIELD, SUBSCREEN, and TITLE statements. An alignment group is only used to
fill in positions that are not specified.

Chapter 3: QDESIGN Statements
ALIGN

QDESIGN Reference 75

Although it is possible to use the ID, LABEL, and DATA options on the FIELD statement, the
ALIGN statement is easier to change.

Example
The following example shows you how to position fields using the ALIGN statement. In this
example:
• The first ALIGN statement suppresses the ID of the fields.
• The second ALIGN statement includes the ID, label, and data.
• The third ALIGN statement suppresses the labels from the fields.

The QUICK screen defined by the following statements re-creates the alignment that's found in an
employee skills profile.
> SCREEN NEWEMP &
> MODE AT 1, 70 FIELDMARK &
> MESSAGE ON LINE 23 ACTIONBAR ON LINE 2
> ACTIONMENU LABEL "next" ACTION NEXT DATA
> ACTIONMENU LABEL "delete" ACTION DELETE
> ACTIONMENU LABEL "edit" ACTION FIELDMARK
> ACTIONMENU LABEL "entry" ACTION ENTRY
> ACTIONMENU LABEL "find" ACTION FIND
> ACTIONMENU LABEL "select" ACTION SELECT
> ACTIONMENU LABEL "update" ACTION UPDATE
> ACTIONMENU LABEL "quit" ACTION RETURN
>
> FILE EMPLOY1 PRIMARY
> FILE SKILLS DETAIL OCCURS 5
> TITLE "Employment And Skills Information" AT ,25
> SKIP 2
> ALIGN (,1,15)
> FIELD EMPLOYEE OF EMPLOY1 REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOY1
> FIELD LASTNAME OF EMPLOY1 REQUIRED NOCHANGE
> FIELD FIRSTNAME OF EMPLOY1
> SKIP TO LINE 8
> TITLE "Employment Info" AT ,5
> DRAW FROM 9,5 TO 9,20
> SKIP 2
> ALIGN (1,5,20)
> FIELD JOINEDYEAR OF EMPLOY1
> FIELD JOINEDMONTH OF EMPLOY1
> FIELD JOINEDDAY OF EMPLOY1
> FIELD DATELEFT OF EMPLOY1
> FIELD BRANCH OF EMPLOY1 REQUIRED NOCHANGE
> FIELD DIVISION OF EMPLOY1 REQUIRED NOCHANGE
> FIELD POSITION OF EMPLOY1 REQUIRED NOCHANGE
> FIELD DATEAPPOINTED OF EMPLOY1
> FIELD NOOFAPPTS OF EMPLOY1
> SKIP TO LINE 8
>
> TITLE "Skills" AT ,53
> DRAW FROM 9,53 TO 9,58
> SKIP 2
>
> ALIGN (50,,55)
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILL OF SKILLS
> CLUSTER

76 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
BUILD

BUILD
Compiles the current screen design, optionally listing generated procedures.

Syntax
BUILD [DETAIL|NODETAIL] [LIST|NOLIST]

DETAIL|NODETAIL

DETAIL writes the procedures that are generated by this design to the temporary source statement
save file. NODETAIL doesn't. The save file is QKSAVE (MPE/iX) or qksave.qks (OpenVMS,
UNIX, Windows).

Default: NODETAIL

LIST|NOLIST

LIST lists the procedures generated by this design; NOLIST doesn't.

Default: NOLIST

Discussion
The BUILD statement completes the screen design and performs the following steps:
1. Constructs the required default procedures.
2. Saves the compiled screen in a file named in the SCREEN statement.
3. If accessing an ALLBASE/SQL database, constructs and compiles SQL statements.
4. Displays a visual representation of the screen's layout (unless SET NOLIST LAYOUT is in

effect).

Implicit Screen Building with the GO Statement

If a screen is executed using the GO statement, the DETAIL, LIST, NODETAIL, and NOLIST
options are not valid on a subsequent BUILD statement for the screen. QDESIGN can't write or
list the procedures since they have already been generated by a GO statement and are not
regenerated by the BUILD statement.

Example
This example uses the LIST and DETAIL options to display and save the procedures that are
generated by the screen design. In this example, when the BUILD LIST DETAIL statement is
entered, QDESIGN generates procedural code that can then be saved in the source file.
> SCREEN SKILLMNT
>
> FILE SKILLS PRIMARY
>
> FILE SKILLDT DETAIL OCCURS 10
>
> FIELD EMPLOYEE OF SKILLS REQUIRED NOCHANGE
> FIELD SKILL OF SKILLS REQUIRED NOCHANGE
> CLUSTER OCCURS WITH SKILLDT
> FIELD SKILLDESC OF SKILLDT
> CLUSTER
> BUILD LIST DETAIL
>
>
> PROCEDURE APPEND
> BEGIN
> ACCEPT SKILLDESC OF SKILLDT
> END
> PROCEDURE ENTRY
> BEGIN

Chapter 3: QDESIGN Statements
BUILD

QDESIGN Reference 77

> ACCEPT EMPLOYEE OF SKILLS
> ACCEPT SKILL OF SKILLS
> FOR SKILLDT
> BEGIN
> PERFORM APPEND
> END
> END
> PROCEDURE PATH
> BEGIN
.
.
.

78 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
CANCEL

CANCEL
Cancels the screen design specifications.

Syntax
CANCEL [CLEAR]

CLEAR

Removes any source statements in the temporary source statement save file once the screen design
specifications are canceled. The CANCEL statement doesn't clear the source statement save file
unless you include the CLEAR option.

The save file is QKSAVE (MPE/iX) or qksave.qks (OpenVMS, UNIX, Windows).

Limit: The CANCEL statement doesn't cancel SET statement options.

Discussion

Clearing the Source Statement Save File

The CLEAR option of the CANCEL statement ensures that erroneous statements are not saved in
the temporary save file. This is important when saving source code to permanent files. Using the
SAVE statement saves the entire temporary save file. If this file isn't cleared by the CLEAR option
of the CANCEL statement, all statements entered (including those with errors) are saved.

Example
This example shows how the CANCEL statement is used to correct errors in design statements.
> SCREEN NEWORD
>
> FILE SKILLS PRIMRY
 ^^^^^^
E Expected: @ . IN <eol> OCCURS NEED PRIMARY SECONDARY DETAIL MASTER DESIGNER
DELETE REFERENCE AUDIT ALIAS NOAPPEND AUTOCOMMIT NODELETE OPEN MYVIEW NOITEMS
CLOSE COUNT CACHE TRANSACTION GLOBAL

Screen designers commonly forget to clear QDESIGN's temporary save file, qksave. All statements
before the CANCEL CLEAR are purged from QDESIGN's temporary save file. The SAVE
statement saves all statements entered since the CANCEL CLEAR and copies everything in
QDESIGN's temporary save file to a permanent file called, in this example, NEWORDS.
> CANCEL CLEAR
>
> SCREEN NEWORD
>
> FILE SKILLS PRIMARY
> GENERATE NOLIST NODETAIL
>
> SAVE NEWORDS

Chapter 3: QDESIGN Statements
CLUSTER

QDESIGN Reference 79

CLUSTER
Groups a set of screen entities.

Syntax
CLUSTER [option]...

Options

AT [line],column

Positions the first occurrence of the cluster at the specified line and column on the screen. If the
line is missing, the current line is assumed. The starting column establishes the upper left-hand
corner of the cluster boundary.

BLOCK EACH|ALL

Specifies how QDESIGN generates BLOCK TRANSFER constructs in the default procedures for
fields within a cluster occurrence.

BLOCK EACH treats each cluster occurrence as a distinct block of information. The fields within
each occurrence are treated as a single block of information. BLOCK ALL treats all of the cluster
occurrences as a single block of information.

For screens with the PANEL option, if neither BLOCK EACH nor BLOCK ALL is specified, then
a single BLOCK TRANSFER control structure is generated for the entire screen in the default
procedures. QUICK processes the cluster (for Panel input) as though a BLOCK ALL option were
present. For more information, see (p. 372).

Default: When no BLOCK option is specified on the CLUSTER statement, a panel input screen
treats the cluster as if a BLOCK ALL option was included.

Limits: Valid only when the PANEL option is specified for either the SET or SCREEN statement.

FOR [lines],[columns]

Establishes the boundaries for one occurrence of the cluster in lines and columns.

Default: Without the FOR option, QDESIGN assigns a width equal to the screen width, and the
number of lines occupied by the cluster for the length.

HIDDEN

Suppresses the screen ID display, but lets the user reference the field by ID-number.

ID [BASE m] [INCREMENT m] [AT [line],column]
ID n [AT [line],column]
ID NEXT [AT [line],column]
NOID

Control the manner in which QDESIGN assigns ID-numbers to cluster occurrences.

ID [BASE m] [INCREMENT n]
Sets the starting field ID-number in the first occurrence of the cluster to m. Optionally, the starting
field ID-number in lines and subsequent occurrences can be incremented by n. One of the options
must be specified. ID and NOID are mutually exclusive.

CLUSTER Options

AT BLOCK EACH|ALL FOR

HIDDEN ID|NOID MARK|NOMARK

OCCURS VERTICAL

80 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
CLUSTER

Limit: 1 to 99

ID n
Groups all occurrences of the cluster under the common ID-number specified by the value of n.

Limit: 1 to 99

ID NEXT
Groups all occurrences of the cluster under the next available ID-number.

AT [line], column
Positions the first digit of the ID-number at the specified line and column relative to the starting
line of the screen. If the line isn't specified, the current line is assumed.

NOID
Specifies that none of the components of the cluster have ID-numbers assigned to them and can't
be referenced from the Action field.

MARK|NOMARK

MARK enables fieldmarking for a cluster with an ID-number.

NOMARK disables the default fieldmarking for a cluster with an ID-number when fieldmarking
is enabled.

OCCURS n
OCCURS WITH record-structure|item

Controls how many occurrences of the cluster appear on the QUICK screen.

n
Repeats the cluster a specified number (n) of times.

Limit: 1 to 255

WITH record-structure|item
Repeats the cluster as many times as the named record-structure or item.

In this case, QDESIGN uses the number specified for the OCCURS option of the corresponding
FILE statement.

The general term item specifies the name of either a record item or temporary item. If a record
item is named, QDESIGN uses the number specified for the OCCURS option of the ITEM
statement in the data dictionary. If a temporary item is named, QDESIGN uses the number
specified for the OCCURS option of the TEMPORARY statement.

The OCCURS WITH option functions differently from the OCCURS n option even if the number
of occurrences is the same. The OCCURS n option always processes n occurrences, but the
OCCURS WITH option processes only currently active occurrences of the specified file.

VERTICAL

Numbers the clusters from top-to-bottom (starting with the upper left-hand cluster) rather than
from left-to-right.

Discussion
The CLUSTER statement is part of the layout section of your screen design. The CLUSTER
statement groups sets of screen entities, including
• fields (including field labels and ID-numbers)
• titles and other screen literals
• statements that control screen layout, such as the SKIP and ALIGN statements

Chapter 3: QDESIGN Statements
CLUSTER

QDESIGN Reference 81

• SUBSCREEN and COMMAND statements
• lines created with the DRAW statement

As part of the screen layout section, you can use clusters to repeat groups of entities in a screen
design.

Grouping Fields on a QUICK Screen

When you include a CLUSTER statement with no options in your screen design, the fields in the
resulting cluster don't repeat. A cluster with no options doesn't change the current cursor position
and is ended by a subsequent CLUSTER statement.

A CLUSTER statement with no options allows you to use the DRAW statement and screen layout
options, such as SKIP and ALIGN, on specific groups of fields, uninhibited by the limits normally
imposed by CLUSTER statement options.

Using the SKIP Statement Within a Cluster

You can use a SKIP statement to establish the starting line of a cluster, but you must enter the SKIP
statement before the CLUSTER statement, as in
> SKIP TO 7
> CLUSTER OCCURS WITH BRANCHES

If a SKIP statement follows a CLUSTER statement, QDESIGN considers it to be one of the layout
statements in the cluster. You can use this feature to insert blank lines between cluster occurrences.

You can't position a cluster with a SKIP TO statement that references a line before the current
cursor position (unless you are in a cluster with no options).

Cluster Facts

Clusters follow these principles:
• All entities defined in statements and included between the CLUSTER statement and the next

CLUSTER statement (or the end of the layout section) are part of the cluster.
• Entities defined in statements that lie outside the cluster definition are not part of the cluster.
• When a statement is outside the cluster, but places an entity within the cluster boundaries, the

entity isn't repeated with the cluster.
• QDESIGN issues an error if a screen entity is defined within the cluster, but the statement

declaring the entity places it outside the cluster boundary.
• By default, all fields within a given cluster boundary are treated as a single block. Fields

within blocks are delimited by the BLOCK TRANSFER control structure in QDESIGN's
generated procedures.

• Clusters can't be nested. If you want to show repeating items within a record-structure, you
can only include the record-structure once in the screen design.

• The space that the cluster occupies on the screen defines the cluster size. The cluster size
defines the boundary of one occurrence of the cluster.

ID-Numbers for Cluster Occurrences

If no ID-number is specified, an ID-number is assigned to each component of the cluster in the
same way that the ID-numbers are assigned to other design entities. If a NOID, ID n, or ID NEXT
option is used, all layout statements within the cluster are assumed to have the same ID-number.

Side-by-Side Clusters

You can create side-by-side clusters by using the ALIGN statement and the CLUSTER statement
together. The ALIGN statement sets up alignment groups that QDESIGN uses when creating
clusters, if the entities in the clusters can fit within the boundaries of the alignment group.

Examples
The following examples illustrate how QDESIGN uses CLUSTER statements to group fields
together.

82 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
CLUSTER

Using the CLUSTER Statement for a Repeating Primary Record-structure

In this example:
• OCCURS WITH builds a cluster based on the items in the STOCKS record-structure.
• FOR causes the cluster to occupy 7 rows and 40 columns.
> SCREEN STOCK
>
> FILE STOCKS OCCURS 4
>
> HILITE DATA INVERSE
> HILITE TITLE INVERSE
> TITLE "Stocks Information" CENTERED
> SKIP 2
>
> CLUSTER OCCURS WITH STOCKS FOR 7,40 VERTICAL
> FIELD STOCKNUM OF STOCKS REQUIRED NOCHANGE
> LOOKUP NOTON STOCKS
> FIELD EMPLOYEE OF STOCKS
> FIELD STOCKCOUNT OF STOCKS
> FIELD DISCPCT OF STOCKS
> FIELD STOCKCOST OF STOCKS
>
> SKIP 2
> CLUSTER

The resulting screen looks like this:

Using the CLUSTER Statement for Repeating Items

Group repeating fields on a screen by preceding the FIELD statement for that item with the
CLUSTER OCCURS WITH item statement. Clustered items must be defined in the data
dictionary as having more than one occurrence.

In this example, MONTHLYGROSS repeats 12 times (once a month) in the record SALES.
> SCREEN SALE
>
> FILE SALES
>
> TITLE "Gross Sales by Month" CENTERED
> SKIP 2
>
> ALIGN (ID 23, LABEL 26, DATA 41)
> FIELD EMPLOYEE OF SALES REQUIRED NOCHANGE &
> LOOKUP NOTON SALES
> SKIP TO 5
> CLUSTER OCCURS WITH MONTHLYGROSS OF SALES AT 7,1
> FIELD MONTHLYGROSS OF SALES NOLABEL

Chapter 3: QDESIGN Statements
CLUSTER

QDESIGN Reference 83

> CLUSTER
> TITLE "Monthly Sales" at 6,33
> TITLE "JAN" AT 7,29
> TITLE "FEB" AT 8,29
> TITLE "MAR" AT 9,29
> TITLE "APR" AT 10,29
> TITLE "MAY" AT 11,29
> TITLE "JUN" AT 12,29
> TITLE "JUL" AT 13,29
> TITLE "AUG" AT 14,29
> TITLE "SEP" AT 15,29
> TITLE "OCT" AT 16,29
> TITLE "NOV" AT 17,29
> TITLE "DEC" AT 18,29
> SKIP 1
> ALIGN (23,29,41)
> FIELD TOTALSALES OF SALES

The resulting screen looks like this:

84 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
COMMAND

COMMAND
Executes an operating system command or runs a program.

Syntax
COMMAND string|item [option]...

string|item

Specifies the command to execute. The command can be represented either by a string or a
character-type item.

Limit: 255 COMMAND statements per QUICK screen.

Options

AUTO

Invokes the named command automatically when the standard entry sequence reaches this
statement, if the ENTRY procedure was generated by QDESIGN.

CLEAR option

Clears an area of the terminal memory before invoking the command. Any output to the terminal
from the command appears starting on the first line of the cleared area. Lines cleared are refreshed
automatically when the screen is reactivated and QUICK is ready to prompt the user. If multiple
COMMAND, REPORT, or RUN statements are combined with ID SAME, the area cleared is
refreshed after the last statement in the chain has completed execution and QUICK is ready to
prompt the user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINES n by itself clears line n only.

HIDDEN

Suppresses the screen ID display, but lets the user reference a field by ID-number in MARK mode.

ID n [AT [line],column]
ID NEXT [AT [line],column]
ID SAME
NOID

Control how and where QUICK screen field ID-numbers are assigned.

COMMAND Options

AUTO CLEAR HIDDEN

ID|NOID [ENTRY] IF INPUT B|C|SAME

LABEL|NOLABEL MARK|NOMARK NOCONSOLE

NOWARN ON ERROR REFRESH

RESPONSE WAIT|NOWAIT

Chapter 3: QDESIGN Statements
COMMAND

QDESIGN Reference 85

ID n
Explicitly specifies an ID-number.

Limit: 1 to 99

ID NEXT
Uses the next ID-number in sequence.

AT [line],column
Positions the first digit of the ID-number at the specified line and column relative to the starting
line of the screen. If the line is missing, the current line is assumed.

ID SAME
Instructs QDESIGN to omit the ID-number on the command. To execute the command, use the
ID-number of the previous field.

NOID
States that no ID-number is assigned to this command and the command can't be referenced from
the Action field.

[ENTRY] IF condition

Invokes the specified command in the standard entry sequence only if this condition is satisfied.
QDESIGN generates an identical IF condition in the default ENTRY procedure.

For more information about conditions in PowerHouse, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

Limit: The IF option is evaluated only during the standard entry sequence; otherwise, it is ignored.

Default: If the condition is satisfied, AUTO is assumed.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing the command. The terminal is put
back into the original mode after completion of the command.

Default: The mode it was in before QUICK was invoked.

B
Puts the terminal in Block mode. This should only be used for commands that must run in Block
mode.

C
Puts the terminal in Character mode.

SAME
Leaves the terminal in the current input mode. If the screen has Block mode capability, this option
should only be used for commands that do not write to the terminal.

LABEL [string] [AT [line],column] | NOLABEL

Declares the label and its position.

[string] [AT [line],column]
Indicates the command label and, optionally, the position of the label on the screen.

The AT option positions the first character of the label at the specified line and column relative to
the starting line of the screen. If the line isn't specified, the current line is assumed.

Default: The item name or the first word in the COMMAND string.

86 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
COMMAND

NOLABEL
Specifies that no label is to appear for the command.

MARK|NOMARK

MARK enables fieldmarking for a command with an ID-number.

NOMARK disables the default fieldmarking for a command with an ID-number when
fieldmarking is enabled.

NOCONSOLE (Windows)

Suppresses opening a Command Console window. Normally QUICK opens a second Command
Console window to run the command. If the command runs in the background, does not require
user input, or does not display useful output, the second command console window may not be
necessary.

NOWARN

Specifies that operating system warning messages issued during the execution of the command
should not be displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if an operating system error occurs during the execution of a
command. If TERMINATE is in effect, an operating system error causes QUICK to process the
error as it would for an ERROR verb. If CONTINUE is specified, an operating system error is
ignored and processing continues as if the error had not occurred.

For information on the ERROR verb, see (p. 420).

Default: TERMINATE

REFRESH option

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINES n alone refreshes line n only.

RESPONSE

Prompts the QUICK user for a response after the command has executed. QUICK resumes
processing after the user responds, preventing the screen from being refreshed immediately.

WAIT|NOWAIT (Windows)

The WAIT option instructs QUICK to suspend current screen processing until the command has
executed, at which time control returns to the screen. The NOWAIT option specifies that screen
processing continues immediately and the command executes concurrently.

Default: NOWAIT

Chapter 3: QDESIGN Statements
COMMAND

QDESIGN Reference 87

Discussion
The COMMAND statement is part of the layout section of the screen design. It makes a program
or an operating system command (which can execute a program) available to the QUICK screen
user.

As in the FIELD and SUBSCREEN statements, the operating system command can be labeled and
given a position and ID-number on the screen.

The noosaccess and nodcl (OpenVMS) program parameters have no affect on the COMMAND
statement. That is, you will not be prevented from executing an operating system command or
running a program using the COMMAND statement even if QUICK has been invoked using
noosaccess or nodcl.

UNIX, Windows: The command runs in a subprocess from the main QUICK process, however it
starts a separate shell (UNIX) or command (Windows). Hence the results of a setenv (UNIX) or
set (Windows) command will not be accessible from QUICK or any later commands. For this, use
the SETSYSTEMVAL function.

OpenVMS: The notrusted program parameter will disable the use of the COMMAND statement
and cause an error to occur if one is executed.

Example
The following example creates a menu screen that gives a screen user an option for generating
summary reports in QUIZ from within a QUICK screen using the COMMAND statement. The
auto program parameter tells QUIZ which report to run.
> SCREEN PERMENU MENU
> DRAW FROM 3,13 TO 7,67
> SKIP TO 4
> TITLE "Future Industries" CENTERED
> SKIP TO 6
> TITLE "Personnel System - Main Menu" CENTERED
>
> SUBSCREEN STAFF LABEL "Staff Screen"
> SUBSCREEN PROJEC LABEL "Projects Screen"
> SUBSCREEN BRNCHS LABEL "Branches Maintenance"
> SUBSCREEN DIVISNS LABEL "Positions Maintenance"
>
> COMMAND 'quiz auto=staff' LABEL &
> "Report Staff by Project"
> BUILD

88 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
CURSOR

CURSOR
Identifies and describes how a cursor, table, or view is used by the screen.

Syntax
CURSOR cursor-name|tablespec [sql-substitution...] [option]...

Limit: A maximum of 31 files, record-structures, and cursors can be declared in a screen design.
There can be a maximum of 1023 columns per cursor.

cursor-name

The name of a cursor defined by the PowerHouse SQL DECLARE CURSOR statement.

tablespec

The name of a table or view declared in a relational database.

The general syntax for tablespec is:

For Oracle, the syntax is:
[owner-name.]table-name[@database-linkname]

If the database-linkname is included, it is treated as part of the table-name, and double quotes are
required. For example,
manager."billings_tbl@dblnk01"

Oracle synonyms may be used for table-names. For more information about how PowerHouse
uses Oracle synonyms, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules
book.

sql-substitution

An sql-substitution can be specified for any substitution variable defined on the DECLARE
CURSOR statement. Two default substitutions, WHERE and ORDERBY, will be inserted in
generated SQL statements even if the corresponding substitution-variables do not exist on a
DECLARE CURSOR statement.

The syntax for an sql-substitution is:
substitution-variable (text)

Limit: Any sql-substitution must appear before any other options.

For more information, see Chapter 1, "About PowerHouse and Relational Databases", in the
PowerHouse and Relational Databases book.

Options

MPE/iX,
OpenVMS:

[owner.]table-name [IN database]

UNIX,
Windows:

[[server-name.]database-name.] [owner-name.]table-name

If server-name is included in a Sybase tablespec, double quotes are required
for the server-name and database-name. For example,
"dbsvr01.accnt".manager.billings_tbl

CURSOR Options

type ALIAS AUTOCOMMIT

CACHE COUNT KEEP

Chapter 3: QDESIGN Statements
CURSOR

QDESIGN Reference 89

type

Specifies the relationship of the cursor to the screen and to other files and cursors on the screen.

Type must be one of:

Default: If no type is given, PRIMARY is assumed, except for cursors that are included in the
receiving list of the SCREEN statement. Cursors that are passed from higher-level screens are
always assumed to be MASTER.

For detailed information about these types, see the FILE statement on (p. 126).

ALIAS name

Assigns an alternative name to the cursor. When a cursor is declared more than once in a screen
design, the ALIAS option assigns a unique identifier name for each declaration. Once the alias is
assigned, subsequent references to the cursor must use this name.

AUTOCOMMIT

Indicates that the transaction performing the retrieval from the reference file is automatically
committed after the retrieval is completed. Automatic retrievals include retrievals from lookups or
implicit retrievals of reference items for display.

Limit: Valid when type is REFERENCE only.

CACHE [n]

Specifies that QUICK is to maintain more primary or detail record buffers than can be displayed
on the screen. These record buffers may be accessed programmatically by the screen designer and
browsed by the screen user.

If you do not specify CACHE, the cache size is set to the number of occurrences as specified with
the OCCURS option for this record structure. If the OCCURS option is not used, the size of the
cache is set to one.

Limit: This option may only be used with either the primary record-structure or a detail
record-structure but not both.

n
Specifies the upper limit for the number of record buffers in the cache. If you are concerned that
the size of the record combined with the associated detail and secondary records will use excessive
memory, use this option to specify an upper limit.

If not specified, QUICK sets the size based on the current requirements and will grow dynamically
up to 255 record buffers.

The minimum size of the cache is the number specified on the OCCURS option. If this option is
not used, the minimum size is one.

Limit: 1 to 255

KEY NOAPPEND NODELETE

NOITEMS OCCURS OPEN

TRANSACTION

CURSOR Options

AUDIT [WITH record] DELETE DESIGNER

DETAIL MASTER PRIMARY

REFERENCE SECONDARY

90 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
CURSOR

COUNT [NEGATIVE] [INTO] [ITEM] item [,[NEGATIVE] [INTO]
[ITEM] item]...

Uses the named items to maintain a count of the data records entered into this file. The named
items should normally be in record structures in higher-level MASTER files, so the proper value is
maintained from one screen to the next.

The count is automatically incremented when data records are entered and reduced when data
records are deleted. For record structures in DELETE files, the count is decremented when the
record structure is actually updated (that is, when the PUT verb is executed). The NEGATIVE
option reverses these activities. INTO is used only for documentation.

Limit: The maximum number of items that can be counted into is 21.

KEEP [CURSOR]

This option is obsolete.

KEY column-name [,column-name]...

Allows you to identify a column or set of columns that uniquely identify a row in the table. All
column-names must be in the project-list of the cursor declaration.

If the KEY option is not specified, sequential access is used. A warning message is issued
indicating that there is no unique key available for re-retrieval. If there is no key available and a
row of the table is updated, the entire table will be updated.

NOAPPEND

Suppresses the automatic generation of the APPEND procedure and PERFORM APPEND verb
for a record structure in a repeating PRIMARY file. If this option is specified, Append processing
can't be used for the record structures in the repeating PRIMARY file.

Limit: Valid only for record structures in PRIMARY files.

NODELETE

Suppresses the automatic generation of a DELETE verb for this record structure in the DELETE
and DETAIL DELETE procedures.

NOITEMS

Doesn't generate automatic item initialization.

OCCURS n [TIMES]
OCCURS WITH [ITEM] item|[FILE]record

Repeats the data records on the screen.

n [TIMES]
Repeats the data records the specified number of times on the screen.

Limit: 1 to 255

WITH [ITEM] item|[FILE]record
Repeats the data records of this file as many times as the named data record or item repeats on the
screen.

OPEN [READ|UPDATE]

OPEN READ opens a data structure for read access only. OPEN UPDATE opens a data structure
for read and write access.

Chapter 3: QDESIGN Statements
CURSOR

QDESIGN Reference 91

TRANSACTION transaction_name [FOR {CONSISTENCY|
{[CONCURRENCY] phase-option[,phase-option]...}]...

Defines transactions used for relational data structures.

transaction_name
Any valid PowerHouse name.

FOR CONSISTENCY
Determines that a relational data structure is associated with a particular transaction in
Consistency model.

Limit: Only one transaction association can be specified.

FOR [CONCURRENCY] phase-option [,phase-option]...
Determines that the relational data structure is associated with a particular transaction or
transactions in Concurrency model.

Limit: Up to three transaction associations can be specified, one per phase.

phase-option

Specifies the screen phase with which the transaction is associated. The phase-options are:

By default, all relational data structures are associated as follows:

PROCESS The phase in which you are entering, correcting, or changing data records on
the screen.

QUERY The phase in which data is retrieved from the database.

UPDATE The phase in which data is updated.

Model Transaction Phase

Concurrency Query Query1

Update Process

Update Update

Optimistic Query Query2

Update Update3

Consistency Consistency Consistency

Dual Query Query

Update Process

Update Update

Consistency Consistency

92 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
CURSOR

For ALLBASE/SQL and Oracle, the Update transaction is used for all activities in the Concurrency
and Optimistic models.

Discussion
When using the CURSOR statement, generated procedural code includes SQL code. Relational
tables can be accessed through FILE statements but no corresponding SQL code is generated and
SQL can't be used.

When a CURSOR statement refers to a DECLARE CURSOR statement that defines a join,
QDESIGN only generates data manipulation commands in the UPDATE procedure for the first
table in the join. If it is not possible to determine what this table is (i.e. derived table), then you get
a syntax error.

Retrieval Assumptions for Cursors

If nothing else is specified, cursor retrieval is sequential. This is true regardless of the type of
cursor. In other words, there is no assumed linkage between cursors based on index segment name
matching, as there is for files. To relate one cursor to another (for example a DETAIL cursor to a
PRIMARY cursor), specify the retrieval criteria in the DECLARE CURSOR statement or include
an ACCESS statement.

Scrolling Records

The CACHE option specifies that QUICK creates a cache of record buffers to store retrieved and
entered data records. As data records are found, QUICK automatically moves data records in and
out of the cache. As the size of the cache may be larger than the number of occurrences displayed
on the screen (as controlled by the OCCURS n option), users may scroll backwards and forwards
through the cache, viewing previous data records that have been scrolled off the screen.

For a cached primary record structure, users can scroll backwards and forwards through primary
records retrieved by the FIND procedure. Scrolling is also supported for primary data records
entered by way of the ENTRY and APPEND procedures.

For a cached detail record structure, users can scroll backwards and forwards through the detail
records retrieved by the DETAIL FIND procedure associated with an individual primary record
structure. Scrolling is also available for detail records entered by way of the APPEND procedure.

For more information about cached records, see (p. 57).

Example
In the following example, the CURSOR statement describes the role of the EMPLOYEES table on
the screen. The table can be qualified with an ownername and the IN database option.
> SCREEN EMPC
> CURSOR OWNER.EMPLOYEES IN EMPBASE PRIMARY &
> KEY EMPLOYEE

In the next example, the WHERE substitution specified on the CURSOR statement is inserted in
the generated SQL SELECT even though a ::WHERE substitution-variable does not exist on the
cursor declaration. The code preceded by ___ is displayed when SET LIST SQL is used.
> SET LIST SQL
> SQL DECLARE EMPLIST CURSOR FOR &

1Note that for a screen allowing only the activity FIND, by default read-only data structures are
associated with the Query transaction for all phases.
2All "read" activities are associated with the transaction associated with the Query phase. By
default, this is the Query transaction.
3All "write" activities are associated with the transaction associated with the Update phase. By
default, this is the Update transaction.

Model Transaction Phase

Chapter 3: QDESIGN Statements
CURSOR

QDESIGN Reference 93

> SELECT EMPLOYEE, FIRST_NAME, LAST_NAME, &
> EMPLOYEES.BRANCH,BRANCH_NAME &
> FROM EMPLOYEES, BRANCHES
> SCREEN EMPBRANCHC
> CURSOR EMPLIST &
> WHERE (EMPLOYEES.BRANCH = BRANCHES.BRANCH) &
> PRIMARY KEY EMPLOYEE
> __ Sql after substitutions are applied:
__ SELECT EMPLOYEE, FIRST_NAME, LAST_NAME,
__ EMPLOYEES.BRANCH, BRANCHES.BRANCH,
__ BRANCH_NAME
__ FROM EMPLOYEES, BRANCHES
__ where EMPLOYEES.BRANCH = BRANCHES.BRANCH

94 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
[SQL] DECLARE CURSOR (query-specification)

[SQL] DECLARE CURSOR (query-specification)
Defines a set of data as a run-time view.

Syntax
[SQL[IN database]]

DECLARE name CURSOR FOR
query-specification [UNION [ALL] query-specification...]
[ORDER BY sort-specification]

IN database

Specifies the name PowerHouse uses to attach to the database. This is the name used to declare the
database in PDL.

DECLARE name

Defines a logical name used to identify the set of data resulting from the query.

Limit: The name must be unique within the scope of the cursor. For a description of a cursor's
scope, see (p. 94).

query-specification [UNION [ALL] query-specification...]

The query-specification defines a collection of rows that will be accessible when the cursor is
opened.

The ALL option on the UNION option indicates that redundant duplicate rows are retained;
otherwise, they are eliminated.

Parentheses are used in a union of three or more query specifications to enforce precedence in
eliminating duplicate rows in the unioned sets. For example, a union of the three
query-specifications X, Y and Z, must be written as (X UNION Y) UNION Z or X UNION (Y
UNION Z).

For more information, see (p. 169).

ORDER BY sort-specification

The sort-specification syntax is:
{columnspec|n} [ASC|DESC][,{columnspec|n} [ASC|DESC]]...]

The columnspec must identify a column of the project-list. The default sort order is ascending.

The integer refers to the position of the column in the project-list. In the following example, the
integer 2 refers to the derived column of averages.
> SQL DECLARE Y CURSOR &
> FOR SELECT SP.PNO, AVG(SP.QTY) &
> FROM SP &
> GROUP BY SP.PNO &
> ORDER BY 2

If the cursor definition involves a UNION, the sort specification may refer to column names if the
corresponding column names of each query specification are identical; otherwise, the sort
specification must reference an integer.

Discussion

The Scope of a Cursor

You may declare a cursor before the SCREEN statement or in the data definition section of a
screen.

A cursor defined before a SCREEN statement or between a CANCEL and a SCREEN statement is
accessible to all screens compiled during the QDESIGN session as long as no CANCEL statement
is encountered.

Chapter 3: QDESIGN Statements
[SQL] DECLARE CURSOR (query-specification)

QDESIGN Reference 95

A cursor defined after a SCREEN statement is valid until a BUILD or CANCEL statement is
encountered.

Example
> SQL IN EMPLOYEESDATABASE &
> DECLARE EMPSKILLS CURSOR FOR &
> SELECT EMPLOYEES.ID, EMPLOYEES.FIRSTNAME, &
> EMPLOYEES.LASTNAME, S.SKILL, &
> FROM EMPLOYEES, SKILLS S &
> WHERE EMPLOYEES.ID = S.ID &
> AND EMPLOYEES.ID IN &
> (SELECT ID FROM SELECTEDEMPLOYEES)

For more information about using cursors, see Chapter 1, "About PowerHouse and Relational
Databases", in the PowerHouse and Relational Databases book.

96 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
[SQL] DECLARE CURSOR(stored procedure)

[SQL] DECLARE CURSOR(stored procedure)
Calls a stored procedure or stored function from the specified database.

Syntax
[SQL [IN database]]

DECLARE name CURSOR FOR
CALL stored-procedure|stored-function

[([ITEM] item [IN [OUT]]|[OUT]
[,[ITEM] item [IN [OUT]]|[OUT]]...)]

[ON ERROR CONTINUE|TERMINATE]
[RETURNING return-parameter]
[[RESULT] SET item [,item]...]

IN database

Specifies against which database the stored procedure or function is executed.

Limit: Stored procedure calls are valid for DB2, ODBC, Oracle, Oracle Rdb (declared as TYPE
RDB in the dictionary), and Sybase databases.Stored function calls are valid only for Oracle
databases.

DECLARE name

Defines a logical name used to identify the set of data resulting from the stored procedure.

CALL stored-procedure|stored-function

The name of a stored procedure or stored function in the database.

The syntax for a procedure name varies with the RDBMS. For information on a specific database
system, see "Stored Procedures" in the PowerHouse and Relational Databases book.

([ITEM] item [IN [OUT]]|[OUT] [,[ITEM] item [IN [OUT]]|[OUT]]...)

Items which are passed to the stored procedure or Oracle stored function, or received from the
stored procedure. Input parameters can be temporary, defined, or record items. Output
parameters can be temporary or record items.

Blob items may also be used for both input and output parameters when calling an Oracle stored
procedure or stored function.

IN
Specifies that the item is an input parameter.

IN OUT
Specifies that the item is both an input and output parameter. The changed values of the
input/output parameters are available to PowerHouse when stored procedure execution is
complete.

OUT
Specifies that the item is an output parameter. The values of the output parameters are available to
PowerHouse when stored procedure execution is complete.

Default: IN

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if an SQL statement fails. If the TERMINATE option is in effect,
the SQL error causes QUICK to process the error as it would for an ERROR verb. If CONTINUE
is specified, the SQL error is ignored and the processing continues as if the error had not occurred.

For information on the ERROR verb, see (p. 420).

Default: TERMINATE

Chapter 3: QDESIGN Statements
[SQL] DECLARE CURSOR(stored procedure)

QDESIGN Reference 97

Limit: This option is valid only for Oracle, Oracle Rdb, and Sybase databases.

RETURNING return-parameter

The return-parameter must be defined as a temporary or record item.

For DB2, ODBC, and Sybase, identifies the item that contains the return status from a stored
procedure.

For Oracle, identifies the item that contains the value returned by a stored function upon
completion of the Oracle stored function.

Limit: Valid for Oracle stored functions but not valid for Oracle stored procedures. For Sybase,
the return-parameter must be defined as a 32-bit (4-byte) integer.

[RESULT] SET item [,item]...

The description of the result set returned from the stored procedure. Each item is defined using a
name, datatype and, optionally, its size:
name sql-datatype [(n)]

To identify the item datatypes that match your RDBMS datatypes, see "Relational PowerHouse
Datatypes" in the PowerHouse Rules book.

Limit: This option is valid only for DB2, ODBC, Oracle, and Sybase. Only one result set can be
returned from a stored procedure.

Discussion
Stored procedures and stored functions are collections of SQL statements and logic that are stored
in a database. Calls to stored procedures can take input parameters from a calling program, and
return values for output parameters to a calling program. A stored procedure in DB2, ODBC,
Oracle, or Sybase may also return result sets.PowerHouse supports a single result set per
execution of a stored procedure.

For information on stored procedures of specific database systems, see "Stored Procedures" in the
PowerHouse and Relational Databases book.

Examples
In the following example, the DECLARE CURSOR statement declares a cursor, EMPSKILLS, for
the stored procedure, SPEMPLOYEESKILLS, that returns a result set consisting of five items (ID,
FIRSTNAME, LASTNAME, SKILL, and SKILLLEVEL).
> SQL IN EMPLOYEESDATABASE &
> DECLARE EMPSKILLS CURSOR FOR &
> CALL SPEMPLOYEESKILLS(EMPLOYEEID IN, EMPCOUNT OUT) &
> RESULT SET ID DECIMAL, &
> FIRSTNAME VARCHAR(20), &
> LASTNAME VARCHAR(20), &
> SKILL CHARACTER(10), &
> SKILLLEVEL FLOAT

This example declares a cursor for the stored procedure spCheckPrice in an Oracle database.
> SQL IN PartsDb_ORCL DECLARE Part_Price CURSOR FOR &
> CALL spCheckPrice (PartNo int IN, Price int OUT)

98 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
DEFINE

DEFINE
Assigns a name to an expression.

Syntax
DEFINE name [type[*n] [type-option]]

[= conditional-expression|case-processing]

Limit: A maximum of 1023 defined and temporary items can be declared in a screen design.

name

Names the defined item.

You can give a defined item the same name as a record item in any of the record-structures on the
FILE statement.

Limit: Must begin with a letter and can't exceed 64 characters.

type[*n]

Establishes the physical format of the defined item.

For more information about items, datatypes, and sizes, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

Default: NUMERIC

*n
Specifies the number of characters or digits that can be entered in the defined item.

type-option

Indicates the set of options that further characterize the item datatype. The type options are
CENTURY, NUMERIC, SIGNED, UNSIGNED, and SIZE.

CENTURY INCLUDED|EXCLUDED
Indicates whether or not the date will contain a century prefix.

Limit: Valid for defined items of type DATE, JDATE and PHDATE.

Default: For DATE items, the default is determined by the SYSTEM OPTIONS statement in the
data dictionary. For PHDATE and JDATE items, the default is CENTURY EXCLUDED.

NUMERIC
Indicates the datatype ZONED is to have a type of ZONED NUMERIC rather than RIGHT
OVERPUNCHED NUMERIC.

Limit: Valid only for ZONED datatypes.

SIGNED|UNSIGNED
Indicates whether the datatypes INTEGER, PACKED, and ZONED are SIGNED or UNSIGNED.
When the SIGNED option is used with INTEGER, negative values can be stored. A datatype
INTEGER with the UNSIGNED option can't store negative values. The datatypes PACKED and
ZONED can store positive or negative numbers, whether or not the SIGNED or UNSIGNED
option is specified.

Limit: Valid only for INTEGER, PACKED, and ZONED datatypes.

Default: UNSIGNED for ZONED; SIGNED for INTEGER and PACKED.

SIZE m [BYTES]
Specifies a storage size in bytes.

Use the SIZE m BYTES option when the default size isn't the size that's required for the item.

Chapter 3: QDESIGN Statements
DEFINE

QDESIGN Reference 99

Limit: Not valid for datatype NUMERIC or G_FLOAT.

conditional-expression

Sets the value of the defined item based on a condition.

A DEFINE statement without a conditional-expression is used to receive defined items and the
expressions they represent from higher-level screens.

A conditional-expression specifies an expression that, when evaluated, results in the value of the
defined item. The expression is calculated every time the defined item name is referenced during
execution.

For more information about conditions in PowerHouse, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

case-processing

Compares the value of an item against a known value or series of values, and performs actions
based on the outcome of the comparison. The comparison is calculated once for every record
complex when the data to be evaluated is available. If there is a match, the resulting value is
assigned to the defined item. If there is no match, the specified default is assigned. If no default is
specified, zeros or spaces are assigned. The general form is
CASE [OF] item

WHEN value-set|EXISTS |NULL|MISSING
{THEN|:} value|NULL|MISSING

[WHEN value-set|EXISTS|NULL|MISSING
{THEN|:} value|NULL|MISSING]...

[DEFAULT value|NULL|MISSING]

When the defined item value is calculated based on the value of only one item, and those values
are known, case-processing is more efficient than a conditional expression.

A colon may be substituted for the THEN keyword. The OF keyword is optional and is for
documentation only. When the type of the defined item is character, the resulting value must be a
string enclosed in quotation marks, as in
> DEFINE PROJECTNAME CHARACTER*20 = &
> CASE OF PROJECTCODE &
> WHEN 1001 THEN "PRODUCTION" &
> WHEN 1002 THEN "PROMOTIONS" &
> DEFAULT "UNKNOWN"

When the type of the defined item is numeric or date, the resulting value must be numeric.

value-set

Specifies one or more values and/or one or more ranges of values. The general form is:
value [TO value][[,] value [TO value]]...

The values assigned to the defined item by the CASE option must be of the same type as the
defined item. For example, if you create the defined item PROJECT_NAME and specify that it is a
character-type item, you must assign a string to the item PROJECT_NAME:
> DEFINE PROJECT_NAME CHARACTER*20 &
> = CASE OF EMPLOYEES &
> WHEN 1001 THEN "PRODUCTION" &
> WHEN 1002 THEN "PROMOTIONS"

Limit: Case-processing and conditional-expressions cannot be used together in any combination.

Discussion
The DEFINE statement is part of the data section of a screen design. It allows you to dynamically
calculate the value of an expression. The expression is evaluated every time the defined-item name
is referenced during execution. You can include the DEFINE statement anywhere in the data
section, as long as it doesn't reference items that aren't yet declared. The defined item can be
declared as a display field which defaults to ID SAME.

100 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
DEFINE

Passing Defined Items between Screens

To pass a defined item to a lower-level screen, use a DEFINE statement without a
conditional-expression on that lower-level screen. Passing defined items allows you to access the
expression from a lower-level screen without having to redeclare it. If a type isn't specified, type
NUMERIC is assumed. The value obtained when the defined item name is referenced on the
lower-level screen is the result of the evaluation of the expression defined on the higher-level
screen.

Example
The following example uses the DEFINE statement to ensure that the proper invoice total is
entered into INVOICE data records. The DEFINE statement multiplies the value entered for
PRICE with the value entered for QUANTITY and then adds the TAX amount.
> SCREEN INVOICE
>
> FILE INVOICES OCCURS 9
> FILE STOCK REFERENCE
>
> DEFINE DOUBLECHECK NUMERIC*8 = &
> PRICE * QUANTITY + TAX
>
>
> SKIP 1
>
.
.
.
> CLUSTER OCCURS WITH INVOICES
> FIELD INVOICENO REQUIRED &
> NOCHANGE &
> LOOKUP NOTON INVOICES
> FIELD STOCKNO REQUIRED &
> LOOKUP ON STOCK
> FIELD PRICE REQUIRED
> FIELD QUANTITY REQUIRED
> FIELD TAX
> FIELD TOTAL REQUIRED
> FIELD DOUBLECHECK &
> PICTURE "^^^^.^^" &
> DISPLAY
> CLUSTER
>
> BUILD

Chapter 3: QDESIGN Statements
DESCRIPTION

QDESIGN Reference 101

DESCRIPTION
Provides a description of a screen or a field.

Syntax
DESCRIPTION [OF] SCREEN | {[FIELD] field} string [[,]string]...

[OF] SCREEN| {[FIELD] field}

Specifies a description for a specified entity.

[OF] SCREEN
Specifies that you're defining a description for the current QUICK screen design. The description
appears when the QUICK screen user enters the Extended help command (??) in the Action field
of that screen.

[OF] [FIELD] field
Specifies a description for the named field. The field description appears when the QUICK screen
user enters the Extended help command (??) while the cursor is positioned on that field.

Limit: The field must have been previously declared with a FIELD statement.

string [[,] string]...

Indicates a line or lines of descriptive text for the screen or field.

Limit: A combined maximum of 255 lines can be specified for descriptions and help messages in
each screen design.

Discussion
The DESCRIPTION statement can be used in both the data and layout sections of the screen
design.

The description is displayed when the QUICK user enters the Extended Help command (??).
(OpenVMS: ?? or GOLD/PF2)

Example
The following example illustrates how to add descriptions that serve as online documentation for
your QUICK screens. The description appears when the screen user enters ?? while the cursor is
positioned in the Action field.
> SCREEN MAINMENU MENU
> DESCRIPTION OF SCREEN &
> "The Future Industries Main Menu grants you ",&
> "access to order and invoice processing", &
> " screens, as well as to system maintenance",&
> " screens if you have the necessary" &,
> " application security class ", &
> " ", &
> "To access Order Processing, press 1", &
> "To access Invoice Processing, press 2", &
> "To access the Maintenance Menu, press 3"
.
.
.

102 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
DRAW

DRAW
Draws lines and boxes on a screen.

Syntax
DRAW [option] [FROM] line1 [,column1] [TO] [line2] [,column2]

Options
The DRAW options are char, DOUBLE, THICK, and THIN.

char|DOUBLE|THICK|THIN

The char option draws lines using the specified character to simulate line drawing.

A char is a single displayable character (a letter, number, or special character) enclosed in double
or single quotation marks.

Default: THIN

[FROM] line1 [,column1] [TO] [line2] [,column2]

Specifies box-drawing coordinates. The first set of coordinates is the upper left-hand corner of the
box. The second set of coordinates is the lower right-hand corner of the box.

If the FROM and TO line coordinates are identical, a horizontal line is drawn. If the two column
coordinates are identical, a vertical line is drawn. An error message is issued if both FROM and
TO coordinates are equal, or if the TO coordinates are less than the FROM coordinates.

If line drawing is not supported by the terminal used at run time, and if no line-drawing character
has been specified in QKGO, an asterisk (*) is used to simulate line drawing.

Default: Current line for the line; column 1 for the FROM coordinate; the last column of the
screen for the TO coordinate. QDESIGN issues errors if you overwrite existing fields, including
the Mode and Action fields and Action bars.

Discussion
The DRAW statement is part of the layout section of the screen design. It allows the QUICK
screen designer to specify line and box drawing.

The drawing coordinates are relative to the starting row and column of the current screen, and not
the first row and column of the terminal screen. The DRAW statement doesn't affect the current
line position.

The characters that are available for drawing lines and line connections are dependant on your
terminal or terminal emulator. On Windows, the characters are dependant on the font or code
page used by the Console window.

Fonts and Line Drawing (Windows)

You can apply numerous Windows fonts to a Console window. However, only fonts that have
both the ASCII character set and the ASCII extended character set should be used with QUICK.

The line drawing characters used by QUICK on Windows are part of the ASCII extended
character set. If the font used does not contain the ASCII extended character set, then proper line
drawing will not be possible or improper line drawing characters will be displayed.

For example, the font Lucida Console supports both the ASCII and the extended ASCII characters
set.

Example
The following example draws boxes around three main menu selections:
> SCREEN MAINMENU MENU &

Chapter 3: QDESIGN Statements
DRAW

QDESIGN Reference 103

> NOMODE &
> ACTION LABEL &
> "Enter a number to select an option: " &
> AT 1,33
>
> SKIP TO LINE 4
>
> TITLE "Main Menu" CENTERED
>
> SKIP TO LINE 8
>
> DRAW 8,10 TO 15,30
> DRAW 8,50 TO 15,70
> DRAW 16,25 TO 22,55
>
> SUBSCREEN ORDMAIN &
> NOLABEL &
> ID 1 AT 10,19
>
> SUBSCREEN INVMAIN &
> NOLABEL &
> ID 2 AT 10,59
>
> SUBSCREEN MAINT &
> NOLABEL &
> ID 3 AT 18,39
> TITLE "Order" AT 11,18
> TITLE "Invoice" AT 11,57
>
> TITLE "Processing" AT 12,16
> TITLE "Processing" AT 12,56
>
> TITLE "System" AT 19,38
> TITLE "Maintenance" AT 20,35
>
> BUILD

104 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
EXIT

EXIT
Ends a QDESIGN session.

Syntax
EXIT

Discussion
The EXIT statement ends your QDESIGN session and returns control to the operating system or
to the invoking program. The EXIT statement can be abbreviated E, EX, or EXI.

You can also use the QUIT statement to leave QDESIGN and return control to the operating
system or invoking program.

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 105

FIELD
Creates fields on the screen that correspond to items for data entry and display.

Syntax
FIELD item [option]...

Limit: A maximum of 255 fields can be declared in a screen design.

item

A location where PowerHouse can store data. An item is a record item declared in the data
dictionary, a defined item, a temporary item, or a predefined item. The general form of a record
item is:
item [OF record-structure]

The OF record-structure qualifier isn't valid for defined or temporary items.

Default: The ASSUMED record-structure. See the SET statement for a discussion of the
ASSUMED record-structure option

Options

ALLOW|NOALLOW CENTURY

Specifies that the user can enter a century on date fields even though only a two-digit year is
specified in the date format. The option applies to century-included date fields with a two-digit
year format.

When ALLOW CENTURY is specified, date fields become horizontal scrolling fields. The user can
then enter the date including the century in the same space as the date without the century. The
century is not displayed after input.

FIELD Options

ALLOW|NOALLOW AUTONEXT|NOAUTONEXT BWZ|NOBWZ

CENTURY CHARACTER|DATE|NUMERIC DATA AT

DEFAULT DISPLAY DOWNSHIFT|UPSHIFT|NOSHIFT

DUPLICATE [ENTRY] IF ERRORCALL|NOERRORCALL

FILL FIXED FLOAT

FOR FORCE|NOFORCE CENTURY FORMAT

HELP HIDDEN HILITE DISPLAY

ID|NOID INPUT LABEL|NOLABEL

LEADING LOOKUP MARK|NOMARK

NOCHANGE NOCORRECT NOECHO

NOENTRY NOFORMAT NORECALL

NOSELECT NULL VALUE NULLSEPARATOR|NONULLSEPARATOR

OMIT OUTPUT PATTERN

PICTURE POPUP PREDISPLAY

REFRESH REQUIRED REVERSE

RJ SELECTBOX SEPARATOR

SIGNIFICANCE SILENT SIZE

TRAILING VALUES

106 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

Default: To find out the active value of the option, you must look at the ELEMENT, the USAGE,
and the SYSTEM OPTIONS statements. If the option is unspecified on the FIELD statement, the
active value is taken from the ELEMENT statement. If the option is unspecified on the ELEMENT
statement or a related USAGE, the active value is taken from the SYSTEM OPTIONS statement.

Limit: If used on a non-date field, the field is treated as a date.

AUTONEXT [AUDIBLE]|NOAUTONEXT

Specifies how QUICK reacts when the input size of a field is reached.

AUTONEXT [AUDIBLE]
Instructs QUICK to move automatically to the next field when the input size of the field is
reached.

If the entry doesn't fill the field size (for example, if a date is entered without a separator), the
QUICK screen user must press [Return] to move to the next field.

AUDIBLE
Sounds a beep before moving to the next field when the field is filled.

NOAUTONEXT
Instructs QUICK not to move automatically to the next field when the input size of the field is
reached. When a field is full, the cursor remains on the last position of the field until the user
presses [Return].

Default: NOAUTONEXT

BWZ|NOBWZ

BWZ (blank when zero) indicates that the item is displayed as blanks if its value is 0.

NOBWZ indicates that a value of 0 for a numeric item is displayed as zero.

CENTURY INCLUDED|EXCLUDED

Specifies whether or not the century is to be stored in the item. This option forces a non-date field
to be processed as a date.

This option affects the storage of the item, not the display characteristics. Use FORMAT to specify
how a date field is to be displayed. The item must be defined with sufficient storage space for the
century (a minimum size of 8) if the INCLUDED option is used.

CHARACTER|DATE|NUMERIC

Processes the field as the type specified. The field type is normally determined by the item type, but
the two types may differ under the following circumstances:
• If you have specified CHARACTER, NUMERIC, or DATE on the FIELD statement, then the

field type assumes the specified field type, regardless of the item type.
• If a field is given a FORMAT or SEPARATOR option, the field type is assumed to be date,

regardless of the item type.
• If a field has a CENTURY option, it is assumed to be date, regardless of the item type.
• If a field is given any of the following numeric attributes then the field type is assumed to be

numeric, regardless of the item type.

ALLOW CENTURY BWZ

FILL FLOAT

FORCE CENTURY INPUT SCALE

LEADING SIGN NOBWZ

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 107

• If you specify character options on numeric fields, QUICK converts the item to type
CHARACTER.

Having field types that differ from item types allows standard editing of a type that is different
from that assumed for the item (such as checking for a date in a numeric item or checking for a
number in a character item). Also, data can be displayed in a form different from that assumed for
the item (such as displaying a name when a numeric code is actually stored in the item). Specifying
the NUMERIC option of a FIELD statement for a character item forces a numeric check of the
contents, and right-justifies and zero-fills the item.

If an item is numeric but the field is specified as a CHARACTER type or vice versa, any PICTURE
option specified for the item in the data dictionary is ignored. Since a picture typically follows the
item type, results could be misleading. To prevent this, specify a PICTURE option on the FIELD
statement in these cases. Field types that are different than item types are frequently used in
conjunction with designer-specified INPUT and OUTPUT procedures for a field.

DATA AT [row],column1

Positions the first character of the data at the specified row and column relative to the starting line
of the screen.

Default: If the row isn't specified, the current row is assumed.

DEFAULT expression

Uses the value that results from this expression as the default value for the field. If, during entry,
the QUICK screen user presses only [Return] in response to a field prompt, QUICK evaluates the
expression and places the result in the record buffer.

If the DEFAULT and REQUIRED options are used in the same statement, the DEFAULT option is
ignored.

Limit: This option applies only to a temporary item or to an item in a new data record that has
not previously had a value entered.

DISPLAY [ON ENTRY|FIND]

Causes QUICK to display data in a field and not to accept entries for this field.

The DISPLAY option generates DISPLAY verbs, rather than ACCEPT verbs, in the default
procedures for fields corresponding to record and temporary items. Fields for defined items are
always display fields.

You can override the DISPLAY option by replacing the generated DISPLAY verbs with ACCEPT
verbs, or by writing numbered DESIGNER procedures.

ON ENTRY|FIND
Limits the display of data to either Entry mode or Find mode.

Default: Displays the data in both Entrymode and Findmode, and does not accept entries.

DOWNSHIFT|UPSHIFT|NOSHIFT

Shifts the entered value of a character field into the specified case. DOWNSHIFT shifts the entered
value to lowercase; UPSHIFT shifts the entered value to uppercase; NOSHIFT overrides upshift or
downshift attributes in the data dictionary. DOWNSHIFT and UPSHIFT are applied prior to
editing.

Shifting all values into the same case prevents ambiguous entries. Otherwise, uppercase and
lowercase letters are treated as distinct.

Limit: Non-alphabetic characters within character items are not affected.

Default: The shift option specified for the corresponding element in the data dictionary.

NULL SEPARATOR OUTPUT SCALE

SIGNIFICANCE TRAILING SIGN

108 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

DUPLICATE

Duplicates the value for this field from the previous occurrence of the field on the screen if the
screen user doesn't enter a value. If this is the first data record on the screen, this option duplicates
the value from the last data record entered on the previous screenload of data (if one exists) for
the current session.

Limit: This option only applies to temporary items or new record items with no previously entered
values. INITIAL values (from an ITEM statement) and DEFAULT values are not duplicated.

[ENTRY] IF condition

Prompts for data in the specified field in the standard entry sequence if this condition is satisfied,
provided the ENTRY procedure was generated by QDESIGN.

Use the optional keyword ENTRY to avoid the syntax ambiguity that arises when the IF option is
specified immediately after a HILITE option with a trailing ELSE control structure. QDESIGN
generates an identical IF control structure in the default ENTRY procedure.

Limits: The IF option is evaluated only once during the standard entry sequence. The IF option is
ignored for fields in PANEL screens.

ERRORRECALL|NOERRORRECALL

ERRORRECALL instructs QUICK to redisplay; NOERRORRECALL instructs QUICK not to
redisplay for correction data that fails the edit check on the field. These options override the
QKGO Error Recall specifications.

Default: NOERRORRECALL

FILL char

Specifies the character used to "fill" unused space to the left of the most significant digit, float
character, or leading sign in the picture. The fill character also replaces unnecessary leading
nonsubstitution characters, including commas and leading spaces. However, the SIGNIFICANCE
option can force the display of leading zeros. For more on formatting for numeric items, see
(p. 108), (p. 112), (p. 118), and (p. 121).

Limit: Causes non-numeric items to be treated as numeric.

Default: A blank

FIXED

Permanently displays the current value for this field when the screen first appears. In effect, the
value becomes part of the screen background, and isn't rewritten every time data is displayed.

If the value of the corresponding item was changed since the value was first displayed, either in the
original screen or a subscreen, the new value is displayed upon return from any subscreen call.

FLOAT char

Specifies the float character. The float character is inserted immediately to the left of the most
significant digit. For example, currency values might be displayed with a dollar sign ($) as a float
character. To ensure that there is always room for the float character, either a space or an extra
substitution character (by default, ^) must be added to the left side of the picture. Using a
nonsubstitution character (for example, a space) leaves all the substitution characters free to
accept data input and decreases any chance of field overflow.

Fill Float Picture Value Display

* $ " ^,^^^,^^^.^^" 123456 ***$1234.56

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 109

Examples:

Limit: Causes non-numeric items to be treated as numeric.

Default: No float character is used.

FOR [row], column

Specifies a scrolling field.

row
The number of rows in the field. If the number is greater than 1, the field is created as a
multiple-row scrolling field.

Default: 1

column
Scrolling field width. There is no column default.

When the size specified for a field is smaller than the maximum number of allowable characters or
digits in the associated record item, the generated field is scrollable. Scrollable fields are indicated
by the "<" symbol (which appears to the left of the field) and the ">" symbol (which appears to
the right of the field). The "<" symbol indicates that there are undisplayed characters to the left of
the scrollable field. Similarly, the ">" symbol indicates that there are undisplayed characters to the
right of the scrollable field. To scroll data contained in a scrollable field, QUICK screen users can
use left and right arrow keys.

MPE/iX: If the screen is in Block mode, then the line times column must be equal to the field item
size.

FORCE|NOFORCE CENTURY

FORCE CENTURY specifies that the user must enter a century on the date field. This option
applies to century-included dates with two or four-digit year formats.

If FORCE CENTURY is applied to a date with a two-digit year format, the ALLOW CENTURY
option is implied. That is, the field becomes a horizontal scrolling field, so the user can enter the
required century.

Default: To find out the active value of the option, you must look at the ELEMENT, the USAGE,
and the SYSTEM OPTIONS statements. If the option is unspecified on the FIELD statement, the
active value is taken from the ELEMENT statement. If the option is unspecified on the ELEMENT
statement or a related USAGE, the active value is taken from the SYSTEM OPTIONS statement.

Limit: If used on a non-date field, the field is treated as a date.

FORMAT date-format

Specifies the format for entering and displaying date item values. Date values can be entered either
with or without separator characters. A date-format can be one of the following

Value Picture Float Display

1234 "^^^^^" $ $1234

56789 " ^^^.^^" $ $567.89

Date-format Example Date-format Example

YYMMDD 01/05/23 YYMMMDD 01/MAY/23

YYYYMMDD 2001/05/23 YYYYMMMDD 2001/MAY/23

YYMM 01/05 YYMMM 01/MAY

110 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

The FORMAT option governs data entry by determining the way you can enter date values. Dates
can always be entered in the format specified in the FORMAT option, with or without the
established separator character and with either the MM or MMM month format.

If the FORMAT option is used but the SEPARATOR option isn’t, the only separator character
that QDESIGN accepts is the separator character specified by System Options, or if it isn’t
specified, a slash (/).

If a two-digit year is specified in the date format, applications won’t accept a four-digit year. A
two-digit year is represented by YY (for example, 01).

If a four-digit year is specified in the date format, you can only enter a two-digit year if you enter
a separator character between the year and any adjacent numeric component of the date. The
default century is added automatically.

Single-digit day and month entries are accepted if the user enters the separator character, as in
4/8/2001. An entry of 4AUG2001 is also allowed, because PowerHouse accepts a single-digit day
entry if the middle value is a three-character month.

A three-digit day of the year from 1 to 366 is represented by DDD.

Although values for date items can be entered in a variety of formats, the values are always stored
in either YYMMDD or YYYYMMDD form.

Limit: Valid only for date items. This option only affects the entry format; the display format isn’t
affected.

Default: YYYYMMDD for eight-digit dates; YYMMDD for six-digit dates.

HELP string

Displays a one-line message when QUICK screen users enter a help command (?) in the field.

YYYYMM 2001/05 YYYYMMM 2001/MAY

YYDDD 01/125 YYYYDDD 2001/125

MMDDYY 05/23/01 MMMDDYY MAY/23/01

MMDDYYYY 05/23/2001 MMMDDYYYY MAY/23/2001

MMYY 05/01 MMMYY MAY/01

MMYYYY 05/2001 MMMYYYY MAY/2001

MMDD 05/23 MMMDD MAY/23

DDMMYY 23/05/01 DDMMMYY 23/MAY/01

DDMMYYYY 23/05/2001 DDMMMYYYY 23/MAY/2001

DDMM 23/05 DDMMM 23/MAY

DDDYY 125/01 DDDYYYY 125/2001

YYYY - four digit year (e.g., 2001)

MM - two digit month (e.g., 05)

MMM - three character month name (e.g., MAY)

DD - two digit day for a month (e.g., 23)

DDD - three digit day for a year (e.g., 365)

Regardless of the output order of the date, the internal working format is YYMMDD (for dates
without centuries), YYYYMMDD (for dates with centuries), and YYYDDD (for Julian dates)

Date-format Example Date-format Example

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 111

Limit: A combined maximum of 255 lines can be specified for descriptions and help messages in
each screen design. If not specified, then the help message from the dictionary is used.

HIDDEN

Hides the ID-number for the field. Use the HIDDEN option to allow you to reference a given field
using its hidden ID-number (even though no ID-number for that field appears on the screen when
using MARK mode). The HIDDEN option also allows you to write numbered DESIGNER
procedures for fields that have no displayed ID-number.

HILITE DISPLAY highlight-option [IF condition
[ELSE highlight-option IF condition]...
[ELSE highlight-option]]

Changes the highlighting characteristics of a field based on conditions that are evaluated when the
field is displayed. More than one highlight option can be used for data satisfying a particular
condition.

The HILITE statement overrides the display settings of any previous HILITE statement. If no final
ELSE portion is specified on the HILITE expression, and none of the conditions are satisfied, the
field is displayed with the highlighting determined by the last HILITE statement that affected
display highlighting.

highlight-option
Specifies the highlighting options used.

The highlight-option can be one or more of the following:

Limit: If either the DEFAULT or the OFF options is specified, none of the other highlighting
options can be used.

ID SAME
ID n [AT [line],column]
ID NEXT [AT [line],column]
NOID

Declares the ID-number and its position. Controls the assignment of an ID-number to a field.

Highlight Effect

BLINKING
(MPE/iX, OpenVMS, UNIX)

Highlights the object with blinking.

color [ON color] Highlights the data in the field in the specified color. Color
can be one of: RED, WHITE, BLUE, CYAN, GREEN,
MAGENTA, BLACK, or YELLOW.

Note: Colors are ignored if you attempt to assign colors to
fields that are displayed on monochrome monitors.

DEFAULT Applies default highlighting to the object.

HALFTONE
(MPE/iX, OpenVMS, UNIX)

Highlights the object with half intensity or alternative
intensity, depending on the terminal type.

INVERSE Highlights the object with inverse video (reverses the normal
background and foreground settings).

OFF Cancels highlighting.

UNDERLINE
(MPE/iX, OpenVMS, UNIX)

Highlights the object with an underline.

112 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

ID SAME
Omits the ID-number for the field. To reference the field, use the ID-number of the last field for
which an ID was specified.

ID AT [line,]column
Specifies a location for the ID-number for the field.

ID n
Specifies an ID-number explicitly.

Limit: 1 to 99

ID NEXT
Assigns the next ID-number in sequence.

AT [line,]column
Positions the first digit of the ID-number at the specified line and column relative to the starting
line of the screen. If the line is missing, the current line is assumed.

NOID
Assigns no ID-number to this field; the field can't be referenced from the Action field.

Default: For NOPANEL screens, ID NEXT for all fields. For PANEL screens, ID NEXT for the
first field in each cluster occurrence; ID SAME for all other fields within each cluster occurrence
that occurs with a repeating PRIMARY or DETAIL file; NOID for fields in clusters that don't
occur with a repeating PRIMARY or DETAIL file.

INPUT [SCALE] n

Sets the value used as a scaling factor when values are entered for a numeric item.

The entered value is multiplied by ten raised to the power of the input scale (that is, 10n) before it
is stored. SCALE is used only for documentation.

Limit: Scale values range from -20 to 20. Causes non-numeric items to be treated as numeric.

LABEL string [AT [line],column]
NOLABEL

Declares the field label and its position.

LABEL string [AT [line],column]
Indicates the field label and, optionally, the position of the label on the screen.

The AT option positions the first character of the label at the specified line and column relative to
the starting line of the screen. If the line isn't specified, the current line is assumed.

Default: If no option is specified, the LABEL or HEADING string from the data dictionary is
used. If neither the LABEL nor the HEADING option is specified in the data dictionary, the item
name is used.

NOLABEL
Indicates that no field label is to appear.

LEADING [SIGN] char

Specifies a single character that's placed to the left of the most significant digit (or float character,
if used) to indicate that the numeric value displayed is a negative number.

To enter a negative value on a screen for a temporary item, a LEADING SIGN or TRAILING
SIGN option must be specified on the corresponding FIELD statement.

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 113

Sufficient substitution characters (by default, ^) or nonsubstitution characters (any other
characters) must be provided in the picture to accommodate the leading sign. If the picture is too
small, overflow occurs, displayed with crosshatches (#). SIGN is used only for documentation.

For example, the number -1578 could be formatted as follows:

Limit: Causes non-numeric items to be treated as numeric.

LOOKUP [ON|NOTON] record-structure [lookup-option]...
 [,[ON|NOTON] record-structure[lookup-option]...]...

or

LOOKUP [ON|NOTON] cursor-reference[sql-substitution...]
[lookup-option]...
[,[ON|NOTON] cursor-reference[sql-substitution...]

[lookup-option]...]...

ON|NOTON
Specifies that the field value must either exist (ON) or must not exist (NOTON) in the named
record-structure or cursor-reference.

LOOKUP ON can also be used to retrieve data for display. If the NOTON option is used, no data
transfer takes place.

Default: ON

Limit: A maximum of 10 lookups are allowed on one FIELD statement.

record-structure
Specifies the record-structure to which the lookup is being applied.

cursor-reference[sql-substitution...]
Specifies the cursor-reference to which the lookup is being applied. The cursor-reference is a
cursor or table named in a CURSOR statement.

An sql-substitution can be specified for any substitution variable defined on the DECLARE
CURSOR statement. Two default substitutions, WHERE and ORDERBY, will be inserted in
generated SQL statements even if the corresponding substitution-variables do not exist on a
DECLARE CURSOR statement.

The syntax for a substitution is:
substitution-variable (text)

For more information, see Chapter 1, "PowerHouse and Relational Databases", in the
PowerHouse and Relational Databases book.

The following options are valid if the LOOKUP is on a cursor-reference:
• AUTOCOMMIT
• NOWARN
• OPTIONAL
• MESSAGE

The following options are not valid if the LOOKUP is on a cursor-reference:
• VIAINDEX

Picture Leading sign Trailing sign Display

"^,^^^" "-" none #####

" ^^^,^^^" "-" none -1,578

" ^^^,^^^ " "(" ")" (1,578)

114 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

• VIA
• USING
• BACKWARDS
• GENERIC|NOGENERIC
• SEQUENTIAL

AUTOCOMMIT
Automatically commits the transaction associated with the lookup after the lookup is completed.
For example,
> FIELD EMPLOYEE LOOKUP &
> ON table1, &
> ON table2 AUTOCOMMIT

If each table uses a distinct transaction, only the second transaction is committed. If both lookups
are done in the same transaction, the transaction is committed after the second lookup.

BACKWARDS
Reverses the sequence in which the record-structure is normally read.

Limit: Valid only for C-ISAM, DISAM, RMS ISAM, and IMAGE datasets with keyed access.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

GENERIC|NOGENERIC
GENERIC allows partial-index retrieval; NOGENERIC prevents partial-index retrieval.

Limit: Not valid for IMAGE indexes, unless they are B-Tree and OMNIDEX indexes. Not valid
with a cursor-reference.

Default: GENERIC

MESSAGE n|=string-expression|string
Displays a message if the lookup fails. The general terms string and string-expression specify the
message to be displayed.

If a number (n) is specified, QUICK searches for a message in the designated message file:
qkmsgdes (MPE/iX, OpenVMS) or qkmsgdes.txt (UNIX, Windows).

For more information, see Chapter 4, "Messages in PowerHouse", in the PowerHouse Rules
book.

Limit: The MESSAGE and NOWARN options are mutually exclusive.

NOWARN
Suppresses the display of messages when an optional lookup fails.

If NOWARN is specified, QUICK assumes the lookup is optional even if it isn't specified, since
combining NOWARN with a required lookup would defeat the purpose of the lookup.

Limit: The MESSAGE and NOWARN options are mutually exclusive.

OPTIONAL
Continues processing even if the access fails.

LOOKUP Options

AUTOCOMMIT BACKWARDS GENERIC|NOGENERIC

MESSAGE NOWARN OPTIONAL

SEQUENTIAL USING VIAINDEX

VIA

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 115

If no data record is found when the LOOKUP ON option is retrieving data for display, a data
record is created that contains initial or default values for each item. These values are taken from
the data dictionary and any ITEM statements. If no initial values are specified in the data
dictionary or in an ITEM statement, any CHARACTER item is initialized to spaces, and any
NUMERIC or DATE item is initialized to zeros.

Limit: Not valid for PRIMARY files.

SEQUENTIAL
Accesses the data records in the file sequentially.

Limit: SEQUENTIAL and USING can't be used in the same LOOKUP option. Valid only for
PRIMARY files. Not valid with a cursor-reference.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

USING expression [,expression]...
Accesses an associated file using the results of a specified expression as
• the corresponding linkitems value for an indexed file
• the data record number for record-structures in a direct or relative file
• the column value in a relational table

For direct files, there can be only one value which QUICK interprets as a record number.

For indexed files, there can be more than one value (i.e., segmented indexes), but QUICK
interprets the values as a single index value in that file.

If the record-structure belongs to a direct file, there can only be one expression specified, which
must be numeric. Otherwise, a series of expressions can be specified which correspond one-to-one
with the segments established by either the VIA or VIAINDEX options. If neither the VIA nor the
VIAINDEX option is specified, and the record-structure has only one associated index, this index
is used as if the VIAINDEX option had been specified.

If a file is a relational table, there can be several values in the USING option, which QDESIGN
interprets as the values of the columns in the table. The VIA or VIAINDEX options must be used
to indicate which columns the values belong to if more than one index is in use or if no index is
used.

If the VIA option is specified, the number of expressions specified must correspond one-to-one
with the number of linkitems specified on the VIA option.

If the VIAINDEX option is specified and the VIA option isn't, the number of expressions may be
less than or equal to the number of segments contained within the specified index. There must
always be at least one expression.

Limit: 255 expressions. Not valid for a cursor-reference.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of an
index, unless the index is a B-Tree or OMNIDEX index. An expression must be specified for every
segment of the index.

The following options specify retrieval for the lookup:

VIAINDEX indexname
The name of a PowerHouse index as defined in the data dictionary or a relational database. This
option enforces data record retrieval to be performed in index order. Lookups can only be done
against indexed files or tables in relational databases.

Limit: Not valid for a cursor reference.

VIA linkitem [,linkitem]...
Accesses the record-structure via the specified linkitems.

116 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

For record-structures in indexed files, the declared linkitems must define a series of segments
contained within an index structure associated with the record-structure. In this case, the first
declared segment is the first segment within the index, the second declared segment is the second
segment within the index, and so on.

Limit: 255 segments. Not valid for a cursor-reference.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of an
index, unless the index is a B-Tree or OMNIDEX index. The series of linkitems must include all of
the segments in the index.

MARK|NOMARK

MARK enables fieldmarking for a field with an ID-number.

NOMARK disables the default fieldmarking for a field with an ID-number when field marking is
enabled.

Default: MARK

MISSING|NULL VALUE [NOT] ALLOWED

For a column that allows null values, the FIELD option NULL VALUE NOT ALLOWED prevents
you from explicitly entering the null value character in the field. However, QUICK will store a null
value if a null response (such as a carriage return) is entered. To prevent QUICK from supplying
unintended null values, specify REQUIRED with NULL VALUE NOT ALLOWED.

For more information about controlling null value entry in QDESIGN, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

Default: NULL VALUE ALLOWED

NOCHANGE

States that once a value has been put on file, it can't be altered by an entry in this field.

This option is added automatically to fields that represent segments of indexes if the GENERATE
statement is used to construct the FIELD statements. The option applies if the predefined
condition NEWRECORD is false. It isn't affected by any predefined mode conditions. The
ACCEPT, PROMPT, and REQUEST verbs can't be used to override the NOCHANGE option,
although a LET verb can be used to make changes directly to the corresponding item.

To change the value of a data item in a field that has the NOCHANGE option specified, the
QUICK screen user must first delete the existing data record and then enter new values for it.

Temporary item fields with NOCHANGE cannot be changed regardless of whether they occur
with a file or not.

The CACHE option does not affect the behavior of NOCHANGE.

Limit: Does not apply to defined item fields.

NOCORRECT

States that once a value is entered, it can't be altered until it is put on file.

This option applies if the predefined condition NEWRECORD is true. The NOCORRECT option
isn't affected by any predefined mode conditions. The ACCEPT, PROMPT, and REQUEST verbs
can't be used to override the NOCORRECT option, although a LET verb can be used to make
changes directly to the corresponding item.

Temporary item fields with NOCORRECT cannot be corrected regardless of whether they occur
with a file or not.

The CACHE option does not affect the behavior of NOCORRECT.

Limit: Does not apply to defined item fields.

NOECHO

Suppresses the display of any value entered in the field when the terminal is operating in full
duplex.

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 117

The NOECHO option fields are always redisplayed as blanks.

NOENTRY

Omits this field from the standard entry sequence.

QDESIGN doesn't generate an ACCEPT verb in the default ENTRY procedure. For more
information, see (p. 314).

NOFORMAT n

Instructs QUICK to display the contents of FIELDTEXT as is after the OUTPUT procedure
without applying any additional formatting.

This option is specified when the FORMATNUMBER function is used to format a value in the
OUTPUT procedure. This ensures that other specified formatting and scaling, either from the
FIELD statement or from the dictionary, is ignored.

n
Specifies the display width of the field. FIELDTEXT is truncated on the right to fit the display
width. If non-blank characters are truncated, overflow characters (#) are displayed instead of the
contents of FIELDTEXT.

NORECALL (OpenVMS)

Turns off single-line recall capability for data fields.

NOSELECT

Disables the field from being used in Select mode. Prevents a SELECT verb from being generated
in the default SELECT procedure.

If a SELECT verb is included in a user-defined SELECT procedure, the NOSELECT option
prevents the QUICK screen user from using the field in the selection process.

If no SELECT procedure is generated or written, the NOSELECT option prevents the QUICK
screen user from using the field's ID-number as a selection indicator when selecting data records.

NULLSEPARATOR|NONULLSEPARATOR

NULLSEPARATOR specifies that dates are to be displayed without a separator. This allows
display of century-included dates in the same space as century-excluded dates.

The DATE SEPARATOR is used for display formatting if NULLSEPARATOR is not used, or is
canceled by the NONULLSEPARATOR option.

The DATE SEPARATOR may be used during input. If NULLSEPARATOR is specified, the value is
redisplayed after formatting without the separator.

Default: To find out the active value of the option, you must look at the ELEMENT, the USAGE,
and the SYSTEM OPTIONS statements. If the option is unspecified on the FIELD statement, the
active value is taken from the ELEMENT statement. If the option is unspecified on the ELEMENT
statement or a related USAGE, the active value is taken from the SYSTEM OPTIONS statement.

Limit: If used on a non-date field, the field is treated as a date.

OMIT [ON ENTRY|FIND]

States that, under normal circumstances, the data for this field cannot be entered or displayed on
the screen (although its appearance can be forced by a procedure).

ON ENTRY
Prevents entry and display during Entry and Correct modes.

ON FIND
Prevents display and changes during Find, Change, and Select modes. You can override the OMIT
option by using verbs.

118 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

OUTPUT [SCALE] n

Establishes the output scaling factor. The value displayed is multiplied by 10 raised to the power
of the output value (that is, 10n) before it is displayed. The result is rounded after scaling.

QUICK displays only the integer portion of a number by doing a right-to-left replacement of each
substitution character (by default, ^) in the picture with digits from the number.

No matter which picture is specified, only the integer portion (123) of the number is displayed.

To display the decimal portion of the number, you must use the OUTPUT SCALE option.

For proper decimal alignment on output, you must make proper use of the SCALE and PICTURE
options.

Limit: -20 to 20. Causes non-numeric items to be treated as numeric.

PATTERN string|=string-expression

Specifies a string of characters and metacharacters that provides a general description of values.
The entry must match the specified pattern string to be valid. For more information about
patterns, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules book.

PICTURE string

Establishes the output picture used to format the item value for display. A picture string is made
up of substitution characters (by default, ^), and nonsubstitution characters (any other
characters).

If the PICTURE and SIGNIFICANCE options are used together, the PICTURE option must be
specified first. The number of substitution characters in the default picture for numeric defined
items is the number of digits in the item plus one. For example,

Number Picture Output Scale Display

123.456 "^^^" 0 123

123.456 "^.^^" 0 1.23

123.456 "^^.^" 0 12.3

Number Picture Output Scale Display

123.456 "^^^^^^" 0 123

123.456 "^^^^^^" 1 1235

123.456 "^^^^^^" 2 12346

123.456 "^^^^^^" 3 123456

123.456 "^^^^^^" -1 12

123.456 "^^^^^^" -2 1

123.456 "^^^^^^" -3 0

Number Picture Output Scale Display

123.456 "^^^.^" 1 123.5

123.456 "^^^.^^" 2 123.46

123.456 "^^^.^^^" 3 123.456

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 119

> DEFINE X NUMERIC SIZE 4

gives a picture of
"^^^^^"

Limit: 60 characters

How PowerHouse Formats CHARACTER Items
Character-type items are formatted in the following manner:
1. The item is processed from left to right, substituting one character from the item for each

substitution character (by default, ^) in the picture. Nonsubstitution characters remain
unchanged.

2. If there are fewer substitution characters in the picture than characters in the item value, the
remaining characters in the item are not displayed.

3. If there are more substitution characters in the picture than characters in the item value, the
item is padded with spaces on the right.

For example, the item "FHSMITH" is formatted as follows:

How PowerHouse Formats NUMERIC Items
Numeric items are formatted in the following manner:
1. The item value is scaled by the output scale and rounded to the nearest whole number.
2. The integer portion of the item is processed from right to left substituting one digit from the

item for each substitution character (by default, ^) in the picture until all significant
(non-zero) digits have been transferred. Nonsubstitution characters remain unchanged.

3. Until the significance is reached, leading zeros are substituted for each substitution character,
and nonsubstitution characters remain unchanged.

4. The float character is added.
5. Leading or trailing sign characters or both are added for negative numbers.
6. The remaining portion of the picture is filled with the fill character.
7. If there isn't enough room in the picture to hold all the significant digits of the item value, or

the LEADING SIGN, TRAILING SIGN, or FLOAT characters, it is filled with the overflow
character (the crosshatch #).

For example, the number 1578 is formatted as follows:

If the numeric field formatting options do not provide the formatting you require, the
FORMATNUMBER function provides extended functionality. For more information, see
Chapter 6, "Functions in PowerHouse", in the PowerHouse Rules book.

Picture Display

none FHSMITH

"^^^^^" FHSMI

"^.^.^^^^^" F.H.SMITH

Picture Display

"^^^" ###

"^^^^" 1578

"^^.^^" 15.78

"^^,^^^,^^^" 1,578

120 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

POPUP [FROM [application line1],column1]
[TO [application line2],column2] [ON mode[,mode]...]

Creates a pop-up data entry window at optionally-specified coordinates, which can open
automatically under specified conditions.

FROM [application line1],column1 TO
[application line2],column2

The top left and bottom right corners of the data-entry window specified in the application line
coordinates.

Default: If application line1 is missing, the current row minus 5 is used and application line2
defaults to the current row plus 5. Column1 defaults to 5; column2 defaults to 75.

[ON mode[,mode]...]
Specifies in what mode the data entry window is to be automatically popped up. The mode can be
one:

Default: If ON mode is not specified, the pop-up window only appears when the user enters the
Popup Toggle (+) command.

PREDISPLAY

Displays any initial value for this field as soon as the screen appears if the mode is changed or if a
cluster is initialized; it doesn't fix the value in the screen background. The PREDISPLAY option is
assumed for all fields on a slave screen.

REFRESH

Redisplays the value for this field when returning from a lower-level screen.

REQUIRED

Declares that a null response from the QUICK screen user isn't acceptable. A valid entry must be
supplied. This option is added automatically to fields that represent index segments when the
GENERATE statement is used to construct the FIELD statements.

Limit: If the DEFAULT and REQUIRED options are used in the same statement, the DEFAULT
option is ignored.

REVERSE

Specifies that QUICK prompts the screen user beginning at the right side of the field. As characters
are entered, QUICK inserts them into the field from right to left.

RJ

Right-justifies a character string when it is displayed in a QUICK screen field.

Limit: Valid only for character items.

DATA Whenever the user is prompted in the field (a combination of EDIT, INPUT,
and REQUEST).

EDIT After the user enters an incorrect value in the field.

INPUT When the user is prompted in the field to enter data in Entry, Change, and
Correct mode. The window does not pop-up when an edit check fails unless
you specify EDIT or DATA as well.

REQUEST When the user is prompted in an index segment field in Find mode or prompted
in this field in Select mode when defining retrieval criteria.

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 121

SELECTBOX [FROM [application line1],column1]
[TO [application line2],column2] [ON mode[,mode]...]

Creates a selection box which can appear under specified conditions.

When selection processing is enabled, the values are drawn from the dictionary or VALUES
option. If the VALUES option contains a range, only the first and last values are displayed.

FROM [application line1],column1 [TO [application line2],column2]
The top left and bottom right corners of the Selection box specified in the application line
coordinates. If the specified box is too narrow for the display of the selection list, the display
values are truncated and the full form of the selected value is transferred to FIELDTEXT.

Default: Appears directly under the field in question. The width is the field width; the depth is the
number of values (up to 8) unless the box does not fit on the screen, in which case it then becomes
a scrolling Selection box.

[ON mode[,mode]...]
Specifies in what mode the selection box is to be automatically popped up. The mode can be one:

 Default: If ON mode is not specified, the selection box only appears when the user enters the
Select Box (#) command.

SEPARATOR char

Specifies the character used to separate the year, month, and day portions of a date item.

Limit: Valid only for date items.

Default: The system default from the data dictionary is used. If no system default is specified, a
slash (/) is used.

SIGNIFICANCE n

Establishes the minimum number (n) of characters displayed. It is generally used to force the
display of leading nonsubstitution characters and leading zeros.

For example, the number 0.1578 would be formatted as follows:

Limit: If the PICTURE and SIGNIFICANCE options are used together, the PICTURE option must
be specified first. Causes non-numeric items to be treated as numeric.

SILENT

Specifies that a field doesn't appear on the screen.

DATA Whenever the user is prompted in the field (a combination of EDIT, INPUT,
and REQUEST).

EDIT After the user enters an incorrect value in the field.

INPUT When the user is prompted in the field to enter data in Entry, Change, and
Correct mode. The window does not pop-up when an edit check fails unless
you specify EDIT or DATA as well.

REQUEST When the user is prompted in an index segment field in Find mode or
prompted in this field in Select mode when defining retrieval criteria.

Picture Significance Display

"^^.^^^^" 6 0.1578

"^^.^^^^" 4 1578

122 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

A silent field is included to perform standard field editing of a data item that has been entered as a
related set of subitems in the preceding fields. When this option is used, all related fields should
have the same ID-number so that the edit is performed when any of the data item's components
are changed.

The silent field should be the last one of a set of related fields. A silent field has the ID SAME
option specified regardless of any other ID option. You can't override this option procedurally.

Limit: The SILENT option is mutually exclusive of all but the IF, LOOKUP, PATTERN, and
VALUES options.

SIZE n

Specifies the number (n) of characters in the entry field.

Normally this option isn't required, since the size of the field is determined from the picture or
from basic attributes of the element, usage, or relational column. However, the SIZE option can be
used when the field size must be larger or smaller than the corresponding element size. A field that
has a SIZE option that specifies a length less than the field length is scrollable.

Record items based on elements defined with sizes greater than 60 characters are automatically
assigned a field size of 60.

TRAILING [SIGN] string

Specifies one or two characters that are placed in the right-most portion of the picture to indicate
that the numeric value displayed is a negative number. Sufficient nonsubstitution characters must
be provided in the right-most portion of the picture to accommodate the trailing sign. If the
picture is too small, it is filled with the overflow character (by default, the crosshatch #). The
format options LEADING SIGN and TRAILING SIGN can be used together to place parentheses
around negative numbers. SIGN is used only for documentation.

To enter a negative value on a screen for a temporary item, a LEADING SIGN or TRAILING
SIGN option must be specified on the corresponding FIELD statement.

For example, the number -1578 could be formatted as follows:

Limit: Causes non-numeric items to be treated as numeric.

VALUES value-caption-set

Specifies acceptable entry values for the field, and overrides values specified in the dictionary, if
any. The values must be consistent with the element size and type. Numeric values are scaled by
the input scale. Dates values must be specified in the YYYYMMDD or YYMMDD format.

value-caption-set
Specifies one or more values and/or one or more ranges of values. A caption string may be
specified with each value for display in selection boxes where applicable. The general form is:
value [CAPTION string [TO value [CAPTION string]]]

[, value [CAPTION string [TO value [CAPTION string]]]]...

Limits: The maximum size of the caption string is 60 characters. Captions are used only in
selection boxes; if no selection box is specified, then the captions are ignored.

Captions specified in the FIELD statement override captions specified in the dictionary, if any.

Picture Leading sign Trailing sign Display

"^^^,^^^ " none "CR" 1,578CR

" ^^^,^^^ " "(" ")" (1,578)

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 123

Discussion
The FIELD statement is part of the layout section of the screen design. It creates a field on the
screen in which the QUICK screen user can enter, display, or change data values contained in a
corresponding data record, temporary item, or defined item.

Fields for Defined and Temporary Items

If the field corresponds to a defined item, the ID SAME and DISPLAY options are assumed.

Fields corresponding to temporary items can't be used to enter selection criteria in Select mode.

Date and Time Support in QUICK

A FIELD statement can be automatically generated for a DATETIME datatype with a default time
format and field size. The date portion format can be specified in the dictionary, as in:
> ELEMENT TWO DATE SIZE 16 FORMAT MMDDYYYY

In the previous example, the full format for item TWO is MMDDYYYY HH:MM:SS.NN.

The following table shows the possible results when entering data into field TWO:

Rules for Entering the Time Portion
1. Both digits of each component must be entered. If the hour is "1", then the entry must be

"01". However, truncating the time, such as leaving off the seconds value, is valid.
2. The time separators do not have to be used but if they are, they must be ":" and "." in their

proper positions.
3. A space must separate the date and time portions.
4. The time component limits are: 0-23 for hours, 0-59 for minutes and seconds, and 0-99 for

hundredths of seconds.

Example
The STAFF screen in the following example demonstrates the use of the FIELD statement. In this
example:
• REQUIRED prevents the QUICK screen user from making a null entry for

EMPLOYEENUMBER. LOOKUP NOTON ensures that an entered value isn't already on file.
• NOCHANGE prevents values from being changed once they're stored.

Entered Displayed

09/29/1987 23:59:59.99 09/29/1987 23:59:59.99

09291987 23595999 09/29/1987 23:59:59.99

09/291987 23:5959.99 09/29/1987 23:59:59.99

09/29/1987 012233.44 09/29/1987 01:22:33.44

09/29/1987 00:00:00.00 09/29/1987 00:00:00.00

09/29/1987 23:59:59 09/29/1987 23:59:59.00

09/29/1987 0 09/29/1987 00:00:00.00

0 0 [empty field]

0 [empty field]

[Return] [empty field]

124 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FIELD

• CITY, PROVSTATE, and POSTALCODE are assigned the same ID-number as the STREET
field. When the QUICK screen user enters the ID-number for the STREET field to make
corrections, QUICK prompts for each of the four fields.

• The pattern on the POSTALCODE field allows the entry of a Canadian postal code or an
American zip code.

• PHONE appears with the label "Telephone number" and a help string. If the QUICK screen
user enters "?", this string appears in the message line. If there is no phone number, BWZ
means that nothing is displayed.

• LOOKUP ON ensures that values entered for BRANCHCODE already exist in BRANCHES.
• DISPLAY displays the value for BRANCHNAME so that QUICK screen users can see which

branch the entered BRANCHCODE refers to.
• OPTIONAL causes QUICK to continue processing even if the lookup fails because the

position entered doesn't already exist in POSITIONS.
• VALUES determines allowable entries in the SEX field. Entries other than "M" or "F" are not

accepted. UPSHIFT changes entries to uppercase to match the values "M" and "F".
• FORMAT overrides the formatting specified in the data dictionary. Dates appear in the

format MMMDDYY (displayed as FEB 14 91). Entries in DATEJOINED don't have to
include the specified SEPARATOR (spaces). However, the date value must be entered in the
order month-day-year.

• BONUSPAY is displayed in the format established by the picture string. A dollar sign float
character is prefixed immediately to the left of the value.

> SCREEN STAFF
>
> FILE EMPLOYEES
> ITEM DATEJOINED &
> INITIAL REMOVECENTURY(SYSDATE)
> FILE BRANCHES REFERENCE
> FILE DIVISIONS REFERENCE
> FILE POSITIONS REFERENCE
>
> HILITE TITLE UNDERLINE
> TITLE "STAFF SCREEN" AT 1,30
> HILITE TITLE OFF
> SKIP 1
>
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
>
> FIELD LASTNAME OF EMPLOYEES &
> REQUIRED &
> NOCHANGE &
> LABEL "Last Name"
>
> FIELD FIRSTNAME OF EMPLOYEES &
> LABEL "First Name"
> FIELD STREET OF EMPLOYEES &
> LABEL "Address"
>
> SKIP
> ALIGN (,,21) (,,44) (,,50)
>
> FIELD CITY OF EMPLOYEES ID SAME
> FIELD PROVSTATE OF EMPLOYEES ID SAME
> FIELD POSTALCODE OF EMPLOYEES &
> PATTERN "(^#^ #^#)|(#####(-####)<)" ID SAME
> ALIGN
> FIELD PHONE OF EMPLOYEES &
> LABEL "Telephone number" &
> HELP "Please include the area code." &
> PICTURE "(^^^) ^^^-^^^^" &
> BWZ
>

Chapter 3: QDESIGN Statements
FIELD

QDESIGN Reference 125

> ALIGN (1,4,21) (,,25)
> FIELD BRANCHCODE OF EMPLOYEES &
> LOOKUP ON BRANCH CODE"
>
> FIELD BRANCHNAME OF BRANCHES &
> DISPLAY &
> ID SAME
>
> FIELD DIVISION OF EMPLOYEES &
> LOOKUP ON DIVISIONS &
> LABEL "Division"
>
> FIELD DIVISIONNAME OF DIVISIONS &
> DISPLAY &
> ID SAME
>
> FIELD POSITION OF EMPLOYEES &
> LOOKUP ON POSITIONS OPTIONAL &
> LABEL "Position"
>
> FIELD POSITIONTEXT OF POSITIONS &
> DISPLAY &
> ID SAME
>
> ALIGN
>
> FIELD SEX OF EMPLOYEES &
> VALUES "M", "F" &
> UPSHIFT &
> LABEL "Sex"
>
> FIELD DATEJOINED OF EMPLOYEES &
> FORMAT MMDDYY SEPARATOR " " &
> LABEL "Date Joined" &
> DEFAULT SYSDATE &
> ID SAME
>
>
> FIELD BONUSPAY OF POSITIONS &
> PICTURE " ^,^^^.^^" &
> FLOAT "$"
>
> BUILD

Selection Box Value Captions

In the following screen, the Language field includes the captions "English", "French", and
"German" for the entry values "E", "F", and "G" respectively. If the field's selection box is
opened, then it displays the captions in place of the entry values:
.
.
.
> FIELD LANGUAGE LABEL "Language" &
> SELECTBOX &
> VALUE "E" CAPTION "English" &
> VALUE "F" CAPTION "French" &
> VALUE "G" CAPTION "German"
.
.
.

126 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

FILE
Identifies and describes a record-structure accessed by the screen.

Syntax
FILE record-structure [option]...

Limit: A maximum of 31 files, record-structures, and cursors can be declared in a screen design.
There can be a maximum of 1023 items per record-structure.

record-structure

A record-structure declared in the data dictionary, a table declared in a relational database, or a
subfile.

The general form of the record-structure is:
record [IN file]|[owner.]table [IN database]|*subfilespec

IN database
The PowerHouse name of the relational database attached to the current dictionary.

ALLBASE/SQL follows the SQL standard in allowing database table names to be qualified by an
ownername. PowerHouse also supports an ownername on record names. You can specify full
table names on QDESIGN FILE statements.

The general syntax for a full table name in PowerHouse is:
[owner.]table [IN database]

Both owner and table are identifiers. PowerHouse imposes an overall maximum of 64 characters
for the combined length of owner.table. PowerHouse upshifts the owner and table unless the
noshift program parameter or the SET NOSHIFT statement is specified. The owner name
SYSTEM is reserved for ALLBASE/SQL system tables, and can be used to access metadata of the
database.

An implicit alias of the table name is assumed when an owner.table is first encountered. For
example,
> ACCESS OWNNAM.TABNAM IN TESTTABL

implicitly assumes an alias of TABNAM.

All ALLBASE/SQL DBEnvironment entities, such as modules or tables, have owners. If a program
needs to access an entity owned by another user, you specify the owner as part of the entity name.

By default, the owner of a module created by PowerHouse is

If you use the owner program parameter, modules created by PowerHouse are owned by the
specified ownername. Also, any unqualified table names are qualified with this ownername.

To create modules owned by another ownername, ALLBASE/SQL security requires that you have
Database Administrator (DBA) authority.

The following are valid types of ownernames:
• authorization group

MPE/iX: USERNAME@ACCOUNTNAME, with USERNAME being the name of the
user running the component, and ACCOUNTNAME the logon account. To
permit an application builder to specify an owner, the owner program
parameter is available for all components. For example,
:QDESIGN INFO="OWNER=CHRISB@DOC"

OpenVMS,
UNIX,
Windows:

USERNAME, which is the user’s logon name. To permit an application builder
to specify an owner, the owner program parameter is available for all
components. For example,
qdesign owner=scott1

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 127

• class
• user logon name
• MPE/iX: username@accountname

IN file
The dictionary file name where the record-structure is located.

*subfilespec
The name of the subfile.

Limit: The subfile must exist; QDESIGN cannot create subfiles.

Options

type

Specifies the relationship of the file to the screen and to other files on the screen.

The general term type must be one of the following:

Default: If no type is given, PRIMARY is assumed, except for files that are included in the
receiving list of the screen statement. Files that are passed from higher-level screens are always
assumed to be MASTER.

Each of the file types is discussed in detail in the sections that follow.

AUDIT [WITH record]
An AUDIT record-structure is used to record data changes in a file, and is normally associated
with another record-structure (the file to be audited) as in
> FILE EMPLOYEES
> FILE AUDITRECORD AUDIT WITH EMPLOYEES
Item EMPLOYEE initialized (fixed) to EMPLOYEE of EMPLOYEES.

When QUICK performs an update on the associated file, an AUDIT record is also written. If the
AUDIT record-structure is a SEQUENTIAL or DIRECT file, each new audit record is appended to
the end of the file. (The file is opened for append access.) Indexed files are opened for update
access.

The WITH option specifies the record-structure whose updates are to be recorded. The AUDIT
data record is updated automatically when its associated record-structure is updated. No PUT
verb is generated in the UPDATE procedure for the record-structures in AUDIT files.

FILE Options

type ALIAS AUTOCOMMIT

CACHE CLOSE COUNT

MYVIEW NEED|ALL NOAPPEND

NODELETE NOITEMS OCCURS

OCCURS WITH OPEN SIGNAL|NOSIGNAL

TRANSACTION WAIT|NOWAIT

AUDIT [WITH record] DELETE DESIGNER

DETAIL MASTER PRIMARY

REFERENCE SECONDARY

128 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

If the WITH option is not specified, then QDESIGN assumes no associated file exists. Do not
specify the WITH option if you want to use one AUDIT file to audit more than one file on the
screen. If the WITH option isn't specified, the data record is treated as an add-only data record
and a PUT verb is generated in the UPDATE procedure for the AUDIT file; however the screen
designer is responsible for updating the record status of the AUDIT file. If the designer does not
update the record status of the AUDIT file, no audit record is written.

A record-structure in an AUDIT file is automatically passed to a lower-level screen when its
associated record-structure is passed. The record-structure in an AUDIT file can't be explicitly
passed and shouldn't be declared again on the lower-level screen. However, if the MYVIEW
option has been included with the FILE statement on the lower-level screen, a record-structure in
an AUDIT file on the higher-level screen is ignored. This permits you to declare a record-structure
in an AUDIT file on the lower-level screen that relates to that screen alone.

A data record written to the AUDIT file is an "after-image". An "after-image" documents the
status of the file or "new" values at that point. The "before-image" (previous file status) is
documented by an earlier data record produced when the data record was written to the file.
Because there is no "after-image" for deleted data records, the record content prior to deletion is
written to the AUDIT file.

An AUDIT record-structure must be defined in the data dictionary. The record-structure typically
consists of all the items in the associated file, including items that document details such as time,
date, user, and type of change.

DELETE
A DELETE record-structure allows data records to be deleted from a file that isn't otherwise
declared on the screen. These data records are meant to be deleted in relation to deletions of
primary or secondary data records on the current screen. A DELETE record-structure should
occur the same number of times as the record-structure to which it is related, as in
> FILE EMPLOYEES OCCURS 2
> FILE SKILLS DELETE OCCURS WITH EMPLOYEES
Item EMPLOYEE initialized (fixed) to EMPLOYEE of EMPLOYEES.

A DELETE record-structure can't be passed to a lower-level screen.

DESIGNER
Specifies a record-structure that is totally under the designer's control. QUICK makes no
assumptions about a DESIGNER record-structure, except that, by default, its associated file is
opened for read and write access. A record-structure in a DESIGNER file can be passed to a
lower-level screen where it should also be declared as type DESIGNER.

DETAIL
A DETAIL record-structure is used when there are a variable number of data records for each
PRIMARY file record, as opposed to the fixed relationship that can be described with a
SECONDARY file. The relationship of PRIMARY to DETAIL is one-to-many. Append processing
can be used in a screen that has a DETAIL record-structure.

The record-structures in a DETAIL file can be passed to a lower-level screen and declared as type
MASTER on the receiving screen.

QDESIGN initializes all identically named items in the DETAIL file to their value in the
PRIMARY file.

Limit: One DETAIL record-structure per QUICK screen. You can't declare both a PRIMARY and
a DETAIL record-structure with multiple occurrences in the same screen design.

MASTER
Specifies a record-structure in a PRIMARY, SECONDARY, or DETAIL file passed from a
higher-level screen to the current screen. Record-structures received on a screen are assumed to be
in MASTER files if not specified. They can in turn be passed to a lower-level screen and declared
as type MASTER on the receiving screen.

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 129

PRIMARY
Specifies the principal file accessed by the screen. Choose the most frequently needed file as the
PRIMARY file for a screen.

There should always be one PRIMARY file for screens other than menu and slave screens. A
record-structure in a PRIMARY file can be passed to a lower-level screen where it is declared as
type MASTER on the receiving screen. The user activities Enter, Find, Change, and Delete are
directed mainly towards the PRIMARY record-structure.

Append processing is available when there are multiple occurrences of the record-structure on a
screen.

Limit: You can't declare both a PRIMARY and a DETAIL record-structure with multiple
occurrences in the same screen design.

REFERENCE
Specifies a read-only file used for data validation or retrieval. A record-structure in a
REFERENCE file is accessed automatically when an item in the record-structure is referenced. A
record-structure in a REFERENCE file can be passed to a lower-level screen where it must be
declared as type REFERENCE.

SECONDARY
Specifies a record-structure in a file that is also to be updated; it is related to record-structures in
PRIMARY or DETAIL files.

If the SECONDARY file is related to the PRIMARY file, QDESIGN initializes all
identically-named items in the SECONDARY file to their value in the PRIMARY file. The
relationship of PRIMARY to SECONDARY is 1:n where "n" is the fixed number in the OCCURS
clause.

If the SECONDARY file is related to the DETAIL file by an OCCURS WITH option, QDESIGN
first initializes all identically-named items in the SECONDARY file to their value in the DETAIL
file. QDESIGN initializes any remaining identically-named items in the SECONDARY file to their
value in the PRIMARY file. The relationship of DETAIL to SECONDARY is 1:1.

The record-structures in a SECONDARY file can be passed to a lower-level screen and declared as
type MASTER on the receiving screen.

ALIAS name

Assigns an alternative name to the record-structure. When a record-structure is declared more
than once in a screen design, the ALIAS option assigns a unique identifier name for each
declaration. Once the alias is assigned, subsequent references to the record-structure must use this
name.

AUTOCOMMIT

Indicates that the transaction performing the retrieval from the reference file is automatically
committed after the retrieval is completed. Automatic retrievals include retrievals from lookups or
implicit retrievals of reference file items for display.

Use AUTOCOMMIT to ensure that the reference files retrieval sees the most recent version of the
database. This option can also terminate the retrieval transaction immediately and, therefore,
release any locks that it may have acquired. (You may want to specify a distinct transaction for the
lookup.)

Limit: Valid for REFERENCE files only.

CACHE [n]

Specifies that QUICK is to maintain more primary or detail record buffers than can be displayed
on the screen. These record buffers may be accessed programmatically by the screen designer and
browsed by the screen user.

130 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

If you do not specify CACHE, the cache size is set to the number of occurrences as specified with
the OCCURS option for this record structure. If the OCCURS option is not used, the size of the
cache is set to one.

Limit: This option may only be used with either the PRIMARY or a DETAIL record structure, but
not both.

n
Specifies the upper limit for the number of record buffers in the cache. If you are concerned that
the size of the record combined with the associated detail and secondary records will use excessive
memory, use this option to specify an upper limit.

If not specified, QUICK sets the size based on the current requirements and will grow dynamically
up to 255 record buffers.

The minimum size of the cache is the number specified on the OCCURS option. If this option is
not used, the minimum size is one.

Limit: 1 to 255

For more information about the CACHE option, see Scrolling Records on (p. 140).

CLOSE

Closes the file when leaving the current screen for a higher-level screen. If the file is opened on a
higher-level screen, the CLOSE option has no effect.

COUNT [NEGATIVE] [INTO] item1 [,[NEGATIVE] [INTO] item2]...

Uses the named items to maintain a count of the data records entered into this file. The named
items should normally be in record-structures in higher-level MASTER files, so the proper value is
maintained from one screen to the next.

The count is automatically incremented when data records are entered and reduced when data
records are deleted. For record-structures in DELETE files, the count is decremented when the
record-structure is actually updated (that is, when the PUT verb is executed). The NEGATIVE
option reverses these activities. INTO is used only for documentation.

Limit: The maximum number of items that can be counted into is 21.

MYVIEW

Overrides the current screen's default view of the record-structure. This option is used when there
is more than one data record type (for example, as in files with more than one record-structure) in
the file and the screen is receiving the record-structure from a higher-level screen that has a
different view of the data record. The MYVIEW option can also be used with the same data
record layout to allow processing specific to that screen's copy of the data record. When used with
record-structures in MASTER files, the MYVIEW option tells QUICK to ignore ITEM FINAL
options and record-structures in AUDIT files from higher-level screens. When the MYVIEW
option isn't used, ITEM FINAL options and record-structures in AUDIT files are ignored on
lower-level screens.

NEED n|ALL

Places the specified number of data records (n or ALL) on file, regardless of the current data
record status. This option causes the PUT verb to treat the data record as changed, even if it isn't.
To have any effect, the PUT verb must still be executed for the NEED option. This option can be
used to add blank data records or data records with initial and final values only.

Limit: Valid for record-structures in PRIMARY, SECONDARY, DETAIL, and DESIGNER files.
Also valid for record-structures in AUDIT files that have not had the WITH option of the FILE
statement specified.

n
Specifies the minimum number of occurrences of the data record to add to the file. At least this
many occurrences of data records must be declared on the screen.

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 131

ALL
Indicates that the number of data records to add to the file is the number of data records of this
file declared on the screen (as specified by the OCCURS option).

NOAPPEND

Suppresses the automatic generation of the APPEND procedure and PERFORM APPEND verb
for a record-structure in a repeating PRIMARY file. If this option is specified, Append processing
can't be used for the record-structures in the repeating PRIMARY file.

Limit: Valid only for record-structures in PRIMARY files.

NODELETE

Suppresses the automatic generation of a DELETE verb for this record-structure in the DELETE
and DETAIL DELETE procedures.

NOITEMS

Doesn't generate automatic initialization for items in this record-structure.

For more information on automatic initialization, see (p. 153).

OCCURS n [TIMES]
OCCURS WITH [ITEM] item |[FILE] record-structure

Repeats the data records on the screen.

n [TIMES]
Specifies the size of the occurrence window, that is how many record buffers in the cache are to be
displayed on the screen.

Limit: If caching is used, the OCCURS n option can only be used on one data structure. The
OCCURS n option must appear on the same data structure as the CACHE option. The range for n
is 1 to 255.

For more information about the OCCURS option and the record cache, see Scrolling Records on
(p. 140).

WITH [ITEM] item|[FILE] record-structure
Repeats the data records of this record-structure as many times as the specified record-structure or
item repeats on this screen.

OPEN [n|{EACH LEVEL}] [DBMODE n]|[access-type] [exclusivity] [GLOBAL]

Specifies the OPEN options.

n
Forces QUICK to perform a separate open for the file's associated record-structures, even if the
OPEN mode is otherwise compatible with a previous open.

Limit: 0 to 16

EACH LEVEL
Forces QUICK to perform a separate open for the file's associated record-structures at each screen
level where a screen refers to the record-structure. At each level, the open number is identical to
the screen level number.

For relational databases, the OPEN EACH LEVEL option assigns a transaction number to the
database read operations. As with files, the assigned transaction number is to be the same as the
screen level number.

Limit: OPEN n|EACH LEVEL are ignored for tables in ALLBASE/SQL databases.

132 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

File Opens for Relational Databases
The OPEN n and OPEN EACH LEVEL options of the FILE statement define a specific transaction
that QUICK uses for database access.

This method is obsolete and should not be used in new applications. Use of the TRANSACTION
statement is the recommended method.

DBMODE n (MPE/iX, UNIX, Windows)
Used to specify the open mode for IMAGE and Eloquence databases. IMAGE supports open
modes from 1 to 8. Eloquence accepts open modes from 1 to 9. The new mode, DBMODE 9, only
allows PowerHouse to read the database, but allows other concurrent users of the database to
read and update data. Eloquence only fully supports modes 1, 3, 8 and 9. All other modes are
mapped to one of these supported modes. This means that if a PowerHouse application uses
modes 2, 4, 5, 6 or 7, it might not give the same results with Eloquence as it does with IMAGE.

For more information about open modes, refer to your IMAGE or Eloquence documentation.

GLOBAL
By default, threads do not share file opens. This option lets another thread share a file open as
long as the GLOBAL option is used on the FILE statement on each screen and the OPEN numbers
are the same.

This option has no impact on relational transactions.

access-type
The access-type options are:

APPEND Opens a record-structure's associated file for write access only. Data records are
added to the file after any that already exist.

Limit: Not valid for indexed record-structures or relational tables.

CLEAR Opens a record-structure's associated file for write access only. The CLEAR
option deletes all data records in the file when processing begins.

Limit: Not valid for relational tables and indexed files

READ Opens a record-structure's associated file for read access only.

UPDATE Opens a record-structure's associated file for read and write access. The
UPDATE option allows existing data records to be updated in place.

Limit: Not valid for SEQUENTIAL files.

WRITE Opens a record-structure's associated file for write access only.

MPE/iX, UNIX, Windows: For direct, relative (MPE/iX), and sequential files,
the WRITE option deletes all data records in the record-structure when
processing begins. The file can be read and written to by others unless the
exclusivity option specifies otherwise.

OpenVMS: For direct, relative, and sequential files, records written overwrite
existing records starting at the beginning of the file. Any data not overwritten is
retained. The file cannot be read or written to by others until it is closed.

MPE/iX, OpenVMS, UNIX, Windows: For indexed files, adding a record that
has the same unique key value as an existing record causes the existing record
to be replaced. Adding a record with a new key value causes that record to be
added. Existing data is retained. The file cannot be read or written to by others
until it is closed.

Limit: Not valid for relational tables.

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 133

exclusivity
The exclusivity options are:

Default: SHARE

SIGNAL|NOSIGNAL [ON CLOSE] (OpenVMS)
SIGNAL sends (posts) an End-of-File (EOF) signal to the mailbox when the process closes the
file; NOSIGNAL does not.
Limit: Applies to Mailbox files (MBX) only.
Default: NOSIGNAL

TRANSACTION transaction_name [FOR {CONSISTENCY|
{[CONCURRENCY] phase-option[,phase-option]...}}]...

Defines transactions used for relational data structures.

TRANSACTION
Specifies that the transaction is associated with the relational table.

Full transaction support is only available in relational databases.

NOCOMMIT is used by the Query transaction of any screen that contains a MASTER file that
was passed to the screen.

transaction_name
Any valid PowerHouse name.

FOR CONSISTENCY
Determines that a relational data structure is associated with a particular transaction in
Consistency model.

Limit: Only one transaction association can be specified.

FOR [CONCURRENCY] phase-option [,phase-option]...
Determines that the relational data structure is associated with a particular transaction or
transactions in Concurrency model.

Limit: Up to three transaction associations can be specified, one per phase.

phase-option
Specifies the screen phase with which the transaction is associated.

EXCLUSIVE No other user or application can open the record-structure's associated
file. The file can't be opened again by the current or any other process
until it has been closed.

Limit: Not valid for sequential files (UNIX) or relational databases.

Limit: UPDATE EXCLUSIVE is not valid for DISAM files.

SEMIEXCLUSIVE
(MPE/iX,
OpenVMS)

No other user or application can open the record-structure’s associated
file for write access.

If the file is already opened for writing by either the current application
or another application, the SEMIEXCLUSIVE open fails and QUICK
issues an error message.

Limit: Not valid for relational databases.

SHARE Another user or application can open the record-structure's associated
file for read or write access.

134 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

The phase options are:

If no model is specified, as in the following example, the transaction is associated with the file for
all phases in all screen modes:
> FILE EMPLOYEES
> TRANSACTION QUERY

By default, all relational data structures are associated as follows:

WAIT|NOWAIT [ON SEND|RECEIVE|FULL] (OpenVMS)

WAIT specifies that the process waits for the message from the mailbox; NOWAIT does not.
When WAIT is specified without options, it is set for all subsequent options.

Default: NOWAIT

Limit: Applies to Mailbox files (MBX) only.

For more information about Mailboxes, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

ON SEND
WAIT ON SEND waits for the message sent to a mailbox to be received before returning control
to the process; NOWAIT ON SEND does not.

PROCESS The phase in which you are entering, correcting, or changing data records on the
screen.

QUERY The phase in which data is retrieved from the database.

UPDATE The phase in which data is updated.

Model Transaction Phase

Concurrency Query

Update

Update

Query1

Process

Update

Optimistic Query

Update
Query2

Update3

Consistency Consistency Consistency

Dual Query

Update

Update

Consistency

Query

Process

Update

Consistency

1Note that for a screen allowing only the activity FIND, by default read-only data structures are
associated with the Query transaction for all phases.
2All "read" activities are associated with the transaction associated with the Query phase. By
default, this is the Query transaction.
3All "write" activities are associated with the transaction associated with the Update phase. By
default, this is the Update transaction.

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 135

ON FULL
WAIT ON FULL specifies that if a message is sent to a full mailbox, the process waits until the
message can added before returning control to the process. NOWAIT ON FULL specifies that if a
message is sent to a full mailbox, that control be returned to the process immediately and an error
status is issued.

ON RECEIVE
WAIT ON RECEIVE indicates that when reading messages the process will wait for a message to
be posted if one is not already there. When using this option, an empty mailbox is not treated as
an End-of-Data condition; instead, and End-of-File condition is always processed as an
End-of-Data condition and could be used to control processing. NOWAIT ON RECEIVE specifies
that a message should be returned if one exists, but if the mailbox is empty, control should be
returned to the process immediately.

Discussion
The FILE statement is part of the data section of the screen design. It names a record-structure and
describes the relationship of that record-structure to the screen. The FILE statements for a screen
design describe the interface between the screen and the record-structures.

Files, Record-structures, and the Screen

The relationship between files, record-structures, and the screen can be further defined by the
ACCESS, ITEM, SELECT, and TARGET statements, each of which overrides FILE statement
options.

The ITEM statements must be declared on the screen where the file and record-structures are first
declared. If the file is received from a higher-level screen, the ITEM statements at this level are
ignored. If a file with the MYVIEW option specified is received from a higher-level screen, only
ITEM statements declared on the lower-level screen are valid.

Declaring Record-structures in the Correct Order

In the screen design, QUICK record-structure types should be declared in the following order so
that items can be initialized automatically with values from preceding files:
1. MASTER
2. PRIMARY
3. AUDIT associated with PRIMARY
4. DELETE associated with PRIMARY
5. SECONDARY associated with PRIMARY
6. AUDIT associated with SECONDARY
7. DELETE associated with SECONDARY
8. DETAIL
9. AUDIT associated with DETAIL
10. DELETE associated with DETAIL
11. SECONDARY occurring with DETAIL
12. other

The record-structures in MASTER, PRIMARY, SECONDARY, DETAIL, and DELETE files are
updated when the QUICK screen user updates the screen. Note, however, that record-structures in
DELETE files are updated only if the data records are marked for deletion. The record-structures
in AUDIT files are updated automatically with their related record-structures. The
record-structures in REFERENCE files are not updated.

The Relationship of PRIMARY and SECONDARY Record-structures

The major user activities of entering, finding, changing, and deleting data can be directed against
PRIMARY and closely-related SECONDARY record-structures' associated files.

136 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

Both PRIMARY and SECONDARY data records can be maintained from the same screen. The
situations under which this occurs can be termed extended record, inverted master, and fixed
SECONDARY records.

Extended Record

An extended record occurs when two record-structures are similar but the second record-structure
has different items. The record-structures may be partially redundant for historical reasons. The
extended record situation may also be one logical record that, for some reason, is split into two
physical records.

For example, assume that the file BRANCHES has two items: BRANCH and BRANCHNAME.
Another file, CONTRIBUTIONS, is indexed by BRANCH. However, CONTRIBUTIONS
includes information other than BRANCH, such as the date the branch was formed, contribution
number, and last year's contribution to company profit.

Both files can be declared in one screen design:
> SCREEN EXAMPLE
> FILE BRANCHES
> FILE CONTRIBUTIONS SECONDARY
Item BRANCH initialized (fixed) to BRANCH of BRANCHES.
> SKIP 1
> GENERATE NOLIST
> BUILD

Inverted Master

When the record-structures are in an inverted master situation, the subordinate record-structure is
of primary interest, while the record-structure normally in a primary role is of secondary interest.

A typical example would be two files, OWNERS and PATENTS; each owner may own many
patents but patents are of primary interest. The user won't want to go through a separate
OWNERS screen for every record of the PATENTS file. It's best to enter patents on a PATENTS
screen, look up and display the owner's name for validation, and update any new owner name
from the detail screen.

To do this, make the OWNERS file a secondary file and include the nodelete option, as in
> FILE OWNERS SECONDARY NODELETE

The NODELETE option prevents deletion of the OWNERS file record when the user deletes a
PATENTS file record (because the owner may have other patents). Owners must be deleted on the
OWNERS screen. New owners, however, can be added on the PATENTS screen.

The design for this inverted master looks like this:
> SCREEN PATENT
> FILE PATENTS
> FILE OWNERS SECONDARY NODELETE
Item OWNER initialized (fixed) to OWNER OF PATENTS.
> FIELD OWNER OF PATENTS LOOKUP ON OWNERS OPTIONAL
> FIELD OWNERNAME OF OWNERS IF NEWRECORD OF OWNERS

When the user enters a value for OWNER on the PATENTS screen, QUICK retrieves and displays
the related OWNERS file record. If no record exists, the user is prompted for a value of
OWNERNAME which gets updated on the OWNERS file.

Fixed Data Records

When a fixed number of SECONDARY records exist for every PRIMARY record, the user can
handle a transaction on one screen. The fixed number of SECONDARY records (per
SECONDARY file) associated with a PRIMARY record is physically limited by the screen display
capacity.

If the PRIMARY record-structure occurs more than once, however, the SECONDARY
record-structure must occur the same number of times. For example, either the PRIMARY
record-structure occurs once and the SECONDARY record-structures occur a fixed number of
times, as in:
> FILE A
> FILE B SECONDARY OCCURS 2

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 137

> FILE C SECONDARY OCCURS 6

or the PRIMARY record-structure repeats and the SECONDARY record-structures occurs on a
one-to-one basis with the PRIMARY, as in:
> FILE A OCCURS 3
> FILE B SECONDARY OCCURS WITH A
> FILE C SECONDARY OCCURS WITH A

Relating SECONDARY Record-structures to Repeating Record-Structures

You can relate SECONDARY record-structures to both the PRIMARY and the DETAIL
record-structures in the same screen design. To relate a secondary record-structure (or other types
of record-structures) to a detail record-structure, use the OCCURS WITH option of the FILE
statement. QDESIGN generates the correct procedures automatically. A SECONDARY
record-structure that is related to the primary record-structure is processed in the ENTRY, FIND,
and DELETE procedures. A SECONDARY record-structure that occurs with the DETAIL
record-structure is processed in the APPEND, DETAIL FIND, and DETAIL DELETE procedures.

Retrieval Assumptions for PRIMARY Record-Structures

QUICK prepares to retrieve data records from the PRIMARY file when the screen user specifies
Find mode in the Action field of the screen. The screen user can choose one of several retrieval
alternatives by supplying a value for any of the indexes in the primary record. If the screen user
doesn't specify a value, retrieval is sequential. Supplying values must be done in the PRIMARY
file.

The standard Find mode sequence prompts the screen user for a value for each segment of each
index in the primary data record. QDESIGN automatically provides the sequence for these values.
To get this prompt, a field (or fields) must exist on the screen into which the user can enter a
segment value. If QDESIGN can't find fields to prompt the user for a value (or values, for
multiple-segment indexes), a retrieval alternative for that index is not allowed.

QUICK retrieves PRIMARY data records based on the first complete segment value entered by the
user (in response to prompts in index fields). If the user simply presses [Return] in response to all
index field prompts, QUICK retrieves primary data records sequentially by default.

In a hierarchical screen relationship, retrieval alternatives are constructed for the PRIMARY
record-structure of the highest-level data screen only. For a hierarchical relationship to exist, the
values of lower-level PRIMARY file indexes are determined from values in MASTER file data
records passed from higher-level screens. If the files have identically-named items, QDESIGN can
establish the retrieval mechanism without any help.

In more complex situations, such as where the names of items don't agree, or where a calculation
must be performed, you must supply an access statement. For instance, if the skills
record-structure is indexed by employee (an item in the employees record-structure), QDESIGN
automatically constructs a retrieval mechanism for the skills record-structure based on the value
of the item employee in the employees record-structure, as in
> SCREEN SKILL RECEIVING EMPLOYEES
> FILE EMPLOYEES MASTER
> FILE SKILLS
Item EMPLOYEE initialized (fixed) to EMPLOYEE of EMPLOYEES.

But if the segment has different names in the employees and skills record-structures, QDESIGN
can't establish the retrieval mechanism automatically. If the item is named employeeno in the
employees record-structure and employee in the skills record-structure, you can supply this
information with an access statement, as in
> SCREEN SKILLS RECEIVING EMPLOYEES
> FILE EMPLOYEES MASTER
> FILE SKILLS
> ACCESS VIA EMPLOYEE USING EMPLOYEENO OF EMPLOYEES

An alternative design to supply the same information is:
> SCREEN SKILL RECEIVING EMPLOYEES
> FILE EMPLOYEES MASTER
> FILE SKILLS
> ITEM EMPLOYEE &
> INITIAL EMPLOYEENO OF EMPLOYEES FIXED

138 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

> ACCESS VIA EMPLOYEE

In this case, the item EMPLOYEENO's current value from the EMPLOYEES record-structure is
put directly into the record buffer for the item EMPLOYEE with an ITEM statement. Access is
performed using this value. The ITEM statement makes the USING option unnecessary.

The number of primary data records retrieved depends on the occurs option. In this example,
> FILE EMPLOYEES OCCURS 2

QUICK retrieves primary data records two at a time.

QUICK always requires retrieval of at least one primary data record. If no primary data record
exists, processing of the transaction doesn't proceed.

Retrieval Assumptions for SECONDARY Record-Structures

The retrieval of secondary data records is based on retrieval of the primary data record. Once a
primary data record is retrieved, secondary data records are retrieved based on identically-named
items in PRIMARY and MASTER files. This retrieval is assumed to be optional in the FIND
procedure. Retrieval of secondary data records in other situations (such as by a lookup) isn't
optional.

Retrieval Assumptions for MASTER Record-Structures

Data records for a MASTER record-structure are assumed to have been retrieved on a higher-level
screen. If not specified, passed record-structures are assumed to be MASTER record-structures.

Retrieval Assumptions for REFERENCE Record-Structures

The retrieval from REFERENCE files is unique, such that retrieval always gets the first data
record of the chain. Although automatic retrieval is assumed to be optional, other types of
retrieval are required.

Automatic Retrieval of REFERENCE Record-Structures

A slightly different process occurs for what is called "automatic retrieval" of data records from
REFERENCE record-structures' associated files. In the following situation,
> FILE EMPLOYEES
> FILE POSITIONS REFERENCE
.
.
.
> FIELD POSITION LOOKUP ON POSITIONS
> FIELD POSITIONTEXT DISPLAY ID SAME

no explicit retrieval information is specified. However, QUICK can construct retrieval information
to perform the lookup using the third method of record retrieval, described previously. QUICK
determines that the linkitem POSITION of the POSITIONS record-structure is also an item of the
PRIMARY record-structure, and uses the current value of the item POSITION to perform the
lookup. The current value of POSITION is provided when the user enters a value in the
POSITION field on the screen. Since the appropriate data record from the POSITIONS file will be
brought into the record buffer for the lookup, the display of the item POSITIONTEXT from that
data record can take place directly.

The situation changes in Find mode. When displaying retrieved data in Find mode, no lookups
take place. As a result, the REFERENCE file is not retrieved. In this case, QDESIGN performs an
"automatic retrieval". This data is retrieved in the following manner:
1. QUICK looks for an ACCESS statement associated with the REFERENCE record-structure.
2. If there is no ACCESS statement, QUICK looks for retrieval information specified with the

first LOOKUP ON option or GET verb associated with the record-structure.
3. If retrieval specifications from steps 1 and 2 are not available, then QDESIGN attempts to

match a linkitem of the REFERENCE record-structure with an identically-named item in a
PRIMARY, SECONDARY, or MASTER record-structure declared on the screen. A LOOKUP
has an implied USING which is used if no overriding USING option is given.

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 139

Multiple Retrieval Methods for REFERENCE Record-Structures

Automatic retrieval of REFERENCE files can lead to unexpected results if multiple retrievals
(through either the LOOKUP option or the GET verb) are performed on the same REFERENCE
file using different retrieval methods to display or to reference data.

For example, if two fields have LOOKUP options on the same REFERENCE file using different
indexes, both lookups are done as expected and the two fields are validated. However, if you
attempt to display data from the two lookups, you will not get the expected results. Referencing
the REFERENCE record-structure items causes automatic retrieval to be performed using the
automatic retrieval method established in QDESIGN.

In the following screen design, the first LOOKUP option establishes the automatic retrieval
method via the linkitem EMPLOYEE, using EMPLOYEE of EMPLOYEES:
> FILE NAMEINDEX PRIMARY
> FILE EMPLOYEES REFERENCE
> FIELD EMPLOYEE OF NAMEINDEX LOOKUP ON EMPLOYEES
> FIELD BRANCH OF EMPLOYEES DISPLAY
> FIELD LASTNAME OF NAMEINDEX LOOKUP ON EMPLOYEES
> FIELD FIRSTNAME OF EMPLOYEES DISPLAY

If (in the entry sequence) the user enters values for EMPLOYEE and LASTNAME that retrieve
different EMPLOYEES records, the values for BRANCH and FIRSTNAME are both taken from
the EMPLOYEES data record that corresponds to the first retrieval (using the item EMPLOYEE).
The sequence of events can be described as follows:
1. The user enters a value for EMPLOYEE. QUICK attempts to retrieve an EMPLOYEES data

record using the value in EMPLOYEE. If retrieval succeeds, processing continues; otherwise,
the user is reprompted at the EMPLOYEE field. Since this is the first retrieval of the
REFERENCE file for the transaction, the value QUICK uses to retrieve the EMPLOYEES data
record becomes the value for automatic retrieval. The index for automatic retrieval (via
EMPLOYEE) and where to get the value (using EMPLOYEE OF NAMEINDEX) is
established by QDESIGN when the screen is built.

2. When the item BRANCH is referenced for display, QUICK compares the value established for
automatic retrieval with what is in the buffer for the EMPLOYEES file. If the value is the
same, QUICK does not have to retrieve an EMPLOYEES data record based on automatic
retrieval, since it already has the correct data record. QUICK then displays the value for
BRANCH.

3. The user enters a value for LASTNAME. QUICK attempts to retrieve an EMPLOYEES data
record using the value in LASTNAME. Since no REFERENCE file item is being referenced,
automatic retrieval is not performed, and retrieval proceeds normally based on the value in
LASTNAME. If the retrieval succeeds, processing continues; otherwise, the user is
reprompted at the LASTNAME field.

4. When the item FIRSTNAME is referenced for display, QUICK compares the value for
EMPLOYEE that was established for automatic retrieval (in step 1) with the value in the
buffer for the EMPLOYEES file. If the value is the same, the value for FIRSTNAME is
displayed. If the value is different, QUICK retrieves the EMPLOYEES data record it first
retrieved in step 1, and displays the value of FIRSTNAME from that data record.

If values from different retrieval paths must be displayed, the REFERENCE record-structure must
be declared once for each different path using the ALIAS option on the FILE statement. An
alternative is to use a DESIGNER record-structure to display values from different retrieval paths.
Since there is no automatic retrieval for files other than REFERENCE files, the DESIGNER
record-structure need only be declared once. However, if data is required for display in Find or
Select mode, you must retrieve the required DESIGNER file data records by using a POSTFIND or
DETAIL POSTFIND procedure, because QUICK does not retrieve these records automatically.

Retrieval Assumptions for DESIGNER Record-structures

The retrieval of data records from DESIGNER files is unique (similar to a ’GET first’), preventing
the retrieval of data records down a chain. When you use FOR loop processing with a DESIGNER
record-structure that has a repeating index, only the first data record in a chain is retrieved. Use
WHILE RETRIEVING to read down a chain.

140 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

Retrieval Assumptions for DELETE Record-structures

When updating a DELETE file, QUICK makes successive reads and deletions of data records in
the DELETE file using matching index values. QUICK continues to read and delete these records
until no more related records are found. As with hierarchical relationships, retrieval for data
records from DELETE files is constructed automatically, based on identically-named items in
previously-declared files. Retrieval from DELETE files is always optional.

Using the TRANSACTION Option

If you use the TRANSACTION option but do not specify any transaction association option (or
do not include an explicit phase list), then it is assumed that the transaction is to be used during all
screen phases for database activities involving the file. For example,
> FILE EMPLOYEES IN LIFE &
> TRANSACTION MYTRANSACTION

For the Concurrency model, several transactions may be associated with one file, with each
transaction being used for specific phases of screen processing, as in:
> FILE EMPLOYEES IN LIFE DETAIL &
> TRANSACTION QUERY FOR QUERY, PROCESS &
> TRANSACTION MYUPDATE FOR UPDATE

Restrictions on Passed Files
All received files at execution-time inherit the transaction (and its characteristics) that was
associated with that file on the parent screen at the time the subscreen was called. A received file
cannot be associated with a new transaction (or new transaction characteristics) on a subscreen.

Closing Relational Files

We recommend that you do not use the CLOSE verb (distinct from the SQL CLOSE) or the
CLOSE option of the FILE statement on relational tables. The results are unpredictable if there are
any uncommitted transactions related to the table or database when the CLOSE is performed.

When a CLOSE verb or option is used, QUICK will immediately commit all transactions against
that database (not just the ones associated with the table), and logically detach from the database.
If errors are encountered, a rollback is attempted, and rollback pending does not apply.

This behavior can affect performance, since the attach must be re-established before work can
continue against that database. It may also affect data integrity, since unrelated transactions may
be committed as a result of the CLOSE. In addition, if there are other physical databases involved
in the same PowerHouse transaction, committing the transactions against only one database may
result in inconsistent data.

If your intent is to commit one or more transactions, then we suggest you use the COMMIT verb.
For more information, see the COMMIT verb on (p. 380) and the ROLLBACK verb on (p. 465).
See also information about the transaction control options available on the SCREEN, FILE,
FIELD, and TRANSACTION statements.

Subfile Support in QUICK and QDESIGN

Subfiles can be used in the same places and in the same way as direct files. They can be read either
sequentially or by record number. New records can be added to the end of the subfile. Existing
records can be overwritten. Records cannot be deleted once they've been added to the subfile.
QUICK and QDESIGN use subfiles created by QUIZ and QTP; they cannot create subfiles.

Scrolling Records

The CACHE option specifies that QUICK creates a cache of record buffers to store retrieved and
entered data records. As data records are found, QUICK automatically moves data records in and
out of the cache. As the size of the cache may be larger than the number of occurrences displayed
on the screen (as controlled by the OCCURS n option), users may scroll backwards and forwards
through the cache, allowing them to view previous data records that have been scrolled off the
screen.

Chapter 3: QDESIGN Statements
FILE

QDESIGN Reference 141

For a cached primary record structure, users can scroll backwards and forwards through primary
records retrieved by the FIND procedure. Scrolling is also supported for primary data records
entered by way of the ENTRY and APPEND procedures.

For a cached detail record structure, users can scroll backwards and forwards through the detail
records retrieved by the DETAIL FIND procedure associated with an individual primary record
structure. Scrolling is also available for detail records entered by way of the APPEND procedure.

For more information about cached records, see (p. 57).

Caching Restrictions
The CACHE and OCCURS options have the following restrictions:
• The CACHE option can be used on either a PRIMARY or a DETAIL record structure but not

both.
• A DETAIL record structure cannot be declared on the same screen as a PRIMARY record

structure that has either the CACHE or OCCURS n option.
• If caching is used, the OCCURS n option can only be used on one record structure. The

OCCURS n option must appear on the same record structure as the CACHE option.

If you want to cache a single PRIMARY record-structure, you need to indicate to QDESIGN what
fields are to be scrolled by using the CLUSTER statement.

For example, if you have the screen:
> SCREEN ORDERS
> FILE ORDERS
> FIELD ORDER_NUMBER
.
.
.

you can modify the screen as follows:
> SCREEN ORDERS
> FILE ORDERS CACHE
> CLUSTER OCCURS WITH ORDERS
> FIELD ORDER_NUMBER
.
.
.

If you do not add the CLUSTER statement, QUICK will cache the PRIMARY record structure but
has no mechanism to determine how and what to scroll. Consequently, QUICK Action commands
such as NEXT RECORD and PREVIOUS RECORD do not work as expected.

Using Caches with Subscreens and Threads
A subscreen or thread may have an active cache independent of any cache created on the calling
screen. Upon return to the calling screen, the cache for the calling screen is active. The cache for
the subscreen is deleted when the screen is exited. For thread screens, QUICK maintains any
caches that are in use, when the user toggles between screens.

Examples
The following QDESIGN statements track the frequency of deposits into an employee's pension
fund.
• EMPLOYEES is the PRIMARY record-structure. NODELETE prohibits screen users from

deleting EMPLOYEES records by suppressing the generation of a DELETE verb for the
EMPLOYEES record-structure.

• BENEFITS is labeled SECONDARY because a screen can have only one primary
record-structure, which in this case is EMPLOYEES.

> SCREEN PENSION
>
> FILE EMPLOYEES NODELETE
>
> FILE BENEFITS SECONDARY

142 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
FILE

>
> FILE PAY DETAIL OCCURS 10 &
> COUNT INTO PENSIONPERIODS &
> OF BENEFITS

The use of a detail file allows an employee with one data record in the employees record-structure
to have multiple data records in the pay record-structure. The occurs option sets the number of
times that the pay record-structure is displayed on the screen for data entry, in this case, 10. The
count into option calculates the number of data records added to the pay record-structure and
stores the number in the pensionperiods item of the benefits record-structure.
> FILE EMPDET REFERENCE
> ACROSS VIAINDEX EMPLOYEENUMBER &
> USING EMPLOYEENUMBER

The following EMPDET record-structure allows for data validation with LOOKUP ON options
of FIELD statements. For more information, see the FIELD statement on (p. 105).
• Data from the EMPDET record-structure can also be displayed. By default, write and delete

access are not available for a record-structure in a REFERENCE file.
• Data records in the SKILLS record-structure are marked for deletion if corresponding data

records in the PAY record-structure are deleted.
> FILE SKILLS DELETE OCCURS WITH PAY
>
> TITLE "Employee Benefits" AT 1,30
> DRAW FROM 7,1 TO 9,80
> DRAW FROM 15,1 TO 15,80
> SKIP 2
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD CITY OF EMPLOYEES
> FIELD EMPLOYEEAGE OF EMPDET &
> DISPLAY
>
> HILITE TITLE INVERSE
> TITLE "Pay Period Pension" AT 8,4
> TITLE "Pay Period Pension" AT 8,44
> SKIP 1
>
> ALIGN (1,,4) (,,22)
> CLUSTER OCCURS WITH PAY FOR 1,40 VERTICAL
>
> FIELD PAYPERIOD OF PAY
> FIELD PENSIONTOTAL OF BENEFITS
> CLUSTER
> BUILD
SKILLS accessed via EMPLOYEENUMBER.
BENEFITS accessed via EMPLOYEENUMBER.
PAY ACCESSED VIA EMPLOYEENUMBER.

In this example, the AUTOCOMMIT option ensures that the most recently committed branch
information is available. The LOOKUP transaction is defined separately to allow the lookups to
be independent of the processing of the EMPLOYEES record. Without a separate transaction, the
Query or Update transaction is committed.
> SCREEN EMPLOYEES
> TRANSACTION LOOKUP READ ONLY
> FILE EMPLOYEES IN LIFE
> FILE BRANCHES IN LIFE REFERENCE &
> TRANSACTION LOOKUP AUTOCOMMIT

Several transactions may be associated with one file (this is the default for Concurrency), with
each transaction being used for specific phases of screen processing.

If you use the TRANSACTION option but do not specify any transaction association option (or
do not include an explicit phase list), then it is assumed that the transaction is to be used during all
screen phases for database activities involving the file.

Chapter 3: QDESIGN Statements
GENERATE

QDESIGN Reference 143

GENERATE
Generates FIELD statements.

Syntax
GENERATE [DETAIL|NODETAIL] [LIST|NOLIST]

DETAIL|NODETAIL

DETAIL writes the results of the GENERATE statement, rather than just the GENERATE
statement itself, to QDESIGN's temporary source statement save file: QKSAVE (MPE/iX) or
qksave.qks (OpenVMS, UNIX, Windows).

NODETAIL writes just the GENERATE statement to the temporary source statement save file.

Default: DETAIL

LIST|NOLIST

LIST causes QDESIGN to display the results of the GENERATE statement on your terminal;
NOLIST doesn't.

Default: LIST

Discussion
The GENERATE statement is part of the layout section. It is a designer convenience that
automatically generates FIELD statements for all items in the declared PRIMARY, SECONDARY,
and DETAIL files.

The GENERATE statement has no effect on a slave screen.

General Rules for Generating Items

When selecting items to generate in fields, QDESIGN follows three basic rules:
1. The last redefinition of an item (or the substructure of that redefinition) is generated as a field,

or
2. The first substructures of an item are generated as fields, or
3. The item is generated as a field.

Assumptions Made by the GENERATE Statement

The GENERATE statement makes the following assumptions:
• The LOOKUP NOTON option is generated for segments of any unique index. If a field is a

segment of a unique index of either a PRIMARY or SECONDARY record-structure,
QDESIGN generates this field and all subsequent fields in index order. If the unique index is
made up of multiple segments, QDESIGN groups all the related segments together under the
same number and applies the LOOKUP NOTON option to the last segment generated in this
manner. If segments of other unique indexes are encountered during this process, the other
segments of those indexes are grouped under the same ID-number as well.

• All lookups generated for indexes made up of multiple segments also contain a USING
expression list that names the segments as values. This method ensures that the GENERATE
statement builds in the same order as record items.

• If the designer has not specified an alignment, and if there are more fields generated than can
fit on the screen using the default alignment, the alignment generated is

• (ID 1, LABEL 4, DATA 21) (ID 41, LABEL 44, DATA 61)
• QDESIGN generates the REQUIRED and NOCHANGE options for a field that corresponds

to an index or index segment.
• QDESIGN generates the CHARACTER FOR 1,18 option for a field that is a blob datatype.

144 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
GENERATE

• If a data entry field is too long for the screen, the SIZE option and an applicable value are
automatically included in the FIELD statement. The field size truncates to comply with screen
limits.

• If there is a record-structure in a REFERENCE file, QDESIGN examines the indexes in that
record-structure in the sequence established in the data dictionary. It looks for a segment that
matches one of the items of the record-structure in the PRIMARY file and generates a
LOOKUP ON option.

• A CLUSTER statement is generated for a record-structure in a PRIMARY, DETAIL or
SECONDARY file with multiple occurrences.

Automatic Exclusion of Null Values in QDESIGN

The GENERATE statement automatically assigns field attributes that correspond to the database
integrity constraints. If you use GENERATE to produce the FIELD statements for a QUICK
screen for a relational data structure, QDESIGN generates the NULL VALUE NOT ALLOWED
attribute for fields that correspond to database columns with the NOT NULL attribute. QUICK
doesn't accept the entry of a null value in that field.

Generating the REQUIRED Option in the GENERATE Statement versus the NULL VALUE NOT
ALLOWED Option in the FIELD statement

QDESIGN automatically generates the REQUIRED option for all fields that correspond to
relational items on which indexes are declared. The FIELD statement option, NULL VALUE NOT
ALLOWED applies only to items in relational data structures, and prevents you from entering the
null value character in the field. The REQUIRED option prevents you from entering a null
response (that is, simply pressing [Return]) to a field prompt.

If you specify the NULL VALUE NOT ALLOWED option without the REQUIRED option for a
field that allows null values, then if you enter a null response, QUICK places a null value in the
field. The NULL VALUE NOT ALLOWED option only prohibits you from entering null values
directly. To prevent QUICK from supplying unintended null values, specify REQUIRED with
NULL VALUE NOT ALLOWED.

The GENERATE Statement and Clusters

For screens with repeating PRIMARY, SECONDARY or DETAIL record-structures, QDESIGN
automatically generates CLUSTER statements. Similarly, for items that are defined with multiple
occurrences in the data dictionary, QDESIGN generates a CLUSTER statement for that item's
FIELD statement if the file that contains the item doesn't itself occur.

Examples
The following example illustrates how the GENERATE statement automatically creates FIELD
statements. In this example:
• Everything following the GENERATE statement is created by QDESIGN.
• QDESIGN automatically generates FIELD statements for all items in the record-structures

accessed by the screen.
• REQUIRED NOCHANGE and LOOKUP NOTON are generated for segments in indexes for

the PRIMARY record-structure.
> SCREEN PARTBASE
> FILE PARTS PRIMARY
>
> GENERATE
>
> FIELD PARTNUMBER OF PARTS REQUIRED NOCHANGE
> FIELD PARTVARIANT OF PARTS ID SAME
> REQUIRED NOCHANGE &
> LOOKUP NOTON PARTS &
> VIA PARTNUMBER, PARTVARIANT &
> USING PARTNUMBER OF PARTS, &
> PARTVARIANT OF PARTS
> FIELD PARTNAME OF PARTS
> FIELD QOH OF PARTS

Chapter 3: QDESIGN Statements
GENERATE

QDESIGN Reference 145

> FIELD UNITCOST OF PARTS
> FIELD UNITMARKUP OF PARTS

The following example illustrates the GENERATE statement with a DETAIL record-structure that
occurs 5 times. In this example:
• GENERATE DETAIL causes QDESIGN to write all generated statements to QDESIGN's

temporary save file.
• CLUSTER statements are generated for the fields in the repeating DETAIL file.
> SCREEN INVBASE
> FILE INVOICEMASTER PRIMARY
> FILE INVOICEDETAIL DETAIL OCCURS 5
>
> GENERATE DETAIL
>
> FIELD INVOICENUMBER OF INVOICEMASTER &
> REQUIRED NOCHANGE &
> LOOKUP NOTON INVOICEMASTER
> FIELD ORDERNUMBER OF INVOICEMASTER REQUIRED NOCHANGE
> FIELD DATEYEAR OF INVOICEMASTER
> FIELD DATEMONTH OF INVOICEMASTER
> FIELD DATEDAY OF INVOICEMASTER
> CLUSTER OCCURS WITH INVOICEDETAIL
> FIELD PARTNUMBER OF INVOICEDETAIL REQUIRED NOCHANGE
> FIELD PARTVARIANT OF INVOICEDETAIL REQUIRED NOCHANGE
> FIELD QUANTITYSHIPPED OF INVOICEDETAIL
> CLUSTER

It's common practice to allow QDESIGN to generate a basic screen design for your application.
You can save this design and modify it during a later QDESIGN session.

146 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
GO

GO
Runs QUICK from QDESIGN.

Syntax
GO [filespec]

filespec

Names either a QUICK screen to execute or a QKGO file.

If the procloc program parameter was used when initiating QDESIGN, it is also used by QUICK
to find the QUICK screen or the QKGO file.

If no screen or QKGO file is specified, the current screen design or the last screen compiled is
processed.

Discussion
The GO statement allows you to run QUICK from within QDESIGN.

Entering a GO Statement before the BUILD Statement

The GO statement doesn't save the screen permanently. Entering the GO statement before a
BUILD statement causes QDESIGN to construct procedures based on the design statements and
store the compiled screen in a temporary file. In such cases, the DETAIL, LIST, NODETAIL, and
NOLIST options are no longer valid on a BUILD statement. Once procedures are generated (by
the GO statement), they are not regenerated by the BUILD statement.

Use the BUILD statement to save the compiled screen permanently.

Chapter 3: QDESIGN Statements
HILITE

QDESIGN Reference 147

HILITE
Assigns highlighting features to screen entities.

Syntax
HILITE object [highlight-option...] [,object [highlight-option...]]...

object

Specifies what is highlighted. The object can be one or more of the following:

Screen Object Default Notes

ACTIONBAR Inverse Halftone

ACTIONBARMARK Off

ALL Highlights all objects. If used, no other screen
object can be chosen.

BACKGROUND Off

DATA Highlight to use when prompting or displaying
fields (a combination of DISPLAY, EDIT, INPUT,
and REQUEST).

DISPLAY Off Highlight to use when displaying fields.

EDIT Highlight to use after the user enters an incorrect
value in the field.

ERROR Off Highlights error messages in the message line.

FIELDMARK Inverse Halftone

FIELDPOPUPBORDER Off

HELP Off

HELPBORDER Off

ID Off

INFORMATION Off Highlights informational messages when
displayed on the message line.

INPUT Off Highlight to use when the user is prompted in the
field to enter data in Entry, Change, and Correct
mode.

LABEL Off

LINEDRAWING Off

MENU Off

MENUBORDER Off

MENUKEYS Underline Highlight to use for the Menukey.

MENUMARK Inverse Halftone

148 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
HILITE

highlight-options

Specifies the highlighting options used for a given highlight-object. Multiple highlights can be
used.

Limit: If either the DEFAULT or the OFF option is specified, none of the other highlighting
options can be used.

AUDIBLE
Sounds the terminal bell (or its equivalent) when displaying messages of the associated type of
error level (INFORMATION, WARNING, ERROR, SEVERE) or greater.

Limit: Applies only to messages.

BLINKING
Highlights the object with blinking.

Limit: Not supported on Windows.

color [ON color]
Highlights the specified object or group of objects in the specified color. You can specify any the
following colors:

MESSAGE Off Highlights messages when displayed on the
message line. MESSAGE states that all message
types are to be highlighted.

MESSAGEBORDER Off

MODE The DISPLAY highlight option in effect when
BUILD is entered.

REQUEST Inverse Halftone Highlight to use when the user is prompted in an
index segment field in Find mode or prompted in
this field in Select mode when defining retrieval
criteria.

SELECTBOX Off

SELECTBOXBORDER Off

SELECTBOXMARK Inverse Halftone

SEVERE Off Highlights severe messages when displayed on
the message line.

TITLE Off

WARNING Off Highlights warning messages when displayed on
the message line.

Screen Object Default Notes

highlight-options

AUDIBLE BLINKING color

DEFAULT HALFTONE INVERSE

OFF UNDERLINE

color options

BLACK BLUE CYAN

Chapter 3: QDESIGN Statements
HILITE

QDESIGN Reference 149

The first color applies to the highlighted screen object and the ON color applies to the
background. Windows: The ON color option is not supported, as the background color is set by
the Command Console window properties.

Limit: The background is fixed on HP color terminals and the ON option is ignored.

DEFAULT
Applies default highlighting to the object. For more information on the defaults, see the HILITE
statement on (p. 147).

Limit: If the DEFAULT option is chosen, none of the other highlighting options can be used.

HALFTONE
Highlights the object with half intensity or alternative intensity, depending on the terminal type.

Limit: Not supported on Windows.

INVERSE
Highlights the object with inverse video. Inverse video reverses normal background and
foreground settings.

OFF
Cancels highlighting.

Limit: If the OFF option is chosen, none of the other highlighting options can be used.

UNDERLINE
Highlights the object with an underline.

Limit: Not supported on Windows.

Discussion
The HILITE statement must come before the feature it affects.

The Action field highlighting defaults to the field highlighting options in effect in the screen design
when the BUILD statement is entered.

Highlighting and Hardware Limitations

If you use a terminal that doesn't have a specific highlighting option available at execution-time,
that highlighting option is ignored.

Highlighting and Color (Windows)

Although a Command Console window is capable of displaying sixteen colors, QDESIGN only
recognizes eight colors and, as such, QUICK will only use eight colors. These are red, green, blue,
cyan, yellow, magenta, white, and black.

QUICK on Windows ignores the underline, halftone, and blinking QDESIGN highlight options.
Inverse highlighting is available.

Only the foreground color is controlled by QUICK even though QDESIGN supports the syntax
for the background color. QUICK uses the background color set by the Console window
properties.

Changing the background color when QUICK is executing will result in improper text coloring.

GREEN MAGENTA RED

WHITE YELLOW

color options

150 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
HILITE

Example
The following example demonstrates the use of the HILITE statement to assign different
highlighting features to objects on a screen:
> HILITE TITLE INVERSE HALFTONE
>
> DRAW 2,20 TO 5,60
>
> SKIP TO LINE 3
>
> TITLE "Future Industries" CENTERED
>
> HILITE &
> REQUEST INVERSE HALFTONE, &
> INPUT INVERSE, &
> DISPLAY INVERSE, &
> EDIT BLINKING

Statements such as the ones in the preceding example can be referenced in a USE statement for all
screens in a system. This results in a similar look for all screens in the system without having to
specify custom highlighting for each screen.

Chapter 3: QDESIGN Statements
ITEM

QDESIGN Reference 151

ITEM
Assigns values to items, or performs sums and balances on items.

Syntax
ITEM item [option]...

item

Specifies a record item or indicates a column in a relational table.

Limit: The ITEM statement isn't valid for temporary, defined, or predefined items.

Options
The ITEM options are BALANCE, FINAL, INITIAL, and SUM.

BALANCE [WITH] item2 [MESSAGE string|=string-expression|n]

Issues a warning message if the item named in the ITEM statement and items named in this option
don't contain equal values when the record is updated. A warning is also issued if a record is
displayed after retrieval in Find or Select mode and the user moves to the next record or returns
from the screen without making the values equal.

MESSAGE string|=string-expression|n
Allows you to specify a warning message. If a number is specified, QUICK searches for a message
in the designated designer message file, QKMSGDES (MPE/iX) or qkmsgdes.txt (OpenVMS,
UNIX, Windows).

For more information, see Chapter 4, "Messages in PowerHouse", in the PowerHouse Rules
book.

FINAL conditional-expression

Assigns a value to the named item. The value is calculated by this expression whenever the record
or relational table is updated. The expression can contain values that are determined by screen
processing.

If the GENERATE statement is used, no FIELD statement is generated for this item. If a FIELD
statement is added by the designer, any value entered into the field is overwritten when the
expression is evaluated.

The FINAL expression evaluation is performed during PUT verb processing if the NEED option of
the FILE statement has been declared or if the data record status is one of the following:
• old, changed, undeleted
• old, unchanged, undeleted
• new, changed, undeleted

INITIAL conditional-expression [FIXED]

Assigns a value to the named item. The value is calculated by this expression when the data record
is initialized. This value can be overridden by the QUICK screen user or designer. The INITIAL
expression evaluation doesn't affect data record status.

FIXED
Assigns a value to the named item. The value is calculated by the specified conditional-expression
when the data record is initialized and when the data record is updated. The FIXED option
incorporates the attributes of the INITIAL and FINAL options.

If the GENERATE statement is used, no FIELD statement is generated for this item. If a FIELD
statement is specified, the field is assumed to be display only.

152 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ITEM

OMIT

Indicates that the item is a read-only column and excludes it from relational database inserts and
deletes, as well as any checksum calculations. The OMIT option can be used in cases where
PowerHouse cannot determine that the column is read only. For example, ODBC may not return
sufficient information to determine the read status of a column. Read-only columns are columns
that are updated or controlled by the database such as computed columns or columns whose value
is calculated by a stored procedure. While PowerHouse can use the values from such columns, it
should not attempt to update them.

Including read-only columns in inserts or deletes can result in database errors. Including such
columns in checksum calculations can result in update errors due to a checksum mismatch. When
PowerHouse calculates the initial checksum on retrieval, it includes all columns not identified as
read only. If the database changes the value of the column, its changed value will cause the
checksum calculated on re-retrieval to be different than the one originally calculated.

The OMIT option must be the only option on the ITEM statement and the only option specified
for the item. A warning is issued if there are any other ITEM statements for the item and the
OMIT option takes precedence. This includes any generated automatic item initialization.

Limit: Ignored for non-relational items.

SUM [NEGATIVE] [INTO] item2 [WHEN POSITIVE|NEGATIVE]
[,[NEGATIVE] [INTO] item3 [WHEN POSITIVE|NEGATIVE]]...

Adds all values entered in the item named in the ITEM statement and maintains the total in the
item or items named in this option. This sum is automatically
• incremented when values are entered
• reduced when a data record containing the item is deleted
• adjusted when the value is changed

item2,item3
Names the item that hold the totals.

NEGATIVE
Reverses the incrementing and decrementing activities.

WHEN POSITIVE|NEGATIVE
Specifies that summing is to be performed only if the values are positive or only if the values are
negative.

Limit: The maximum number of items that can be summed into is six.

Discussion
The ITEM statement is part of the data section of the screen design. It's used to assign values, to
sum entered values into other items, and to balance values. To understand the difference between
the way PowerHouse and relational systems handle null values, see Chapter 1, "PowerHouse and
Relational Databases", in the PowerHouse and Relational Databases book. The INITIAL and
FINAL options override the corresponding portions of automatic initialization.

Multiple ITEM statements can be entered for a given item. All ITEM statements are processed in
the sequence in which they occur in the screen design.

The ITEM statement must be declared in the screen where the record-structure is first declared.
Any ITEM statements for record-structures passed down from a higher-level screen are ignored.
The reverse is true if the passed record-structure has the MYVIEW option specified. In that case,
only ITEM statements declared on the lower-level screen are recognized while on that screen.

Chapter 3: QDESIGN Statements
ITEM

QDESIGN Reference 153

Automatic Item Initialization

For screens that reference more than one record-structure, QUICK performs automatic
initialization of items at execution-time based on item name and type matches. At compile-time,
QDESIGN issues a message that indicates how items will be initialized at execution-time. The
message that's issued is equivalent to a designer-specified ITEM statement.

QDESIGN considers the kind of file in which an item occurs when it looks for matches for item
initialization. In addition to the file types that you can declare, there are two "composite" file
types that QDESIGN handles in a special way. These file types are:

For a relational database, the syntax option references the column in a table or view. The
BALANCE and SUM options may perform differently with a relational database (see the
PowerHouse and Relational Databases book).

DETAIL-SECONDARY a SECONDARY file that occurs with a DETAIL file

DETAIL-DELETE a DELETE file that occurs with either a DETAIL-SECONDARY
file or a DETAIL file

Item occurs in a file of type ... QDESIGN looks for matching items in ...

PRIMARY MASTER

DETAIL PRIMARY,

MASTER

DETAIL-SECONDARY DETAIL,

PRIMARY,

MASTER

SECONDARY PRIMARY,

MASTER

DETAIL-DELETE previously declared DETAIL-SECONDARY occurring
with same DETAIL,

DETAIL,

PRIMARY,

MASTER

DELETE previously declared SECONDARY (not occurring with
DETAIL),

PRIMARY,

MASTER

AUDIT related to DETAIL by
WITH option

related DETAIL,

previously declared DETAIL-SECONDARY occurring
with related DETAIL,

PRIMARY,

MASTER

AUDIT related to
DETAIL-SECONDARY

related SECONDARY,

DETAIL,

PRIMARY,

MASTER

154 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
ITEM

 When applying the rules in the preceding table, QUICK follows several additional rules that
eliminate potential ambiguity:
• Only previously-declared record-structures are considered for automatic item initialization.
• Automatic item initialization is established by matching item names and types. Items of type

DATE can match items of type DATE or type NUMERIC. Otherwise, the match must be
exact.

• As FIELD statements are generated or entered, QDESIGN checks for name and type matches.
If a match is found for an item, QDESIGN generates an ITEM statement that indicates how
the field for that item will be initialized at execution-time in QUICK.

• Once a name and type match for an item is found, no further matching is attempted.
• When searching for item name matches and more than one file of the same type has already

been declared, QDESIGN searches from the most-recently to the least-recently declared file.
• Files are searched in the order that's imposed by the file type, according to the rules specified

in the previous table. This is true regardless of the order in which files are declared.
• Using the OCCURS WITH option for an AUDIT file is equivalent to having declared both the

OCCURS WITH and the WITH options. The WITH option establishes a relationship
between files for automatic item initialization.

• QDESIGN doesn't attempt to initialize items in MASTER, REFERENCE, or DESIGNER
files.

• For DELETE files, only segments are initialized.
• QDESIGN doesn't attempt to initialize items in files that are declared with the NOITEMS

option.

Initializing Null Values

During item initialization in QUICK, relational items are initialized according to the following
precedence:
1. If there is an ITEM INITIAL option for the ITEM statement, the item is initialized to this

value.
2. If there is no ITEM INITIAL option, and an element exists in the dictionary that corresponds

to this item which has an initial value, the item is initialized to the element initial value.
3. If neither of the above is the case, the item is initialized to null if null is allowed for the item,

or it is initialized to default values (spaces for character items and zero for numeric).

AUDIT related to
DETAIL-DELETE

DELETE,

DETAIL-SECONDARY,

DETAIL,

PRIMARY,

MASTER

AUDIT related to file other than
DETAIL, DETAIL-SECONDARY,
OR DETAIL-DELETE

related file,

SECONDARY (excluding DETAIL-SECONDARY),

PRIMARY,

MASTER

AUDIT not related to another file DETAIL-SECONDARY,

DETAIL,

SECONDARY,

PRIMARY,

MASTER

Item occurs in a file of type ... QDESIGN looks for matching items in ...

Chapter 3: QDESIGN Statements
ITEM

QDESIGN Reference 155

When initializing items of one relational record-structure based on the items of another relational
record, a null value is copied provided the target item allows null values. Otherwise, the item is
initialized to default values.

When a non-relational data structure is initialized from a relational data structure and the source
item has a null value, the non-relational item is initialized to default values (spaces for character
items and zero for numeric and date).

Example
The following example sums the values of items and balances them with the values of other items.
In this example:
• The ITEM statement sets TODAY to the system date when the QUICK screen user invokes the

screen.
• The ITEM BATCHDEBITS statement generates a warning message if the value entered for

BATCHDEBITS isn't equal to TOTALDEBITS.
• Negative values for DETAILAMOUNT are added to TOTALCREDITS; positive values for

DETAILAMOUNT are added to TOTALDEBITS.
> SCREEN BATCH
>
> FILE BATCHHEADER
>
> ITEM TODAY INITIAL SYSDATE FIXED
>
> ITEM BATCHCREDITS BALANCE WITH TOTALCREDITS &
> MESSAGE &
> "Balance Error. Notify Accounting of batch number."
>
> ITEM BATCHDEBITS BALANCE WITH TOTALDEBITS MESSAGE &
> "Balance Error. Notify Accounting of batch number."
>
> FILE BATCHDETAIL SECONDARY
> ITEM DETAILAMOUNT SUM INTO TOTALCREDITS &
> WHEN NEGATIVE, &
> INTO TOTALDEBITS WHEN POSITIVE
>
> FIELD BATCHCREDITS
> FIELD BATCHDEBITS
> FIELD TOTALCREDITS DISPLAY
> FIELD TOTALDEBITS DISPLAY
> FIELD DETAILAMOUNT
> FIELD TODAY NOID NOLABEL DATA AT 1,70 &
> PREDISPLAY DISPLAY
>
> BUILD

156 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
KEY

KEY
Specifies a dynamic function key (DFK).

Syntax

n

Sets the number (n) of the DFK.

Limit: 32

LEVEL n

Identifies the shift level at which this function key definition is operative. The maximum number
of levels is set in QKGO.

Limit: 8

Default: 1

LOCAL

Specifies that the DFK definition for this key is not inherited by the subscreen. The subscreen
inherits the definition from the closest calling screen that does not have a LOCAL option attached
to the key and context in question.

LABEL string [SCREEN]

Specifies the label string for the DFK. On terminal screens that support function-key labels,
QUICK displays the specified label string for the DFK.

Limit: This option applies only to terminals that support function key labels.

Default: A blank

SCREEN
Specifies that the label string will be shared between action and data context. The label will
remain the same when QUICK is prompting in the Action field or in a data field. This option
eliminates context-sensitivity for the label it is assigned to.

BLOCKTRANSFER|NOBLOCKTRANSFER (MPE/iX)

Turns on the data transmitting feature of a DFK. For many actions, this is similar to pressing
[Enter] before pressing a function key, with the exception that the AUTOUPDATE screen option is
ignored.

NOBLOCKTRANSFER turns off the data transmitting feature of a DFK. Designers can use this
to prevent specific DFKs, such as those for screen refresh, from transmitting data.

Limit: BLOCKTRANSFER and NOBLOCKTRANSFER are valid only in Block mode.

Default: NOBLOCKTRANSFER

MPE/iX: KEY n [LEVEL n] [LOCAL]
[LABEL string[SCREEN]]
[BLOCKTRANSFER|NOBLOCKTRANSFER]
context-option conditional-command-list
|CANCEL|DISABLE|NULL

OpenVMS,
UNIX,
Windows:

KEY n [LEVEL n] [LOCAL]
[LABEL string [SCREEN]]
context-option conditional-command-list
|DISABLE|NULL

Chapter 3: QDESIGN Statements
KEY

QDESIGN Reference 157

context-option

Specifies in what context the DFK definition is operative. Depending on what context-option you
choose, the DFK can execute only Action commands, Data commands, or Action and Data
commands.

The context-options are ACTION, DATA, ACTION AND DATA, and DATA AND ACTION.

ACTION
Specifies that the DFK is usable only when QUICK is prompting in the Action field. In the
conditional command list, you can specify Action commands and/or Action and Data commands,
but not Data commands.

DATA
Specifies that the DFK is usable only when QUICK is prompting in a data field. In the conditional
command list, you can specify Data commands and/or Action and Data commands to be executed
in data fields. If these commands return the prompt to the Action field, then you can also specify
Action commands and/or Action and Data commands to be executed in the Action field.

Limit: Keys with only DATA context are valid only in Field mode.

ACTION AND DATA
DATA AND ACTION
Specifies that the DFK is usable when QUICK is prompting in the Action field or in a data field. In
the conditional command list, you can specify only Action and Data commands.

Limit: Any command options included as part of the DFK definition must be valid in both the
Action and data fields.

conditional-command-list

Specifies what command(s) the DFK executes and, optionally, under what conditions. The general
form of the conditional command list is:
command-list [IF condition

[ELSE command-list IF condition]...
[ELSE command-list]]

command-list
One or more commands separated by commas. The general form of a command list is:

command [, command]...
For a list of the available commands, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

condition
A condition is a logical test that has the general form:
[NOT] condition [AND|OR [NOT] condition]...

For more information about conditions or conditional command lists, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

CANCEL (MPE/iX)

Defines a DFK that a user can press to discard entries made to a screen. When this key is pressed
once, data transmission is turned off for the next DFK. If you press this key twice, DFKs with the
BLOCKTRANSFER option behave normally.

DISABLE

Specifies that there is no definition for the designated key on this screen, even if one was defined
on the calling screen. This option is inherited by any subscreen in the same way that definitions
and labels are inherited.

158 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
KEY

NULL

Initiates no direct action of its own.

Discussion
KEY statements must be in the data section of your screen design.

If you intend to use DFKs, you must use QKGO to create a suitable QKGO file for your
application. If you do not, QUICK does not interpret or act upon the DFK definitions that you
specify. However, there are three cases where QUICK does special processing that allows you to
experiment with dynamic function keys even though you have not created a QKGO file for them:
• If you run QUICK from QDESIGN with the GO statement and there is no QKGO file,

QUICK recognizes and processes KEY statements.
• If a screen name rather than a QKGO file name is included in the auto program parameter

when QUICK is started, QUICK recognizes and processes KEY statements.
• If the environment variable for QKGO points to a screen file, QUICK recognizes and

processes KEY statements.

In all three cases, QUICK assumes that it has a QKGO file with following parameter settings:

Function Key Support Mode, Dynamic

Function keys, 8

Shift Levels, 2

Labels Active, N

Bank Labels, N

Lock Function Keys, N

OpenVMS: By default, logical function key 1 maps to the physical function key GOLD_1, logical
function key 2 maps to the physical function key GOLD_2, and so on through to GOLD_8. You
can change these default mappings by using the Terminal Interface Configuration screen in
QKGO.

The following table illustrates, with examples, the rules that QUICK uses to determine the preshift
level. The table assumes that all functions used are defined at all eight shift levels.

This table shows the effects of the different shifting options. How the commands were entered (for
example, as part of a key or by other means, as discussed later) is not important for this example.

Initial
Level

Command
Sequence1 Effect

Command
Executed Final Level

1 SHIFT go to level 2

HELP execute level -2 HELP 1

1 SHIFT go to level 2

SHIFTLOCK go to level 3 3

SHIFT go to level 4

HELP execute level-4 HELP

1 KEYSHIFT 6 go to level 6 6

SHIFT go to level 7

SHIFT go to level 8

HELP execute level-8 HELP

Chapter 3: QDESIGN Statements
KEY

QDESIGN Reference 159

 Inheritance Rules

In a system of screens, a subscreen can inherit DFK definitions from calling screens. For example,
where screen A calls screen B which calls screen C, screen C can inherit key definitions from B and
any from A, if they were passed down to B and not changed at B. The B screen can inherit from A,
but not C.

Inheritance rules also apply to key definitions described in QKGO. For more information, see
(p. 255).

The QKGO file acts as the initial calling screen. The QKGO file passes its definitions down to the
first screen in a QUICK screen hierarchy.

The inheritance rule for key definitions is as follows: if a calling screen (at A) has a definition for a
given key and a subscreen (at B) does not have a definition for that key with the same shift level
and context, the subscreen inherits the definition from the calling screen.

Suppose that a calling screen has these key definitions:
> KEY 1 LABEL "Up one keylevel" &
> ACTION AND DATA SHIFT
> KEY 2 LABEL "Extended help" &
> ACTION AND DATA &
> EXTENDED HELP
> KEY 3 LABEL "Help" &
> ACTION AND DATA HELP
> KEY 4 LABEL "Refresh screen" &
> ACTION AND DATA REFRESH
> KEY 5 LABEL "Backup 1 field" &
> DATA BACKUP
> KEY 1 LEVEL 2 LABEL "Down one keylevel" &
> ACTION AND DATA SHIFT TO 1
> KEY 6 LEVEL 2 LABEL "Return to stop" &
> ACTION &
> RETURN TO STOP

and that the subscreen has only these definitions:
> KEY 4 LABEL "Update stay" ACTION UPDATE STAY
> KEY 5 LABEL "Update return" ACTION UPDATE RETURN

1 SHIFT go to level 2

KEYSHIFT 6 go to level 6 6

SHIFT go to level 7

HELP execute level-7 HELP

1 KEYSHIFT 6 go to level 6

SHIFT go to level 7

SHIFT go to level 8

SHIFTLOCK go to level 1 1

SHIFT go to level 2

HELP execute level-2 HELP

1The keyname in the command sequence (for example: SHIFT, HELP, SHIFTLOCK) is a
user-defined label.

Initial
Level

Command
Sequence1 Effect

Command
Executed Final Level

160 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
KEY

When the subscreen is invoked, its own level-1 definitions for keys F4 and F5 are in effect. In
addition, QUICK passes down the calling screen's level-1 definitions of keys F1, F2, and F3. When
the subscreen first appears, QUICK displays the following label information:

QUICK also passes down the level-2 definitions for F1 and F6. When the user presses F1, QUICK
shifts to level 2 and displays the following label information:

The level-2 functions are inherited from the calling screen.

When QUICK returns from the subscreen to a calling screen, it restores the DFK definitions that
were in effect on the calling screen when the user invoked the subscreen. QUICK does not pass
definitions from a subscreen to the calling screen.

Note that named DESIGNER procedures included in one screen design are not accessible from
other screens. Therefore, if a screen inherits a DFK definition that uses the DESIGNER command
option, QUICK treats the action in the inherited definition as invalid if it tries to execute it. This is
true even if there is an identically-named DESIGNER procedure defined on the subscreen. In order
to execute the DESIGNER procedure, the DFK definition must be defined on the same screen.

To invoke the same DESIGNER procedure from both a calling screen and a subscreen, include the
applicable KEY statement and the DESIGNER procedure in both screen specifications.

Overriding Inheritance Rules

In some instances, you may wish to create screens that do not pass function key definitions or
labels to a subscreen. To override the passing of a current DFK definition to subscreens, use the
LOCAL option of the KEY statement, as in
> KEY 1 LOCAL ACTION DESIGNER DOIT

The default DFK definition of a subscreen is the DFK definition on the closest calling screen that
does not employ the LOCAL option.

If you do not want a subscreen to inherit a definition from any calling screen, use the DISABLE
option on that subscreen. QUICK then treats the key/level/context on this subscreen as if no
definition had been created. The subscreen of a calling screen that employs a disabled DFK
inherits the DISABLE key definition. In other words, a DISABLE is inherited just like any other
DFK definition.

If you want to disable a DFK definition on a current screen and all subscreens (by default), use the
DISABLE option, as in
> KEY 1 ACTION AND DATA DISABLE

If you want to disable a DFK on the current screen, but allow a calling screen definition to be
passed down to subscreens below the current screen, use the LOCAL option with DISABLE to
disable only on the current screen, as in
> KEY 1 LOCAL ACTION AND DATA DISABLE

The Importance of Consistency

The definitions set for DFKs can cause the meanings of the keys to change as a user moves from
screen to screen. This can cause problems for users if the meanings fluctuate randomly from screen
to screen. Ideally, definitions should follow a pattern. For example, if extended help is available on
several screens, the same DFK should invoke it on each screen.

Up one
keylevel

Extended
help

Help
.......

Update
stay

Update
return

.......

.......

.......

.......

.......

.......

Down one
keylevel

.......

.......

.......

.......

.......

.......

.......

.......

Return
to stop

.......

.......

.......

.......

Chapter 3: QDESIGN Statements
KEY

QDESIGN Reference 161

MPE/iX: In Block mode, DFKs with BLOCKTRANSFER are designed to transmit data, while
others (those with NOBLOCKTRANSFER) are not. To help users keep track of which DFKs
transmit data and which don’t, designers should set up easy-to-follow conventions. For example,
key labels in uppercase could imply BLOCKTRANSFER and those in lowercase could imply
NOBLOCKTRANSFER. You can also group the two different types of function keys. For
example, F1 to F4 could be BLOCKTRANSFER keys, while the remainder could be
NOBLOCKTRANSFER keys. Grouping of similar function keys becomes more important on
terminals that do not support screen labels.

Banked and Unbanked Labels

QUICK can display the label strings that you specify in either banked or unbanked format. On HP
terminals that support function key labels, the label for each DFK is two lines deep and eight
characters wide.

In banked format, label strings are displayed in pairs, one on each line of the function key label.
The top line of the function key label refers to the Action field context, and the bottom line refers
to the Data field context.

With banked labels, each label string occupies a single line, and can therefore be a maximum of
eight characters in length. With unbanked labels, the label string occupies both lines of a function
key label, and can, therefore, be a maximum of 16 characters in length.

By default, QUICK uses unbanked labels. To override this default, change the bank labels
parameter in the QKGO file. In unbanked format, the function key label displays a single label
string which serves to document a single context. This means that QUICK cannot display the label
strings for the Action context and the Data context simultaneously.

These statements
> KEY 1 LABEL "Update" ACTION UPDATE
> KEY 1 LABEL "Skip all" DATA SKIP ALL

produce these labels:
Update
Skip all

where Update applies to the Action field, and Skip All applies to the data fields.

If QUICK uses unbanked labels (the default), it must redisplay the function key labels when the
context changes in order to provide label information that is context-specific. If QUICK uses
banked labels, the Action field label strings and the Data field label strings are displayed
simultaneously. QUICK doesn't have to redisplay the function key labels when the context
changes.

Each type of label has inherent advantages and disadvantages. Unbanked labels can be longer and
more informative than banked labels. However, they require QUICK to do extra screen I/O to
redisplay the function key labels when the context changes. Banked labels do not require the extra
I/O, but are less informative.

QDESIGN does not check the length of the specified label string. If the label string is shorter than
the allowable maximum length, QUICK pads it with blanks for display. If the label string is longer
than the maximum, QUICK truncates it.

The following example illustrates how QUICK handles label strings. If the QKGO file stipulates
unbanked labels, then these statements
> KEY 4 LABEL "Information" ACTION INFORMATION
> KEY 4 LABEL "Extendedhelp" DATA EXTENDED HELP
> KEY 5 LABEL "Return to stop" ACTION RETURN TO STOP
> KEY 6 LABEL "Skip cluster" SCREEN DATA SKIP CLUSTER

cause the following function key labels when QUICK is prompting in the Action field (or, for
MPE/iX, in BLOCKMODE):

.......

.......

.......

.......

.......

.......

Informa-
tion

Return to
stop

Skip
cluster

.......

.......

.......

.......

162 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
KEY

In Field mode, when QUICK begins prompting in the data fields, it redisplays the function key
labels with information that suits the context:

The labels for keys F4 and F5 vary by context. When QUICK is prompting in a data field in Field
mode, the label for F5 is blank. The blank indicates that F5 has no effect in that context.

The label for F6 does not vary. QUICK displays the label string in both contexts, even though the
key has no effect in the Action field context. This occurs because the screen designer used the
SCREEN option of the KEY statement, which forces QUICK to display the label string regardless
of the context. If you use the SCREEN option when you specify a label string for a given key-level
combination, QDESIGN does not allow you to specify a second label string for that key-level
combination.

If you change the QKGO file to stipulate banked labels, then, given the same screen specification
as in the previous example, QUICK displays these function key labels:

These labels are intended solely to illustrate how QUICK truncates label strings, and are not
presented as models of good form. When using banked labels, QUICK uses only the first eight
characters of each label string, so you can achieve greater clarity by using abbreviations.

Highlighting Labels
You can use the KEYLABEL option of the HILITE statement to specify highlighting options for
the function key labels, as in
> HILITE KEYLABEL UNDERLINE

Place HILITE statements before the KEY statements to which the highlighting applies.

Example
In the following example, five custom keys are defined. The F1 key is defined as a Help key. The
other keys are defined to run DESIGNER procedures that in turn run subscreens.
> SCREEN STCKMNT &
> MODE AT 1,70 &
> MESSAGE ON LINE 23 &
> ACTIONBAR ON LINE 3
>
> ACTIONMENU LABEL "Next" ACTION NEXT DATA
> ACTIONMENU LABEL "Delete" ACTION DELETE
> ACTIONMENU LABEL "Entry" ACTION ENTRY
> ACTIONMENU LABEL "Find" ACTION FIND
> ACTIONMENU LABEL "Select" ACTION SELECT
> ACTIONMENU LABEL "Update" ACTION UPDATE
>
> KEY 1 LABEL " HELP " SCREEN ACTION AND DATA &
> HELP
> KEY 2 LABEL "EmployeeMaint." SCREEN ACTION &
> DESIGNER EMPS
> KEY 3 LABEL "Parts Maint. " SCREEN ACTION &
> DESIGNER PART
> KEY 4 LABEL "ContractMaint." SCREEN ACTION &
> DESIGNER CONT
> KEY 5 LABEL "Reports" SCREEN ACTION &
> DESIGNER REPO
>
> FILE STOCKS
> ALIGN (20,25,40)

.......

.......

.......

.......

.......

.......

Extended
help

.......

.......

Skip
cluster

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

Informat

Extended

Return

.......

Skip
Skip

.......

.......

.......

.......

Chapter 3: QDESIGN Statements
KEY

QDESIGN Reference 163

> HILITE TITLE LINEDRAWING INVERSE
> DRAW 5,16 TO 8,64
> TITLE " F u t u r e I n d u s t r i e s Inc. " &
> At 6,17
> TITLE " Stock File Maintenance " &
> At 7,17
> SKIP 3
> HILITE TITLE LINEDRAWING DEFAULT
> FIELD STOCKNUM OF STOCKS REQUIRED NOCHANGE &
> LOOKUP NOTON STOCKS
> FIELD EMPLOYEE OF STOCKS
> FIELD STOCKCOUNT OF STOCKS
> FIELD DISCPCT OF STOCKS
> FIELD STOCKCOST OF STOCKS
>
> PROCEDURE DESIGNER EMPS
> RUN SCREEN EMPMNT
>
> PROCEDURE DESIGNER PART
> RUN SCREEN PARTMNT
>
> PROCEDURE DESIGNER CONT
> RUN SCREEN CONTRACT
>
> PROCEDURE DESIGNER REPO
> RUN SCREEN REPRTMNU
>
> BUILD

164 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
MENUITEM

MENUITEM
Specifies the action taken by a drop-down menu item.

Syntax
MENUITEM [LABEL string] ACTION conditional-command-list

[{MENUKEY char}|NOMENUKEY]

ACTION conditional-command-list

Specifies what command(s) the drop-down menu item executes and, optionally, under what
conditions. The general form of the conditional command list is
command-list [IF condition

[ELSE command-list IF condition]...
[ELSE command-list]]

command-list
One or more commands separated by commas. The general form of a command list is:
command [, command]...

For a list of the available commands, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

condition
A condition is a logical test that has the general form:
[NOT] condition [AND|OR [NOT] condition]...

For more information about conditions or conditional command lists, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

LABEL string

Displays a specified string on a pull-down Action bar menu.

Default: If no LABEL is specified, QUICK uses the value of the action_command.

{MENUKEY char}|NOMENUKEY

MENUKEY assigns a short-cut menu key that users can press to select a drop-down menu item
when they're in a drop-down menu. MENUKEY overrides default menu keys applied by the
MENUKEY option of the SET statement.

The menu key character should be unique among all the items in the drop-down menu. If the
menu key character is not a character in the item label, then it is displayed in brackets at the end
of the label.

Limit: The character can be an uppercase letter, a lowercase letter, or a number, but not a special
character.

NOMENUKEY ensures that no menu key is assigned to a drop-down menu item, even if the
MENUKEY option of the SET statement is used.

Menu keys are highlighted with an underline by default. You can change the highlighting by using
the HILITE statement.

For more information about adding and customizing menu keys for your menu-driven QUICK
screens, see (p. 70), (p. 147), and (p. 199).

Discussion
The MENUITEM statement, together with the ACTIONMENU statement and the ACTIONBAR
option of the SCREEN statement, allow you to define an Action bar.

Chapter 3: QDESIGN Statements
MENUITEM

QDESIGN Reference 165

Action Bars

An Action bar presents a list of QUICK actions or menus in a menu bar that extends across the
terminal window. You can invoke an Action command by selecting the appropriate entry in the
Action bar or pull down menu as an alternative to entering the action at the Action field prompt.

With an Action bar, you can associate commands with a more descriptive label, and also show all
the commands that are available to the user.

Adding an Action Bar to your Screen Design

To create an Action bar:
1. Specify the ACTIONBAR option of the SCREEN statement.
2. Use the ACTIONMENU statement to define the menus and actions you want to place on the

Action bar.
3. Use the MENUITEM statement to define the actions for each menu to be pulled down from

the Action bar.

Action Bar Menus and Actions

The Action bar can contain both menus and actions. To specify a menu, enter the
ACTIONMENU statement without indicating an action option, as in
> ACTIONMENU LABEL "EMPLOYEES"

To specify the action that's performed, use the ACTION option, as in
> ACTIONMENU LABEL "CREATE" ACTION ENTRY

You can specify any QUICK Action command as an ACTION option. If the action requires an
ID-number or ID-number range as a parameter, you can specify these explicitly or you can obtain
the ID-numbers at run time by using the MARK or PROMPT options.

If you specify PROMPT, QUICK prompts you for ID-number values with a prompt box. If you
specify MARK, QUICK determines the value from the current FIELDMARK setting. If there is no
current MARK and MARK has been specified, QUICK prompts for the ID-numbers.

If you don't want your Action bar to have pull-down menus, exclude MENUITEM statements
from your design statements. Instead, you can specify Action commands in the Action bar.

But if you want to specify a pull-down menu, enter MENUITEM statements after the
corresponding ACTIONMENU statement, as in
> ACTIONMENU LABEL "EMPLOYEES"
> MENUITEM LABEL "LOCATE" ACTION FIND
> MENUITEM LABEL "NEW" ACTION ENTRY

If you specify MENUITEM statements following the ACTIONMENU statement, QDESIGN
constructs a menu that appears to "pull down" from the Action bar when the Action menu is
selected.

Each MENUITEM statement creates a new entry on the menu. The menu can accommodate any
size label and any number of items: the menu border adjusts to accommodate the largest menu
label, and the menu scrolls to fit the number of menu items.

Generally, menus pull down from the Action bar; that is, they appear below the corresponding
Action menu on the Action bar. However, if you specify that the Action bar appear on the last
three lines of the terminal, the menus pop up above the Action bar.

Action Bars and Action Fields

You can specify that both an Action bar and an Action field appear on a screen. When the screen
runs, only one mode is active at a time, but you can switch between the two modes. This way, you
can make a limited set of commands available through an Action bar for the novice user but still
enable an Action field for the more experienced user.

If both the Action bar and Action field are available, the screen initially runs Action field
prompting mode by default. To specify that the Action bar should be the initial mode, add the
STARTUP option to the ACTIONBAR option of the SCREEN statement.

166 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
MENUITEM

If the Action field and Action bar appear on the same line, only the current prompting mode is
visible. If they are not on the same line, both the Action bar and Action field are visible, but
QUICK only prompts you at the active mode.

Example
The following example is an Actionbar with pulldown menus and the MODE field moved to line
23, column 60 on the PARTINFO screen. The ACTIONMENU statements, followed by the
MENUITEM statements, specify pulldown menus for the label "Search". Each MENUITEM
defines a label and action for one item in the pulldown menu.
> SCREEN STOKINFO NOACTION MODE AT 1,60 &
> ACTIONBAR ON LINE 3
>
> ACTIONMENU LABEL "Help" ACTION EXTENDED HELP
>
> ACTIONMENU LABEL "Search"
> MENUITEM LABEL "Next" ACTION NEXT DATA
> MENUITEM LABEL "Find" ACTION FIND
> MENUITEM LABEL "Select" ACTION SELECT
>
> ACTIONMENU LABEL "Exit" ACTION RETURN

The following screen shows the pulldown menu for the "Search" ACTIONMENU item:

The statements in the following example create an Action bar and pull-down menus complete
with menu keys for each ACTIONMENU item and MENUITEM item. When you select an option
and enter the Accept command, or press a menu key, QUICK executes the associated action. The
warning message means that since you've positioned the Action bar at the bottom of the screen,
and there's no room for drop-down menu items to drop down, they'll drop "up" instead.
> SCREEN MAINTSCR NOACTION MODE AT 1,70 &
> FIELDMARK &
> MESSAGE ON LINE 23 &
> ACTIONBAR ON LINE 24
W Menus will appear on screen lines preceding ACTIONBAR line.
> ACTIONMENU LABEL "Data Actions..." &
> MENUKEY "A"
> MENUITEM LABEL "Entry" ACTION ENTRY &
> MENUKEY "E"
> MENUITEM LABEL "Find" ACTION FIND &
> MENUKEY "F"
> MENUITEM LABEL "Find Next" ACTION NEXT DATA &
> MENUKEY "N"
> MENUITEM LABEL "Select" ACTION SELECT &
> MENUKEY "S"
> ACTIONMENU LABEL "Delete" ACTION DELETE &
> MENUKEY "D"

Chapter 3: QDESIGN Statements
MENUITEM

QDESIGN Reference 167

> ACTIONMENU LABEL "Update..." &
> MENUKEY "U"
> MENUITEM LABEL "Update" ACTION UPDATE &
> MENUKEY "U"
> MENUITEM LABEL "Update Stay" ACTION UPDATE STAY &
> MENUKEY "S"
> MENUITEM LABEL "Update Return" ACTION UPDATE RETURN &
> MENUKEY "R"
> MENUITEM LABEL "Update Next" ACTION UPDATE NEXT &
> MENUKEY "N"
> ACTIONMENU LABEL "Screen Help" ACTION EXTENDED HELP &
> MENUKEY "H"
> ACTIONMENU LABEL "Quit" ACTION RETURN &
> MENUKEY "Q"
.
.
.

 The resulting screen looks like this:

168 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
QSHOW

QSHOW
Runs QSHOW from QDESIGN.

Syntax
QSHOW

The QSHOW statements are as follows:

Discussion
The QSHOW statement initiates a QSHOW session from within QDESIGN. With QSHOW you
can make fast online inquiries about entities (such as elements, files, and record-structures) in the
data dictionary.

When you exit from QSHOW, your QDESIGN session resumes at the point at which it was
interrupted.

See Chapter 4, "QSHOW Statements" in the PDL and Utilities Reference book.

Statement Purpose

EXIT Terminates QSHOW.

GENERATE Generates PDL source statements.

QUIT Terminates QSHOW.

SAVE Saves QSHOW source statements in qshosave.

SET Overrides default options.

SHOW Reports dictionary definitions.

USE Processes QSHOW statements stored in a source statement file as though
they'd been entered from the keyboard.

Chapter 3: QDESIGN Statements
query-specification(SELECT)

QDESIGN Reference 169

query-specification(SELECT)
Defines a collection of rows that will be accessible when the cursor is opened.

Syntax
SELECT [ALL|DISTINCT] {*|project-list}

FROM tablespec [,tablespec]...
[WHERE sql-condition]
[GROUP BY columnspec [,columnspec]...]
[HAVING sql-condition]

The syntax for a subquery is the same as for a query-specification with two exceptions: the
subquery must project a single-column table and the syntax of the subquery includes enclosing
brackets.

ALL|DISTINCT

ALL indicates that duplicate rows are included. DISTINCT indicates that duplicate rows are
eliminated.

Default: ALL

*

Selects all the columns from the specified tables.

project-list

A columnspec or derived column, or a list of columnspecs and derived columns separated by
commas. If names are ambiguous, they must be qualified to ensure they can be identified uniquely.
DBKEY may be included in the project-list if it is supported by the underlying database system.

The syntax for a columnspec is:
[table-name.|correlation-name.]column-name

The syntax for a derived column is:
expression [AS name]

The AS option assigns an alias to a column. It can be used to uniquely identify multiple references
to the same column, or to give a name to a derived column so it can be referenced in a program.
Using the AS option automatically applies the DISPLAY option to the FIELD statement.

For more information about expressions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

FROM tablespec [,tablespec]...

The FROM option identifies the tables where data in the project-list is retrieved. Rows can be
retrieved from simple tables, derived tables, or joined tables. A derived table is a full
query-specification including an optional ORDER BY option.

Joins are used to combine data from two or more tables based on the relationships between data
in those tables. The type of join affects the rows retrieved by the query-specification.

If a correlation name is defined for the tablespec, subsequent PowerHouse references to the table
must use the correlation name.

The general form of the tablespec syntax used in the following options is:
[owner.]table-name [correlation-name]

In addition to the general form of the tablespec, the following forms are also valid for this option:

(derived table) correlation-name
The correlation name must be defined for a derived table, and subsequent PowerHouse references
to the derived table must use the correlation name.

170 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
query-specification(SELECT)

tablespec CROSS JOIN tablespec
In a cross join, every possible combination of rows from the two tables being joined is created,
without regard for any matching.

tablespec [INNER] JOIN tablespec
ON columnspec = columnspec [AND columnspec
= columnspec]...

In an inner join, a row is included in the result-set only if it has a matching row in the other table.
The INNER keyword is for documentation only.

The ON option specifies the condition of the join.

tablespec LEFT|RIGHT|FULL [OUTER] JOIN tablespec
ON columnspec = columnspec [AND columnspec
= columnspec]...

An outer join includes all rows in the tables whether or not there are matching rows.

The left outer join returns rows from the table listed before the JOIN keyword, even if they don't
have a matching row in the second table listed.

The right outer join returns rows from the table listed after the JOIN keyword, even if they don't
have a matching row in the first table listed.

The full outer join returns rows from both tables listed, even if they don't have a matching row in
the other table listed.

The ON option specifies the condition of the join.

WHERE sql-condition

The sql-condition defines linkage between tables in the query, and search criteria for rows to be
retrieved. Only data which meets the criteria is available for use by PowerHouse.

The sql-condition is a condition which is limited for use within Cognos SQL syntax. For more
information about SQL conditions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book or refer to an SQL reference manual.

GROUP BY columnspec [,columnspec]...

This option rearranges the result-set into the minimum number of groups such that all rows
within any one group have the same value for the GROUP BY columns. Rows that do not satisfy
the WHERE option are eliminated before any grouping is done. The result is known as a grouped
table.

To use the GROUP BY option:
• the grouping columns need not appear in the project-list
• any non-aggregate in the project-list must be used in the GROUP BY option
> SQL DECLARE X CURSOR FOR &
> SELECT SP.PNO, MAX(SP.QTY), MIN(SP.QTY) &
> FROM SP &
> WHERE SP.SNO <> 'S1' &
> GROUP BY SP.PNO

For detailed information about the GROUP BY option, refer to an SQL reference manual.

HAVING sql-condition

The HAVING option is used to eliminate groups, just as the WHERE option is used to eliminate
rows. The sql-condition is a condition which is limited to use within Cognos SQL syntax. For
more information about SQL conditions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book or refer to an SQL reference manual.
> SQL DECLARE X CURSOR FOR &
> SELECT SP.PNO &
> FROM SP &
> GROUP BY SP.PNO &
> HAVING COUNT(*) > 1

Chapter 3: QDESIGN Statements
query-specification(SELECT)

QDESIGN Reference 171

Limit: The sql-condition must evaluate to a single value per group.

Discussion

Specifying Selection Criteria Using WHERE Option and Substitutions

The WHERE option is used to define selection criteria for rows to be retrieved. Only data which
meets the criteria is available for use by PowerHouse. In addition to specifying selection criteria
within the query-specification, you can specify selection criteria on the following statements:
• ACCESS
• CURSOR
• LOOKUP option on the FIELD statement
• [SQL] OPEN verb

Examples
The following example demonstrates the way PowerHouse creates a single SQL query combining
multiple conditions from multiple statements:
> SET LIST SQL
> SQL IN EMPBASE DECLARE X CURSOR FOR &
> SELECT * FROM EMPLOYEES &
> WHERE CITY = 'BOSTON'
> SCREEN EMPLOYC
> CURSOR X WHERE(EMPLOYEE BETWEEN 1000 AND 5000) &
> PRIMARY KEY EMPLOYEE
> ACCESS WHERE(POSITION = 'PRG') &
> VIA EMPLOYEE

The final query includes all three conditions specified in the WHERE options.
__ Sql after substitutions are applied:
__ SELECT *
__ FROM EMPLOYEES
__ WHERE POSITION = 'PRG' and
__ EMPLOYEE BETWEEN 1000 AND
__ 5000 and
__ CITY = 'BOSTON'

Inner Joins

The following inner join would report all customers with matching invoices:
> SQL DECLARE X CURSOR FOR &
> SELECT * FROM CUSTOMER C &
> INNER JOIN INVOICES I &
> ON C.CUSTOMER_NUM=I.CUSTOMER_NUM

Outer Joins

The following example would report all customers even if they didn't have any invoices. Invoices
without matching customers would not be reported.
> SQL DECLARE X CURSOR FOR &
> SELECT * FROM CUSTOMER C &
> LEFT OUTER JOIN INVOICES I &
> ON C.CUSTOMER_NUM=I.CUSTOMER_NUM

The next example would report all invoices even if they didn't have any matching customer
information. Customers without invoices would not be reported.
> SQL DECLARE X CURSOR FOR &
> SELECT * FROM CUSTOMER C &
> RIGHT OUTER JOIN INVOICES I &
> ON I.CUSTOMER_NUM=C.CUSTOMER_NUM

172 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
QUIT

QUIT
Terminates QDESIGN.

Syntax
QUIT

Discussion
The QUIT statement ends your QDESIGN session and returns control to the operating system or
invoking program.

You can also use the EXIT statement to end your QDESIGN session and return control to the
operating system or invoking program.

Chapter 3: QDESIGN Statements
REPORT

QDESIGN Reference 173

REPORT
Executes QUIZ.

Syntax
REPORT filespec [options...]

filespec

Specifies the name of an existing compiled QUIZ report file.

Options

AUTO

Invokes QUIZ automatically when the standard entry sequence reaches this statement, if the
ENTRY procedure was generated by QDESIGN.

CLEAR option

Clears an area of the terminal memory before invoking QUIZ. Any output to the terminal from
the report appears starting on the first line of the cleared area. Lines cleared are refreshed
automatically when the screen is reactivated and QUICK is ready to prompt the user. If multiple
COMMAND, REPORT, or RUN statements are combined with ID SAME, the area cleared is
refreshed after the last statement in the chain has completed execution and QUICK is ready to
prompt the user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINES n by itself clears line n only.

HIDDEN

Suppresses the screen ID display, but lets the user reference a field by ID-number in MARK mode.

ID n [AT [line],column]
ID NEXT [AT [line],column]
ID SAME
NOID

Control how and where QUICK screen field ID-numbers are assigned.

REPORT Options

AUTO CLEAR HIDDEN

ID|NOID [ENTRY] IF INPUT B|C|SAME

LABEL|NOLABEL MARK|NOMARK NOCONSOLE

NOWARN ON ERROR REFRESH

RESPONSE WAIT|NOWAIT

174 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
REPORT

ID n
Explicitly specifies an ID-number.

Limit: 1 to 99

ID NEXT
Uses the next ID-number in sequence.

AT [line],column
Positions the first digit of the ID-number at the specified line and column relative to the starting
line of the screen. If the line is missing, the current line is assumed.

ID SAME
Instructs QDESIGN to omit the ID-number on the report. To execute the report, use the
ID-number of the previous field.

NOID
States that no ID-number is assigned to this report and the report can't be referenced from the
Action field.

[ENTRY] IF condition

Invokes the specified report in the standard entry sequence only if this condition is satisfied.
QDESIGN generates an identical IF condition in the default ENTRY procedure.

For more information about conditions in PowerHouse, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

Limit: The IF option is evaluated only during the standard entry sequence; otherwise, it is ignored.

Default: If the condition is satisfied, AUTO is assumed.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing QUIZ. The terminal is put back
into the original mode after completion of the command.

Default: The mode it was in before QUICK was invoked.

B
Puts the terminal in Block mode. This should only be used for commands that must run in Block
mode.

C
Puts the terminal in Character mode.

SAME
Leaves the terminal in the current input mode. If the screen has Block mode capability, this option
should only be used for commands that do not write to the terminal.

LABEL [string] [AT [line],column] | NOLABEL

Declares the label and its position.

[string] [AT [line],column]
Indicates the report label and, optionally, the position of the label on the screen.

The AT option positions the first character of the label at the specified line and column relative to
the starting line of the screen. If the line isn't specified, the current line is assumed.

Default: The item name or the first word in the COMMAND string.

Chapter 3: QDESIGN Statements
REPORT

QDESIGN Reference 175

NOLABEL
Specifies that no label is to appear for the report.

MARK|NOMARK

MARK enables fieldmarking for a report with an ID-number.

NOMARK disables the default fieldmarking for a report with an ID-number when fieldmarking is
enabled.

NOCONSOLE (Windows)

Suppresses opening a Command Console window. Normally QUICK opens a second Command
Console window to run QUIZ. If QUIZ runs in the background, does not require user input, or
does not display useful output, the second command console window may not be necessary.

NOWARN

Specifies that operating system warning messages issued during the execution of the report should
not be displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if an operating system error occurs during the execution of a
report. If TERMINATE is in effect, an operating system error causes QUICK to process the error
as it would for an ERROR verb. If CONTINUE is specified, an operating system error is ignored
and processing continues as if the error had not occurred.

For information on the ERROR verb, see (p. 420).

Default: TERMINATE

REFRESH option

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINES n alone refreshes line n only.

RESPONSE

Prompts the QUICK user for a response after the report has executed. QUICK resumes processing
after the user responds, preventing the screen from being refreshed immediately.

WAIT|NOWAIT (Windows)

The WAIT option instructs QUICK to suspend current screen processing until the report has
executed, at which time control returns to the screen. The NOWAIT option specifies that screen
processing continues immediately and the report executes concurrently.

Default: NOWAIT

Discussion
The REPORT statement executes QUIZ and takes the compiled report as a parameter.

176 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
REVISE

REVISE
Invokes an editor to edit files from within QDESIGN.

Syntax
REVISE [*|filespec [DETAIL|NODETAIL]

 [LIST|NOLIST] [USE|NOUSE]]

*

Signifies that the temporary source statement save file is to be edited.The save file is QKSAVE
(MPE/iX) or qksave.qks (OpenVMS, UNIX, Windows).

All statements you've entered since the last CANCEL CLEAR, SAVE CLEAR, or SET SAVE
CLEAR statement are recorded in the save file. However, the CANCEL CLEAR, SAVE CLEAR,
SET SAVE CLEAR, SAVE, and EXIT statements are not recorded.

If you specify options without specifying the name of a file, you must use the asterisk. The asterisk
is not required if you are editing qksave without changing any default options.

filespec

Specifies the name of an existing permanent file. If this file does not contain component
statements, use the NOUSE option. This ensures that the component will not try to execute the
file when you exit from the system editor.

DETAIL|NODETAIL

DETAIL copies the contents of the revised file into the temporary save file; NODETAIL doesn't.

If you are revising a permanent file with the REVISE statement and you specify NODETAIL, then
QDESIGN writes a USE statement to the current qksave file. QDESIGN processes the USE
statement (the default) when you exit from the editor, as in
> USE ORDERS NODETAIL

If you revise a permanent file using the NODETAIL option, QDESIGN writes a USE statement to
the current qksave file. QDESIGN processes the USE statement when you exit from the editor, as
in
> USE ORDERS NODETAIL

Limit: The NODETAIL option isn't valid with qksave.

Default: DETAIL

LIST|NOLIST

LIST displays each statement from the revised file as it is processed; NOLIST doesn't.

Default: LIST

USE|NOUSE

USE processes the revised statements when you exit from the system editor. NOUSE returns you to
QDESIGN at the point from which you left it without processing the revised statements.

Default: USE

Discussion
The REVISE statement starts an editor session in any file that you specify or the current
temporary save file, qksave. When you exit from the editor, the file is processed as if you had
entered a USE statement (with the LIST and DETAIL options).

When you enter the REVISE statement without a file name, QDESIGN automatically performs a
CANCEL CLEAR statement prior to processing the statements. When you enter the REVISE
statement with a file name, the automatic CANCEL CLEAR statement isn't performed.

Chapter 3: QDESIGN Statements
REVISE

QDESIGN Reference 177

The procloc program parameter affects how PowerHouse uses unqualified file names that are
specified in the REVISE statement. For more information about the procloc program parameter,
see Chapter 2, "Program Parameters", in the PowerHouse Rules book.

Choosing an Editor

MPE/iX
By default, the PowerHouse UDC uses the file equation:
:FILE COGEDITR=EDITOR.PUB.SYS

If you want to use an editor other than EDIT/3000 when you invoke REVISE, change this file
equation. For example, if you want to designate MYEDITOR as your editor, enter
:FILE COGEDITR=MYEDITOR

The REVISE statement also uses a file equation for the file EDTTEXT, if it exists. For example, if
you want to designate MYFILE as the input file to the editor, enter
:FILE EDTTEXT=MYFILE

If you elect to use other editors, they must comply with the HP standard regarding the entry point
BASICENTRY and the input file specification EDTTEXT.

OpenVMS
The REVISE statement invokes the DCL command assigned to the global symbol PHEDIT
(usually used to designate an editor). By default, the SET POWERHOUSE command sets PHEDIT
to
$PHEDIT :==EDIT/EDT

causing the REVISE statement to invoke the EDT editor.

You can change the default editor by changing the setting of the PHEDIT symbol. For example, to
use the special interface to EDT called UTILITIES:EDT.COM, change the setting to
$PHEDIT :==@UTILITIES:EDT.COM

We recommend that you use either EDIT/EDT or EDIT/TPU as the setting for PHEDIT. In either
of these cases, the editor can be called directly; otherwise, a subprocess is spawned.

If you intend to use the nodcl program parameter to restrict user access to the operating system,
we further recommend that you do no select editors (such as TPU) that provide operating system
access. When nodcl is in effect, users will continue to be able to access the system editor through
the REVISE statement.

UNIX, Windows
 The editor is set using the PHEDIT environment variable. If PHEDIT is not defined, the system
checks the environment variable EDITOR. If you have not defined either of these variables, the
REVISE statement fails.

178 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
RUN

RUN
Executes QTP.

Syntax
RUN filespec [options...]

filespec

Specifies the name of an existing compiled QTP run file.

Options

AUTO

Invokes QTP automatically when the standard entry sequence reaches this statement, if the
ENTRY procedure was generated by QDESIGN.

CLEAR option

Clears an area of the terminal memory before invoking QTP. Any output to the terminal from the
run appears starting on the first line of the cleared area. Lines cleared are refreshed automatically
when the screen is reactivated and QUICK is ready to prompt the user. If multiple COMMAND,
REPORT, or RUN statements are combined with ID SAME, the area cleared is refreshed after the
last statement in the chain has completed execution and QUICK is ready to prompt the user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINES n by itself clears line n only.

HIDDEN

Suppresses the screen ID display, but lets the user reference a field by ID-number in MARK mode.

ID n [AT [line],column]
ID NEXT [AT [line],column]
ID SAME
NOID

Control how and where QUICK screen field ID-numbers are assigned.

ID n
Explicitly specifies an ID-number.

RUN Options

AUTO CLEAR HIDDEN

ID|NOID [ENTRY] IF INPUT B|C|SAME

LABEL|NOLABEL MARK|NOMARK NOCONSOLE

NOWARN ON ERROR REFRESH

RESPONSE WAIT|NOWAIT

Chapter 3: QDESIGN Statements
RUN

QDESIGN Reference 179

Limit: 1 to 99

ID NEXT
Uses the next ID-number in sequence.

AT [line],column
Positions the first digit of the ID-number at the specified line and column relative to the starting
line of the screen. If the line is missing, the current line is assumed.

ID SAME
Instructs QDESIGN to omit the ID-number on the run. To execute the run, use the ID-number of
the previous field.

NOID
States that no ID-number is assigned to this run and the run can't be referenced from the Action
field.

[ENTRY] IF condition

Invokes the specified run in the standard entry sequence only if this condition is satisfied.
QDESIGN generates an identical IF condition in the default ENTRY procedure.

For more information about conditions in PowerHouse, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

Limit: The IF option is evaluated only during the standard entry sequence; otherwise, it is ignored.

Default: If the condition is satisfied, AUTO is assumed.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing the run. The terminal is put back
into the original mode after completion of the run.

Default: The mode it was in before QUICK was invoked.

B
Puts the terminal in Block mode. This should only be used for commands that must run in Block
mode.

C
Puts the terminal in Character mode.

SAME
Leaves the terminal in the current input mode. If the screen has Block mode capability, this option
should only be used for commands that do not write to the terminal.

LABEL [string] [AT [line],column] | NOLABEL

Declares the label and its position.

[string] [AT [line],column]
Indicates the run label and, optionally, the position of the label on the screen.

The AT option positions the first character of the label at the specified line and column relative to
the starting line of the screen. If the line isn't specified, the current line is assumed.

Default: The item name or the first word in the COMMAND string.

NOLABEL
Specifies that no label is to appear for the run.

180 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
RUN

MARK|NOMARK

MARK enables fieldmarking for a run with an ID-number.

NOMARK disables the default fieldmarking for a run with an ID-number when fieldmarking is
enabled.

NOCONSOLE (Windows)

Suppresses opening a Command Console window. Normally QUICK opens a second Command
Console window to run QTP. If QTP runs in the background, does not require user input, or does
not display useful output, the second command console window may not be necessary.

NOWARN

Specifies that operating system warning messages issued during the execution of the run should
not be displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if an operating system error occurs during the execution of a run.
If TERMINATE is in effect, an operating system error causes QUICK to process the error as it
would for an ERROR verb. If CONTINUE is specified, an operating system error is ignored and
processing continues as if the error had not occurred.

For information on the ERROR verb, see (p. 420).

Default: TERMINATE

REFRESH option

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINES n alone refreshes line n only.

RESPONSE

Prompts the QUICK user for a response after the run has executed. QUICK resumes processing
after the user responds, preventing the screen from being refreshed immediately.

WAIT|NOWAIT (Windows)

The WAIT option instructs QUICK to suspend current screen processing until the run has
executed, at which time control returns to the screen. The NOWAIT option specifies that screen
processing continues immediately and the run executes concurrently.

Default: NOWAIT

Discussion
The RUN statement executes QTP and takes the compiled run as a parameter.

Chapter 3: QDESIGN Statements
SAVE

QDESIGN Reference 181

SAVE
Saves QDESIGN source statements in a permanent file.

Syntax
SAVE filespec [CLEAR]

filespec

Names a permanent file in which to save source statements.

CLEAR

Removes the contents of QDESIGN's temporary source statement save file after copying the
contents to a permanent file. The save file is QKSAVE (MPE/iX) or qksave.qks (OpenVMS,
UNIX, Windows).

Discussion
The SAVE statement relates to QDESIGN's temporary save file. Statements are written to this file
as you enter them. The SAVE statement itself isn't included in the file. The SAVE statement creates
a permanent copy of the save file at the point at which the SAVE statement was entered. You can
use the saved contents as a source file for documentation and future changes, or as a working file
for modification using the text editor. The saved statements can also be processed by QDESIGN
with the USE statement.

Example
The following example demonstrates the correct use of the SAVE statement. In this example:
• All statements before CANCEL CLEAR are purged from QDESIGN’s temporary save file,

qksave.
• The SAVE statement saves all of the statements since the CANCEL CLEAR in a permanent

file.
> SCREEN NEWORD
>
> FILE ORDERMASTER PRMARY
 ^^^^^^^
E Expected: ALIAS AUDIT COUNT DELETE DESIGNER DETAIL MASTER MYVIEW NEED
NOAPPEND NODELETE NOITEMS OCCURS OPEN PRIMARY REFERENCE SECONDARY <eol>
> CANCEL CLEAR
>
> SCREEN NEWORD
>
> FILE ORDERMASTER PRIMARY
> GENERATE NOLIST NODETAIL
>
> SAVE NEW-ORD
SAVE copies everything in QDESIGN's temporary save file, qksave, to a permanent file. It's
important to clear the temporary save file of erroneous statements with the CLEAR option of the
CANCEL statement.

182 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

SCREEN
Names the screen and describes its characteristics.

Syntax
SCREEN filespec [option]...

filespec

Specifies the name of the file in which the compiled QUICK screen will be stored.

Options

ACTION [STARTUP] [LABEL string] [AT [line], column]
NOACTION

ACTION enables screen Action field prompting. NOACTION suppresses Action field prompting.

NOACTION and ACTION are mutually exclusive.

Default: ACTION AT 1,8

STARTUP
Specifies the Action field as the prompt mode at startup. This option must come before the LABEL
or AT options.

LABEL string
Replaces the default string.

Limit: The maximum LABEL string length is 9 characters less than the screen width.

Default label: ACTION:

AT [line], column
AT specifies where the Action field label is to be located on the screen. A line is a line relative to
the current screen. It can have a value of 1 to 24.

The Action field can be placed on any line from 1 to the greatest number of lines allowed on the
screen. The column value can range from 1 to the largest number enabling the label and the
Action field to fit on the screen. (The Action field is 9 characters long.)

Default placement: AT 1, 8

If the Action field and label exceed the screen size, an error is issued.

SCREEN Options

ACTION ACTIONBAR|NOACTIONBAR ACTIVITIES

AUTOMODIFY AUTORETURN AUTOUPDATE

BLOCKMODE [EXTENDED] COMMIT ON|NOCOMMIT FIELDMARK|NOFIELDMARK

FOR FROM HELP POPUP

LOCK MENU MESSAGE

MESSAGE POPUP MODE|NOMODE NOSEQUENTIAL

ON LINE PANEL|NOPANEL PREDISPLAY

RECEIVING SLAVE STOPSCREEN

TRANSACTION MODEL USERS INCLUDE WINDOW

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 183

ACTIONBAR [ON LINE n] [STARTUP]
NOACTIONBAR

ACTIONBAR enables the Action bar; NOACTIONBAR suppresses the Action bar.

ON LINE application line
Specifies the Action bar line location.

Default: The first line of screen data.

STARTUP
Specifies the Action bar as the prompt mode at startup.

ACTIVITIES activity [,activity]...

Specifies the allowed screen activities. The four activities ENTRY, FIND, CHANGE, and DELETE
encompass the functions that the normal screen can perform. To remove an activity or activities,
specify on the ACTIVITIES option only those actions that you want. All others are excluded.
(There is one exception: ACTIVITIES ENTRY generates a DELETE procedure so that you can
delete newly-entered records prior to updating. Since it does not generate a FIND procedure, you
cannot delete existing records.)

For screens with Append processing, the ENTRY activity allows data records to be appended in
Entry mode and the CHANGE activity allows detail data records to be appended in Find mode.

If CHANGE or DELETE is specified, FIND is implied. If the ENTRY activity is omitted, new data
records can't be added (except when you use Append processing for DETAIL records from Find
mode).

Default: ENTRY, FIND, CHANGE, DELETE

AUTOMODIFY

Runs the MODIFY procedure after a record is retrieved in Find mode. Without this option, the
QUICK screen user must enter a Modify command (M) in the Action field.

AUTORETURN

Specifies that QUICK is to exit this screen as soon as the update sequence (PREUPDATE,
UPDATE, and POSTUPDATE procedures) is performed. The update can be done manually or
automatically with the inclusion of the AUTOUPDATE option. If an EXIT procedure is included
in the screen design, it is executed before QUICK returns to the higher-level screen.

AUTOUPDATE

Updates automatically at the end of the standard entry sequence if all fields are entered with
acceptable values.

BLOCKMODE[EXTENDED] (MPE/iX)

Indicates that QUICK can run this screen in Block mode. The BLOCKMODE option must be
present to run a PANEL screen on a Block mode terminal.

The EXTENDED option increases by one the input size of each field on the screen when the
screen is in Block mode.

For more information on panel mode, see Chapter 2, "QUICK User Interface".

COMMIT ON automatic-commit-point|NOCOMMIT

Indicates the default points at which automatic commits are executed by QUICK.

Default: COMMIT ON UPDATE

NOCOMMIT
Indicates that QUICK does not generate automatic commit actions.

184 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

automatic-commit-point
Determines the points at which an automatic commit for the COMMIT ON option occurs during
screen processing for read-write (Update) transactions.

The automatic commit points are UPDATE, MODE, NEXT PRIMARY, and EXIT.

FIELDMARK [RETAIN] [STARTUP]
NOFIELDMARK

Allows the user to select a screen item for processing by highlighting the ID or label using the
cursor keys.

NOFIELDMARK requires the user to select screen items for processing by entering the ID number
in the Action field.

Default: NOFIELDMARK

RETAIN
Specifies that the screen item ID is retained for Action command processing when the context
reverts to the Action field or the Actionbar.

STARTUP
Specifies that fieldmarking is the prompt mode at startup.

FOR n [LINES]

Allows a screen length of n lines not including the message line. FOR and FROM options are
mutually exclusive.

Limit: 1 to 23

Default: 23

UPDATE This option is the default for the Update and Consistency transactions. Use the
ON UPDATE option to ensure that related updates (for example, updates to
primary and secondary data) are grouped together, but keep individual
transactions relatively short. Locally active transactions are committed:
• when an Update action is completed (before the POSTUPDATE procedure)
• when the screen mode changes (before the PREENTRY and PATH

procedures)
• when the user exits the screen (before and after the EXIT procedure)

MODE This option is the default for the Query transaction. Use the ON MODE option
to ensure that changes to a series of existing records (for example, all employees
in a certain branch or all tasks in a project) are committed or rolled back as a
group. Locally active transactions are committed when:
• the screen mode changes (before the PREENTRY and PATH procedures)
• on screen exit (before and after the EXIT procedure)

NEXT
PRIMARY

Use this option if you want to group all detail records (perhaps requiring several
entry or display screens) together with primary and secondary records and treat
them as a unit to be committed or rolled back. Locally active transactions are
committed:
• when the user starts an entry sequence (before the PREENTRY procedure)
• when the user retrieves the next set of primary records (before the FIND

procedure
• when the user exits the screen (before and after the EXIT procedure).

EXIT Use this option when all activity done on a screen is to be treated as a single
transaction. Locally active transactions are committed when the screen is exited
(after the EXIT procedure).

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 185

FROM [application line1],column1 TO [application line2],column2

Specifies the coordinates for the screen.

The FROM coordinates set the top left-hand corner of the screen. The TO coordinates set the
bottom right-hand corner of the screen.

The FROM and TO coordinates allow screens to overlay one another. The FROM and FOR
options are mutually exclusive.

For an explanation of the difference between screen lines and application lines, see Chapter 5,
PowerHouse Language Rules, in the PowerHouse Rules book.

Default: The default FROM coordinates are 1,1. The default TO coordinates are 23,80.

Limit: Can't be used with either of the ON LINE n or FOR n LINES options. Application line1 is
1-240; application line2 cannot exceed line1 by more than 23. The valid range for column1 and
column2 is 1-132.

HELP POPUP [FROM [application line1], column1]
[TO [application line2], column2]

Defines a pop-up window for display of the extended help information.

The window overlays the current screen; the current screen is restored when the pop-up window is
closed.

A pop-up window has a single-line border that requires 2 rows and 2 columns.

FROM [application line1], column1
The top-left corner of a pop-up window.

Default: 8,5

TO [application line2], column2
The bottom-right corner of a pop-up window.

Default: 16,75

LOCK option

where option is one of:

Generates default LOCK and UNLOCK verbs for all files and records involved in the UPDATE
procedure. If omitted, QUICK automatically locks files with the PUT verb. The FILE, RECORD
and BASE(MPE/iX) options indicate the lock level.

By using the LOCK FILE|RECORD option in combination with FOR UPDATE, the screen
designer ensures that all updatable files are granted exclusive locks for the duration of the
UPDATE procedure. This strategy prevents changes to the files or records between updates, but
severely restricts other users and programs who are trying to access the files. Based on the level
you've specified for the update, an UNLOCK ALL FILE or an UNLOCK ALL RECORD
statement is always generated at the end of the UPDATE procedure when the LOCK FOR
UPDATE is used.

With the FOR UPDATE option, a LOCK verb is generated at the beginning of the UPDATE
procedure and an UNLOCK ALL verb is generated at the end of the UPDATE procedure.

Default: An exclusive file-level lock.

MPE/iX: FILE [FOR UPDATE]

RECORD [FOR UPDATE]

BASE

OpenVMS, UNIX,
Windows:

FILE [FOR UPDATE]

RECORD [FOR FIND|UPDATE]

186 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

Limit: The LOCK option is not valid for relational files.

MPE/iX
The LOCK RECORD option affects only IMAGE files. If the LOCK RECORD option is specified
and no IMAGE database files are associated with the update, QUICK displays an error message.

OpenVMS, UNIX, Windows
By using the LOCK RECORD FOR FIND option, the screen designer can provide a secure and
efficient capability for online applications that require a high degree of reliability. The LOCK verb
generated at the beginning of the FIND or DETAIL FIND procedure locks all records as they are
read. The success of updates is guaranteed by locking the record for the entire duration of the
FIND procedure. Because QUICK unlocks all files when it prompts the user during the
find/modify/update sequence, the FOR FIND option is only allowed with LOCK RECORD.

An UNLOCK statement is not generated at the end of the FIND procedure with the LOCK
RECORD FOR FIND option so that the data on the screen can remain locked while it is
displayed. QUICK continues to unlock each record before it reuses or clears the record's
corresponding buffer.

With the FOR FIND option, a LOCK verb is generated at the beginning of the FIND procedure
for each FILE|RECORD in the screen. No UNLOCK verb is generated as the records are unlocked
when the next find sequence is started.

MENU

Indicates that the screen is a menu screen. If neither MENU nor SLAVE is specified, the screen is a
regular data screen.

Limit: Can't be specified with the SLAVE option.

MESSAGE [ON] [LINE] n

Positions the message line on the specified application line (n).

Limit: 1 to 240 (maximum number of application lines)

Default: The line after the last line of the screen as specified by either the FOR or TO options. If
neither option is used, the default is 24.

MESSAGE POPUP [severity]... [FROM [application line1], column1]
[TO [application line2], column2]

Defines a pop-up window for a message display that can overlap the current screen. The current
screen is restored when the window is closed.

A pop-up window has a single-line border that requires 2 lines and 2 columns.

Default: All messages are displayed on the message line. If the MESSAGE POPUP option is
specified, the messages are displayed in pop-up windows if either of the following conditions is
true:
1. The severity level of the message to be displayed is specified in the severity list.
2. Only messages with a severity of ERROR or SEVERE are displayed when no severity is

specified.

severity
One of: INFORMATION, WARNING, ERROR, or SEVERE.

FROM application line1, column1
The top-left corner of a pop-up window.

Default: 8,5

TO application line2, column2
The bottom-right corner of a pop-up window.

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 187

Default: 16,75

MODE [LABEL string] [AT [line], column]
NOMODE

MODE enables the Mode field location and label. NOMODE suppresses the Mode field.

NOMODE and MODE are mutually exclusive.

Default: MODE AT 1,1

LABEL string
Displays another string in place of the default string.

Limit: The maximum LABEL string length is 1 character less than the width of the screen.

Default label: MODE:

AT [line], column
The Mode field can be placed on any line from 1 to the greatest number of lines allowed on the
screen. The column value can range from 1 to the largest number enabling the label and the Mode
field to fit on the screen. (The Mode field is 1 character long.)

Default placement: AT 1, 1

NOSEQUENTIAL

Suppresses the automatic generation of sequential access to the data records in the PRIMARY file.

ON [LINE] application line

Specifies the starting position for the screen on the terminal.

Limit: 1 to 240

Default: 1

PANEL|NOPANEL

Specifies whether or not generated procedure code will contain the options and constructs
required to process QUICK screen fields in panel mode.

SCREEN statements with the PANEL or NOPANEL options override SET PANEL and SET
NOPANEL statements.

PANEL
Generates the APPEND, ENTRY, MODIFY, PATH, and SELECT procedures, and includes
BLOCK TRANSFER control structures in each. BLOCK EACH and BLOCK ALL options on
CLUSTER statements affect the way the BLOCK TRANSFER control structures are generated in
the APPEND and ENTRY procedures.

NOPANEL
Generates only the APPEND, ENTRY, and PATH procedures, and doesn't include BLOCK
TRANSFER control structures in them. BLOCK EACH and BLOCK ALL options on CLUSTER
statements are ignored.

Generated FIELD statements, CLUSTER statements, and procedure code do not contain the
options and control structures required to process Data fields using Panel input.

Default: NOPANEL

PREDISPLAY

Displays initial values in all fields when the screen appears.

188 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

RECEIVING record|item [,record|item]...

Declares the record-structures, defined items, and temporary items that are received by this screen
from a higher-level screen.

The RECEIVING list must be specified in the same order as the PASSING list on the SUBSCREEN
statement (or RUN SCREEN verb) in the higher-level screen that calls this screen, although the
names can be different. To be accessible, record-structures and items in the list must be declared in
the screen.

Limit: A combined maximum of 16 records and items can be received.

SLAVE

Indicates that the screen is a slave screen. Slave screens don't contain any PRIMARY
record-structures; rather, they only reference record-structures that are passed from higher-level
screens and are declared as MASTER files. SLAVE screens are typically used when all the required
data entry cannot fit on the driver screen.

The MENU and SLAVE options are mutually exclusive. If neither is specified, the screen is a
regular data screen. The PREDISPLAY option is assumed for all fields on a slave screen.

Limit: Can't be specified with the MENU option.

STOPSCREEN

Specifies that control is to return to this screen if the QUICK screen user enters a Return to
Stopscreen command (^^) in the Action field of a lower-level screen.

The Return to Stopscreen action stops if there is a STOPSCREEN option on a lower-level screen,
or if any balancing warnings or error messages are issued on intervening screens.

TRANSACTION [MODEL] [transaction-option]

Determines the transaction model that is used for the screen.

Default: Set in the dictionary. The dictionary default is the Concurrency model. Defaults for each
operation can be customized using the SYSTEM OPTIONS statement in PDL.

For more information about transaction models, see Chapter 1, "About PowerHouse and
Relational Databases", in the PowerHouse and Relational Databases book.

The transaction-options are CONCURRENCY, CONSISTENCY, DUAL, and OPTIMISTIC.

CONCURRENCY
Specifies that the Concurrency transaction model is used.

CONSISTENCY
Specifies that the Consistency transaction model is used.

DUAL [option]...
Allows a screen to use one transaction model for Select mode operations and a different
transaction model for Entry and Find mode operations. The syntax for the options of the Dual
transaction model is:
SELECT [IN] CONSISTENCY|CONCURRENCY|OPTIMISTIC
ENTRY [AND] FIND] [IN] CONSISTENCY|CONCURRENCY|OPTIMISTIC

Defaults: SELECT IN CONCURRENCY; ENTRY AND FIND IN CONSISTENCY

If the same model is specified for both Select and Entry/Find mode, a warning message is issued.

The options specified on the SCREEN statement override any defaults specified in the dictionary.

DUAL is not a valid transaction model for Select or Entry/Find mode operations.

OPTIMISTIC
Specifies that the Optimistic transaction model is used.

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 189

USERS INCLUDE ALL|class[,class]

Restricts execution of the screen to the application security classes listed.

ALL
Includes all application security classes declared in the data dictionary, including the application
security class UNKNOWN.

class[,class]...
Indicates a name or names in the data dictionary for an application security class. Only the classes
specified are able to execute the screen. The application security class names must be declared in
the data dictionary. The application security class UNKNOWN can be listed as a class.

Limit: 1 to 64 user classes

WINDOW [ON] [LINE]n

Positions the 24-row window starting on the specified application row(n).

Limit: 1 to 240

Defaults to the ON LINE value. For more information about ON LINE, see (p. 187). For
information about ON LINE and stacking screens, see (p. 190).

Discussion
The procloc program parameter affects how PowerHouse uses unqualified file names that are
specified in the SCREEN statement. For more information about the procloc program parameter,
see Chapter 2, "Program Parameters", in the PowerHouse Rules book.

The SCREEN statement provides a file name for the screen, and allows you to specify screen-wide
options and screen positioning.

MENU Screens

Menu screens are built by adding the MENU option to the SCREEN statement, and by using
COMMAND statements, SUBSCREEN statements, and designer-written procedures to link the
menu screen with other screens, programs, and functions.

In general, menu screens don't act on, or relate to, data items or files. However, to pass parameters
to the entire system, you can declare temporary or defined items (as well as record-structures in
REFERENCE and DESIGNER files) for a menu screen. You can also declare MASTER
record-structures if a menu screen appears in the middle of a series of linked screens, and you must
receive and pass files through the menu screen.

By default, if no fields are declared, the ENTRY, MODIFY, and SELECT procedures for a menu
screen contain only the NULL verb. Similarly, the FIND and PATH procedures on a menu screen
contain only the NULL verb, and the UPDATE and DELETE procedures contain only the
DISABLE control structure. For more information about the DISABLE control structure and the
NULL verb, see (p. 384) and (p. 449).

To perform file retrieval and data initialization, you can provide an ENTRY procedure. This
procedure is executed only if the menu screen is in Entry mode. Menu screens are placed in Entry
mode when
• Entry mode is specified in the Initial mode parameter of QKGO
• the screen started in Entry mode
• the Action field command E (or the Entry mode command, if this command has been

redefined in QKGO) is entered in the Action field

When a menu screen is in Entry mode, the predefined condition CORRECTMODE is true, unless
you have written an ENTRY procedure for the menu screen; in this case, the predefined condition
ENTRYMODE is true during processing of the ENTRY procedure.

If a menu screen is started with no mode or in Find mode (that is, if F is specified in the Initial
mode parameter of QKGO, if the screen is started in Find mode, or if F is entered in the Action
field), the predefined condition CHANGEMODE is true.

190 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

Since a menu screen is normally in the Change or Correction phase, the user enters ID-numbers to
select the appropriate action. A mode entered in the Action field can be passed to a screen invoked
from the menu if the MODE SAME option is used on the SUBSCREEN statement.

Slave Screens

There is no PRIMARY file on a slave screen. The current file is passed from the higher-level screen
and received as a MASTER file.

An update on any screen updates all items on the record-structure. As a result, updating a slave
screen removes the necessity of updating on the calling screen. Similarly, updating a higher-level
screen removes the necessity of updating all lower-level slave screens.

REQUIRED fields should always be on the main screen, since there is no way to force the QUICK
screen user to enter data on a slave screen.

When leaving a slave screen, a backout action is only invoked when data local to the screen is
changed and not updated. If data in a received MASTER file is changed, the backout action is not
invoked because the slave screen is considered an extension of the calling screen and the file
originated there. However if a locally declared DESIGNER file is changed and not updated,
backout processing will occur upon leaving the screen.

The mode on the higher-level screen determines the mode and functions allowed on the slave
screen. When the slave screen is called while the higher-level screen is in the Entry sequence,
QUICK executes the Entry sequence on the slave screen and then prompts in the Action
field.Corrections can then be entered or an update can be performed. QUICK does not, however,
allow a Find or Select action, or a repeat of the Entry sequence.

When the slave screen is called after the completion of the Entry sequence on the higher-level
screen (correct phase), QUICK only allows correction to be entered or an update to be performed
on the slave screen.

If the slave screen is called after retrieving data in Find or Select mode, QUICK only allows
changes to be entered or an update to be performed. Using Find, Select, or Entry modes causes the
screen to display an error message.

You can, however, force the Entry sequence on the slave screen when the higher-level screen is in
the correct phase by using the MODE E option of the SUBSCREEN statement. For example
> SUBSCREEN HISTSUB1 PASSING HISTORY MODE E AUTO

Stacking Screens

QUICK supports up to 240 screen lines ("application lines") regardless of the terminal's actual
memory capacity.

Applications addressing more than 24 screen lines (rows) require the designer to keep track of
how the QUICK screens appear to the user since only 24 lines can be seen by the user at any single
time.

The option, WINDOW ON LINE n, allows the designer to decide which application line (n) will
be the top line displayed on the terminal. If the lines of a screen are not numbered greater than 24,
QUICK assumes the window line to be 1. If a screen (or its message line) extends beyond
application line 24, QUICK assumes the window line is the screen's first line. Some terminals do
not support QUICK screens placed on windows in the middle of a terminal page.

In the following example, there are six screens placed on application lines 1 to 72 as follows:
> SCREEN A
.
.
.
> SCREEN B ON LINE 13 FOR 11 LINES
.
.
.
> SCREEN C ON LINE 25 FOR 12 LINES &
> MESSAGE ON LINE 48
.
.
.

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 191

> SCREEN D ON LINE 37 FOR 11 LINES &
> WINDOW ON LINE 25
.
.
.
> SCREEN E ON LINE 37 FOR 11 LINES &
> WINDOW ON LINE 25
.
.
.
> SCREEN F ON LINE 49

The following table shows what the user sees when each screen is active:

If, at execution-time, the terminal has extended memory capacity beyond the standard displayable
24 lines, QUICK makes use of this extra memory to avoid rewriting the background when flipping
between screens. If a QUICK screen is still in terminal memory, QUICK simply adjusts the
window positioning. On the other hand, if the screen is lost from terminal memory, QUICK
refreshes the user's display so that what the user sees is the same as if the terminal had sufficient
memory capacity.

Screens outside of the current window may not always be displayed with up-to-date values. In
fact, QUICK avoids writing anything to the terminal until all required data for the
currently-displayed window is available. Even on split screens the data displayed in the current
window for currently inactive screens may not be up-to-date. This is especially true in balancing
and in other situations where lower-level screens update data for display on higher-level screens.
In a balancing situation, control counts or sums computed on a lower-level screen aren't updated
on the higher-level screen until the user returns to that higher-level screen. The REFRESH option
on the FIELD statement must be used to bring such fields up-to-date on return to the screen.

Application Lines and Terminal Memory

The screen stacking options of the SCREEN statement do not act alone. They act in conjunction
with the Application lines parameter of QKGO, and with usable terminal memory.

Application Lines

A maximum of 240 screen lines (regardless of the usable terminal memory) can be specified at
execution-time with the Application lines parameter of QKGO. (The default is 48.) The designer
can take advantage of application lines by using the WINDOW option of the SCREEN statement.
Since windows are 24 lines long, the number of application lines should be specified to be evenly
divisible by 24. Split or overlapping windows can be used, but since writing to terminal memory is
done in 24-line windows, it may be difficult to produce a smooth screen-to-screen transition.

If the designer specifies a WINDOW option with a line number greater than the number of
application lines available at execution-time, an overlay or mapping is done based on the number
of lines available. For example, if 72 application lines were available at execution-time, and a
window was specified to start on line 97, it is mapped onto application lines starting at line 25 (97
minus 72).

Active
Screen What the user sees

A Screen A alone.

B A split screen with part of screen A on top and screen B on the bottom.

C A split screen with screen C on top and a blank screen, screen D, or screen E on the
bottom, depending on whether and which of screen D or E was called.

D A split screen with screen C on top and screen D on the bottom.

E A split screen with screen C on top and screen E on the bottom.

F Screen F alone.

192 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

The line numbers in the screen stacking options - ON LINE n, MESSAGE ON LINE n, and
WINDOW ON LINE n - all refer to line numbers (n) within application lines. On all other
statements, row numbers are relative to a position on the screen, or relative to line 1 of the screen.
The FOR n LINES option specifies how many rows the screen contains.

Usable Terminal Memory

Each terminal recognized by QUICK has a corresponding terminal profile containing the
characteristics required to control the cursor, highlighting, line drawing, and terminal memory.
One of the pieces of information in this profile is the maximum number of lines of terminal
memory that QUICK can use (to a maximum of 240). This number is also the maximum that can
be used if the term program parameter, the terminal type prompt, or the data dictionary are used
to specify the number of lines.

Unless otherwise specified, QUICK assumes 48 lines or the maximum number in the profile,
whichever is lower (some terminals only have 24 lines of memory). If the number of lines is
specified, the number used is either the lower of the lines specified or the value in the profile. For
example, if the profile allows a maximum of 120 lines, and 144 lines are specified on a
terminal-type prompt, 120 lines are used. Specifying more lines than the terminal actually has
available leads to unpredictable display results. Specifying more terminal memory than your
application needs can have a negative impact on performance.

Regardless of the number of lines of terminal memory specified, the number of lines actually used
will not be greater than the number of application lines specified in QKGO. The number of lines
used also depends on screen stacking and windowing options. These options may or may not
make use of the total number of application lines available. The number of lines of terminal
memory should be specified to be evenly divisible by 24.

When specifying the number of terminal lines to be used, you should take the type of terminal
memory into consideration. If the memory is based on a fixed number of lines, even if the lines are
completely filled, there is no problem; 48 lines will always be 48 lines. Some terminals base their
memory on a fixed number of bytes, with the actual number of lines dependent on how full each
line is. A line's contents may include many cursor and highlight control characters which,
although not visible, occupy bytes and use terminal memory. A system of screens must be
physically tested on terminals of this type to determine if problems will occur.

While the screen stacking options of the SCREEN statement refer to application lines, the CLEAR
and REFRESH options and verbs refer to terminal memory only. Any numbers specified are
mapped to lines actually used on the terminal.

Mapping from Application Lines onto Terminal Memory

A system of screens may be mapped into application lines by using the screen stacking options.
When displaying screens on the terminal, application lines are mapped into terminal memory. If
the number of application lines does not exceed the number of usable terminal lines, the mapping
is a straightforward one-to-one correspondence. If there are more application lines than usable
terminal lines, the mapping is the same as if a WINDOW option specifies a line number greater
than the number of application lines. If 240 application lines were used and specified in QKGO,
and only 72 lines of terminal memory were available at execution-time, the mapping is as outlined
in the following table, assuming full 24 line windows with no overlapping:

Application Lines Terminal Lines

Window Line numbers Window Line Numbers

1 1-24 1 1-24

2 25-48 2 25-48

3 49-72 3 49-72

4 73-96 1 1-24

5 97-120 2 25-48

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 193

If a screen is already in terminal memory when it is linked to or returned to, a simple adjustment
of the cursor position is all that's required to display it to the user (a "screen flip"). If the screen is
not in terminal memory but is in application lines, it can be redisplayed from there. If the screen is
not in terminal memory or application lines, it must be reconstructed.

Using this information, plus a knowledge of the target terminals, the designer can plan where a
screen is to appear within terminal memory and what other screens it overlays. You can obtain
significant gains in processing efficiency by using application lines and terminal memory to their
fullest.

Action Bars

An Action bar presents a list of QUICK actions or menus in a menu bar that extends across the
terminal window. You can invoke an Action command by selecting the appropriate entry in the
Action bar or pull down menu as an alternative to entering the action at the Action field prompt.

With an Action bar, you can associate commands with a more descriptive label, and also show all
the commands that are available to the user.

Adding an Action Bar to Your Screen Design

To create an Action bar:
1. Specify the ACTIONBAR option of the SCREEN statement.
2. Use the ACTIONMENU statement to define the menus and actions you want to place on the

Action bar.
3. Use the MENUITEM statement to define the actions for each menu to be pulled down from

the Action bar.

Action Bar Menus and Actions

The Action bar can contain both menus and actions. To specify a menu, enter the
ACTIONMENU statement without indicating an action option, as in
> ACTIONMENU LABEL "EMPLOYEES"

To specify the action that's performed, use the ACTION option, as in
> ACTIONMENU LABEL "CREATE" ACTION ENTRY

You can specify any QUICK Action command as an ACTION option. If the action requires an
ID-number or ID-number range as a parameter, you can specify these explicitly or you can obtain
the ID-numbers at run time by using the MARK or PROMPT options.

If you specify PROMPT, QUICK prompts you for ID-number values with a prompt box. If you
specify MARK, QUICK determines the value from the current FIELDMARK setting. If there is no
current MARK and MARK has been specified, QUICK prompts for the ID-numbers.

If you don't want your Action bar to have pull-down menus, exclude MENUITEM statements
from your design statements. Instead, you can specify Action commands in the Action bar.

But if you want to specify a pull-down menu, enter MENUITEM statements after the
corresponding ACTIONMENU statement, as in
> ACTIONMENU LABEL "EMPLOYEES"
> MENUITEM LABEL "LOCATE" ACTION FIND

6 121-144 3 49-72

7 145-168 1 1-24

8 169-192 2 25-48

9 193-216 3 49-72

10 217-240 1 1-24

Application Lines Terminal Lines (Continued)

Window Line numbers Window Line Numbers

194 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

> MENUITEM LABEL "NEW" ACTION ENTRY

If you specify MENUITEM statements following the ACTIONMENU statement, QDESIGN
constructs a menu that appears to "pull down" from the Action bar when the Action menu is
selected.

Each MENUITEM statement creates a new entry on the menu. The menu can accommodate any
size label and any number of items: the menu border adjusts to accommodate the largest menu
label, and the menu scrolls to fit the number of menu items.

Generally, menus pull down from the Action bar; that is, they appear below the corresponding
Action menu on the Action bar. However, if you specify that the Action bar appear on the last
three lines of the terminal, the menus pop up above the Action bar.

Action Bars and Action Fields

You can specify that both an Action bar and an Action field appear on a screen. When the screen
runs, only one mode is active at a time, but you can switch between the two modes. This way, you
can make a limited set of commands available through an Action bar for the novice user but still
enable an Action field for the more experienced user.

If both the Action bar and Action field are available, the screen initially runs Action field
prompting mode by default. To specify that the Action bar should be the initial mode, add the
STARTUP option to the ACTIONBAR option of the SCREEN statement.

If the Action field and Action bar appear on the same line, only the current prompting mode is
visible. If they are not on the same line, both the Action bar and Action field are visible, but
QUICK only prompts you at the active mode.

Console Window Size (Windows)

The size of a Command Console window can be controlled by the properties setting of that
window. However, QUICK normally operates with a screen size of 80 to 132 columns by 24 lines.
QUICK will control the Command Console window size so that the screen can be displayed in its
entirety whenever possible.

For example, if QUICK runs an 80 by 24 screen and then a 132 by 24 screen, it will resize the
Command Console window automatically when it switches between the two screens. The
exception to this is when the Command Console window is running in "Full Screen" mode. In
"Full Screen" mode, screens larger than 80 columns will only display 80 columns at a time.

If the user resizes the Command Console window while QUICK is running, then QUICK may not
display the entire screen or it may not produce the desired output.

Examples
The following examples show the syntax for setting up a MENU screen, in which no FILE
statements are specified. MENU screens are commonly used to call other screens, and generally
they contain one SUBSCREEN statement for each screen that can be called from the menu being
established.

NOMODE suppresses the display of a Mode indicator. The ACTION LABEL and AT options
position the Action field and specify a label for it.
> SCREEN MAINMENU MENU &
> NOMODE &
> ACTION LABEL &
> "Enter a number to select an option: " &
> AT 1,33
>
> SKIP TO LINE 4
>> TITLE "Main Menu" CENTERED
>
> SKIP TO LINE 8
>
> DRAW 8,10 TO 15,30
> DRAW 8,50 TO 15,70
> DRAW 16,25 TO 22,55
>

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 195

> SUBSCREEN ORDMAIN &
> NOLABEL &
> ID 1 AT 10,19
>
> SUBSCREEN INVMAIN &
> NOLABEL &
> ID 2 AT 10,59
>
> SUBSCREEN MAINT &
> NOLABEL &
> ID 3 AT 18,39
>
> TITLE "Order" AT 11,18
> TITLE "Invoice" AT 11,57
>
> TITLE "Processing" AT 12,16
> TITLE "Processing" AT 12,56
>
> TITLE "System" AT 19,38
> TITLE "Maintenance" AT 20,35
>
> BUILD

The QUICK screen that results serves as a main menu for an entire system:

Setting Up QUICK's Panel Mode of Operation

By default, QUICK screens are not PANEL screens. Each field is treated as a distinct "block" of
information. To group fields into blocks for processing, use the PANEL option of the SCREEN
statement.
• PANEL causes the resulting QUICK screen to block fields based on CLUSTER statements.
• ACTIVITIES limits the screen activities; in this case, no ENTRY activity is allowed since the

screen is designed to make changes to existing data records
• No ENTRY procedure is generated because of the ACTIVITIES options specified on the

SCREEN statement.
• The PATH, SELECT, and MODIFY procedures contain BLOCK TRANSFER control

structures. No BLOCK TRANSFER control structures are present for NOPANEL screens.
• The SELECT and MODIFY procedures are generated only for PANEL screens. However, you

can code them for any QUICK screen, whether or not PANEL is specified.
> SCREEN MODCUST PANEL &
> ACTIVITIES FIND, CHANGE, DELETE
>
> FILE CUSTOMERS PRIMARY
>
> SKIP TO LINE 8

196 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SCREEN

> ALIGN (,25,40) >
> CLUSTER BLOCK EACH
> FIELD CUSTOMERKEY OF CUSTOMERS &
> REQUIRED &
> NOCHANGE
> CLUSTER
> SKIP 1
> CLUSTER BLOCK ALL
> FIELD CUSTOMERNAME OF CUSTOMERS &
> REQUIRED &
> NOCHANGE
> FIELD CITY OF CUSTOMERS
> FIELD STREET OF CUSTOMERS
.
.
.
> FIELD PROVSTATE OF CUSTOMERS &
> ID SAME &
> LABEL "Prov/State"
> FIELD POSTALZIP OF CUSTOMERS &
> ID SAME &
> LABEL "Pcode or

> FIELD PHONENUMBER OF CUSTOMERS &
> ID SAME &
> LABEL "Phone"
> CLUSTER
>
>BUILD LIST
>
> PROCEDURE PATH
> BEGIN
> BLOCK TRANSFER SEQUENCED
> BEGIN
> REQUEST CUSTOMERKEY OF CUSTOMERS
> END
> IF PROMPTOK FOR CUSTOMERKEY OF CUSTOMERS
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> BLOCK TRANSFER SEQUENCED
> BEGIN
> REQUEST CUSTOMERNAME OF CUSTOMERS
> END
> IF PROMPTOK FOR CUSTOMERNAME OF CUSTOMERS
> THEN LET PATH = 2
> END
> IF PATH = 0
> THEN ERROR "Key required."
> END
>
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN GET CUSTOMERS &
> USING CUSTOMERKEY OF CUSTOMERS
> IF PATH = 2
> THEN GET CUSTOMERS &
> USING CUSTOMERNAME OF CUSTOMERS
> END
>
> PROCEDURE UPDATE
> BEGIN
> PUT CUSTOMERS
> END
>
> PROCEDURE DELETE
> BEGIN

Chapter 3: QDESIGN Statements
SCREEN

QDESIGN Reference 197

> DELETE CUSTOMERS
> END
> PROCEDURE SELECT
> BEGIN
> BLOCK TRANSFER
> BEGIN
> SELECT CUSTOMERKEY OF CUSTOMERS
> SELECT CUSTOMERNAME OF CUSTOMERS
> SELECT CITY OF CUSTOMERS
> SELECT STREET OF CUSTOMERS
> SELECT PROVSTATE OF CUSTOMERS
> SELECT POSTALZIP OF CUSTOMERS
> SELECT PHONENUMBER OF CUSTOMERS
> END
> END
.
.
.
> PROCEDURE MODIFY
> BEGIN
> BLOCK TRANSFER
> BEGIN
> DISPLAY CUSTOMERKEY OF CUSTOMERS
> END
> BLOCK TRANSFER
> BEGIN
> DISPLAY CUSTOMERNAME OF CUSTOMERS
> ACCEPT CITY OF CUSTOMERS
> ACCEPT STREET OF CUSTOMERS
> ACCEPT PROVSTATE OF CUSTOMERS
> ACCEPT POSTALZIP OF CUSTOMERS
> ACCEPT PHONENUMBER OF CUSTOMERS
> END
> END

This is an example of the COMMIT ON option:
> SCREEN EX3 &
> TRANSACTION MODEL CONSISTENCY &
> COMMIT ON MODE

This SCREEN statement results in QUICK employing a single consistency transaction that is
committed at the beginning of each new screen mode.

198 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SELECT

SELECT
Applies a selection condition to retrieved data records.

Syntax
SELECT [IF] condition

condition

Establishes a condition that must be satisfied for the record-structure that is accessed by the
screen. If the condition isn't satisfied, the record-structure is bypassed and the next
record-structure is read.

For more information about conditions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

Discussion
The SELECT statement is part of the data section and limits the data records accessed. The
SELECT statement must follow the FILE statement to which it refers.

You cannot apply a SELECT statement to a CURSOR. To specify selection criteria when using a
CURSOR, use the WHERE option or substitutions on the associated DECLARE CURSOR.

When accessing data records from the record-structure, only data records that satisfy the
condition are made available to the screen. If more than one SELECT statement is associated with
the record-structure, the data record must meet all selection criteria. A SELECT statement for a
record-structure that is the object of a LOOKUP NOTON option is ignored when the lookup is
performed. The LOOKUP NOTON option doesn't transfer data into the buffers, so there is
nothing to compare.

Example
This example shows how the SELECT statement can be used to create a screen that tracks unfilled
purchase orders.

"N" tells QUICK to retrieve data records from the PURCHASE record-structure that have been
entered but not filled. With this design, QUICK screen users can access outstanding orders.
> SCREEN BACKORD
>
> FILE PURCHASE PRIMARY
> SELECT IF SHIPPED = "N"
>
> FILE INVITEMS SECONDARY
>
> FIELD CUSTNAME
> FIELD CUSTNAME DISPLAY
> FIELD ORDERPARTS
> FIELD DATEORDERED
> FIELD EXPECTEDSHIPDATE LABEL "Exp. Ship. Date"
>
> BUILD

Chapter 3: QDESIGN Statements
SET

QDESIGN Reference 199

SET
Changes default settings for a QDESIGN session.

Syntax
SET DEFAULT|[option]...

DEFAULT

Resets all SET options to the following default values:

COMPILE

DETAIL GENERATE USE

LIST GENERATE LAYOUT USE

NESTING 50

NODETAIL PROCEDURES

NOLIST PROCEDURES

NOMENUKEYS

NOPANEL

NOPRINT

VERIFY DELETE SUMMARY

NOAUTONEXT

NOVERIFY ERRORS

WARNINGS

WRAPAROUND

The SET DEFAULT statement doesn't reset the DICTIONARY option.

SET DEFAULT resets the SET LIST|NOLIST option to SET NOLIST PROCEDURES SQL.

Options

ASSUMED record-structure

Sets the assumed record-structure.

QUICK uses the assumed record-structure as the default record-structure name during the
generation of FIELD statements.

If there is no SET ASSUMED statement, the assumed record-structure name is set to blank at the
start of a screen design, and to the name of the primary record-structure when the FILE statement
for the PRIMARY file is entered.

To change the assumed record-structure, the SET ASSUMED statement must follow the FILE
statement for the PRIMARY file.

SET Options

ASSUMED COMPILE|SYNTAX DATABASE

DETAIL|NODETAIL DICTIONARY DOWNSHIFT|UPSHIFT|NOSHIFT

LIST|NOLIST MENUKEYS|NOMENUKEYS NESTING n

PANEL|NOPANEL PRINT|NOPRINT SAVE CLEAR

VERIFY|NOVERIFY WARNINGS|NOWARNINGS WRAPAROUND|NOWRAPAROUND

200 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SET

COMPILE|SYNTAX

COMPILE allows screens to be compiled and executed. SYNTAX allows QDESIGN to parse
statements, but doesn't allow QDESIGN to execute the screen or compile it into a permanent file.
The BUILD and GO statements are disabled when the SYNTAX option is specified.

Default: COMPILE

DATABASE database-name

For SQL support, each SQL statement requires a name to attach to the database. The database
name must exist as a logical name in the current dictionary.

The name can also be set when loading the dictionary, or in the resource file, or by using the IN
database option of SQL statements.

For more information about setting the database, see Chapter 1, "About PowerHouse and
Relational Databases", in the PowerHouse and Relational Databases book.

DETAIL|NODETAIL [GENERATE] [PROCEDURES] [USE]

DETAIL and NODETAIL specify whether or not QDESIGN writes detailed statements to the
source statement save file.

Although DETAIL performs the opposite function of NODETAIL, the two are not mutually
exclusive unless they include identical options. An entry of either the SET DETAIL or SET
NODETAIL statement without any options sets the DETAIL or NODETAIL options to
GENERATE PROCEDURES USE.

Default: DETAIL GENERATE USE, NODETAIL PROCEDURES

GENERATE
Writes (if DETAIL was specified) or doesn't write (if NODETAIL was specified) the results of the
GENERATE statement to the source statement save file. When NODETAIL GENERATE is
specified, only the GENERATE statement is written to the source statement save file.

PROCEDURES
Writes (if DETAIL was specified) or doesn't write (if NODETAIL was specified) the procedures
created by the BUILD statement to the source statement save file. When NODETAIL
PROCEDURES is specified, only the BUILD statement is written to the source statement save file.

NODETAIL can be overridden by specifying BUILD DETAIL when creating the compiled screen.

USE
Writes (if DETAIL was specified) or doesn't write (if NODETAIL was specified) the contents of
source statement files referenced by USE statements to the temporary save file: QKSAVE
(MPE/iX) or qksave.qks (OpenVMS, UNIX, Windows).

When NODETAIL USE is specified, only the USE statement is written to the source statement save
file.

DICTIONARY filespec [TYPE PHD|PDC]

Names the data dictionary used for the current session. By default, QDESIGN looks for a
dictionary named phd.

Limits: The DICTIONARY option isn't saved in a compiled screen. The DICTIONARY option is
valid only before the SCREEN statement or after the BUILD statement.

filespec
Specifies the name of a file that contains the PowerHouse dictionary to be used for the current
QUICK session.

Defaults: PHD (MPE/iX, OpenVMS) or phd.pdc (UNIX, Windows)

Chapter 3: QDESIGN Statements
SET

QDESIGN Reference 201

[TYPE PHD|PDC] (OpenVMS)
Specifies the default dictionary type. If the TYPE option is specified, it applies to all subsequent
SET DICTIONARY statements in the session.

When searching for a dictionary, PowerHouse limits searches to the dictionary type specified by
the TYPE option. If the TYPE option is not specified, PowerHouse searches first for a PHD
dictionary, then a PDC dictionary.

Default: PHD

DOWNSHIFT|UPSHIFT|NOSHIFT

Specifies that the values of entered identifiers be shifted to lowercase, uppercase, or left as entered.

These options allow dictionaries to be created with case-sensitive entity names. For system-wide
access to mixed, lowercase or uppercase identifiers, you can specify the SHIFT option in the
SYSTEM OPTION statement.

LIST|NOLIST [GENERATE] [LAYOUT] [PROCEDURES]
[SQL] [TRANSACTION] [USE]

LIST and NOLIST control what is listed on your terminal.

Although LIST performs the opposite function of NOLIST, the two are not mutually exclusive
unless they include identical options.

An entry of either SET LIST or SET NOLIST without any options sets the default.

Default: LIST GENERATE LAYOUT USE; NOLIST PROCEDURES

GENERATE
Lists (if LIST was specified) or doesn't list (if NOLIST was specified) the results of the
GENERATE statement to the list device.

LAYOUT
Lists (if LIST was specified) or doesn't list (if NOLIST was specified) the sample screen layout to
the list device.

PROCEDURES
Lists (if LIST was specified) or doesn't list (if NOLIST was specified) the procedures created by the
BUILD statement to the list device.

SQL
Controls the listing of SQL statements. It shows the SQL requests sent from PowerHouse to the
database, including the effects of any substitutions.

Default: SET NOLIST SQL

TRANSACTION
Displays the transaction model used by the screen, all of the transactions defined in a screen, and
all of the file and transaction associations. The transaction associations include the isolation levels
for each database.

Default: SET NOLIST TRANSACTION

USE
Lists (if LIST was specified) or doesn't list (if NOLIST was specified) the source statements
contained in a USE file.

202 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SET

MENUKEYS|NOMENUKEYS

MENUKEYS assigns default short-cut menu keys to Action bar and drop-down menu items that
have labels. PowerHouse scans each label, and assigns a menu key to the first alphanumeric
character (7-bit ASCII) that isn't assigned to another menu key in the Action bar or in the same
drop-down menu. If a unique character cannot be found, then PowerHouse issues the following
warning message:
W A non-unique MENUKEYS has been assigned to this ACTIONMENU or MENUITEM.

You can override any of the defaults using the MENUKEY or NOMENUKEY options of the
ACTIONMENU and MENUITEM statements. Menu keys are highlighted with an underline by
default. You can change the highlighting by using the HILITE statement.

Menu keys may enhance the ease-of-use of screens with Action bars and/or drop-down menus.
Menu keys are indicated by a highlighted character (underlined by default) in the label of an
Action bar or drop-down menu item; when the key is pressed, the menu item is invoked. This
offers an alternative to using cursor keys or a mouse to select a menu item.

NOMENUKEYS specifies that no default menu keys are assigned to Action bar and drop-down
menu items. However, you can still add menu keys where required by using the MENUKEYS
option of the ACTIONMENU statement and the MENUITEM statement.

Default: NOMENUKEYS

NESTING n

Sets the number of entries (n) in a table used by the parser to track control structures. This option
is needed only when QDESIGN issues a message that the tables need more space.

Default: 50 entries

PANEL|NOPANEL

Specifies whether or not generated procedure code contains the options and control structures
required to process Data fields in Panel mode.

SCREEN statements with the PANEL or NOPANEL options override SET PANEL and SET
NOPANEL statements.

Default: NOPANEL

Limit: The PANEL|NOPANEL option is valid only before the SCREEN statement or after the
BUILD statement.

PANEL
Generates the APPEND, ENTRY, MODIFY, PATH, and SELECT procedures, and includes
BLOCK TRANSFER control structures in each. BLOCK EACH and BLOCK ALL options on
CLUSTER statements affect the way the BLOCK TRANSFER control structures are generated in
the APPEND and ENTRY procedures.

NOPANEL
Generates only the APPEND, ENTRY, and PATH procedures, and doesn't include BLOCK
TRANSFER control structures in them. BLOCK EACH and BLOCK ALL options on CLUSTER
statements are ignored.

Generated FIELD statements, CLUSTER statements, and procedure code do not contain the
options and control structures required to process Data fields in Panel mode.

PRINT|NOPRINT

PRINT sends the source listing to the default printer; NOPRINT doesn't.

MPE/iX: The source listing is sent to the designated file SYSPRINT.

OpenVMS: The source listing is sent to the designated file SYSPRINT. If this logical is not
defined then the system default is used. SET PRINT is ignored in batch jobs.

Chapter 3: QDESIGN Statements
SET

QDESIGN Reference 203

Default: NOPRINT

SAVE CLEAR

Clears QDESIGN's source statement save file at the point where the SET SAVE CLEAR statement
is entered.

VERIFY|NOVERIFY [DELETE] [ERRORS] [SUMMARY]

VERIFY enables requests for authorization to proceed with processing. NOVERIFY disables
requests for authorization to proceed with processing.

Although VERIFY performs the opposite function of NOVERIFY, they are not mutually exclusive
unless they include identical options. An entry of either the SET VERIFY or SET NOVERIFY
statement without any options sets the VERIFY or NOVERIFY options to DELETE ERRORS
SUMMARY.

DELETE
If NOVERIFY was specified, authorization is not requested before deleting an existing file.

ERRORS
Issues (if VERIFY was specified) or doesn't issue (if NOVERIFY was specified) an "expected" list
when errors are encountered in a file processed by a USE statement, and waits for a carriage
return to continue processing or a user break to end processing.

SUMMARY
Requests (if VERIFY was specified) or doesn't request (if NOVERIFY was specified) authorization
to proceed when a summary of errors and warnings is reported following the BUILD statement at
the end of the screen design.

Default: VERIFY DELETE SUMMARY, NOVERIFY ERRORS

WARNINGS|NOWARNINGS

WARNINGS issues warnings as required; NOWARNINGS suppresses warnings.

Default: WARNINGS

WRAPAROUND|NOWRAPAROUND

Determines whether or not QDESIGN should issue a carriage return and line feed at the end of
each line on a screen.

Use WRAPAROUND for terminals that automatically issue a carriage return and line feed after
column 80 when displaying the sample layout screen. Use NOWRAPAROUND for terminals that
don't automatically issue a carriage return and line feed after column 80 when displaying the
sample layout screen.

Default: WRAPAROUND

UNIX,
Windows:

The default printer is obtained from the value of the environment variable
PH_PRINTER. If this variable is not set, the system default is used.

MPE/iX,
UNIX,
Windows:

If VERIFY was specified, authorization is requested to delete an existing file and
replace it with a new file of the same name generated by a BUILD or SAVE
statement.

OpenVMS: If VERIFY was specified, authorization is requested to create a new version of an
existing file generated by a BUILD or SAVE statement.

204 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SET

Discussion
The SET statement overrides the default options that are normally in effect during a QDESIGN
session.

Most SET options remain in effect from one screen design to another. The SET options are used by
QDESIGN and are not saved in a compiled screen.

Setting Options in the Resource File

Some options can be specified in the resource file. The options on the SET statement override
those in the resource file. For more information, see Chapter 1, "Running PowerHouse", in the
PowerHouse Rules book.

Example
The following example shows the use of the SET statement to specify that only procedural code be
listed. SET NOLIST GENERATE LAYOUT suppresses the generation of FIELD statements and
the screen layout. SET LIST PROCEDURES produces a listing of the procedural code generated
by the BUILD statement.
> SET NOLIST GENERATE LAYOUT
> SET LIST PROCEDURES
>
> SCREEN ADMITTED
>
> FILE PATIENTS PRIMARY
> FILE HOSPITAL SECONDARY
>
> GENERATE
> BUILD
HOSPITAL accessed via MEDINSNO.
>
> PROCEDURE ENTRY
> BEGIN
> BLOCK TRANSFER
> BEGIN
> ACCEPT MEDINSNO OF PATIENTS
> ACCEPT LASTNAME OF PATIENTS
.
.
.

Assigning Default Menu Keys

In the following example, default menu keys are assigned to each Action bar and drop-down
menu item. The underlined letter in each menu item is the menu key for that menu item:
> SET MENUKEYS
> SCREEN CUSTCAP ACTIONBAR
> ACTIONMENU LABEL "ENTRY" ACTION ENTRY
> ACTIONMENU LABEL "FIND..."
> MENUITEM LABEL "FIND" ACTION FIND
> MENUITEM LABEL "FIND NEXT" ACTION NEXT DATA
> ACTIONMENU LABEL "UPDATE..."
> MENUITEM LABEL "UPDATE STAY" ACTION UPDATE STAY
> MENUITEM LABEL "UPDATE NEXT" ACTION UPDATE NEXT
> MENUITEM LABEL "UPDATE RETURN" ACTION UPDATE RETURN
> MENUITEM LABEL "UPDATE" ACTION UPDATE
> ACTIONMENU LABEL "EXIT" ACTION RETURN
>
> FILE CUSTOMERS
> FIELD CUSTOMER OF CUSTOMERS REQUIRED &
> NOCHANGE LOOKUP NOTON CUSTOMERS
> FIELD CUSTNAME OF CUSTOMERS REQUIRED NOCHANGE
> FIELD EMPLOYNO OF CUSTOMERS REQUIRED NOCHANGE
> FIELD STREET OF CUSTOMERS
> FIELD CITY OF CUSTOMERS

Chapter 3: QDESIGN Statements
SET

QDESIGN Reference 205

> FIELD PROVSTATE OF CUSTOMERS
> FIELD COUNTRY OF CUSTOMERS
> FIELD POSTALZIP OF CUSTOMERS
> FIELD PHONE OF CUSTOMERS
> FIELD REMARKS OF CUSTOMERS
> GO

The resulting screen looks like this:

Displaying Transactions

The following example shows the transactions used by the screen STOCKMT:
> SET NOLIST GENERATE LAYOUT PROCEDURE
> SET LIST TRANSACTION
> SCREEN STOCKMT TRANSACTION MODEL CONCURRENCY
> FILE STOCKS PRIMARY
> GENERATE
> BUILD
Transaction model Concurrency.
LOGICAL transaction QUERY, Special Inherited

Commit on MODE
Used by STOCKS for QUERY

LOGICAL transaction UPDATE, Special Inherited
Commit on UPDATE
Used by STOCKS for PROCESS UPDATE
CONSISTENCY

206 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SHOW

SHOW
Displays information about available record-structures and/or items in the data dictionary.

Syntax
SHOW DATABASES|FILES|ITEMS

DATABASES

Lists the tables or views from databases that are declared with either FILE or DATABASE
statements in PDL.

FILES

Lists the names of record structures, tables, or views from files and databases that are declared
with FILE or DATABASE statements in PDL.

ITEMS

Displays the names of all items accessed with FILE or CURSOR statements including the
temporary and defined items. The files available include

Indexed items are identified by asterisks (*). If there are indexes made up of multiple segments,
only the first segment is identified with an asterisk.

Substructured items are identified by periods (.) up to the fourth substructured level; for items
substructured at levels 5 to 15 (the maximum), the display format is .05 to .15. In this way, items
substructured from the fifth to the fifteenth level are identified explicitly by number rather than by
a nested format.

Discussion
The SHOW statement displays the names of record-structures and items in the data dictionary. In
QDESIGN, picture information is displayed for temporary and defined items. Because the picture
information isn't available until the user issues the FIELD statement, these pictures are based only
on datatype information provided in the TEMPORARY or DEFINE statements themselves.

In QDESIGN, all files and items are displayed regardless of the security specified for those files
and items in the data dictionary.

Redefinitions are identified by underscores (_).

The maximum picture size allowed in the SHOW ITEMS display is 15. Picture overflow is
identified by three trailing periods; pictures that are over 15 characters in length are displayed up
to the twelfth character followed by three trailing periods (...).

Example
The following example demonstrates how you can view the databases, files and items in your data
dictionary. Substructures are preceded by periods (as with the items RECORDTYPE and
ACCOUNTNUMBER).
> SET DICTIONARY ORDERENT
> SHOW DATABASES
BILLINGS IN EMPBASE
BILLINGS_AUDIT IN EMPBASE
BRANCHES IN EMPBASE
CUSTOMER IN EMPBASE

AUDIT DELETE DESIGNER

DETAIL MASTER PRIMARY

REFERENCE SECONDARY

Chapter 3: QDESIGN Statements
SHOW

QDESIGN Reference 207

CUSTOMER_OLD IN EMPBASE
CUSTOMER_PROJECT IN EMPBASE
DIVISIONS IN EMPBASE
EMPLOYEES IN EMPBASE
.
.
.
> DECLARE CURSOR_ONE CURSOR FOR &
> SELECT * FROM BRANCHES
> SCREEN BRANCHC
> CURSOR CURSOR_ONE PRIMARY KEY BRANCH
> SHOW ITEMS
 INPUT OUTPUT
CURSOR_ONE TYPE SCALE SCALE DEC PICTURE
 BRANCHES.BRANCH CHARX(2)
 BRANCHES.BRANCH_NAME CHAR X(20)
 BRANCHES.BRANCH_MANAGER VARCHAR X(20)

> SET DICTIONARY ORDERENT
> SHOW FILES
ADJUSTMENTS
CUSTOMERS
SUPPLIERS
INVENTORYAUDIT
INVOICEDETAIL
INVOICEMASTER
NEXTCODE
ORDERDETAIL
ORDERMASTER
PARTS
PARTNOTES
PARTSUPPLIERS
SALESYTD
> SCREEN MODCUST PANEL
> FILE CUSTOMERS PRIMARY
>
> SHOW ITEMS
CUSTOMERS TYPE SCALE SCALE DEC PICTURE
 *CUSTOMERKEY CHAR X(5)
 .RECORDTYPE CHAR X(1)
 .ACCOUNTNUMBER NUM "^^^^"
 CUSTOMERNAME CHAR X(20)

208 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SKIP

SKIP
Skips lines to a specific line or to an alignment group.

Syntax
SKIP [n|TO [LINE] m|TO GROUP g]

n

Sets the number of lines (n) to be skipped. The SKIP statement positions the cursor at the
beginning of the next line, and then skips the specified number of lines.

TO [LINE] m

Skips to the specified line (m) relative to the first line of the screen.

TO GROUP g

Skips to the specified alignment group (g).

Discussion
The SKIP statement is part of the layout section of the screen design. It is related to the first
CLUSTER, COMMAND, FIELD, SUBSCREEN, or TITLE statement that follows it. The SKIP
statement positions the object of the statement that follows it at a line number or an alignment
group or both. The SKIP statement and the SKIP n option position objects relative to the current
screen position.

How the SKIP Statement Works

The current screen position is normally the highest position (left-to-right, top-to-bottom) occupied
on the screen. However, the SKIP TO LINE (m) option resets the current screen position and
positions the object relative to the first line of the screen. The SKIP statement with no options
specified skips to the next line. The SKIP statement does nothing if it is placed so that it relates to
the beginning of a screen line.

Example
The following example demonstrates how to use the SKIP statement to create a screen with a
format that represents a hard copy form. In this example:
• The SKIP 1 statement skips 1 line to position fields on line 3.
• The SKIP TO 7 statement positions the title on line 7 and omits the keyword LINE.
• The SKIP 2 statement leaves two blank lines on the screen after the first group of fields.
• The SKIP TO GROUP 3 statement positions NOOFAPPTS within the third alignment group

under the field POSITION.
> SCREEN EMPDTL &
> MODE AT 1,70 FIELDMARK
>
> FILE EMPLOY1 PRIMARY
> FILE SKILLS DETAIL OCCURS 5
>
> TITLE "Employment And Skills Information" AT ,25
>
> SKIP 1
>
> ALIGN (,1,15)
> FIELD EMPLOYEE OF EMPLOY1 REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOY1
> FIELD LASTNAME OF EMPLOY1 REQUIRED NOCHANGE
> FIELD FIRSTNAME OF EMPLOY1
>

Chapter 3: QDESIGN Statements
SKIP

QDESIGN Reference 209

> SKIP TO 7
>
> TITLE "Employment Info" AT ,5
> DRAW FROM 8,5 TO 8,20
>
> SKIP 2
>
> ALIGN (1,4,11) (20,24,33) (40,44,58)
> FIELD BRANCH OF EMPLOY1 REQUIRED NOCHANGE
> FIELD DIVISION OF EMPLOY1 REQUIRED NOCHANGE
> FIELD POSITION OF EMPLOY1 REQUIRED NOCHANGE
>
> SKIP TO GROUP 3
>
> FIELD NOOFAPPTS OF EMPLOY1 ID SAME
>
> SKIP TO LINE 15
> TITLE "Skills" AT ,10
> DRAW FROM 16,5 TO 16,20
>
> SKIP 2
>
> ALIGN (,,10)
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILL OF SKILLS
> CLUSTER
>

The resulting screen looks like this:

210 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SUBSCREEN

SUBSCREEN
Invokes a lower-level screen.

Syntax
SUBSCREEN filespec|{ITEM item} [option]...

filespec

Names a file containing the compiled screen to be called. Normally QUICK only opens the file the
first time the statement is processed.

ITEM item

Indicates that the subscreen's file specification is defined in an item.

Limit: You cannot call subscreens named ITEM unless you precede the file specification with a
percent sign (%).

item
Names the item in which the subscreen's file specification is defined. The item can be either a
record item, a temporary item, or a defined item.

Limit: The item type must be CHARACTER or VARCHAR.

Options

AUTO

Automatically invokes the named screen when the standard entry sequence reaches this statement,
provided the ENTRY procedure was generated by QDESIGN.

CLEAR ALL|SCREEN|{[LINES] n [TO m]}

Clears an area of the terminal memory before the screen is called. Cleared lines are refreshed
automatically when the current screen becomes active again and QUICK is ready to prompt the
user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current calling screen.

[LINES] n [TO m]
Clears the area between and including lines n to m numbering from the first line of terminal
memory. LINE n alone clears only line n. LINE is for documentation only.

SUBSCREEN Options

AUTO CLEAR ALL|SCREEN HIDDEN

ID|NOID [ENTRY] IF INPUT B|C|SAME

LABEL|NOLABEL MARK|NOMARK MODE

ON ERROR PASSING REFRESH

WINDOW WIDTH

Chapter 3: QDESIGN Statements
SUBSCREEN

QDESIGN Reference 211

HIDDEN

Suppresses the screen ID display, but the user can reference the field using ID-numbers.

ID SAME
ID n [AT [row],column]
ID NEXT [AT [row],column]
ID AT [row],column]
NOID

Declares the ID-number for the subscreen and its position.

ID SAME
Instructs QDESIGN to omit the ID-number on the subscreen. To access the subscreen, use the
ID-number of the previous field.

ID n
Explicitly specifies an ID-number.

Limit: 1 to 99

ID NEXT
Uses the next ID-number in sequence.

AT [row],column
Positions the first digit of the ID-number at the specified row and column relative to the starting
line of the screen. If the row is missing, the current line is assumed.

NOID
States that no ID-number is assigned to this subscreen and the subscreen can't be referenced from
the Action field.

[ENTRY] IF condition

Invokes this subscreen in the standard entry sequence only if this condition is satisfied, provided
the ENTRY procedure was generated by QDESIGN. QDESIGN generates an identical IF control
structure in the default ENTRY procedure. If the condition is satisfied, the auto program
parameter is assumed.

For PANEL screens, subscreens aren't invoked until the entire block is transmitted to QUICK for
processing. The RUN SCREEN verb in the ENTRY procedure is processed only after an entry has
been made for each ACCEPT verb in the ENTRY procedure, and the QUICK screen user has
pressed [Enter].

Limit: The IF option is evaluated only during the standard ENTRY sequence; otherwise, it is
ignored.

INPUT B|C|SAME (MPE/iX)

Specifies the input mode the subscreen is to be in when it appears. The terminal is always returned
to the original mode on return from the called screen.

B
Starts the subscreen in Block mode if the subscreen can be run in Block mode.

C
Starts the subscreen in character mode.

SAME
Starts the subscreen in the same input mode as the calling screen.

212 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SUBSCREEN

LABEL [string] [AT [row],column]|NOLABEL

Declares the label and its position.

string AT [row],column
Indicates the subscreen label, and, optionally, the position of the label on the screen.

The AT option positions the first character of the label at the specified row and column relative to
the starting line of the screen. If the row isn't specified, the current line is assumed.

Default: The subscreen name.

NOLABEL
Specifies that no label appears for the subscreen.

MARK|NOMARK

MARK enables fieldmarking for a subscreen with an ID.

NOMARK disables the default fieldmarking for a subscreen with an ID when fieldmarking is
enabled.

MODE E|F|S|NULL|SAME|GHOST

Specifies which mode the subscreen is in when it appears.

E|F|S
Indicates that the subscreen is in one of the following modes when it first appears:
• Entry mode (E)
• Find mode (F)
• Select mode (S)

NULL
Indicates no mode. QUICK prompts for a mode at the Action field when the screen appears.

SAME
Indicates that the subscreen is in the same mode as the current screen when the screen named in
the SUBSCREEN statement is invoked.

GHOST
Indicates that the subscreen being called is a "ghost" screen. This causes QUICK to skip the
refreshing of the calling screen when returning from the subscreen call.

When QUICK runs a subscreen with the GHOST option, the default mode is used.

The GHOST option should only be used to call a ghost screen; that is, a screen that does all its
work in the INITIALIZE procedure with no terminal output. If the GHOST option is used on a
subscreen that is not a ghost screen, results will be unpredictable and screen corruption may occur.

Default: NULL. If the subscreen is invoked during the standard Entry sequence, the default is E
(Entry mode).

ON ERROR CONTINUE|TERMINATE

Determines whether processing on the calling screen continues or terminates if an error which the
user had no opportunity to correct, occurs on the subscreen. This option only has an effect when
an error on a subscreen is not displayed to the user on that subscreen.

CONTINUE
The execution of the calling screen continues, regardless of the fact that an error which the user
had no opportunity to correct, occurred on the subscreen.

Chapter 3: QDESIGN Statements
SUBSCREEN

QDESIGN Reference 213

TERMINATE
When an error which the user had no opportunity to correct, occurs on the subscreen, processing
on the calling screen terminates as if the SUBSCREEN statement failed.

Default: TERMINATE

Prior to 7.33.C (UNIX), 7.10E1 (OpenVMS) and 8.09 (MPE/iX), the behavior was equivalent to
CONTINUE.

PASSING record-structure|item [,record-structure|item]...

Specifies which of the current screen's existing record-structures, defined items, and temporary
items are passed to the subscreen. Individual record items cannot be passed to the subscreen.
Entity names in the list must be separated by commas.

Items must match, on the basis of identical item attributes, with the items named in the
RECEIVING option of the lower-level SCREEN statement. The names themselves may differ.

Passing a defined item allows you to use a higher-level screen expression on the lower-level screen
without having to repeat the expression. No value is passed. Defined items on higher-level screens
can only be passed to defined items on lower-level screens; temporary items on higher-level
screens can only be passed to temporary items on lower-level screens.

Limit: A combined maximum of 16 records and items.

REFRESH ALL|SCREEN|{[LINES] n [TO m]}

Clears and rewrites an area of the terminal memory when the screen becomes active again and
QUICK is ready to prompt the user. REFRESH options are performed before, and in addition to,
an automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including the lines n to m numbering from the first line
of the terminal memory. LINES n alone refreshes only line n. LINES is for documentation only.

WINDOW WIDTH CONSTANT|DEFAULT WHEN CALLING|RETURNING

Overrides the default behavior and sets the terminal to the correct screen width (80 or 132
columns).

WHEN CALLING
Keeps the current screen width of the screen when calling a subscreen.

WHEN RETURNING
Keeps the current screen width of the subscreen when returning from that subscreen.

Discussion
The SUBSCREEN statement is part of the layout section of the screen design. It allows the screen
user to invoke a related, lower-level screen.

Limit: The combined maximum number of SUBSCREEN statements, RUN SCREEN and RUN
COMMAND verbs is 256 per screen; if you exceed this limit, QDESIGN issues an error message.

214 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
SUBSCREEN

Dynamic Screen Calls in QDESIGN and QUICK

You can call subscreens by using the SUBSCREEN statement, the THREAD statement, the RUN
SCREEN verb, or the RUN THREAD verb. Each of these statements/verbs works in either of two
ways:
• You provide the subscreen's file specification directly in the statement or verb syntax. Thus,

the same subscreen is called every time the statement or verb is executed.
• You use the ITEM keyword to point the statement or verb to an item that contains the

subscreen's file specification. Thus, a different subscreen might be called each time depending
on what file specification the item contains at the moment of execution. If you use the
PASSING option, the parameters passed must be in the same order for each screen referencing
the item.

The latter method is known as dynamic screen calling because you control which subscreens are
called based on run-time variables. This allows you to build context-sensitive applications in
which different users may see different screens based on these variables.

Examples
The following example creates a MENU screen from which several "part maintenance"
subscreens can be accessed. In this example:
• MODE E invokes both the subscreens ADDPART and ADDVAR in Entry mode.
• MODE F invokes the subscreens MODPART and PARTLIST in Find mode.
> SCREEN PARTMAIN MENU
>
> TITLE "Parts Maintenance" CENTERED AT 4,1
>
> ALIGN (20,25,)
> SKIP TO LINE 8
>
> SUBSCREEN ADDPART &
> MODE E &
> LABEL "Add a New Part"
>
> SUBSCREEN ADDVAR &
> MODE E &
> LABEL "Add a New Part Variant"
>
> SUBSCREEN MODPART &
> MODE F &
> LABEL "Change or Delete a Part"
>
> SKIP 1
>
> SUBSCREEN PARTLIST &
> MODE F &
> LABEL "Check Inventory Level for a Part"
>
> SKIP 1
>
> SUBSCREEN PARTRPT &
> ID 20 &
> LABEL "Generate Parts Summary Reports"
>
> SKIP 2
>
> BUILD

Passing Records Between Subscreens

The following EMPLOYEES screen invokes a subscreen that lists employee skills. In this example
• PASSING indicates that EMPLOYEES is passed to the SKILLS screen.
• MODE SAME indicates that SKILLS is invoked in the same mode as that of EMPLOYEES.
> SCREEN STAFF

Chapter 3: QDESIGN Statements
SUBSCREEN

QDESIGN Reference 215

> FILE EMPLOYEES
>
> TITLE "S T A F F S C R E E N" at 1,30
> SKIP 1
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES &
> LABEL "EMPLOYEE NUMBER"
> ALIGN (1,4,21) (,,35)
> FIELD FIRSTNAME OF EMPLOYEES LABEL "NAME"
> FIELD LASTNAME OF EMPLOYEES REQUIRED
> ALIGN (16,20,45)
> SKIP 1
>
> SUBSCREEN SKILLS &
> LABEL "S K I L L S S C R E E N" &
> PASSING EMPLOYEES MODE SAME

The lower-level screen must include a RECEIVING statement to allow the record-structure
EMPLOYEES to be passed to it. The EMPLOYEES record-structure must also be declared as the
MASTER file in the lower-level screen.
> SCREEN SKILLS RECEIVING EMPLOYEES
> FILE EMPLOYEES MASTER
> FILE SKILLS PRIMARY OCCURS 6
.
.
.
> BUILD

In the following example, the conditional-expression in item SUB1 tests the user's application
security class, resulting in a file specification for either a restricted-access screen or a full-access
screen, as appropriate:
> SCREEN STAFF
>
> DEFINE SUB1 CHAR*31 = &
> "Employee_All" IF MATCHUSER ("MANAGER") &
> ELSE "Employee_Restricted"
.
.
.
> SUBSCREEN ITEM SUB1 LABEL "Employee_Info"

216 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TARGET

TARGET
Calculates the record number in a direct file for storing a newly-created record.

Syntax
TARGET numeric-expression

numeric-expression

A numeric expression that, when evaluated, results in a record number.

Discussion
The TARGET statement is part of the data section of your screen design. The first record number
in a direct file is 0 (MPE/iX, UNIX, Windows) or 1 (OpenVMS).

The TARGET statement causes an AT option to be generated on the PUT verb from the file in the
standard UPDATE procedure.

The TARGET statement must immediately follow the FILE statement of the direct file to which it
refers. TARGET is relevant only if the record status is new. If the statement is missing, new
records are appended to the end of the file.

Chapter 3: QDESIGN Statements
TEMPORARY

QDESIGN Reference 217

TEMPORARY
Creates a temporary item that is not defined in the data dictionary.

Syntax
TEMPORARY name [type[*n] [type-option]] [option]...

Limit: A maximum of 1023 defined and temporary items can be declared in a screen design.

name

Names the temporary item.

Limit: Must begin with a letter and can't exceed 64 characters. Fields relating to temporary items
can't be used to enter selection criteria in Select mode.

type

Establishes the physical format of the temporary item.

For more information about items, datatypes, and sizes, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

Default: NUMERIC

*n
Specifies the number of characters or digits that can be stored in the temporary item.

type-option

Indicates the set of options that further characterize the item datatype.

The type-options are CENTURY INCLUDED|EXCLUDED, NUMERIC, SIGNED|UNSIGNED,
and SIZE.

CENTURY INCLUDED|EXCLUDED
Indicates whether or not the date will contain a century prefix.

Limit: Valid for temporary items of type DATE, JDATE and PHDATE.

Default: For DATE items, the default is determined by the SYSTEM OPTIONS statement in the
data dictionary. For PHDATE and JDATE items, the default is CENTURY EXCLUDED.

NUMERIC
Indicates the datatype ZONED is to have a type of ZONED NUMERIC rather than RIGHT
OVERPUNCHED NUMERIC.

Limit: Valid only for ZONED datatypes.

SIGNED|UNSIGNED
Indicates that the datatypes INTEGER, PACKED, and ZONED are SIGNED or UNSIGNED.
When the SIGNED option is used with INTEGER, negative values can be stored. A datatype
INTEGER with the UNSIGNED option can't store negative values. The datatypes PACKED and
ZONED can store positive or negative numbers, whether or not the SIGNED or UNSIGNED
option is specified.

Limit: Valid only for INTEGER, PACKED, and ZONED datatypes.

Default: UNSIGNED for ZONED; SIGNED for INTEGER and PACKED.

SIZE m [BYTES]
Specifies a storage size (m) in bytes.

Use the SIZE m BYTES option when the default size isn't the size that's required for the item.

218 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TEMPORARY

Options
The TEMPORARY options are INITIAL, OCCURS, RESET, and SUM.

INITIAL conditional-expression

Assigns the temporary item a value that is calculated by this expression when the temporary item
is initialized.

For information about conditional-expressions in PowerHouse, see Chapter 5, "PowerHouse
Language Rules", in the PowerHouse Rules book.

Limit: This option has no effect if the item was received from a higher-level screen, unless the
MYVIEW option of the FILE statement is in effect.

OCCURS n [TIMES]
OCCURS WITH [ITEM] item|[FILE] record-structure

Repeats the temporary item on the screen.

n [TIMES]
Repeats the temporary item the specified number of times (n) on the screen.

Limit: 1 to 255

WITH [ITEM] item|[FILE] record-structure
Repeats the temporary item as many times as the named data record or item repeats on the screen.

Limit: The RESET option is not valid with the OCCURS WITH option.

RESET [AT MODE|STARTUP]

Resets the temporary item to initial values. By default, a temporary item is initialized when record
buffers are initialized.

Limit: A RESET option on a higher-level screen has no effect on a temporary item that's passed to
a lower-level screen while the item is being used on the lower-level screen.

AT MODE
Causes initialization when Entry mode (E) or Find mode (F) or Select mode (S) initialization
occurs.

AT STARTUP
Causes initialization only when the screen is entered from a higher-level screen.

Default: If you do not specify AT MODE or AT STARTUP, a temporary item is initialized when
primary record buffers are initialized.

Limit: The RESET AT STARTUP and RESET AT MODE option are not valid with the OCCURS
WITH option. They are valid with the OCCURS n option. A RESET option on a higher-level
screen has no effect on a temporary item that’s passed to a lower-level screen while the item is
being used on the lower-level screen.

SUM [NEGATIVE] [INTO] item2 [WHEN POSITIVE|NEGATIVE]
[,[NEGATIVE] [INTO] item3 [WHEN POSITIVE|NEGATIVE]]...

Adds or subtracts all values entered for the temporary item and maintains the total in the one or
more items. This sum is automatically
• reduced when values are deleted
• incremented when values are entered
• adjusted when the value is changed

NEGATIVE
Reverses the incrementing and reducing activities.

Chapter 3: QDESIGN Statements
TEMPORARY

QDESIGN Reference 219

INTO
Used only for documentation.

item2, item3, ...
Specifies the items into which the summing is performed.

WHEN POSITIVE|NEGATIVE
Specifies that summing is performed only if the values are positive or only if the values are
negative.

Discussion
The TEMPORARY statement is part of the data section of your screen design. It creates and
defines a temporary item that doesn't exist in the data dictionary and applies only to this screen
(although it can be passed to lower-level screens). A TEMPORARY statement can be placed
anywhere in the data section, as long as it doesn't reference items in options that are not yet
declared.

Initialization of Temporary Items

Temporary items are initialized to zero or blank if no initial values are provided. By default,
temporary item buffers associated with the screen are initialized when the record buffers are
marked for initialization, except when a data record retrieval fails. A temporary item is associated
with a record-structure in a PRIMARY file unless it is specifically related to a data record or item
using the OCCURS WITH option.

Passing Temporary Items to Subscreens

When a temporary item is passed to a lower-level screen, the RESET options specified when the
temporary item was originally declared have no effect. If nothing is specified when the temporary
item is received, it is never reset by QUICK on the lower-level screen. Any RESET option specified
on the lower-level screen acts as specified.

Resetting Temporary Items

Numeric and date temporary items are initialized to zeroes and character temporary items to
blanks unless the INITIAL option is used. Temporary items are initialized as follows.

Example
The following screen uses a temporary item to store the total value of all billings charged to a
project for a given employee:

Option Timing

Not Specified
or RESET

Initialization occurs when the primary record buffers are marked for
initialization. This occurs during the Entry initialization phase, Find
initialization phase and the retrieval initialization phase.

During the Retrieval initialization phase, if the data record retrieval
fails, the temporary item is not reset.

A temporary item is associated with a record structure in a PRIMARY
file unless it is specifically related to a data record or item using the
OCCURS WITH option.

RESET AT MODE Initialization only occurs when the user explicitly chooses Entry, Find,
or Select mode.

RESET AT STARTUP Initialization only occurs at screen startup, prior to the optional
INITIALIZE procedure.

220 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TEMPORARY

> SCREEN PROJBILL
>
> TEMPORARY TOTBILLINGS NUMERIC *8
>
> FILE PROJECTS PRIMARY
> FILE BILLINGS DETAIL OCCURS 6
Item PROJNO initialized (fixed) to PROJNO of PROJECTS
> ITEM BILLING SUM INTO TOTBILLINGS
> FILE BILLINGS ALIAS BILLDES DESIGNER OPEN 1
> FIELD TOTBILLINGS
>
> SKIP 1
>
> FIELD PROJNO OF PROJECTS
> FIELD PROJNAME OF PROJECTS
> FIELD PROJMGR OF PROJECTS
> FIELD PROJBUDG OF PROJECTS
>
> SKIP 1
>
> TITLE "Employee" AT ,4
> TITLE "Month" AT ,15
> TITLE "Billing" AT ,25
> TITLE "Employee" AT ,44
> TITLE "Month" AT ,55
> TITLE "Billing" AT ,65
>
> ALIGN (1,,4) (,,15) (,,25)
> SKIP 1
>
> CLUSTER OCCURS WITH BILLINGS FOR 1,39
> FIELD EMPNUM OF BILLINGS &
> REQUIRED &
> NOCHANGE
> FIELD MONTH OF BILLINGS
> FIELD BILLING OF BILLINGS
> CLUSTER
>
> PROCEDURE POSTFIND
> BEGIN
> WHILE RETRIEVING BILLDES &
> VIA PROJNO &
> USING PROJNO OF PROJECTS
> LET TOTBILLINGS = TOTBILLINGS + BILLINGS &
> OF BILLDES
> END
> BUILD

Chapter 3: QDESIGN Statements
THREAD

QDESIGN Reference 221

THREAD
Specifies a screen thread.

Syntax
THREAD filespec|{ITEM item} [option]...

filespec

Names the root screen of a thread.

ITEM item

Indicates that the root screen's file specification is defined in an item.

Limit: You cannot call root screens named ITEM unless you precede the file specification with a
percent sign (%).

item
Names the item in which the root screen's file specification is defined. The item can be either a
record item, a temporary item, or a defined item.

Limit: The item type must be CHARACTER or VARCHAR.

Options

AUTO

Automatically invokes the named screen when the standard entry sequence reaches this statement,
provided the ENTRY procedure was generated by QDESIGN.

HIDDEN

Suppresses the screen ID display, but the user can reference the field using the ID-number.

ID SAME
ID n [AT [row],column]
ID NEXT [AT [row],column]
NOID

Declares the ID-number for the thread and its position.

ID SAME
Instructs QDESIGN to omit the ID-number on the thread. To access the thread, use the
ID-number of the previous field.

ID n
Explicitly specifies an ID-number.

Limit: 1 to 99

THREAD Options

AUTO HIDDEN ID|NOID

[ENTRY] IF INPUT LABEL|NOLABEL

MARK|NOMARK MODE SHARED

WINDOW WIDTH

222 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
THREAD

ID NEXT
Uses the next ID-number in sequence.

AT [row],column
Positions the first digit of the ID-number at the specified row and column relative to the starting
line of the screen. If the row is missing, the current line is assumed.

NOID
States that no ID-number is assigned to this thread and the thread can't be referenced from the
Action field.

[ENTRY] IF condition

Invokes this thread in the standard entry sequence only if this condition is satisfied, provided the
ENTRY procedure was generated by QDESIGN. QDESIGN generates an identical IF control
structure in the default ENTRY procedure. If the condition is satisfied, the auto program
parameter is assumed.

For PANEL screens, threads aren't invoked until the entire block is transmitted to QUICK for
processing. The RUN THREAD verb in the ENTRY procedure is processed only after an entry has
been made for each ACCEPT verb in the ENTRY procedure, and the QUICK screen user has
pressed [Enter].

Limit: The IF option is evaluated only during the standard ENTRY sequence; otherwise, it is
ignored.

INPUT B|C (MPE/iX)

Specifies the input mode the thread is to be in when it appears. (Although the SAME sub-option is
accepted syntactically, it has no meaning in the context of threads.)

B
Starts the thread in Block mode if the thread can be run in Block mode

C
Starts the thread in character mode.

Default: Unless overridden by other means, such as in QKGO or the SCREEN statement, when a
thread is first opened, it will be opened in character mode. When toggling back to a thread, it will
be in the same input mode that it was in when it was left.

LABEL [string] [AT [row],column]|NOLABEL

Declares the label and its position.

string AT [row],column
Indicates the thread label, and, optionally, the position of the label on the screen.

The AT option positions the first character of the label at the specified row and column relative to
the starting line of the screen. If the row isn't specified, the current line is assumed.

Default string: The thread name. If you are using the ITEM keyword, no default label is assigned.
It is recommended that you include the string whenever you use the ITEM keyword syntax, and
whenever the file specification includes a path.

NOLABEL
Specifies that no label appears for the thread.

MARK|NOMARK

MARK enables fieldmarking for a thread with an ID.

Chapter 3: QDESIGN Statements
THREAD

QDESIGN Reference 223

NOMARK disables the default fieldmarking for a thread with an ID when fieldmarking is
enabled.

MODE E|F|S|NULL|SAME

Specifies which mode the thread is in when it appears.

E|F|S
Indicates that the thread is in one of the following modes when it first appears:
• Entry mode (E)
• Find mode (F)
• Select mode (S)

NULL
Indicates no mode. QUICK prompts for a mode at the Action field when the screen appears.

SAME
Indicates that the thread is in the same mode as the current screen when the screen named in the
THREAD statement is invoked.

Default: NULL. If the thread is invoked during the standard Entry sequence, the default is E
(Entry mode).

SHARED

If SHARED is specified and the thread already exists, then the client activates the existing thread
and makes it current.

WINDOW WIDTH CONSTANT|DEFAULT WHEN CALLING

Overrides the default behavior and sets the terminal to the correct screen width (80 or 132
columns).

Discussion
By default, a maximum of three threads can be specified in a screen design. By using the "Max
number of threads" execution-time parameter in QKGO, the limit can be increased to a maximum
of seven threads.

Screen Threads

Multiple screen thread processing lets an application have more than one screen hierarchy active
at one time. Screen threads can be used on terminals in the host environment; they also let
designers and users take advantage of the Microsoft Windows Multiple Document
Interface (MDI).

The QUICK Action command to toggle between threads is T, or the QKGO defined function key
([F1_T]) on HP terminals.

Multiple screen thread processing is available to PowerHouse applications and PowerHouse
Windows RunTime applications.

Single Active Screen Hierarchy

If a screen hierarchy does not contain threading techniques, then only one screen can be active at a
time. When a subscreen is the active screen, it takes control of processing. To return to the
invoking screen, the user must exit from the subscreen.

In the following screen hierarchy, each called screen forces the previous screen to become inactive
first. At any one time, there can only be one active screen in a screen hierarchy.

224 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
THREAD

 Multiple Active Screens Hierarchy

Using multiple screen threads, the designer can build applications that contain more than one
active screen. The user can move between threads without closing screens. For example, the user
could leave in the middle of entering data in one screen to find data in another and then return to
the first screen.

By default, only three threads can be open simultaneously. This number can be increased to a
maximum of seven in QKGO, by using the "Max. number of threads" execution-time parameter
in QKGO. If the user tries to open a thread above the current allowable limit, a message is issued
either asking to increase the limit, or indicating that the maximum (7) has been reached.

The limit on simultaneous open threads is not a limit on the number of THREAD statements that
an application can contain. It limits the number of threads to which you can toggle.

Moving among Threads

To move among threads, use the Toggle Thread (T) Action command or the QKGO standard
fixed function key. The maximum number of threads allowed in one session is controlled by the
"Max number of threads" execution-time parameter in QKGO. Threads are kept track of in a
circular list in the order that they are accessed.

Using the system of threads shown previously, the following is an example of a possible sequence
of user actions and results:

Main Menu
(Thread 1 (default)

Sub1 Sub2

Sub1.1 Sub1.2

Sub1.2
Active

Sub2.1

Only one screen
can be active at a time.

Sequence of User Actions Result

Start QUICK application: Main
Menu as the first screen

Main Menu thread appears

Toggle Thread command (T) Remain at Main Menu (since no other thread is open)

Select a menu option to start the
Sub1 thread

Sub1 thread appears

Toggle Thread command (T) Main Menu appears

Toggle Thread command (T) Sub1 thread appears

Toggle Thread command (T) Main Menu thread appears

Chapter 3: QDESIGN Statements
THREAD

QDESIGN Reference 225

Dynamic Screen Calls in QDESIGN and QUICK

You can call subscreens by using the SUBSCREEN statement, the THREAD statement, the RUN
SCREEN verb, or the RUN THREAD verb. Each of these statements/verbs works in either of two
ways:
• You provide the subscreen's file specification directly in the statement or verb syntax. Thus,

the same subscreen is called every time the statement or verb is executed.
• You use the ITEM keyword to point the statement or verb to an item that contains the

subscreen's file specification. Thus, a different subscreen might be called each time depending
on what file specification the item contains at the moment of execution.

The latter method is known as dynamic screen calling because you control which subscreens are
called based on run-time variables. This allows you to build context-sensitive applications in
which different users may see different screens based on these variables.

Example
In the following example, the conditional-expression in item SUB1 tests the user's application
security class, resulting in a file specification for either a restricted-access screen or a full-access
screen, as appropriate:
> SCREEN STAFF
>
> DEFINE SUB1 CHAR*31 = &
> "Employee_All" IF MATCHUSER ("MANAGER") &
> ELSE "Employee_Restricted"
.
.
.
> THREAD ITEM SUB1 LABEL "Employee_Info"

Select a menu option to start the
Sub2 thread

Sub2 thread appears

Toggle Thread command (T) Main Menu thread appears

Toggle Thread command (T) Sub1 thread appears

Toggle Thread command (T) Sub2 thread appears

Toggle Thread command (T) Main Menu thread appears

Sequence of User Actions Result

226 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TITLE

TITLE
Positions text on the screen.

Syntax
TITLE string [AT [row], column] [CENTERED|CENTRED]

string

Indicates the text to be positioned.

AT [row],column

Positions the first character of the string at the specified row and column relative to the starting
line of the screen. If the row is missing, the current line is assumed.

CENTERED|CENTRED

Centers the string on the current 80-column line.

Discussion
The TITLE statement is part of the layout section of a screen design. It positions character strings
(titles, column headings, or other text) on the screen.

The following is a list of qualifications to the TITLE statement:
• If both the AT and CENTERED options are used, the string is centered on the column

specified.
• If neither option is used, the first character of the string is positioned at the current alignment

position for ID-numbers.
• If only the CENTERED option is used, and the current alignment position for ID-numbers is

1, the title is centered within the screen.
• If only the CENTERED option is used, and the current alignment position for ID-numbers is

greater than 1, QUICK attempts to center the title over the ID-number position.
• If there isn't enough room to center the title to the left of the ID position, the title runs from

the left of the current ID-number position (ignoring the CENTERED option), and a warning
is issued.

Example
This menu screen displays each option in an individual box. The QUICK screen user's selection
invokes one of the three subscreens that are accessible from this MENU screen. In this example:
• The CENTERED statement positions the title "Main Menu" in the center of the current line.
• The TITLE statements set up descriptive titles for the subscreens that are invoked on this

screen.
> SCREEN MAINMENU MENU &
> NOMODE &
> ACTION LABEL &
> "Enter a number to select an option: " &
> AT 1,33
>
> SKIP TO LINE 4
>
> TITLE "Main Menu" CENTERED
>
> SKIP TO LINE 8
>
> DRAW 8,10 TO 15,30
> DRAW 8,50 TO 15,70
> DRAW 16,25 TO 22,55

Chapter 3: QDESIGN Statements
TITLE

QDESIGN Reference 227

>
> SUBSCREEN ORDMAIN &
> NOLABEL &
> ID 1 AT 10,19
>
> SUBSCREEN INVMAIN &
> NOLABEL &
> ID 2 AT 10,59
>
> SUBSCREEN MAINT &
> NOLABEL &
> ID 3 AT 18,39
>
> TITLE "Order" AT 11,18
> TITLE "Invoice" AT 11,57
> TITLE "Processing" AT 12,16
> TITLE "Processing" AT 12,56
> TITLE "System" AT 19,38
> TITLE "Maintenance" AT 20,35
>
> BUILD

228 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TRANSACTION

TRANSACTION
Defines transactions used for relational files.

Syntax
TRANSACTION name INHERITED

[COMMIT ON automatic-commit-point | NOCOMMIT]

or
TRANSACTION name

[COMMIT ON automatic-commit-point | NOCOMMIT] [options]

name

A unique name used to identify logical transactions.

INHERITED

Indicates that the properties of a transaction have been defined on an ancestor screen and are
known on the current screen only at execution-time. If the INHERITED option is used on the
TRANSACTION statement, the only other options accepted are COMMIT ON or NOCOMMIT
to indicate the automatic commit points to indicate the save points for the transaction on the
current screen.

If no commit timing is specified on the TRANSACTION statement, QUICK will use the commit
timing specified on the SCREEN statement, the default being COMMIT AT UPDATE. The
INHERITED option cannot pass down the commit timing for the transaction from the previous
screen.

The purpose of the INHERITED option is to allow QUICK to verify that transaction names
referenced on a screen are valid. For each transaction referenced in a screen, the transaction must
be one of the following:
• a PowerHouse predefined transaction (such as Query)
• defined on the screen using the TRANSACTION statement, or
• defined on an ancestor screen. You can optionally reference this transaction on the current

screen using the INHERITED option on the TRANSACTION statement.

If at screen load time no ancestor screen has actually defined the transaction, the screen fails to
load.

COMMIT ON automatic-commit-point

The COMMIT ON option is used to indicate the default points at which automatic commits are
executed by QUICK.

Defaults: For query transactions: COMMIT ON MODE. For query transactions on subscreens
that receive MASTER files: NOCOMMIT. For all other transactions, the default is taken from the
SCREEN statement's commit point. For the SCREEN statement, the default is COMMIT ON
UPDATE.

automatic-commit-point
Determines the points at which an automatic commit for the COMMIT ON option occurs during
screen processing for Consistency and Concurrently Read_Write (Update) transactions.

The automatic commit points are UPDATE, NEXT PRIMARY, MODE, and EXIT.

UPDATE This option is the default for the Update and Consistency transactions. Use the
ON UPDATE option to ensure that related updates (for example, updates to
primary and secondary data) are grouped together, but keep individual
transactions relatively short. Locally active transactions are committed: when an
Update action is completed (before the POSTUPDATE procedure); when the
screen mode changes (before the PREENTRY and PATH procedures), when the
user exits the screen (before and after the EXIT procedure).

Chapter 3: QDESIGN Statements
TRANSACTION

QDESIGN Reference 229

NOCOMMIT

Indicates that QUICK does not generate automatic commit actions.

Options

CONSTRAINTS [type [,type]...] DEFERRED

Allows specific types of constraints to be deferred while others are checked immediately. The types
of constraint checking that can be specified are:
• ALL
• CHECK
• REFERENTIAL
• UNIQUE

Default: ALL. If constraints are not deferred, they are checked every time a value is inserted,
altered or deleted.

Limit: Valid only for ALLBASE/SQL transactions.

isolation-level

Lets the designer specify the degree to which this transaction is to be protected from the effects of
concurrent transactions.

If a database doesn't support a specified isolation level, PowerHouse uses the next available higher
isolation level without issuing a run-time warning. If a higher level is unavailable, PowerHouse
uses the highest available lower level and issues a run-time warning.

The support available for the various isolation level options offered in QDESIGN depends on the
support provided by the underlying database software.

For a discussion of isolation levels for specific databases, see the PowerHouse and Relational
Databases book.

NEXT
PRIMARY

Use this option if you want to group all detail records (perhaps requiring several
entry or display screens) together with primary and secondary records and treat
them as a unit to be committed or rolled back. Locally active transactions are
committed: when the user starts an entry sequence (before the PREENTRY
procedure); when the user retrieves the next set of primary records (before the
FIND procedure); and when the user exits the screen (before and after the EXIT
procedure).

MODE This option is the default for the Query transaction. Use the ON MODE option
to ensure that changes to a series of existing records (for example, all employees
in a certain branch or all tasks in a project) are committed or rolled back as a
group. Locally active transactions are committed when: the screen mode changes
(before the PREENTRY and PATH procedures); and on screen exit (before and
after the EXIT procedure).

EXIT Use this option when all activity done on a screen is to be treated as a single
transaction. Locally active transactions are committed when the screen is exited
(after the EXIT procedure).

TRANSACTION Options

CONSTRAINTS isolation-level PRIORITY n

READ ONLY|READ WRITE RESERVING FOR WAIT|NOWAIT

230 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TRANSACTION

The isolation levels are listed below from lowest to highest:

Defaults: The default isolation level for transactions (other than inherited transactions or
QUICK's predefined transactions) depends on the screen's transaction model. For Concurrency,
the default isolation level is REPEATABLE READ for Update transactions and READ
COMMITTED for Query transactions. For Consistency, the default isolation level is
SERIALIZABLE.

PRIORITY n

Lets you specify the transaction priority for an ALLBASE/SQL transaction.

n
An integer in the range 0 to 255.

Limit: Valid for ALLBASE/SQL only.

READ ONLY|READ WRITE

Determines the type of activities that can be performed by this transaction. It also affects what
type of transaction is started in the underlying database system.

Defaults: READ ONLY for Query. READ WRITE for all other transactions

RESERVING FOR [SHARED|PROTECTED|EXCLUSIVE]
READ|WRITE {table [IN database]}...

Lets you specify database specific reserving on a table-by-table basis for a particular transaction.

SHARED|PROTECTED|EXCLUSIVE
SHARED lets others work with the same table(s). PROTECTED lets others read the table you are
using; they cannot have write access. EXCLUSIVE prevents others from reading records from the
table(s) included in your transaction.

Default: SHARED

READ|WRITE
READ lets you only read data from the reserved tables; WRITE lets you insert, update or delete
data in the table.

Default: READ for read-only transactions. WRITE for read/write transactions. The defaults are
determined from the READ ONLY|READ WRITE option.

READ
UNCOMMITTED

A very low level of isolation that allows a transaction to see all changes
made by other transactions, whether committed or not. Also known as a
"dirty read."

READ
COMMITTED

A transaction can read any data that has been committed by any
transaction as of the time the read is done.

STABLE CURSOR While a transaction has addressability to a record (that is, has just
fetched it), no other transaction is allowed to change or delete it.

REPEATABLE
READ

Any data that has been read during a transaction can be re-read at any
point within that transaction with identical results.

PHANTOM
PROTECTION

A transaction does not see new records, or "phantoms", that did not
exist when the transaction started.

SERIALIZABLE The results of the execution of a group of concurrent transactions must
be the same as would be achieved executing those same transactions
serially in some order.

Chapter 3: QDESIGN Statements
TRANSACTION

QDESIGN Reference 231

Limit: Not supported for ALLBASE/SQL or Sybase databases.

WAIT|NOWAIT

Allows you to specify whether the transaction should wait in the case of lock or resource conflicts.
The default is determined by the dbwait program parameter in effect at run time in QUICK (by
default, DBWAIT).

If the option is WAIT, then a resource or lock conflict causes the transaction to wait, subject to
other system parameter and time-out settings.

If the option is NOWAIT, then a resource or lock conflict causes the transaction to end with an
error condition.

Discussion
There are three basic uses for the TRANSACTION statement:
• To declare and define the attributes of new designer-defined transactions
• To override the attributes of predefined transactions
• To indicate that a designer-defined transaction is INHERITED from a higher screen, but that

the attributes of the transaction have been declared on another screen and are in effect when
this screen is run. QDESIGN will accept the following:
> SCREEN PARENT
> TRANSACTION GLOBAL_READ READ ONLY...
> TRANSACTION GLOBAL_WRITE READ WRITE...
> TRANSACTION LOCAL READ WRITE
> SUBSCREEN CHILD

> SCREEN CHILD
> FILE A TRANSACTION GLOBAL_WRITE FOR PROCESS UPDATE

In QDESIGN, the attributes for a transaction are determined as follows:
1. The attributes are set to default values.
2. If the transaction is defined in the dictionary, then the attributes specified in the dictionary are

applied and override any default attributes.
3. If there is a transaction defined for the screen, then the attributes specified on the QDESIGN

TRANSACTION statement are applied and override any attributes defined previously.

QDESIGN's predefined transactions are a special case of INHERITED transactions, because
references to their names are valid but their actual attributes may have been defined on another
screen (and are not known until run time). In contrast, designer-defined transactions require a
complete transaction definition in the screen ancestry.

In screen CHILD, below, although transaction LOCAL has the same attributes as transaction
LOCAL in screen PARENT, it is still a separate transaction because the INHERITED option is not
specified.
> SCREEN PARENT
> TRANSACTION GLOBAL_READ READ ONLY...
> TRANSACTION GLOBAL_WRITE READ WRITE...
> TRANSACTION LOCAL READ WRITE
> SUBSCREEN CHILD
> SCREEN CHILD
> TRANSACTION GLOBAL_READ INHERITED
> TRANSACTION LOCAL READ WRITE
> FILE a TRANSACTION GLOBAL_WRITE &
> FOR PROCESS, UPDATE

It assumes that GLOBAL_WRITE is INHERITED. If the CHILD screen is the top level screen, or
a definition for GLOBAL_WRITE is not found in any of the CHILD screen's parents, QUICK fails
to load the screen. Predefined transactions are handled differently. If a definition for a predefined
transaction is required but not found, in either the current screen or its parents when QUICK is
loading the screen, a transaction is automatically created with all the default associations.

A QUICK transaction may be shared by many different tables or cursors, even those drawn from
different databases.

232 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
TRANSACTION

A database transaction is activated as required whenever an attempt is made to read from or write
to a relational file. The first attempt to activate a database transaction triggers QUICK to attach to
the database unless the subdict=nodelay program parameter is in effect. A separate database
attach and database transaction is used wherever needed. When possible (for database products
that support this feature), attaches and transactions are shared and/or reused.

The Default Transactions

The QDESIGN default transactions are predefined. They are:
TRANSACTION CONSISTENCY READ WRITE SERIALIZABLE
TRANSACTION QUERY READ ONLY READ COMMITTED
TRANSACTION UPDATE READ WRITE REPEATABLE READ

The Effect of the PDL TRANSACTION Statement on QDESIGN

Options specified on the TRANSACTION statement in PDL are used in QDESIGN for
transactions of the same name.

Overriding the Predefined Transactions

If you are satisfied with the attributes of QDESIGN's predefined transactions (Query, Update,
Consistency) then there is no need to include TRANSACTION statements for these transactions.
These predefined names can still be referenced on FILE and CURSOR statements, on SQL DML
statements, or in control structures without being explicitly defined on each screen.

However, you are free to override any of the attributes of QDESIGN's predefined transactions by
including a TRANSACTION statement with the name of the predefined transaction along with
the attribute(s) to be changed. All unspecified attributes remain unchanged. For example, the
following statement changes the isolation level of the Query transaction to serializable:
> TRANSACTION QUERY SERIALIZABLE

Only the isolation level is affected; all other attributes are retained. This causes a new Query
transaction to be created. It will not be the same one used in a higher level screen.

Reserving on a Table-By-Table Basis

Tables to be reserved are specified using the "table IN database" convention, as it is used on the
FILE or CURSOR statements. This allows you to include tables in the RESERVING list that are
not defined on the screen where the transaction is declared. For example, the designer can reserve
tables that are used on a subscreen.

If a transaction is started automatically as a result of an access or write to a database, those tables
in the reserving list from a different database will not be reserved. If a transaction is started
explicitly using the START TRANSACTION verb, then all tables from all databases in the
reserving list will be reserved.

Reserving options are specified using keywords that match options available in the underlying
database software. For example, Oracle Rdb supports options such as [PROTECTED] READ or
[PROTECTED] WRITE.

The RESERVING option is especially useful for high-contention applications such as those which
involve reservation of inventory or seats. It also provides a means of ensuring deadlock-free
transactions since all tables are locked before the transaction does any other work. (Consider
however, the impact that any table locking has on concurrent database users since there is always
a trade-off to be considered. Remember also that table locks cannot be released until the
transaction terminates.) The RESERVING option also provides a means of guaranteeing
successful serializable updates to the reserved tables.

Chapter 3: QDESIGN Statements
USE

QDESIGN Reference 233

USE
Processes QDESIGN source statements contained in a file.

Syntax
USE filespec [DETAIL|NODETAIL] [LIST|NOLIST]

filespec

Names a file that contains QDESIGN source statements you want to use.

DETAIL|NODETAIL

DETAIL writes the contents of the file being used rather than just the USE statement itself to
QDESIGN's source statement save file. NODETAIL writes just the USE statement alone, rather
than the contents of the file being used. The source statement save file is qksave (MPE/iX) or
qksave.qks (OpenVMS, UNIX, Windows).

The NODETAIL option can be used to reference a group of statements without including them in
the source statement save file.

This prevents the repetition of the same statements in many files.

Default: As specified in the SET statement, which defaults to SET DETAIL.

LIST|NOLIST

LIST displays the statements as they are read from the source file; NOLIST doesn't.

Default: As specified in the SET statement, which defaults to SET LIST.

Discussion
The USE statement instructs QDESIGN to read the named file for statement input. QDESIGN
reads and interprets each statement as if it had been entered from the terminal.

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the USE statement. For more information about the procloc program parameter, see Chapter 2,
"Program Parameters", in the PowerHouse Rules book.

Nesting USE Statements

A file referenced in a USE statement can itself contain other USE statements. USE statements can
be nested to a maximum of 20 levels.

Example
The following example shows how you can save time by placing a number of common layout
statements in a permanent file.

The contents of the file HEADER are listed after the USE statement. QDESIGN processes these
statements as though they'd been entered at the keyboard during the current session.
> SCREEN MODCUST
>
> FILE CUSTOMERS PRIMARY
>
> USE HEADER
> HILITE TITLE LINEDRAWING INVERSE
> DRAW 3,16 TO 6,64
> TITLE " F U T U R E I N D U S T R I E S I n c. " &
> AT 4,17
> SKIP 3
> HILITE LINEDRAWING DEFAULT
>
.

234 PowerHouse(R) 4GL Version 8.4E

Chapter 3: QDESIGN Statements
USE

.

.

QDESIGN Reference 235

Chapter 4: QDESIGN Procedures Overview

Overview
This chapter provides an overview of QDESIGN's procedures, as well as the verbs and control
structures that make up a procedure. The topics covered in this chapter include
• QDESIGN's default and designer-written procedures
• how to generate source versions of QDESIGN's default procedures
• how to order your QDESIGN procedures effectively
• how to use verbs and control structures in procedures
• how to test processing status using predefined conditions in QDESIGN

Default Procedures and Designer-Written Procedures
Procedural processing is governed by QDESIGN procedures. QDESIGN procedures are, in effect,
high-level user exits or points of intervention in QUICK processing. You can let QDESIGN
construct default procedures or you can specify your own procedures directly. You can also
override some default procedures and allow QDESIGN to construct the rest.

Because of the complexity of QDESIGN procedural code, you should always examine the default
procedures before writing procedures that replace them. In many instances, rather than modifying
generated procedures, you should modify your QUICK screen using non-procedural methods or
use preprocedures and postprocedures. You can also use named or numbered designer procedures.

Default Procedures
To make screen design easy and flexible, QDESIGN constructs default versions of the basic set of
required procedures. Default procedures are based on the specifications in the data and layout
sections of the screen design. These default procedures are sufficient for the screen to perform its
standard functions. However, you can modify them to control screen processing activities more
directly.

To help you design your own procedures, you can set QDESIGN to construct the source
statements of the default procedures. You can then edit these default procedures to suit the needs
of your application.

Modifying Default Procedures

If you write your own version of a default procedure, QDESIGN will not override your version
with a generated default procedure. Designer-written procedures prevent the construction of the
corresponding default procedure. QDESIGN still constructs default procedures for those
procedures that you haven't written yourself.

QDESIGN generates default versions of the following procedures:

APPEND DELETE DETAIL DELETE

DETAIL FIND ENTRY FIND

MODIFY PATH SELECT

UPDATE

236 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QDESIGN Procedures Overview

Note: The MODIFY and SELECT procedures are generated only when the PANEL option has
been specified in either the SET or SCREEN statement. However, both the MODIFY and SELECT
procedures can be designer-written for any screen, regardless of the PANEL|NOPANEL setting.

Obtaining a Source Version of Default Procedures

You can use two options of the BUILD statement to access the QDESIGN default procedures:
• The LIST option displays the source form of the constructed procedures.
• The DETAIL option causes QDESIGN's generated procedures to be included in the

QDESIGN temporary save file.

You can use these two options together. For example, if you specify the statement
> BUILD LIST DETAIL

in a given screen design, QDESIGN lists all the default procedures that are generated and writes
all of the procedures to the QDESIGN temporary save file.

Saving QDESIGN's Generated Procedures

Use the SAVE statement to save the statements that QDESIGN generates in a source statement file.
You can then modify the saved statements using the editor and rerun QDESIGN, where you can
read the modified file with a USE statement that specifies the name of the saved source statement
file.

Keep the source code only for the default procedures that are modified. When QDESIGN detects a
designer-written default procedure, it neither updates the procedure to reflect the current screen
design statements nor replaces it.

It is very easy for these procedures to get out of synchronization with the current screen design
statements, resulting in "double maintenance".

Designer-Written Procedures
In addition to the basic required procedures, there are several optional supplementary procedures
for which no defaults are created. If you specify any supplementary procedures, they are used at
predefined exit points in QUICK's normal processing to perform specialized editing and data
manipulation.

Modified or designer-written procedures must follow layout statements (such as the FIELD and
SUBSCREEN statements) and immediately precede the BUILD statement.

You can specify the following supplementary procedures in QDESIGN:

BACKOUT DESIGNER DETAIL POSTFIND

EDIT field EXIT INITIALIZE

INPUT field INTERNAL OUTPUT field

POSTFIND POSTPATH POSTSCROLL

POSTUPDATE PREENTRY PRESCROLL

PREUPDATE PROCESS field

Chapter 4: QDESIGN Procedures Overview

QDESIGN Reference 237

Procedure Sequence Guidelines
When specifying your own procedures, you can make processing more efficient and easier to
follow by specifying the procedures in a logical sequence. The sequence and groupings
recommended when writing your own procedures are:

Follow these general rules when editing and writing procedures:
• When you use multiple field procedures (INPUT, EDIT, PROCESS, or OUTPUT), group them

by field name in the order that the fields are processed by the ENTRY procedure.
• To use multiple DESIGNER procedures, add all of them to the end of the procedures list.
• Locate INTERNAL procedures close to and before the procedures that invoke them.
• Use all other procedures only once per screen.

For more information, see Chapter 7, "QDESIGN Procedures".

QDESIGN Verbs and Control Structures
QDESIGN verbs are used together with control structures to control processing in QDESIGN
procedures.

QDESIGN Verbs
QDESIGN generates verbs automatically in default procedures. For example, FIELD statements in
a screen design cause QDESIGN to generate
• ACCEPT or DISPLAY verbs in the default ENTRY procedure
• ACCEPT verbs in the default MODIFY procedure
• SELECT verbs in the default SELECT procedure
• REQUEST verbs (if the fields represent index segments) in the default PATH procedure

FILE statements cause QDESIGN to generate
• DELETE verbs in the default DELETE and DETAIL DELETE procedures
• PUT verbs in the default UPDATE procedure

The way you enter QDESIGN statements when creating a QUICK screen determines how verbs
are generated in the default procedures.

Whenever possible, modify your design statements so that they generate the procedures, verbs,
and constructs you need rather than modifying QDESIGN's procedures directly.

For detailed information about specific QDESIGN verbs, see Chapter 8, "QDESIGN Verbs and
Control Structures".

1.
2.
3.
4.

INPUT
EDIT
PROCESS
OUTPUT

16.
17.

PRESCROLL
POSTSCROLL

5.
6.
7.
8.

APPEND
PREENTRY
ENTRY
MODIFY

18
19.
20.
21.

PREUPDATE
UPDATE
POSTUPDATE
BACKOUT

9.
10.
11.
12.
13.
14.
15.

PATH
SELECT
POSTPATH
FIND
POSTFIND
DETAIL FIND
DETAIL POSTFIND

22.
23.

24.
25.

26.

DELETE
DETAIL DELETE

INITIALIZE
EXIT

DESIGNER

238 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QDESIGN Procedures Overview

QDESIGN Control Structures
QDESIGN control structures determine the processing flow of a procedure. With control
structures, you can create blocks, loops, and conditional branches.

For detailed information about specific QDESIGN control structures, see Chapter 8, "QDESIGN
Verbs and Control Structures".

Writing Procedures
Writing a procedure is a straightforward process. Simply enter the keyword procedure followed
by the type of procedure required, as in:
> PROCEDURE PREUPDATE

On the line that follows the PROCEDURE keyword line, specify a procedural statement to control
processing in QUICK.

Procedural Statements
A procedural statement can be one of the following
• a verb
• a compound statement
• a conditional statement
• a repetitive statement

Compound, conditional, and repetitive statements are implemented with control structures. The
control structures are:

Verb Statements

A verb statement consists of a verb plus its object, as in
> ACCEPT EMPLOYEE

Some verbs, such as the RETURN verb, can stand alone without an object. Others, such as the
GET verb, have options in addition to an object.

For detailed information about QDESIGN verbs and how to use them, see Chapter 8, "QDESIGN
Verbs and Control Structures".

You must be careful when using certain verbs in certain procedures. Verb and procedure
compatibility is discussed for each procedure on (p. 239).

Compound Statements

A compound statement consists of two or more statements.

All compound statements must start with the keyword BEGIN on its own line and finish with the
keyword END on its own line. The statements between the BEGIN and END keywords make up
the compound statement.

You can nest compound statements within one another, as long as the BEGIN and END control
structures are balanced.

BEGIN...END BLOCK TRANSFER DISABLE

FOR IF WHILE

WHILE RETRIEVING

Chapter 4: QDESIGN Procedures Overview

QDESIGN Reference 239

Conditional Statements

Conditional statements take the form
IF condition

THEN procedural-statement
[ELSE procedural-statement]

The THEN and ELSE keywords must each begin on a separate line. The ELSE clause is optional.

You can create nested conditions by including subordinate IF control structures within the THEN
or ELSE clauses of a higher-level IF control structure.

For more information about conditions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

Repetitive Statements

A repetitive statement is executed for a fixed number of times or for each occurrence of a record
or item on the screen. This type of repetitive processing is controlled by the FOR control structure.

Alternatively, you can handle repetitive processing based on the number of data records that
QUICK retrieves. This type of repetitive processing is controlled by the WHILE RETRIEVING
control structure.

For more information about repetitive processing, see the "FOR" and "WHILE RETRIEVING"
verbs on (p. 425) and (p. 495), respectively.

Verb and Procedure Compatibility

Verbs
(compatibility with
procedures APPEND to
INTERNAL) A

P
P
E
N
D

B
A
C
K
O
U
T

D
E
L
E
T
E

D
E
S
I
G
N
E
R

D
E
T
A
I
L

D
E
L
E
T
E

D
E
T
A
I
L

F
I
N
D

D
E
T
A
I
L

P
O
S
T
F
I
N
D

E
D
I
T

E
N
T
R
Y

E
X
I
T

F
I
N
D

I
N
I
T
I
A
L
I
Z
E

I
N
P
U
T

I
N
T
E
R
N
A
L

ACCEPT 2
11

3 4
5

2
11

3 2 4
5

*

BREAK W W W W W W W W W W W W W W

[SQL] CALL *

CLEAR *

CLOSE *

[SQL] CLOSE *

COMMIT *

DELETE 8 8 *

[SQL] DELETE *

DISPLAY 9 9 9 9 5 9 9 9 5 *

DO BLOB *

DO EXTERNAL *

DO INTERNAL *

EDIT 11 4
5

11 5 *

ERROR 11 11 *

[SQL] FETCH *

GET 11 11 25 *

INFORMATION *

240 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QDESIGN Procedures Overview

[SQL] INSERT *

LET 3 2 3 2 *

LOCK *

MEMOLOG *

NULL *

[SQL] OPEN *

PERFORM APPEND E E E E E E E E E E E E E

PROMPT 2
11

3 5 2
11

3 2 4
5

*

PUSH 15 *

PUT 16 16 16 16 16 16 16 16 16 16 16 26 16 *

REFRESH *

REQUEST 18 18 18 18 18 18 18 18 18 18 18 18 4
18

*

RETURN 4
17

17 *

ROLLBACK *

RUN COMMAND *

RUN SCREEN 5 5 *

RUN THREAD *

SELECT 22 22 22 22 22 22 22 22 22 4
22

*

SEVERE 4
11

11 *

START *

STARTLOG *

STOPLOG *

UNLOCK *

[SQL] UPDATE *

WARNING *

Verbs
(compatibility with
procedures APPEND to
INTERNAL) A

P
P
E
N
D

B
A
C
K
O
U
T

D
E
L
E
T
E

D
E
S
I
G
N
E
R

D
E
T
A
I
L

D
E
L
E
T
E

D
E
T
A
I
L

F
I
N
D

D
E
T
A
I
L

P
O
S
T
F
I
N
D

E
D
I
T

E
N
T
R
Y

E
X
I
T

F
I
N
D

I
N
I
T
I
A
L
I
Z
E

I
N
P
U
T

I
N
T
E
R
N
A
L

Chapter 4: QDESIGN Procedures Overview

QDESIGN Reference 241

Note: Explanations for the numbers, letters and symbols used in the table can be found on
(p. 242).

Verbs
(compatibility with
procedures MODIFY to
UPDATE) M

O
D
I
F
Y

O
U
T
P
U
T

P
A
T
H

P
O
S
T
F
I
N
D

P
O
S
T
P
A
T
H

P
O
S
T
S
C
R
O
L
L

P
O
S
T
U
P
D
A
T
E

P
R
E
E
N
T
R
Y

P
R
E
S
C
R
O
L
L

P
R
E
U
P
D
A
T
E

P
R
O
C
E
S
S

S
E
L
E
C
T

U
P
D
A
T
E

ACCEPT 4
5

3
6

3
6

24 2 4 3
21

1
7

BREAK W W W W W W W W W W W W W

[SQL] CALL

CLEAR 1

CLOSE

[SQL] CLOSE

COMMIT

DELETE 8 8 8 8

[SQL] DELETE

DISPLAY 4
5

9 9 9 24 9 9 9 9

DO BLOB

DO EXTERNAL 10

DO INTERNAL

EDIT 5 23 20 4 7

ERROR 12 23 20 13 7

[SQL] FETCH

GET 12 25 25 23 20 25 7

INFORMATION 1

[SQL] INSERT

LET 14 3 3 2 3

LOCK

MEMOLOG

NULL

[SQL] OPEN

PERFORM APPEND E E E E E E E E E E E E

PROMPT 4
5

3
6

3
6

24 2 3
21

1
7

PUSH

PUT 16 16 16 16 16 16 16 16 16 16 16 16

REFRESH 1

REQUEST 18 4
18

18 18 18 18 18 18 18 18
21

18

RETURN 1
17

ROLLBACK

RUN COMMAND 1

RUN SCREEN 5 1
19

242 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QDESIGN Procedures Overview

RUN THREAD 1
19

SELECT 22 4
22

6 6 22 22 22 22 22 22 22

SEVERE 20 7

START

STARTLOG

STOPLOG

UNLOCK 1

[SQL] UPDATE

WARNING

Explanations

1. Locks may be removed through terminal I/O.

2. Entered or changed data may be lost.

3. ALTEREDRECORD cannot be set to true when the predefined condition
FINDMODE is true.

4. May result in an infinite loop.

5. Value in FIELDTEXT and/or FIELDVALUE may be lost.

6. Only REQUEST verb puts value in request buffer.

7. Error can force rollback.

8. Mark for deletion may be lost.

9. Display may be lost by clearing screen or overwritten by automatic
display.

10. Lock conflicts can result in deadlock.

11. Error will not stop backout or exit.

12. Error results in incomplete processing.

13. Error results in incorrect processing; data has already been accepted.

14. Data must be put into FIELDTEXT to be displayed.

15. A screen’s pending commands are lost on exit. The commands in the PSIB
will be lost.

16. Automatic rollback is not done for non-relational files.

17. Prevents normal processing completion.

18. REQUEST verb is specific to retrieval method determination.

19. Rollback information is lost upon leaving screen.

20. Error will not cause rollback.

21. Only SELECT verb puts value in selection buffer.

22. SELECT verb is specific to selection determination.

23. Error will not stop scrolling.

24. May cause additional scrolling.

25. Retrieved data may be lost due to subsequent initialization.

Verbs
(compatibility with
procedures MODIFY to
UPDATE) M

O
D
I
F
Y

O
U
T
P
U
T

P
A
T
H

P
O
S
T
F
I
N
D

P
O
S
T
P
A
T
H

P
O
S
T
S
C
R
O
L
L

P
O
S
T
U
P
D
A
T
E

P
R
E
E
N
T
R
Y

P
R
E
S
C
R
O
L
L

P
R
E
U
P
D
A
T
E

P
R
O
C
E
S
S

S
E
L
E
C
T

U
P
D
A
T
E

Chapter 4: QDESIGN Procedures Overview

QDESIGN Reference 243

Testing Processing Status Using Predefined Conditions

QUICK provides several predefined conditions that you can test to determine the current status of
processing. These predefined conditions are logical conditions that can be used in IF options or IF
control structures.

QUICK provides several predefined conditions that allow you to test
• record status
• retrieval status
• user response
• processing modes

Testing Record Status
For each data record that's used on a screen, QUICK keeps track of the current record status.

Record status has three components:
• New (has never been put on file) or Old (exists on file)
• Changed (at least one value in the buffer has been changed) or Unchanged (for New data

records, the values are all initial; for Old data records, the values are identical to what is on
file)

• Deleted (marked for deletion but not removed from the file or database) or Not Deleted (not
marked for deletion)

The current status of any record buffer can be determined using the predefined conditions
NEWRECORD, ALTEREDRECORD, and DELETEDRECORD. For example, if the record status
is New, then the predefined condition NEWRECORD is true, regardless of whether the status is
Changed or Deleted. Similarly, if the record status is Changed, then the predefined condition
ALTEREDRECORD is true.

26. Automatic rollback is done for non-relational files if RECOVERABLE is
used.

E Results in a syntax error in QDESIGN.

W Only allowed with a FOR, WHILE, or WHILE RETRIEVING control structure.

* Verbs should comply with the invoking procedure’s restrictions.

Explanations

244 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QDESIGN Procedures Overview

The following tables illustrate the way in which QUICK sets the record status at different points
during Entry and Find mode processing.

The predefined conditions listed in the preceding tables can be qualified by the record-structure
name, as in
> IF NEWRECORD OF EMPLOYEES
> THEN . . .

At initialization, the status of a record buffer is New, Unchanged, Undeleted. However, as soon as
the QUICK screen user enters a value in Entry mode, the status becomes New, Changed,
Undeleted. (Note: For PANEL MODE screens, the record status doesn't change until the current
block is transmitted to QUICK by pressing [Return].) When the data record is put on file, but
before the buffer is re-initialized, the status is Old, Unchanged, Undeleted because it is reflecting
values on file.

When the user retrieves a data record in Find mode, the immediate record status is Old,
Unchanged, Undeleted. If the user changes a value, the status becomes Old, Changed, Undeleted.
If the changed data record is updated, the status again becomes Old, Unchanged, Undeleted.

When the user marks a data record for deletion by entering the Delete (D) Action field command,
the record status becomes Old, Changed, Deleted. When the data record is actually deleted by one
of the update Action field commands, the status becomes Old, Unchanged, Deleted. Items in data
records marked for deletion can't be referenced on the screen.

Record status also affects updating. The actions taken by a PUT verb depend on the status of the
data record. For more information about PUT verb processing, see (p. 455).

Status of Predefined Conditions in Entry Mode Processing

Processing Point NEWRECORD ALTEREDRECORD DELETEDRECORD

at Initialization True False False

after field entry True True False

Update1 in Action field False False False

DELETE verb encountered True True or False True

1Includes U, UR, US, UN

Status of Predefined Conditions in Find Mode Processing

Processing Point NEWRECORD ALTEREDRECORD DELETEDRECORD

after first find False False False

DELETE verb encountered False True or False True

if data changed False True False

Update1 in Action field (data
changed)

False False False

Update1 in Action field (data
deleted)

False False True

1Includes U, UR, US, UN

Chapter 4: QDESIGN Procedures Overview

QDESIGN Reference 245

Testing Record Retrieval Status
When QUICK performs a record retrieval, the predefined condition ACCESSOK is set to true or
false depending on whether the retrieval succeeds or fails. For optional retrievals, this predefined
condition can be tested, as in
> PROCEDURE EDIT POSITION
> BEGIN
> GET FILE POSITIONS USING FIELDTEXT OPTIONAL
> IF NOT ACCESSOK
> THEN ERROR = "NO POSITION ON FILE FOR CODE " &
> + FIELDTEXT
> END

Since much of QUICK's processing is based on the existence of a primary data record, the retrieval
of data records of the PRIMARY file is assumed to be required. Specifying optional retrieval and
testing the ACCESSOK predefined condition can lead to unpredictable results.

Testing User Response Status
When the user is prompted for entry by an accept, prompt, request, or SELECT verb, the
predefined condition PROMPTOK is set to true or false, depending on whether the user enters a
value or a null response. This setting can be tested, as in
> IF NOT PROMPTOK FOR EMPLOYEE OF EMPLOYEES
> THEN . . .

Using the PROMPTOK predefined condition is discussed in more detail in the discussion sections
of the field processing verbs ACCEPT, PROMPT, REQUEST, EDIT, and DISPLAY in Chapter 8,
"QDESIGN Verbs and Control Structures".

Testing Processing Modes
Some procedures such as UPDATE, DESIGNER, and the field processing procedures may have to
act differently, depending on the point in QUICK's processing at which they are performed.

You can test the current processing point using the following predefined conditions:

For example, your test might look like this:
> IF FINDMODE
> THEN DO INTERNAL CLEANUP
> ELSE ERROR "Valid only in Find Mode"

ENTRYMODE means the screen is in the standard entry sequence or appending data.

CORRECTMODE means the screen is in Entry mode and has completed the standard entry
sequence.

FINDMODE means the screen is performing Find mode initialization, retrieving records,
or displaying retrieved data. It is also true during the initialization phase of
the standard entry sequence, as this prevents ITEM INITIAL statements
from changing record status.

CHANGEMODE means the screen is in Find mode, data has been displayed, and the screen
is prepared to accept changes from the user. The predefined condition,
CHANGEMODE, is also true after the user enters an Update Stay
command.

SELECTMODE means the screen is performing SELECT mode initialization, retrieving
records, or displaying retrieved data.

246 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QDESIGN Procedures Overview

Testing Entered Values in Designer-Written Field Processing
Procedures

QDESIGN has two useful predefined items that you can use to test the value entered into a field in
field processing procedures. These predefined items are FIELDVALUE and FIELDTEXT.

FIELDTEXT contains the most recent set of characters in a field. Use FIELDTEXT in field
processing procedures (such as an EDIT procedure) to examine the contents of the field.

FIELDVALUE always contains the most recent entry in a NUMERIC or DATE field. The contents
of FIELDVALUE are derived from FIELDTEXT after the optional INPUT procedure is performed
on the field. The storage format of FIELDVALUE is determined by the item datatype for the item
that's associated with the current field.

There is only one FIELDTEXT and one FIELDVALUE item per QDESIGN session.

Restrict the use of FIELDTEXT and FIELDVALUE to field processing procedures (INPUT, EDIT,
OUTPUT). If you use FIELDTEXT and FIELDVALUE in other contexts, unpredictable results can
occur.

For more information about the use of FIELDTEXT and FIELDVALUE, see the ACCEPT verb
on (p. 364).

QDESIGN Reference 247

Chapter 5: QUICK's Processing Modes

Overview
This chapter discusses QUICK's three main modes of operation: Entry, Find, and Select. The
chapter ends with a brief discussion of Append mode processing, which is an extension of both
Find and Entry mode.

Understanding the Relationship Between QDESIGN and
QUICK

Before you create systems of QUICK screens with QDESIGN, you must understand how your
screen designs affect the way the screens function once they are created and in use.

Each command a QUICK screen user enters in the Action field on a given QUICK screen causes
QUICK to perform a predetermined series of processing steps, and to execute one or more of the
procedures defined in QDESIGN for that screen. Similarly, pressing one function key when the
cursor is positioned on a data field causes QUICK to perform a predetermined series of processing
steps.

Understanding QUICK's Processing Modes
QUICK's operation is guided by the compiled screen definitions that are created by the BUILD
statement in QDESIGN.

The compiled screen definition consists of four parts:
• the screen background (the fixed display portion of the screen)
• tables of record-structures, items, and indexes
• the screen foreground (fields)
• procedural code that defines the activities to be performed

QUICK operates in two basic modes: Entry and Find. Select mode is an extension of Find mode.

When a QUICK screen is activated, its background is immediately displayed. The user signals the
desired processing mode by entering one of the following commands in the Action field:
• E for Entry mode
• F for Find mode
• S for Select mode

Once in a processing mode, actual processing is controlled by a combination of
• procedural processing
• automatic housekeeping functions (performed by QUICK based on the tables in the compiled

screen)

During each phase of processing, QUICK places entered and retrieved data in temporary storage
areas called buffers. QUICK uses different buffers, depending on whether the QUICK screen user
is performing a Find, a Select, or an Entry operation.

The sections that follow describe the sequence of events in Entry, Find and Select mode processing.
In addition, the final section of this chapter discusses Append mode processing, which allows you
to enter data records in either Entry or Find mode.

248 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUICK's Processing Modes

Entry Mode Processing
In Entry mode, QUICK screen users can create, validate, and store data in files. Entry mode
consists of a series of four phases that are repeated for each set of data created:
• Initialization phase
• Entry phase
• Correction phase
• Update phase

The Correction phase is optional. You can bypass this phase by using the AUTOUPDATE option
of the SCREEN statement. QUICK then proceeds directly from the Entry phase to the Update
phase.

The Initialization Phase
In this phase, temporary items are initialized, record buffers are marked for initialization, and the
foreground portion of the screen is cleared and/or set to initial predisplayed values. The
initialization phase is performed automatically by QUICK based on specifications in the data and
layout sections of the screen design. There is no procedure for this phase.

The Entry Phase
The Entry phase is controlled by
• the PREENTRY procedure (if one is specified)
• the ENTRY procedure
• the APPEND procedure (if the screen includes a DETAIL file or a repeating PRIMARY file)

Normally, QUICK prompts the user through the fields or blocks of fields on the screen. The
PREENTRY, ENTRY, and APPEND procedures validate values as they're entered and then places
them in the buffers. If procedures contain BLOCK TRANSFER constructs, QUICK validates
groups of fields delimited by the BLOCK TRANSFER control structures simultaneously.

Lookups and Calculations in the Entry Phase

The Entry phase can involve lookups and retrieval of related data from record-structures in
Reference files, as well as calculation of data values based on the data entered or retrieved.

The Default ENTRY Procedure

QDESIGN constructs a default version of the ENTRY procedure based on the field and other
layout section statements and their options. If the PANEL option is specified for either the SET or
the SCREEN statement, then the generated ENTRY procedure automatically contains BLOCK
TRANSFER control structures. In addition, if the screen design includes a detail record-structure
or a primary record-structure with multiple occurrences, an APPEND procedure is also
constructed. You can modify these procedures using their source code.

The Correction Phase
In this phase, the user can make corrections to the data created in the Entry phase. There are two
ways QUICK screen users can make corrections to field entries:
• with the M (Modify) command
• with numbered DESIGNER procedures

Chapter 5: QUICK's Processing Modes

QDESIGN Reference 249

The MODIFY Command

The M (Modify) command is valid only when a MODIFY procedure exists for the screen. The
MODIFY procedure is automatically generated for PANEL screens. You can write your own
MODIFY procedure for NOPANEL screens. When the MODIFY procedure is initiated, QUICK
prompts for corrections at specific fields that are referenced in the MODIFY procedure. QUICK
determines which fields the user can change (based on field options such as NOCHANGE,
NOCORRECT, and DISPLAY) and enables these fields for input.

If AUTOUPDATE is specified on the SCREEN statement, QUICK skips the Correction phase and
goes to the Update phase.

Numbered DESIGNER Procedures

QUICK generates internal numbered DESIGNER procedures for each field for which there is an
ID-number. The generated numbered DESIGNER procedures only contain ACCEPT verbs for the
fields associated with that ID as long as the fields don't have the NOCORRECT, or DISPLAY
options.

You can't access the default DESIGNER procedures. However, you can write your own numbered
DESIGNER procedures to override the default numbered DESIGNER procedures. In such cases,
the numbered DESIGNER procedures perform whatever steps they've been customized to
perform.

Numbered DESIGNER procedures are similar to the ENTRY procedure; the difference is that
numbered DESIGNER procedures affect individual fields rather than groups of fields. When the
QUICK screen user enters the number of a DESIGNER procedure in the Action field, QUICK
prompts for corrections at the field with that ID-number.

The field ID-number doesn't have to be visible on the screen in order for the associated numbered
DESIGNER procedure to be in effect. Fields with the HIDDEN option don't have a displayed
ID-number; they do, however, have associated ID-numbers (which are hidden from view) and
associated DESIGNER procedures.

Deleting Newly Entered Records in the Correction Phase

Newly entered data records can be deleted in the Correction phase (that is, prior to an update) by
the Delete command. Because newly created data records don't yet exist in a file, the Delete
command used in the Correction phase simply prevents the records from being placed in a file.
This activity is controlled by the DELETE and the DETAIL DELETE procedures. QDESIGN
constructs default versions based on the FILE statements; these default procedures are available as
source code. Both procedures mark records for deletion.

The Update Phase
After the data has been entered and corrected, the user initiates the Update phase by entering one
Update command. This phase is controlled by three procedures and some automatic
housekeeping.

The first procedure is the optional PREUPDATE procedure. This user exit allows you to specify
infield editing or other processing that depends on having all data from all the fields on the screen
available. Balance checks are performed following the Preupdate phase if they were specified in
the data section, and if no errors have been issued by the PREUPDATE procedure.

If no errors are detected, control is passed to the second procedure, the UPDATE procedure, after
balance checking. The default procedure is constructed by QDESIGN from the FILE statements
and from associated ITEM and TARGET statements. The source version of the UPDATE
procedure is available.

If errors are detected at any point in the UPDATE procedure, all updates previously performed in
that procedure are rolled back and the user is returned to the Correction phase. For more
information about rollbacks, see (p. 357).

The third procedure is the optional POSTUPDATE procedure that performs processing following
the successful completion of an UPDATE procedure. After executing the POSTUPDATE
procedure, QUICK verifies that all data records (except DESIGNER file records) that have been
changed have also been updated. QUICK warns the user if any data records failed the test.

250 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUICK's Processing Modes

If the user enters an Update Stay command, the files are updated and then the screen reverts to the
Change phase for additional modifications to the same set of data. For more information about
the Change phase, see (p. 251).

Following these four stages of Entry mode processing, QUICK returns to the Initialization phase
for the next set of data.

Find Mode Processing
In Find mode, QUICK screen users can retrieve, view, alter, or delete existing data records. Find
mode consists of three separate processing phases:
• Initialization phase
• Path Determination phase
• Retrieval Cycle phase

The Initialization Phase
When a QUICK screen user enters Find mode, QUICK clears the screen foreground, initializes
temporary items, and marks record buffers for initialization. This process is done automatically
from specifications and options in the data and layout sections of the screen design. There is no
procedure for this phase.

Path Determination Phase
This phase establishes which data is to be retrieved and how it is to be retrieved. The Path
Determination phase is controlled by the PATH procedure, a default version of which is
constructed by QDESIGN based on FILE and associated ACCESS statements and the availability
of fields for segments. The default procedure is available in source form.

The PATH procedure establishes a dialogue with the screen user to determine which index and
which index values are to be used for data retrieval. By default, QUICK prompts the user at each
field that's associated with a segment in an index of the primary record-structure. Based on the
user's responses, both the access path and its index value are established. Once established, these
can't be changed during the retrieval cycle.

The optional POSTPATH procedure is executed following the successful completion of the PATH
procedure. You can include this procedure to perform processing before the record-retrieval cycle
begins.

On some lower-level screens in a data hierarchy, the criteria for retrieval is fixed and based on the
current values in the MASTER file record that is passed to that screen. In these cases, QUICK
constructs a simplified PATH procedure that sets PATH to 1.

The Retrieval Cycle Phase
The Retrieval Cycle phase is itself broken down into several phases, each of which is repeated
until QUICK has retrieved all the data records that meet the retrieval criteria of the Path
Determination phase, or until the user interrupts the process. The phases of the Retrieval Cycle
phase are:
• Retrieval Initialization phase
• Data Retrieval phase
• Display Data phase
• Change phase
• Update phase

Chapter 5: QUICK's Processing Modes

QDESIGN Reference 251

Retrieval Initialization Phase

QUICK clears the screen foreground, initializes temporary items to their default values, and marks
record buffers for initialization. This phase is performed automatically by QUICK, based on the
data and layout sections of the design and on the retrieval criteria established in the PATH
procedure.

Data Retrieval Phase

During this phase, QUICK retrieves the data record or data records for primary and secondary
record-structures, as well as for detail record-structures, if present. The FIND procedure controls
this activity. The FIND procedure retrieves one screenload of data based on the retrieval criteria
specified in the PATH procedure. If included, a POSTFIND procedure is executed after successful
completion of the FIND procedure. If a detail record-structure is included in the screen design, the
DETAIL FIND procedure is executed to retrieve its data records. If included, a DETAIL
POSTFIND procedure is executed after the successful completion of the DETAIL FIND
procedure. Default versions of the FIND and DETAIL FIND procedures are constructed by
QDESIGN based on FILE and associated ACCESS statements, and on the availability of fields for
segments. The default procedures are available in source form.

Display Data Phase

After QUICK retrieves data, the screen foreground is displayed to the user. This is done
automatically based on the data and layout sections of the screen design.

If the AUTOMODIFY option is specified on the SCREEN statement, the MODIFY procedure is
initiated and the screen enters the Change phase automatically after QUICK retrieves data.

Change Phase

The screen user can make changes to the displayed data. This activity is the same as the Correction
phase in Entry mode (p. 248).

Numbered DESIGNER procedures may perform slightly differently in the Correction phase of
Entry mode or the Change phase of Find mode because of mode-dependent options of the FIELD
statements. Data records can be deleted in the Change phase (as in the Correction phase).
However, because the deleted data records were retrieved and therefore exist in a file, actual
physical deletion of the data records doesn't occur until the Update phase.

Update Phase

The screen user signals the end of the Change phase by entering an Update command. The Update
phase is identical to the Entry mode Update phase, except that existing data records are updated
(new data records aren't added) and marked data records are physically deleted.

Notes on Find Mode
The PATH and FIND procedures are closely related. If you modify or explicitly code either of
these procedures in a QUICK screen design, you must code the other procedure to match it.
However, modifying these procedures is not recommended. For detailed information about the
default FIND and PATH procedures, see (p. 318) and (p. 333).

Find mode allows the user to browse through data records by pressing [Return] to see the next
record.

If more data records exist than can be retrieved and shown in one Find sequence, the retrieval
cycle is repeated each time the user presses [Return] until no more data records meeting the
retrieval criteria are found. When this happens, QUICK displays a screen with a blank foreground
indicating the end of the retrieval sequence.

If no changes are made to a set of retrieved data records, the user can press [Return] to retrieve
and display the next set of data records. An update isn't required if nothing is changed. If an
update is performed, only data records that have been changed are actually updated.

252 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUICK's Processing Modes

When the user enters the Update command or presses one Update function key, the files are
updated and the next set of data records is presented. When you include a DETAIL
record-structure in the screen design, the Update command also updates the DETAIL file and any
data occurring with it, and causes the next set of detail records to be presented. The primary file
data record remains on the screen.

When the user enters the UN (Update Next) Action field command on a screen that includes a
DETAIL record-structure, that file and the PRIMARY file are updated, and the next primary file
record and its related detail file records are shown.

When the user enters the US (Update Stay) Action field command in Find mode, QUICK updates
the screen and reverts to the Change phase of processing for additional actions on the same set of
data.

When the user enters the UR (Update Return) Action field command, all files on the screen are
updated, and QUICK returns to the immediately higher-level screen. If no higher-level screen
exists, QUICK returns to the point from which it was invoked (usually the operating system).

Select Mode Processing
Select mode processing is identical to Find mode processing, with one additional phase. Following
the execution of the PATH procedure, QUICK performs the following steps:
• If a SELECT procedure exists for the screen, QUICK executes it.
• If a SELECT procedure doesn't exist for the screen, QUICK prompts the user for field

ID-numbers. Once ID-numbers are entered, QUICK prompts for additional record selection
criteria at each field for which an ID-number was entered, with the exception of relational
blobs.

The values entered in Select mode supplement rather than override the values entered in response
to the PATH procedure. Any non-null data values entered into fields in response to the prompts
are treated as selection values.

To use empty fields as part of the selection criteria, the user enters one blank for character items,
and one zero for numeric or date items. If the values of the items in retrieved data records don't
match the specified selection values, the data records are bypassed. Selection values can't be
entered into temporary or defined item fields. The POSTPATH procedure (if present) is executed
following the prompting for selection values.

Append Mode Processing
Append mode processing streamlines data entry by allowing the QUICK screen user to append
data records while in either Entry or Find mode. It also gives QUICK screen designers the option
of setting up a one-to-many relationship between record-structures on a single screen.

Implementing and using Append mode processing involves repeating PRIMARY or DETAIL
record-structures, several procedures, and Action commands.

Procedures and Verbs Used in Append Mode Processing

APPEND A procedure generated by QDESIGN to control Append mode
processing.

DETAIL FIND A procedure generated by QDESIGN to control the retrieval of data
records from the file and the files occurring with the detail file.

DETAIL DELETE A procedure generated by QDESIGN to control the marking for
deletion of specific data records from detail files and the files occurring
with the detail files.

Chapter 5: QUICK's Processing Modes

QDESIGN Reference 253

Action Field Commands Used in Append Mode Processing

Append Mode Processing and Primary Record-Structures
Append mode processing on a repeating primary record-structure allows you, in
CHANGEMODE or CORRECTMODE, to add data records to empty occurrences on a screen
without clearing data records currently displayed on the screen.

For example, you can combine different modes as follows:
• To retrieve a group of data records, use the F (Find) Action field command.
• To add new data records, use the A (Append) Action field command.
• To update, use any of the update function keys or one of four update Action field commands

(U, UR, UN, US).

To terminate Append mode processing, enter the Skip All (//) command.

When all occurrences are full, QUICK prompts in the Action field for the next instruction.
Append mode processing is like Entry mode; at the end of the entry sequence, the user can make
corrections to entered data before updating.

Append Mode Processing and Detail Record-Structures
Using detail record-structures provides an easy way to establish one-to-many relationships
between a primary record-structure and related subordinate record-structures. If only two
record-structures are involved, you can avoid creating higher- and lower-level screens linked by a
SUBSCREEN statement.

Notes on Append Mode Processing
The ACTIVITIES option of the SCREEN statement in QDESIGN affects Append mode
processing. The ENTRY activity option allows Append processing in Entry mode, while the
CHANGE activity option allows Append mode processing in Find mode and Select mode.

If a screen has a repeating primary record-structure and the only activities are FIND and
CHANGE activity options, Append mode processing isn't allowed. Data entered into primary file
records using Append mode processing is considered New, Unchanged.

DETAIL POSTFIND A designer-written procedure that performs processing after the
successful completion of a DETAIL FIND procedure.

PERFORM APPEND The verb generated by QDESIGN in the ENTRY procedure, or in a
FOR MISSING loop in the MODIFY procedure. PERFORM APPEND
controls the execution of the APPEND procedure in the entry
sequence.

A Append The Action field command that initiates Append mode processing.

N Next full data The Action field command that, in Find mode, bypasses retrieval of
any further detail records associated with the current primary file
record, and begins retrieval of the next primary file record.

UN Update Next The Action field command that, in Find mode, updates the current
screen, bypasses retrieval of any further detail records associated with
the current primary file record, and begins retrieval of the next primary
file record and its associated detail records. In Entry mode, it updates
the current screen, and prompts for a new primary file record.

254 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUICK's Processing Modes

QDESIGN Reference 255

Chapter 6: Customizing QUICK with QKGO

Overview
QKGO is the PowerHouse utility that lets you:
• modify QUICK execution-time parameters
• rename QUICK action and data commands
• assign QUICK action and data commands to function keys using the terminal interface

configuration
• define function keys through DFKs

An alternative to much of the functionality in QKGO is the QUICK Initialization file, or QKI
(p. 290), a text file which you can create with a text editor.

QKGO: The QUICK Execution-Time Parameter File-Set
A QKGO file-set establishes QUICK's basic working parameters, such as
• the first screen called by QUICK
• the default mode of the first screen
• execution-time table sizes
• the length of the optional time-out period
• the symbols used for all QUICK commands
• the default ASCII line-drawing symbols
• terminal interface configuration (TIC)
• dynamic function keys (DFKs)

Each time QUICK is started, it looks for a QKGO file-set. QUICK first checks for the auto
program parameter. If auto isn't specified:

You don't need to have an active QKGO file-set in order to run QUICK. Default values are
assumed for all parameters when a QKGO file-set doesn't exist. The default values for the
table-size parameters are fairly low in order to avoid using unnecessary memory space. However,
you may be able to reduce memory usage further and increase performance by changing some
parameter values using QKGO.

PowerHouse provides default terminal interface configurations for many terminals. The default
QKGO file-set is automatically made available when QKGO is specified.

Alternatives to Custom QKGO file-sets
A QKGO file-set isn't required if the only changes you intend are to
• name the first screen that QUICK calls ("First screen" field)

MPE/iX: QUICK looks for the QKGO files in the current group, or for a file
equation for QKGO.

OpenVMS: QUICK looks for the logical name QKGO. If not found, it looks for the
logical name PH_DEFAULT_QKGO.

UNIX, Windows: QUICK uses the environment variable QKGO.

256 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO

• name your dictionary ("Dictionary File" field)

The auto program parameter provides the same functionality as the "First screen" field in the
Construction and Maintenance Screen. Alternatively, you can use:

Similarly, the dictionary program parameter provides the same functionality as the "Dictionary
File" field in the Construction and Maintenance Screen. Alternatively, you can use the following
to set the PHD designated file:

F or more information about program parameters, see Chapter 2, "Program Parameters", in the
PowerHouse Rules book.

The QUICK initialization file (p. 290) is an alternative to four of the main screens within QKGO:
Execution Time Parameters, Action Field Commands, Action and Data Field Commands, and
Data Field Commands. The QKI file is a text file that you can create with a text editor.

An alternativeto the Terminal Interface Configuration screen within QKGO is the TIC text
file(p. 278).

Starting QKGO
To start QKGO, enter the following command:

The main screen of QKGO, the Construction and Maintenance Screen, is displayed.

MPE/iX: FILE QKGO = MAINMENU

OpenVMS: DEFINE QKGO SCREEN1.QKC

UNIX: setenv QKGO mainmenu (for the C shell)

QKGO=mainmenu

export QKGO (for Bourne or Korn shell)

Windows: Create a system environment variable QKGO whose value is
[drive:\][directory\]...mainmenu.

MPE/iX: FILE PHD = MPEIXPHD

OpenVMS: SETDICT PHD

UNIX: setenv PHD unixdict (for the C shell)

PHD=unixdict

export PHD (for Bourne or Korn shell)

setdict phd.pdc

Windows: Edit the system environment variable PHD to point to your dictionary:
set PHD=windict

MPE/iX: SETQKGO

OpenVMS: QKGOMAINTENANCE or QKGOMAINT

UNIX: qkgo

Windows: From the Start Menu, select PowerHouse <version> and click on QKGO. A
QKView version is available by clicking on QKGOQKView.

Chapter 6: Customizing QUICK with QKGO

QDESIGN Reference 257

Exiting QKGO
To terminate QKGO and save any changes made during your session, enter the Update Return
(UR) command in the Enter command field of the Construction and Maintenance Screen.

If you do not want to save your changes, enter the Return (^) command in the Enter command
field of the Construction and Maintenance Screen.

If you make changes during your session and do not issue an update command before issuing a
Return command, QKGO prompts you with the warning message:
Data has been changed but not updated. Repeat the action if this is ok.

Choosing Options on QKGO Screens
QKGO screens behave similarly to other QUICK screens. One notable difference is that the Action
field is often labeled "Enter command". You navigate by entering a subscreen ID-number or a
valid Action command in the Enter command field.

To change field values, enter the field's ID-number in the field labeled "Enter command", then,
when you are prompted, enter the new value.

Getting Help
You can access online help messages by entering the Help command (?) in any field. It gives a brief
description of what's expected in that field. The Extended Help command (??) displays a more
detailed explanation.

OpenVMS: [PF2] and [GOLD/PF2] can also be used for Help and Extended Help.

Performing Lookups in Fields on QKGO Screens
Another form of help is available within many of the options in the Terminal Interface
Configuration (TIC) subscreen system. PowerHouse allows you to access lookup information for
a specific field.

To do this, enter an equal sign (=) in the field that you want information on and press [Return].

For example, you can enter an equal sign in the Logical Key Name field in the System Commands
subscreen (in the TIC Screen). This calls the Logical Key Names screen and displays all the valid
mnemonic codes. You can select a mnemonic by entering the id-number that precedes the key
name.

MPE/iX,
UNIX,
Windows:

Values that are different from the default are displayed in halftone typeface.

OpenVMS: Values that are different from the default are displayed in bold typeface.

MPE/IX,
UNIX,
Windows:

The function keys on QKGO screens for HP and HP-compatible terminals and
Windows consoles are dynamic. The labels indicate the function of each key. You
can use these keys to select appropriate actions for the screen you are using. The
QKGO menu screen employs two shift levels. You use the SHIFT function key to
shift between levels.

258 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Construction and Maintenance Screen

The Construction and Maintenance Screen
You create and maintain QKGO file-sets with a system of QUICK screens that provide an
interface to QUICK's operating parameters. The Construction and Maintenance Screen is the
main screen of QKGO.

Parameter values and operator commands are divided into subscreens, which are activated by
entering the preceding id-number. The options on this screen are:

QKGO file When you choose Entry mode, you are prompted for the name of the new
QKGO file-set. When you choose Find mode, you are prompted for the
name of an existing QKGO file-set.

Initialize from When you enter COPY in the Enter command field, you are prompted in
this field for an existing QKGO file-set from which to copy the settings.

01

First screen

The name of the first screen to be displayed when QUICK is initiated. On
entry, QKGO does not verify the existence of the screen. If this is the only
parameter that you intend to customize in your QKGO file-set, see
(p. 255).

Limit: Must be a valid file specification.

02

Dictionary File

The name of the dictionary to be accessed when QUICK is initiated. On
entry, QKGO does not verify the existence of the dictionary. If the First
Screen and Dictionary File parameters are the only parameters that you
intend to customize in your QKGO file-set, see (p. 255).

Limit: Must be a valid file specification.

03

Execution-time
parameter values

Use this screen to change the values of QUICK runtime parameters. For
more information, see (p. 261).

04

Action field
commands

Use this screen to rename QUICK Action field commands. For more
information, see (p. 268).

05

Action and Data
field commands

Use this screen to rename commands common to both the action and data
fields. For more information, see (p. 269)

06

Data field
commands

Use this screen to rename data field commands, and to modify the generic
retrieval character and the pattern match character. For more
information, see (p. 270).

07

Dynamic Function
Keys

Use this set of screens to control dynamic function key (DFK) parameters
in your application. For more information, see (p. 271).

08

Terminal interface
configuration (TIC)

Accesses a set of screens that lets you define and maintain the terminal
keys that are used to control various QUICK User Interface features.
Function keys, keypad keys and escape sequences (control characters) can
be mapped to execute QUICK commands and designer procedures. For
more information, see (p. 278).

Chapter 6: Customizing QUICK with QKGO
The Construction and Maintenance Screen

QDESIGN Reference 259

Specifying QKGO File-Sets
You must specify a QKGO file-set before you choose any subscreen options or procedures
available on the main screen. To specify a QKGO file-set, you can create a new file, or you can
modify or convert an existing QKGO file-set.

Creating QKGO File-Sets
To create a new QKGO file-set, use the Enter (E) command in the Enter command field.

You are prompted in the "QKGO file" field. Enter a name for your QKGO file-set. Once the file
"filename" has been created, the following message is displayed:
New QKGO file has been created with default values.

OpenVMS, UNIX, Windows: You do not need to specify a file extension. QKGO automatically
appends the default extension to each physical filename in the file-set.

To make the file permanent, enter the Update Stay (US) command in the Enter command field. If
you leave the screen before updating, the newly created QKGO file-set is deleted.

You can now choose any of the options or procedures on the screen.

Copying and Converting QKGO File-Sets
To copy the values from an existing QKGO file-set to a new QKGO file-set:
1. Enter the Entry Mode (E) command in the Enter command field.
2. When prompted in the QKGO file field, enter a name for your new QKGO file-set.
3. Enter COPY in the Enter command field.
4. When QKGO prompts you in the Initialize from field, enter the name of the existing source

file.
OpenVMS: If you are copying or upgrading a 7.10 or 8.xx QKGO file, the following message
is displayed:
Convert an existing 7.10 QKGO file? [Y/N]

Enter Y if the file is a 7.10 QKGO file. The default is N.
5. QKGO asks if you want to copy the TICs.Enter Yes if you want to copy terminal information

from the existing file. Enter No to assume new defaults.

In addition to the file specified in the QKGO file field, QKGO creates data files, as described in
the section, "Physical QKGO File-sets" on (p. 260).

To make the files permanent, enter the Update Stay (US) command in the Enter command field. If
you leave the screen before updating, the newly created QKGO file-sets are deleted.

You can now choose any of the options or procedures on the screen.

Modifying or Deleting a QKGO File-Set
To modify or delete an existing QKGO file-set, enter the Find (F) command in the Enter command
field.

QKGO prompts you to enter the name of the file-set in the "QKGO file" field. Once retrieved, the
QKGO file-set can be modified or deleted.

To delete the file-sets, enter the Delete (D) command in the Enter command field. If you exit
QKGO without updating, the QKGO file-sets will not be deleted.

260 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Construction and Maintenance Screen

Physical QKGO File-Sets
QKGO file-sets comprise the following file(s):

When copying a QKGO file-set between directories, be sure to copy all the files in the file-set.

Changing Values in the Subscreens
The current values from the QKGO file-set are displayed when the following screens are called:

03 Execution-Time Parameter Values

04 Action Field Commands

05 Action and Data Field Commands

06 Data Field Commands.

To change a value, select the field ID-number and enter the new value. Only displayable characters
are allowed. In the Action Field Commands, Data Field Commands, and Action and Data Field
Commands screens, you can change a value back to the default by entering <DEF> in the field.

Platform File Description

MPE/iX:

UNIX, Windows,
OpenVMS:

filename

filename.qkg

This file always exists in QKGO file-sets.

MPE/iX:

UNIX, Windows:

OpenVMS:

filenameb

filenameb.dat and
filenameb.idx

filnameb.dat

This context binding file exists in QKGO file-sets only
if terminal (TIC) information is specified.

MPE/iX:

UNIX, Windows:

OpenVMS:

filenamek

filenamek.dat and
filenamek.idx

filenamek.dat

This key sequence file exists in QKGO file-sets only if
terminal (TIC) information is specified.

MPE/iX:

UNIX, Windows:

OpenVMS:

filenamet

filenamet.dat and
filenamet.idx

filenamet.dat

These terminal-group files exist in QKGO file-sets
only if terminal (TIC) information is specified.

MPE/iX, UNIX,
Windows:

Values that are different from the default are displayed in halftone typeface.

OpenVMS: Values that are different from the default are displayed in bold typeface.

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

QDESIGN Reference 261

The Execution-Time Parameter Values Screen
The Execution-Time Parameter Values screen allows the values of certain QUICK run-time
parameters to be adjusted. Use the screen to change QUICK’s operating characteristics.

To access the screen, enter option 03 "Execution-Time Parameter Values" on the QKGO
Construction and Maintenance Screen.

This table lists the execution-time parameters, their range of values, and their default values. Refer
to this table to determine which values to optimize to reflect your production requirements.

Parameter Purpose (Min./Default/Max.)

Application lines Sets the number of lines of simulated terminal
memory for stacking screens.

(24/48/240)

Block Mode Retries

(MPE/iX)
Controls the number of times QUICK retries a
block mode read (if original read fails).

(0/5/15)

Common area size Sets the maximum space (in words) allocated for
use by DO EXTERNAL subroutines.

(1/1/30000)
MPE/iX, UNIX,
Windows

(0/0/30000)
OpenVMS

Do Ext Save/Restore
*

Specifies whether the terminal sets/resets when
DO EXTERNAL subroutines are executed from
QUICK. A value of Y means the setting/resetting
takes place; a value of N means it doesn't.

(/N/)

Driver (OpenVMS) Specifies the DO EXTERNAL subroutine driver
program name.

/QKDRIVER/

Error Recall Controls the redisplay of invalid data on the field
when a data edit fails. This parameter may be
overridden for a specified field with the
ERRORRECALL or NOERRORECALL options
on the FIELD statement. The options are Y or N.

/N/

Expression size Sets the maximum space (in words) reserved for
evaluating expressions and function results.

(20/400/8192)

Ext. subroutines
(MPE/iX, UNIX,
Windows)

Establishes the maximum number of external
subroutines QUICK can call. Each unique
external subroutine reference uses a table entry.
If the value is too low, QUICK issues an error
message. Using too high a value wastes memory.

(0/1/50)

262 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

Field terminators Controls data input. The options are full field
(F), autonext (A), audible autonext (B), or
manual (M).

The full field option (F) ensures that the data
entered by the user does not exceed the size of
the data item. The terminal sounds a warning
when the data exceeds the field size. No more
data is accepted at that point. The user can then
edit or delete the data in that field.

The autonext option (A) automatically moves
the cursor to the field once input exceeds a field
size.

The audible autonext option (B) behaves like the
autonext option but causes the terminal to sound
a warning when the cursor moves to the next
field.

The manual option (M) disables all field
terminator options and requires the user to press
[Return] to terminate field input. This option
does not apply to the Action field, the REQUEST
verb, or the PROMPT verb.

(/M/) MPE/iX, UNIX,
Windows

(/F/) OpenVMS

Horizontal lines Sets the default ASCII character to be used for
horizontal lines on a terminal that doesn't
support the line-drawing character set.

HP terminal has
LDW
(MPE/iX, UNIX)

If terminals support line drawing, choose Y. This
way, you don't have to specify the line drawing
character set at execution time.

(/N/)

Initial mode Specifies that the first screen entry is to start in
one of these modes: Entry, Find, or Select (E, F,
or S).

(/blank/)

Input Mode
(MPE/iX)

Specifies the assumed terminal input mode
(BLOCK or CHARACTER).

(/C/)

Line Intersections Sets the default ASCII character to be used for
crossing lines on a terminal that doesn't support
the line-drawing character set.

Lock Attempts
(MPE/iX, UNIX,
Windows)

Sets the number of lock attempts allowed. If the
number of allowable lock attempts is exceeded,
QUICK displays a message.

(1/16/50)

Lock Message Wait
(OpenVMS)

Sets the time delay, in seconds, between a lock
request for file access and the display of the
message "The file is busy. Please wait..." This
message is displayed until the maximum lock
request specification has been exhausted. If the
lock request is not granted by this time, the
message "Unable to complete the requested
action at this time" is displayed. The value
entered here must be less than that entered for
the LOCK REQUEST WAIT parameter. If no
message is required, enter a value of 0.

(0/5/254)

Parameter Purpose (Min./Default/Max.)

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

QDESIGN Reference 263

Lock Request Wait
(OpenVMS)

Sets the maximum amount of time for which a
lock request is queued.

(1/30/255)

Lock Retry Interval
(MPE/iX, UNIX,
Windows)

Sets the number of seconds QUICK waits
between locking attempts. A value of 0 means
there is no pause between lock attempts.

(0/2/60)

Lock Unconditional
(MPE/iX, UNIX,
Windows)

Y indicates the first lock attempted will be
unconditional. N indicates the first lock
attempted will be conditional.

(/N/)

Max number of
threads

Sets the number of threads that can be active in
one session.

(1/3/7)

Max. Paged
Memory
(OpenVMS)

Sets the maximum amount of memory (in
512-byte pages) that can be used for QUICK’s
internal paging system. (i.e. update, backout and
inactive screens)

(0/2048/16384)

Rollback Buffer* Sets the size of the primary memory buffer(in
multiples of 128 words) used to store rollback
information.

(128/1024/32767)

Rollback Clear*

(OpenVMS, UNIX,
Windows)

The default setting of Yes uses rollback pending.
A setting of No causes an immediate rollback
while keeping screen buffers under certain
conditions.

(/Y/)

Rollback Time-out* Specifies the number of seconds QUICK waits
for input during a rollback pending state before
it terminates blocking transactions. A value of 0
means QUICK doesn’t time out.

(1/0/65535)

Run Cmd Save/
Restore*

Specifies whether the terminal sets/resets when
COMMANDs or RUN COMMANDs are
executed from QUICK. A value of Y means the
setting/resetting takes place; a value of N means
it doesn't.

(/Y/)

Screen levels* Sets the maximum number of levels in the screen
hierarchy. QUICK keeps at most this number of
screen levels open and mapped onto terminal
memory, even if they are not active screens.

(1/5/15)

Screen Section
(OpenVMS)

Determines availability of sections for screen and
dictionary file sharing. Sharing is only available
for .PDC dictionaries. The options are
PRIVATE(P), GROUP(G), and SYSTEM(S). The
SYSTEM option indicates that a section is
available to all processes in the system; it is
recommended if the application or dictionary is
to be available to all users in the system.
PowerHouse must be installed with SYSGBL to
use the SYSTEM option. The GROUP option
indicates that a group section can be shared only
by processes that are executed from within the
same group. The PRIVATE option indicates
which private section is available to the process.

(P/G/S)

Parameter Purpose (Min./Default/Max.)

264 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

Using QKGO to Adjust Execution-Time Parameters
Many of the parameters listed in the previous table are used to set table or work area sizes. The
value must be large enough to allow the application screens to execute. Larger values waste
memory; however, if performance is a concern, you can increase the values at the expense of
memory. Performance parameters must be selected based on your system requirements and
resource usage.

Screen Tables and Work Area Parameters

Application lines

Establishes the number of lines of simulated terminal memory used for stacking screens. A screen
is written out to application lines only if it's to be overwritten by the screen image QUICK
maintains in primary memory. The value should be the highest line number used in the stacking
and windowing options of the SCREEN statement. Although reducing this parameter below the
default does save some memory space, the resulting slowdown due to screen reloading and
repainting is usually not worth the savings. If the value is too low, screens are mapped onto the
lines available.

Block Mode Retries (MPE/iX)

Set this parameter to control the number of times that QUICK attempts to re-read data from a
block mode screen if a read should fail. This is usually caused by communication link problems.
The default is 5, the maximum is 15, and 0 disables retries. QUICK displays retry messages and a
count for each time it attempts to re-read the data. You must press [Enter] to resend the data.

Screen table* Sets the maximum number of screens that
QUICK can keep track of concurrently.

(1/15/50)

Secondary Blocks*
(OpenVMS)

Refers to the number of blocks that QUICK can
maintain to write to extra data segments and/or
temporary files. Each block is the same as the
rollback buffer.

(0/32/1000)

Selection Size*
(OpenVMS)

Sets the maximum space (in words) per screen
reserved for storing retrieval selection conditions.

(0/128/2000)

Terminal buffer* Sets the maximum number of characters (one
ASCII character equals one byte) in the terminal
input/output buffers.

(80/512/4000)

Terminal Time-out Sets the number of seconds QUICK waits for
input before terminating. A value of 0 means
QUICK doesn't time out.

(30/0/65535)

Upshift actions Upshift user entries in the Action field. The
options are Y or N.

(/Y/)

Vertical lines Sets the default ASCII character to be used for
vertical lines on a terminal that doesn't support
the line-drawing character set.

* These parameters are described in greater detail later in this section.

Parameter Purpose (Min./Default/Max.)

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

QDESIGN Reference 265

Expression size

Establishes the size of the work area used for the evaluation of expressions and function results. If
the value is too low, QUICK issues an error message. You should estimate the size by using the
most complex expressions and functions in your application system. Adjust the value upwards
until evaluation succeeds. Using too high a value wastes memory.

Rollback Buffer

Establishes the size of the buffer used to store information needed to rollback updates if an error
occurs in the UPDATE procedure. If memory is available, the value of this parameter should be
made as large as possible. The minimum value would be the length of the largest record, rounded
up to the nearest 128 words.

The Rollback Buffer may not be large enough to hold all the information required. This may
happen if you are deleting a large number of records with a delete file statement. In this case, the
contents are written to secondary blocks. A low value for this parameter may affect performance
because a large amount of processing time is required to write rollback information to these
secondary blocks.

Rollback Clear (OpenVMS, UNIX, Windows)

The value of this parameter affects the behavior of screens when an error associated with a
database transaction occurs during the Update phase.

If N is specified and the following conditions are met, the database transaction(s) is rolled back
immediately and the data remains displayed on the screen:
• an error occurs during the Update phase
• transaction(s) active in the Update phase did not begin before the start of the Update phase

If Y is specified or if the above conditions are not met, QUICK enters Rollback Pending when an
error is encountered.

Rollback Time-out

Allows you to limit the amount of time QUICK maintains blocking relational transactions while
users try to determine the cause of a database error. This is useful in multi-user environments
where one user's blocking transactions prevent other users from accessing the database. The
Rollback Time-out is used when QUICK enters a Rollback Pending state. A value of 0 means there
is no time-out.

The Rollback Time-out value is used twice. The initial time-out is used when the original database
error is displayed. Typically, the error is displayed and prompts the user for authorization to
proceed. If the time-out period expires, QUICK proceeds as if the user had responded, leaving the
screen in a state to correct the error. If the time-out period expires, QUICK immediately rolls back
any transactions and returns the user to the Action field of the first screen that started any of the
rolled-back transactions.

The Rollback Time-out value must be less than the Terminal Time-out value so that the rollback is
done before the terminal times out. If you attempt to enter a Rollback Time-out value that is
greater than the Terminal Time-out value, QKGO issues the following message:
Rollback time-out should be less than terminal time-out.

Screen levels

Establishes the number of entries in a table that store information about active screens. The
maximum number of screens that can be active concurrently is the largest number of levels in the
screen hierarchy (that is, the longest leg). If the value is too low, QUICK issues an error message.
Using too high a value wastes memory. This parameter also controls the maximum number of
screen levels passed into memory for that user.

266 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

Screen table

Establishes the number of entries in a table used to store information about screens that are
loaded, but that may no longer be active. When QUICK loads a screen, it copies the screen tables
into memory (if space is available). Reloading from memory is much faster than reloading from
the screen file on disk. The screen table allows QUICK to track whether a screen is available in
memory. The minimum value is the maximum number of active screens (that is, screen levels).

Secondary Blocks (OpenVMS)

Determines the number of secondary blocks that are tracked. The Secondary Blocks parameter
establishes the number of entries in a table used to store location information about blocks of
rollback information and screen information. These secondary blocks may reside in virtual
memory or in temporary files if the maximum paged memory allotment is exceeded. You may
have to increase the value of this parameter if large amounts of rollback information must be
stored or if there are many individual screens in the application. A secondary block must be added
for each screen in the application, plus enough space to ensure that an update of any expected size
can be copied into rollback buffer secondary blocks. If QUICK can’t store rollback information, it
issues an error message stating that page space is insufficient and abandons any update in
progress, rolling back while complete information is still available.

Selection Size (OpenVMS)

Determines the size of a work area called the selection buffer. Unlike the other tables and work
areas, there is a selection buffer in each screen. The selection buffer is used in Find mode and
Select mode to store values accepted by the REQUEST verb for use during subsequent record
retrieval.

The selection buffer must be slightly larger than the total length of the values that are to be stored,
including selection values entered in Select mode. The size must be determined carefully, since
every screen in the application system has its own area and uses up memory. Rarely do users need
to select records based on more than one or two fields, so adding the lengths of the longest key
field and the two other longest fields on the screen gives a reasonable value for that screen. By
doing this calculation for all the screens in your application and taking the largest value (plus a
few words), most requirements are met while using up as little memory as possible. If the value is
too low, QUICK issues a warning message and ignores the selection value.

Terminal buffer

Establishes the size of the buffer used when input is read from the terminal and output is displayed
on the terminal. The size of the buffer shouldn't be reduced below 512 bytes (the default) since
performance may suffer. If memory is available, screen display performance may be improved by
raising the terminal buffer value to the maximum. If you want to enter long text fields, this value
must be as long as the longest text field.

OpenVMS: The terminal buffer must be at least 128 bytes less than the value of the system
parameter MAXBUF. Furthermore, the terminal buffer should not exceed the process buffer
quotas (BYTLM).

External Subroutines

Common area size

Establishes the size of an area in primary memory that's used by external subroutines. The address
of the area is passed to an external subroutine if the PASSING option of the DO EXTERNAL verb
is used. Results are unpredictable if the subroutine declares and uses an area larger than defined
by this parameter. For more information about the DO EXTERNAL verb, see (p. 390) (MPE/iX),
(p. 398) (OpenVMS), (p. 406) (UNIX), or (p. 412)(Windows).

Do Ext Save/Restore

Terminal settings are associated with your hardware, and exist outside of PowerHouse. Examples
of terminal settings are WIDTH and WRAP|NOWRAP.

Chapter 6: Customizing QUICK with QKGO
The Execution-Time Parameter Values Screen

QDESIGN Reference 267

In this discussion, default settings refer to the terminal settings present before QUICK started,
whereas QUICK settings refer to the terminal settings present in QUICK.

For operations that require terminal I/O, this parameter controls whether the terminal is initialized
to the default settings for the duration of the external subroutine or subprocess, and then reset to
the QUICK settings once the external subroutine or subprocess is complete. While some
operations require this setting/resetting to maintain proper screen display characteristics,
substantial time savings can be gained by overriding this setting/resetting when it is not required.

Do Ext Save/Restore defaults to N (No), which means that the terminal setting/resetting does not
take place. This is because DO EXTERNAL subroutines normally don't require terminal I/O.

Run Cmd Save/Restore

For operations that require terminal I/O, this parameter controls whether the terminal is initialized
to the default settings for the duration of the command or subprocess, and then reset to the
QUICK settings once the command or subprocess is complete. While some operations require this
setting/resetting to maintain proper screen display characteristics, substantial time savings can be
gained by overriding this setting/resetting when it is not required.

Run Cmd Save/Restore defaults to Y (Yes), which means that the terminal setting/resetting does
take place. This is because COMMANDs and RUN COMMANDs frequently require terminal
I/O. However, if in your application they don't require terminal I/O, set this parameter to N (No)
to avoid the extra overhead.

268 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Action Field Commands Screen

The Action Field Commands Screen
The Action Field Commands screen is used to rename QUICK Action field commands. To access
the screen, enter option 04 "Action Field Commands" on the QKGO Construction and
Maintenance Screen.

Action field commands can only be replaced with displayable characters. To map commands to
terminal keys, use the screens accessed from the Terminal Interface Configuration Screen.

To change a value, select the field ID number and enter the new value. To change a value back to
the default, enter <DEF> in the field.

For more information about Action field commands, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

The following characters may also be mapped in this screen:

10 Field mark character

A character indicating that the parameter for the command is the currently marked field.

12 Id char

On multi-record screens, a single record can be deleted by entering D followed by the Id character
(-) and the Id number of the first field of the record in the Action field. To change the character
that QUICK recognizes as the Id character, enter a new character followed by a space.

13 Id range

Use the Id range character (default /) to indicate a range of fields that are to be accessed
sequentially. To change the character that QUICK recognizes as the Id range, enter a new
character followed by a space.

23 Set soft keys

Set soft key labels on the screen. If you want to change the character sequence that QUICK
currently recognizes (such as to the previous data command, \) enter the character (\) followed by
a trailing space. A maximum of four characters can be used. Soft key labels are only applicable to
terminal types that support them (for example, HP terminals).

Chapter 6: Customizing QUICK with QKGO
The Action and Data Field Commands Screen

QDESIGN Reference 269

The Action and Data Field Commands Screen
The Action and Data Field Commands screen is used to rename commands common to both the
action and data fields. To access the screen, enter option 05 "Action and Data Field Commands"
on the QKGO Construction and Maintenance Screen.

The Extended help and Help commands and the separator character can only be replaced with
displayable characters. To map commands to terminal keys, use the screens accessed from the
Terminal Interface Configuration Screen.

To change a value, select the field ID number and enter the new value. To change a value back to
the default, enter <DEF> in the field.

For more information about QUICK screen commands, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

The separator character may also be mapped in this screen:

03 Separator character

The separator character is used for separating several action or data field entries for rapid fire
input. To change the character that QUICK recognizes, enter a new character followed by a space.

270 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Data Field Commands Screen

The Data Field Commands Screen
Use the Data Field Commands screen to rename data field commands, and to modify the generic
retrieval character and the pattern match character.

To access the screen, enter option 06 "Data Fields Commands" on the QKGO Construction and
Maintenance Screen.

To map commands to terminal keys, use the screens accessed from the Terminal Interface
Configuration Screen. For more information about QUICK screen commands, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

To change a value, select the field ID number and enter the new value. To change a value back to
the default, enter <DEF> in the field.

The following characters may also be mapped in this screen:

04 Generic search character

Use the character or characters preceding the Generic character in a data field as a partial value
for selection. To change the character that QUICK recognizes as the Generic search character,
enter a new character followed by a space. The QKGO generic search character overrides any
generic retrieval character defined in the dictionary.

05 Pattern match character

Screen users can use pattern matching in Select mode on QUICK Screens to retrieve records. There
are two formats depending on whether upper or lower case distinctions matter.

If upper and lower case distinctions do not matter, the screen user enters a pattern match
character, by default, a percent sign (%) followed by the pattern string. To have upper and lower
case characters selected exactly as specified in the pattern, enter two pattern match characters
followed by the pattern string.

To avoid confusion in the rare instance when using the first format for a pattern string that itself
begins with the % character, enter %!% followed by the rest of the pattern string.

To change the character that QUICK recognizes as the Pattern match character, enter a new
character followed by a space.

08 Value selection list

Pop up a value selection list.

10 Enter Null Value

Sets the character which allows a null value to be entered.

11 Reverse toggle character (OpenVMS)

Changes the position of the cursor to the other end of the field and inverts the order of the
characters that make up the string. Data entry is from right to left rather than the normal left to
right.

Chapter 6: Customizing QUICK with QKGO
The Dynamic Function Keys Screens

QDESIGN Reference 271

The Dynamic Function Keys Screens
You can use the Dynamic Function Keys set of screens to:
• change dynamic function key parameters
• define dynamic function keys

To access the main DFK screen, enter Option 07 "Dynamic Function Keys" in the Action field of
the Construction and Maintenance screen.

In your application, you may want to associate a set of commands with a single key or key
combination. This can be achieved by using dynamic function keys. Dynamic function keys
(DFKs) can be programmed in the following ways:
• using the KEY statement in QDESIGN
• using a set of screens in QKGO

When you define a DFK in QKGO, it is an application-wide default definition. A DFK defined in
QDESIGN is associated with a screen. For more information about programming DFKs in
QDESIGN, see (p. 156).

To change the value of a parameter in this screen, type its ID number.

Function Key Support Mode (MPE/iX, UNIX, Windows)

Specifies the type of function key support in QUICK. The available options are Disabled, Fixed
Standard, and Dynamic.

If you choose Disabled, then function keys and labels are disabled, upon initialization, for the
duration of the QUICK session.

If you choose Fixed Standard, then QUICK ignores your key definitions and uses the terminal's
standard function key operation sets. If active, labels are displayed only when a user enters the KL
command in QUICK. If the terminal has "loaded" function keys (function keys that are loaded
with a character sequence using the terminal's firmware or some other method), then QUICK
processes the character sequence as though it were entered by the keyboard.

If you choose Dynamic, then QUICK uses dynamic function key definitions assigned by
QDESIGN KEY statements and QKGO. If active, QUICK labels are cleared during initialization
and then they display the labels you define for each context and shift level.

Default: Fixed Standard

Function Keys

Specifies the maximum number of DFKs available for definition. Increasing the number of DFKs
slightly increases QUICK's execution-time memory requirements.

Minimum: 1

Maximum: 32

Default: 8

Shift Levels

Specifies the maximum number of DFK shift levels that can be used. Increasing the number of
shift levels slightly increases QUICK's execution-time memory requirements. For more
information about shift levels, see (p. 156).

Minimum: 1

OpenVMS: When you define a DFK in either QDESIGN or QKGO, there is a default
mapping of DFK1 to GOLD1, DFK2 to GOLD2, and so on.

MPE/iX, UNIX,
Windows:

Values that are different from the default are displayed in halftone typeface.

OpenVMS: Values that are different from the default are displayed in bold typeface.

272 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Dynamic Function Keys Screens

Maximum: 8

Default: 2

Labels Active (MPE/iX, UNIX, Windows)

Specifies whether or not QUICK displays function key labels on the terminal screen (for terminals
that support function keys labels). If you specify No, you can reduce the amount of memory that
QUICK uses, and the time QUICK takes to display a screen and change shift levels.

Default: Y

Bank Labels (MPE/iX, UNIX, Windows)

Specifies whether QUICK uses banked or unbanked labels to identify DFKs. If you specify
unbanked labels, label strings may occupy both the top and bottom lines of the function key label,
depending upon their length.

In order to provide label information that is context-specific in Field mode, QUICK must
redisplay unbanked labels when the context changes. If QUICK uses banked labels, then each
function key label simultaneously displays a pair of label strings, one on each line. The label string
on the top line refers to the Action field context; the string on the bottom line refers to the Data
field context.

Default: N

Lock Function Keys

Specifies whether or not QUICK disables terminal keys that allow the user to switch the mode of
function keys from QUICK functions to local functions. Lock Function Keys are only applicable
on terminal types that support them (for example, HP terminals).

Default: N

Save Function Keys (MPE/iX)

Specifies whether previously defined terminal function key definitions are kept. When N (No) is
specified, previous function key definitions that are overridden by QUICK are lost upon exiting
the product. Specifying Y (Yes) saves the definitions before running QUICK and restores them
when exiting the product.

Default: N

Cancel All Block Transfer (MPE/iX)

Specifies whether BLOCKTRANSFER is disabled in Block Mode for DFK’s. If you specify Y (yes),
no BLOCKTRANSFERS are processed when you press the function keys. If your application runs
over a network with data transmission costs, this option can reduce the characters transmitted.
However, your operator will have to enter more keystrokes.

Default: N

Action Field Commands

EDIT Calls the Edit DFK Definitions screen, which allows you to define or modify
application-wide DFK definitions.

Chapter 6: Customizing QUICK with QKGO
The Edit DFK Definitions Screen

QDESIGN Reference 273

The Edit DFK Definitions Screen
Use the Edit DFK Definitions screen to make application-wide dynamic function key definitions.
To access the screen, enter EDIT in the Action field on the Dynamic Function Keys screen.

A key defined in QKGO establishes the default function key for the application. Assigning DFK
definitions using QKGO is similar to using the QDESIGN KEY statement. For more information,
see (p. 156).

Actual definitions are entered via the DFK Definition Entry subscreen. When in Entry mode, you
will automatically be transferred to this screen. You must specify:
• a unique key number
• a shift level (to a maximum of 8)
• a context of "Action", "Data", or "Action and Data"

To access a specific definition, type DEF-nn, where 'nn' is the ID number of the definition you
want.

You must update your definition changes from this screen before you return to the main screen.

Key

Specifies the function key number to which the definition will apply. You map these logical
function keys to physical (terminal) function keys by using the Terminal Interface Configuration
screen.

OpenVMS: By default DFK1 is mapped to GOLD1, DFK2 to GOLD2, and so on.

Minimum: 1

Maximum: 32

Default: 1

Level

Specifies the shift level at which the definition will apply. DFKs can be defined to change the key
shift level, allowing you to define more functions per key.

Minimum: 1

Maximum: 8

Default: 1

Context

Specifies in what context the DFK definition is operative. Choose either Action, Data, or Action
and Data context.

Default: Action

Block mode Transfer (MPE/iX)

In Block mode, QUICK may do one of the following when a function key is hit:

(Y) Transfer screen data to internal buffers prior to performing actions.

(N) No data transfer. Perform the specified action without examining the screen.

Default: Y

Screen Label (MPE/iX, UNIX, Windows)

Specifies whether QUICK displays or does not display the label string regardless of the context.
Specifying Y is useful with unbanked labels.

Default: N (the label is context-sensitive)

274 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Edit DFK Definitions Screen

Label Hilites (MPE/iX, UNIX, Windows)

A group of four case-sensitive fields used to specify label highlighting on terminals that support
highlighting. Each of the four letters represents a highlighting option: blinking (B), half intensity
(H), inverse video (I), and underlining (U).

Options are active when entered in uppercase, and inactive when entered in lowercase. To activate
an option, change the appropriate letter to the equivalent in uppercase. Lowercase deactivates the
option. Any combination of case is valid in these options.

Default: bHIu (not blinking, half intensity, inverse video, no underlining)

Windows: Blinking and underlining can be set but are not supported in the Console.

Label (MPE/iX, UNIX, Windows)

Specifies that the label string to be displayed for the DFK on terminals that support function key
labels.

Maximum: 16 characters for banked; 8 characters for unbanked.

Action Field Commands

DEF Enter DEF-nn in the Action field (nn is the ID-number of a definition) to call the
DFK Definition Entry screen. This screen is used to enter or edit the actions
associated with the defined DFK.

Chapter 6: Customizing QUICK with QKGO
The DFK Definition Entry Screen

QDESIGN Reference 275

The DFK Definition Entry Screen
Use this screen to enter the action for each dynamic function key defined on the Edit DFK
Definitions screen.

To access this screen, enter DEF in the Action field on the Edit DFK Definitions screen. The screen
allows you to edit function key definitions. Definitions appear in a form similar to a standard
QDESIGN command list, that is, a list of commands separated by commas. A pair of square
brackets ([]), called the cursor box, allows you to edit or append to the command list. An ellipsis
(...) before or after the command list means that only part of the definition is displayed.

The cursor box is different from the real cursor. Use the cursor box to define your editing position.
Then use the real cursor to enter data in another area, such as the Action field.

You can move the cursor box backward through a command list using the Previous (PREV)
Action field command, and forward using the Next (NEXT) Action field command.

Defining the Dynamic Function Key's Action

To define the DFK's action, enter one or more command option codes in the Action field. The
command options appear in the command list on the second line. Most of the command option
codes look like QUICK screen commands with an apostrophe at the end. For more information,
see the table on the next page.

Entering a Command Option at the end of a List

To enter a command option at the end of a list, position the empty cursor box at the end of the
line and enter a command option code in the Action field. The command option appears in the
position held by the cursor box and the box shifts one position to the right.

Inserting a Command Option into a List

To insert a command option into a list, position the cursor box over the command option that you
want the new command option to precede, and then enter the new command option code in the
Action field.

Deleting a Command Option

To delete a command option, position the cursor box over the command option to be deleted, and
enter the Delete (DEL) Action field command. The command option disappears and the cursor
box shifts one position to the right. To change a command option, delete the old one and then
enter the new command option code.

When more command options have been entered than can fit in the window, an ellipsis appears
before or after the list, which indicates that other command options precede or follow.

After entering or editing information on the Edit DFK Definitions Screen or on the DFK
Definitions Entry Screen, enter an update command in the Action field of the Edit screen.

Command Command Option Code Action/Data field Equivalent

ACTIONBAR BAR' BAR in Action field

ACTIONFIELD FLD'

APPEND A' A in Action field

BACKOUT BO' ^ in Data field

BACKUP BU' \ in Data field

DELETE D' D in Action field

DUPLICATE DUP' _ in Data field

ENTRY MODE E' E in Action field

276 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The DFK Definition Entry Screen

EXTENDED HELP EH' ?? command

FIELDMARK MRK' MARK in Action field

FIND MODE F' F in Action field

FIRST RECORD FR' FR in Action field

GOLD_F (OpenVMS)

HELP H' ? command

INFORMATION I' I command

LAST RECORD LR' LR in Action field

GOLD_L (OpenVMS)

LIST L' L command

LIST ALL LA' L@ command

MODIFY M' M in Action field

NEXT N' N in Action field

NEXT DATA ND' <cr> in Action field

NEXT FIELD NF' <cr> in Data field

NEXT RECORD NR' NR in Action Field

GOLD_CURSOR_DOWN (OpenVMS)

NULL NUL' key does nothing

PAGE DOWN PD' PD-n in Action field

GOLD_J in Action field (OpenVMS)

PAGE UP PU' PU-n in Action field

GOLD_K in Action field (OpenVMS)

POPUP FIELD POP' + in a Data field

PREVIOUS DATA PD' \ in Action field

PREVIOUS RECORD PR' PR in Action field

GOLD_CURSOR_UP (OpenVMS)

REFRESH RF' <ctrl G>

REFRESH ALL RFA' <ctrl W>

<ctrl G><ctrl G> (OpenVMS)

RESTORE KEYS K' K in Action field

RESTORE LABELS KL' KL in Action field

RETURN R' ^ in Action field

RETURN TO STOP RS' ^^ in Action field

Command Command Option Code Action/Data field Equivalent

Chapter 6: Customizing QUICK with QKGO
The DFK Definition Entry Screen

QDESIGN Reference 277

SCROLL DOWN SD' SD-n in Action field

GOLD_D in Action field (OpenVMS)

SCROLL UP SU' SU-n in Action field

GOLD_U in Action field (OpenVMS)

SELECT MODE S' S in Action field

SELECTBOX SBX' # in a Data field

SEPARATOR SPR' SEP char in Action field

SHIFT SH'

SHIFT TO SHT'

SKIP ALL SA' // in Data field

SKIP CLUSTER SC' / in Data field

SKIP TO ST' /n in Data field

TOGGLE THREAD T' T command

UPDATE U' U in Action field

UPDATE NEXT UN' UN in Action field

UPDATE RETURN UR' UR in Action field

UPDATE STAY US' US in Action field

Command Command Option Code Action/Data field Equivalent

278 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Terminal Interface Configuration Screen

The Terminal Interface Configuration Screen
Use the Terminal Interface Configuration (TIC) Screen to configure the keyboard of various
terminal types for specific applications. To access the screen, enter option 08, "Terminal Interface
Configuration (TIC)" in the Enter command field of the Construction and Maintenance Screen.

From this screen, QUICK commands, designer procedures, and logical function keys can be
mapped to terminal function keys, keypad keys, key combinations, and control characters.

The TIC System of Screens
For a selected terminal type, you can map QUICK commands and screen user commands using
context binding subscreens. These subscreens are activated by entering the preceding two-letter
context name. The KEYS command calls the TIC Keysequence Definition Screen so that you
change logical key names. This lookup screen displays all the defined logical key names for a
selected terminal.

Before you can modify any of the context binding screens, you must select a terminal group type
from the Terminal Group section.

Modifying an Existing Terminal Interface Configuration
In most cases, you only need to modify one of the pre-loaded TICs. To modify an existing TIC,
choose Find mode and enter the terminal type that you wish to configure.

When you modify the TIC for a specific terminal type, you modify all terminal types that are
linked to that terminal interface configuration.

If you created a new QKGO file-set on the main screen (QKGO Construction and Maintenance
Screen), there will be a default set of terminal interface configuration groups for VT100 and
VT200 series keyboards (VT300 and VT400 series keyboards are grouped under VT200 series
keyboards).

Chapter 6: Customizing QUICK with QKGO
The Terminal Interface Configuration Screen

QDESIGN Reference 279

Creating your own Terminal Interface Configuration Group
To create a new TIC, choose Entry mode and enter the terminal type that you wish to configure.

QKGO will prompt you for an existing QKGO file-set in the "Copy from QKGO file" field to
copy the terminal definition from. When a QKGO file-set is created from an existing QKGO
file-set, the default terminal interface configuration is added to the QKGO file-set being created.
This configuration can then be modified.

You can use Append mode to add terminal types to the displayed group.

The Command Binding Screens
The command binding screens are used to associate QUICK commands and screen operator
commands with the keys of a keyboard. To call a command binding screen, enter one of the
following commands in the Terminal Interface Configuration screen:

For example, if you select a VT200 terminal and enter
AF

then QUICK displays the Action Field Commands screen.

Each command binding screen is used to associate keyboard keys with QUICK commands. For
each QUICK command, you can specify as many bindings as you like, but you cannot bind one
key to more than one action. You can't add any new QUICK commands, but you can add
DESIGNER procedure commands that you defined on the Custom Commands Mapping
subscreen of the Action Field commands and the Action and Data Field Commands context
binding screens.

To specify additional bindings, use either Append or Entry mode. You can either type in the field,
or you can enter '=' or '*' in the field and choose the appropriate commands or key names from
the pop-up screen.

MPE/iX, UNIX, Windows
In the command binding screens, key mnemonic codes take the form
• keyname (SHIFT_TAB)
• CNTL-X for control keys
• F1 through F8 for function keys
• F1_keyname for multi-key sequences

Command Context Binding Screen

AB Action Bar Commands

AD Action and Data Commands

AF Action Field Commands

DF Data Field Commands

FM Field Marking Commands

LE Line Edit Commands

ML Menu/List Commands

PC Popup Commands

SC System Commands

TE Text Edit Commands

280 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Terminal Interface Configuration Screen

OpenVMS
In the command binding screens, key mnemonic codes take the form:
• KEY_PAD_x for key pad keys
• CNTL-X for control keys
• GOLD, PF2-PF4, F5-F20 for function keys
• GOLD_keyname for multi-key sequences

To delete a specific key mapping, enter a space in the field.

OpenVMS:
The following tables list the key sequences that cannot be defined in the TIC screen:

Command Bindings and Function Key Modes (MPE/iX, UNIX, Windows)

The function key mode is indicated in the top-left corner of the command binding screens.
Function keys F1 through F8 are unavailable in Fixed Standard function key mode; however, F1
may be used as the first key in a key sequence such as F1_M. Key sequences that start with F1 are
unavailable in Dynamic function key mode.

You can bind a command to a key that is unavailable in the current function key mode, but the
binding is inactive. A warning message is issued, and the key mnemonic code is displayed in
halftone typeface. The command binding becomes active only when you choose a function key
mode in which the key is available.

Control Sequence Reason

control_C user break

control_M use the logical key [RETURN] for control_M

control_Q reserved for use by the operating system

control_S reserved for use by the operating system

control_T reserved for use by the operating system

control_X reserved for use by the operating system

control_Y reserved for use by the operating system

VT Series Function
Keys Reason

F1 reserved for use by the operating system

F2 reserved for use by the operating system

F3 reserved for use by the operating system

F4 reserved for use by the operating system

F5 reserved for use by the operating system

F15 use the logical key [HELP] for F15

F16 use the logical key [DO] for F16

Chapter 6: Customizing QUICK with QKGO
The Terminal Interface Configuration Screen

QDESIGN Reference 281

Action Field Commands

The Color Display Attributes Screen (OpenVMS)
You use the Color Display Attributes screen to change the color characteristics for a given
terminal interface configuration.

This screen is accessed by selecting CD on the Terminal Interface Configuration screen.

Mnemonics for colors are entered in the appropriate fields.

You can see a list of currently supported colors for each field by entering an equal sign (=) in the
mnemonic field. The AS_IS option tells QUICK not to change the terminal attributes.

The Custom Commands Binding Screen
The Custom Commands Binding screen is used to map QUICK commands to logical keys where
the QUICK commands can take parameters.

This screen can be accessed by entering CUST in the Action field in either the Action Field
Commands or the Action and Data Field Commands Context binding screen.

For example, you can map physical keyboard keys to commands such as D-1 (delete the first field)
or ?-mark (display the help for the currently marked field).

01 Command

From the selectbox, select one of the following QUICK commands:

KEYS New keys can be specified by entering KEYS in the TIC screen. The TIC
Keysequence Definition Screen, which is used to maintain the logical key
names and their escape sequences is displayed.

LIST This command produces a listing of the complete set of key bindings for a
TIC. The report will be stored in the file called QKGOTIC (MPE/iX) or
qkgotic.txt (OpenVMS, UNIX, Windows).

RESO (UNIX,
Windows)

Calls a procedure that creates a flat TIC resource file for a specified terminal
type. The TIC resource file contains similar information to the three indexed
files of a QKGO file-set (filenameb.idx, filenamek.idx, and filenamet.idx).
Whenever you make modifications to an existing QKGO file-set, you must
recreate the corresponding TIC resource file so that it contains the latest
information.

TIC resource files are useful when a QKGO file-set resides on another host
and the indexed files cannot be accessed by the C-ISAM library system. In this
instance, you can redirect QUICK to get the information from the TIC
resource file by setting the AXTICRS environment variable to reference it, as
in
setenv AXTICRS \ $PH_QKGO_LOCATION/resource/my_tics

TIC resource files may also improve performance because they're faster to
read than indexed files.

Delete Designer Dynamic Function Key

Extended Help Field Page Down Field Page Up

Field Scroll Down Field Scroll Left Field Scroll Right

Field Scroll Up Help Id

282 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
The Terminal Interface Configuration Screen

02 Logical Key Name

After you specify the command you wish to change, you must also specify the logical key name
that will map to the physical key dependent on the terminal, console, or terminal emulator. An
"=" sign will display the valid key names.

Custom Command Binding Options
Depending on the command that you choose in Field 01, you are prompted for one or more
options.

03 Designer Procedure

Enter the name of the DESIGNER procedure to be mapped to the keyboard key. If you select this
option from the Enter command field, note that you can also change the parameter type.

04 Dynamic Function Key

Enter the number of the Dynamic Function Key.

Minimum: 1

Maximum: 32

05 Parameter type

From the selectbox, choose one of the following parameter types:

06 Id Values

Enter the ID of the field to use as a parameter for the command. If you choose the parameter type
ID in the previous option, QKGO prompts you to enter a single ID value. If you choose ID Range,
QKGO prompts you to enter a range of ID values.

Minimum: 1

Maximum: 999

Mark or Prompt doesn’t require an ID parameter. Mark tells QUICK to supply the currently
marked field as a parameter to the command. Prompt tells QUICK to prompt the user for the field
parameter.

ID ID Range Mark

None Prompt

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

QDESIGN Reference 283

Modifying TIC Files

Introduction
The TIC mappings are saved to separate TIC files, one per terminal type. We recommend that you
use the QKGO TIC screen to generate and maintain the TIC files. As they are text files, however,
they can also be edited.

A different TIC file is required for each terminal type because the key codes are different. A
default TIC file is provided in the qkgo\resource installation directory. This TIC file contains the
key codes for all the keys and key combinations that can be mapped as well as a set of default key
mappings that correspond to the PCANSI terminal type as defined for PowerHouse on UNIX. It
can be modified as required to satisfy application requirements.

To use a TIC file, use either the PHTICRS or AXTICRS environment variable to point to the TIC
file. It is recommended that you make a copy of the default TIC file before modifying it.

The Format of a TIC File
A TIC file consists of two sections. The Key Section appears first and defines the key mnemonics
and relates keyboard key codes to those mnemonics. The Key Section defines only those keys or
key combinations that are available to be mapped to QUICK commands, so the letters, numbers,
and special characters are not described. The Binding Section maps key mnemonics to QUICK
commands. It also specifies the context and the QKGO function key setting in which the key or
key combination can be used.

Within the TIC file, a semicolon can be used to add comments. Anything after the semicolon on
that line is ignored. Blank lines are ignored.

The Key Section

The format of each line in the Key Section is as follows:
• The word "key", not in quotes, followed by one or more spaces.
• A period (.) followed by one or more spaces.
• The key mnemonic, for example "F1", not in quotes, followed by one or more spaces.
• A colon (:) followed by one or more spaces.
• The octal keyboard code in quotes, for example "\000\073". This is the code that QUICK

receives from the key press.
• A colon (:) followed by one or more spaces.
• One of three words, not in quotes, that relates the key availability to the QKGO function key

setting. The word "always" means that the key is always available regardless of the QKGO
setting. The word "fixed" means that the key is available if the QKGO setting is for fixed
standard. The word "dfk" means that the key is available if the QKGO setting is for dynamic
function key support. It is recommended that the word be left as "always" and that the
Bindings section be used to specify which keys are available in which context.

A sample line from the Key Section looks like this:
key . F1 : "\000\073" : always

This line defines the key "F1" as being always available. The code returned by the key press is
"\000\073".

The default TIC file includes all of the key and key combinations that can be mapped. This section
should not be changed if you modify the TIC file.

Note that keys such as the Enter key (CR), Tab key (TAB), and control-letter key combinations
should be used so as not to conflict with the normal use of those keys.

Windows: On the PC keyboard, the shift-tab key combination does not return a key code and so
cannot be used to reverse tab as is typically done in Windows. Instead, use control-tab.

284 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

The Binding Section

The format of each line in the Binding Section is as follows:
1. One of ten words, not in quotes, that specifies the QUICK context in which the key is valid.

The words are:
• action - for action context,
• data - for data context,
• action_data - for action and data context,
• popup - for popup messages,
• menu - for drop-down menus and select boxes,
• actionbar - for action bars
• line_edit - for single line field editing
• fieldmark - for field mark usage,
• text_edit - for multi-line field editing, and
• system - for commands applicable at any time.
Although not a requirement, it is recommended that the lines in each group be kept together
for ease of modification.

2. A colon followed by one or more spaces.
3. One of three words, not in quotes, that relates the key availability to the QKGO function key

setting. The word "always" means that the key is always available regardless of the QKGO
function key setting. The word "fixed=0" means that the key is available if the QKGO setting
is for fixed standard. The word "dfk" means that the key is available if the QKGO setting is
for dynamic function key support. If "dfk" is specified, it must be immediately followed by an
equals sign and a number, with no intervening spaces, as in "dfk=1". The number must be
between 1 and 32 and relates to the number of dynamic function keys allowed in QKGO and
the number on the KEY statement in QDESIGN.

4. A period followed by one or more spaces.
5. The key mnemonic, not in quotes, as defined in the Key Section, followed by one or more

spaces.
6. An equals sign followed by one or more spaces.
7. The QUICK command number. The available commands are shown in tables in the next

section.

A sample line from the Binding Section looks like this
action : fixed=0 . F7 = 0 ; Entry Mode

This line specifies that pressing the "F7" key in action context will tell QUICK to start Entry
Mode if the function key setting is Fixed Standard.

Another example, that is useful in Panel processing is
data : always . F8 = 2 ; Backout

This line set the "F8" key to the backout command regardless of whether the function key setting
is disabled, fixed standard, or dynamic. It overrides any setting, either in QKGO or by the KEY
statement. However, any label specified would be used.

The default TIC file provided with the PowerHouse for Windows install includes action and data
context key bindings for Fixed Standard and Dynamic QKGO function key settings that become
active when the corresponding setting is made in QKGO.

The bindings for popup, menu, actionbar, line_edit, fieldmark, text_edit, and system are set to be
available always, that is, regardless of the QKGO setting.

If you want bindings for action, data, and action_data available regardless of the QKGO setting,
change the word fixed=0 to always. Note that you won’t be able to use dynamic function keys. If
you want to use function keys, you should change the QKGO setting to use Fixed Standard or
Dynamic as opposed to changing the binding word.

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

QDESIGN Reference 285

To change a binding, locate the fixed=0 line with that command and change the key mnemonic.
Not every QUICK command is represented in the default TIC file. To add a binding or command,
copy a line in the section where you want to add the line and change the key mnemonic and the
QUICK command number. Ensure that keys are not duplicated or results will be unpredictable.

The default TIC file includes bindings for 32 dynamic function keys.The actual number available
will depend on the setting in QKGO and the KEY statements specified in QDESIGN.

QUICK Commands
The following tables show the QUICK command numbers that can be mapped in the Binding
Section. Also shown is the command, keyword and default command mnemonic for action and
data context commands.

Action Context Commands (action)

Command Keyword
Default
Mnemonic

Command
number

Entry Mode ENTRY [MODE] E 0

Find Mode FIND [MODE] F 1

Select Mode SELECT [MODE] S 2

Next Data NEXT DATA <CR> 3

Previous Data PREVIOUS [DATA] \ 4

Return - Prev Screen RETURN ^ 5

Return to Stop RETURN TO STOP ^^ 6

Update UPDATE U 9

Update Stay UPDATE STAY US 10

Update Return UPDATE RETURN UR 11

Delete DELETE D 12

Set Function Keys RESTORE KEYS K 16

Set Key Labels RESTORE LABELS KL 17

Update Next UPDATE NEXT UN 18

Append APPEND A 19

Next NEXT N 20

Return to Start RETURN TO START ^^^ 21

Action Bar ACTIONBAR BAR 22

Action Field ACTIONFIELD ACT 23

Field Mark FIELDMARK MARK 24

Field Page Up PAGEUP PU 25

Field Page Down PAGEDOWN PD 26

286 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

Data Context Commands (data)

Action and Data Context Commands (action_data)

Field Scroll Up SCROLLUP SU 27

Field Scroll Down SCROLLDOWN SD 28

Modify MODIFY M 29

Office Interrupt INTERRUPT IT 31

Designer DESIGNER name 34

Id ID n 35

Previous Data PREVIOUS DATA \ 40

System SYSTEM :/$/!shell 41

Block Mode Toggle 43

Cache - Prev Records PREVIOUS RECORD PR 48

Cache - Next Records NEXT RECORD NR 49

Cache - First Record FIRST RECORD FR 50

Cache - Last Record LAST RECORD LR 51

Command Keyword
Default
Mnemonic

Command
number

Command Keyword
Default
Mnemonic

Command
number

Duplicate DUPLICATE _ 0

Backup Field BACKUP \ 1

Backout BACKOUT ^ 2

Return to Action SKIP ALL // 3

Skip Cluster SKIP CLUSTER / 4

Reverse Input Toggle | 7

Popup Toggle POPUP + 8

Select Box SELECTBOX # 9

Enter Null Value 10

Command Keyword
Default
Mnemonic

Command
number

Help HELP ? -4

Extended Help EXTENDED HELP ?? -5

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

QDESIGN Reference 287

Popup Message Commands (popup)

Menu and Selectbox Commands (menu)

Action Bar Commands (actionbar)

Dynamic Function Key -6

List LIST L 13

List All LIST ALL L@ 14

Information INFORMATION I 15

Toggle Thread TOGGLE THREAD T 30

Refresh Screen REFRESH <Ctrl-G> 163

Refresh All REFRESH ALL <Ctrl-W> 164

Field Help FIELD HELP ? 213

Extended Field Help EXTENDED FIELD
HELP

?? 214

Command Keyword
Default
Mnemonic

Command
number

Command Command Number

Scroll Up 100

Scroll Down 101

Page Up 102

Page Down 103

Cancel 104

Accept 105

Command Command Number

Move Up 120

Move Down 121

Page Up 122

Page Down 123

Cancel 124

Accept 125

Command Command Number

Accept 130

288 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

Line Edit Commands (line_edit)

Field Mark Commands (fieldmark)

Text Edit Commands (text_edit)
)

Cancel 131

Previous Option 132

Next Option 133

Command Command Number

Command Command Number

Input Completion -8

Single Line Recall 42

Insert 110

Delete Word 111

Delete Line 112

Move - End of Line 113

Move - Start of Line 114

Move Left 115

Move Right 116

Delete Char 117

Delete Previous Char 118

Cancel Input 128

Prev Field in Panel 180

Next Field in Panel 181

Command Command Number

Previous Option 145

Next Option 146

Accept 147

Cancel 148

Command Command Number

Input Completion -8

Single Line Recall 42

Chapter 6: Customizing QUICK with QKGO
Modifying TIC Files

QDESIGN Reference 289

System Commands (system)

Insert 110

Delete Word 111

Delete Line 112

Move - End of Line 113

Move - Start of Line 114

Move Left 115

Move Right 116

Delete Char 117

Delete Previous Char 118

Cancel Input 128

End of Paragraph 160

Move Up 161

Move Down 162

Page Up 166

Page Down 167

Delete - End of Line 168

Prev Field in Panel 180

Next Field in Panel 181

Command Command Number

Command Keyword
Default
Mnemonic

Command
number

Refresh Screen REFRESH <Ctrl-G> 163

Refresh All REFRESH ALL <Ctrl-W> 164

Refresh Line REFRESH LINE 165

Exit 999

290 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
QUICK Initialization File

QUICK Initialization File
To specify most QKGO settings, you can alternatively use the QUICK initialization file (QKI). The
QUICK initialization file is a text file which you can create with a text editor. The extension for
the QUICK initialization file must be .qki (OpenVMS, UNIX, Windows). On MPE/iX, the
QUICK initialization file doesn’t have an extension and the file format determines whether the file
is a QUICK initialization file or a QKGO file.

TIC settings are not contained in the QKI file as they are available in the TIC file.

Here is a complete default QKI file:

[General Settings]
FIRST_SCREEN=
DICTIONARY=

[Execution Time Parameter Values]
APPLICATION_LINES=48
BLOCK_MODE_RETRIES=5
COMMON_AREA_SIZE=1
DRIVER=QKDRIVER
ERROR_RECALL=N
EXPRESSION_SIZE=400
EXTERNAL_SUBROUTINES=1
FIELD_TERMINATORS=M
INPUT_MODE=C
LOCK_ATTEMPTS=16
LOCK_RETRY_INTERVAL=2
LOCK_UNCONDITIONAL=N
MAXIMUM_PAGED_MEMORY=2048
HORIZONTAL_LINE=*
HP_TERM_HAS_LDW=N
LOCK_REQUEST_WAIT=30
LOCK_MESSAGE_WAIT=5
ROLLBACK_CLEAR=Y
ROLLBACK_TIMEOUT=0
ROLLBACK_BUFFER=1024
SCREEN_LEVELS=5
SCREEN_SECTION=G
SECONDARY_BLOCKS=32
SELECTION_SIZE=20
SCREEN_TABLE=15
TERMINAL_BUFFER=512
TERMINAL_TIMEOUT=0
UPSHIFT_ACTIONS=Y
MAX_THREAD_COUNT=3
DO_EXTERNAL_SAVE=N
RUN_COMMAND_SAVE=Y
VERTICAL_LINE=*
LINE_INTERSECTION=*
FUNCTION_KEY_MODE=1
FUNCTION_KEYS=8
SHIFT_LEVELS=2
LABELS_ACTIVE=Y
BANK_LABELS=N
LOCK_FUNCTION_KEYS=N

[Action Field Commands]
APPEND=A
ACTION_BAR=BAR
ACTION_FIELD=ACT
BLOCK_MODE=B
CHANGE_SEPARATOR=SEP
CHARACTER_MODE=C
DELETE=D
ENTRY_MODE=E
FIELDMARK=MARK

Chapter 6: Customizing QUICK with QKGO
QUICK Initialization File

QDESIGN Reference 291

FIELDMARK_CHAR==
FIND_MODE=F
ID_CHAR=-
ID_RANGE_CHAR=/
INFORMATION=I
LIST_ALL=L@
LIST=L
MODIFY=M
NEXT_PRIMARY=N
PREVIOUS_DATA=\
SELECT_MODE=S
TOGGLE_THREAD=T
FIRST_RECORD=FR
LAST_RECORD=LR
NEXT_RECORD=NR
PREVIOUS_RECORD=PR
RETURN=^
RETURN_TO_STOP=^^
RETURN_TO_START=^^^
PAGE_UP=PU
PAGE_DOWN=PD
SET_KEYS_AND_LABELS=KL
SET_SOFT_KEYS=K
SCROLL_UP=SU
SCROLL_DOWN=SD
UPDATE=U
UPDATE_NEXT=UN
UPDATE_RETURN=UR
UPDATE_STAY=US

[Action and Data Field Commands]
EXTENDED_HELP=??
HELP=?
SEPARATOR_CHAR=;

[Data Field Commands]
BACKOUT=^
BACKUP=\
DUPLICATE=_
GENERIC_SEARCH_CHAR=@
PATTERN_MATCH_CHAR=%
SKIP_CLUSTER=/
SKIP_ALL=//
VALUE_SELECTION_LIST=#
POPUP=+
ENTER_NULL_VALUE=~
REVERSE_TOGGLE_CHAR=|

For more information about the value settings, see the preceding sections of this chapter.

292 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Customizing QUICK with QKGO
QUICK Initialization File

QDESIGN Reference 293

Chapter 7: QDESIGN Procedures

Overview
This chapter provides a detailed reference of QDESIGN procedures. For each procedure you'll
find
• syntax summaries
• detailed syntax descriptions
• detailed discussion of the procedure
• examples

QDESIGN Procedure Summary
The following table lists QDESIGN procedures and briefly describes what they do.
.

Procedure
Default
Generated? Purpose

APPEND Yes Controls Append processing for PRIMARY and DETAIL
files.

BACKOUT No Performs processing when the user backs out of an entry
sequence or fails to update a change.

DELETE Yes Marks one or more of the current data records on the screen
for deletion.

DESIGNER No Creates a designer-defined Action field command.

DETAIL DELETE Yes Marks for deletion specific data records in a DETAIL file,
and any files that occur with it.

DETAIL FIND Yes Controls data record retrieval for a DETAIL file and any
files that occur with it.

DETAIL
POSTFIND

No Performs processing after successful completion of a
DETAIL FIND procedure.

EDIT No Performs editing on a value entered in a named field.

ENTRY Yes Performs the standard entry sequence for the screen.

EXIT No Performs processing just before returning to a higher-level
screen.

FIND Yes Retrieves data records as indicated by the PATH procedure.

INITIALIZE No Performs processing when the screen is initiated from a
higher-level screen.

INPUT No Performs data conversion for a value entered in the named
field prior to any editing.

294 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures

INTERNAL No Creates an internal subroutine in the QDESIGN procedural
language.

MODIFY Yes Controls QUICK processing in CHANGEMODE or
CORRECTMODE. Panel mode only.

OUTPUT No Performs data conversion for a value in the named field
prior to the display of the value.

PATH Yes Establishes the method of record retrieval for the FIND
procedure.

POSTFIND No Performs processing after successful completion of the
FIND procedure.

POSTPATH No Performs processing following successful completion of the
PATH procedure and just before the FIND procedure.

POSTSCROLL No Performs processing after the occurrence window has
scrolled but before it is re-displayed.

POSTUPDATE No Performs processing after successful completion of the
UPDATE procedure.

PREENTRY No Performs processing at the beginning of the entry sequence.

PRESCROLL No Performs processing before scrolling occurs.

PREUPDATE No Performs processing prior to the UPDATE procedure.

PROCESS No Performs processing after a new or changed value is entered
in the named field.

SELECT Yes Controls SELECTMODE processing.

UPDATE Yes Controls update processing.

Procedure
Default
Generated? Purpose

Chapter 7: QDESIGN Procedures
APPEND

QDESIGN Reference 295

APPEND
Controls Append processing for PRIMARY and DETAIL files.

Syntax
PROCEDURE APPEND

Discussion
QDESIGN generates the APPEND procedure
• for a PRIMARY file with multiple occurrences (provided that the NOAPPEND option isn't

specified on the FILE statement)
• for a DETAIL file

QDESIGN doesn't create an APPEND procedure if you write an ENTRY or APPEND procedure
in the screen design. A designer-written ENTRY procedure must include the PERFORM APPEND
verb to provide Append processing. If you don't want Append capabilities for the PRIMARY file
of a screen, add the NOAPPEND option to the FILE statement.

Note: For information about verb and procedure compatibility, see (p. 239).

Implication of Modifying the APPEND Procedure

If you modify the default procedures that QDESIGN generates, the APPEND procedure must be
located before the ENTRY procedure that contains the PERFORM APPEND verb.

Use caution when modifying the APPEND procedure because it's used by QUICK for Append
processing in both Entry mode and Find mode.

When the APPEND Procedure is Initiated

The APPEND procedure is initiated when
• the PERFORM APPEND verb is encountered in the ENTRY procedure
• the PERFORM APPEND verb is encountered in a FOR MISSING loop in the MODIFY

procedure
• the screen is in Entry or Find mode and the QUICK screen user enters an Append command
• data retrieved from a PRIMARY or DETAIL file is changed and updated by an Update

command

When data entered on the screen using Append processing is sent to the file, the APPEND
procedure continues to execute so that the QUICK screen user can make further entries. The data
is sent to the file
• when the QUICK screen user enters any of the update commands
• as soon as the screen is full, when the AUTOUPDATE option is specified for the screen

Error Handling in the APPEND Procedure

If an error occurs during the execution of an APPEND procedure, QUICK performs the following
steps:
1. QUICK first tries to back up to the last ACCEPT or PROMPT verb or to the last BLOCK

TRANSFER control structure within the APPEND procedure
2. QUICK backs up to the last ACCEPT or PROMPT verb, or to the last BLOCK TRANSFER

control structure in the ENTRY procedure if
• there is no ACCEPT or PROMPT verb, or BLOCK TRANSFER in the APPEND

procedure, and
• the APPEND procedure is executing in response to a PERFORM APPEND verb in the

ENTRY procedure
3. QUICK prompts at the Action field (without having updated)

296 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
APPEND

• if there is no ACCEPT or PROMPT verb, or BLOCK TRANSFER in the ENTRY
procedure

• if the APPEND procedure is executing in response to an Append or Update command
• in response to a specified AUTOUPDATE option
During the execution of the APPEND procedure, the ENTRYMODE predefined condition is
true.

Append Processing and the CLUSTER Statement

In the generated source code for a QUICK screen that has a DETAIL file or a PRIMARY file with
multiple occurrences, there is always a CLUSTER statement preceding the FIELD statements. The
CLUSTER statement is essential; without it, the APPEND and UPDATE procedures don't work
correctly. If you save a generated screen specification, don't delete the CLUSTER statement, even
if the PRIMARY or DETAIL file occurs only once.

Examples
Append processing is available by default on a screen where a PRIMARY record-structure with
multiple occurrences is declared. QDESIGN generates an APPEND procedure and an ENTRY
procedure, as in
> SCREEN BRANCH
> FILE BRANCHES OCCURS 10
> CLUSTER OCCURS WITH BRANCHES
> FIELD BRANCH OF BRANCHES REQUIRED NOCHANGE &
> LOOKUP NOTON BRANCHES
> FIELD BRANCHNAME OF BRANCHES
> CLUSTER
> BUILD LIST

> PROCEDURE APPEND
> BEGIN
> ACCEPT BRANCH OF BRANCHES
> ACCEPT BRANCHNAME OF BRANCHES
> END
> PROCEDURE ENTRY
> BEGIN
> FOR BRANCHES
> BEGIN
> PERFORM APPEND
> END
> END

DETAIL Files and the APPEND Procedure

The QUICK screen user can enter one data record for EMPLOYEES and as many SKILLS data
records as necessary on the screen described by the following QDESIGN statements.

This screen creates a one-to-many relationship between EMPLOYEES and SKILLS:
> SCREEN EMPLOYS
> FILE EMPLOYEES
> FILE SKILLS DETAIL OCCURS 16
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF
EMPLOYEES.
> FIELD EMPLOYEE OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> ALIGN (1,4,21) (,,45)
> FIELD FIRSTNAME OF EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES
> SKIP 2
> ALIGN (1,4,12)
> CLUSTER OCCURS WITH SKILLS FOR 2,36
> FIELD SKILL OF SKILLS
> CLUSTER
> BUILD LIST
SKILLS accessed via EMPLOYEE.

Chapter 7: QDESIGN Procedures
APPEND

QDESIGN Reference 297

Entering Data with Append Processing

If the QUICK screen user enters a Skip All command when the screen is not full, PowerHouse
assumes that the user has entered as much data as desired. In such cases, after updating, QUICK
clears both the PRIMARY file records and all DETAIL file records. QUICK then prompts for the
next PRIMARY file record. Entering an Update Stay command doesn't clear the screen of data.

If a full screen is updated, QUICK assumes that the user still has more DETAIL records to enter
for the current PRIMARY record. As a result, the PRIMARY data record remains on the screen,
the DETAIL records are updated and cleared, and the user is prompted in the first DETAIL
occurrence for new entries. If an update is triggered because an AUTOUPDATE option was
included on the SCREEN statement, the AUTOUPDATE option performs in the same manner as
an update action.

If an Update Next command is entered, then an update is done, all fields are cleared, and the user
is first prompted for a new PRIMARY record, and then for DETAIL entries. QDESIGN generates
two procedures to control the entry sequence in the previous screen design as follows:
> PROCEDURE APPEND
> BEGIN
> ACCEPT SKILL OF SKILLS
> END
>
> PROCEDURE ENTRY
> BEGIN
> ACCEPT EMPLOYEE OF EMPLOYEES
> ACCEPT FIRSTNAME OF EMPLOYEES
> ACCEPT LASTNAME OF EMPLOYEES
> FOR SKILLS
> BEGIN
> PERFORM APPEND
> END
> END

The entry sequence for the DETAIL file is ended with a Skip All command. The entry sequence for
the DETAIL file is restarted with an Append command.

298 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
BACKOUT

BACKOUT
Performs processing when the user backs out of an entry sequence or fails to update a change.

Syntax
PROCEDURE BACKOUT

Discussion

When the BACKOUT Procedure is Invoked

The BACKOUT procedure is invoked if the user (while entering, correcting, or changing data)
enters a Backout command when the cursor is positioned in a field, or if the user leaves a screen
without updating. When the user enters a Backout command during Entry, Correct, or Change
mode, QUICK warns that the data will be lost. The user is asked to confirm that this is acceptable.
If the user confirms the action, the cursor returns to the Action field or, in Correct mode, begins
the next Entry sequence. The confirmer program parameter changes QUICK's default action in
this case. For more information about the confirmer program parameter, see Chapter 2, "Program
Parameters", in the PowerHouse Rules book.

When leaving a slave screen, the BACKOUT procedure is only invoked when data local to the
screen is changed and not updated. If data in a received MASTER file is changed, the BACKOUT
procedure is not invoked because the slave screen is considered an extension of the calling screen
and the file originated there. However if a locally declared DESIGNER file is changed and not
updated, the BACKOUT procedure will execute upon leaving the screen.

Within the BACKOUT procedure, you can undo the update that might have been performed by
other designer-specified procedures part way through Entry, Correction, or Change phases.

Note: For information about verb and procedure compatibility, see (p. 239).

When to Use a BACKOUT Procedure

The BACKOUT procedure is used to undo PUT verbs (for non-relational records) that were not
performed in the standard UPDATE procedure. If all file updates are centralized in the UPDATE
procedure, QUICK automatically handles the rollback for these files and a BACKOUT procedure
is not necessary.

To avoid the need for the BACKOUT procedure, limit the use of PUT verbs to the UPDATE
procedure or use the RECOVERABLE option on the PREUPDATE, POSTUPDATE, or
INITIALIZE procedures.

If you add the RECOVERABLE option on the PREUPDATE, POSTUPDATE, or INITIALIZE
procedures, any BACKOUT procedures that you have coded to handle rollbacks must be reviewed
to ensure that a "double rollback" is not performed.

During the execution of this procedure, one of the predefined conditions, ENTRYMODE,
CHANGEMODE, or CORRECTMODE, is true.

Error Handling During the BACKOUT Procedure

If an error occurs during the execution of this procedure, unpredictable results may occur.

Example
This example demonstrates the use of the designer-written BACKOUT procedure. The BATCH
screen includes a control file, BATCHNEXT, that is used to track the next available batch number
which is to be assigned to a new BATCHES record. If the screen user fails to update new or
changed data, the BACKOUT procedure is initiated and the current batch number is written to the
BATCHBAD file, along with the time and date.
> SCREEN BATCH
>
> FILE BATCHES PRIMARY

Chapter 7: QDESIGN Procedures
BACKOUT

QDESIGN Reference 299

> FILE BATCHNEXT DESIGNER
> FILE BATCHBAD DESIGNER
>
> FIELD BATCHNO OF BATCHES DISPLAY
> FIELD BATCHCOUNT OF BATCHES
> FIELD BATCHTOTAL OF BATCHES
> FIELD TRANSCOUNT OF BATCHES
> FIELD TRANSTOTAL OF BATCHES
> PROCEDURE ENTRY
> BEGIN
> ACCEPT BATCHCOUNT OF BATCHES
> GET BATCHNEXT USING 1
> LET BATCHNO OF BATCHES = NEXTBATCHNO OF BATCHNEXT
> LET LASTBATCHNO OF BATCHNEXT = NEXTBATCHNO &
> OF BATCHNEXT
> LET NEXTBATCHNO OF BATCHNEXT = NEXTBATCHNO &
> OF BATCHNEXT + 1
> PUT BATCHNEXT AT 1
>
> DISPLAY BATCHNO OF BATCHES
> ACCEPT BATCHTOTAL OF BATCHES
> ACCEPT TRANSCOUNT OF BATCHES
> ACCEPT TRANSTOTAL OF BATCHES
> END
>
> PROCEDURE BACKOUT
> BEGIN
> IF NEWRECORD OF BATCHES
> THEN BEGIN
> LET BATCHNO OF BATCHBAD = &
> BATCHNO OF BATCHES
> LET DATESTAMP OF BATCHBAD = SYSDATE
> LET TIMESTAMP OF BATCHBAD = SYSTIME/100
> PUT BATCHBAD
> END
> END
>
> BUILD

300 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
DELETE

DELETE
Marks one or more of the current data records on the screen for deletion.

Syntax
PROCEDURE DELETE

Discussion
The DELETE procedure marks data records for deletion in PRIMARY and associated DETAIL
and SECONDARY files. These data records are physically deleted when a subsequent update
command is issued.

A screen cannot perform the DELETE activity unless a DELETE procedure exists.

Note: For information about verb and procedure compatibility, see (p. 239).

The Default DELETE Procedure

QDESIGN constructs a default DELETE procedure for each screen that has a PRIMARY file.
QDESIGN also constructs a default DETAIL DELETE procedure for each screen design that
contains a DETAIL file.

Disabling Deletion for Specific Record-structures

The NODELETE option of the FILE statement suppresses the inclusion of a DELETE verb for
that record-structure in the DELETE and DETAIL DELETE procedures.

User-Defined DELETE Procedures

If you construct a DELETE procedure, you should include only DELETE verbs in it. The DELETE
verb marks data records for deletion at a later update. As a result, fields on the screen that are
related to such data records are blanked. Unless they specifically occur with another
record-structure, fields for temporary items are treated as if they were in the PRIMARY
record-structure and are also blanked.

The DELETE procedure works for data records in both the Correction phase of Entry mode or in
the Change phase of Find mode. The procedure addresses one occurrence of the PRIMARY
record-structure, even if the record-structure occurs more than once on the screen. This is because
the DELETE procedure is used in response to the Delete command, which can address one, some,
or all of the occurrences.

When the DELETE Procedure is Initiated

The procedure is initiated when a Delete command is entered.

Deleting Specific Occurrences of a File

If a QUICK screen user initiates the DELETE procedure on a screen with a repeating PRIMARY
file, the DELETE procedure is invoked for each occurrence of the PRIMARY file. If the Delete
command includes a number or a range of numbers (for example, D-2 or D-2/5), the DELETE
procedure is invoked only for the specific occurrences.

The DELETE procedure usually addresses only one occurrence of the file in question. (A
generated DELETE procedure uses a FOR control structure to address a DETAIL or
SECONDARY file, if the DETAIL or SECONDARY file occurs more than once and the PRIMARY
file occurs only once.) If you write your own DELETE procedure, exercise caution when you use a
FOR control structure to address more than one occurrence.

During the execution of this procedure, one of the predefined conditions, CHANGEMODE or
CORRECTMODE, is true.

Chapter 7: QDESIGN Procedures
DELETE

QDESIGN Reference 301

Error Handling in the DELETE Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped and
QUICK prompts at the Action field.

Examples
The following example illustrates the DELETE procedure for a repeating PRIMARY
record-structure.
> SCREEN SKILL RECEIVING EMPLOYEES
> FILE EMPLOYEES MASTER
> FILE SKILLS OCCURS 10
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF EMPLOYEES.
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILL OF SKILLS REQUIRED NOCHANGE
> BUILD LIST
.
.
.
> PROCEDURE DELETE
> BEGIN
> DELETE SKILLS
> END

The following example illustrates the DELETE procedure for PRIMARY, SECONDARY, and
DELETE record-structures.
> SCREEN EMPLOYEE
> FILE EMPLOYEES PRIMARY
> FILE SHARES SECONDARY OCCURS 5
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF EMPLOYEES.
> FILE SKILLS DELETE
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF SHARES.
> GENERATE NOLIST
> BUILD LIST
SKILLS accessed via EMPLOYEE.
.
.
.
> PROCEDURE DELETE
> BEGIN
> DELETE EMPLOYEES
> FOR SHARES
> BEGIN
> DELETE SHARES
> END
> DELETE SKILLS
> END

Avoiding "Widowed" Detail Records

If there are more DETAIL data records on the file than can be displayed on the current screen,
only those data records currently displayed are deleted. Since the PRIMARY data record is
deleted, any remaining DETAIL data records are now "widowed".

To design a screen that simultaneously deletes the PRIMARY file data record and associated
DETAIL file data records, redeclare the DETAIL file as a DELETE file with an alias (for example,
DELSKILL). QDESIGN then generates a modified DELETE procedure:
> FILE SKILLS DETAIL OCCURS 10
> FILE SKILLS DELETE ALIAS DELSKILL
.
.
.
> PROCEDURE DELETE
> BEGIN
> DELETE EMPLOYEES
> FOR SKILLS
> BEGIN

302 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
DELETE

> DELETE SKILLS
> END
> DELETE DELSKILL
> END
> PROCEDURE DETAIL DELETE
> BEGIN
> DELETE SKILLS
> END

Chapter 7: QDESIGN Procedures
DESIGNER

QDESIGN Reference 303

DESIGNER
Creates a designer-defined Action field command.

Syntax
PROCEDURE DESIGNER n|name [HELP string]

[NODATA] [PRECOMMANDS conditional-command-list]
[POSTCOMMANDS conditional command list]

n|name

Specifies a number (n) or a name that identifies the DESIGNER procedure.

DESIGNER procedure names should be chosen to avoid conflict with Action field commands. In
the case of a conflict, the Action field command takes precedence.

Limit: Only the first four characters of the name are recognized; the number must be a positive
integer, up to 9999.

HELP string

Specifies a message that is displayed when the user enters the Extended help (??) command in the
Action field.

If no message is specified, QUICK displays a default message.

NODATA

Allows the user to execute the named DESIGNER procedure even if there is no data on the screen.
The NODATA option is unnecessary on menu screens.

Limit: The NODATA option is ignored for numbered DESIGNER procedures.

PRECOMMANDS conditional-command-list

Lists the command options to be executed before processing the procedural code within the
DESIGNER procedure.

POSTCOMMANDS conditional-command-list

Lists the command options to be executed after processing the procedural code within the
DESIGNER procedure.

conditional-command-list
Specifies what command(s) the PRECOMMANDS or POSTCOMMANDS options execute and,
optionally, under what conditions. The general form of the conditional command list is:
command-list [IF condition

[ELSE command-list IF condition]...
[ELSE command-list]]

command-list
One or more commands separated by commas. The general form of a command list is:
command [, command]...

For a list of the available commands, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

condition
A condition is a logical test that has the general form:
[NOT] condition [AND|OR [NOT] condition]...

For more information about conditions or conditional command lists, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

304 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
DESIGNER

Discussion
You can use DESIGNER procedures to
• make changes to selected fields or groups of fields
• initiate COMMAND and SUBSCREEN statements in either the Correction phase of Entry

mode or in the Change phase of Find mode processing

For the purposes listed above, these procedures are identical to manually performing the specified
actions, except for the effects of the OMIT (ON ENTRY|FIND), DISPLAY (ON ENTRY|FIND),
NOCHANGE, and NOCORRECT field options.

During execution of this procedure, one of CHANGEMODE, CORRECTMODE,
ENTRYMODE, or FINDMODE is true, or they can all be false. If SELECTMODE is true,
FINDMODE is also true.

Note: For information about verb and procedure compatibility, see (p. 239).

Numbered DESIGNER Procedures

QUICK generates a default DESIGNER procedure for each ID-number on your QUICK screen.
The source is not available for modification. When you write your own numbered DESIGNER
procedures, the number is treated as an ID-number and overrides any default procedure associated
with the number. When the QUICK screen user enters an ID-number in the Action field, QUICK
initiates the DESIGNER procedure with the corresponding number.

The construction of default numbered DESIGNER procedures follows the same general rules as
those for constructing default ENTRY procedures, with the following exceptions:
• The IF option is ignored.
• The AUTO option on COMMAND and SUBSCREEN statements isn't needed.
• The FOR control structure is used only when a cluster and all of its contents have the same

ID-number.

QUICK generates one numbered DESIGNER procedure per cluster, and associates the ID number
of the first field in the cluster with that DESIGNER procedure. The procedure generated for the
first field in the cluster is used for every occurrence of the cluster. DESIGNER procedures that
have ID numbers of other occurrences in a cluster are ignored.

Named DESIGNER Procedures

A DESIGNER procedure with a designer-defined name can be written to create a new action.

A named DESIGNER procedure is used for a specific occurrence of a cluster (or a set of
occurrences) similar to the Delete action. For example, for a DESIGNER procedure TRANSFER,
you can use TRAN-2 or TRAN-3/5 in the Action field.

Invoking DESIGNER Procedures

Unless the NODATA option has been specified, DESIGNER procedures (whether numbered by
ID-numbers or named) can only be invoked by the user when there is active data (not marked for
deletion) on the screen.

Error Handling in DESIGNER Procedures

If an error occurs during the execution of this procedure, QUICK backs up to the last ACCEPT or
PROMPT verb, or to the last BLOCK TRANSFER control structure. If no such verb or control
structure exists, QUICK prompts at the Action field.

Warning

Don’t name DESIGNER procedures using letters or symbols to override an already assigned
function in QUICK. For example, if you write a DESIGNER procedure named "D", this
procedure is automatically overridden by the Delete (D) Action field command. Note, however,
that if the "D" command is changed in QKGO, then the DESIGNER procedure named "D"
works.

Chapter 7: QDESIGN Procedures
DESIGNER

QDESIGN Reference 305

Examples
The following layout statements for a screen for the EMPLOYEES record-structure that uses the
BRANCHES record-structure as a REFERENCE record-structure
> FIELD EMPLOYEE OF EMPLOYEES NOCHANGE ID 5
> FIELD BRANCH OF EMPLOYEES ID SAME LOOKUP ON BRANCHES
> SUBSCREEN SKILLS PASSING EMPLOYEES ID SAME
> FIELD BRANCHNAME OF BRANCHES ID SAME
> COMMAND "QUIZ" ID SAME

result in the following default numbered DESIGNER procedure for the Change phase of Find
mode by QUICK. The source code for the default procedure is not available.

QDESIGN automatically places the RUN SCREEN verb after the DISPLAY and ACCEPT verbs in
the DESIGNER procedure even though the design statements that generate the verbs are not in
this order. In contrast, the ENTRY procedure that is generated from the same design statements
doesn't rearrange the verbs.
> PROCEDURE DESIGNER 5
> BEGIN
> DISPLAY EMPLOYEE OF EMPLOYEES
> ACCEPT BRANCH OF EMPLOYEES
> DISPLAY BRANCHNAME OF BRANCHES
> RUN SCREEN SKILLS PASSING EMPLOYEES
> RUN COMMAND "QUIZ"
> END

The following named DESIGNER procedure can be specified for the STAFF screen to prompt the
user through all the fields normally involved in a staff transfer to a new branch. The procedure is
performed when a QUICK screen user enters TRAN in the Action field after retrieving a valid
EMPLOYEES file data record on the screen.

The command TRAN is valid in Find mode once a record has been retrieved. It is also valid in the
Correction phase of Entry mode.
> PROCEDURE DESIGNER TRAN
> BEGIN
> ACCEPT ADDRESS OF EMPLOYEES
> ACCEPT STREET OF EMPLOYEES
> ACCEPT CITY OF EMPLOYEES
> ACCEPT PROVSTATE OF EMPLOYEES
> ACCEPT POSTALCODE OF EMPLOYEES
> ACCEPT PHONE OF EMPLOYEES
> ACCEPT BRANCH OF EMPLOYEES
> DISPLAY BRANCHNAME OF BRANCHES
> END

Using the PRECOMMANDS and POSTCOMMANDS Options

The following code includes a standard invoice MASTER file and a DETAIL file with scrolling
clusters. The invoice lines are automatically totalled and added to the invoice total. When the user
finishes entering DETAIL records, he returns to the Action field and enters the Designer command
"PUT", instead of a standard update command.

The PUT Designer procedure equates the items in the AUDIT file to similar items in the MASTER
file. The POSTCOMMAND option on the procedure updates the invoice records. This saves time
because normally the user would have to enter a PUT to save the audit record and then enter
update to save the main record (or have a PUT for each file in the DESIGNER procedure).
> SCR INVCAP
> FILE INVMAST PRIMARY
> FILE INVDET DETAIL OCCURS 8 CACHE ; Here is the Cache
> FILE BILLAUDIT SECONDARY
> FILE EMPLOYEES REFERENCE
> FILE POSITION REFERENCE
> FILE CUSTOMERS REFERENCE
> FILE PROJECTS REFERENCE
> ALIGN (ID 1 , LABEL 4 , DATA 21) &
> (ID 41 , LABEL 44 , DATA 61)
> FIELD INVOICENO OF INVMAST REQUIRED NOCHANGE &

306 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
DESIGNER

> LOOKUP NOTON INVMAST
> FIELD PROJECTNO OF INVMAST REQUIRED NOCHANGE &
> LOOKUP ON PROJECTS
> FIELD CUSTOMER OF INVMAST REQUIRED NOCHANGE &
> LOOKUP ON CUSTOMERS
> FIELD DATEYEAR OF INVMAST LABEL "Inv. Date"
> FIELD DATEMONTH OF INVMAST NOID NOLABEL DATA AT ,67
> FIELD DATEDAY OF INVMAST NOID NOLABEL DATA AT ,70
> FIELD DUEDATE OF INVMAST
> FIELD INVTOTAL OF INVMAST DISPLAY
> FIELD INVPAID OF INVMAST
> SKIP 2
> TITLE " Employee Chargeout No. of Days Total"
> CLUSTER OCCURS WITH INVDET
> ALIGN (1,,6)(,,18)(,,36)(,,55)
> FIELD EMPLOYNO OF INVDET REQUIRED NOCHANGE LOOKUP &
> ON EMPLOYEES USING EMPLOYNO OF INVDET
> FIELD CHARGEOUT OF INVDET NOID DISPLAY LOOKUP ON &
> POSITION USING POSITION OF EMPLOYEES
> FIELD NBROFDAYS OF INVDET NOID
> FIELD LINETOTAL OF INVDET NOID DISPLAY
> CLUSTER
> PROCEDURE EDIT EMPLOYNO
> BEGIN
> LET CHARGEOUT OF INVDET = CHARGEOUT OF POSITION
> END
> PROCEDURE EDIT NBROFDAYS
> BEGIN
> LET LINETOTAL = CHARGEOUT OF INVDET * NBROFDAYS
> DISPLAY CHARGEOUT OF INVDET
> DISPLAY LINETOTAL OF INVDET
> LET INVTOTAL = INVTOTAL + LINETOTAL OF INVDET
> DISPLAY INVTOTAL OF INVMAST
> END
> ;Next is the designer with postcommands
>
> PROCEDURE DESIGNER PUT POSTCOMMANDS UPDATE NEXT
>
> ; This procedure enters an audit record into BILLAUDIT
> ; equating all relevant values in the INVMAST record
> ; and adding the system time and date.
> BEGIN
> LET INVOICENO OF BILLAUDIT = INVOICENO OF INVMAST
> LET DATEYEAR OF BILLAUDIT = DATEYEAR OF INVMAST
> LET DATEMONTH OF BILLAUDIT = DATEMONTH OF INVMAST
> LET DATEDAY OF BILLAUDIT = DATEDAY OF INVMAST
> LET CUSTOMER OF BILLAUDIT = CUSTOMER OF INVMAST
> LET INVTOTAL OF BILLAUDIT = INVTOTAL OF INVMAST
> LET DUEDATE OF BILLAUDIT = DUEDATE OF INVMAST
> LET INVPAID OF BILLAUDIT = INVPAID OF INVMAST
> LET DATESTAMP OF BILLAUDIT = SYSDATE
> LET TIMESTAMP OF BILLAUDIT = SYSTIME
> PUT BILLAUDIT
> END

Chapter 7: QDESIGN Procedures
DETAIL DELETE

QDESIGN Reference 307

DETAIL DELETE
Marks for deletion specific data records in a DETAIL file and any files that occur with it.

Syntax
PROCEDURE DETAIL DELETE

Discussion
QDESIGN generates the DETAIL DELETE procedure to mark specific data records of a DETAIL
file and files that occur with it, for deletion.

Note: For information about verb and procedure compatibility, see (p. 239).

When the DETAIL DELETE Procedure is Initiated

The DETAIL DELETE procedure is initiated when the QUICK screen user specifies a range to be
deleted in the Action field, as in D-2 or D-2/5, where the numbers refer to data records of the
DETAIL file.

When a range of numbers is used, the DETAIL DELETE procedure is executed for all cluster
occurrences whose first ID-number falls within the range. This is true for both PANEL and
NOPANEL screens. The data records are not deleted until the UPDATE procedure has been
executed.

During the execution of this procedure, one of the predefined conditions, CHANGEMODE or
CORRECTMODE, is true.

Error Handling in the DETAIL DELETE Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped and
QUICK prompts at the Action field.

Example
The following screen design generates these procedures: DELETE and DETAIL DELETE.
> SCREEN EMPSKILL
> FILE EMPLOYEES
> FILE SKILLS DETAIL OCCURS 8
Item EMPNUM initialized (fixed) to EMPNUM OF EMPLOYEES.
>
> FIELD EMPNUM OF EMPLOYEES &
> REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES &
> REQUIRED NOCHANGE
> FIELD FIRSTNAME OF EMPLOYEES
>
> ALIGN (1,4,14)
> CLUSTER OCCURS WITH SKILLS FOR 2,36
> FIELD SKILLCODE OF SKILLS
> CLUSTER
>
> BUILD LIST
SKILLS accessed via EMPNUM.

The generated DELETE and DETAIL DELETE procedures are as follows:
> PROCEDURE DELETE
> BEGIN
> DELETE EMPLOYEES
> FOR SKILLS
> BEGIN
> DELETE SKILLS
> END

308 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
DETAIL DELETE

> END
>
> PROCEDURE DETAIL DELETE
> BEGIN
> DELETE SKILLS
> END

Chapter 7: QDESIGN Procedures
DETAIL FIND

QDESIGN Reference 309

DETAIL FIND
Controls data record retrieval for a DETAIL file and any files that occur with it.

Syntax
PROCEDURE DETAIL FIND

Discussion
QDESIGN generates the DETAIL FIND procedure to control the retrieval of DETAIL data
records. This procedure also controls the retrieval of data records from any file that is declared to
occur with a DETAIL file.

Note: For information about verb and procedure compatibility, see (p. 239).

When the DETAIL FIND Procedure is Initiated

The DETAIL FIND procedure is executed after the FIND procedure (or after the POSTFIND
procedure if one exists), and before retrieved data is displayed on the screen.

How the DETAIL FIND Procedure Works

After the FIND procedure retrieves a data record from the PRIMARY file, the DETAIL FIND
procedure retrieves as many DETAIL data records as can be displayed on the screen. When the
screen user repeatedly presses [Return], the procedure retrieves successive groups of DETAIL data
records associated with the PRIMARY data record. When all the DETAIL data records associated
with PRIMARY data records are displayed, pressing [Return] retrieves the next PRIMARY data
record. The DETAIL FIND procedure can be stopped by the CANCEL, NEXT, or UPDATE
NEXT commands.

During the execution of this procedure, the FINDMODE predefined condition is true.
SELECTMODE is true if the Select action is in effect.

Error Handling in the DETAIL FIND Procedure

If an error occurs during the execution of this procedure, QUICK backs up to the last executed
GET verb for the DETAIL file. If no GET verb exists, QUICK prompts the user without displaying
any retrieved data.

Record Status in the DETAIL FIND Procedure

Assigning values to items within the DETAIL FIND procedure doesn't change the data record
status. Use DETAIL POSTFIND for this processing. Wherever possible, make changes in the
POSTFIND and DETAIL POSTFIND procedures rather than in the default FIND and DETAIL
FIND procedures.

Example
The following screen counts the skills of selected company personnel. In the following example:
• FOR SKILLS causes QUICK to repeat this DETAIL FIND procedure for each occurrence of

SKILLS.
• Each successful GET verb for the SKILLS file causes QUICK to increment COUNTER by one.

OPTIONAL causes QUICK to continue when a value in the SKILLS file isn't associated with
the employee, and is therefore not retrieved.

• When all the values of SKILLS have been evaluated, QUICK displays the information message
and the result of the count.

> SCREEN EMPSKILL
>
> TEMPORARY COUNTER NUMERIC*3 INITIAL 0
>
> FILE EMPLOYEES PRIMARY
> FILE SKILLS DETAIL OCCURS 12

310 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
DETAIL FIND

Item EMPNUM initialized (fixed) to EMPNUM of EMPLOYEES.
>
> FIELD EMPNUM OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILLCODE OF SKILLS
> CLUSTER

> PROCEDURE PATH
> BEGIN
> REQUEST EMP-NUM OF EMPLOYEES
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> LET PATH = 2
> END
> END
>
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN BEGIN
> GET EMPLOYEES VIA EMP-NUM
> IF NOT ACCESSOK
> THEN ERROR &
> "Sorry, that is not an employee number"
> END
> IF PATH = 2
> THEN GET EMPLOYEES SEQUENTIAL
> END
>
> PROCEDURE DETAIL FIND
> BEGIN
> FOR SKILLS
> BEGIN
> GET SKILLS OPTIONAL
> IF ACCESSOK
> THEN LET COUNTER = COUNTER + 1
> ELSE INFORMATION = &
> "This employee has " +&
> ASCII(COUNTER) + " skills(s)."
> END
> END
> BUILD

Chapter 7: QDESIGN Procedures
DETAIL POSTFIND

QDESIGN Reference 311

DETAIL POSTFIND
Performs processing after successful completion of a DETAIL FIND procedure.

Syntax
PROCEDURE DETAIL POSTFIND

Discussion
The DETAIL POSTFIND procedure is an optional procedure that you can write to supplement the
generated DETAIL FIND procedure. It's executed immediately after the successful completion of
the DETAIL FIND procedure, and prior to the display of retrieved data.

During the execution of this procedure, the CHANGEMODE predefined condition is true.

Note: For information about verb and procedure compatibility, see (p. 239).

Error Handling in the DETAIL POSTFIND Procedure

If an error occurs during the execution of the DETAIL POSTFIND procedure, QUICK
• skips the rest of the procedure
• displays the data retrieved by the FIND and DETAIL FIND procedures
• prompts the QUICK screen user at the Action field

Example
In the following screen design, two temporary items are defined. The first is LASTSEQNO, an
item that contains the last sequence number found on the screen. The second is OCCCOUNT,
which counts the number of occurrences of the SKILLS file found on the screen.
> SCREEN EMPLOY
>
> TEMPORARY OCCCOUNT NUMERIC INITIAL 0
> TEMPORARY LASTSEQNO NUMERIC INITIAL 0
>
> FILE EMPLOYEES PRIMARY
> FILE SKILLS DETAIL OCCURS 7
Item EMPNUM initialized (fixed) to EMPNUM OF EMPLOYEES.
> FIELD EMPNUM OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD FIRSTNAME OF EMPLOYEES
> CLUSTER OCCURS WITH SKILLS FOR 2,36
> FIELD SKILLCODE OF SKILLS
> CLUSTER

The following procedure sets LASTSEQNO to the last sequence number found on the screen:
> PROCEDURE DETAIL POSTFIND
> BEGIN
> FOR SKILLS
> BEGIN
> LET LASTSEQNO = SEQNO OF SKILLS
> LET OCCCOUNT = OCCURRENCE
> END
> IF OCCCOUNT = 0
> THEN LET LASTSEQNO = 0
> END
>
> BUILD LIST
SKILLS accessed via EMPNUM.

312 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
EDIT

EDIT
Performs editing on a value entered in a named field.

Syntax
PROCEDURE EDIT field

field

Names the field with which the EDIT procedure is associated.

Discussion
The EDIT procedure is written by the designer to perform editing of values in the named field.
This procedure is initiated in response to an EDIT verb or immediately after all dictionary and
FIELD statement editing has been performed by an ACCEPT verb. The EDIT procedure refers
only to the named field and is invoked when a new value or changed value is entered in the field.

During execution of this procedure, one of CHANGEMODE, CORRECTMODE,
ENTRYMODE, or FINDMODE is true, or they can all be false. If SELECTMODE is true,
FINDMODE is also true.

Note: For information about verb and procedure compatibility, see (p. 239).

The EDIT Procedure and Null Entries

The EDIT procedure allows for special validation of the value entered by a QUICK screen user.
This procedure is performed only if the FIELDTEXT predefined item is not null at the end of the
INPUT procedure. Null entries and default entries are not edited. Entries made using the
DUPLICATE field command are edited.

Changing Data Values in the EDIT Procedure

The EDIT procedure should not directly change the value of the associated item. The value can be
changed by using FIELDTEXT or FIELDVALUE (depending on the data type) as the target of a
LET verb. This is because the value of the expression is immediately placed in the data record or
temporary item buffer and is overwritten by the contents of FIELDTEXT or FIELDVALUE in a
later processing step. To avoid changes based on data that has not yet been validated, use the
PROCESS procedure to move data values into other items.

Comparing Entered Values to Existing Values

Within an EDIT procedure, there are two values associated with the named field: the old, or
existing, value of the data record item or temporary item, and the new value entered by the user.
The new value can be referenced in an expression using the predefined items FIELDTEXT (for
character data) or FIELDVALUE (for numeric or date data), or the name of the item. The old
value, which is in a buffer, can be referenced in an expression by using the OLDVALUE function.

Error Handling in the EDIT Procedure

If the EDIT procedure is called by the ACCEPT verb, the rest of the procedure is skipped and
QUICK prompts at the Action field.

If the procedure is called by the EDIT verb, the rest of the procedure is skipped and QUICK
continues error processing for the procedure containing the EDIT verb.

Example
The EDIT procedure is useful when editing requirements are too complex to be specified on a
FIELD statement.

For example, if you want to validate combinations of entries for new records that have
multi-segment indexes before QUICK actually retrieves data, specify an EDIT on the last segment
as in:

Chapter 7: QDESIGN Procedures
EDIT

QDESIGN Reference 313

> PROCEDURE EDIT PARTVARIANT
> BEGIN
> IF FIELDTEXT = "BLUE" AND PARTNUMBER = 20
> THEN ERROR "Invalid Part Number/Variant combination"
> END

Similarly, the following edit is too complex to be specified on a FIELD statement:
> PROCEDURE EDIT CUSTOMERCODE
> BEGIN
> ; If type Y customer
> IF "Y" = FIELDTEXT[1:1]
> THEN GET YFILE USING CUSTOMERCODE OPTIONAL
> ELSE GET ZFILE USING CUSTOMERCODE OPTIONAL
> IF NOT ACCESSOK
> THEN ERROR "Customer not on file"
> END

The CUSTOMERCODE entered is looked up on one of two different REFERENCE files
depending on the first letter of the code. If the CUSTOMERCODE is found in a data record of the
appropriate file, no further validation is performed.

314 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
ENTRY

ENTRY
Performs the standard entry sequence.

Syntax
PROCEDURE ENTRY

Discussion
The ENTRY procedure, together with the APPEND procedure, establishes the entry sequence for
the screen when a user enters new data records.

Notes: An ENTRY procedure isn’t generated for screen designs that include a designer-written
APPEND or ENTRY procedure.

For information about verb and procedure compatibility, see (p. 239).

The Default ENTRY Procedure

The default ENTRY and APPEND procedures are based on the FIELD and other layout section
statements in the screen design. Usually, QDESIGN automatically generates an ENTRY
procedure. A screen can't perform standard data entry unless an ENTRY procedure exists.

The default ENTRY procedure is different for PANEL and NOPANEL screens. NOPANEL
screens don't contain any BLOCK TRANSFER control structures. PANEL screens contain
BLOCK TRANSFER control structures based on FIELD and CLUSTER statements. In addition,
PANEL screens ignore the IF option on FIELD statements.

The default ENTRY procedure consists of the following:
• an ACCEPT verb for each FIELD statement that doesn't have a DISPLAY, OMIT ON

ENTRY, NOENTRY, or SILENT option. The ACCEPT verb controls all aspects of
prompting, validating, and storing a value entered by the QUICK screen user

• BLOCK TRANSFER statements based on FIELD and CLUSTER statements on PANEL
screens

• a DISPLAY verb for each FIELD statement that has a DISPLAY ON ENTRY option or is
associated with a defined item

• an EDIT verb for each FIELD statement that has a SILENT option
• a RUN SCREEN verb for every SUBSCREEN statement that has an AUTO or IF option
• a RUN COMMAND verb for every COMMAND statement that has an AUTO or IF option
• a PERFORM APPEND verb if the screen has a repeating PRIMARY or DETAIL file
• an IF control structure corresponding to the IF option on each FIELD, SUBSCREEN or

COMMAND statement. For ENTRY procedures that contain BLOCK TRANSFER control
structures, the IF option is ignored for FIELD statements

• a FOR control structure, if a cluster occurs a different number of times than the previous
cluster, if the screen design includes a DETAIL file, or if a cluster occurs a different number of
times than the PRIMARY file

Clusters in the Default ENTRY Procedure

Any CLUSTER statement in the layout section that references multiple occurrences of either a
primary or detail record-structure produces a FOR (loop) control structure in the default ENTRY
procedure.

The ENTRY Procedure and the APPEND Procedure

For PRIMARY and DETAIL files with more than one occurrence on a screen, the ENTRY
procedure is modified and paired with an APPEND procedure. For more information about
Append processing, see (p. 295).

Chapter 7: QDESIGN Procedures
ENTRY

QDESIGN Reference 315

Using FIELD Statements to Control the ENTRY Procedure

The FIELD statement and its options control the construction of the default ENTRY procedure:
• Normally, a FIELD statement produces an ACCEPT verb.
• The DISPLAY option of the FIELD statement and the FIXED option of the ITEM statement

produce a DISPLAY verb.
• The OMIT (or OMIT ON ENTRY), FIXED, and NOENTRY FIELD options exclude the field

from the ENTRY procedure.
• The SILENT FIELD option produces an EDIT verb. The field doesn't appear on the screen.
• The IF option of a FIELD statement produces an equivalent IF control structure in the

ENTRY procedure, unless the ACCEPT verb for the field is within a BLOCK TRANSFER
control structure.

Implications of Modifying the Default ENTRY Procedure

It is recommended that you don't explicitly write the ENTRY procedure; it is more effective to use
design statements in the layout section that influence the way in which QDESIGN constructs the
ENTRY procedure. The influence of these design statements depends upon their order and content
in the screen layout section.

When modifying or replacing the ENTRY procedure, you should confine the activities specified to
a dialogue with the user (in the form of REQUEST verbs) to create new data prior to placing it in
a file. Remember that at any point prior to updating, the user can decide to back up to a previous
field prompt, or back out of the process entirely.

Many of the procedural activities associated with data entry, such as editing, are field related and
also apply to changing data (both in Change mode and in the Correction phase of Entry mode).
These activities are best left to field processing procedures. As a general rule, processing that is
related to a single field and can be done in the field processing procedures should not be done in
the ENTRY procedure. For more information, see (p. 312), (p. 324), (p. 331), and (p. 353).

During the execution of the ENTRY procedure, the ENTRYMODE predefined condition is true.

Error Handling in the ENTRY Procedure

If an error occurs during the execution of the ENTRY procedure, QUICK backs up to the last
ACCEPT or PROMPT verb, or to the last BLOCK TRANSFER control structure. If no such verb
or control structure exists, QUICK prompts the screen user at the Action field.

Examples
The following example shows a simple screen design and the default ENTRY procedure that is
produced:
> SCREEN BRANCH
> FILE BRANCHES PRIMARY
> FIELD BRANCH REQUIRED NOCHANGE &
> LOOKUP NOTON BRANCHES
> FIELD BRANCHNAME
> FIELD BRANCHMANAGER
> BUILD LIST
.
.
.
> PROCEDURE ENTRY
> BEGIN
> ACCEPT BRANCH OF BRANCHES
> ACCEPT BRANCHNAME OF BRANCHES
> ACCEPT BRANCHMANAGER OF BRANCHES
> END
.
.
.

316 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
ENTRY

The ENTRY procedure in the previous example accepts a value in each of the three fields of the
screen, in the order that the fields are specified. In each case, the value is stored in the record
buffer for the BRANCHES file.

The following portion of the STAFF screen
> FIELD DIVISION OF EMPLOYEES LOOKUP ON DIVISIONS &
> IF BRANCH = " " AND LANGUAGE = "E"
> FIELD DIVISIONNAME OF DIVISIONS DISPLAY ID SAME

produces these statements in the default ENTRY procedure:
> IF BRANCH OF EMPLOYEES EQ " " &
> AND LANGUAGE OF EMPLOYEES EQ "E"
> THEN ACCEPT DIVISION OF EMPLOYEES
> ELSE DISPLAY DIVISION OF EMPLOYEES
> DISPLAY DIVISIONNAME OF DIVISIONS

The following QDESIGN statements list the resulting ENTRY procedure for a screen for the
BRANCHES file with a cluster:
> SCREEN BRANCH
> FILE BRANCHES OCCURS 10
> TITLE "Branches File" AT 3,8
> TITLE "Branch" AT 5,4
> TITLE "Branchname" AT 5,12
> TITLE "Branchmanager" AT 5,34
.
.
.
> ALIGN (1,,4) (,,12) (,,34)
> CLUSTER OCCURS WITH BRANCHES
> FIELD BRANCH OF BRANCHES &
> REQUIRED NOCHANGE &
> LOOKUP NOTON BRANCHES
> FIELD BRANCHNAME OF BRANCHES
> FIELD BRANCHMANAGER OF BRANCHES
> CLUSTER
> BUILD LIST
>
> PROCEDURE APPEND
> BEGIN
> ACCEPT BRANCH OF BRANCHES
> ACCEPT BRANCHNAME OF BRANCHES
> ACCEPT BRANCHMANAGER OF BRANCHES
> END
>
> PROCEDURE ENTRY
> BEGIN
> FOR BRANCHES
> BEGIN
> PERFORM APPEND
> END
> END
.
.
.

These layout statements
> SUBSCREEN ABC PASSING RUNOK AUTO
> COMMAND "QUIZ" IF RUNOK > 0

produce these statements in the ENTRY procedure:
> RUN SCREEN ABC PASSING RUNOK MODE E
> IF RUNOK > 0
> THEN RUN COMMAND "QUIZ"

Chapter 7: QDESIGN Procedures
EXIT

QDESIGN Reference 317

EXIT
Performs processing just before returning to a higher-level screen.

Syntax
PROCEDURE EXIT

Discussion
The EXIT procedure is initiated by a RETURN verb, or by any one of
• the Update Return (UR) Action field command
• the Return (^) Action field command
• the Return to Stop (^^) Action field command
• the Return to Start (^^^) Action field command

It is also initiated by the Update (U) Action field command on screens with the AUTORETURN
option.

The EXIT procedure executes immediately before the backout buffers are updated. In a backout
situation, any BACKOUT procedure is performed before the EXIT procedure.

During the execution of the EXIT procedure, the predefined conditions, CHANGEMODE,
CORRECTMODE, ENTRYMODE, SELECTMODE and FINDMODE, are all false.

Notes: Changing the data record status of a file that is local to the screen does not create a
backout situation; the change is lost.

For information about verb and procedure compatibility, see (p. 239).

Error Handling in the EXIT Procedure

If an error occurs during the execution of the EXIT procedure, QUICK backs up to the last
ACCEPT or PROMPT verb, or to a previous BLOCK TRANSFER control structure. If no such
verb or control structure exists, control returns to the invoking screen.

Example
This screen was designed with an EXIT procedure. When a user exits the screen, QUIZ is initiated
to generate an up-to-date EMPLOYEE/SKILL report:
> SCREEN EMPLOYEE
>
> FILE EMPLOYEES
> FILE SKILLS DETAIL OCCURS 8
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF EMPLOYEES.
> FILE SKILLS DELETE ALIAS DELSKILL
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF EMPLOYEES
>
> FIELD EMPLOYEE OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD FIRSTNAME OF EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> CLUSTER OCCURS WITH SKILLS FOR 2,36
> FIELD SKILL OF SKILLS
> CLUSTER
> PROCEDURE EXIT
> BEGIN
> ;generate an up-to-date
> ;employee / skill report
> RUN COMMAND 'QUIZ AUTO=EMPREP'
> END
>
> BUILD

318 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
FIND

FIND
Retrieves data records as indicated by the PATH procedure.

Syntax
PROCEDURE FIND

Discussion
QDESIGN automatically generates a FIND procedure. A screen can't function in Find mode
unless a FIND procedure exists. Menu and slave screens are excepted.

Assigning values to record items within the scope of the FIND procedure doesn’t change the data
record status. Use POSTFIND for this processing.

QUICK ignores the FIND procedure on slave screens. There is no FIND procedure on menu
screens.

Note: For information about verb and procedure compatibility, see (p. 239).

When the FIND Procedure is Initiated

The FIND procedure is initiated
• after completion of the PATH and POSTPATH procedures
• when the QUICK screen user enters the Next (N) Action field command in Find mode
• when the QUICK screen user presses [Return] and there are no more detail records related to

the primary record to be displayed
• when the screen is started in Find or Select mode

How the FIND Procedure Works

The FIND procedure is governed by the value of the predefined item PATH (which is established
in the PATH procedure), and by any selection conditions that might restrict the data records
actually retrieved.

The standard FIND procedure first performs one of several GET verbs for the PRIMARY file,
based on the value of the predefined item PATH (set by the PATH procedure). The FIND
procedure then performs a GET verb with the OPTIONAL keyword for each SECONDARY file.

When finding data, QUICK displays a PRIMARY data record and as many DETAIL data records
as the screen can display. If the QUICK screen user presses [Return], QUICK displays any
remaining DETAIL data records. The PRIMARY data record only changes when there are no
more DETAIL data records.

Entering the Next or Update Next command causes QUICK to display the next PRIMARY data
record and its associated DETAIL data records.

The FIND procedure should retrieve data records of the PRIMARY and SECONDARY files of the
screen. If no primary records are retrieved, there is no data to be manipulated. Retrieval of
secondary records is assumed to be optional.

Changing the Default FIND Procedure

Whenever possible, make changes to PATH and FIND processing with ACCESS statements.
Changes in the generated PATH and FIND procedures are then forced by the ACCESS statement,
rather than by direct manipulation of QDESIGN's default procedures. If you make changes to the
FIND procedure, you must make corresponding changes in the PATH procedure. Any changes
that can't be handled by ACCESS statements are best handled in the POSTPATH and POSTFIND
procedures.

During the execution of this procedure, the FINDMODE predefined condition is true.
SELECTMODE is true if the Select action is in effect.

Chapter 7: QDESIGN Procedures
FIND

QDESIGN Reference 319

SQL in the FIND Procedure

For a PRIMARY CURSOR, PowerHouse generates a number of SQL OPEN statements and a
single SQL FETCH statement. For SECONDARY and DETAIL CURSORs, one OPEN and a
single SQL FETCH statement are generated.

PowerHouse generates multiple SQL OPEN statements that contain substitutions for the WHERE
and ORDERBY substitution-variables. For a VIA list with n items that can be generic, n+1 SQL
OPEN statements are generated. Each SQL OPEN has a different WHERE substitution that
reflects the search criteria that the user could enter.

At runtime, QUICK uses the correct SQL OPEN by analyzing the entered search criteria. The
PATH procedure determines the value of the PATH and SUBPATH variables. The FIND procedure
examines the PATH and SUBPATH variables and uses the appropriate SQL OPEN statement.

Error Handling in the FIND Procedure

If an error occurs during the execution of this procedure, QUICK backs up to the last GET verb
for the PRIMARY file. If no such verb exists, QUICK prompts the screen user in the Action field,
without displaying any retrieved data.

Example
The following example illustrates how the ACCESS statement affects the default FIND procedure.

The PATH procedure is based on the ACCESS statements specified for the PRIMARY
record-structure. QDESIGN builds two paths: one based on the index EMPLOYEE (using
segment EMPLOYEE) and a second one based on the index LASTNAME (using segment
LASTNAME). If no values are entered for either of these fields in the QUICK screen, QUICK
issues an error message, since no alternative access paths are specified (such as ACCESS
SEQUENTIAL).

The FIND procedure uses the value for PATH to retrieve data records via one of the retrieval
alternatives.

The LIST option of the BUILD statement causes QDESIGN to display the generated procedures.
> SCREEN MODEMP ACTIVITIES FIND, CHANGE, DELETE
>
> FILE EMPLOY1 PRIMARY
> ACCESS VIAINDEX EMPLOYEE &
> USING EMPLOYEE OF EMPLOY1 &
> REQUEST EMPLOYEE
> ACCESS VIAINDEX LASTNAME &
> USING LASTNAME OF EMPLOY1 &
> REQUEST LASTNAME
>
> TITLE "Modify Employee Attributes" &
> CENTERED AT 4,1
>
> SKIP 2
> ALIGN (1,4,21)
> FIELD EMPLOYEE OF EMPLOY1 &
> REQUIRED &
> NOCHANGE &
> LOOKUP ON EMPLOY1
> SKIP 1
> FIELD LASTNAME OF EMPLOY1 &
> REQUIRED &
> NOCHANGE
> FIELD CITY OF EMPLOY1
> FIELD STREET OF EMPLOY1
> FIELD PROVSTATE OF EMPLOY1 &
> ID SAME &
> LABEL "Prov/State"
.
.
.
> FIELD POSTALZIP OF EMPLOY1 &

320 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
FIND

> ID SAME &
> LABEL "PCode or Zip"
>
> FIELD PHONENUMBER OF EMPLOY1 &
> ID SAME &
> LABEL "Phone"
>
>
> BUILD LIST DETAIL
.
.
.
> PROCEDURE PATH
> BEGIN
> REQUEST EMPLOYEE OF EMPLOY1
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> REQUEST LASTNAME OF EMPLOY1
> IF PROMPTOK
> THEN LET PATH = 2
> END
> IF PATH = 0
> THEN ERROR "Key/Index required."
> END
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN GET EMPLOY1 VIAINDEX EMPLOYEE &
> USING EMPLOYEE OF EMPLOY1
> IF PATH = 2
> THEN GET EMPLOY1 VIAINDEX LASTNAME &
> USING LASTNAME OF EMPLOY1
> END
.
.
.

The following example shows how the generated PATH and FIND procedures are affected by the
use of SQL:
> SQL DECLARE EMPLIST CURSOR FOR &
> SELECT EMPLOYEE, FIRST_NAME, LAST_NAME, &
> BRANCHES.BRANCH, BRANCH_NAME &
> FROM EMPLOYEES, BRANCHES &
> WHERE EMPLOYEES.BRANCH = BRANCHES.BRANCH
> SCREEN EMPBRANCHC
> CURSOR EMPLIST PRIMARY KEY EMPLOYEE
> ACCESS VIA EMPLOYEE REQUEST EMPLOYEE
> ACCESS VIA LAST_NAME REQUEST LAST_NAME
> ACCESS SEQUENTIAL
.
.
.
> PROCEDURE PATH
> BEGIN
> REQUEST EMPLOYEE OF EMPLIST
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> REQUEST LAST_NAME OF EMPLIST
> IF PROMPTOK
> THEN LET PATH = 2
> END
> IF PATH = 0
> THEN BEGIN
> LET PATH = 3

Chapter 7: QDESIGN Procedures
FIND

QDESIGN Reference 321

> END
> IF PATH = 1
> THEN BEGIN
> LET SUBPATH = 0
> END
> IF PATH = 2
> THEN BEGIN
> IF RANGED(EMPLOYEES.LAST_NAME)
> THEN LET SUBPATH = 1
> ELSE LET SUBPATH = 0
> END
> END
> PROCEDURE FIND
> BEGIN
> IF NOT CURSOROPEN(EMPLIST)
> THEN BEGIN
> IF PATH = 1
> THEN BEGIN
> IF SUBPATH = 0
> THEN SQL OPEN EMPLIST &
> where(EMPLOYEES.EMPLOYEE &
> =:linkvalue(EMPLOYEES.EMPLOYEE ,equal))
> END
> IF PATH = 2
> THEN BEGIN
> IF SUBPATH = 1
> THEN SQL OPEN EMPLIST &
> where(EMPLOYEES.LAST_NAME &
> between :linkvalue(EMPLOYEES.LAST_NAME &
> ,lowest) and &
> :linkvalue(EMPLOYEES.LAST_NAME &
> ,highest))
> IF SUBPATH = 0
> THEN SQL OPEN EMPLIST &
> where(EMPLOYEES.LAST_NAME &
> =:linkvalue(EMPLOYEES.LAST_NAME ,equal))
> END
> IF PATH = 3
> THEN BEGIN
> SQL OPEN EMPLIST
> END
> END
> SQL FETCH EMPLIST
> END

322 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
INITIALIZE

INITIALIZE
Performs processing when the screen is initiated.

Syntax
PROCEDURE INITIALIZE [RECOVERABLE]

RECOVERABLE

Instructs QUICK to keep rollback information for PUTs to non-relational records.

Limit: Rollback information can only be kept if the INITIALIZE procedure is in a subscreen that
is called from a recoverable procedure.

This option has no effect on PUTs to relational records since rollback information is always
retained for relational records.

Discussion
You can write the optional INITIALIZE procedure to perform processing when the screen is first
entered. The INITIALIZE procedure is executed every time the screen is initiated from a
higher-level screen, after default item initialization is done, but before the screen background is
displayed.

During the execution of the INITIALIZE procedure, the predefined conditions, CHANGEMODE,
CORRECTMODE, ENTRYMODE, SELECTMODE, and FINDMODE, are all false.

Note: For information about verb and procedure compatibility, see (p. 239).

Error Handling in the INITIALIZE Procedure

If an error occurs during the execution of the INITIALIZE procedure, QUICK backs up to the last
ACCEPT or PROMPT verb, or to the last BLOCK TRANSFER control structure. If no such verb
or control structure exists, the EXIT procedure (if one exists) is executed and control returns to
the invoking screen.

Rollbacks

A recoverable procedure is a procedure in a QUICK screen in which PUTs to non-relational
records can be rolled back automatically by PowerHouse in the event of an error. By default, the
UPDATE procedure is recoverable. The PREUPDATE and POSTUPDATE procedures are made
recoverable by using the RECOVERABLE option.

INITIALIZE procedures can only be recoverable if they are in a subscreen that is called from a
recoverable procedure. If an error occurs in the calling screen after the execution of the subscreen,
the PUTs done in the INITIALIZE procedure of the subscreen can be rolled back provided the
RECOVERABLE option of the INITIALIZE procedure is used.

If the RECOVERABLE option is used, PUT verbs to non-relational records are automatically
rolled back by PowerHouse on encountering an error.

If the RECOVERABLE option is not used, non-relational rollback behavior is unchanged from
previous versions.

Conversion
Prior to 7.33.C (UNIX), 7.10E1 (OpenVMS), and 8.09 (MPE/iX), no automatic rollback was
available to cancel the effect of PUT verbs to non-relational records executed outside of the
UPDATE procedure. If PUT verbs to non-relational records were used outside of the UPDATE
procedure, you would have to write a BACKOUT procedure to reverse their effect.

If you use the RECOVERABLE option, any BACKOUT procedures that you have coded to handle
rollbacks must be reviewed to ensure that a "double rollback" is not performed.

Chapter 7: QDESIGN Procedures
INITIALIZE

QDESIGN Reference 323

Example
This example shows a library system menu screen and one of the menu subscreens.

The KEY statement sets up [F1] as a Help function key for this screen.
> SCREEN LIBRARY MENU
> DRAW 3,20 TO 7,59
> TITLE "Library System Menu" AT 5,24
> SKIP 3
> ALIGN (26,32)
>
> KEY 1 LABEL "Help" ACTION AND DATA HELP
>
> SUBSCREEN BOOKINFO LABEL "Book Information"
> SUBSCREEN SUBINFO LABEL "Subject Information"
> SUBSCREEN PUBINFO LABEL "Publisher Information"
>
> BUILD
>
> SCREEN BOOKINFO
> FILE BOOKS
> FILE SUBJECTS REFERENCE
> FILE PUBLISHERS REFERENCE
>
> FIELD BOOKID OF BOOKS REQUIRED NOCHANGE &
> LOOKUP NOTON BOOKS &
> HELP "Enter a valid book number."
> FIELD AUTHORLASTNAME OF BOOKS &
> REQUIRED NOCHANGE
> FIELD AUTHORFIRSTNAME OF BOOKS
> FIELD TITLE OF BOOKS
> FIELD SUBJECTCODE OF BOOKS LOOKUP ON SUBJECTS &
> HELP "Enter the subject code."
> FIELD PUBLISHERCODE OF BOOKS LOOKUP ON PUBLISHERS &
> HELP "Enter the publisher's name."
>
> PROCEDURE INITIALIZE
> BEGIN
> INFORMATION = &
> "Press [F1] for help in most fields."
> END
>
> BUILD

The INITIALIZE procedure displays a message each time the BOOKINFO screen is initiated from
the LIBRARY menu. The screen user is informed that pressing [F1] displays help information.

324 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
INPUT

INPUT
Performs data conversion for a value entered in the named field prior to any editing.

Syntax
PROCEDURE INPUT field

field

Names the field with which the INPUT procedure is associated.

Discussion
You can write the optional INPUT procedure to modify data before any editing is done on a field.
The INPUT procedure applies to a single field only and is initiated for new and changed values by
an ACCEPT, PROMPT, REQUEST, or SELECT verb after size checking, but before type checking.

The INPUT procedure is performed when a user, in response to an ACCEPT, PROMPT,
REQUEST, or SELECT verb
• enters data
• presses [Return]
• enters Skip All command(//)
• bypasses a field in a changed record as a result of entering the Skip All command (//).

The INPUT procedure should be used only to manipulate the screen user's entry in the
FIELDTEXT predefined item.

An entry can be altered by changing the value of the predefined item FIELDTEXT with the LET
verb. The INPUT procedure is always executed even when dealing with a null response. It can
force the execution of the EDIT procedure (normally skipped on null responses) by placing any
value other than a null response in FIELDTEXT.

During execution of this procedure, one of CHANGEMODE, CORRECTMODE,
ENTRYMODE, or FINDMODE is true, or they can all be false. If SELECTMODE is true,
FINDMODE is also true.

Notes: The item associated with the named field should not be used as the target of a LET verb.
Only FIELDTEXT should be used.

For information about verb and procedure compatibility, see (p. 239).

Error Handling in the INPUT Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped and
QUICK prompts at the current field.

Example
The INPUT procedure can save your QUICK screen users time and effort. For example, a screen
for adding new suppliers is such that most entries in the CITY field are one of New York,
Chicago, or Toronto. To save keystrokes, an entry of N, C, or T in the CITY field is set to
correspond to those cities.

The PROCESS procedure for CITY sets the value of PROVSTATE to the correct province or state
for New York, Chicago, or Toronto.
> SCREEN ADDSUPP PANEL &
> NOMODE &
> ACTION LABEL "==>" AT 20,1 &
> ACTIVITIES ENTRY
>
> FILE SUPPLIERS PRIMARY
> FILE NEXTCODE DESIGNER
> ACCESS USING 2
>

Chapter 7: QDESIGN Procedures
INPUT

QDESIGN Reference 325

> TEMPORARY TEMPSTATE CHARACTER *2
> USE HEADER NOLIST NODETAIL
> TITLE "Add New Supplier" CENTERED AT 4,1
>
> DRAW 7,15 TO 19,65
>
> SKIP TO LINE 9
.
.
.
> PROCEDURE INPUT CITY
> BEGIN
> LET TEMPSTATE = " "
> IF FIELDTEXT = "N"
> THEN BEGIN
> LET FIELDTEXT = "New York City"
> LET TEMPSTATE = "NY"
> END
> ELSE IF FIELDTEXT = "C"
> THEN BEGIN
> LET FIELDTEXT = "Chicago"
> LET TEMPSTATE = "IL"
> END
> ELSE IF FIELDTEXT = "T"
> THEN BEGIN
> LET FIELDTEXT = "Toronto"
> LET TEMPSTATE = "ON"
> END
> END
>
> PROCEDURE PROCESS CITY
> BEGIN
> IF TEMPSTATE <> " "
> THEN BEGIN
> LET PROVSTATE = TEMPSTATE
> END
> END
>
> BUILD

326 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
INTERNAL

INTERNAL
Creates an internal subroutine in the QDESIGN procedural language.

Syntax
PROCEDURE INTERNAL name

name

Names the procedure.

Limit: Must begin with a letter and can be up to 64 characters in length.

Discussion
INTERNAL procedures are subroutines written in the QDESIGN procedural language. They are
invoked by other procedures using the DO INTERNAL verb and must be declared before they are
referenced by a DO INTERNAL verb. The activities performed within an INTERNAL procedure
must be consistent with the activities allowed for any procedure that invokes it.

There are no default INTERNAL procedures.

During execution of this procedure, the predefined condition remains the same as the calling
procedure. The mode (CHANGEMODE, CORRECTMODE, ENTRYMODE, FINDMODE, or
SELECTMODE) does not change.

Notes: Because an INTERNAL procedure can invoke itself, be careful not to create an infinite
loop.

The INTERNAL procedure must be declared before the DO INTERNAL verb that invokes it,
since QDESIGN has no forward referencing capability at compile time.

Verbs used should comply with the restrictions of the calling procedure. For more information
about verb and procedure compatibility, see (p. 239).

Nesting INTERNAL Procedures

You can nest INTERNAL procedures to any level, as long as you specify them before they are
referenced. In addition, you can create recursive procedures.

Error Handling in INTERNAL Procedures

If an error occurs during the execution of this procedure, QUICK follows the error processing for
the procedure containing the DO INTERNAL verb.

Examples
Although QUICK doesn't allow array subscripting, you can manipulate data in arrays. You can
use the INTERNAL procedure and the system function, OCCURRENCE, to address a specific
occurrence of an item in an array by using verbs, as in:
> PROCEDURE INTERNAL SETARRAY
> BEGIN
> FOR EACH ARRAY1
> LET ARRAY1 = OCCURRENCE
.
.
.
> END

Standardizing Field Processing with INTERNAL Procedures

Assume that a company has a CHECKDIGIT validation routine that's applied to several items in
a given application. Rather than specifying the contents of this routine within an EDIT procedure
for each entry field, you can construct the following INTERNAL procedure:
> PROCEDURE INTERNAL STANDARDCHECK

Chapter 7: QDESIGN Procedures
INTERNAL

QDESIGN Reference 327

> BEGIN
> IF FIELDVALUE <> 0
> THEN ERROR "Checkdigit edit failed"
> END
> PROCEDURE EDIT AA
> DO INTERNAL STANDARDCHECK
> PROCEDURE EDIT AX
> DO INTERNAL STANDARDCHECK
> PROCEDURE EDIT BQ
> DO INTERNAL STANDARDCHECK
.
.

328 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
MODIFY

MODIFY
Controls QUICK processing in CHANGEMODE or CORRECTMODE.

Syntax
PROCEDURE MODIFY

Discussion
The MODIFY procedure is activated when the QUICK screen user enters a Modify command. If
the AUTOMODIFY option is specified on the SCREEN statement, the procedure is activated
automatically after finding or entering data. The procedure is available whether the screen is using
Panel mode or field mode.

During execution of this procedure, one of CHANGEMODE or CORRECTMODE is true.

Note: For more information about verb and procedure compatibility, see (p. 239).

The Default MODIFY Procedure

The default MODIFY procedure is similar to the default ENTRY procedure. The default
MODIFY procedure contains an ACCEPT verb for each field that can be modified once a value
has been entered into the field.

No default MODIFY procedure is generated if the NOPANEL option of either the SET statement
or the SCREEN statement is in effect.

ACCEPT verbs are not generated for fields with the following options:
• SILENT
• DISPLAY
• fields with associated ITEM statements with the FIXED option
• both NOCHANGE and NOCORRECT

ACCEPT verbs in the MODIFY procedure appear in the order in which the fields are specified in
the screen design. For PANEL screens, ACCEPT verbs for a given screen are grouped into a block
with the BLOCK TRANSFER control structure.

The Default MODIFY Procedure and Append Processing

For screens with repeating PRIMARY or DETAIL record-structures, the default MODIFY
procedure contains both a FOR and a FOR MISSING control structure. These control structures
control the modification of values in repeating record-structures. In addition, the FOR MISSING
control structure allows Append processing during the execution of the MODIFY procedure.

The FOR control structure in the default MODIFY procedure contains an ACCEPT verb for each
field in the repeating record-structure. This causes QUICK to prompt for modifications in existing
data records in the repeating record-structure.

The FOR MISSING control structure in the default MODIFY procedure contains the PERFORM
APPEND verb. This causes QUICK to prompt for entries in occurrences for which no values
currently exist.

Error Handling in the MODIFY Procedure

When QUICK detects an error in a field entry during the execution of the MODIFY procedure, it
follows the same steps as those for the ENTRY procedure. QUICK backs up to the last ACCEPT
or PROMPT verb, or the previous INTERNAL procedure, or to the last BLOCK TRANSFER
control structure. If no such verb or control structure exists, QUICK prompts the user at the
Action field.

For information about error handling in BLOCK TRANSFER control structures, see (p. 372).

Chapter 7: QDESIGN Procedures
MODIFY

QDESIGN Reference 329

Examples
The following screen design statements illustrate how QDESIGN generates a default MODIFY
procedure. In this example:
• The CLUSTER statement affects how QDESIGN blocks groups of fields for entry in the

ENTRY, MODIFY, and SELECT procedures.
• The fields referenced in the default MODIFY procedure are grouped in BLOCK TRANSFER

control structures. Field blocking is based on the CLUSTER statements specified in the layout
section.

> SCREEN MODCUST PANEL NOMODE
>
> FILE CUSTOMERS PRIMARY
> ACCESS VIAINDEX CUSTOMERS &
> USING CUSTOMERKEY OF CUSTOMERS &
> REQUEST CUSTOMERKEY
> ACCESS VIAINDEX CUSTOMERNAME &
> USING CUSTOMERNAME OF CUSTOMERS &
> REQUEST CUSTOMERNAME
>
> TITLE "Modify Customer Attributes" CENTERED AT 4,1
> SKIP TO LINE 8
> ALIGN (,25,40)
>
> CLUSTER BLOCK EACH
> FIELD CUSTOMERKEY OF CUSTOMERS &
> REQUIRED &
> NOCHANGE &
> LOOKUP ON CUSTOMERS
> CLUSTER
>
> SKIP 1
>
> CLUSTER BLOCK ALL
> FIELD CUSTOMERNAME OF CUSTOMERS &
> REQUIRED &
> NOCHANGE
> FIELD CITY OF CUSTOMERS
> FIELD STREET OF CUSTOMERS
> FIELD PROVSTATE OF CUSTOMERS &
> ID SAME &
> LABEL "Prov/State"
> FIELD POSTALZIP OF CUSTOMERS &
> ID SAME &
> LABEL "PCode or Zip"
>
> FIELD PHONENUMBER OF CUSTOMERS &
> ID SAME &
> LABEL "Phone"
> CLUSTER
> BUILD LIST
.
.
.
> PROCEDURE MODIFY
> BEGIN
> BLOCK TRANSFER
> BEGIN
> ACCEPT CUSTOMERKEY OF CUSTOMERS
> END
> BLOCK TRANSFER
> BEGIN
> ACCEPT CUSTOMERNAME OF CUSTOMERS
> ACCEPT CITY OF CUSTOMERS
> ACCEPT STREET OF CUSTOMERS
> ACCEPT PROVSTATE OF CUSTOMERS
> ACCEPT POSTALZIP OF CUSTOMERS

330 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
MODIFY

> ACCEPT PHONENUMBER OF CUSTOMERS
> END
> END

The Default MODIFY Procedure with a Repeating PRIMARY Record-structure

The following example illustrates how QDESIGN constructs the default MODIFY procedure
when the screen design contains a repeating PRIMARY record-structure. In this example:
• The default MODIFY procedure is generated when the PANEL option of either the SET

statement or the SCREEN statement is in effect.
• Because a BLOCK option is not specified on the CLUSTER statement, the generated

MODIFY procedure defaults to BLOCK ALL.
> SCREEN CUSTLIST PANEL
>
> FILE CUSTOMERS PRIMARY OCCURS 4
> CLUSTER OCCURS WITH CUSTOMERS
> SKIP 1
> FIELD CUSTOMERKEY OF CUSTOMERS
> FIELD CUSTOMERNAME OF CUSTOMERS
> SKIP 1
> FIELD PHONENUMBER OF CUSTOMERS
> CLUSTER
>
> BUILD LIST
.
.
.
> PROCEDURE MODIFY
> BEGIN
> BLOCK TRANSFER
> BEGIN
> FOR FILE CUSTOMERS
> BEGIN
> ACCEPT CUSTOMERKEY OF CUSTOMERS
> ACCEPT CUSTOMERNAME OF CUSTOMERS
> ACCEPT PHONENUMBER OF CUSTOMERS
> END
> FOR MISSING CUSTOMERS
> PERFORM APPEND
> END
> END

Chapter 7: QDESIGN Procedures
OUTPUT

QDESIGN Reference 331

OUTPUT
Performs data conversion for a value in the named field prior to the display of the value.

Syntax
PROCEDURE OUTPUT field

field

Names the field with which the OUTPUT procedure is associated.

For more information about verbs and control structures, see (p. 361).

Discussion
You can write the optional OUTPUT procedure to modify data between storage and output. It
applies only to a single field and is initiated immediately, before formatting options are applied, by
an ACCEPT, DISPLAY, PROMPT, REQUEST, or SELECT verb.

The OUTPUT procedure applies both to newly entered values which are immediately redisplayed
and to existing values, which are displayed upon retrieval.

The OUTPUT procedure allows special formatting of the contents of the FIELDTEXT predefined
item just prior to the automatic formatting by PICTURE or DATE formats. This procedure is used
with all field-related verbs except the EDIT verb, or when QUICK performs automatic displays.

During execution of this procedure, one of CHANGEMODE, CORRECTMODE,
ENTRYMODE, or FINDMODE is true, or they can all be false. If SELECTMODE is true,
FINDMODE is also true.

Notes: Using the item associated with the named field as the target of a LET verb doesn’t affect the
displayed values and isn’t recommended.

For more information about verb and procedure compatibility, see (p. 239).

Manipulating the FIELDTEXT Predefined Item in the OUTPUT Procedure

The OUTPUT procedure is based on the contents of the FIELDTEXT predefined item. When the
FIELDTEXT predefined item is altered, the altered value is displayed. For example, if the
FIELDTEXT predefined item contains leading zeros, formatting is not considered when
significance is determined by QUICK. Therefore, a field with a picture of "^^^.^^" and a
significance of five would display "00.01" if the string "0001" is assigned to the FIELDTEXT
predefined item in the OUTPUT procedure.

Error Handling in the OUTPUT Procedure

If an error occurs during the execution of the OUTPUT procedure, the rest of the procedure is
skipped, crosshatches (#) are displayed in the field, and processing continues.

Example
The following example demonstrates how the OUTPUT procedure can manipulate field values
between the time they're entered and the time they're displayed. In this example:
• Employees' names are prefixed with a title that depends on their sex and marital status.
• The size of the field LASTNAME must be large enough to accommodate both the employee's

last name and title.
> SCREEN EMPLOYEE
>
> FILE EMPLOYEES
>
> ALIGN (1,4,25)
>
> FIELD EMPNUM OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES

332 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
OUTPUT

> FIELD DEPARTMENT OF EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD SEX OF EMPLOYEES
> FIELD MARITALSTATUS OF EMPLOYEES
>
> PROCEDURE OUTPUT LASTNAME
> BEGIN
> IF SEX = "M"
> THEN LET FIELDTEXT = "Mr. " + LASTNAME
> IF SEX = "F" AND MARITALSTATUS = "M"
> THEN LET FIELDTEXT = "Mrs. " + LASTNAME
> IF SEX = "F" AND MARITALSTATUS = "S"
> THEN LET FIELDTEXT = "Ms. " + LASTNAME
> END
>
> BUILD

Chapter 7: QDESIGN Procedures
PATH

QDESIGN Reference 333

PATH
Establishes the method of record retrieval for the FIND procedure.

Syntax
PROCEDURE PATH

Discussion
In Find or Select mode, the PATH and FIND procedures control the retrieval of data records of
PRIMARY and SECONDARY files. The PATH procedure analyzes responses made by the QUICK
screen user and sets the retrieval path based on these responses.

Notes: Assigning values to record items within the scope of the PATH procedure does not change
the data record status.

Restrict the PATH procedure to determining the retrieval paths for the files to be found. It’s not
advisable to directly modify the generated PATH and FIND procedures, or to write completely
new procedures that replace them. Any changes that cannot be made in the ACCESS statement
should be made in the POSTPATH and POSTFIND procedures.

For more information about verb and procedure compatibility, see (p. 239).

How the PATH Procedure Works

The PATH procedure executes when the user initiates either Find mode or Select mode. Find mode
is initiated when a QUICK screen user enters the F (Find) command in the Action field. Similarly,
Select mode is initiated when a QUICK screen user enters the S (Select) command in the Action
field.

The PATH procedure sets the value of the PATH predefined item, which is used by all Find and
Select operations. The PATH predefined item is always assigned an integer value that's used by the
FIND procedure to determine how to retrieve data records.

The value of PATH is based on whether or not the screen user enters non-null values in response
to REQUEST verbs in the PATH procedure. A non-null response to a REQUEST verb for a given
field causes QUICK to set the PROMPTOK predefined condition to TRUE for that field. The
PATH procedure then sets the value of the PATH predefined condition based on the PROMPTOK
value.

Once the PATH procedure has executed and the predefined item PATH has been set, the FIND
procedure tests the value of PATH and initiates access corresponding to that value.

Once a QUICK screen user makes a non-null entry in response to a REQUEST verb, QUICK
moves the entered value into the associated item in the selection buffer. This value is kept for any
subsequent initializations of the record buffer, and survives the initialization phase at the
beginning of each retrieval sequence. In other words, a value entered in response to a REQUEST
verb stays in the selection buffer until a new value is entered for that field in a subsequent Find or
Select action.

The Default PATH Procedure

QDESIGN automatically generates a PATH procedure for a PRIMARY file. The generated PATH
procedure is determined by the way in which the PRIMARY file is indexed, and by any ACCESS
statements that are specified for the PRIMARY file.

To change PATH and FIND processing, use ACCESS statements to force changes in the generated
PATH and FIND procedures. Using ACCESS statements, you can specify both the retrieval
alternatives and the sequence of their use. If ACCESS statements are specified for the PRIMARY
file, they completely override the default set of retrieval alternatives.

The default PATH procedure contains one REQUEST verb for each segment of each index for the
PRIMARY record-structure. QDESIGN generates REQUEST verbs for all segments of the
record-structure's indexes in the order that the indexes appear in the data dictionary.

The default PATH procedure is different for PANEL and NOPANEL screens.

334 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
PATH

When the PANEL option of either the SET or the SCREEN statement is in effect, the REQUEST
verbs for segments in each index are grouped into separate blocks by the BLOCK TRANSFER
control structure. No BLOCK TRANSFER control structure are generated unless the PANEL
option of either the SET or SCREEN statement is specified.

In addition to REQUEST verbs, the PATH procedure contains one or more LET verbs for the
predefined item PATH. The number of LET verbs depends on how the PRIMARY file is indexed,
and on any ACCESS statements that exist for the PRIMARY file. QDESIGN's generated PATH
procedure contains one LET verb for each ordered subset of segments in each index for the
PRIMARY record-structure, plus one for sequential access. An ordered subset of segments in a
PowerHouse index consists of the first segment, or the first and second segments, or the first,
second and third segments, and so on up to the number of segments in the index.

In general, there are "n + 1" retrieval alternatives generated automatically for each screen, where
n is the total number of segments of all indexes in the primary record-structure. For QDESIGN to
construct indexed access properly, the index segments of the file must also be fields on the screen.

If the PRIMARY record-structure has no indexes, only one LET verb is generated and only
sequential access is available.

During the execution of this procedure, the FINDMODE predefined condition is true.
SELECTMODE is true if the Select action is in effect.

If data records can be retrieved without the user supplying information (if the information is
passed from a higher-level screen, for example), the PATH procedure sets the value of the
predefined item PATH to 1; there is only one retrieval method.

The PATH Procedure and MENU and SLAVE Screens

For MENU and SLAVE screens, QDESIGN generates PATH and FIND procedures that contain
only the NULL verb.

Disabling Sequential Access

To suppress sequential retrieval, you can either
• include the NOSEQUENTIAL option on the SCREEN statement

or
• not include an ACCESS statement with the SEQUENTIAL option when other ACCESS

statements are specified

Both actions cause QDESIGN to suppress the generation of a sequential path option in the
generated PATH procedure.

Use of the SUBPATH Predefined Item

The PATH and SUBPATH predefined items are used together to determine the method of data
retrieval. The generated PATH procedure sets the value of SUBPATH depending on search criteria
entered by the user. SUBPATH is then used in the FIND procedure to select the most appropriate
cursor OPEN statement.

The value of SUBPATH depends on the number of linkitems in the VIA list that are character.
These items cause a BETWEEN option to be generated for the WHERE option, which is used
when the user enters a generic search value.

SUBPATH is only valid for relational data accessed through a CURSOR statement. It is also only
valid for generic retrieval on character fields. If NOGENERIC is used on the ACCESS statement,
only one variation is possible and SUBPATH is not used.

Error Handling in the PATH Procedure

If an error occurs during the execution of the PATH procedure, the rest of the procedure is
skipped and QUICK prompts at the Action field without completing the retrieval cycle.

Chapter 7: QDESIGN Procedures
PATH

QDESIGN Reference 335

Examples
The relationship of a MASTER file to a PRIMARY file is similar to the relationship of a
PRIMARY file to a SECONDARY file.

The following example illustrates a SKILLS screen in which the EMPLOYEES file is passed to the
screen as a MASTER file. QDESIGN doesn't need to construct a PATH procedure to prompt the
user for an index of the SKILLS record-structure; a relationship already exists between the passed
EMPLOYEES record-structure and the SKILLS record-structure.

QDESIGN recognizes this relationship because the item named EMPLOYEE is in both the SKILLS
and EMPLOYEES record-structures. Consequently, QDESIGN constructs the following PATH
and FIND procedures:
> SCREEN SKILL RECEIVING EMPLOYEES
> FILE EMPLOYEES MASTER
> FILE SKILLS PRIMARY OCCURS 12
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF EMPLOYEES.
>
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILL OF SKILLS REQUIRED NOCHANGE
> BUILD LIST
.
.
.
> PROCEDURE PATH
> BEGIN
> LET PATH = 1
> END
>
> PROCEDURE FIND
> BEGIN
> FOR SKILLS
> BEGIN
> GET SKILLS VIA EMPLOYEE
> END
> END

Using the ACCESS Statement to Control the PATH Procedure

QDESIGN constructs the PATH procedure based on the indexes that are declared for the
PRIMARY file. If you specify access explicitly for the PRIMARY file by including an ACCESS
statement, QDESIGN modifies the PATH to match the indexes and segments that are specified in
the ACCESS statement.

In the following example, the PATH procedure is based on the ACCESS statements specified for
the PRIMARY record-structure. QDESIGN builds two paths: one based on the index EMPLOYEE
(using segment EMPLOYEE) and a second one based on the index LASTNAME (using segment
LASTNAME). If no values are entered for either of these fields in the QUICK screen, QUICK
issues an error message, since no alternative access paths are specified (such as ACCESS
SEQUENTIAL).

The FIND procedure uses the value for PATH to retrieve data records via one of the retrieval
alternatives.

The LIST option of the BUILD statement causes QDESIGN to display the generated procedures.
> SCREEN MODEMP &
> ACTIVITIES FIND, CHANGE, DELETE
>
> FILE EMPLOY1 PRIMARY
> ACCESS VIAINDEX EMPLOYEE &
> USING EMPLOYEE OF EMPLOY1 &
> REQUEST EMPLOYEE
> ACCESS VIAINDEX LASTNAME &
> USING LASTNAME OF EMPLOY1 &
> REQUEST LASTNAME
>
> TITLE "Modify Employee Attributes" CENTERED AT 4,1
>

336 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
PATH

> SKIP 2
> ALIGN (1,4,21)
> FIELD EMPLOYEE OF EMPLOY1 &
> REQUIRED &
> NOCHANGE &
> LOOKUP ON EMPLOY1
> SKIP 1
>
> FIELD LASTNAME OF EMPLOY1 &
> REQUIRED &
> NOCHANGE
> FIELD CITY OF EMPLOY1
> FIELD STREET OF EMPLOY1
> FIELD PROVSTATE OF EMPLOY1 &
> ID SAME &
> LABEL "Prov/State"
.
.
.
> FIELD POSTALZIP OF EMPLOY1 &
> ID SAME &
> LABEL "PCode or Zip"
>
> FIELD PHONENUMBER OF EMPLOY1 &
> ID SAME &
> LABEL "Phone"
>
> BUILD LIST DETAIL
.
.
.
> PROCEDURE PATH
> BEGIN
> REQUEST EMPLOYEE OF EMPLOY1
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> REQUEST LASTNAME OF EMPLOY1
> IF PROMPTOK
> THEN LET PATH = 2
> END
> IF PATH = 0
> THEN ERROR "Key/Index required."
> END
>
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN GET EMPLOY1 VIAINDEX EMPLOYEE &
> USING EMPLOYEE OF EMPLOY1
> IF PATH = 2
> THEN GET EMPLOY1 VIAINDEX LASTNAME &
> USING LASTNAME OF EMPLOY1
> END
.
.
.

The following example shows how the generated PATH and FIND procedures are affected by the
use of SQL:
> SQL DECLARE EMPLIST CURSOR FOR &
> SELECT EMPLOYEE, FIRST_NAME, LAST_NAME, &
> BRANCHES.BRANCH, BRANCH_NAME &
> FROM EMPLOYEES, BRANCHES &
> WHERE EMPLOYEES.BRANCH = BRANCHES.BRANCH
> SCREEN EMPBRANCHC
> CURSOR EMPLIST PRIMARY KEY EMPLOYEE

Chapter 7: QDESIGN Procedures
PATH

QDESIGN Reference 337

> ACCESS VIA EMPLOYEE REQUEST EMPLOYEE
> ACCESS VIA LAST_NAME REQUEST LAST_NAME
> ACCESS SEQUENTIAL
.
.
.
> PROCEDURE PATH
> BEGIN
> REQUEST EMPLOYEE OF EMPLIST
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> REQUEST LAST_NAME OF EMPLIST
> IF PROMPTOK
> THEN LET PATH = 2
> END
> IF PATH = 0
> THEN BEGIN
> LET PATH = 3
> END
> IF PATH = 1
> THEN BEGIN
> LET SUBPATH = 0
> END
> IF PATH = 2
> THEN BEGIN
> IF RANGED(EMPLOYEES.LAST_NAME)
> THEN LET SUBPATH = 1
> ELSE LET SUBPATH = 0
> END
> END
> PROCEDURE FIND
> BEGIN
> IF NOT CURSOROPEN(EMPLIST)
> THEN BEGIN
> IF PATH = 1
> THEN BEGIN
> IF SUBPATH = 0
> THEN SQL OPEN EMPLIST &
> where(EMPLOYEES.EMPLOYEE &
> =:linkvalue(EMPLOYEES.EMPLOYEE ,equal))
> END
> IF PATH = 2
> THEN BEGIN
> IF SUBPATH = 1
> THEN SQL OPEN EMPLIST &
> where(EMPLOYEES.LAST_NAME &
> between :linkvalue(EMPLOYEES.LAST_NAME &
> ,lowest) and &
> :linkvalue(EMPLOYEES.LAST_NAME &
> ,highest))
> IF SUBPATH = 0
> THEN SQL OPEN EMPLIST &
> where(EMPLOYEES.LAST_NAME &
> =:linkvalue(EMPLOYEES.LAST_NAME ,equal))
> END
> IF PATH = 3
> THEN BEGIN
> SQL OPEN EMPLIST
> END
> END
> SQL FETCH EMPLIST
> END

338 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
POSTFIND

POSTFIND
Performs processing after successful completion of the FIND procedure.

Syntax
PROCEDURE POSTFIND

Discussion
The POSTFIND procedure allows QUICK to perform processing immediately following the
completion of the FIND procedure. This procedure is intended to supplement the FIND procedure
rather than to replace it. The POSTFIND procedure can be used to retrieve data records based on
data that is already retrieved.

Note: For more information about verb and procedure compatibility, see (p. 239).

When the POSTFIND Procedure is Initiated

The POSTFIND procedure executes after the FIND procedure finishes, but before the retrieved
data is displayed on the QUICK screen.

Error Handling in the POSTFIND Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped.
QUICK then prompts at the Action field without displaying retrieved data.

During the execution of the POSTFIND procedure, the CHANGEMODE predefined condition is
true.

Example
The POSTFIND procedure in the following example sums values for individual project billings
into a temporary item.
> SCREEN PROJBILL
>
> TEMPORARY TOTBILLINGS NUMERIC *8
> FILE PROJECTS PRIMARY
> FILE BILLINGS DETAIL OCCURS 6
Item PROJNO initialized (fixed) to PROJNO of PROJECTS
> FILE BILLINGS ALIAS BILLDES DESIGNER OPEN 1
>
> FIELD TOTBILLINGS &
> NOID &
> LABEL "Billings to Date" AT 3,50 &
> DATA AT ,67 &
> PICTURE "^^^,^^^.^^" DISPLAY
> SKIP 1
> FIELD PROJNO OF PROJECTS &
> REQUIRED NOCHANGE &
> LOOKUP NOTON PROJECTS
> FIELD PROJNAME OF PROJECTS
> FIELD PROJMGR OF PROJECTS
> FIELD PROJBUDG OF PROJECTS
>
> SKIP 1
> TITLE "Employee" AT ,4
> TITLE "Month" AT ,15
> TITLE "Billing" AT ,25
> TITLE "Employee" AT ,44
> TITLE "Month" AT ,55
> TITLE "Billing" AT ,65
> ALIGN (1,,4) (,,15) (,,25)
> SKIP 1
>

Chapter 7: QDESIGN Procedures
POSTFIND

QDESIGN Reference 339

> CLUSTER OCCURS WITH BILLINGS FOR 1,39
> FIELD EMPNUM OF BILLINGS REQUIRED NOCHANGE
> FIELD MONTH OF BILLINGS
> FIELD BILLING OF BILLINGS
> CLUSTER
.
.
.
> PROCEDURE POSTFIND
> BEGIN
> WHILE RETRIEVING BILLDES VIA PROJNO &
> USING PROJNO OF PROJECTS
> LET TOTBILLINGS = &
> TOTBILLINGS + BILLINGS OF BILLDES
> END
>
> BUILD

340 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
POSTPATH

POSTPATH
Performs processing following successful completion of the PATH procedure and just before the
FIND procedure.

Syntax
PROCEDURE POSTPATH

Discussion
The POSTPATH procedure allows QUICK to perform processing immediately before the
record-retrieval cycle begins. The POSTPATH procedure is intended to supplement the PATH
procedure rather than to replace it.

Note: For more information about verb and procedure compatibility, see (p. 239).

When the POSTPATH Procedure is Initiated

The POSTPATH procedure is executed after the completion of the PATH procedure, after
selection values are entered in Select mode, and before the execution of the FIND procedure.

Error Handling in the POSTPATH Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped and
QUICK prompts the user in the Action field without executing the retrieval cycle

During the execution of this procedure, the FINDMODE predefined condition is true.
SELECTMODE is true if the Select action is in effect.

Record Status in the POSTPATH Procedure

Assigning values to items within the scope of the POSTPATH procedure doesn’t change the data
record status.

Example
This product information screen design informs the screen user that sequential retrieval of data
may take a few minutes.

If the screen user responds to the FIND mode prompt by pressing [Return] without specifying a
retrieval value, data is retrieved sequentially.
> SCREEN PRODUCT
>
> FILE PRODUCTS PRIMARY
> SELECT IF PRODUCTNUMBER > 10000 &
> AND PRODUCTNUMBER < 50000
>
> FIELD PRODUCTNUMBER OF PRODUCTS &
> REQUIRED NOCHANGE LOOKUP NOTON PRODUCTS
> FIELD PRODDESCRIPTION OF PRODUCTS
> FIELD COST OF PRODUCTS
> FIELD QUANTITY OF PRODUCTS
>
> PROCEDURE PATH
> BEGIN
> REQUEST PRODUCTNUMBER OF PRODUCTS
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN LET PATH = 2
> END
>
> PROCEDURE POSTPATH
> BEGIN

Chapter 7: QDESIGN Procedures
POSTPATH

QDESIGN Reference 341

> IF PATH = 2
> THEN INFORMATION &
> "Your request may take a few minutes. Please wait."
> END
>
> BUILD

342 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
POSTSCROLL

POSTSCROLL
Performs processing after the occurrence window has scrolled but before it is re-displayed.

Syntax
PROCEDURE POSTSCROLL

Discussion
QDESIGN does not generate a default POSTSCROLL procedure.

When QUICK determines that a command will cause the occurrence window to move, it takes the
following steps:
• If there is a PRESCROLL procedure, QUICK invokes it.
• QUICK moves the occurrence window accordingly.
• If there is a POSTSCROLL procedure, QUICK invokes it.
• QUICK re-displays the occurrence window to show the changes.

The mode (CHANGEMODE, CORRECTMODE, ENTRYMODE, FINDMODE,
SELECTMODE) does not change for this procedure; it remains the same as the current context.

Note: For more information about verb and procedure compatibility, see (p. 239).

Error Handling in the POSTSCROLL Procedure

When an error occurs in the POSTSCROLL procedure, QUICK skips the rest of the procedure,
issues an error message and prompts for the next action.

Example
The following screen is used to browse through employees. The POSITION field indicates which
records are currently being viewed. In this example:
• NUM_EMPLOYEES is the number of employee records in the cache.
• The FOR DISPLAYED loop is used to determine the first and last records displayed.
• The first FOR loop is used to determine the number of records entered or retrieved.
• The second FOR loop is used to initialize the record counter.
• The internal procedure, UPDATE_POSITION, is called to set the initial value of POSITION.

The POSTSCROLL procedure is not called when the records are initially displayed, only.
• The POSTSCROLL procedure is invoked every time the records are scrolled. This procedure

uses the internal procedure, UPDATE_POSITION, to update the POSITION field.
> SCREEN SCROLL_EMPLOYEES
>
> FILE EMPLOYEES OCCURS 15 CACHE 40
>
> TEMPORARY EMPLOYEE_NUM INTEGER*3 UNSIGNED &
> OCCURS WITH EMPLOYEES
> TEMPORARY FIRST_EMPLOYEE RESET AT STARTUP
> TEMPORARY LAST_EMPLOYEE RESET AT STARTUP
> TEMPORARY NUM_EMPLOYEES RESET AT STARTUP
>
> DEFINE POSITION CHARACTER*60 = SUBSTITUTE &
> ("You are viewing records ^ to ^ out of ^.", &
> ASCII(FIRST_EMPLOYEE), &
> ASCII(LAST_EMPLOYEE), &
> ASCII(NUM_EMPLOYEES))
> ALIGN (11,,15) (,,20) (,,28) (,,43)
> TITLE "Record Employee First Last" &
> AT 4,11
> TITLE "Number Number Name Name" &
> AT 5,11

Chapter 7: QDESIGN Procedures
POSTSCROLL

QDESIGN Reference 343

> CLUSTER OCCURS WITH EMPLOYEES
> FIELD EMPLOYEE_NUM PICTURE "^^^" SIGNIFICANCE 3 DISPLAY
> FIELD EMPLOYNO OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD FIRSTNAME OF EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> CLUSTER
> SKIP
> ALIGN (,,11)
> FIELD POSITION ID 99
>
> PROCEDURE INTERNAL UPDATE_POSITION
> BEGIN
> LET FIRST_EMPLOYEE = 0
> FOR DISPLAYED EMPLOYEES
> BEGIN
> IF FIRST_EMPLOYEE = 0
> THEN
> LET FIRST_EMPLOYEE = OCCURRENCE
> ELSE
> LET LAST_EMPLOYEE = OCCURRENCE
> END
> FOR EMPLOYEES
> BEGIN
> LET NUM_EMPLOYEES = OCCURRENCE
> END
> DISPLAY POSITION
> END
> PROCEDURE POSTFIND
> BEGIN
> FOR EACH EMPLOYEES
> BEGIN
> LET EMPLOYEE_NUM = OCCURRENCE
> END
> DO INTERNAL UPDATE_POSITION
> END
>
>
>
> PROCEDURE POSTSCROLL
> BEGIN
> DO INTERNAL UPDATE_POSITION
> END

344 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
POSTUPDATE

POSTUPDATE
Performs processing after successful completion of the UPDATE procedure.

Syntax
PROCEDURE POSTUPDATE [RECOVERABLE]

RECOVERABLE

Instructs QUICK to keep rollback information for PUTs done to non-relational records during the
POSTUPDATE procedure. This option has no effect on PUTs to relational records since rollback
information is always retained for relational records.

Discussion
You can write the optional POSTUPDATE procedure to perform processing after the successful
completion of the UPDATE procedure. The POSTUPDATE procedure is intended to supplement
the UPDATE procedure rather than to replace it.

Note: For more information about verb and procedure compatibility, see (p. 239).

When the POSTUPDATE Procedure is Initiated

The POSTUPDATE procedure is initiated after files are updated, but before QUICK proceeds to
the next processing cycle. For example, you can use the POSTUPDATE procedure to control the
submission of batch jobs that update other files. If the AUTORETURN option is specified on the
SCREEN statement, the POSTUPDATE procedure is performed before QUICK returns to the
higher-level screen.

During the execution of this procedure, one of the predefined conditions, CHANGEMODE or
CORRECTMODE, is true.

Error Handling in the POSTUPDATE Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped, and
QUICK prompts the user at the Action field.

If an error occurs in the POSTUPDATE procedure, any updates performed by the POSTUPDATE
procedure before the occurrence of the error, and any updates performed by the UPDATE
procedure are not rolled back.

Rollbacks

If any error conditions are detected in the middle of a multiple record or multiple file update, a
special rollback facility restores the files to the state that they were in before the update began.
This applies to PUT verbs in the update procedure. Outside the update procedure, PUT verbs are
only rolled back in procedures using the RECOVERABLE option.

If the RECOVERABLE option is used, PUT verbs to non-relational records are rolled back
automatically by PowerHouse on encountering an error.

The rollback provisions remove most causes of inconsistent data. However, there are three
exceptions:
• If a failed update encounters another failed condition while attempting to rollback, the files

may remain inconsistent. In this situation, QUICK tells the user what has happened.
• Append-type files cannot be restored to their original state. If append-type audit files are

involved in the rollback, an audit record is written to reflect the update done by rollback
processing. For example, when a record is deleted, a record reflecting the delete is added to
the end of the audit file. If that record is subsequently rolled back, a record reflecting the
previous state of the record (with the record added) is then added to the end of the audit file.

• Relational systems provide their own rollback mechanism. Therefore, for tables and views,
QUICK invokes a database rollback when errors are encountered, rather than invoking its
own rollback mechanism.

Chapter 7: QDESIGN Procedures
POSTUPDATE

QDESIGN Reference 345

Part of PUT verb processing is the update of rollback information with a copy of the record as it
existed before and after the update.

To accommodate the potentially large volume of information that must be saved to accomplish
rollback (especially for the records of delete files), a three-level storage scheme is used. A relatively
small buffer is allocated in the primary memory that accommodates any small-volume updates.
Extra virtual memory is used for spillovers from the primary memory buffer. Temporary files are
used when the volume of data specified is too great or an execution-time parameter exceeds a
limit.

Sufficient storage must be available for rollback recovery of any given update. Otherwise, QUICK
stops the update, rolls back the buffers to the starting values while it still has all the data, and
issues an error message.

When QUICK updates an existing record, it can tell whether the record has been updated by some
other process during the time span between the first retrieval and update. This is accomplished by
comparing a checksum calculated when the record was first read to a checksum calculated when
the record is read again prior to updating. If there's a difference between the two checksums,
QUICK halts the update process, issues a message, and restores the files to the state they were in
before the update began.

The checksum calculation omits:
• calculated columns. If they were included, the values could have been changed by the

database, resulting in a checksum mismatch. This can easily occur if the user does an Update
Stay. Removing calculated columns from the checksum calculation eliminates these false
errors.

• blob columns. These are excluded from the checksum calculation for performance reasons, as
they can be very large.

• relational columns not referenced by the screen. These are excluded because the checksum is
based on the underlying SQL generated for the QUICK screen.

Users who write their own QDESIGN procedures must handle rollbacks themselves in certain
instances. Only PUT verbs that are used in the UPDATE procedure, or procedures with the
RECOVERABLE option, can take advantage of PowerHouse's full rollback. PUT verbs that
appear outside these procedures don't automatically roll back if an error condition occurs.

If a subscreen is called from the UPDATE procedure without the KEEP ROLLBACK option on the
RUN SCREEN verb, all rollback information is lost and the rollback isn't possible. Either use the
KEEP ROLLBACK option or call the subscreen from the POSTUPDATE procedure (which is only
performed after successful completion of the UPDATE procedure).

Conversion
Prior to 7.33.C (UNIX), 7.10E1 (OpenVMS) and 8.09 (MPE/iX), no automatic rollback was
available to cancel the effects of PUT verbs to non-relational records executed outside of the
UPDATE procedure. If PUT verbs to non-relational records were used outside of the UPDATE
procedure, you would have to write a BACKOUT procedure to reverse the effects of the PUT
verbs.

If you use the RECOVERABLE option, any BACKOUT procedures that you have coded to handle
rollbacks must be reviewed to ensure that a "double rollback" is not performed.

Example
This screen allows users to enter new part numbers in an order entry system. The part numbers
are assigned automatically from a DESIGNER file named NEXTCODE.

All parts are uniquely defined by a two segment index consisting of a PARTNUMBER and a
PARTVARIANT. As soon as the user has finished entering a new part and has performed an
update, the POSTUPDATE procedure prompts to determine if there are more PARTVARIANT
values to be added for the current PARTNUMBER.

QUICK invokes a subscreen based on the user's response to the prompt issued in the MORE field.
> SCREEN ADDPART &
> NOMODE &
> ACTION LABEL "==>" AT 20,1 &

346 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
POSTUPDATE

> ACTIVITIES ENTRY
>
> FILE PARTS PRIMARY
> FILE NEXTCODE DESIGNER
> ACCESS USING 1
> TEMPORARY PARTNUM NUMERIC *4
>
> TEMPORARY PARTNAME CHARACTER *12
>
> TEMPORARY MORE CHARACTER *1 &
> INITIAL "N"
> TITLE "Add New Part" CENTERED AT 4,1
.
.
.
> FIELD MORE &
> REQUIRED PREDISPLAY NOID &
> DATA AT 4,40 OMIT ON ENTRY &
> VALUES "Y", "N", "y", "n" &
> LABEL "More Variants for this Part?"
.
.
.
> PROCEDURE POSTUPDATE
> BEGIN
> LET PARTNUM = PARTNUMBER OF PARTS
> LET PARTNAME = PARTNAME OF PARTS
> PROMPT MORE
> IF MORE = "Y"
> THEN RUN SCREEN ADDVAR1 &
> PASSING PARTNUM, PARTNAME
> RETURN
> END
>
> BUILD

Chapter 7: QDESIGN Procedures
PREENTRY

QDESIGN Reference 347

PREENTRY
Performs processing at the beginning of the entry sequence.

Syntax
PROCEDURE PREENTRY

Discussion
The PREENTRY procedure is an optional procedure that you can write to perform tests,
calculations, or initializations at the beginning of the entry sequence.

Note: For more information about verb and procedure compatibility, see (p. 239).

When the PREENTRY Procedure is Initiated

The PREENTRY procedure is initiated by the entry sequence. QUICK performs the processing
specified by this procedure in the entry phase of Entry mode processing. For information about
Entry mode, see (p. 248).

The PREENTRY procedure is not executed in a slave screen because the ENTRY procedure is
considered as an extension to the ENTRY procedure in the calling screen

Error Handling in the PREENTRY Procedure

If QUICK encounters an error, it backs up to the last ACCEPT verb or BLOCK TRANSFER
control structure. If there is no ACCEPT verb or control structure, then QUICK prompts at the
Action field without executing the ENTRY procedure.

The ENTRYMODE predefined condition is true during the PREENTRY procedure.

Example
The following screen uses a PREENTRY procedure to obtain a value from a control file when
assigning an account number automatically to customers.

In this example, the PREENTRY procedure retrieves the next available customer number from the
NEXTCODE record-structure. This number is converted to a string, concatenated with the letter
"C", and is assigned to the item CUSTOMERKEY of CUSTOMERS.
> SCREEN ADDCUST &
> NOMODE &
> ACTION LABEL "===>" AT 20,1 &
> ACTIVITIES ENTRY
>
> FILE CUSTOMERS PRIMARY
> FILE NEXTCODE DESIGNER
> ACCESS USING 3
>
>
> TITLE "Add New Customer" CENTERED AT 4,1
>
> DRAW 7,15 TO 19,65
>
> SKIP TO LINE 9
>
> ALIGN (20,25,40)
> FIELD CUSTOMERKEY OF CUSTOMERS &
> DISPLAY &
> LOOKUP NOTON CUSTOMERS
> FIELD CUSTOMERNAME OF CUSTOMERS
> FIELD STREET OF CUSTOMERS
> FIELD CITY OF CUSTOMERS &
> ID SAME
> FIELD PROVSTATE OF CUSTOMERS &
> LABEL "Prov/State" &

348 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
PREENTRY

> ID SAME
> FIELD POSTALZIP OF CUSTOMERS &
> LABEL "PCode/Zip" &
> ID SAME
> FIELD PHONENUMBER OF CUSTOMERS &
> ID SAME &
> BWZ
.
.
.
> PROCEDURE PREENTRY
> BEGIN
> GET NEXTCODE USING 3
> LET CUSTOMERKEY OF CUSTOMERS = &
> "C" + PACK(ASCII(CODE OF NEXTCODE))
> LET CODE OF NEXTCODE = CODE OF NEXTCODE + 1
> PUT NEXTCODE AT 3
> CLOSE NEXTCODE
> DISPLAY CUSTOMERKEY OF CUSTOMERS
> END
>
> BUILD

Chapter 7: QDESIGN Procedures
PRESCROLL

QDESIGN Reference 349

PRESCROLL
Performs processing before scrolling occurs.

Syntax
PROCEDURE PRESCROLL

Discussion
QDESIGN does not generate a default PRESCROLL procedure.

When QUICK determines that a command will cause the occurrence window to move, it takes the
following steps:
• If there is a PRESCROLL procedure, QUICK invokes it.
• QUICK moves the occurrence window accordingly.
• If there is a POSTSCROLL procedure, QUICK invokes it.
• QUICK re-displays the occurrence window to show the changes.

The mode (CHANGEMODE, CORRECTMODE, ENTRYMODE, FINDMODE,
SELECTMODE) does not change for this procedure; it remains the same as the current context.

QUICK action commands that change the occurrence window include:

Any user action (such as Skip All (//) or Backup (\)) when entering, modifying, or appending data
records, may require QUICK to move the occurrence window. In addition, QUICK automatically
moves the occurrence window when it is full and there are empty record buffers in the cache not
currently displayed.

Notes: Any verb that prompts for input may cause QUICK to reposition the occurrence window,
and as QUICK is already in the process of moving the window, the results are unpredictable.

For more information about verb and procedure compatibility, see (p. 239).

Error Handling in the PRESCROLL Procedure

When an error occurs in the PRESCROLL procedure, QUICK skips the rest of the procedure and
stops the command or verb that caused this procedure to be invoked. This stops QUICK from
scrolling. QUICK issues an error message and prompts for the next action. QUICK uses the
backup stack to determine where to prompt if the scrolling was initiated automatically during
field processing.

Example
The PRESCROLL procedure can be used to prevent scrolling before an Update action occurs. The
following example checks each on-screen record to see if changes have been made. If any changes
have been made, the scrolling action is not allowed. The user must update before leaving the
screen.
> PROCEDURE PRESCROLL
> BEGIN
> FOR EACH DISPLAYED EMPLOYEE
> IF ALTEREDRECORD
> THEN ERROR &
> "An Update must be performed before scrolling"

FIRST RECORD LAST RECORD

NEXT NEXT DATA PREVIOUS DATA

NEXT RECORD PREVIOUS RECORD

UPDATE UPDATE NEXT

350 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
PRESCROLL

> END

Chapter 7: QDESIGN Procedures
PREUPDATE

QDESIGN Reference 351

PREUPDATE
Performs processing prior to the UPDATE procedure when the user enters one of the update
commands.

Syntax
PROCEDURE PREUPDATE [RECOVERABLE]

RECOVERABLE

Instructs QUICK to keep rollback information for PUTs done to non-relational records during the
PREUPDATE procedure. This option has no effect on PUTs to relational records.

Discussion
You can write the optional PREUPDATE procedure to perform field processing and editing prior
to the UPDATE procedure. The PREUPDATE procedure is started when one of the update
commands is entered, or automatically at the end of the standard entry sequence for screens with
the AUTOUPDATE option.

The PREUPDATE procedure usually consists of one or more edits that can lead to error messages.
QUICK processes any infield validation statements in the PREUPDATE procedure before it
performs an update in response to any of the update commands. If any error messages are issued,
updating isn't performed.

Note: For more information about verb and procedure compatibility, see (p. 239).

When the PREUPDATE Procedure is Initiated

The PREUPDATE procedure is initiated when the QUICK screen user enters one of the update
commands when there are changes pending.

In addition, the PREUPDATE procedure is executed automatically at the end of the standard entry
sequence for screens with the AUTOUPDATE option.

During the execution of this procedure, one of the predefined conditions, CHANGEMODE or
CORRECTMODE, is true.

Error Handling in the PREUPDATE Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped. Any
updates performed by this procedure are rolled back if the procedure has the RECOVERABLE
option, otherwise no updates are rolled back. QUICK then prompts the user at the Action field
without performing the UPDATE procedure.

Rollbacks

If any error conditions are detected in the middle of a multiple record or multiple file update, a
special rollback facility restores the files to the state that they were in before the update began. For
more information, see (p. 322).

Conversion
Prior to 7.33.C (UNIX), 7.10E1 (OpenVMS), and 8.09 (MPE/iX), no automatic rollback was
available to cancel the effect of PUT verbs to non-relational records executed outside of the
UPDATE procedure. If PUT verbs to non-relational records were used outside of the UPDATE
procedure, you would have to write a BACKOUT procedure to reverse their effect.

If you use the RECOVERABLE option, any BACKOUT procedures that you have coded to handle
rollbacks must be reviewed to ensure that a "double rollback" is not performed.

352 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
PREUPDATE

 Examples
The following PREUPDATE procedure does an edit check involving four separate fields entered by
the user.
> PROCEDURE PREUPDATE
> BEGIN
> IF ORDERTOTAL <> &
> QUANTITY * (UNITPRICE + TAX)
> THEN ERROR
> "Order total does not compute correctly"
> END

In the next example, if an error occurs on the PUT to RECORD_A in the PREUPDATE procedure,
the QUICK screen stops processing and the PUT is rolled back.

If an error occurs on the PUT to RECORD_B in the UPDATE procedure, processing stops and
both the PUT to RECORD_A and RECORD_B are automatically rolled back since both the
UPDATE and PREUPDATE procedures are recoverable. The PUTs that take place in the two
procedures are treated as a unit of work, and are, therefore, rolled back together.

Similarly, if a POSTUPDATE procedure exists with the RECOVERABLE option, the PUTs in all
three procedures are treated as a unit and are all rolled back in the event of an error.
> SCREEN RECOVER03
> FILE RECORD_A DESIGNER
> FILE RECORD_B PRIMARY
.
.
.
> PROCEDURE PREUPDATE RECOVERABLE
> BEGIN
> PUT RECORD_A
> END
>
> PROCEDURE UPDATE
> BEGIN
> PUT RECORD_B
> END

Chapter 7: QDESIGN Procedures
PROCESS

QDESIGN Reference 353

PROCESS
Performs processing after a new or changed value is entered in the named field.

Syntax
PROCEDURE PROCESS field

field

Names the field with which the PROCESS procedure is associated.

The PROCESS procedure is initiated by the ACCEPT verb for a field. For more information,
see (p. 364).

Discussion
You can write the optional PROCESS procedure to allow processing based on entering or
changing the associated item.

You can calculate and display field values directly in the PROCESS procedure. The values for
FIELDTEXT and FIELDVALUE have already been moved to the record buffer by the time the
PROCESS procedure is executed. This means that they might not be current, making references to
them (or assignments from them to the record buffer) unpredictable. Because there's no danger of
the calculated values being overwritten by either FIELDTEXT or FIELDVALUE, reference the
field by name.

Note: For more information about verb and procedure compatibility, see (p. 239).

When the PROCESS Procedure is Initiated

The PROCESS procedure is initiated by an ACCEPT verb when a new or changed value is entered
in the named field, or by an EDIT verb. The PROCESS procedure immediately follows the
successful completion of an EDIT procedure (if there is one for the named field) and balance
summing. At the time the procedure is invoked, the new value is stored in the record buffer or the
temporary item buffer, and has already been accepted by QUICK.

The PROCESS procedure is performed only if the value entered for the field named in the
PROCESS procedure passes editing. It isn't performed for null entries unless the default or
duplicate value is moved to the item.

During execution of this procedure, one of CHANGEMODE, CORRECTMODE,
ENTRYMODE, or FINDMODE is true, or they can all be false. If SELECTMODE is true,
FINDMODE is also true.

Error Handling in the PROCESS Procedure

If the PROCESS procedure is called by the ACCEPT verb, the rest of the procedure is skipped and
QUICK prompts at the Action field.

If the procedure is called by the EDIT verb, the rest of the procedure is skipped and QUICK
continues error processing for the procedure containing the EDIT verb.

Examples
The following example demonstrates how a PROCESS procedure can be used to assign values to
items depending on other item values. The PROCESS procedure is initiated when a value is
entered in the CITY field. Whenever the value of CITY changes, the procedure attempts to change
the value of PROVINCE automatically.
> SCREEN PROVINCE
>
> FILE INVOICES
> FILE GEOGRAPHY DESIGNER
> FIELD INVOICENO OF INVOICES REQUIRED NOCHANGE &
> LOOKUP NOTON INVOICES

354 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
PROCESS

> FIELD INVOICEDATE OF INVOICES
> FIELD CITY OF INVOICES
> FIELD PROVINCE OF INVOICES IF PROVINCE &
> OF INVOICES = " "
>
> PROCEDURE PROCESS CITY
> BEGIN
> GET GEOGRAPHY VIA CITY USING CITY &
> OF INVOICES OPTIONAL
> IF ACCESSOK
> THEN BEGIN
> LET PROVINCE = PROVINCE OF GEOGRAPHY
> END
> END

In the next example, there are four inter-related fields. The first must be entered, the last three are
optional, and if any one is entered, the others may be calculated. The INPUT procedure is used to
determine if the user has entered a value in the INCREMENT field.
.
.
.
> TEMPORARY ONEENTERED CHARACTER*1
.
.
.
> FIELD INITIALVALUE REQUIRED
> FIELD INCREMENT OF TESTVALUES
> FIELD PERCENTCHANGE OF TESTVALUES &
> IF ONEENTERED <> "Y"
> FIELD FINALVALUE OF TESTVALUES &
> IF ONEENTERED <> "Y"
>
> PROCEDURE INPUT INCREMENT
> BEGIN
> IF 0 = SIZE(FIELDTEXT)
> THEN LET ONEENTERED = "N"
> END
> PROCEDURE PROCESS INCREMENT
> BEGIN
> LET FINALVALUE = INITIALVALUE + INCREMENT
> LET PERCENTCHANGE =
> 100 * INCREMENT/INITIALVALUE
> DISPLAY FINALVALUE
> DISPLAY PERCENTCHANGE
> LET ONEENTERED = "Y"
> END
>
> PROCEDURE PROCESS PERCENTCHANGE
> BEGIN
> LET FINALVALUE = INITIALVALUE * &
> (1+PERCENTCHANGE/100)
> LET INCREMENT = FINALVALUE - INITIALVALUE
> DISPLAY FINALVALUE
> DISPLAY INCREMENT
> LET ONEENTERED = "Y"
> END
>
> PROCEDURE PROCESS FINALVALUE
> BEGIN
> LET INCREMENT = FINALVALUE - INITIALVALUE
> LET PERCENTCHANGE =
> 100 * INCREMENT/INITIALVALUE
> DISPLAY INCREMENT
> DISPLAY PERCENTCHANGE
> END

Chapter 7: QDESIGN Procedures
PROCESS

QDESIGN Reference 355

The preceding example isn't complete. It works correctly in the standard Entry sequence and
when a correction or change is made to one of the three optional fields. However, it does not work
when the value of the INITIALVALUE field is changed or corrected. To rectify the problem, you
can
• put the NOCORRECT NOCHANGE option on the FIELD statement for the INITIALVALUE

item. This works but is somewhat restrictive since the item INITIALVALUE can't be changed.
• allow the change but include a PREUPDATE procedure that checks for the inconsistency and

warns the user to adjust one of the other four fields
• include a PROCESS procedure for the INITIALVALUE field, as in
> PROCEDURE PROCESS INITIALVALUE
> IF CORRECTMODE OR CHANGEMODE
> THEN BEGIN
> INFO &
> "PERCENTCHANGE and FINALVALUE altered"
> LET PERCENTCHANGE = 100 * INCREMENT/INITIALVALUE
> LET FINALVALUE = INITIALVALUE + INCREMENT
> DISPLAY FINALVALUE
> DISPLAY PERCENTCHANGE
> END

Remember that the field procedures are performed at several phases of processing, and users have
wide flexibility in changing data after it has been entered. When performing calculations involving
several fields, you must allow for this.

356 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
SELECT

SELECT
Controls Select mode processing.

Syntax
PROCEDURE SELECT

Discussion
QUICK generates a default SELECT procedure only for PANEL screens. When no SELECT
procedure exists for a QUICK screen, Select mode processing is handled by a predefined set of
processing steps as described later in this section.

The Default SELECT Procedure

The default SELECT procedure contains a SELECT verb for the first occurrence of each field in
the current screen. By default, the SELECT verbs within the SELECT procedure are blocked into
units (based on CLUSTER statements) for processing with the BLOCK TRANSFER, BEGIN, and
END control structures.

For more information about the BLOCK TRANSFER control structure, see (p. 372).

No SELECT verb is generated for fields that
• are marked as NOSELECT
• have a DISPLAY, FIXED, or SILENT option on the ITEM or FIELD statement
• contain temporary items

If no SELECT procedure is specified or generated by default for a QUICK screen, QUICK uses a
standard process for selecting data records:
1. Run the PATH procedure, prompting the screen user for segment values.
2. Prompt the screen user for field ID-numbers. The numbers entered identify the fields in which

QUICK will prompt for additional selection values.
3. Prompt the screen user for a value in each field identified in Step 2.

If a SELECT procedure exists, it replaces Step 2 of the standard select process. If QUICK is run
with the charmode=field program parameter, the SELECT procedure is ignored.

During the execution of this procedure, the FINDMODE and SELECTMODE predefined
conditions are true.

Example
The following example illustrates a simple SELECT procedure for a basic screen design. In this
example, users of the screen that includes this SELECT procedure are limited to the fields
ORDERDATE and QUANTITYORDERED in Select mode.
.
.
.
> PROCEDURE SELECT
> BEGIN
> SELECT ORDERDATE OF ORDERMASTER
> SELECT QUANTITYORDERED OF ORDERMASTER
> END
.
.
.

Chapter 7: QDESIGN Procedures
UPDATE

QDESIGN Reference 357

UPDATE
Controls update processing.

Syntax
PROCEDURE UPDATE

Discussion
Files are updated when new data records are created, or when old data records are changed or
deleted. The updating activity is normally governed exclusively by the UPDATE procedure, and
doesn't begin until the QUICK screen user enters one of the Update Action field commands.

Note: For more information about verb and procedure compatibility, see (p. 239).

The Default UPDATE Procedure

QDESIGN generates an UPDATE procedure automatically, assuming that MASTER, PRIMARY,
SECONDARY, DETAIL, and DELETE files are to be updated
• when the user enters an Update command
• automatically at the end of the standard Entry sequence (for screens with the AUTOUPDATE

option)

The standard UPDATE procedure controls all file updates. If there is an OCCURS option on a
FILE statement, the corresponding PUT verb is included in a FOR control structure.

DELETE files are updated only if the PRIMARY records are marked for deletion. All AUDIT files
are updated automatically with their related files. REFERENCE files are not updated. You must
control all DESIGNER file updating.

Backing Out of an Update

If all updating is performed in the UPDATE procedure, QUICK screens allow the user to back out
of the screen at any time without updating and without affecting the data in the file. Data in the
file is always maintained at the state of the last successful update.

The PREUPDATE Procedure

If the PREUPDATE procedure is included in the screen design, it is performed first. If the
PREUPDATE procedure completes successfully, balance checking is performed, and then the
UPDATE procedure is initiated.

Error Handling in the UPDATE Procedure

If an error occurs during the execution of this procedure, the rest of the procedure is skipped. Any
updates performed by the UPDATE procedure before the occurrence of the error are rolled back,
and QUICK prompts at the Action field. This rollback facility removes most causes of inconsistent
data records, with two exceptions:
• If a failed update reaches another error while attempting to rollback, the files may remain

inconsistent. (QUICK issues an error message to this effect.) Note that data records added to
SEQUENTIAL and DIRECT files can't be deleted. If rollback occurs and these types of files
are present (and are not AUDIT files), the rollback fails.

• Append-type AUDIT files can't be restored to their original state. If these types of files are
involved in the rollback, QUICK writes audit data records that reflect the updates performed
by rollback processing.

Relational systems provide their own rollback mechanism. Therefore, for tables and views,
QUICK invokes a database rollback when errors are encountered rather than invoking its own
rollback mechanism.

358 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
UPDATE

Using PUT Verbs Outside of the UPDATE Procedure

QUICK normally updates backout buffers at the end of the UPDATE procedure. However, if a
PUT verb is written outside the UPDATE procedure, QUICK updates its associated backout buffer
immediately. QUICK updates backout copies of passed temporary items only when the screen user
performs the UPDATE procedure. The use of PUT verbs outside of the UPDATE procedure is not
recommended.

During the execution of this procedure, one of the predefined conditions, CHANGEMODE or
CORRECTMODE, is true.

PUT Verb Order in the Default UPDATE Procedure

QDESIGN generates PUT verbs in the UPDATE procedure to do the actual updating. Generated
UPDATE procedures have up to three sections depending on the screen requirements and the
relationships between files and tables. There are three types of PUT verbs corresponding to the
three sections:
• The add constraints section of the generated UPDATE procedure consists of PUT verbs with

the NEW option. The NEW option states that the record status must be new before the PUT
verb is executed. The PUT verb with the NEW option is generated for IMAGE and Eloquence
master files so that the master dataset data record is added before any associated IMAGE or
Eloquence detail dataset data records.

• The delete constraints section of the generated UPDATE procedure consists of PUT verbs with
the DELETED option. The DELETED option states that the record must be marked for
deletion before the PUT verb is executed. The PUT verb with the DELETED option is
generated for IMAGE and Eloquence detail datasets so that the records in the detail dataset
are deleted before the associated master dataset data record. This section also contains PUT
verbs for DELETE files which are IMAGE or Eloquence detail datasets.

• The consistency section of the generated UPDATE procedure ensures that all files and tables
are updated. This section contains all PUT verbs generated without the NEW or DELETED
options. The order that they are generated in depends on the
update=bottomup|topdown|fkc_put_order program parameter setting. The default is
bottomup, as described below. For more information on the update program parameter, see
Chapter 2, "Program Parameters", in the PowerHouse Rules book.

Bottomup: Default Order of PUT Verb Generation
1. Generate SECONDARY files that occur with the DETAIL file
2. Generate DELETE files that occur with the DETAIL file
3. Generate the DETAIL file
4. Generate SECONDARY files that occur with or are related to the PRIMARY file
5. Generate DELETE files that do not occur with the DETAIL file
6. Generate the PRIMARY file
7. Generate MASTER files that occur with the PRIMARY file
8. Generate MASTER files that do not occur with the PRIMARY file
9. Generate standalone AUDIT files

Topdown: 7.10 Order of PUT Verb Generation (OpenVMS)
This is the order of PUT verb generation on OpenVMS in version 7.10 and before.
1. Generate Master files
2. Generate the Primary file
3. Generate the Detail file and Secondary files
4. Generate Delete files
5. Generate stand-alone Audit Files

fkc_put_order: Order of PUT Verb Generation for Foreign Key Constraints
The ordering of PUT verbs based on foreign key constraints is available for relational databases,
except those defined with the RDB/VMS file type. For RDB/VMS databases, see "fkc_put_order
for RDB/VMS Databases" (p. 359).

Chapter 7: QDESIGN Procedures
UPDATE

QDESIGN Reference 359

In order to generate the PUT verbs in the correct sequence, the primary keys referenced by foreign
keys must have unique indexes created on them. Most databases will automatically create a
unique index when the primary key is created, however some will not.

A parent is a relational table that is referenced by a foreign key constraint from another table. A
child is a relational table with a foreign key constraint that references another table.

The rules for the order of PUT verb generation for parent and child tables on a screen are:
1. The add constraints section contains PUT verbs with the NEW option for all parents that are

not DELETE-type files.
2. The delete constraints section contains PUT verbs with the DELETED option for all children

that are not DELETE-type files. It also contains PUT verbs with no options for all children
that are DELETE-type files.

3. The consistency section contains PUT verbs for all tables on the screen, except for the
DELETE-type files handled in step 2, for which PUT verbs have already been generated.

The PUT verb generation in steps 1 and 2 is done respecting multi-level constraints that might be
in place between the parent and child tables.

fkc_put_order for RDB/VMS Databases (OpenVMS)
The foreign key constraint functionality will not work for databases defined in the dictionary with
type RDB/VMS since PowerHouse is unable to determine the foreign key constraint rules. In order
to bypass this limitation and generate the PUT verb sequence in the UPDATE procedure based on
foreign key constraint rules, use the following technique:
1. Add an entry to the dictionary for the same database defined as type RDB.
2. Make a copy of the screen source code and change the references to the database in the screen

source to the new database definition.
3. Compile the new screen against this new dictionary database definition using the

update=fkc_put_order program parameter. Use BUILD LIST DETAIL. This will cause the
PUT verb sequence in the UPDATE procedure to be generated according to the foreign key
constraint rules.

4. Save the generated UPDATE procedure, copy it to the original screen and recompile. The
update=fkc_put_order is not necessary.

Example
The following partial example illustrates the UPDATE procedure for a subscreen:
> SCREEN MIDDLE RECEIVING MASTER1, MASTER2
> FILE MASTER1 MASTER
> FILE MASTER2 MASTER
> FILE PRIME PRIMARY OCCURS 6
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF MASTER2.
> FILE SECONDA SECONDARY OCCURS WITH PRIME
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF PRIME.
> FILE SECONDB SECONDARY OCCURS WITH PRIME
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF PRIME.
> FILE SUBPRIME1 DELETE OCCURS WITH PRIME
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF SECONDB.
> FILE SUBPRIME2 DELETE OCCURS WITH PRIME
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF SECONDB.
> FILE PRIMEAUDIT AUDIT WITH PRIME OCCURS WITH PRIME
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF PRIME.
.
.
.
> BUILD LIST

All files involved in a single logical relationship should be updated together. This minimizes the
time during which the files are logically inconsistent.

Using the previous screen design statements, the default UPDATE procedure constructed by
QDESIGN for an indexed file is:
> PROCEDURE UPDATE

360 PowerHouse(R) 4GL Version 8.4E

Chapter 7: QDESIGN Procedures
UPDATE

> BEGIN
> FOR PRIME
> BEGIN
> PUT SECONDA
> PUT SECONDB
> PUT SUBPRIME1
> PUT SUBPRIME2
> PUT PRIME
> END
> PUT MASTER1
> PUT MASTER2
> END

QDESIGN Reference 361

Chapter 8: QDESIGN Verbs and Control
Structures

Overview
This chapter provides a detailed reference of QDESIGN verbs and control structures. QDESIGN
verbs perform specific actions within procedures. QDESIGN control structures determine the
processing flow within procedures. For each verb and control structure you'll find
• syntax summaries
• detailed syntax descriptions
• detailed discussions
• examples

Summary of QDESIGN Verbs and Control Structures
The following table lists QDESIGN verbs and control structures with brief descriptions of what
they do.
.

Verb or Control Structure Purpose

ACCEPT Prompts for, edits, and displays a value in a field.

BEGIN ... END Marks the beginning and end of a compound statement.

BLOCK TRANSFER Controls user prompting for groups of fields.

BREAK Stops data record retrieval.

[SQL] CALL Calls a stored procedure or function from the specified database.

CLEAR Clears terminal lines.

[SQL] CLOSE Closes a file or cursor.

COMMIT Commits one or more transactions.

DELETE Marks a data record for deletion.

[SQL] DELETE Deletes rows from a table.

DISABLE Prevents the use of a procedure.

DISPLAY Displays a value in a field.

DO BLOB Executes an external program to handle the contents of the
BLOB.

DO EXTERNAL Executes an external program.

DO INTERNAL Executes an internal procedure.

362 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures

EDIT Edits a value in a field.

ERROR Stops processing and issues an error message.

[SQL] FETCH Retrieves the next row of data for the specified cursor.

FOR Establishes a control structure that repeats a procedural
statement.

GET Retrieves a data record.

IF Establishes a conditional statement.

INFORMATION Issues an informational message.

[SQL] INSERT Adds new rows to a table.

LET Sets the value of an item equal to an expression.

LOCK Locks a file, an IMAGE database or dataset, an ALLBASE/SQL
table or an Oracle table.

MEMOLOG (MPE/iX) Writes a message to an IMAGE log file.

NULL Performs a null action.

[SQL] OPEN Opens a cursor and gets the result rows ready to be accessed with
subsequent SQL FETCH statements.

PERFORM APPEND Executes the APPEND procedure.

PROMPT Prompts for and displays a value in a field.

PUSH Places a command or list of command options at the top of the
command stack.

PUT Updates the data record.

REFRESH Clears and rewrites (refreshes) an area of terminal memory.

REQUEST Prompts for a value required for record retrieval.

RETURN Exits from a screen.

ROLLBACK Restores the data affected by an update to the state that it was in
before the transaction was started.

RUN COMMAND Executes an operating system command.

RUN REPORT Executes a QUIZ report.

RUN RUN Executes a QTP run.

RUN SCREEN Invokes a lower-level screen.

RUN THREAD Specifies a screen thread.

SELECT Prompts for a selection value in Select mode.

SEVERE Aborts processing and issues a severe message.

START Starts a transaction.

Verb or Control Structure Purpose

Chapter 8: QDESIGN Verbs and Control Structures

QDESIGN Reference 363

STARTLOG (MPE/iX) Marks the start of a transaction set in an IMAGE log file.

STOPLOG (MPE/iX) Marks the end of a transaction set in an IMAGE log file.

UNLOCK Unlocks a file.

[SQL] UPDATE Updates rows in a table.

WARNING Issues a warning message.

WHILE Executes the next procedural statement as long as the condition
is true.

WHILE RETRIEVING Retrieves and processes data records in a loop.

Verb or Control Structure Purpose

364 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
ACCEPT

ACCEPT
Prompts for, edits, and displays a value in a field.

Syntax
ACCEPT field

field

Names the field where the user is prompted for input.

Discussion
The ACCEPT verb is the most powerful of the field processing verbs. When the ACCEPT verb is
encountered, QUICK
1. Prompts the user to enter a value at the specified field.
2. Checks and edits the entered value.
3. Stores the value from Step 2 in a record buffer or a temporary item buffer, and performs

balancing and other secondary processing as required.
4. Displays the value back in the appropriate field in the correct format.

The ACCEPT verb is used in the ENTRY and APPEND procedures to accept new data. The
ACCEPT verb is also used in both the MODIFY procedure and numbered DESIGNER procedures
for altering existing values.

Since there are so many activities associated with accepting and editing a data item, the process is
broken into a series of steps. Each step provides user exits in the form of procedures for you to
intervene at preset points in the process.

Note: For information about verb and procedure compatibility, see (p. 239).

Processes Initiated by the ACCEPT Verb

The following figure illustrates the processes that are performed when the ACCEPT verb is
executed, and contrasts these steps with the steps that are performed by other field processing
verbs:

Chapter 8: QDESIGN Verbs and Control Structures
ACCEPT

QDESIGN Reference 365

The steps the ACCEPT verb follows depend on what QUICK screen users enter. Exceptions to the
steps are caused by
• null entries
• user-entered Backup commands
• user-entered Duplicate commands
• user-entered Help or Refresh commands
• the Skip commands ("/", "/n", "//")

The Skip commands simulate null entries.

For information about how QUICK handles these exceptions, see (p. 367).

The steps performed in processing the ACCEPT verb are discussed below. In addition, these steps
are contrasted with similar steps that are performed by other field processing procedures. Not all
steps are performed in every case. Some steps may be bypassed, depending on the specific verb and
the nature of the entry.
1. Get input from the user.

If the ACCEPT verb doesn't occur within a BLOCK TRANSFER control structure, QUICK
prompts for a value in the field associated with the ACCEPT verb. If the field already contains
an entry, QUICK suppresses formatting on the entry, highlights the field, and performs a
terminal read once the user enters a value. Processing is performed based on the value read.
If the field occurs within a BLOCK TRANSFER control structure, QUICK processes the
ACCEPT verb in two separate passes.

366 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
ACCEPT

During the first pass, QUICK determines which of the fields associated with verbs in the
BLOCK TRANSFER (including ACCEPT verbs) should be enabled for input. If these fields
already contain entries, QUICK suppresses formatting on them and enables them for input.
The user can then enter or modify values in the enabled fields, and presses [Return] only when
all values for the enabled fields in the BLOCK TRANSFER are entered.
During the second pass, QUICK performs a terminal read. This occurs only after the QUICK
screen user presses [Return]. QUICK processes the ACCEPT verbs associated with each field
for which a value was entered.
If the field type is CHARACTER, the UPSHIFT and DOWNSHIFT options are applied if they
are specified. If the user presses a data field function key, that key is trapped in this step.
Further processing depends on the actions triggered by the trapped function key.

2. Perform the INPUT procedure.
The optional INPUT procedure related to the field is performed. In this procedure, you can
alter the contents and size of the FIELDTEXT predefined item before editing takes place.

3. Prepare for edit.
If the FIELDTEXT predefined item has a size of zero, the PROMPTOK predefined condition
is set to false for the field; otherwise, it is set to true.
If the PROMPTOK predefined condition is false and none of the REQUIRED, DUPLICATE,
or DEFAULT options are specified, the rest of Step 3 is skipped and processing continues with
Step 8.
The value of the FIELDTEXT predefined item is stored in the duplicate buffer for this field.
If the field type is NUMERIC, the field is checked for numbers. The result is scaled by the
input scale.
If the field type is DATE, the field is checked for a proper date as follows:
• The month portion must be in either alphabetical or numeric form.
• The year portion must be in either two or four-digit form, and with the year, month, and

day components in the proper order as determined by the format.
• The entered value is converted to a six-digit number in the format YYMMDD, or an

eight-digit number in the format YYYYMMDD.
If the field type or item type is either numeric or date, the numeric value is placed in the
FIELDVALUE predefined item.

4. Perform specified editing.
Data dictionary or FIELD statement editing is performed using
• the FIELDTEXT predefined item for character items
• the FIELDVALUE predefined item for numeric or date items
This editing includes VALUE options, pattern matching, and lookups, in that order.
Any reference to the associated item by name in the specified edits is trapped, and the
FIELDTEXT predefined item (for character items) or the FIELDVALUE predefined item (for
numeric or date items) is used instead. For pattern matching of numeric or date items, the
field value is converted to a character string. The existing value of the item in the record
buffer may be referenced by using the OLDVALUE function.
For more information about FIELD statement editing, see (p. 105). See also the ELEMENT
statement in Chapter 2, "PDL Statements", in the PDL and Utilities Reference book.

5. Perform the EDIT procedure.
The optional EDIT procedure related to the field is performed. In this procedure, you can
specify additional procedural editing that may not be possible using only FIELD statement
options. For example, you can validate combinations of segments in multi-segment indexes.
Within this procedure, any reference to the associated item within an expression is trapped
and the FIELDTEXT or FIELDVALUE predefined item is used instead. The existing value of
the item can be referenced with the OLDVALUE function. The existing value should not be
changed; this is done automatically in Step 6. Restrict activities in the EDIT procedure to
validating the entered value.

6. Store the value.

Chapter 8: QDESIGN Verbs and Control Structures
ACCEPT

QDESIGN Reference 367

The accepted value in the FIELDVALUE or FIELDTEXT predefined item is stored in the item
or segment and in the associated duplicate buffer; any balancing sums are also performed. If
the value in a record item changes, or if the value is different from the INITIAL value for the
field, QUICK sets the record status to CHANGED (the ALTEREDRECORD predefined
condition is set to true). QUICK doesn’t set the record status to CHANGED if the value for
the field is the same as the INITIAL value.

7. Perform the PROCESS procedure.
The optional PROCESS procedure related to the field is performed. At this point, the data has
been accepted and is now stored in the associated item. You can use this procedure to specify
spin-off processing and data manipulation that is performed when a new or changed value is
placed in the item.

8. Retrieve the value for display.
The value of the item is retrieved and placed in the FIELDTEXT predefined item.
A numeric item is scaled by the output scale, placed in the FIELDTEXT predefined item
(right-justified in an area matching the field size) with the minus sign (where applicable) just
to the left of the left-most digit, and blank filled.
A date item is converted to a six-digit number with the format YYMMDD or an eight-digit
number with the format YYYYMMDD and placed in the FIELDTEXT predefined item.
A character item is moved unchanged to the FIELDTEXT predefined item.

9. Perform the OUTPUT procedure.
The optional OUTPUT procedure related to the field is performed. At this point, you may
specify reformatting of the FIELDTEXT predefined item prior to the final formatting options.

10. Display the value.
If the field type is DATE, the content of the FIELDTEXT predefined item is converted to a
display string under control of the date format, separator, and null separator options.
If the field type is NUMERIC, the content of the FIELDTEXT predefined item is converted to
a display string under control of the numeric picture and format options.
If the field type is CHARACTER, the FIELDTEXT predefined item is converted to a display
string under control of the character picture.
The display string is displayed back to the QUICK screen user.

How the ACCEPT Verb Responds to Null Entries

When the FIELDTEXT predefined item has a zero length at the end of Step 3, the PROMPTOK
predefined condition is set to false for that field, and further processing is dependent on the field
options DEFAULT, REQUIRED, and DUPLICATE. The DUPLICATE field option can be specified
either alone or in combination with a REQUIRED or a DEFAULT expression.

If the DUPLICATE option is specified for the field, QUICK moves the previously entered value to
the FIELDTEXT predefined item. QUICK ignores the option if there is no previous entry to
duplicate. Processing continues as if the user had entered the value. The PROMPTOK predefined
condition is set to true for the field if a duplicate value is used.

If a DEFAULT expression is specified (and no value has yet been entered for the field), the
expression is evaluated and moved to the associated item. Any balancing sums are performed at
this stage, and QUICK skips Steps 3 through 5 (editing). If the DEFAULT and REQUIRED options
are used on the same statement, the DEFAULT option is ignored. The PROMPTOK predefined
condition remains false for the field and the value isn't put in the duplicate buffer.

If the REQUIRED option is specified and no value has yet been entered for the field, an error is
signaled.

How the ACCEPT Verb Responds to a User-Entered Backup Command

If a user enters a Backup command while the cursor is positioned in a field, the cursor moves
backwards one field at a time. The Backup command takes the user back to the previous ACCEPT
or PROMPT verb, or the previous BLOCK TRANSFER control structure.

As the cursor moves back, the value in the field from which the backup was signaled is redisplayed
using Steps 8 through 10. QUICK then backs up to the previous ACCEPT or PROMPT verb, or
the previous BLOCK TRANSFER control structure.

368 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
ACCEPT

Limit: The Backup command is not available for BLOCK TRANSFERs.

How the ACCEPT Verb Responds to a User-Entered Duplicate Command

Entering a Duplicate command places the contents of the duplicate buffer for the field to be placed
in the field on the terminal. The INPUT procedure is performed only if the duplicated value is
modified; otherwise processing continues with Step 3 as if the value had been entered by the user.
If no duplicate value exists, QUICK issues a warning message. The PROMPTOK predefined
condition is set to true for the field if a duplicate value is used.

How the ACCEPT Verb Responds to a User-Entered Skip All Command

Entering the Skip All command isn't the same as entering a Backout command. A Skip All
command simulates null data entries into the remaining fields. A Backout command returns the
QUICK screen user to the Action field and backs out all changes the user made.

If a field in a NOPANEL screen contains a partial entry, a Skip All command causes QUICK to
process the partial entry before returning to the Action field.

On screens with repeating PRIMARY or repeating DETAIL record-structures, the Skip All
command simulates null entries only to complete the entry sequence for the current occurrence.

In the following example, the Skip All command causes QUICK to simulate null entries only if a
value is entered for the BRANCH field for the current occurrence. Otherwise, since the occurrence
doesn't actually exist, QUICK terminates the entry sequence with no field processing. In contrast,
a Skip All command entered for a BRANCHNAME field simulates null entries for the
BRANCHNAME and BRANCHMANAGER fields and then terminates the entry sequence.
> SCREEN BRANCHES
> FILE BRANCHES OCCURS 5
> CLUSTER OCCURS WITH BRANCHES
> FIELD BRANCH REQUIRED NOCHANGE &
> LOOKUP NOTON BRANCHES
> FIELD BRANCHNAME
> FIELD BRANCHMANAGER
> CLUSTER
> BUILD

With repeating DETAIL record-structures, the Skip All command finishes only the current
occurrence. If // is entered in any field of the PRIMARY record, null entries are simulated for the
remaining PRIMARY fields. All occurrences of the DETAIL fields are skipped. If // is entered in
the first field of any occurrence of a DETAIL record, the current occurrence (and remaining
occurrences) are skipped. If // is entered in any DETAIL field except the first field of an
occurrence, the current occurrence is completed. Null entries are simulated for remaining fields in
the current occurrence. Remaining occurrences are skipped.

If a screen has a PRIMARY record-structure and a SECONDARY record-structure, and a field of
the SECONDARY record-structure has a REQUIRED option, entering // in the Entry sequence
stops the cursor at the required field. This happens even if the record status of the SECONDARY
data record is New and Unchanged; the SECONDARY record-structure is considered an extension
of the PRIMARY record-structure. Null entries in required PRIMARY record-structure fields are
not acceptable.

To separate the SECONDARY file field from the PRIMARY record-structure, place a CLUSTER
statement before the first SECONDARY file field (as in CLUSTER OCCURS WITH file), even
though the SECONDARY record-structure doesn't repeat. If a Skip Cluster command is entered
before data is entered into any of the SECONDARY file fields, and if the record status of the
SECONDARY file has not been changed procedurally, all of the SECONDARY file fields are
bypassed.

While QUICK simulates null entries for verbs requiring user input (ACCEPT, PROMPT, and
REQUEST), most other verbs are executed normally. However, the DO EXTERNAL and RUN
SCREEN verbs are ignored.

Example
The following screen design demonstrates how to use ACCEPT verbs.

Chapter 8: QDESIGN Verbs and Control Structures
ACCEPT

QDESIGN Reference 369

> SCREEN SALES
>
> FILE CUSTOMERS PRIMARY
> FILE INVIOCES SECONDARY
Item CUSTNO initialized (fixed) to CUSTNO OF CUSTOMERS.
Item DISCOUNT initialized (fixed) to DISCOUNT OF CUSTOMERS.
> FIELD CUSTNO OF CUSTOMERS REQUIRED NOCHANGE &
> LOOKUP NOTON CUSTOMERS
> FIELD CUSTNAME OF CUSTOMERS
> FIELD INVOICENO OF INVOICES REQUIRED NOCHANGE &
> LOOKUP NOTON INVOICES
> FIELD INVOICEDATE OF INVOICES
> FIELD INVOICETOTAL OF INVOICES
>
> PROCEDURE ENTRY
> BEGIN
>
> ACCEPT CUSTNO OF CUSTOMERS
> ACCEPT CUSTNAME OF CUSTOMERS
> ACCEPT INVOICENO OF INVOICES
> ACCEPT INVOICEDATE OF INVOICES
> ACCEPT INVOICETOTAL OF INVOICES
> END
>
> BUILD LIST
INVOICES accessed via CUSTNO

QDESIGN automatically generates ACCEPT verbs in the default ENTRY, APPEND, and
MODIFY procedures.

370 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
BEGIN...END

BEGIN...END
Marks the beginning and end of a compound statement.

Syntax
BEGIN

compound-statement
END

BEGIN
Marks the beginning of a compound statement. The BEGIN keyword must appear alone on a line
except when it is part of an IF control structure. In this case, it may be preceded by the keyword
THEN.

compound-statement
One or more verbs and/or control structures.

You can nest compound statements to any level. Each compound statement starts with a BEGIN
keyword and concludes with an END keyword.

END
Marks the end of a compound statement. The END keyword must appear alone on a line.

Discussion
There must be one END keyword for each BEGIN keyword.

Where to Use BEGIN and END

If a procedure contains more than one verb and/or control structure, the BEGIN and END
structures are required. The BEGIN and END control structures are not necessary in procedures
that contain only one statement. The BEGIN and END control structures are not included in any
procedure where the DISABLE verb is used to prevent execution of an activity, such as deletion.

Combining Compound Statements with Other Control Structures

Compound statements can be combined to work within other control structures. For example,
you can include several verbs or control structures in THEN and ELSE clauses of the IF control
structure. Similarly, you can include several verbs or control structures in a FOR loop by using the
BEGIN and END control structure.

Example
The following example shows how to use the BEGIN and END keywords to group individual
verbs and control structures into compound statements. In this example:
• The first BEGIN works together with the final END to block the entire ENTRY procedure.
• The second BEGIN works together with the first END to block the PERFORM APPEND

verb.
> PROCEDURE ENTRY
> BEGIN
> ACCEPT INVOICENUMBER OF INVOICES
> ACCEPT ACCOUNTNUMBER OF INVOICES
> ACCEPT INVOICEDATE OF INVOICES
> FOR INVOICESTATS
> BEGIN
> PERFORM APPEND
> END
> END

Chapter 8: QDESIGN Verbs and Control Structures
BEGIN...END

QDESIGN Reference 371

Using Compound Statements with Other Control Structures

The following example demonstrates how to incorporate a compound statement into an IF
control structure. In this example, the two procedural statements RUN and LET are executed only
if the specified condition is true.
> IF FIELDTEXT = "???"
> THEN BEGIN
> RUN SCREEN BRANCHK PASSING TEMPBRANCH MODE F
> LET FIELDTEXT = TEMPBRANCH
> END

372 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
BLOCK TRANSFER

BLOCK TRANSFER
Controls user prompting for groups of fields.

Syntax
BLOCK TRANSFER [SEQUENCED] control structure|verb

SEQUENCED
Prevents the QUICK screen user from skipping entries in response to prompts within the block.
When the SEQUENCED option is specified, the QUICK screen user can't enter a data value into a
field within the BLOCK TRANSFER until values have been entered for all preceding fields in the
BLOCK TRANSFER.

In general, the BLOCK TRANSFER control structure can be used anywhere that the ACCEPT
verb is valid. Blocks that contain more than one verb are created by entering the BEGIN and END
control structures following the BLOCK TRANSFER control structure.

control structure|verb
The BLOCK TRANSFER control structure must always be followed by one of the following
procedural statements:

Discussion
The BLOCK TRANSFER control structure, together with the FOR control structure, allows
PowerHouse applications to accept and process one or more data fields as a block, rather than
individually. This behavior is called Panel input.

If you include the PANEL option on the SET statement or the SCREEN statement, QDESIGN
generates the APPEND, ENTRY, MODIFY, PATH, and SELECT procedures, and includes
BLOCK TRANSFER control structures in each, as in
> PROCEDURE MODIFY
> BEGIN
> BLOCK TRANSFER
> BEGIN
> ACCEPT FIELD1
> ACCEPT FIELD2
> ACCEPT FIELD3
> END
> END
.
.
.

where FIELD1, FIELD2, and FIELD3 are grouped into a panel.

BLOCK EACH and BLOCK ALL options on CLUSTER statements affect the way the BLOCK
TRANSFER control structures are generated in the APPEND and ENTRY procedures.

How the BLOCK TRANSFER Control Structure Works

The processing associated with a BLOCK TRANSFER control structure is divided into three
phases of execution. In these phases, QUICK
1. Determines which fields in the block are to be enabled for user input.

Control structures Verbs

BEGIN ... END ACCEPT

FOR DISPLAY

FOR MISSING EDIT, PERFORM APPEND, PROMPT, REQUEST, SELECT

Chapter 8: QDESIGN Verbs and Control Structures
BLOCK TRANSFER

QDESIGN Reference 373

Each ACCEPT, REQUEST, PROMPT, or SELECT verb is scanned to determine whether or
not the associated field is to be enabled for input. All fields that aren't marked as both
NOCORRECT and NOCHANGE are enabled for entry, including fields in repeating primary,
secondary, or detail record-structures.
In all enabled fields, formatting is suppressed on existing data values to facilitate
modifications.

2. Accepts input from the user in all fields that were enabled for input in Step 1. Prompting
occurs in enabled fields, according to field id sequence. The user can move from field to field,
entering and changing data entries as desired in enabled fields. Step 2 ends when the user
presses [Enter] and transmits the block to QUICK for processing.

3. Executes the verbs and control structures in the block in the order in which they appear in the
BLOCK TRANSFER control structure. The normal field processing procedures (INPUT,
EDIT, PROCESS, OUTPUT) are executed for each field in the block in the order in which they
occur.

How QUICK Determines Which Fields to Enable for Input in a Block

QUICK examines the fields that are within the BLOCK TRANSFER control structure. Usually,
QUICK enables all fields that are referenced by the ACCEPT, PROMPT, REQUEST, or SELECT
verbs.

Fields are not enabled for input even when they are referenced by one of the ACCEPT, PROMPT,
REQUEST, or SELECT verbs if
• the referenced field has the NOCHANGE option specified and the record status is Old
• the referenced field has the NOCORRECT option specified, the record status is New, and the

field has previously been processed by QUICK
• the item associated with the referenced field belongs to a record marked for deletion
• the referenced field has the NOSELECT option specified. This applies only to the SELECT

verb.

If a FOR control structure appears within a BLOCK TRANSFER, then all fields in all occurrences
implied by the FOR control structure are enabled for entry, subject to the constraints already
discussed. In addition, the FOR control structure must contain only the verbs and/or control
structures that are allowed in the BLOCK TRANSFER.

Similarly, when a PERFORM APPEND verb appears within a BLOCK TRANSFER, all fields in
the APPEND procedure are examined to determine whether or not they should be enabled for
input. The APPEND procedure can contain a BLOCK TRANSFER control structure. However, all
BLOCK TRANSFER control structures in the APPEND procedure are ignored if the PERFORM
APPEND verb is called from within a BLOCK TRANSFER. Only the verbs and control structures
that are valid in a BLOCK TRANSFER can be used in the APPEND procedure (see (p. 372)).

Once a field is enabled for entry, any existing data in the field is displayed unformatted to
facilitate data entry for the QUICK screen user; no extraneous characters (such as date separators
and currency symbols) are required. Data is always assumed to exist in a field when
• the record buffer is marked as either New and Changed or Old and Changed
• the field is associated with a temporary item

Error Handling in a BLOCK TRANSFER Control Structure

Once the user transmits a block of field values to QUICK, the control structures and verbs in the
BLOCK TRANSFER are processed in the order in which they occur.

As verbs are processed, QUICK handles any data entry errors. As soon as QUICK detects an
invalid entry in a field (due to the failure of a field EDIT procedure, for example), the erroneous
field is marked internally and processing continues for the rest of the field processing verbs in the
BLOCK TRANSFER control structure. However, for all of the remaining fields in the block, only
the Input and Edit phases are executed; the Process and Output phases are ignored. In addition,
QUICK clears any fields for which the DISPLAY verb was specified.

374 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
BLOCK TRANSFER

Upon completion of the verbs in the BLOCK TRANSFER, QUICK positions the cursor on the
first field in error, highlights all fields in error, and displays the error message associated with the
first highlighted field. QUICK then runs the entire BLOCK TRANSFER again. In cases where
QUICK processes some fields before the error occurs, not all of the fields that were enabled for the
first execution of the BLOCK TRANSFER are enabled when the BLOCK TRANSFER is run
again. For example, a field for which NOCORRECT is specified isn't enabled on subsequent
executions of a BLOCK TRANSFER if QUICK accepted a valid value for that field before any
errors occurred.

For information about the Input, Edit, Process, and Output phases in QUICK, see (p. 364),
(p. 452), and (p. 481).

It's important to note that when an error occurs within a BLOCK TRANSFER, QUICK always
reruns the entire block transfer.

For screens that are not designated as PANEL screens, no BLOCK TRANSFER control structures
are generated. The result is that QUICK treats each field as a single block of information.

Where the BLOCK TRANSFER is Generated Automatically

The BLOCK TRANSFER control structure affects procedures that use the ACCEPT, PROMPT,
REQUEST, and SELECT verbs. BLOCK TRANSFERs are generated automatically for the
following procedures when PANEL is specified on either the SCREEN statement or the SET
statement:

Nesting BLOCK TRANSFER Control Structures

Explicitly nested BLOCK TRANSFER control structures are not valid in QDESIGN. However,
you can nest a BLOCK TRANSFER control structure implicitly in the ENTRY procedure by
including a PERFORM APPEND verb that references an APPEND procedure containing a
BLOCK TRANSFER control structure.

For examples of BLOCK TRANSFER control structures, see (p. 329) and (p. 330).

APPEND ENTRY PATH

MODIFY numbered DESIGNER procedures SELECT

Chapter 8: QDESIGN Verbs and Control Structures
BREAK

QDESIGN Reference 375

BREAK
Stops data record retrieval.

Syntax
BREAK

Discussion
The BREAK verb stops data record retrieval. The BREAK verb provides the QUICK screen user
with the option of stopping the control structure loop when a certain condition is met, instead of
allowing the loop to complete.

Limit: The BREAK verb is valid within the FOR, the WHILE, and the WHILE RETRIEVING
control structures.

Example
In this example, an edit procedure compares the quantity on hand to the quantity required. If the
quantity required is available, then the break verb stops the while retrieving control structure from
processing.
> SCREEN STOCK
> FILE STOCK
> FILE STOCKDETAIL DESIGNER
> TEMPORARY QUANTITYREQUIRED NUMERIC*8
> TEMPORARY QUANTITYFOUND NUMERIC*8
.
.
.
> PROCEDURE EDIT QUANTITYONHAND
> BEGIN
> LET QUANTITYFOUND = 0
> WHILE RETRIEVING STOCKDETAIL VIA STOCKNO &
> USING STOCKNO OF STOCK
> BEGIN
> LET QUANTITYFOUND = &
> QUANTITYFOUND + QUANTITYONHAND
> IF QUANTITYFOUND GE QUANTITYREQUIRED
> THEN BREAK
> END
> IF QUANTITYFOUND < QUANTITYREQUIRED
> THEN ERROR = "Not enough" + STOCKNAME + "On hand."
> END

376 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] CALL

[SQL] CALL
Calls a stored procedure or stored function from the specified database.

[SQL [IN database]
[{TRANSACTION transaction_name

[FOR {CONSISTENCY|{[CONCURRENCY]
phase-option [,phase-option]...}}]}]]

CALL stored-procedure|stored-function
[([ITEM] item [IN [OUT]]|[OUT]

[,[ITEM] item [IN [OUT]]|[OUT]]...)]
[ON ERROR CONTINUE|TERMINATE]
[RETURNING return-parameter

Limit: This statement is valid only for DB2, Oracle, ODBC, or Sybase databases.

IN database
Specifies against which database the stored procedure or function is executed.

Limit: Stored procedure calls are valid for DB2, ODBC, Oracle, Oracle Rdb (declared as TYPE
RDB in the dictionary), and Sybase databases.Stored function calls are valid only for Oracle
databases.

TRANSACTION transaction_name [FOR {CONSISTENCY|
{[CONCURRENCY] phase-option[,phase-option]...}}]

If the TRANSACTION option is not used, one of PowerHouse's default transactions is used.
Default transactions are associated with every file, table or stored procedure statement. The
default transactions are Query, Update and Consistency.

TRANSACTION
Specifies that the transaction is associated with the stored procedure call.

transaction_name
Any valid PowerHouse name.

FOR CONSISTENCY
Determines that a stored procedure call is associated with a particular transaction in Consistency
model.

Limit: Only one transaction association can be specified.

FOR [CONCURRENCY] phase-option [,phase-option]...
Determines that a stored procedure call is associated with a particular transaction or transactions
in Concurrency model.

Limit: Up to three transaction associations can be specified.

phase-option

Specifies the screen phase with which the transaction is associated.

For more information about transactions, see the PowerHouse and Relational Databases book.

Phase option Description

PROCESS The phase in which you are entering, correcting, or changing data
records on the screen.

QUERY The phase in which data is retrieved from the database.

UPDATE The phase in which data is updated.

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] CALL

QDESIGN Reference 377

CALL stored-procedure|stored-function
The name of a stored procedure or stored function in the database.

The syntax for a procedure name varies with the RDBMS. For information on a specific database
system, see "Stored Procedures" in the PowerHouse and Relational Databases book.

([ITEM] item [IN [OUT]]|[OUT] [,[ITEM] item [IN [OUT]]|[OUT]]...)
Items which are passed to the stored procedure or Oracle stored function, or received from the
stored procedure. Input parameters can be temporary, defined or record items. Output parameters
can be temporary or record items.

BLOB items may also be used for both input and output parameters when calling an Oracle stored
procedure or stored function.

IN
Specifies that the item is an input parameter.

IN OUT
Specifies that the item is both an input and output parameter. The changed values of the
input/output parameters are available to PowerHouse when stored procedure execution is
complete.

OUT
Specifies that the item is an output parameter. The changed values of the output parameters are
available to PowerHouse when stored procedure execution is complete.

Default: IN

RETURNING return-parameter
The return-parameter must be defined as a temporary or record item.

For Sybase, identifies the item that contains the return status from a stored procedure upon
completion of the Sybase stored procedure.

For Oracle, identifies the item that contains the value returned by a stored function upon
completion of the Oracle stored function.

Limit: Valid for Oracle stored functions but not valid for Oracle stored procedures. For Sybase,
the return-parameter must be defined as a 32-bit (4-byte) integer.

ON ERROR CONTINUE|TERMINATE
Specifies the action to be taken if the SQL statement fails. If TERMINATE is in effect, the SQL
error causes QUICK to process the error as it would for an ERROR verb. If CONTINUE is
specified, the SQL error is ignored and the processing continues as if the error had not occurred.

Default: TERMINATE

Discussion
Using the CALL statement, the developer can call local or remote stored procedures and pass
input and output parameters and receive execution status. The stored procedures that fall into this
category are ones that process a row or set and return output parameters, status or values to the
calling application. Stored procedures that return result sets must be called as part of the
DECLARE CURSOR statement.

378 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
CLEAR

CLEAR
Clears terminal lines.

Syntax
CLEAR ALL|SCREEN|[LINES] n [TO m]

ALL
Clears all terminal lines.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first terminal line (n).
LINE n by itself clears line n only.

Discussion
The CLEAR verb only works if the restore=lines program parameter is used.

The CLEAR verb instructs QUICK to blank out part or all of the terminal lines. The options allow
the designer to restrict the portion that is to be blanked out. One option must be given. The
CLEAR verb does not automatically cause the area cleared to be refreshed when QUICK performs
the next input operation. The effects of the CLEAR verb are not apparent until QUICK is ready to
prompt the user, and may be generated by other CLEAR or REFRESH verbs or options.

Note: For information about verb and procedure compatibility, see (p. 239).

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] CLOSE

QDESIGN Reference 379

[SQL] CLOSE
Closes a file or cursor.

Syntax
[SQL] CLOSE record-structure|cursor-name

SQL
The SQL keyword appears in all generated procedures when a CLOSE verb references a cursor. It
is for documentation only and does not affect the operation of the CLOSE.

record-structure
Names the record-structure in the file to be closed. If the file was opened on a higher-level screen,
the CLOSE verb on the lower-level screen is ignored.

cursor-name
The name of a cursor declared on a CURSOR statement.

Discussion
The CLOSE verb immediately closes the file that contains the named record-structure. If the file
was opened on a higher-level screen, the CLOSE verb on the lower-level screen is ignored.

Closing Relational Files
We recommend that you do not use the CLOSE verb (distinct from the SQL CLOSE) or the
CLOSE option of the FILE statement on relational tables. The results are unpredictable if there are
any uncommitted transactions related to the table or database when the CLOSE is performed.

When a CLOSE verb or option is used, QUICK will immediately commit all transactions against
that database (not just the ones associated with the table), and logically detach from the database.
If errors are encountered, a rollback is attempted, and rollback pending does not apply.

This behavior can affect performance, since the attach must be re-established before work can
continue against that database. It may also affect data integrity, since unrelated transactions may
be committed as a result of the CLOSE. In addition, if there are other physical databases involved
in the same PowerHouse transaction, committing the transactions against only one database may
result in inconsistent data.

If your intent is to commit one or more transactions, we suggest you use the COMMIT verb. For
more information, see the COMMIT and ROLLBACK verbs on (p. 380) and (p. 465),
respectively. See also information about the transaction control options available on the SCREEN,
FILE, FIELD, and TRANSACTION statements.

Closing Cursors
If there are still rows to be retrieved for the cursor, then an implicit cancel is executed for the
cursor.

A cursor is closed automatically when you exit the screen on which the cursor is declared or when
another OPEN is executed for the same cursor.

380 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
COMMIT

COMMIT
Commits one or more transactions.

Syntax
COMMIT [TRANSACTION] [transaction_name
[,transaction_name]...]

TRANSACTION
An optional keyword for documentation purposes only.

transaction_name
Names the transaction with which the COMMIT verb is associated.

Discussion
If the COMMIT verb with no options is executed, as in:
> COMMIT

all locally active transactions are committed. If several transaction names are specified on a single
COMMIT verb, as follows:
> COMMIT A,B,C

PowerHouse attempts to commit those transactions together as a unit using a two-phase commit
protocol. Support for this depends on the support provided by the underlying database system.

In contrast to QUICK's automatic commit processing, the COMMIT verb with a list of
transactions issues a commit to all transactions listed regardless of whether or not they are locally
active. Also, no transactions other than those listed by the COMMIT verb are affected.

A COMMIT on an inactive transaction is ignored.

Chapter 8: QDESIGN Verbs and Control Structures
DELETE

QDESIGN Reference 381

DELETE
Marks a data record for deletion.

Syntax
DELETE record-structure

record-structure
Names the record-structure containing the data record to be marked for deletion. The
record-structure must be declared in a FILE statement on the screen.

Discussion
The DELETE verb marks the current data record of the named record-structure for deletion. The
data record is actually deleted by PUT verbs, which are normally found in the UPDATE
procedure. Once a data record is marked for deletion, the data from that data record is no longer
accessible.

The DELETE verb reverses the sums and counts that involve the data record marked for deletion
(unless it is in a DELETE file). For example, if an item of a file is summed into another item, and
the data record is marked for deletion by the DELETE verb, the sum is reversed by the DELETE
verb.

Note: For information about verb and procedure compatibility, see (p. 239).

Example
The delete verb is most often used in delete and detail delete procedures. For example,
> PROCEDURE DELETE
> BEGIN
> DELETE EMPLOYEES
> END

For additional examples of how to use the DELETE verb, see (p. 300).

382 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] DELETE

[SQL] DELETE
Deletes rows from a table.

Syntax
[SQL [IN database]
[TRANSACTION transaction_name

[FOR CONSISTENCY|{[CONCURRENCY]
phase-option[,phase-option]...}}]]]

DELETE FROM tablespec
[WHERE sql-condition|DBKEY=:expression]

IN database
Specifies the name PowerHouse uses to attach to the database. This is the name used to declare the
database in PDL. For more information, see the PowerHouse and Relational Databases book.

TRANSACTION transaction_name [FOR {CONSISTENCY|
{[CONCURRENCY] phase-option[,phase-option]...}]...

Defines transactions used for relational data structures and SQL DML verbs.

transaction_name
Any valid PowerHouse name.

FOR CONSISTENCY
Determines that a relational data structure is associated with a particular transaction in
Consistency model.

Limit: Only one transaction association can be specified.

FOR [CONCURRENCY] phase-option [,phase-option]...
Determines that the relational data structure is associated with a particular transaction or
transactions in Concurrency model.

Limit: Up to three transaction associations can be specified.

phase-option

Specifies the screen phase with which the transaction is associated.

DELETE FROM tablespec
The name of a table in a relational database from which rows are to be removed. The syntax for
tablespec is:
[[server-name.]database-name.][owner-name.]table-name

If server-name is included in a Sybase tablespec, double quotes are required for the server-name
and database-name. For example,
"dbsvr01.accnt".manager.billings_tbl

For Oracle, the syntax is:
[owner-name.]table-name[@database-linkname]

Phase option Description

PROCESS The phase in which you are entering, correcting, or changing data
records on the screen.

QUERY The phase in which data is retrieved from the database.

UPDATE The phase in which data is updated.

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] DELETE

QDESIGN Reference 383

If the database-linkname is included, it is treated as part of the table-name, and double quotes are
required. For example,
manager."billings_tbl@dblnk01"

Oracle synonyms may be used for table-names. For more information about how PowerHouse
uses Oracle synonyms, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules
book.

WHERE sql-condition|DBKEY = :expression
The sql condition is a condition which is limited to use within Cognos SQL syntax. For more
information about SQL conditions, Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book, or refer to an SQL reference manual. This option provides a way to
determine which rows will be deleted. Without it, all rows in the table are deleted. DBKEY is
available only if the underlying database supports it.

Limit: DBKEY cannot be used with Sybase.

Discussion
The DELETE verb acts directly on a table or view in the database and is never generated by
PowerHouse.

384 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DISABLE

DISABLE
Prevents the use of a procedure.

Syntax
DISABLE

Discussion
The DISABLE control structure prevents the execution of the activity controlled by the procedure
in which the DISABLE control structure appears. If the QUICK screen user enters an activity
corresponding to a disabled procedure, QUICK issues an error message.

The DISABLE control structure isn't required for disabling optional procedures; this can be done
by simply excluding the procedure from the screen. Similarly, you don't have to specify a
DISABLE control structure to disable procedures that can be controlled by the ACTIVITIES
option of the SCREEN statement.

The DISABLE control structure must be the only statement in the procedure in which it appears.

Procedures that are Automatically Disabled
By default, the UPDATE and DELETE procedures generated by QDESIGN for menu screens
contain only the DISABLE control structure. In addition, procedures such as PATH, FIND,
ENTRY, and DELETE are disabled by the omission of the corresponding ACTIVITIES option of
the SCREEN statement.

Example
The following example illustrates how the DISABLE verb is used to remove a standard procedure
from QUICK's processing cycle. In the following example, the DELETE procedure is disabled
with the DISABLE verb.
> SCREEN INVINFO &
> ACTIVITIES ENTRY, FIND, CHANGE
>
> FILE INVOICES PRIMARY
> FILE INVOICESTATS DETAIL OCCURS 10
ITEM INVOICENO initialized (fixed) to INVOICENO OF
INVOICES.
>
> FIELD INVOICENO OF INVOICES REQUIRED NOCHANGE &
> LOOKUP NOTON INVOICES
> ALIGN (1,4,21) (,,45)
> FIELD COMPANYNUMBER OF INVOICES
> FIELD INVOICEDATE OF INVOICES
> SKIP 2
> CLUSTER OCCURS WITH INVOICESTATS FOR 2,40
> ALIGN (1,4,13) (,,23)
> FIELD PARTNUMBER OF INVOICESTATS
> FIELD QUANTITY OF INVOICESTATS
> CLUSTER
> BUILD LIST DETAIL
.
.
.
> PROCEDURE DELETE
> DISABLE
.
.
.

Chapter 8: QDESIGN Verbs and Control Structures
DISPLAY

QDESIGN Reference 385

DISPLAY
Displays a value in a field.

Syntax
DISPLAY [FIELD] item [FROM [ITEM] item]

[OF [FILE] record-structure]

item
Names the field where the value is displayed.

FROM [ITEM] item
Specifies that the displayed value is retrieved from the named item rather than the item normally
associated with the field.

OF [FILE] record-structure
Specifies that the displayed field is retrieved from the named record structure.

Discussion
The DISPLAY verb initiates the activities that cause QUICK to display a value in the named field.
The item is retrieved, formatted, and displayed.

Note: For information about verb and procedure compatibility, see (p. 239).

The following figure illustrates the steps that are initiated by the DISPLAY verb, and contrasts
these steps to similar steps performed by other field processing verbs:

386 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DISPLAY

For details about each of the steps in the preceding diagram, see (p. 364).

The DISPLAY verb also performs its tasks
• during predisplay of initialized values
• when displaying fields after the FIND and DETAIL FIND procedures
• when redisplaying REFRESH fields on return from an invoked screen

QDESIGN automatically generates DISPLAY verbs rather than ACCEPT verbs in the default
ENTRY procedure for defined items and for fields with the DISPLAY option.

Inclusion of a DISPLAY verb overrides the FIELD statement options: DISPLAY, FIXED, IF,
NOENTRY, and OMIT.

Using DISPLAY Verbs in the FIND Procedure

If the DISPLAY verb is used in a FIND procedure, the display may be subsequently overwritten by
the automatic display of fields at the end of the FIND procedure. The DISPLAY verb works as
expected if the corresponding FIELD statement includes the OMIT ON FIND option.

Fields That Are Not in the Occurrence Window

QUICK does not move the occurrence window even if QUICK is displaying a field that is not
currently in the occurrence window. The change in display will be visible once the user scrolls to
that field.

If the field is in the occurrence window, then the user will see the changed field immediately.

Chapter 8: QDESIGN Verbs and Control Structures
DO BLOB

QDESIGN Reference 387

DO BLOB
The DO BLOB verb executes an external program to handle the contents of the BLOB.

Syntax
DO BLOB blob [options]...

blob
The name of the BLOB.

Options

BINARY|TEXT (OpenVMS, Windows)

If a BLOB is copied to or from a file using the wrong mechanism, it can be corrupted. The
BINARY|TEXT option allows you to specify the contents of the BLOB and how it should be
copied. The default on Windows is BINARY, and the default on OpenVMS is TEXT.

This statement copies the contents of a BLOB named file_blob in binary format to a file named
prmhcp.pdf:
> DO BLOB file_blob BINARY command " " FILE "prmhcp.pdf"

This statement copies the contents of a BLOB named file_blob in text format to a file named
pmhcp.txt.
> DO BLOB file_blob TEXT command " " FILE "pmhcp.txt"

This option is not necessary on UNIX or MPE/iX, which internally handle both binary and text
data.

CLEAR ALL|SCREEN|[LINES] n [TO m]

Clears an area of terminal memory before the program is called. Any terminal writes from the
external program appear, starting on the first line of the cleared area. Lines cleared are refreshed
automatically when the screen is reactivated and QUICK is ready to prompt the user. The CLEAR
option doesn’t require the restore=lines program parameter to be used.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. If the TO option is not used, a single line is cleared.

COMMAND string1|item1

Name of the external program to be run with the contents of the BLOB as input.

OpenVMS: If the command is not specified, PowerHouse uses the command defined in the symbol
PH_BLOBEDIT. By default, PH_BLOBEDIT has the value EDIT/EDT.

DO BLOB options:

BINARY|TEXT CLEAR COMMAND

FILE INPUT NOWARN

ON ERROR REFRESH

388 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO BLOB

UNIX, Windows: If a command is not specified, then the value of the environment variable,
PH_BLOBEDIT, is used.

FILE string2|item2

A string or character item containing the name of the file where BLOB contents are loaded prior
to invoking the utility specified by the command string. If no file specification is given, QUICK
generates a temporary file specification. If a file is specified, it is permanent.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing the external program. The
terminal is put back into the original mode after completion of the external program.

B
Starts the external program in Block mode if the external program can be run in Block mode.

C
Starts the external program in character mode.

SAME
Starts the external program in the same input mode as the calling screen.

Default: SAME

NOWARN (MPE/iX)

Specifies that if a command returns a non-zero status (and the ON ERROR CONTINUE option
has been specified), QUICK will not issue a warning message after executing the command.
However, any message issued by the command itself will be displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if an operating system error occurs during the execution of a
command. TERMINATE is the default value of the option. If TERMINATE is in effect, an
operating system error causes QUICK to process the error as it would for an ERROR verb. If
CONTINUE is specified, an operating system error is ignored and processing continues as if the
error had not occurred.

REFRESH ALL|SCREEN|[LINES] n [TO m]

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

The screen area options are as follows:

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. If the TO option is not used, a single line is refreshed.

Discussion
The DO BLOB verb works as follows:

Chapter 8: QDESIGN Verbs and Control Structures
DO BLOB

QDESIGN Reference 389

1. The contents of the BLOB (if any) are loaded into the file specified by the designer, or into a
temporary file if no file was specified.

2. The program specified by the command string is invoked with the file as input unless a blank
string is used, in which case no command is run, and the BLOB is simply copied to the file.
The filename is concatenated to the end of the command prior to running the command.
OpenVMS: If the command is not specified, PowerHouse uses the command defined in the
symbol PH_BLOBEDIT. By default, PH_BLOBEDIT has the value EDIT/EDT.
UNIX, Windows: If a command is not specified, then the value of the environment variable,
PH_BLOBEDIT, is used.

3. PowerHouse then determines if the file has been modified. If it has, the contents of the BLOB
are copied into an internal structure, and the file is deleted (if it was temporary).

4. If an update is performed, a new BLOB is created into which the contents from the internal
structure are copied.

Examples
The DO BLOB verb can be used to interchange data between BLOBs and files. For example, the
following statement copies the data from a file, descript (MPE/iX) or descript.txt (OpenVMS,
UNIX, Windows) into a BLOB named description:

When used in this fashion, a temporary file is used to store the BLOB contents. The name of that
temporary file is automatically substituted as part of the copy command. The space after the
filename is required to preserve this automatic functionality.

Alternatively, the following statement copies the contents of a BLOB named description into a file,
descript (MPE/iX) or descript.txt (OpenVMS, UNIX, Windows):

In this example, a blank string is entered after the COMMAND option so that no command is
executed.

MPE/iX: DO BLOB description COMMAND "copy descript "

OpenVMS: DO BLOB description COMMAND "copy descript.txt "

UNIX: DO BLOB description COMMAND "cp descript.txt "

Windows: DO BLOB description COMMAND "copy descript.txt "

MPE/iX: DO BLOB description COMMAND " " FILE "descript"

OpenVMS, UNIX,
Windows:

 DO BLOB description COMMAND " " FILE "descript.txt"

390 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

DO EXTERNAL (MPE/iX)
For DO EXTERNAL (OpenVMS), see (p. 398).

For DO EXTERNAL (UNIX), see (p. 406).

For DO EXTERNAL (Windows), see (p. 412).

Executes an external program.

Syntax
DO EXTERNAL [CM|INTRINSIC|NM] name|string
 [PASSING file|item [,file|item]...] [INPUT B|C|SAME]

or
DO EXTERNAL [CM|INTRINSIC|NM] name|string (parm [,parm]...)

INPUT B|C|SAME

Puts the terminal in the specified input mode prior to executing the external program. The
terminal is put back into the original mode after completion of the external program.

B
Puts the terminal in Block mode.

C
Puts the terminal in Character mode.

SAME
Puts the terminal in the same input mode as the calling screen.

Default: SAME

Discussion
For information about verb and procedure compatibility, see (p. 239).

Linking to External Subroutines

The DO EXTERNAL verb is provided for those occasions when you want to use localized
processing with traditional programming languages. External subroutines should not be used to
replace QUICK’s standard functions such as finding or updating the PRIMARY file of a screen,
because they interfere with QUICK. Similarly, input from or output to the terminal from localized
processing is not recommended, since QUICK needs to know what is displayed on the screen at all
times. Using Basic is not recommended, since its method of storing data items is not compatible
with QUICK or the other languages. There are two methods used to call external subroutines
from QUICK: COBOL and FORTRAN.

The DO EXTERNAL verb

The DO EXTERNAL verb supports four program call standards:
• Native Mode Cobol-compatible calling convention
• Native Mode Fortran-compatible calling convention
• Compatibility Mode Cobol-compatible calling convention
• Compatibility Mode Fortran-compatible calling convention

The Fortran-compatible calling convention uses parentheses to bracket parameters, while the
Cobol-compatible calling convention uses the PASSING keyword.

QDESIGN can distinguish between Cobol and Fortran-compatible calling conventions based on
the format of the parameter list. If a parameter list is not supplied, the Cobol-compatible calling
convention is assumed.

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

QDESIGN Reference 391

Note: The following sections use only Cobol examples.

Linking Method One

The syntax of the first linking method is:
DO EXTERNAL [CM|INTRINSIC|NM] name|string [PASSING

parm 1 [parm2]...]

where "name" is the name of the external subroutine and each "parm" is a record, record item, or
temporary item that is being passed to the routine. The three keywords (CM, INTRINSIC, or
NM) are used to describe the type of function to be called. CM represents Compatibility Mode
and NM stands for Native Mode. The Keyword INTRINSIC indicates that the function to be
carried out is a system intrinsic. The default is NM.

QUICK passes three Cobol-compatible addresses:
• common area
• common area size
• pass list

The common area is allocated and initialized to binary zeros (but not otherwise used) by QUICK.
It can be used to communicate between different external subroutines or between different calls to
the same subroutine.

The common area size is a one-word integer containing the size (in words) of the common area, as
specified in QKGO’s common area size parameter.

The pass list is the address of a data structure containing a copy of all records and items specified
in the parameter list (the PASSING option). Within the data structure, the parameters are in the
order specified in the parameter list and are word aligned. When a repeating item is specified in
the parameter list, only the address of the first occurrence will be passed.

Note: If you use Linking Method One with CM, the QKGO parameter, Common Area Size, must
be greater than zero. Otherwise, a run-time error occurs.

In the linking methods, "name|string" is used to obtain the function name. Native mode C
language allows mixed case function names. In order to prevent automatic shifting being applied
to the function name, use "string."

Linking Method Two

The second method of linking to external subroutines is to omit the keyword PASSING, and to list
all parameters in parentheses. The parameters listed are passed, except for the common area or
common area size parameters. The syntax of the second linking method is:
DO EXTERNAL [CM|INTRINSIC|NM] name|string

(parm 1[,parm2]...)

In this case "parm" is one of the following:

file
Passes the word address of the record buffer for the file.

BYTE (file)
Passes the byte address of the record buffer for the file.

REFERENCE (file)
Passes the word address of the record buffer for the file.

WORD (file)
Passes the word address of the record buffer for the file. This is the default address type for files.

item
Passes the word address of the item.

392 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

BYTE (item)
Passes the byte address of the item.

REFERENCE (item)
Passes the word address of the item.

WORD (item)
Passes the word address of the item. This is the default address type for items.

VALUE (item)
Passes the value of the item (can be type INTEGER, FLOAT, NUMERIC, DATE, PHDATE,
JDATE, PACKED, ZONED, INTERVAL).

The three keywords CM, INTRINSIC, and NM are used to describe the type of function to be
called. CM represents Compatibility Mode and NM stands for Native Mode. The keyword
INTRINSIC indicates that the function to be carried out is a system intrinsic. The default is NM.

Several of the previous parameter options will produce similar results. The parameter options
allow users to follow application standards. For a table of compatible item datatypes used with
subroutines, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules book.

The Native Mode Cobol and Fortran compilers automatically downshift all supplied function
names except intrinsics, which are upshifted. The string option is provided for Native Mode C,
which supports mixed case function names. It can also be employed to allow the use of characters,
such as (’) in CM SPL routines.

Cobol routines must be compiled with $CONTROL DYNAMIC. Any WORKING-STORAGE is
initialized each time that the subroutine is called. To maintain values from one call to the next, use
the common area.

Subroutines are compiled into object files, and then placed in an Executable Library (XL). The
names of the XLs must be specified on the MPE/iX RUN statement for QUICK.

By default, QUICK allows one external subroutine and zero words in the common area. Changing
QKGO parameters increases both of these settings.

If the called subroutine uses the common area, it should check the passed common area size to
ensure that a sufficient size was specified in QKGO.

It is not necessary to specify a pass list, in which case the addresses for the common area, the
common area size, and an empty pass list are passed.

All external subroutines within a system of screens should use the same layout for the common
area, if it is passed.

Parameters passed can be records, record items, or temporary items. Not all item formats
available in QUICK are Cobol-compatible. A maximum of 16 parameters can be included in any
pass list. Predefined items (FIELDTEXT, FIELDVALUE, PATH) and defined items cannot be
passed. If an external subroutine is called in an EDIT procedure, the address of the record item is
passed. Record item names that are used as parameters are not trapped and replaced by the
contents of FIELDTEXT or FIELDVALUE. To pass the value in FIELDTEXT or FIELDVALUE,
use a temporary item.

Temporary areas are set up for each passed parameter. On return to QUICK, the values of all
passed parameters are compared to their original values before the call. If any have changed, the
original value is altered to reflect the change. If record items are changed, the record status is reset
to reflect this fact. If the items in an empty record buffer (status of New, Unchanged, Undeleted)
are changed, the status is New, Changed, Undeleted on return to QUICK. Subsequent processing
can be affected if a subroutine is used to retrieve an existing record and place it in an empty buffer.

If the same item is passed more than once in the same call, only the last occurrence of that item is
checked for value changes on return to QUICK.

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

QDESIGN Reference 393

If a subroutine must access a database or file, the subroutine must open and close that database or
file. The considerations are the same as those for file sharing between many processes. For
instance, when accessing an IMAGE database, the database can be opened and closed from the
subroutine that must access it. In the case of different subroutines accessing the same database,
separate open and close subroutines should be called from the main procedure (with the database
name that is returned from the DBOPEN passed to the other subroutines in the common area).

Errors in an external subroutine may cause problems such as a bounds violation or memory
problems in QUICK. Because an external subroutine is not controlled by QUICK, an error may
corrupt QUICK’s internal tables. If a subroutine involves accepting data, editing should be
provided; otherwise data conversion errors can cause a process to abort.

HP system INTRINSICs with "option variable" (variable option lists) or INTRINSICs that return
a value cannot be called as external subroutines from QUICK.

For Native Mode (NM) external subroutines, the data alignment will be 64-bit. All NM external
subroutines must be aware of this data alignment.

If the system uses external routines, you must use the XL parameter of the RUN command to
invoke QUICK.
: RUN QUICK.CURRENT.COGNOS;XL="MYXL1.MYGROUP.MYACCOUNT, MYXL2..."

MYXL1 and MYXL2 contain the external routines required to run the application.

Examples

Subroutines that Use External Subroutine Linking (Method One)

The following code is an example of the use of Linking Method One. This method uses the
PASSING keyword and each parameter is a record, record item, or temporary item that is being
passed to the subroutine:
> SCREEN XBQO
> FILE DATA-FILE
> FILE COBOL-DATA DESIGNER
> TEMP NM-MEAN FLOAT SIZE 4
> TEMP NM-SDEV FLOAT SIZE 4
> TEMP CM-MEAN NONIEEE FLOAT SIZE 4
> TEMP CM-SDEV NONIEEE FLOAT SIZE 4
> TEMP COUNT INTEGER SIZE 2 INITIAL 10 RESET AT STARTUP
> TEMP CMEAN PACKED SIGNED SIZE 5
> TEMP CSDEV PACKED SIGNED SIZE 5
> TITLE "Do External Demo System - COBOL Passing Method" &
> CENTERED AT 2,40
> SKIP TO 4
> ALIGN (1,4,21) (41,44,61)
> FIELD DATA+-KEY REQUIRED LOOKUP NOTON DATA-FILE
> FIELD DATA-NAME
> SKIP TO 6
> TITLE "NM-Data" CENTERED AT ,40
> ALIGN (1,,4)
> CLUSTER OCCURS WITH NM-Data FOR 1,16 AT ,1
> FIELD NM-DATA
> SKIP TO 9
> TITLE "CM-Data" CENTERED AT ,40
> CLUSTER OCCURS WITH CM-DATA FOR 1,16 AT 10, 1
> FIELD CM-DATA
> CLUSTER
> SKIP TO 13
> ALIGN (1,4,21)
> FIELD NM-MEAN &
> PICTURE " ^^^^.^^^^" OUTPUT SCALE 4 &
> LEADING SIGN "-" &
> SIGNIFICANCE 6 DISPLAY NOID
> FIELD NM-SDEV &
> SIGNIFICANCE 6 DISPLAY NOID
> SKIP TO 13
> ALIGN (41,44,61)

394 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

> FIELD CM-MEAN &
> PICTURE "^^^^.^^^^" OUTPUT SCALE 4 &
> LEADING SIGN "-" &
> SIGNIFICANCE 6 DISPLAY NOID
> FIELD CM-SDEV &
> PICTURE "^^^^.^^^^" OUTPUT SCALE 4 &
> LEADING SIGN "-" &
> SIGNIFICANCE 6 DISPLAY NOID
>
> TITLE "50 NM C" AT 16,1
> TITLE "51 NM COBOL" AT 17,1
> TITLE "52 NM FORTRAN" AT 18,1
> TITLE "70 CM SPL " AT 16,41
> PROCEDURE PREUPDATE
> BEGIN
> IF ALTEREDRECORD OF COBOL-DATA
> THEN BEGIN
> DELETE COBOL-DATA
> END
> END
> PROCEDURE UPDATE
> BEGIN
> PUT DATA-FILE
> PUT COBOL-DATA
> END
> PROCEDURE INTERNAL DISPLAY-RESULTS
> BEGIN
> DISPLAY NM-MEA
> DISPLAY NM-DSEV
> DISPLAY CM-MEAN
> DISPLAY CM-SDEV
> END
> PROCEDURE INTERNAL SETUP-COBOL
> BEGIN
> ; CAN’T FORGET ABOUT DECIMAL ALIGNMENT HERE!
> FOR 10
> BEGIN
> LET NM-DATA OF COBOL-DATA = NM-DATA &
> OF DATA FILE*10000
> LET CM-DATA OF COBOL-DATA = CM-DATA &
> OF DATA-FILE*10000
> END
> END
> ;CALL A NATIVE MODE C EXTERNAL
> PROCEDURE DESIGNER 50
> BEGIN
> DO EXTERNAL "nbc setup" PASSING COUNT
> DO EXTERNAL "nbc SDEV" PASSING DATA-FILE
> DO EXTERNAL "nbc getresults" PASSING NM-MEAN, &
> NM-SDEV
> DO INTERNAL DISPLAY-RESULTS
> END
>
> PROCEDURE DESIGNER 51
> BEGIN
> DO INTERNAL SETUP-COBOL
> DO EXTERNAL NBBSETUP PASSING COUNT
> DO EXTERNAL NBBSDEV PASSING COBOL-DATA
> DO EXTERNAL NBBGETRESULTS PASSING CMEAN, CSDEV
> LET NM-MEAN = CMEAN / 10000
> LET NM-SDEV = CSDEV / 10000
> DO INTERNAL DISPLAY-RESULTS
> END
> PROCEDURE DESIGNER 52
> BEGIN
> DO EXTERNAL NBFSETUP PASSING COUNT
> DO EXTERNAL NBFSDEV PASSING DATA-FILE
> DO EXTERNAL NBFGETRESULTS PASSING NM-MEAN, NM-SDEV

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

QDESIGN Reference 395

> DO INTERNAL DISPLAY-RESULTS
> END
> PROCEDURE DESIGNER 70
> BEGIN
> DO EXTERNAL CM "CBS’SETUP" PASSING COUNT
> DO EXTERNAL CM "CBS’SDEV" PASSING DATA-FILE
> DO EXTERNAL CM "CBS’GETRESULTS" PASSING CM-MEAN, CMSDEV
> DO INTERNAL DISPLAY RESULTS
> END
> BUILD

The following sections show the Cobol subroutines that are called from the DO EXTERNAL
verbs in DESIGNER procedure 51 in the previous QDESIGN program.

The Cobol Subroutine NBBSETUP
$CONTROL DYNAMIC
 IDENTIFICATION DIVISION.
 PROGRAM-ID. NBBSETUP.
*
* NBBSETUP initializes the common area structure used
* by the standard deviation function. All that is
* required is that the count field be set.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 COMMON-AREA

05 COM-COUNTPIC 9(4)COMP.
05 COM-MEANPIC S9(4)V9(4)COMP-3.
05 COM-SDEVPIC S9(4)V9(4)COMP-3.

01 COMMON-AREA-SIZEPIC S9 (4)COMP.
01 LINK-PARMS

05 COUNT-PARMPIC S9(4)COMP.
PROCEDURE DIVISION

USING COMMON-AREA, COMMON-AREA-SIZE, LINK-PARMS.
*
* First ensure that the common area size is large
* enough for your application needs. If not, the
* QKGO file needs to be changed to accommodate a
* larger size. Remember that the common area
* size is in 16-bit words.
*
* 0000-START.
 IF COMMON-AREA-SIZE IS LESS THAN 7
 CALL INTRINSIC "QUIT" USING -1.
*
* Size is ok, initialize.
*
 1000-WORK.
 MOVE COUNT-PARM TO COM-COUNT.
*
* Return to QUICK
*
 9000-EXIT.
 GOBACK.

The Cobol Subroutine NBBSDEV
$CONTROL DYNAMIC
 IDENTIFICATION DIVISION
 PROGRAM-ID. NBBSDEV.
*
* NBBSDEV calculates the mean and standard deviation
* for an array of numbers. The structure COMMON-AREA
* is used as a communication block for the number of
* elements in the array as well as the results of
* this function.
ENVIRONMENT DIVISION.
DATA DIVISION.

396 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

WORKING-STORAGE SECTION.
01 SUM-OF-ELEMENTSPIC S9(4)V9(4)COMP-3.
01 SUM-OF DIFF-SQPIC S9(4)V9(4)COMP-3.
01 SUM-OF-DIFF-SQ-OVER-COUNTPIC S9(4)V9(4)COMP-3.
01
LINKAGE SECTION
01 COMMON AREA.

05 COM-COUNTPIC 9(4)COMP.
05 COM-MEANPIC S9(4)V9(4)COMP-3.
05 COM-SDEVPIC S9(4)V9(4)COMP-3.

01 COMMON-AREA-SIZEPIC S9(4)COMP.

01 LINK-PARMS
05 COBOL-DATA.
 10 DATA-KEYPIC S9(4)COMP.
 10 DATA-NAMEPIC X(14).
 10 NM-DATAPIC S9(4)V9(4)COMP-3

OCCURS 10 TIMES.
 10 CM-DATAPIC S9(4)V9(4)COMP-3

OCCURS 10 TIMES.
PROCEDURE DIVISION
 USING COMMON-AREA, COMMON-AREA-SIZE, LINK-PARMS.
* First ensure that the common area size is
* large enough for your application needs. If
* not, the QKGO file for the application must
* be changed to accommodate a larger size.
* Remember that the common area size is in
* 16-bit words.
*
 0000-START
 IF COMMON-AREA-SIZE IS LESS THAN 7
 CALL INTRINSIC "QUIT" USING -1.
1000-INIT.

MOVE 0 TO SUM-OF-DIFF-SQ-OVER-COUNT.
MOVE 0 TO SUM-OF-ELEMENTS.
MOVE 0 TO SUM-OF-DIFF-SQ.

2000-MEAN
PERFORM 9100-SUM-OF-DATA VARYING I FROM 1 BY 1
 UNTIL I IS GREATER THAN COM-COUNT.
DIVIDE SUM-OF-ELEMENTS BY COM-COUNT GIVING COM-MEAN.

3000-SDEV.
PERFORM 9200-SUM-DIFF-SQ VARYING I FROM 1 BY 1
 UNTIL I IS GREATER THAN COM-COUNT.
DIVIDE SUM-OF-DIFF-SQ BY COM-COUNT.
 GIVING SUM-OF-DIFF-SQ-OVER-COUNT.
COMPUTE COM-SDEV = SUM-OF-DIFF-SQ-OVER-COUNT ** 0.5.

*
* Return to QUICK

*
 9000-EXIT.
 GOBACK.
*
* Accumulate NM-Data
*
 9100-SUM-DATA
 ADD NM-DATA(I) TO SUM-OF-ELEMENTS.
*
* Accumulate sum of differences square
*
 9200-SUM-DIFF-SQ.

COMPUTE SUM-OF-DIFF-SQ = SUM OF DIFF-SQ
 (NM-DATE(I) - COM-MEAN * (NM-DATA(I) - COM-MEAN).

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (MPE/iX)

QDESIGN Reference 397

The Cobol Subroutine NBBGETRESULTS
$CONTROL DYNAMIC
 IDENTIFICATION DIVISION
 PROGRAM-ID. NBBGETRESULTS.
*
* NBBGETRESULTS moves the results of the standard
* deviation calculation into the supplied results
* parameters.
*
 ENVIRONMENT DIVISION.
 DATA DIVISION
 LINKAGE SECTION.
 01 COMMON AREA.
 05 COM-COUNTPIC 9(4)COMP.
 05 COM-MEANPIC S9(4)V9(4)COMP-3.
 05 COM-SDEVPIC S9(4)V9(4)COMP-3.
 05 COMMON-AREA-SIZEPIC S9(4)COMP.
 05 LINK-PARMS.
 05 MEAN-PARMPIC S9(4)V9(4)COMP-3.
 05 FILLERPIC X(3).
 05 SDEV-PARMPIC S9(4)V9(4)COMP-3.
 PROCEDURE DIVISION
 USING COMMON-AREA, COMMON-AREA-SIZE, LINK-PARMS.
*
* First ensure that the common area size is large enough
* for your application requirements. If not, the QKGO
* file for the application needs to be changed to
* accommodate a larger size. Remember that the common
* area size is in 16-bit words.
*
 0000-START.
 IF COMMON-AREA SIZE IS LESS THAN 7
 CALL INTRINSIC "QUIT" USING -1.
*
* Size is ok, so copy out the results.

*
 1000-WORK.

 MOVE COM-MEAN TO MEAN-PARM.
 MOVE COM-SDEV TO SDEV-PARM.
*
* Return to QUICK
*
 9000-EXIT.
 GOBACK.

398 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

DO EXTERNAL (OpenVMS)
For DO EXTERNAL (MPE/iX), see (p. 390).

For DO EXTERNAL (UNIX), see (p. 406).

For DO EXTERNAL (Windows), see (p. 412).

Executes an external program.

Syntax
DO EXTERNAL name|string [PASSING file|item [,file|item]...]

or
DO EXTERNAL name|string (parm [,parm]...)

parm
Describes what is being passed to a subroutine, as follows:

file
Passes the address of the records buffer for the file.

item
Passes the address of the item.

REFERENCE (file|item)
Passes the address of the record buffer for the file or the address of the item.

VALUE (item)
Passes the value of the item (can be type INTEGER, FLOAT, VMSDATE, INTERVAL,
NUMERIC, DATE, PHDATE, or JDATE). Types less than 32 bits are extended to 32 bits.
INTEGER size 6 is extended to 8 bytes (64 bits).

DESCRIPTOR (file|item)
Passes the address of the standard OpenVMS descriptor for the record buffer of the file or the
address of the standard OpenVMS descriptor of the item.

PASSING file|item [,file|item]
Passes the address of the common area, the address of a 2-byte integer containing the common
size area, and the address of the pass list to the program. When a repeating item is specified in the
parameter list, only the address of the first occurrence will be passed.

Several of the preceding parm options produce equivalent results. The various options allow
designers to follow application standards.

Discussion
Use the DO EXTERNAL verb when you want to use an external subroutine written in COBOL,
FORTRAN, C, or other programming languages that use the standard OpenVMS calling
convention. A maximum of 100 parameters (consisting of files or items) can be passed. (See the
next section, "Linking to External Subroutines", for a detailed discussion.)

Any record buffer for an Oracle Rdb relation that is passed to an external routine via DO
EXTERNAL has a 2-byte integer null flag for each item in the record buffer that allows null
values. A value of 0 means the item exists; a non-zero value means the item is null.

Note: For information about verb and procedure compatibility, see (p. 239).

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

QDESIGN Reference 399

Linking to External Subroutines

The DO EXTERNAL verb lets you perform editing or other localized processing in traditional
programming languages. External subroutines shouldn't be used to replace QUICK's standard
functions such as finding or updating the PRIMARY file of a screen; such activity interferes with
QUICK. Similarly, input or output to the terminal isn't recommended since QUICK needs to know
what is displayed on the screen at all times. This section provides examples of C, COBOL, and
FORTRAN subroutines called from QUICK.

The DO EXTERNAL verb calls a separate program that performs the subroutine calls. The
default program name is QKDRIVER, but another name can be used if specified in the QKGO
file. This program can be constructed using the BUILDEXTERNAL command procedure.

For more information about the BUILDEXTERNAL command procedure, see (p. 404).

Because the DO EXTERNAL driver is a shared library that's run from within the QUICK process,
it uses the run-time library routine, LIB$FIND_IMAGE_SYMBOL, to locate routines to call from
QUICK.

If QUICK is installed with privileges, then the shared QKDRIVER module must be installed.
System managers should ensure that a QKDRIVER module doesn’t violate system security before
installing it.

When PowerHouse is installed with privileges, the external driver (default name QKDRIVER)
must also be installed. If the image isn't located in the SYS$SHARE directory, a unique name that
points to the installed image must be defined in the system logical name table.

Since the QKDRIVER runs in the same process as QUICK, it shares the same memory and
resources. Therefore, external modules should be tested outside of QUICK before being used in a
QKDRIVER module. Dynamic memory should be obtained from LIB$GET_VM and released
with LIB$FREE VM. If event flags are needed, they should be obtained with LIB$GET_EF and
returned with LIB$FREE_EF. Errors can be returned to QUICK by using LIB$SIGNAL. QUICK
formats and displays the message vector and flags an error condition.

Program Sections

Some language compilers create Program Sections (PSECTs) that are writable and sharable. In
such cases, you must install QKDRIVER with shared write attributes. However, this can lead to
problems when the image is shared between several processes: when QKDRIVER is installed with
shared write attributes, the processes can overwrite each other's data values.

To prevent processes from overwriting other processes' data values, you can restrict the attributes
of specific PSECTs to WRT and NOSHR. If any PSECTs remain that have WRT and SHR
attributes, the QKDRIVER image must be installed with shared write attributes. Follow these
steps to restrict the attributes of any (or all) PSECTs:
1. Use the BUILDEXTERNAL command. If you specified the /NOSHARE option, you must

include both the /MAP and /FULL options following the link options list, as in
$ BUILDEXTERNAL EDPART1, EDPART2
$_ EDPART1,EDPART2/MAP/FULL

If you specified the /SHARE option, the MAP and OPTION files are built automatically.
The share options, /SHARE and /NOSHARE, are explained in greater detail in the "Building
the Subroutine Driver Program" section in this chapter. If you require more information
about the BUILDEXTERNAL command, help and examples are available by entering
BUILDEXTERNAL ?

at the DCL prompt.
2. Look at the Program Section Synopsis of the MAP file and locate any PSECTs with attributes

listed as SHR and WRT. Record the names of those PSECTs for use in Step 3.
3. For each PSECT with the attributes SHR and WRT, determine whether or not you want the

PSECT to share the data within that section. If the data is to be shared, keep the original
shared write attributes of the PSECT. If you don't want the data shared, note the name of that
PSECT for use in Step 4.

4. Using the text editor, create a link-options file with the extension code OPT. The link-options
file must contain one line for each PSECT that you recorded in Step 3 (that is, for each
program section to which you want to assign WRT and NOSHR attributes), in this form:

400 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

PSECT_ATTR=<Psectname>,WRT,NOSHR

5. Using the link-options file, perform the BUILDEXTERNAL a second time, as in
$ BUILDEXTERNAL EDPART1, EDPART2 -
$_ EDPART1,EDPART2/MAP/FULL, <option file>/OPT

6. If you allowed any of the PSECTs to retain shared write attributes, the QKDRIVER image
must also be installed with the /SHARE and /WRITE attributes.

Calling External Subroutines from QUICK

There are two methods for calling external subroutines from QUICK: the method that uses a
common area, and the direct method.

To call an external subroutine using the common area method, use
DO EXTERNAL name [PASSING file|item [,file|item]...]

where name is the name of the external subroutine and each parm is a record, record item, or
temporary item that is being passed to the routine.

QUICK passes three COBOL-compatible addresses: common area, common area size, and pass
list.

The common area is allocated and initialized to binary zeros (but not otherwise used) by QUICK.
It may be used to communicate between different external subroutines or between different calls
to the same subroutine.

The common area size is a one-word integer containing the size (in words) of the common area as
specified in QKGO.

The pass list is the address of a data structure containing all records and items specified in the
parameter list. Within the data structure, the parameters are in the order specified in the
parameter list and are longword aligned (four bytes). The external subroutine must allow for any
slack bytes required.

To call an external subroutine using the direct method, use
DO EXTERNAL name (file|item [,file|item]...)

The direct method of calling external subroutines is to omit the keyword PASSING and list the
parameters in parentheses as file or item addresses, descriptor addresses, or item values. The
parameters listed are passed, but the common area or common area size isn't.

Additional Notes on External Subroutines

Whichever method you use, the called subroutine expects to receive the parameters passed to it in
an acceptable form. For instance, FORTRAN programs require the use of descriptors when you
pass character strings to them. The following example shows the QDESIGN code necessary to
pass a character item named A and a numeric item named B to a FORTRAN program:
DO EXTERNAL subroutinename (DESCRIPTOR(A),B)

For both methods, if the same item is passed more than once in the same call, the last occurrence
of that item determines the final value of the item in QUICK.

By default, QUICK allows zero words in the common area. This setting can be reallocated by
changing the QKGO parameter common area size. If the called subroutine uses the common area,
you should check the passed common area size to ensure that sufficient size was specified in
QKGO.

It's not necessary to specify a parameter passing list. In such a case, the common area address,
common area size, and a dummy parameter address are passed, in that order.

If you're using the direct method of calling subroutines with optional parameters, you can pass
empty parameter lists.

All subroutines within a system of screens should use the same layout for the common area (if
passed).

Parameters passed may be records, record items, or temporary items. Not all item type formats
available in QUICK are available in the called languages. A maximum of 100 parameters can be
included in any pass list.

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

QDESIGN Reference 401

Temporary areas are set up for each passed parameter. On return to QUICK, the values of all
passed parameters are compared to their original values before the call. If any have changed, the
original value is altered to reflect the change. If record items are changed, the record status is set to
reflect this, provided that the parameters were passed by REFERENCE or DESCRIPTOR.If the
items in an empty record buffer (status of New, Unchanged, Undeleted) are changed, the status
will be New, Changed, Undeleted on return to QUICK. This may affect subsequent processing if
the subroutine is used to retrieve an existing record and place it in an empty buffer.

If the subroutine accesses files, it must open and close them. The considerations are the same as
those for file sharing between processes.

Building the Subroutine Driver Program

The DO EXTERNAL verb requires a driver program that contains a look-up table of subroutine
names and addresses and all user-callable subroutines used by a system of QUICK screens. This
program is built using the BUILDEXTERNAL command procedure supplied with the QUICK
installation package.

Examples
The Screen TRANSACT in this example makes use of the DO EXTERNAL verb to invoke an
external program to perform an edit check:
> SCREEN TRANSACT
>
> TEMPORARY STATUS NUMERIC*4
>
> FILE TRANSACTIONS
>
> SKIP TO LINE 4
> HILITE TITLE INVERSE
> TITLE "Transaction Screen" CENTRED
> DRAW FROM 3,15 TO 5,65
> SKIP 2
>
> GENERATE NOLIST
>
> PROCEDURE EDIT TRANS-NO
> BEGIN
> LET STATUS_CODE = 0
> DO EXTERNAL EDITTRANS PASSING TRANS-NO, &
> STATUS_CODE
> IF STATUS CODE NE 0
> THEN ERROR "Entered number failed edit check."
> END
>
> BUILD

In the preceding example, the external program EDITTRANS is called to perform an edit check of
the current transaction number. The temporary variable, STATUS_CODE, is set by the external
program EDITTRANS to indicate whether or not the edit was successful. If the edit fails, (that is,
if a non-zero status code is returned), the user receives an error message.

The following example illustrates calling a C subroutine using the direct method. The syntax for
the direct method does not use the PASSING keyword and the parameters are enclosed in
parentheses:
> SCREEN EDPART1
> FILE ORDER-INFO
> TEMP PROD-OK CHARACTER*2
> TEMP TEMP-NO INTEGER*4 SIZE 2
> TEMP ERR-MSG CHARACTER*12
>
> FIELD INVOICE-NUMBER OF ORDER-INFO
> FIELD PROD-NUMBER OF ORDER-INFO
> FIELD QTY-ORDERED OF ORDER-INFO
>
> PROCEDURE EDIT PROD-NUMBER

402 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

> BEGIN
> LET PROD-OK = "Y"
> LET TEMP-NO = PROD-NUMBER
> DO EXTERNAL EDPART1, (PROD-OK, ERR-MSG, &
> VALUE(TEMP-NO))
> IF PROD-OK <> "Y"
 THEN ERROR = "Product Number invalid" &
 + ERR-MSG + " " + ASCII (PROD-NUMBER)
> END

The following example is the C code for the subroutine called using the direct method:
/*
 C example using direct method.
*/
edpart1(prod_ok, err_msg, prod_no)
 char prod_ok[];
 char *err_msg;
 short int prod_no;
 {
/*
 The following routine checks for a product number greater than 7777 and, if
found, flags an error to be returned to the calling QUICK Screen.
*/
 if (prod_no > 7777){
/*
 Flag an error on the product number.
*/
 strncpy(err_msg, "too big", 13);
 prod_ok[0]='N';
 prod_ok[1]='\0'; /* Null terminate string */

The following example illustrates the calling of a FORTRAN subroutine using the direct method.
The syntax for the direct method does not use the PASSING keyword and the parameters are
enclosed in parentheses:
> SCREEN EDPART2
> FILE ORDER-INFO
> TEMP PROD-OK CHARACTER*2
> TEMP TEMP-NO INTEGER*4 SIZE 2
> TEMP ERR-MSG CHARACTER*13
> FIELD INVOICE-NUMBER OF ORDER-INFO
> FIELD PROD-NUMBER OF ORDER-INFO
> FIELD QTY-ORDERED OF ORDER-INFO
>
> PROCEDURE EDIT PROD-NUMBER
> BEGIN
> LET PROD-OK = "Y"
> LET TEMP-NO = PROD-NUMBER
> DO EXTERNAL EDPART2 (DESCRIPTOR(PROD-OK), &
> DESCRIPTOR(ERR_MSG),TEMP-NO)
> IF PROD-OK <> "Y"
> THEN ERROR = "Product Number invalid" &
> + ERR-MSG + " " + ASCII(PROD-NUMBER)
> END

The following example is the FORTRAN code for the subroutine called using the direct method:
SUBROUTINE EDPART2(PROD_OK,ERR_MSG,PROD_NO)
CHARACTER*2 PROD_OK
CHARACTER*13 ERR_MSG
INTEGER*2 PROD_NO

IF (PROD_NO .GT. 7777) THEN
 ERR_MSG = 'too big '
 PROD_OK = 'N'
END IF

RETURN
END

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

QDESIGN Reference 403

The following example illustrates calling a COBOL subroutine that uses a common area. The
common area method uses the PASSING keyword and each parameter is a record, record item, or
temporary item that is being passed to the subroutine:
> SCREEN EDPART3
> FILE ORDER-INFO
> TEMP PROD-OK CHARACTER*2
> TEMP TEMP-NO INTEGER*4 SIZE 2
> TEMP ERR-MSG CHARACTER*13
> FIELD INVOICE-NUMBER OF ORDER-INFO
> FIELD PROD-NUMBER OF ORDER-INFO
> FIELD QTY-ORDERED OF ORDER-INFO
> PROCEDURE EDIT PROD-NUMBER
>
> BEGIN
> LET PROD-OK = "Y"
> LET TEMP-NO = PROD-NUMBER
> DO EXTERNAL EDPART3 PASSING PROD-OK, ERR-MSG, &
> TEMP-NO
> IF PROD-OK <> "Y"
> THEN ERROR = "Product Number invalid" &
> + ERR-MSG + " " + ASCII(PROD-NUMBER)
> END

The following example calls the COBOL subroutine using the direct method. The syntax for the
direct method does not use the PASSING keyword and the parameters are enclosed in parentheses:
> SCREEN EDPART4
> FILE ORDER-INFO
> TEMP PROD-OK CHARACTER*2
> TEMP TEMP-NO INTEGER*4 SIZE 2
> TEMP ERR-MSG CHARACTER*13
> FIELD INVOICE-NUMBER OF ORDER-INFO
> FIELD PROD-NUMBER OF ORDER-INFO
> FIELD QTY-ORDERED OF ORDER-INFO
> PROCEDURE EDIT PROD-NUMBER
> BEGIN
> LET PROD-OK = "Y"
> LET TEMP-NO = PROD-NUMBER
> DO EXTERNAL EDPART3 (PROD-OK, ERR-MSG, TEMP-NO)
> IF PROD-OK <> "Y"
> THEN ERROR = "Product Number invalid" &
> + ERR-MSG + " " + ASCII (PROD-NUMBER)
> END

The following example is the COBOL code for the subroutine called using both the direct and
common area methods. It performs a simple edit.
IDENTIFICATION DIVISION.
PROGRAM-ID. EDPART3.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 COMMON-AREA PIC X.
01 COMMON-AREA-SIZE PIC S9(4) COMP.
01 PASS-LIST.
 05 PROD-OK PIC X(2).
 05 FILLER PIC X(2).
 05 ERR-MSG PIC X(13).
 05 FILLER PIC X(3).
 05 PROD-NO PIC S9(4) COMP.
PROCEDURE DIVISION USING COMMON-AREA
 COMMON-AREA-SIZE
 PASS-LIST.
A00.
 IF PROD-NO IS GREATER THAN 7777
 MOVE "too big" TO ERR-MSG
 MOVE "N" TO PROD-OK.
 EXIT PROGRAM.

404 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

Note: Code for other DO EXTERNAL examples can be found
$powerhouse:[<version>.demo.external].

The BUILDEXTERNAL Command
The BUILDEXTERNAL command builds the driver image required for DO EXTERNAL routines
in QUICK.The syntax takes the general form:
BUILDEXTERNAL [share-option] subroutine-list

link-options [driver-name]

share-option
The share-option is one of the following:

/SHARE
Indicates that a shared image is to be built. Images that can be shared are linked dynamically at
run-time and no subprocess is spawned. The file extension of the external driver must be .EXE.

/NOSHARE
Indicates that an executable image is to be built. When this option is used to build the external
routine, a call to an external routine spawns a subprocess and executes the external routine within
the subprocess. The file extension of the external driver must be .PHEXE.

You can build and debug external routines by using /NOSHARE. Once the application is ready
for production runs, it can be converted to a shared image for greater performance.

Limit: The options /NOSHARE and /SHARE must be entered immediately after the
BUILDEXTERNAL command.

Default: /SHARE

subroutine-list
Lists the names of the external routines called from QUICK. The name may be listed in a file
which can then be used with the at-sign (@).

Limit: Separate the names with a comma; do not include spaces.

link-options
Specifies the options necessary to build the image. The options include:
• object files containing external routines
• object libraries
• link commands (for example, /DEBUG)
• link option files

driver-name
Names the external driver image.

Default: QKDRIVER

The BUILDEXTERNAL driver name extensions must be either .EXE or .PHEXE. Any other
extension is invalid and causes an error. The file extensions of the driver name specified in QKGO
must be either .EXE or .PHEXE.

Creating Subroutines

The BUILDEXTERNAL command must include a list of subroutines and link options that
designate the subroutine locations. Additional link options (see the OpenVMS Linker Utility
Manual) and the driver program name can also be supplied.

The subroutine-list parameter may be a single name or a list of names separated by commas but
with no intervening spaces. Each name may be either a subroutine entry point name or, when
preceded by an at-sign (@), a text file (default extension code .DAT) containing a list of subroutine
entry point names (one per line), as in

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (OpenVMS)

QDESIGN Reference 405

$ BUILDEXTERNAL EDPART1,EDPART2,EDPART3,-
$_ EDPART4 EDPART1,EDPART2,EDPART3,EDPART4

Each routine is compiled into a separate object file. The compiled subroutines listed in the
link-options are assumed to have the file extension .OBJ. The compiled subroutines
EDPART1.OBJ, EDPART2.OBJ, EDPART3.OBJ, and EDPART4.OBJ are used by Linker to
resolve the subroutine entry points. The driver program name defaults to QKDRIVER.

Creating an Object Library

The following commands create an object library and add each module to it. The
BUILDEXTERNAL command then uses the object library to resolve the subroutine entry points.
$ CC EDPART1
$ FORTRAN EDPART2
$ COBOL EDPART3
$ COBOL EDPART4
$ LIBRARY/CREATE EDPART EDPART1, EDPART2, -
$_ EDPART3, EDPART4
$ BUILDEXTERNAL EDPART1, EDPART2, EDPART3, EDPART4 -
$_ EDPART/LIB

If the file EDPART.DAT contains EDPART1, EDPART2, EDPART3, and EDPART4, and if the
driver name is QUICKSUB, then the command
$ BUILDEXTERNAL @EDPART EDPART/LIB QUICKSUB

can be used. This would search the library EDPART for the names listed in the text file
EDPART.DAT.

406 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (UNIX)

DO EXTERNAL (UNIX)
For DO EXTERNAL (MPE/iX), see (p. 390).

For DO EXTERNAL (OpenVMS), see (p. 398).

For DO EXTERNAL (Windows), see (p. 412).

Executes an external subroutine.

Syntax
DO EXTERNAL name|string ([parm [,parm]...])

or
DO EXTERNAL name|string [PASSING file|item [,file|item]...]

name|string
The name of the external subroutine.

parm
Describes what is being passed to the subroutine.

The parm can be:

file
Passes the address of the record buffer for the file.

item
Passes the address of the item.

REFERENCE (file|item)
Passes the address of the record buffer for the file or the address of the item.

VALUE (item)
Passes the value of the item. The item datatype must be one of INTEGER, FLOAT, NUMERIC,
INTERVAL, DATE, JDATE, or PHDATE.

PASSING file|item [,file|item]...
Passes the address of the common area (as declared in the QKGO file), the address of an integer of
size 2 containing the common area size, and the address of the pass list to the subroutine. The pass
list is a data structure consisting of the files and items specified. The files and items may be aligned
according to machine-specific requirements. When a repeating item is specified in the parameter
list, only the address of the first occurrence will be passed.

Note: Parameter buffers to an external subroutine are always aligned correctly for any valid
datatype, but items within record buffers are not normally aligned with respect to earlier items.

The common area is allocated and initialized to binary zeros by QUICK; otherwise, it is not used.
It can be used to communicate between different external subroutines or between different calls to
the same subroutine.

The common area size is an integer of size 2 containing the size (in words) of the common area as
specified in QKGO's common area size parameter. By default, QUICK allows one external
subroutine and one word in the common area. Use QKGO parameters to increase both of these
settings. For more information, see (p. 255).

Limit: Any value returned by an external routine will be discarded.

Note: There is no limit on the number of external subroutines that can be invoked.

Limit: A maximum of 16 files, items, or parms can be passed. However, the effective limit may be
less than this in some cases, in particular when a 64-bit floating-point parameter is passed by
value. If you do specify parameters over the 16-parameter limit, QUICK issues an error.

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (UNIX)

QDESIGN Reference 407

Discussion
An external subroutine is written in COBOL, FORTRAN, C, Pascal, or another traditional
programming language and is not declared in the screen design.

Use the DO EXTERNAL verb when you want to use localized processing with traditional
programming languages. Because they interfere with QUICK, external subroutines should not be
used to replace QUICK's standard functions, such as finding or updating the PRIMARY file of a
screen. Similarly, input or output to the terminal from localized processing is not recommended,
since QUICK needs to know what is displayed on the screen at all times.

In order for QUICK to link to the external routine, a distinct process must be created using a
script called BuildExternal. For more information about the BuildExternal script, see (p. 407).

QUICK aligns all data to be passed to external routines on machine alignment requirements. If the
language uses alignment keywords (as Pascal does), be careful when passing entire data records.
Parameter buffers to an external routine are always aligned correctly for any valid datatype.
However, items within record buffers are not normally aligned with respect to earlier items.

If the invoked subroutine uses the common area, it should check the passed common area size to
ensure that a sufficient size was specified in QKGO.

You don't have to specify a pass list. If you don't, the addresses for the common area, the common
area size, and an empty pass list are passed.

All external subroutines within a system of screens should use the same layout for the common
area, if it is passed.

Parameters passed can be records, record items, or temporary items. A maximum of 16
parameters can be included in any pass list. Predefined items (FIELDTEXT, FIELDVALUE, PATH)
and defined items cannot be passed. If an external subroutine is invoked in the EDIT procedure,
the address of the record item is passed. Record item names that are used as parameters are not
trapped and replaced by the contents of the FIELDTEXT or FIELDVALUE predefined item. To
pass the value in the FIELDTEXT or FIELDVALUE predefined item, use a temporary item.

Temporary areas are set up for each passed parameter. On return to QUICK, the values of all
passed parameters are compared to their values before being invoked. If any values have changed,
the original value is altered to reflect the change. If record items are changed, the record status is
reset to reflect this fact. If the items in an empty record buffer (status of New, Unchanged,
Undeleted) are changed, the status is New, Changed, Undeleted on return to QUICK. Subsequent
processing can be affected if a subroutine is used to retrieve an existing record and place it in an
empty buffer.

If the same item is passed more than once in the same call, only the last occurrence of that item is
checked for value changes on return to QUICK.

If a subroutine must access a file, the subroutine must open and close that file. The considerations
are the same as those for file sharing between many processes. If the external routine returns a
value, it is ignored by QUICK, and you cannot access it.

QUICK can accommodate programming languages that support lowercase names for functions or
subroutines. When QUICK searches for an identifier in the symbol table, it can recognize a name
that is all in lowercase, uppercase, or mixed case.

Note: For information about verb and procedure compatibility, see (p. 239).

The BuildExternal Script

In order to link to the external routine, QUICK must create a distinct process. Included with
PowerHouse is a script named BuildExternal. BuildExternal is a C Shell (csh) script that takes
routine names, object files, and an optional executable (driver) name and builds a program to
communicate with QUICK in order to accomplish processing.

BuildExternal takes a variety of arguments and transforms them into a driver program. The two
required arguments which you must supply to BuildExternal are a list of function or procedure
names and a list (or library) of object files. The optional argument is the name of the executable
driver that QUICK starts when it runs.

Note: If the driver option is specified, an environment variable must be set to indicate to QUICK
that a name other than qkdriver is being used as in

408 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (UNIX)

setenv QKDRIVER ./routines.out

The syntax of the BuildExternal script takes the general form:
BuildExternal routine_names object_files [driver_name]

routine_names
The argument routine_names is either a comma-separated list of function/procedure names or a
filename that contains a list of routine names. In the latter case, the filename begins with the "@"
character.

The following are examples of routine_names where change is the name in the C language
declaration in the examples in the previous section.
BuildExternal change ...
BuildExternal @routines ...

object_files
The argument object_files is either a comma-separated list of filenames with .o extensions or an
archived library containing contents of object files. (See the UNIX command ar(1) for archiving.
See f77(1) and cc(1) for discussions on object files.)

Since PowerHouse 5GL is a 32-bit application, object files must also be 32 bit. If not,
BuildExternal will issue errors.

The lib/<name>.a option is the method to supply an archived library to BuildExternal.

The following are examples of object files:
BuildExternal change change.o
BuildExternal @routines lib/routines.a

driver_name
The argument driver_name is optional. It is a UNIX executable file containing the communication
code and linked copies of your compiled external routines. By default, its name is qkdriver.

The following examples show the use of a driver name
BuildExternal change change.o

creating an executable named qkdriver.
BuildExternal @routines lib/routines.a routines.out

creating an executable named routines.out.

Examples
The screen TRANSACT in this example makes use of the DO EXTERNAL verb to invoke an
external program (written in C) to perform an edit check:
> SCREEN TRANSACT
>
> TEMPORARY STATUS_CODE NUMERIC*4
>
> FILE TRANSACTIONS
>
> SKIP TO LINE 4
> HILITE TITLE INVERSE
> TITLE "TRANSACTION SCREEN" CENTERED
> DRAW FROM 3,15 TO 5,65
> SKIP 2
>
> GENERATE NOLIST
>
> PROCEDURE EDIT TRANS-NO
> BEGIN
> LET STATUS_CODE = 0
> DO EXTERNAL EDITTRANS PASSING &
> TRANS-NO, STATUS_CODE
> IF STATUS_CODE NE 0

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (UNIX)

QDESIGN Reference 409

> THEN ERROR "ENTERED TRANSACTION NUMBER DID" &
> "NOT PASS EDIT CHECK."
> END
>
> BUILD

In the preceding example, the external program EDITTRANS is called to perform an edit check of
the current transaction number. The temporary variable, STATUS_CODE, is set by the external
program EDITTRANS to indicate whether or not the edit was successful. If the edit fails (that is, if
a non-zero status code is returned), the user receives an error message.

External Subroutine Linking (Method One)

The syntax of the first linking method is
DO EXTERNAL name|string [PASSING file|item [,file|item]...]

The following example illustrates how to invoke a subroutine that performs a part-number edit
using the first method of external subroutine linking. A flag is passed in order to check the results.

The screen design is as follows:
> SCREEN LINK
> FILE ORDER
> TEMPORARY TEST-FLAG INTEGER
> TEMPORARY TEMP-NO CHARACTER*10
> FIELD ORDER-NO OF ORDER
> FIELD PART-NO OF ORDER
> FIELD ORDER-QTY OF ORDER
> PROCEDURE EDIT PART-NO
> BEGIN
> LET TEST-FLAG = 0
> LET TEMP-NO = PART-NO
> DO EXTERNAL EDPART PASSING TEST-FLAG, TEMP-NO
> IF TEST-FLAG <> 0
> THEN ERROR = "INVALID PART NUMBER:ERROR TYPE " &
> + ASCII (TEST-FLAG)
> END
> BUILD

The FORTRAN subroutine is called:
subroutine edpart (com, comlem, pass)
integer comlen
integer com(comlen)
integer pass(6)
character*10 tempno
integer string(6)
equivalence (tempno, string(2))
flag = pass(1)
do 10 i = 2, 6

10 string(i) = pass(i)
.
.
.
 pass(1) = flag
 do 20 i = 2, 6
20 pass(i) = string(i)
 return
 end

External Subroutine Linking (Method Two)

The second method of linking to external subroutines is omitting the PASSING keyword and
listing all parameters in parentheses. The listed parameters are passed, but the common area and
common area size are not passed. The syntax of the second linking method is
DO EXTERNAL name|string ([parm [,parm]...])

The screen design needed for the second method of invoking external subroutines is identical to
the first method, except that the PASSING option is not used on the DO EXTERNAL verb:
> SCREEN LINK

410 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (UNIX)

> FILE ORDER
> TEMPORARY TEST-FLAG INTEGER
> TEMPORARY TEMP-NO CHARACTER*10
> FIELD ORDER-NO OF ORDER
> FIELD PART-NO OF ORDER
> FIELD ORDER-QTY OF ORDER
> PROCEDURE EDIT PART-NO
> BEGIN
> LET TEST-FLAG = 0
> LET TEMP-NO = PART-NO
> DO EXTERNAL EDPART (TEST-FLAG, TEMP-NO)
> IF TEST-FLAG <> 0
> THEN ERROR = "INVALID PART NUMBER:ERROR TYPE " &
> + ASCII (TEST-FLAG)
> END
> BUILD

The FORTRAN subroutine using the second method is:
 subroutine edpart (flag, tempno)
 integer flag
 integer tempno(5)
 integer string(5)
 character*10 partno
 equivalence (partno, string(1)
 do 10 i = 1, 5
10 string(i) = tempno(i)
 .
 .
 .
 do 20 i = 1, 5
20 tempno(i) = string(i)
 return
 end

Additional External Procedure Examples

The following example illustrates how to pass a temporary variable to an external C procedure.

The screen design is as follows:
> SCREEN QKCHANGE MENU
> TEMPORARY ARGUMENT CHARACTER*15
.
.
.
> BEGIN
> DO EXTERNAL CHANGE (ARGUMENT)
> DISPLAY ARGUMENT
> END
> BUILD

The C routine to accept the temporary item is as follows:
extern char *memcpy();
extern int memcmp();
void change(value)
char *value; /* Reference of argument as
 * to byte ptr.
 */
{
 if((memcmp(value, "Hello World", 11)) == 0)
 (void)memcpy(value, "Hello Quick", 11);
 else
 (void)memcpy(value, "GoodBye Quick", 13);
}

The following example illustrates how to invoke an external C procedure to accept the BILLINGS
record.

The screen design is as follows:
> SCREEN QKCHANGE

Chapter 8: QDESIGN Verbs and Control Structures
DO EXTERNAL (UNIX)

QDESIGN Reference 411

> FILE BILLINGS PRIMARY
> FIELD EMPLOYEE OF BILLINGS REQUIRED NOCHANGE
> FIELD MONTH OF BILLINGS
> FIELD PROJECT OF BILLINGS REQUIRED NOCHANGE
> FIELD BILLING OF BILLINGS
.
.
.
> PROCEDURE DESIGNER 10
> BEGIN
> DO EXTERNAL CHANGE(BILLINGS)
> DISPLAY EMPLOYEE OF BILLINGS
> DISPLAY MONTH OF BILLINGS
> DISPLAY PROJECT OF BILLINGS
> DISPLAY BILLING OF BILLINGS
> END
> BUILD

C Language statements which accept the BILLINGS record are
void change(buffer)
int *buffer;
{
/* The structure defined below and pointer(*record)
 * is cast from the record that QUICK passes.
 * See the C language guide for more information
 * on structures and casting.
 */
struct a {

short int employee;
int month;
int project;
int billing; /* as packed signed */

} *record = (struct a *)buffer;

 record->employee = 42; /* Change the employee number. */
 record->project = 42; /* Change the project. No format */

}

412 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
QDESIGN - DO EXTERNAL (Windows)

QDESIGN - DO EXTERNAL (Windows)
For DO EXTERNAL (MPE/iX), see (p. 390).

For DO EXTERNAL (OpenVMS), see (p. 398).

For DO EXTERNAL (UNIX), see (p. 406).

Executes an external subroutine.

Syntax
DO EXTERNAL [C|PASCAL] name|string ([parm [,parm]...])

or
DO EXTERNAL [C|PASCAL] name|string [PASSING file|item [,file|item]...]

C|PASCAL
Names the type of calling convention used.

The PASCAL format reads parameters right to left, the standard order expected internally by
Windows.

Special care must be taken upon return from a function when using the PASCAL parameter
passing convention. The calling function must allow for sixteen parameters because a variable
number of parameters is not supported. The called function may expect anywhere up to and
including sixteen parameters. It is the responsibility of the called function to remove the
parameters off of the program stack. Since the caller must provide sixteen parameters and the
called function may or may not handle that many parameters it is necessary to have the caller
make sure that the stack is properly reset upon return.

Default: C

name
The name of the external subroutine.

PowerHouse looks for the specified name. If it does not find the name, it will look for it in the
.QKI file, in QKGO or in the QKDRIVER environment variable.

string
A string naming the external subroutine.

Describes the library and the entry point to call in the form "library-name@entry-point". The
library name can be fully qualified. If specified, the library file is loaded from the named folder;
otherwise, Windows searches for the library file using standard Windows search rules. If the string
contains only a name, it is treated as a ?name parameter. By default, PowerHouse for NT/2000/XP
looks for the external subroutine in the .QKI file, in QKGO or in the QKDRIVER environment
variable.

parm
Describes what is being passed to the subroutine.

The parm can be:

file
Passes the address of the record buffer for the file.

item
Passes the address of the item.

REFERENCE (file|item)
Passes the address of the record buffer for the file or the address of the item.

Chapter 8: QDESIGN Verbs and Control Structures
QDESIGN - DO EXTERNAL (Windows)

QDESIGN Reference 413

VALUE (item)
Passes the value of the item (can be type INTEGER, FLOAT, NUMERIC, DATE, PHDATE, or
JDATE). Types less than 32 bits are extended to 32 bits. INTEGER size 6 is extended to 8 bytes
(64 bits).

PASSING file|item [,file|item]...
Passes the address of the common area (as declared in the QKGO file), the address of an integer of
size 2 containing the common area size, and the address of the pass list to the subroutine. The pass
list is a data structure consisting of the files and items specified. The files and items may be aligned
according to machine-specific requirements. When a repeating item is specified in the parameter
list, only the address of the first occurrence will be passed.

Note: Parameter buffers to an external subroutine are always aligned correctly for any valid
datatype, but items within record buffers are not normally aligned with respect to earlier items.

The common area is allocated and initialized to binary zeros by QUICK; otherwise, it is not used.
It can be used to communicate between different external subroutines or between different calls to
the same subroutine.

The common area size is an integer of size 2 containing the size (in words) of the common area as
specified in QKGO's common area size parameter. By default, QUICK allows one external
subroutine and one word in the common area. Use QKGO parameters to increase both of these
settings.

Limit: Any value returned by an external routine will be discarded.

Note: There is no limit on the number of external subroutines that can be invoked.

Windows limits the number of passed parameters to sixteen files or items. The effective limit may
be less in some cases, in particular when a 64-bit floating point parameter is passed by value. That
single parameter would use four of the available sixteen parameter positions.

Discussion
Windows allows programs to link to a library of routines dynamically through dynamic link
libraries (DLLs). PowerHouse 4GL for NT/2000/XP allows the programmer to use these functions
using the DO EXTERNAL procedural verb.

DO EXTERNAL supports the standard C calling convention and the PASCAL (or FORTRAN)
calling convention. Your external function can be written in any language whose compiler
supports these calling conventions.

Steps
1. Create a function and place it in a Windows Dynamic Link Library.
2. Create and compile PowerHouse screens with a DO EXTERNAL command.
3. Place the Windows DLL in the Windows folder.
4. Run the PowerHouse screen.

Formats of Do External Calls

Form 1: Using the PASSING Keyword

DO EXTERNAL [C|PASCAL] name|string [PASSING file|item [,file|item]...]
This format of DO EXTERNAL issues the call to the specified external routine and passes the
following parameters:
• Address of the common area was been initialized to binary zeros as declared in the .QKI file,

in QKGO, or in the QKDRIVER environment variable.
• Address of a two-byte integer containing the size in words of the common area.
• Address of the pass list, which is a data structure consisting of the structures and items

specified. Entries in the pass list are aligned on word boundaries (16 bits).

414 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
QDESIGN - DO EXTERNAL (Windows)

By default PowerHouse allows one external subroutine and one word in the common area. These
values can be customized in the .QKI file, in QKGO, or in the QKDRIVER environment variable.

General External Function Format:

C:
void FAR extfuncname(int FAR * com_area, int FAR * com_size, int FAR *
passlist);

PASCAL:
void FAR PASCAL extfuncname(int FAR * com_area, int FAR * com_size, int FAR *
passlist);

All pointer references are FAR pointers in both forms of the external function call.

Form 2: Not Using the Passing Keyword

The second method of linking to external subroutines is to omit the PASSING keyword and to list
all the parameters in parentheses. The syntax of this form is
DO EXTERNAL [C|PASCAL] name|string ([parm [,parm]...])

This format of DO EXTERNAL dynamically loads the DLL corresponding to the specified name
and a call is issued to the function with the name specified in the syntax. The common area and
the common area size are not passed to the external function. As specified in the calling syntax,
either the address or the value of the structure or the item is passed to the external subroutine.

General External Function Format:

C:
void FAR extfuncname(int FAR * buffer, ...);

PASCAL:
void FAR PASCAL extfuncname(int FAR * buffer1, int FAR * buffer2, ... , int FAR
* buffer16,);

All pointer references are FAR pointers in both forms of the external function call.

Examples

Example: The DLL (Dynamic Link Library)

The C source code and the definition file for a simple dynamic link library that could be used as a
template for your own DLL routines.

Inside the C source code there are two other functions, LibMain and WEP. LibMain is the entry
point of the library; it is called by Windows to initialize the DLL.

The WEP (Windows Exit Procedure) function performs clean up for the DLL before the library is
unloaded.

The definition file is similar to the definition file for all Windows programs, with the exception of
the first statement. In Windows EXE definition files, the first statement is the NAME statement,
but in DLLs the first statement is the LIBRARY statement. The name you give your DLL can be
anything you want, but it must be unique throughout your system.

C Source Code
#include <stdio.h>
#include <conio.h>
/*Function Prototype*/
void__declspsec(dllexport) SimpleFunction (char[20],char[20]);

/*Function Implementation*/
void__declspsec(dllexport) SimpleFunction (char text[20],char title[20])
{
 int ch;

Chapter 8: QDESIGN Verbs and Control Structures
QDESIGN - DO EXTERNAL (Windows)

QDESIGN Reference 415

 text[19]=’\0’;
 title[19]=’\0’;

 printf ("\nText=[%s]",text
 printf ("\nTitle=[%s]",text
 printf ("\nPress<ENTER>to continue");

 ch=getch();
 return;
}

Example: Calling AX_DLL from a Screen

The following example is used to display the use of external calls from within PowerHouse 4GL:
SCREEN X
TEMPORARY title CHAR SIZE 20
TEMPORARY text CHAR SIZE 20
...
PROCEDURE DESIGNER x NODATA
BEGIN
 LET title = "DoExternal"
 LET text = "This is the text"
 DO EXTERNAL "DOEXT@SimpleFunction" (text,title)
END

The actual DO EXTERNAL call is one that requires a closer look. The format of the command
has changed from other forms of the PowerHouse command set.
DO EXTERNAL "<DLL NAME>@_<ROUTINE NAME>" (<PARAMETER LIST>)

PowerHouse passes the address of the variable to the external function only by default. The
source code for the external routine accepts both parameters as addresses. You can pass the value
of the parameters by using the VALUE option.

Example: Calling GetProfileString

This code shows a call to the GetProfileString function in KERNEL, by using the function to
determine the location of Excel according to the win.ini configuration file. The PASCAL option is
added to the DO EXTERNAL verb so that the parameters are read in the order required by
Windows. If the location of Excel is found, its path is displayed. Otherwise, the default return
value ‘Excel not found’ is displayed.
SCREEN getpriv MENU
TEMP iNull INTEGER SIZE 2 INITIAL 0 RESET AT STARTUP
TEMP szNull CHARACTER SIZE 1 INITIAL char(iNull) RESET AT STARTUP
;These are the temporary variables used as parameters to pass to
;the function GetProfileString. See the Windows 3.1 SDK for
;details.
TEMP lpszSection CHARACTER SIZE 30 RESET AT STARTUP INIT " "
TEMP lpszEntry CHARACTER SIZE 30 RESET AT STARTUP INIT " "
TEMP lpszDefault CHARACTER SIZE 30 RESET AT STARTUP INIT " "
TEMP lpszReturn CHARACTER SIZE 128 RESET AT STARTUP INIT " "
TEMP iReturn INTEGER SIZE 2 RESET AT STARTUP INIT 128
TEMP length INTEGER SIZE 2 RESET AT STARTUP INIT 0
TEMP t_excel CHARACTER SIZE 128 RESET AT STARTUP
PROCEDURE DESIGNER excl NODATA
BEGIN

LET lpszSection = "Extensions" + szNull
LET lpszEntry = "xls" + szNull
LET lpszDefault = "Excel not found" + szNull

This is the actual call to the function. As a general rule, it works best if you pass strings by
reference and numbers by value.
DO EXTERNAL PASCAL "Kernel@GetProfileString" (REF(lpszSection),
REF(lpszEntry), REF(lpszDefault), REF(lpszReturn), VALUE(iReturn))

IF lpszReturn <> ("Excel not found" + szNull)
THEN BEGIN

LET length = INDEX(lpszReturn, " ")

416 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
QDESIGN - DO EXTERNAL (Windows)

END
ELSE BEGIN

LET length = INDEX(lpszReturn, szNull)
END
LET length = length - 1
LET t_excel=lpszReturn[1:length]
DISPLAY t_excel

END

Windows Search Rules
Windows searches in this order:
1. current directory
2. directory containing the executable file for the current task
3. 32-bit Windows system directory.

The function GetSystemDirectory can be used to get the path of this directory which is named
SYSTEM32.

4. 16-bit Windows directory named SYSTEM
5. Windows directory.

The following function can be used to get the path of this directory:
GetSystemDirectory<JavaScript:hhobj 5. Click()>

6. directories in your path

Chapter 8: QDESIGN Verbs and Control Structures
DO INTERNAL

QDESIGN Reference 417

DO INTERNAL
Executes an internal procedure.

Syntax
DO [INTERNAL] name

name
Names an existing INTERNAL procedure.

Limit: 64 characters

Discussion
An INTERNAL procedure is a subroutine written in QDESIGN procedural code. The
INTERNAL procedure must be declared in the procedure section of the screen design before the
procedure in which it is invoked. The corresponding procedure executes when this statement is
encountered.

You can make recursive procedure calls within INTERNAL procedures.

Example
The do internal verb references a previously declared internal procedure, as shown in the
following example:
> SCREEN INVCHK
> FILE INVOICES
>
> FIELD INVOICENO OF INVOICES &
> REQUIRED NOCHANGE LOOKUP NOTON INVOICES
> FIELD QUANTITY OF INVOICES
> FIELD PRICE OF INVOICES
> FIELD TAX OF INVOICES
> FIELD TOTAL OF INVOICES
> PROCEDURE INTERNAL STANDARDCHECK
> BEGIN
> IF TOTAL NE QUANTITY * (PRICE + TAX)
> THEN ERROR "Check-digit edit failed"
> END
> PROCEDURE EDIT TOTAL
> BEGIN
> DO INTERNAL STANDARDCHECK
> END
>
> BUILD

418 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
EDIT

EDIT
Edits a value in a field.

Syntax
EDIT field

field
Names the field that corresponds to the item to be edited.

Discussion
The EDIT verb initiates activities that perform value checks and lookups, and executes EDIT and
PROCESS procedures for the named field.

Do not use the EDIT verb within the EDIT procedure of the same field. This will cause QUICK to
loop.

Note: For information about verb and procedure compatibility, see "Verb and Procedure
Compatibility" (p. 239).

The EDIT Verb and SILENT Fields

The EDIT verb is normally used in conjunction with SILENT fields. The EDIT verb neither
accepts data from the QUICK screen user nor displays data to the screen. Rather, the EDIT verb
retrieves the value of the item from its associated buffer and moves it into the FIELDTEXT
predefined item and (where appropriate) the FIELDVALUE predefined item. The content of the
FIELDTEXT predefined item is consistent with an acceptable entry of the corresponding item
type. QDESIGN then performs
• specified FIELD and dictionary editing
• the EDIT procedure for that field
• the PROCESS procedure for that field

The following figure illustrates the steps that are initiated by the EDIT verb, and contrasts these
steps to similar steps performed by other field processing verbs:

Chapter 8: QDESIGN Verbs and Control Structures
EDIT

QDESIGN Reference 419

For information about the steps in the preceding figure, see "Processes Initiated by the ACCEPT
Verb" (p. 364).

Inclusion of EDIT overrides the following FIELD statement options: DISPLAY, FIXED, IF, OMIT,
and NOENTRY.

Example
In the following example, an employees file is used to develop a screen that contains an
employee's surname and first name. The field employee-NUMBER is a silent field that is used for
lookup only, and QDESIGN generates an edit verb for this field in the default entry procedure.
The EDIT verb causes QUICK to perform a lookup, ensuring that an EMPLOYEENUMBER for
the specified LASTNAME and FIRSTNAME exists.
> SCREEN EMPNAMES
> FILE EMPLOYEES PRIMARY
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD FIRSTNAME OF EMPLOYEES
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> SILENT LOOKUP ON EMPLOYEES
>
> PROCEDURE ENTRY
> BEGIN
> ACCEPT LASTNAME OF EMPLOYEES
> ACCEPT FIRSTNAME OF EMPLOYEES
> EDIT EMPLOYEENUMBER OF EMPLOYEES
> END
> BUILD

420 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
ERROR

ERROR
Stops processing and issues an error message.

Syntax
ERROR [MESSAGE] string|=string-expression|n

string
Defines the contents of the message using a string.

=string-expression
Defines the contents of the message using a string expression.

n
Defines a message number that corresponds to a message in the designer message file, which is the
designated file QKMSGDES.

For more information about QDESIGN's message files, see Chapter 4, "Messages in
PowerHouse", in the PowerHouse Rules book.

Discussion
The ERROR verb instructs QUICK to display the specified message on the message line. The
message is displayed if the message line is empty or if it contains a WARNING or
INFORMATION message. The ERROR verb doesn't overwrite a SEVERE verb message. The
ERROR verb has the second highest priority (after SEVERE) in the four-level hierarchy of
messages.

If an error occurs and the action is to back up to a previous ACCEPT or PROMPT verb, or a
previous BLOCK TRANSFER control structure, QUICK follows this process:
1. Looks at each verb that was executed before the error occurred, starting from the verb

immediately prior to the error.
2. If the verb is an ACCEPT, PROMPT, or BLOCK TRANSFER, QUICK executes it and

continues processing.
3. If the verb is a DO INTERNAL verb, QUICK searches the internal procedure for the first

ACCEPT, PROMPT, or BLOCK TRANSFER, executes it, and continues processing.
4. If there is no ACCEPT, PROMPT, or BLOCK TRANSFER in the internal procedure, QUICK

continues searching as in Step 1.
5. If no ACCEPT, PROMPT, or BLOCK TRANSFER exists, QUICK prompts at the Action field.

If an error occurs and the action is to prompt at the Action field, the prompt is immediate; no
other procedure is executed unless specifically stated in the procedure.

The following table describes error processing in all QUICK procedures except EDIT, INPUT,
PROCESS, and OUTPUT, which are discussed in the next table.
.

Procedure Action

APPEND QUICK backs up to a previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure. If there is no such verb or control
structure, and the APPEND procedure was executed using a PERFORM
APPEND verb in the ENTRY or MODIFY procedure, QUICK backs up to a
previous ACCEPT, PROMPT, or BLOCK TRANSFER in the ENTRY or
MODIFY procedure. QUICK prompts in the Action field if there is no such
verb or control structure, or if the APPEND procedure was executed using the
Append (A) or Update (U) Action field commands, or via an AUTOUPDATE
option on the FIELD statement.

Chapter 8: QDESIGN Verbs and Control Structures
ERROR

QDESIGN Reference 421

BACKOUT The rest of the procedure is skipped, and QUICK continues backout
processing.

DELETE The rest of the procedure is skipped, and QUICK prompts at the Action field.

DESIGNER QUICK backs up to a previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure. If no such verb or control structure
exists, QUICK prompts at the Action field.

DETAIL
DELETE

The rest of the procedure is skipped, and QUICK prompts at the Action field.

DETAIL FIND QUICK backs up to the last executed GET verb for the DETAIL file. If no such
verb exists, QUICK prompts at the Action field without displaying any
retrieved data.

DETAIL
POSTFIND

The rest of the procedure is skipped, QUICK displays the data retrieved by the
FIND and DETAIL FIND procedures, and prompts at the Action field.

ENTRY QUICK backs up to the previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure or DO INTERNAL call. If no such
verb, control structure, or call exists, QUICK prompts at the Action field.

EXIT QUICK backs up to a previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure. If no such verb or control structure
exists, control returns to the invoking screen.

FIND QUICK backs up to the last GET verb for the PRIMARY file. If no such verb
exists, QUICK prompts at the Action field without displaying retrieved data.

INITIALIZE QUICK backs up to a previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure. If no such verb or control structure
exists, QUICK executes the EXIT procedure (if it exists), and returns control
to the invoking system.

INTERNAL QUICK follows the error processing for the procedure containing the DO
INTERNAL verb.

MODIFY QUICK backs up to the last ACCEPT or PROMPT verb, or the previous
INTERNAL procedure, or to the last BLOCK TRANSFER control structure.
If no such verb or control structure exists, QUICK prompts the user at the
Action field.

PATH The rest of the procedure is skipped, and QUICK prompts at the Action field
without completing the retrieval cycle.

POSTFIND The rest of the procedure is skipped, and QUICK prompts at the Action field
without displaying retrieved data.

POSTPATH The rest of the procedure is skipped, and QUICK prompts at the Action field
without executing the retrieval cycle.

POSTUPDATE QUICK skips the rest of the procedure and prompts at the Action field.

PREENTRY QUICK backs up to the previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure. If no such verb or control structure
exists, QUICK prompts at the Action field without executing the ENTRY
procedure.

PREUPDATE The rest of the procedure is skipped, and QUICK prompts at the Action field
without executing the UPDATE procedure.

Procedure Action

422 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
ERROR

Errors that are issued from within INPUT, EDIT, PROCESS, and OUTPUT procedures executed
by an ACCEPT, DISPLAY, PROMPT, REQUEST, or SELECT verb take precedence over normal
error processing in the procedure containing that verb.

Errors issued from within EDIT and PROCESS procedures executed by an EDIT verb do not
override normal error processing.

Error Processing for Procedures Initiated by Verbs

Note: For information about verb and procedure compatibility, see (p. 239).

Example
This example counts the skills of selected company personnel. An error message appears if no data
record associated with the user-entered employee number is available for retrieval. The value
entered by the screen user is echoed back by concatenating it into the message string
> SCREEN EMPSKILL
>
> TEMPORARY COUNTER NUMERIC*3 INITIAL 0
>
> FILE EMPLOYEES PRIMARY
> FILE SKILLS DETAIL OCCURS 12
Item EMPNUM initialized (fixed) to EMPNUM OF EMPLOYEES.
> FIELD EMPNUM OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILLCODE

SELECT QUICK backs up to a previous ACCEPT or PROMPT verb, or to a previous
BLOCK TRANSFER control structure. If no such verb or control structure
exists, QUICK prompts at the Action field.

UDPATE QUICK skips the rest of the procedure, rolls back any updates done in the
UPDATE procedure to the point where the error occurred, and prompts at the
Action field.

Procedure Action

Procedure Called by the Verb Action

INPUT ACCEPT, PROMPT,
REQUEST, SELECT

The rest of the procedure is skipped and QUICK
prompts at the current field.

EDIT ACCEPT The rest of the procedure is skipped and QUICK
prompts at the current field.

EDIT The rest of the procedure is skipped and QUICK
continues error processing for the procedure
containing the EDIT verb.

PROCESS ACCEPT The rest of the procedure is skipped and QUICK
prompts at the current field.

EDIT The rest of the procedure is skipped and QUICK
continues error processing for the procedure
containing the EDIT verb.

OUTPUT ACCEPT, DISPLAY,
PROMPT, REQUEST,
SELECT

The rest of the procedure is skipped, QUICK displays
the overflow character (by default, the crosshatch #)
and QUICK continues processing.

Chapter 8: QDESIGN Verbs and Control Structures
ERROR

QDESIGN Reference 423

> CLUSTER
>
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN
> BEGIN
> GET EMPLOYEES VIA EMPNUM
> IF NOT ACCESSOK
> THEN ERROR = "Sorry," + &
> ASCII(EMPNUM) + &
> " is not an employee number."
> END
> IF PATH = 2
> THEN GET EMPLOYEES VIA LASTNAME
> IF PATH = 3
> THEN GET EMPLOYEES SEQUENTIAL
> END
>
> PROCEDURE DETAIL FIND
> BEGIN
> FOR SKILLS
> BEGIN
> GET SKILLS OPTIONAL
> IF ACCESSOK
> THEN LET COUNTER = COUNTER + 1
> ELSE INFORMATION = "This employee has "&
> + ASCII(COUNTER) + " skill(s)."
> END
> END
> BUILD

424 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] FETCH

[SQL] FETCH
Retrieves the next row of data for the specified cursor.

Syntax
[SQL] FETCH cursor-reference [OPTIONAL]

cursor-reference
A cursor-name or table-name named in a CURSOR statement.

Discussion
The cursor will be opened if it is not already open. In this case, only the default substitution will
take place. The execution of the FETCH retrieves the next row of data for the specified cursor.

The SQL FETCH can only be applied to relational tables, views or cursors declared with a
CURSOR statement.

The predefined condition ACCESSOK behaves the same for FETCH as it does for GET.

Chapter 8: QDESIGN Verbs and Control Structures
FOR

QDESIGN Reference 425

FOR
Repeats procedural statements a number of times.

Syntax
FOR n

FOR [EACH] [ITEM] item

FOR [EACH] [DISPLAYED] [FILE] record-structure

FOR MISSING [ITEM] item

FOR MISSING [DISPLAYED] [FILE] record-structure

FOR n
Repeats the procedural statement following the FOR control structure n times.

Limit: Within a procedure, only one FOR control structure can be active at a time.

n
A number between 1 and 255.

FOR [EACH] [ITEM] item
Repeats the procedural statement following the FOR control structure once for each occurrence of
the specified item.

EACH
For documentation only.

ITEM
For documentation only.

item
Specifies what occurring item the FOR control structure is to iterate over.

FOR [EACH] [DISPLAYED] [FILE] record-structure
For the specified record-structure, repeats the procedural statement following the FOR control
structure once for each record buffer in the cache.

EACH
For documentation only.

DISPLAYED
Repeats the procedural statement only for those record buffers that are in the occurrence window.
That is, QUICK starts the iteration at the first record buffer currently displayed on the screen and
ends at the last displayed record buffer.

FILE
For documentation only.

record-structure
Specifies what record-structure the FOR control structure is to iterate over.

426 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
FOR

FOR MISSING [ITEM] item
Starts the iteration after the last non-empty occurrence of an item. It ends when the last record
buffer in the cache is reached.

ITEM
For documentation only.

item
Specifies what occurring item the FOR control structure is to iterate over.

FOR MISSING [DISPLAYED] [FILE] record-structure
Starts the iteration of the FOR control structure after the last non-empty record buffer in the
cache. It ends when the last record buffer in the cache is reached.

DISPLAYED
Repeats the procedural statement only for those empty record buffers in the occurrence window.
That is, QUICK starts the iteration after the last non-empty record buffer currently displayed on
the screen and ends at the last displayed record buffer.

FILE
For documentation only.

record-structure
Specifies what record-structure the FOR control structure is to iterate over.

Discussion
The FOR control structure allows repeated execution of a procedural statement.

FOR MISSING Control Structure

The FOR MISSING control structure is generated in the default MODIFY procedure, and it
repeats as many times as there are empty record occurrences on the screen. A FOR MISSING
control structure allows users to perform Append processing when changing data records using
the Modify (M) Action field command.

Nesting FOR Control Structures

FOR control structures cannot be explicitly nested, but they can invoke an INTERNAL procedure
that contains another FOR control structure. Similarly, the WHILE RETRIEVING control
structure can't be explicitly nested within a FOR control structure.

Block Transfer and Cached Records
A BLOCK TRANSFER inside a FOR control structure where the associated record-structure is
CACHED is not allowed and will cause a syntax error.

FOR Control Structure with Primary or Detail Record Structures

When the FOR control structure is used with a primary or detail record-structure which has an
OCCURS or a CACHE option specified, the FOR control structure will end when
• in Entry mode, the cache is full or the screen user stops the entry sequence with a Skip All (//)

or Backout (^) command. This occurs when you use the FOR control structure in the ENTRY
and APPEND procedures.

• in Find or Select mode, all records are read or the cache is full. This occurs when you use the
FOR control structure in the DETAIL FIND and FIND procedures.

• in Change or Correct mode, the last non-empty record buffer is reached.

Chapter 8: QDESIGN Verbs and Control Structures
FOR

QDESIGN Reference 427

• if no mode is active, or executed before the data records are entered or found, such as in the
INITIALIZE procedure, the loop executes for the number of occurrences of the
record-structure.

FOR Control Structure with Secondary or Designer Record Structures

For secondary and designer record-structures, the number of processing repetitions performed is
equal to the number of occurrences declared on the FILE or CURSOR statement, regardless of the
number of data records entered or retrieved.

FOR Control Structure with Repeating Items

For repeating items, the number of processing repetitions performed is equal to the number of
occurrences declared for that item, regardless of the number of items entered or assigned.

FOR EACH, FOR MISSING, and the DISPLAYED Option

These options of the FOR control structure control what part of the cache and what part of the
occurrence window are to be iterated over.

FOR EACH
When you use the FOR EACH option, the FOR loop starts at the top of the cache and ends at the
bottom of the cache. The DISPLAYED option limits the iteration to all record buffers currently in
the occurrence window.

FOR MISSING
When you use the FOR MISSING option, the FOR control structure starts after the last
non-empty record buffer and ends at the end of the cache. If the cache is full, the FOR control
structure does not execute.

The FOR MISSING DISPLAYED option limits the iteration to all empty record buffers currently
in the occurrence window. If there are no empty record buffers currently in the occurrence
window (that is, the occurrence window is positioned above the empty record buffers in the
cache), then the FOR control structure does not execute.

The FOR MISSING control structure is generated in the default MODIFY procedure. The FOR
MISSING control structure allows QUICK screen users to perform Append processing when
changing data records using the Modify (M) command. During MODIFY procedure processing,
the FOR MISSING control structure starts Append processing and accepts records until ended
with a Skip All (//) or Backout (^) command or the cache becomes full.

DISPLAYED
The designer may write code that iterates over only the record buffers in the cache currently on
screen by using the DISPLAYED option.

Iterations in a FOR Control Structure

The number of processing repetitions in a FOR control structure is determined by one of the
following specifications:
• the OCCURS option of the appropriate FILE, CURSOR, or TEMPORARY statement

together with the number of repetitions of the item, the file, or the cursor

Cache

Occurrence
Window

034 Jacob
053 Jacques
075 Jason

FOR MISSING

FOR MISSING
DISPLAYED

FOR EACH

FOR EACH
DISPLAYED

428 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
FOR

• the number specified in the OCCURS option

Examples
The following screen is used to browse through employees. The POSITION field indicates which
records are currently being viewed. In this example:
• NUM_EMPLOYEES is the number of employee records in the cache.
• The FOR DISPLAYED loop is used to determine the first and last records displayed.
• The first FOR loop is used to determine the number of records entered or retrieved.
• The second FOR loop is used to initialize the record counter.
• The internal procedure UPDATE_POSITION is called to set the initial value of POSITION.

The POSTSCROLL procedure is not called when the records are initially displayed, only
when the records are actually scrolled.

• The POSTSCROLL procedure is invoked every time the records are scrolled. This procedure
uses the internal procedure UPDATE_POSITION to update the POSITION field.

> SCREEN SCROLL_EMPLOYEES
>
> FILE EMPLOYEES OCCURS 15 CACHE 40
>
> TEMPORARY EMPLOYEE_NUM INTEGER*3 UNSIGNED &
> OCCURS WITH EMPLOYEES
> TEMPORARY FIRST_EMPLOYEE RESET AT STARTUP
> TEMPORARY LAST_EMPLOYEE RESET AT STARTUP
> TEMPORARY NUM_EMPLOYEES RESET AT STARTUP
>
> DEFINE POSITION CHARACTER*60 = SUBSTITUTE &
> ("You are viewing records ^ to ^ out of ^.", &
> ASCII(FIRST_EMPLOYEE), &
> ASCII(LAST_EMPLOYEE), &
> ASCII(NUM_EMPLOYEES))
>
> ALIGN (11,,15) (,,20) (,,28) (,,43)
> TITLE "Record Employee First Last" &
> AT 4,11
> TITLE "Number Number Name Name" &
> AT 5,11
> CLUSTER OCCURS WITH EMPLOYEES
> FIELD EMPLOYEE_NUM PICTURE "^^^" SIGNIFICANCE 3 DISPLAY
> FIELD EMPLOYNO OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD FIRSTNAME OF EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> CLUSTER
> SKIP
> ALIGN (,,11)
> FIELD POSITION ID 99
>
> PROCEDURE INTERNAL UPDATE_POSITION
> BEGIN
> LET FIRST_EMPLOYEE = 0
> FOR DISPLAYED EMPLOYEES
> BEGIN
> IF FIRST_EMPLOYEE = 0
> THEN
> LET FIRST_EMPLOYEE = OCCURRENCE
> ELSE
> LET LAST_EMPLOYEE = OCCURRENCE
> END
> FOR EMPLOYEES
> BEGIN
> LET NUM_EMPLOYEES = OCCURRENCE
> END
> DISPLAY POSITION
> END

Chapter 8: QDESIGN Verbs and Control Structures
FOR

QDESIGN Reference 429

> PROCEDURE POSTFIND
> BEGIN
> FOR EACH EMPLOYEES
> BEGIN
> LET EMPLOYEE_NUM = OCCURRENCE
> END
> DO INTERNAL UPDATE_POSITION
> END
>
>
>
> PROCEDURE POSTSCROLL
> BEGIN
> DO INTERNAL UPDATE_POSITION
> END

How QUICK Sets the OCCURRENCE System Function

The setting of the OCCURRENCE system function is localized to the scope of the FOR loop in
which it occurs. The following example illustrates the value of OCCURRENCE in an implicitly
nested FOR control structure:
> FILE A DESIGNER OCCURS 10
.
.
.
> PROCEDURE INTERNAL SHOWLOOP
> BEGIN
> LET X OF A = OCCURRENCE
> FOR A
> BEGIN
> LET X OF A = OCCURRENCE
> END
> LET X OF A = OCCURRENCE
> END
.
.
.
> PROCEDURE ENTRY
> BEGIN
> FOR A
> DO INTERNAL SHOWLOOP
.
.
.
> END

430 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
FOR

In this example, the INTERNAL procedure SHOWLOOP is performed 10 times. The following
list shows how the item OCCURRENCE is set within each of these iterations:

At any time, there is only one setting of the OCCURRENCE function.

If an item has multiple occurrences within a record-structure that has multiple occurrences, the
OCCURRENCE function always refers to the record-structure, so the first item of the current
data record is used. You can't address all the occurrences of a repeating item within a repeating
record-structure on the same screen. Instead, you must pass each occurrence of the
record-structure in turn to a subscreen and process the repeating item there.

Iteration Value of OCCURRENCE

1 1,1,2,3,4,5,6,7,8,9,10,1

2 2,1,2,3,4,5,6,7,8,9,10,2

3 3,1,2,3,4,5,6,7,8,9,10,3

4 4,1,2,3,4,5,6,7,8,9,10,4

5 5,1,2,3,4,5,6,7,8,9,10,5

6 6,1,2,3,4,5,6,7,8,9,10,6

7 7,1,2,3,4,5,6,7,8,9,10,7

8 8,1,2,3,4,5,6,7,8,9,10,8

9 9,1,2,3,4,5,6,7,8,9,10,9

10 10,1,2,3,4,5,6,7,8,9,10,10

Chapter 8: QDESIGN Verbs and Control Structures
GET

QDESIGN Reference 431

GET
Retrieves a data record.

Syntax
GET record-structure [option]...

record-structure
Names the data record to be retrieved. The record-structure must be declared in the data
dictionary.

Options

BACKWARDS
Reverses the sequence in which the data records are normally read.

Limit: Valid only for C-ISAM, DISAM, RMS ISAM, and IMAGE datasets with keyed access.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

GENERIC|NOGENERIC
GENERIC allows partial index retrieval. NOGENERIC prevents partial index retrieval.

Limit: Not valid for IMAGE indexes, unless they are B-Tree or OMNIDEX indexes.

Default: GENERIC

OPTIONAL
Continues processing even if the access fails. With the exception of PRIMARY and DETAIL type
files, retrieval is required unless the OPTIONAL keyword is used. If a data record isn't found, a
data record is created containing initial values for each item. These values are taken from the data
dictionary and any ITEM statements. If no initial values are specified in the data dictionary or an
ITEM statement, CHARACTER items are initialized to spaces, and NUMERIC and DATE items
are initialized to zero.

ORDERBY item [ASCENDING|DESCENDING]
[,item[ASCENDING|DESCENDING]]...
Allows the ordered retrieval of records in a relational table or view by any column (or
combination of columns) defined in the table or view.

If the ORDERBY option occurs with the VIAINDEX option, ordering is performed according to
the columns of the ORDERBY option and the ordering imposed by the VIAINDEX option is
ignored.

Limit: Valid only for relational structures.

Default: ASCENDING

SEQUENTIAL
Accesses the data records sequentially.

Limit: The SEQUENTIAL and USING options cannot be used in the same GET verb.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

432 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
GET

UNIQUE
Forces a re-evaluation of the USING expression and a "get first" access for each data record read.
UNIQUE overrides chained-type access to indexed files and IMAGE datasets. For
record-structures in direct and relative files, the option allows calculation of the data record
number for each individual data record.

Limit: Applies only to PRIMARY, SECONDARY, and DETAIL files.

USING expression [,expression]...
Accesses the data records of the specified record-structure using the results of the specified
expression as
• the value for corresponding segments
• the data record number for record-structures in direct files or relative files
• the column value in a relational table

For indexed files or IMAGE datasets, there can be more than one value (for segmented indexes),
but QUICK interprets the values as a single index value in that file.

If the record-structure belongs to a DIRECT file, there can only be one expression which must be
numeric. Otherwise, a series of expressions may be specified which correspond one-to-one with
the segments established by either the VIA or VIAINDEX options.

If neither the VIA nor the VIAINDEX option is specified, and the record-structure has only one
associated index structure, this index structure is used as if the VIAINDEX option had been
specified except that index retrieval order will not be enforced.

If a record-structure is a relational table, there can be several values in the USING option which
QDESIGN interprets as the values of the columns in the table. The VIA or VIAINDEX options
must be used to indicate which columns the values belong to if more than one index is in use or if
no index is used.

If the VIA option is specified, the number of expressions specified must correspond one-to-one
with the number of segments specified on the VIA option.

If the VIAINDEX option is specified and the VIA option isn't specified, the number of expressions
specified may be less than or equal to the number of segments contained within the index
structure specified. There must be at least one expression.

Limit: 255 expressions.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of a
multi-segment index, unless the index is a B-Tree or OMNIDEX index. An expression must be
specified for every segment of the index.

VIAINDEX indexname
Names an index of an indexed file, or IMAGE dataset, or relational table. When VIAINDEX is
used with the USING option, there can be as many USING values as there are segments in the
index, or fewer values than the index segments. In the latter case, the values are matched to the
index segments in order, starting from the first segment; the leftover segments are not used. When
using VIAINDEX, the retrieval always follows the order specified by that index.

Use VIA instead of VIAINDEX with relational tables. By explicitly referencing an index with the
VIAINDEX option, it becomes harder to change the database definitions. If the index is deleted,
the source code must be modified. If VIA is used instead, the index can be deleted and the screen
continues to work properly.

VIA linkitem [,linkitem]...[ORDERED[ASCENDING|
DESCENDING]]

Accesses the record-structure via the specified segments. Linkitem is a segment in an index for an
indexed file, or a column in a relational database.

When a VIA list is used in combination with the USING option, there must be a one-to-one match
between the USING expressions and VIA linkitems. This option is valid only for indexed files,
IMAGE datasets, and relational tables.

Chapter 8: QDESIGN Verbs and Control Structures
GET

QDESIGN Reference 433

For indexed files, and IMAGE datasets, the series of linkitems declared must define a series of
segments contained within the index structure associated with the record-structure. In this case,
the first linkitem is the first segment within the index structure, the second linkitem is the second
segment, and so on.

For relational tables, a series of linkitems may represent any series of columns in a table as long as
the VIAINDEX option is not specified. If VIAINDEX is specified, a series of linkitems must be a
series of segments contained within a specific index structure: match the first linkitem to the first
segment, the second linkitem to the second segment, and so on.

THE ORDERED option allows ordered retrieval of records in a relational table or view by any
column or combination of columns defined in a table of view.

The ORDERED option is a convenient method of specifying ORDERBY items when the specified
items are the same as those in the VIA list.

If ORDERED option occurs with the VIAINDEX option, which also imposes an ordering, the
ordering is done by the columns of the VIA option. The implicit ordering imposed by the
VIAINDEX option is ignored.

Limit: 255 segments.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of a
multi-segment index, unless the index is a B-Tree or OMNIDEX index. The series of linkitems
must include all of the segments in the index.

Discussion
The GET verb retrieves one data record of the named file and moves it into the screen's record
buffer area. From the record buffer, the data record can be displayed, changed, or deleted. If more
than one access path is possible for a given record-structure, you must provide sufficient
information (preferably by using the ACCESS statement) to specify the access path explicitly.

The GET verb returns only data records that pass the selection conditions established by either a
SELECT statement or a selection value for the record-structure, as specified in the data dictionary.

When a file has a selection value, and a GET OPTIONAL is done, only the first record is read. To
force reading all records until the selection passes or end of file, GET SEQUENTIAL OPTIONAL
must be specified.

QUICK locks indexed files for record retrieval. By default, the GET verb locks the file, retrieves
the record, and unlocks the file. The locking is conditional unless overridden by the designer. The
number of lock attempts and the interval between attempts can also be controlled by using QKGO
parameters.

If the lock cannot be obtained, an error condition is flagged and the effect is the same as if an
ERROR verb had been issued. An exception occurs in the FIND procedure with SECONDARY
and DETAIL files. If a lock cannot be obtained (using the appropriate number of attempts) on a
SECONDARY or DETAIL file, the error is flagged and the procedure stops. Any data retrieved to
that point is displayed along with the lock error message. The user can make changes to the data,
even though the logical transaction may be incomplete. This occurs even if retrieval is required
(the OPTIONAL keyword has been removed).

Normally, if an error is issued in a FIND procedure, QUICK backs up to the last GET verb for the
PRIMARY file, if one exists. QUICK does not back up when a lock cannot be obtained because, if
the SECONDARY or DETAIL file remains locked, PRIMARY file records could be retrieved
without anything ever being displayed to the user. The wait could be considerable.

To work around this situation:
• To lock all SECONDARY and DETAIL files (indexed only) that are retrieved in the FIND

procedure, add a LOCK verb in the FIND procedure before the GET verb for the PRIMARY
file. An UNLOCK verb should be added to unlock the files at the end of the FIND procedure.
With the LOCK verb, the files are specifically locked prior to any attempt at retrieval. If the
locks cannot be obtained, the appropriate message is issued and the cursor returns to the
Action field.

434 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
GET

• MPE/iX, UNIX, Windows: Use the QKGO parameter LOCK UNCONDITIONAL to specify
that the first lock in a series of locks is unconditional. The lock around the read would then be
unconditional as long as no other file or database is locked at read time.

Note: For information about verb and procedure compatibility, see (p. 239).

GET Locks the File for Concurrent Read (OpenVMS)

The GET verb uses VMS Lock Management Services (LMS) to lock the file for concurrent read
when it retrieves a record from a file. Concurrent read allows other users read or write access to
the file and provides the requestor of the lock (in this case, the GET verb) with read access only.
The GET verb releases the current read lock after the record is read.

Example
This example counts the skills of selected company personnel. In this example:
• GET retrieves data records from EMPLOYEES via the index EMPNUM.
• SEQUENTIAL specifies the default file access when the QUICK screen user makes a null entry

in Find mode.
• OPTIONAL allows processing to continue when a data record from the SKILLS file isn't

retrieved.
> SCREEN EMPSKILL
> TEMPORARY COUNTER NUMBERIC*3 INITIAL 0
> FILE EMPLOYEES PRIMARY
> FILE SKILLS DETAIL OCCURS 12
Item EMPNUM initialized (fixed) to EMPNUM OF EMPLOYEES.
> FIELD EMPNUM OF EMPLOYEES &
> REQUIRED NOCHANGE LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILLCODE OF SKILLS
> CLUSTER
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN BEGIN
> GET EMPLOYEES VIA EMPNUM OPTIONAL
> IF NOT ACCESSOK
> THEN ERROR = &
> "Sorry, " + &
> ASCII(EMPNUM) + "is not an" &
> + " employee number."
> END
> IF PATH = 2
> THEN GET EMPLOYEES VIA LASTNAME
> IF PATH = 3
> THEN GET EMPLOYEES SEQUENTIAL
> END
> PROCEDURE DETAIL FIND
> BEGIN
> FOR SKILLS
> BEGOM
> GET SKILLS OPTIONAL
> IF ACCESSOK
> THEN LET COUNTER = COUNTER + 1
> ELSE INFORMATION = &
> "This employee has " + &
> ASCII(COUNTER) + " skill(s)."
> END
> END
>
> BUILD

Chapter 8: QDESIGN Verbs and Control Structures
IF

QDESIGN Reference 435

IF
Establishes a conditional statement.

Syntax
IF condition

THEN procedural statement
[ELSE procedural statement]

condition
States a condition to be evaluated.

THEN procedural statement
Executes the specified procedural statement if the condition is satisfied.

ELSE procedural statement
Executes the specified procedural statement if the condition isn't satisfied.

Discussion
The IF control structure allows conditional execution of a procedural statement.

Note: IF control structures can be nested.

An IF option of a FIELD statement causes an IF control structure to be included in the ENTRY
procedure.

The THEN and ELSE keywords must each begin on a separate line.

Example
This example counts the skills of selected company personnel. In this example:
• The IF structure establishes the condition that must be met before the THEN structure begins

execution of the following block.
• IF NOT ACCESSOK establishes a condition that must be satisfied before the next procedural

statement is executed. If the employee number entered doesn't match a record in SKILLS,
QUICK displays an error message.

> SCREEN EMPSKILL
>
> TEMPORARY COUNTER NUMERIC*3 INITIAL 0
> FILE EMPLOYEES PRIMARY
> FILE SKILLS DETAIL OCCURS 12
Item EMPNUM initialized (fixed) to EMPNUM OF EMPLOYEES.
>
> FIELD EMPNUM OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILLCODE
> CLUSTER
>
> PROCEDURE FIND
> BEGIN
> IF PATH = 1
> THEN BEGIN
> GET EMPLOYEES VIA EMPNUM
> IF NOT ACCESSOK
> THEN ERROR = &
> "Sorry, " + ASCII(EMPNUM) + &
> " is not a valid employee number."
> END

436 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
IF

> IF PATH = 2
> THEN GET EMPLOYEES VIA LASTNAME
> IF PATH = 3
> THEN GET EMPLOYEES SEQUENTIAL
> END
>
> PROCEDURE DETAIL FIND
> BEGIN
> FOR SKILLS
> BEGIN
> GET SKILLS OPTIONAL VIA EMPNUM
> IF ACCESSOK
> THEN LET COUNTER = COUNTER + 1
> ELSE INFORMATION = &
> "This employee has " + &
> ASCII(counter) + " skill(s)."
> END
> END
>
> BUILD

For additional examples of how to use the IF control structure, see (p. 319) and (p. 335).

Chapter 8: QDESIGN Verbs and Control Structures
INFORMATION

QDESIGN Reference 437

INFORMATION
Issues an informational message.

Syntax
INFORMATION [MESSAGE] string|=string-expression|n

[NOW [RESPONSE]]

string
Defines the contents of the message using a string.

=string-expression
Defines the contents of the message using a string expression.

n
Defines a message number that corresponds to a message in a designer message file. The
designated file is QKMSGDES.

For more information about message files, see "Messages in PowerHouse" in the PowerHouse
Rules book.

NOW [RESPONSE]
Forces the display of the specified message on the screen when the INFORMATION verb is
encountered in a procedure. Otherwise, the message isn't displayed until the next Input or Output
action. When you use the NOW option, QUICK writes the contents of the display buffer to the
screen. This action refreshes the screen and function key labels.

RESPONSE temporarily erases the top line of the screen, and prompts the screen user to
press [Return].

Discussion
An INFORMATION message has the lowest priority in the four-level message hierarchy. The
INFORMATION verb instructs QUICK to display the stated message, but has no effect on
processing unless the RESPONSE option is used. (There is one exception: if the string is greater
than the screen width, you are prompted to press Return even if the RESPONSE option is not
used.) After the message is displayed, the message line in the display buffer is cleared.

An INFORMATION message is displayed only when the message line is empty, unless the NOW
option is included.

Note: For information about verb and procedure compatibility, see (p. 239).

438 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] INSERT

[SQL] INSERT
Adds new rows to a table.

Syntax
[SQL[IN database]
[TRANSACTION transaction_name

[FOR {CONSISTENCY|{[CONCURRENCY]
phase-option [,phase-option]...}}]]]

INSERT INTO tablespec
[(column-name [,column-name]...)]

query-expression|{VALUES (sql-expression | NULL
[,sql-expression|NULL]...) [RETURNING DBKEY INTO :item]}

IN database
The name of the database. The database must be attached to the current data dictionary.

TRANSACTION transaction_name [FOR {CONSISTENCY|
{[CONCURRENCY] phase-option[,phase-option]...}}]

If the TRANSACTION option is not used, one of PowerHouse's default transactions is used.
Default transactions are associated with every file, table or SQL statement. The default
transactions are Query, Update and Consistency.

TRANSACTION
Specifies that the transaction is associated with the SQL statement.

transaction_name
Any valid PowerHouse name.

FOR CONSISTENCY
Determines that the SQL statement is associated with a particular transaction in Consistency
model.

Limit: Only one transaction association can be specified.

FOR [CONCURRENCY] phase-option [,phase-option]...
Determines that the SQL statement is associated with a particular transaction or transactions in
Concurrency model.

Limit: Up to three transaction associations can be specified.

phase-option

Specifies the screen phase with which the transaction is associated.

For more information about transactions, see the PowerHouse and Relational Databases book.

INSERT INTO tablespec
Identifies the table where the new rows are to be added. The syntax for tablespec is:
[[server-name.]database-name.][owner-name.]table-name

Phase option Description

PROCESS The phase in which you are entering, correcting, or changing data
records on the screen.

QUERY The phase in which data is retrieved from the database.

UPDATE The phase in which data is updated.

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] INSERT

QDESIGN Reference 439

If server-name is included in a Sybase tablespec, double quotation marks are required for the
server-name and database-name, such as
"dbsvr01.accnt".manager.billings_tbl

For Oracle, the syntax is
[owner-name.]table-name[@database-linkname]

If the database-linkname is included, it is treated as part of the table-name, and double quotes are
required. For example,
manager."billings_tbl@dblnk01"

Oracle synonyms may be used for table-names. For more information about how PowerHouse
uses Oracle synonyms, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules
book.

[column-name[,column-name]...]
Identifies columns of the table. If no columns are listed, it is the equivalent of specifying all the
columns in the order that they appear in the table.

query-expression
The query-expression is a query-specification or the union of two or more query-specifications.

If a query-expression is used, multiple rows may be inserted into the table.

VALUES ({sql-expression|NULL }[,{sql-expression|NULL}]...)
If a VALUES option is used, a single row is inserted into the table. The values are assigned to the
columns by position. For example, the first value is inserted into the first column in the column
list. Inserted rows will have a null value in each column that is not specified.
> INSERT INTO DBO.AUTHORS (FIRSTNAME, LASTNAME) &
> VALUES ('SCOTT', 'CRAIG')
> INSERT INTO DBO.AUTHORS &
> SELECT * FROM DBO.NEWEMPS &
> WHERE TITLE = 'AUTHOR'

A value of NULL can also be specified for a column.

[RETURNING DBKEY INTO item]
Allows you to get the DBKEY of the inserted record so you can use it in a subsequent SQL
UPDATE statement. DBKEY is available only if the underlying database supports it.

Limit: DBKEY is not supported for Sybase.

Discussion
The INSERT verb acts directly on a table or view in the database and is never generated by
PowerHouse.

440 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
LET

LET
Sets the value of an item equal to an expression.

Syntax
LET item = expression

item
Names the record item, temporary item, or predefined item to be assigned a value.

expression
Specifies the expression that provides the value.

For information about expressions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

Discussion
The LET verb assigns a value to a record item, a temporary item, or a predefined item. The value
is the result of an expression. The expression must yield a value of the same type (CHARACTER,
NUMERIC, or DATE) as the target item.

Note: For information about verb and procedure compatibility, see (p. 239).

Effects of the LET Verb on Record Status

If a LET verb changes the value of a record item and the screen is in ENTRYMODE,
CORRECTMODE, or CHANGEMODE, the data record status of that data record is set to
Changed. Data record status is also changed if there is no current mode (as in the INITIALIZE
procedure).

The LET verb doesn't change the data record status in FINDMODE.

If a LET verb changes the value of an item that has an ITEM statement with the SUM option
associated with it, the value obtained by subtracting the old value from the new value is summed.

Example
This course-enrollment screen doesn't allow more than a set maximum number of students to be
booked into a course.

In the following example, the LET verb sets the value of PRESENTENROLL to equal
PRESENTENROLL plus one. The counter PRESENTENROLL keeps track of the number of
students enrolled in a course.
> SCREEN CRSENRL
> FILE BOOKING PRIMARY
> FILE COURSEMANAGE DESIGNER
> FILE COURSEMANAGE REFERENCE &
> ALIAS COURSEPRESENT
>
> FIELD COURSENUMBER OF BOOKING REQUIRED NOCHANGE
> FIELD STARTDATE OF BOOKING REQUIRED NOCHANGE &
> LOOKUP ON COURSEPRESENT VIA COURSEKEY &
> USING NCONVERT(COURSENUMBER) + &
> NCONVERT(STARTDATE)
> FIELD STUDENTNAME OF BOOKING REQUIRED
> FIELD COURSEKEY OF BOOKING SILENT &
> LOOKUP NOTON BOOKING
>
> PROCEDURE PREUPDATE
> BEGIN
> GET COURSEMANAGE VIA COURSEKEY &
> USING NCONVERT(COURSENUMBER) + &

Chapter 8: QDESIGN Verbs and Control Structures
LET

QDESIGN Reference 441

> NCONVERT(STARTDATE)
> IF PRESENTENROLL >= COURSEMAXIMUM
> THEN ERROR = "This course is full." + &
> "Please try another date."
> ELSE LET PRESENTENROLL = PRESENTENROLL + 1
> END
>
> PROCEDURE UPDATE
> BEGIN
> PUT BOOKING
> PUT COURSEMANAGE
> END
>
> BUILD

442 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
LOCK

LOCK
Locks a file, an IMAGE database or dataset, an ALLBASE/SQL table or an Oracle table.

Syntax
LOCK [FILE] {record-structure [record-options] |
tablename [table-options]}
[,[FILE]{record-structure [record-options] |
tablename [table-options]}]...

record-structure[record-options]
Names the file to be locked.

The record-options are:
• BASE
• FILE
• RECORD

Defaults: BASE for IMAGE datasets; FILE for MPE and KSAM files (MPE/iX); FILE
(OpenVMS, UNIX, Windows).

BASE (MPE/iX)
Tells QUICK to lock IMAGE datasets at the database level.

FILE
Tells QUICK to lock files or datasets at the file level.

RECORD
Tells QUICK to lock at the record level.

tablename[table-options]
The name of a table defined in an ALLBASE/SQL or Oracle relational database. The tablename
must have been previously referenced on a FILE or CURSOR statement.

The table-options are:
• EXCLUSIVE
• PROTECTED
• SHARED

MPE/iX: IMAGE datasets are locked at the dataset level. MPE and KSAM files are always
locked at the file level.

OpenVMS: Applies an exclusive LMS lock to the named file.

UNIX: UNIX IO files are always locked at the file level.

MPE/iX: Locks IMAGE datasets at the record level. The LOCK RECORD option affects
only IMAGE files. If the LOCK RECORD option is specified for other file
systems, QUICK displays an error message.

OpenVMS: Applies an LMS concurrent write lock to the named file and uses RMS locking
to lock records as needed. Applies to all non-relational file types.

UNIX: Record-level locking is supported for C-ISAM files on all UNIX platforms and
Net-ISAM files on Sun SPARC.

Windows: Record-level locking is supported for DISAM files.

Chapter 8: QDESIGN Verbs and Control Structures
LOCK

QDESIGN Reference 443

EXCLUSIVE|PROTECTED|SHARED
An EXCLUSIVE lock prevents other transactions from reading or writing to the table. A
PROTECTED lock allows other transactions to read but not change the table. A SHARED lock
allows other transactions to read or write to the table.

Default: If the table is READ ONLY, the lock type is PROTECTED; otherwise, the lock type is
EXCLUSIVE.

Discussion
For information about verb and procedure compatibility, see (p. 239).

Locking Tables

With the exception of ALLBASE/SQL and Oracle, relational tables cannot be locked using the
LOCK verb. The LOCK verb is ignored for all other supported databases. Relational tables are
protected by the database software against conflicting updates. For more information about
rollback and error processing when using relational record-structures, see Chapter 2, "Relational
Support in QDESIGN", in the PowerHouse and Relational Databases book.

The UNLOCK verb is ignored for all database products. Locks are released when the transaction
ends.

Locking Files

To maintain data integrity, QUICK automatically locks files before performing a write or update.
Indexed files are locked before performing a write, update, or read.

Unless otherwise specified, QUICK opens all files in shared mode and applies default locking
around or upon the GET and PUT verbs.

The FILE statement exclusivity options can be employed to override this default and make locking
unnecessary.

File-level locks are only released when
• a corresponding UNLOCK verb is executed
• QUICK is ready to accept input from the terminal
• QUICK is ready to send output to the terminal
• QUICK links to a lower-level screen
• QUICK exits from the current screen

File-level locks are left in place for external routine calls and command processing. The
INFORMATION and WARNING verbs with the NOW option display messages immediately and
do not cause file-level locks to be released. However, file-level locks are released if the RESPONSE
option is used, because that will request user input. As well, file-level locks are released if the
message is greater than the screen width, because the user is prompted to continue even if the
RESPONSE option is not specified.

File-level Locks: Exclusive Locks (OpenVMS)

The FILE options of the LOCK verb uses LMS to apply an exclusive lock to the named file. An
exclusive lock grants write access to the file and prevents the file from being shared by any other
readers or writers.

If a PUT verb is issued for a file locked with the LOCK option, RMS record-level locks are
applied, but the exclusive file-level lock is not released.

Controlling Locking with the SCREEN Statement

When building a screen with QDESIGN, the designer can take control of file locking by using the
LOCK option of the SCREEN statement. If the LOCK option is specified, QDESIGN generates
default LOCK and UNLOCK verbs in the UPDATE procedure.

Using the default locking strategy provides more concurrency than using the SCREEN statement
LOCK option to lock files.

444 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
LOCK

OpenVMS, UNIX, Windows: When you use default locking, the PUT verb locks just one data
record at a time, updates it, and then unlocks it.

MPE/iX: When you use default locking, the PUT verb locks the file, does the update and unlocks
the file.

By using the LOCK option, you can specify that all files that can be updated are locked for the
entire UPDATE procedure, thereby ensuring the reliability of rollback during the UPDATE
procedure.

For more information, see (p. 185).

Using the LOCK Verb

Explicit locks are required only to improve throughput or to meet user-specific requirements that
are not satisfied by QUICK’s default locking strategy. Use the LOCK verb to specify options that
are consistent with your particular needs.

MPE/iX: To lock more than one file concurrently, QUICK uses Multiple RIN Capability. For more
information, refer to the Hewlett-Packard documentation for your operating system.

OpenVMS: QUICK engages the VMS Lock Management Services (LMS) for file-level locking and
Record Management Services (RMS) for record-level locking.

Deadlock Protection (MPE/iX, UNIX, Windows)

For information about deadlock protection in OpenVMS, see "Deadlock Protection (OpenVMS)"
(p. 444).

A "deadly embrace" can occur if two or more processes attempt to lock the same files using
unconditional locking. To avoid this, QUICK uses special logic when locking multiple files:
1. QUICK attempts to lock the first file in the statement with a conditional lock.
2. If another process has locked the file, QUICK uses the same strategy as default locking,

retrying the lock every two seconds for a total of 16 lock attempts. However, once the first file
is locked, QUICK does not retry locks for subsequent files in the same LOCK statement.

3. If a subsequent lock is not immediately successful, all files locked in the current LOCK
statement are unlocked. QUICK then starts the locking process again from the first lock,
taking into consideration the total number of lock attempts allowed on the first file.

QUICK also uses a similar logic to avoid deadly embraces if the same file is opened twice. When
QUICK issues a lock on one open, all other opens are marked as locked. For example, if a file is
opened once for read-only access, again for update access, and then the designer locks through the
original read-only open, the update open is marked locked.

The designer can control locking options using QKGO file parameters. The file parameter LOCK
ATTEMPTS controls the maximum number of lock attempts (the default is 16). The length of
time between lock attempts (the default is two seconds) can be controlled with LOCK RETRY
INTERVAL. Whether the first lock attempt is conditional or unconditional is controlled using the
LOCK UNCONDITIONAL parameter. If LOCK UNCONDITIONAL is enabled, the first lock is
unconditional only if no other files are locked by this QUICK process. For more information,
see (p. 255).

Deadlock Protection (OpenVMS)

For information about deadlock protection in MPE/iX, UNIX, and Windows, see "Deadlock
Protection (MPE/iX, UNIX, Windows)" (p. 444).

A deadly embrace can occur when two or more processes attempt to lock the same set of files.
QUICK supplements the deadlock protection provided by LMS to ensure that deadly embraces do
not occur.

If you attempt to lock a file via the GET, PUT, or LOCK verbs, or the LOCK option of the
SCREEN statement, and that file has already been locked by another process, the lock request is
queued and the message "The file is busy. Please wait..." is issued. Use the QKGO parameter
LOCK MESSAGE WAIT to alter the time delay (in seconds) between a lock request for file access
and the display of the message "The file is busy. Please wait...". This message is displayed until the
maximum lock request specification has been exhausted. At this time, if the lock request has not
been granted, the message "Unable to complete the requested action at this time" is displayed.

Chapter 8: QDESIGN Verbs and Control Structures
LOCK

QDESIGN Reference 445

The maximum number of seconds that a lock request is queued before an error message is issued
can be set by the screen designer with the QKGO parameter LOCK REQUEST WAIT. The default
is 30 seconds and the maximum wait is 255 seconds.

For more information on QKGO parameters, see (p. 255).

In addition, QUICK uses special logic to avoid the deadlock that can occur if the same file is
opened twice with different file names (as may be the case with files that have been assigned
aliases, for example). When QUICK issues a lock on one open, all other opens are marked as
locked.

System Locking Compatibility (OpenVMS)

The locking strategies available in QUICK are consistent with those in the other PowerHouse
components. However, because LMS locking is cooperative, there is no guaranteed protection
against non-PowerHouse 4GL program access. To enable other programs to use the same LMS
locking strategies as PowerHouse 4GL, a documented set of routines is provided with the
(OpenVMS server) PowerHouse 4GL installation package in the PH_DOC_LOCATION
directory.

Record Level Locking and Unlocking

The following conditions cause all records to be unlocked by QUICK:
• execution of an UNLOCK RECORD verb for a given file
• start of a new entry sequence
• start of a new find sequence
• QUICK exit from the current screen
• completion of a PUT verb if using default locking (UNIX, Windows)

There is no way to unlock any one record. Any condition that causes a record to be unlocked will
also cause all records locked in the same file by the calling process to be unlocked. It is therefore
possible that when a lock on a particular screen is released, locks on another screen associated
with the same process may also be released. This is also true of the UNLOCK when QUICK
performs checksum verification during the execution of any PUT verb.

To preserve data integrity, QUICK always performs the reread/ checksum calculation before
updating the record; that is, if you try to update a "locked" record that has since been unlocked
by an unrelated UNLOCK, the usual update lock is applied, the record is reread, and the
checksum is calculated as if the record had not been locked.

Since QUICK applies locks during the reread and checksum calculation, when QUICK terminates
the lock at the end of the verification, all records locked in that file by that process will be
unlocked.

QDESIGN issues a message warning you about this issue when the UNLOCK verb is used with
the RECORD option.

OpenVMS: The RECORD option of the LOCK verb causes LMS to apply a concurrent write lock
to the named file.

QUICK maintains a rollback buffer where it stores images of updated records, record locks, and
unlocks. Since record locks and unlocks take up extra space, you must increase the amount of
space reserved for rollback buffers. Failure to do so may result in an error message indicating that
there is insufficient page space and that the lock is being abandoned. To increase the reserved
space, use the QKGO parameter Rollback Buffer.

All record occurrences for a repeating file can be locked by including a LOCK verb with the
RECORD option in the FOR construct that accepts or retrieves data for the file. If the LOCK verb
is outside the FOR construct, only the first occurrence will be locked.

OpenVMS: If multiple LOCK verbs lock the same file, but use different options, the result is an
exclusive file-level lock. If the file-level lock follows the record-level lock, the concurrent write file
lock is converted to an exclusive lock. If the reverse is the case, the exclusive lock is left in place.

446 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
LOCK

Record Level Locking with IMAGE (MPE/iX)

Specifying Lock Items
PowerHouse determines internally which item to use as the lock item, using the following rules:
• If a primary index exists, the item associated to that index is used.
• If no primary index exists but there is an alternating/repeating index, the first

alternating/repeating index is used.

As a result, you can determine which item is to be used as the lock item only through the data
dictionary specification for the database.

This makes it particularly important to determine an effective locking strategy when designing an
application, in order to minimize potential problems. For example, it is possible to lock
nonexistent records by specifying a value that does not exist in the dataset. If that value is
subsequently added to the dataset, the lock is automatically applied, resulting in confusion for
other users.

Read chains can be handled by record level locking but you must take care to lock the entire
chain, otherwise a broken chain can occur.

Record level locking gives you exclusive write access to records in the dataset that are associated
with the locked item. The value for the item in the record that is open at the time of the lock
request is the value used.

If there are multiple occurrences of the same item value in a dataset, all records containing that
value are locked. For example, if the lock item value is the last name "Smith", the records for all
the "Smiths" in that dataset are locked. Records in other datasets are not affected.

Other users can access the locked records, but cannot update them until the lock is removed.

Limitations
Some database operations that involve master set records and critical items require dataset locking
as the minimum level. As a result, record level locking cannot be used with the following
operations:
• addition or deletion of master set records
• updates to critical items associated with a master set record (key items)
• updates to critical items associated with a detail set record (key items)

Using Multiple LOCK Verbs

The results of multiple LOCK verbs are combined. For example,
> LOCK A FILE, C FILE
> LOCK B FILE, D FILE

results in files A, B, C, and D being locked. You can get the same results with the following verbs:
> LOCK A FILE, C FILE
> LOCK A FILE, B FILE, C FILE, D FILE

In the last example, the locks on files A and C in the second LOCK verb are ignored and the
action is the equivalent of simply locking file B and D. If file B or D cannot be locked, the locks on
file A and C are not removed, as they would have been if files A and C had been previously
locked.

If a lock attempt fails on any file or record in a set, all other successful locks in the set are
unlocked, unless they were successfully locked by a previous LOCK verb.

Using Multiple Lock Verbs with IMAGE (MPE/iX)

If multiple LOCK verbs lock datasets and records in the same IMAGE database, QUICK ensures
that the correct level (BASE, FILE or RECORD) of lock is applied. If locks that affect the same
dataset are requested at different levels, only the highest level lock is applied, where BASE is the
highest level and RECORD is the lowest level.

If a higher level lock already exists when a lower level lock is requested, the lower level lock has
no effect. For example, A, B and C are datasets in the same database and are locked as follows:

Chapter 8: QDESIGN Verbs and Control Structures
LOCK

QDESIGN Reference 447

> LOCK A BASE
> LOCK B FILE
> LOCK C RECORD

The LOCK verbs for B and C will both be ignored because the entire database was already locked
by the first LOCK verb.

If a lower level lock exists when a higher level lock is requested, QUICK must release the lower
level lock before applying the higher level lock. Here is an example:
> LOCK B RECORD
> LOCK B FILE
> LOCK A BASE

The second LOCK verb in this example forces QUICK to release the existing record-level locks
before it can apply a file-level lock to the same dataset. The third LOCK statement forces QUICK
to release the file-level lock on B before it can lock the entire database.

File-level and record-level locks can both be used, if they are on different datasets. For example, C
and B are locked as follows:
> LOCK C RECORD
> LOCK B FILE

In this example, the record-level locks on C are compatible with the file-level lock on B. QUICK
does not have to release the record-level locks before applying the file-level lock because the locks
are on different datasets.

It is not possible to unlock individual files or records in an IMAGE database. If anything is
unlocked, then all locks that are held through the same physical open of the database are released
at the same time. This can have unexpected results if file-level, record-level, or a combination of
file-and record-level locks exist on more than one dataset in the database when the unlock is done.

The unlock could be the result of any of the following:
• an UNLOCK verb,
• upgrading to a higher lock level as outlined above,
• hitting one of the processing points where QUICK releases all file or record level locks
• QUICK releasing the lock that it automatically applies around the PUT if a record or file is

not already locked when a PUT verb is executed,.

 For more details, see the UNLOCK verb.

Example
> SCREEN STAFF LOCK FILE FOR UPDATE
> FILE EMPLOYEES PRIMARY
> FILE SKILLS DELETE
Item EMPLOYEE initialized (fixed) to EMPLOYEE OF EMPLOYEES
> FILE POSITIONS REFERENCE
> FILE BRANCHES REFERENCE
.
.
.
> BUILD LIST
>
> PROCEDURE UPDATE
> BEGIN
> LOCK EMPLOYEES FILE, SKILLS FILE
> PUT SKILLS
> PUT EMPLOYEES
> UNLOCK ALL
> END

448 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
MEMOLOG (MPE/iX)

MEMOLOG (MPE/iX)
Writes a message to an IMAGE log file.

Syntax
MEMOLOG filespec string-expression

filespec
Names a file (that is a dataset in an IMAGE database) for which the message is logged.

string-expression
Defines a string expression.

Discussion
The MEMOLOG verb places a message into an IMAGE log file associated with an IMAGE
database using a DBMEMO call. The verb is ignored for other types of files. The name of the file
in the desired database can be used.

Note: For information about verb and procedure compatibility, see (p. 239).

Chapter 8: QDESIGN Verbs and Control Structures
NULL

QDESIGN Reference 449

NULL
Performs a null action.

Syntax
NULL

Discussion
The NULL verb is typically used in the ELSE portion of a nested IF control structure or to perform
a NULL procedure.

Example
The edit procedure for the transact screen uses a nested if control structure to evaluate the status
code returned from the external procedure edittrans. The addition of the null verb helps to make
it clear to the user that the entered transaction number passed the edit check.
> SCREEN TRANSACT
>
> TEMPORARY STATUSCODE NUMBER*4
>
> FILE TRANSACTIONS
>
> SKIP TO LINE 4
> HILITE TITLE INVERSE
> TITLE "Transaction Screen" CENTERED
> DRAW FROM 3,15 TO 5,65
> SKIP 2
>
> GENERATE NOLIST
.
.
.
> PROCEDURE EDIT TRANSNO
> BEGIN
> IF STATUSCODE = 0
> THEN NULL ; PASSED EDIT CHECK
> ELSE BEGIN
> IF STATUSCODE < 0
> THEN ERROR = "Entered transaction number didn't " + &
> "pass edit check."
> ELSE WARNING = "Entered transaction number refers to " + &
> "out-of-date stock."
> END
> END
> BUILD

450 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] OPEN

[SQL] OPEN
Opens a cursor and gets the result rows ready to be accessed with subsequent SQL FETCH
statements.

Syntax
[SQL] OPEN cursor-name [sql-substitution...]

cursor-name
The name of a cursor defined by the PowerHouse [SQL] DECLARE CURSOR statement.

sql-substitution...
The syntax for an sql-substitution is:
substitution-variable (text)

Discussion
If the cursor is already open, it will be closed and re-opened.

The CURSOROPEN predefined condition is used in the generated FIND procedure to check if an
OPEN needs to be executed before data is retrieved from the cursor.

Chapter 8: QDESIGN Verbs and Control Structures
PERFORM APPEND

QDESIGN Reference 451

PERFORM APPEND
Executes the APPEND procedure.

Syntax
PERFORM APPEND

Discussion
QDESIGN automatically generates the PERFORM APPEND verb in an ENTRY procedure when
repeating PRIMARY or DETAIL files are declared on a screen. Similarly, for PANEL screens,
QDESIGN generates a PERFORM APPEND within a FOR MISSING loop in the default
MODIFY procedure.

Note: For information about verb and procedure compatibility, see (p. 239).

Example
This example invoice screen creates detail data records for the INVOICES file. In this example, the
PERFORM APPEND verb executes the APPEND procedure to accept values for the repeating
DETAIL file after values are entered for the PRIMARY file.
> SCREEN INVINFO
>
> FILE INVOICES PRIMARY
> FILE INVOICEDETAIL DETAIL OCCURS 10
Item INVOICENO initialized (fixed) to INVOICENO OF
INVOICES.
> ACCESS VIA INVOICENO
>
> FIELD INVOICENO OF INVOICES REQUIRED NOCHANGE &
> LOOKUP NOTON INVOICES
> ALIGN (1,4,21) (,31,45)
> FIELD CUSTNO OF INVOICES
> FIELD INVOICEDATE OF INVOICES
> SKIP 2
> CLUSTER OCCURS WITH INVOICEDETAIL FOR 2,40
> ALIGN (1,4,20) (,,28)
> FIELD PRODNO OF INVOICEDETAIL
> FIELD QTYSHIPPED OF INVOICEDETAIL
> CLUSTER
>
> PROCEDURE APPEND
> BEGIN
> ACCEPT PRODNO OF INVOICEDETAIL
> ACCEPT QTYSHIPPED OF INVOICEDETAIL
> END
>
> PROCEDURE ENTRY
> BEGIN
> ACCEPT INVOICENO OF INVOICES
> ACCEPT CUSTNO OF INVOICES
> ACCEPT INVOICEDATE OF INVOICES
> FOR INVOICEDETAIL
> BEGIN
> PERFORM APPEND
> END
> END
> BUILD

452 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
PROMPT

PROMPT
Prompts for and displays a value in a field.

Syntax
PROMPT field [INTO item] [REQUIRED]

field
Names the field where the user is prompted for input.

INTO item
Instructs QUICK to move the value to the named item rather than the item normally associated
with the field. The item may be a record item or temporary item.

REQUIRED
Declares that a null response from the screen user isn't accepted. A valid entry must be supplied.

Discussion
The PROMPT verb initiates the activities that prompt the screen user at the named field, perform
size and type checking on the screen user's response, and redisplay the value in the field with any
format options applied.

Note: For information about verb and procedure compatibility, see (p. 239).

The following figure illustrates the steps that are performed by the PROMPT verb, and contrasts
these steps to similar steps performed by other field processing verbs:

Chapter 8: QDESIGN Verbs and Control Structures
PROMPT

QDESIGN Reference 453

The PROMPT verb follows the same steps as the ACCEPT verb, except that QUICK skips Steps 4,
5, and 7 (editing and processing). For more information about the steps that are initiated by the
PROMPT verb, see (p. 364).

The PROMPT verb ignores the DEFAULT, DUPLICATE, and REQUIRED options of the FIELD
statement, but does recognize the user-entered Duplicate command (_). However, the PROMPT
verb doesn't save the entered value in the duplicate buffer.

Inclusion of PROMPT overrides the following FIELD statement options: DISPLAY, FIXED, IF,
OMIT, and NOENTRY.

Example
This order-management screen prompts the user for confirmation before deleting data records
from a file.

The PROMPT verb prompts for confirmation in the CONFIRM field before deleting any data
records. The REQUIRED option prevents the QUICK screen user from making a null response.
> SCREEN ORDERMGT
>
> TEMPORARY CONFIRM CHARACTER*1
>
> FILE CUSTOMERS PRIMARY
> FILE ORDERS DESIGNER
> FILE ORDERS ALIAS ORDERERASE DELETE
Item ORD-NUM initialized (fixed) to ORD-NUM OF CUSTOMERS.
> FIELD CUSTNO OF CUSTOMERS REQUIRED NOCHANGE &
> LOOKUP NOTON CUSTOMERS
> FIELD CUSTNAME OF CUSTOMERS
> FIELD CONFIRM NOID NOLABEL UPSHIFT
> PROCEDURE DELETE
> BEGIN
> GET ORDERS VIA ORDNUM &
> USING ORDNUM OF CUSTOMERS
> IF ACCESSOK
> THEN BEGIN
> WARNING "Records on file. Do you wish to delete?"
> PROMPT CONFIRM REQUIRED
> IF CONFIRM = "Y"
> THEN BEGIN
> DELETE CUSTOMERS
> DELETE ORDERERASE
> END
> END
> ELSE DELETE CUSTOMERS
> END
>
> BUILD

Although you must exercise caution when using a PROMPT verb in a DELETE procedure, in this
case, QUICK prompts into a temporary item to confirm the deletion only; the data the user enters
in response to the prompt doesn't have to be saved.

For more examples about how to use the PROMPT verb, see (p. 319).

454 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
PUSH

PUSH
Places one or more QUICK commands on a Pending Screen Input Buffer (PSIB).

Syntax
PUSH conditional-command-list

conditional-command-list
Specifies what command(s) the PUSH verb executes and, optionally, under what conditions.

The general form of the conditional command list is:
command-list [IF condition

[ELSE command-list IF condition]...
[ELSE command-list]]

command-list
One or more commands separated by commas. The general form of a command list is:
command [, command]...

Limit: Only Action commands and Action and Data commands can be specified by the PUSH
verb, not Data commands.

For a list of the available commands, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

condition
A condition is a logical test that has the general form:
[NOT] condition [AND|OR [NOT] condition]...

For more information about conditions or conditional command lists, see Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

Discussion
The PUSH verb pushes a conditional command list onto the Pending Screen Input Buffer (PSIB).
Although the PSIB has a 'LIFO' (Last In=First Out) configuration, pushed commands are executed
in the order you specify them in the conditional command list.

You can specify several PUSH verbs in a row for execution under procedural control, as in
> PUSH LAST RECORD
> PUSH NEXT DATA

Be aware, however, that this is different from entering
> PUSH LAST RECORD, NEXT DATA

In the first example, LAST RECORD is put on the PSIB first, followed by NEXT DATA. Due to
the PSIB's LIFO configuration, the commands are removed for processing in the order NEXT
DATA, LAST RECORD. This is the opposite of the second example, where the commands are
processed in the order in which they're specified, that is, LAST RECORD, NEXT DATA.

For more information, see (p. 49).

Note: For information about verb and procedure compatibility, see (p. 239).

Chapter 8: QDESIGN Verbs and Control Structures
PUT

QDESIGN Reference 455

PUT
Updates the data record.

Syntax
PUT [DELETED|NEW|NOTDELETED]

record-structure|cursor-reference
[AT numeric-expression] [RESET]

DELETED|NEW|NOTDELETED
Specifies the type of data records to update.

DELETED
Specifies that only data records marked for deletion are processed by the PUT verb.

NEW
Specifies that only new data records are processed by the PUT verb.

NOTDELETED
Specifies that data records not marked for deletion are processed by the PUT verb.

record-structure
Names the record-structure to be updated.

cursor-reference
A cursor-name or table-name named in a CURSOR statement.

AT numeric-expression
Stores the data record at the data record number indicated by the numeric expression.

Limit: Applies only to record-structures in direct or relative files, and only if the data record status
is New.

RESET
Specifies that the record buffers and status are reset after the update. The buffers are reset to
default and initial values, and the data record status is reset to New, Unchanged, Undeleted.

Discussion
The PUT verb can refer to a data structure referenced in a FILE or CURSOR statement. A PUT
verb updates one data record on the named data-structure. What the PUT verb does in each
circumstance depends on the status of the data record in the screen's record buffer.

The PUT verb for a CURSOR only issues SQL DML statements for the first table in the
query-specification and its associated columns. A column can be omitted from being updated by
giving it an alias name with the AS option.

The following table lists the effects of the PUT verb under different circumstances.

Data record source Record status Effect of PUT verb

Brought into record buffer from file Unchanged or empty record
buffer

No effect

456 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
PUT

The PUT verb is recommended for use only in BACKOUT and UPDATE procedures, or
procedures using the RECOVERABLE options (available for the PREUPDATE, POSTUPDATE,
and INITIALIZE procedures.) For more information about verb and procedure compatibility,
see (p. 239).

Details of PUT Verb Processing

Processing of the PUT verb for any data record relies on

• the record status: Old|New, Changed|Unchanged, Deleted|Undeleted
• a NEED option on the FILE statement
• the INITIAL FIXED or FINAL options of ITEM statements

The following table describes the standard sequence of activities when QUICK processes a PUT
verb.
:

Changed or Deleted Updates or deletes the
data record in the file
to correspond to the
record in the record
buffer

Brought into record buffer from a
DELETE file

Marked for deletion Deletes all data
records that match
record access criteria

Data record source Record status Effect of PUT verb

Step Under what conditions Activity performed

1. Evaluate the NEED
option.

NEED option specified on
FILE statement that applies to
the file

Treat the data record as changed
for the purpose of update.

2. Compute the FINAL
values.

OLD, UNDELETED, or
NEW, CHANGED,
UNDELETED

Assign the ITEM INITIAL FIXED
and FINAL values to the data
record in the order specified. (This
may change the record status.)

3. Check for a conflicting
update.

OLD, CHANGED Reread the existing data record.
Compare the current value to the
original value of the data record.

4. Update. NEW, CHANGED,
UNDELETED (indexed file)

Add the new data record to
the file.

NEW, CHANGED,
UNDELETED
(SEQUENTIAL file)

Place the data record at the end of
the file.

NEW, CHANGED,
UNDELETED (DIRECT file)

Evaluate the AT option and place
the data record at the indicated
location in the file. If there is no
AT option, place the data record at
the end of the file.

OLD, CHANGED,
UNDELETED (indexed or
DIRECT file)

Replace the old data record in the
file.

Chapter 8: QDESIGN Verbs and Control Structures
PUT

QDESIGN Reference 457

Notes on the PUT Verb

Any errors detected by QUICK in processing a PUT verb cause further processing to stop.

All PUT verbs for DELETE record-structures cause repeated retrievals and deletions of all data
records that meet the access conditions for the file.

QDESIGN doesn't include PUT verbs in the UPDATE procedure of AUDIT, DESIGNER, or
REFERENCE files. Data records in AUDIT files are automatically written in conjunction with
their associated file. Data records in REFERENCE files are opened for read only access.

If the file processed by a PUT verb has an AUDIT record-structure associated with it, ITEM
INITIAL FIXED and FINAL option values for the AUDIT file are also calculated in Step 2. In
addition, Steps 3 through 6 are performed for the AUDIT file, after they have been completed for
the associated file.

Non-Relational Rollback

PUT verbs used in recoverable procedures can take advantage of PowerHouse's full rollback for
non-relational files. If any error conditions are detected in the middle of a multiple record update,
the rollback facility restores the files to the state that they were in before the update began. This
applies to all PUT verbs in recoverable procedures, PUTs to designer files and PUTs executed in an
INTERNAL procedure while a recoverable procedure is active.

The UPDATE procedure is recoverable by default. The INITIALIZE, POSTUPDATE and
PREUPDATE procedures can be set to recoverable by using the RECOVERABLE option.

If you add the RECOVERABLE option to existing INITIALIZE, PREUPDATE and POSTUPDATE
procedures, any BACKOUT procedures that you have coded to handle rollback of PUT verbs in
those procedures must be reviewed to ensure that a "double rollback" is not performed.

Outside recoverable procedures, PUT verbs to non-relational files are never rolled back.

OLD, CHANGED,
UNDELETED
(SEQUENTIAL file)

Error condition.

OLD, CHANGED,
DELETED (indexed file)

Delete the data record from
the file.

OLD, CHANGED,
DELETED (DIRECT or
SEQUENTIAL file)

Error condition.

5. Reset buffers CHANGED, UNDELETED Update the rollback buffers.

6. Reset record status NEW, CHANGED,
UNDELETED

Set the data record status to OLD,
UNCHANGED, UNDELETED.

CHANGED Set the data record status to
UNCHANGED.

RESET option of PUT verb Set the data record status to NEW,
UNCHANGED, UNDELETED,
and initialize the buffers to default
and initial values.

7. Back out balancing DELETED Reverse the COUNT or SUM
operations from this data record
(applies only if the file marked as
deleted is a DELETE file). For
other file types, the COUNT and
SUM operations are backed out by
the DELETE verb.

Step Under what conditions Activity performed

458 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
PUT

If the RECOVERABLE option is used, the changed behavior of PUT verbs in each procedure is as
described in this manual. If the RECOVERABLE option is not used, non-relational rollback of
PUT verbs is unchanged.

PUT Verbs and Relational Tables

With relational tables, PUT verbs are handled by relational transactions. The way a program
behaves depends upon what transaction model is used. For more information, see the
PowerHouse and Relational Databases book.

Implications of PUT Verbs in Designer-written Procedures

A PUT verb in a designer-written procedure can result in data being placed in the file prior to the
use of any of the Update commands. Data integrity of non-relational files can thus be
compromised if a QUICK screen user backs out of a screen without updating. In such cases, there
is no automatic rollback procedure to cancel the effects of PUT verbs outside of recoverable
procedures. If PUT verbs are used in procedures other than the UPDATE procedure or procedures
with the RECOVERABLE option, then you can write a BACKOUT procedure that nullifies the
effects of the PUT verbs. Designer-written BACKOUT procedures can prevent undesired updates,
such as when a QUICK screen user backs out of a screen without entering an Update command.

Example
QDESIGN generates a PUT verb in the UPDATE procedure for most file types used in a screen
design. For example,
> SCREEN EMPSKILL
> TEMP COUNTER NUM*3 INITIAL 0
> TEMP CONFIRM CHAR*1
> FILE EMPLOYEE PRIM
> FILE SKILLS DETAIL OCCURS 10
.
.
.
> PROCEDURE UPDATE
> BEGIN
> PUT EMPLOYEE
> FOR SKILLS
> BEGIN
> PUT SKILLS
> END
> END
.
.
.

REFERENCE files do not generate PUT verbs, as in:
> SCREEN EMPLABEL
> FILE EMPLOYEE PRIMARY
> FILE SKILLS DETAIL OCCURS 5
> FILE LABELS REFERENCE
> ACCESS VIA LASTNAME USING LASTNAME OF EMPLOYEE
.
.
.
> PROCEDURE UPDATE
> BEGIN
> PUT EMPLOYEE
> FOR SKILLS
> BEGIN
> PUT SKILLS
> END
> END

Chapter 8: QDESIGN Verbs and Control Structures
REFRESH

QDESIGN Reference 459

REFRESH
Clears and rewrites (refreshes) an area of terminal memory.

Syntax
REFRESH ALL|SCREEN|[LINES] n [TO m]

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINE n by itself refreshes line n only.

Discussion
The REFRESH verb only works if QUICK is run with the restore = lines program parameter. This
program parameter changes the default behavior of screen refreshing.

The REFRESH verb instructs QUICK to clear and rewrite all or part of the terminal memory. The
options allow the designer to restrict the portion that is rewritten. One option must be given. The
effects of the REFRESH verb are not apparent until QUICK is ready to prompt the user, and may
be negated by other REFRESH or CLEAR verbs or options.

Note: For information about verb and procedure compatibility, see (p. 239).

460 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
REQUEST

REQUEST
Prompts for a value required for record retrieval.

Syntax
REQUEST field

field
Names the field where the user is prompted for input.

Discussion
The REQUEST verb relates to processing required by the PATH procedure. QDESIGN generates
one REQUEST verb in the PATH procedure for each segment in each index in the record-structure
of the PRIMARY file of the screen design.

The accepted value is stored in the request buffer. Until the next Entry mode or Find mode
initialization, the stored value is used to initialize the item. Once a request has been made for a
given field, additional requests for that field return the value first accepted.

Each time record initialization takes place, the requested value is placed into the record buffer, as
is done for an ITEM statement with an INITIAL option. Only the first request for any field goes
to the user for input. Subsequent requests set both the value and the PROMPTOK predefined
condition based on the response given to the first request. The request buffer is cleared during
Entry and Find mode initialization.

Note: For information about verb and procedure compatibility, see (p. 239).

The following figure illustrates the steps that are initiated by the REQUEST verb, and contrasts
these steps with other field processing verbs:

Chapter 8: QDESIGN Verbs and Control Structures
REQUEST

QDESIGN Reference 461

The REQUEST verb follows the same steps as the ACCEPT verb except that Steps 4, 5, and 7
(editing and processing) are bypassed. For details about the steps listed in the preceding figure, see
(p. 364).

The REQUEST verb ignores the DUPLICATE, REQUIRED, and DEFAULT field options but does
recognize the user-entered Duplicate command (_). However, the REQUEST verb does not save
the entered value in the duplicate buffer.

Inclusion of REQUEST overrides the following FIELD statement options: DISPLAY, FIXED, IF,
NOENTRY, and OMIT.

Differences Between the REQUEST and PROMPT Verbs

Both the REQUEST and PROMPT verb prompt the QUICK screen user for data in a field.
However, the REQUEST verb places the response entered in the request buffer for the current
screen. The values in the request buffer are used to retrieve data based on the PATH and FIND
procedures. In contrast, the PROMPT verb simply prompts for a value and stores the entered
response into the field that's referenced by the PROMPT verb.

Always use the REQUEST verb rather than the PROMPT verb when you prompt for segment
values to be used in record retrieval.

Example
QDESIGN generates one REQUEST verb in the PATH procedure for each segment in each index
in the record-structure of the PRIMARY file of the screen design.
> SCREEN EMPSKILL
> TEMP COUNTER NUM*3 INITIAL 0

462 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
REQUEST

> TEMP CONFIRM CHAR*1
> FILE EMPLOYEE PRIM
> FILE SKILLS DETAIL OCCURS 10
> FIELD EMPLOYEE OF EMPLOYEE REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEE
> FIELD LASTNAME OF EMPLOYEE REQUIRED NOCHANGE
> CLUSTER OCCURS WITH SKILLS
> FIELD SKILL OF SKILLS
> CLUSTER
> SKIP TO LINE 23
> ALIGN (,,1)
> FIELD CONFIRM NOID NOLABEL UPSHIFT
.
.
.
> PROCEDURE PATH
> BEGIN
> REQUEST EMPLOYEE OF EMPLOYEE
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN BEGIN
> REQUEST LASTNAME OF EMPLOYEE
> IF PROMPTOK
> THEN LET PATH = 2
> END
> IF PATH = 0
> THEN BEGIN
> LET PATH = 3
> END

> END

For more examples of how to use the REQUEST verb, see (p. 335).

Chapter 8: QDESIGN Verbs and Control Structures
RETURN

QDESIGN Reference 463

RETURN
Exits a screen.

Syntax
RETURN

Discussion
The RETURN verb forces an immediate return to the invoking screen.

If the current screen is the initial screen specified in an active QKGO file, the RETURN verb
terminates QUICK. If no initial screen is specified and the user is on the highest-level screen, the
RETURN verb returns the user to the Screen ID prompt. If there is changed data on the screen, the
RETURN verb executes the BACKOUT procedure.

Note: For information about verb and procedure compatibility, see (p. 239).

Example
The following example includes a numbered DESIGNER procedure that contains a RETURN
verb. Although QUICK screen users can always return to a higher-level screen by pressing ^, you
can use the following method to display a menu option on your screens for returning to
higher-level screens.
> SCREEN PARTMAIN MENU &
> NOMODE &
> ACTIVITIES ENTRY &
> ACTION &
> LABEL "==>" AT 20,1
>
> TITLE "Parts Maintenance" CENTERED AT 4,1
>
> ALIGN (20,25,)
> SKIP TO LINE 8
> SUBSCREEN ADDPART &
> MODE E &
> LABEL "Add a New Part"
> SUBSCREEN ADDVAR &
> MODE E &
> LABEL "Add a New Part Variant"
> SUBSCREEN MODPART &
> MODE F &
> LABEL "Change or Delete a Part"
>
> SKIP 1
>
> SUBSCREEN PARTLIST &
> MODE F &
> LABEL "Check Inventory Level for a Part"
>
> SUBSCREEN PRTPRICE &
> MODE F &
> LABEL "Check Part Pricing"
>
> SKIP 1
> SUBSCREEN PARTRPT &
> ID 20 &
> LABEL "Generate Parts Summary Reports"
>
> SKIP 2
>
> TITLE "60 Return to Previous Menu" AT ,20
>
> PROCEDURE DESIGNER 60 NODATA

464 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RETURN

> BEGIN
> RETURN
> END

Chapter 8: QDESIGN Verbs and Control Structures
ROLLBACK

QDESIGN Reference 465

ROLLBACK
Restores the data affected by an update to the state that it was in before the transaction was
started.

Syntax
ROLLBACK [[TRANSACTION] transaction_name

[,transaction_name]...]

TRANSACTION
An optional keyword for documentation purposes only.

transaction_name
Names the transaction with which the ROLLBACK verb is associated.

Discussion
The ROLLBACK verb (without a transaction list) lets you duplicate QUICK's automatic rollback
processing by rolling back all locally active transactions and returning to a stable point in screen
processing. The SEVERE verb can also be used to rollback locally active transactions.

In contrast to QUICK's automatic rollback processing, the ROLLBACK verb with a transaction
list issues a rollback to all listed transactions, whether or not they are locally active. The
ROLLBACK verb with a transaction list should be used with extreme care, because no
transactions other than those listed by the ROLLBACK verb are affected.

A rollback of an inactive transaction is ignored.

466 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN COMMAND

RUN COMMAND
Executes an operating system command.

Syntax
RUN COMMAND string|item [option]...

string|item
Specifies the command to be executed. The command can be a string or the name of a character
item.

Options

CLEAR ALL|SCREEN|[LINES] n [TO m]

Clears an area of the terminal memory before the command is invoked. Any output to the
terminal from the command appears starting on the first line of the cleared area. Lines that are
cleared are refreshed automatically when the screen is reactivated and QUICK is ready to prompt
the user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINE n by itself clears line n only.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing the command. QUICK returns the
terminal to the original mode after the command is completed.

Default: SAME. However, if a CLEAR, REFRESH, or RESPONSE option is specified, the default
is C.

B
Puts the terminal in Block mode. B should only be used for commands that must be run in Block
mode.

C
Puts the terminal in Character mode.

SAME
Leaves the terminal in the current input mode. If the screen can be run in Block mode, SAME
should only be used for commands that do not write to the terminal.

RUN COMMAND options

CLEAR ALL|SCREEN|[LINES] INPUT B|C|SAME

NOCONSOLE NOWARN

ON ERROR CONTINUE|TERMINATE REFRESH ALL|SCREEN|[LINES]

RESPONSE WAIT|NOWAIT

Chapter 8: QDESIGN Verbs and Control Structures
RUN COMMAND

QDESIGN Reference 467

Default: The mode it was in before QUICK was invoked.

NOCONSOLE (Windows)

Suppresses opening a Command Console window. Normally QUICK opens a second Command
Console window to run the command. If the command runs in the background, does not require
user input, or does not display useful output, the second command console window may not be
necessary.

NOWARN

Specifies that if a command returns a non-zero status (and the ON ERROR CONTINUE option
was specified), QUICK does not issue a warning message after executing the command. However,
any message issued by the command itself is displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if a system error occurs during the execution of a command. If
TERMINATE is in effect, a system error causes QUICK to process the error as it would for an
ERROR verb (see (p. 420). TERMINATE is the default value of the option. If CONTINUE is
specified, a system error is ignored and processing continues as if the error had not occurred.

REFRESH ALL|SCREEN|[LINES] n [TO m]

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINE n by itself refreshes line n only.

RESPONSE

Prompts the QUICK screen user for a response after the command finishes executing. This delay
allows the screen user to view the results of the command before QUICK refreshes the screen.

WAIT|NOWAIT (Windows)

The WAIT option instructs QUICK to suspend current screen processing until the command has
executed, at which time control returns to the screen. The NOWAIT option specifies that screen
processing continues immediately and the command executes concurrently.

Default: NOWAIT

Discussion
UNIX, Windows: Although the command runs in a subprocess from the main QUICK process, it
starts a separate shell (UNIX) or command (Windows). The results of a setenv (UNIX) or set
(Windows) command are not accessible from QUICK or any later commands. For this use the
SETSYSTEMVAL function.

Limit: The combined maximum number of SUBSCREEN statements, RUN SCREEN and RUN
COMMAND verbs is 256 per screen; if you exceed this limit, QDESIGN issues an error message.

468 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN COMMAND

Example
In the following example, the RUN COMMAND verb invokes QUIZ.
> SCREEN PERSDATA
>
> FILE EMPLOYEES
>
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> REQUIRED NOCHANGE LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD FIRSTNAME OF EMPLOYEES
> FIELD DIVISION OF EMPLOYEES
>
> PROCEDURE DESIGNER QZ NODATA
> RUN COMMAND &
> "QUIZ AUTO=PERSRPRT"
>
> BUILD

Chapter 8: QDESIGN Verbs and Control Structures
RUN REPORT

QDESIGN Reference 469

RUN REPORT
Specifies a report program to execute.

Syntax
RUN REPORT filespec [option]...

filespec
The file specification of an executable report program.

Options

CLEAR ALL|SCREEN|[LINES] n [TO m]

Clears an area of the terminal memory before the command is invoked. Any output to the
terminal from the command appears starting on the first line of the cleared area. Lines that are
cleared are refreshed automatically when the screen is reactivated and QUICK is ready to prompt
the user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINE n by itself clears line n only.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing the command. QUICK returns the
terminal to the original mode after the command is completed.

Default: SAME. However, if a CLEAR, REFRESH, or RESPONSE option is specified, the default
is C.

B
Puts the terminal in Block mode. B should be used only for commands that must be run in Block
mode.

C
Puts the terminal in Character mode.

SAME
Leaves the terminal in the current input mode. If the screen can be run in Block mode, SAME
should be used only for commands that do not write to the terminal.

Default: The mode that the terminal was in before QUICK was invoked.

RUN COMMAND options

CLEAR ALL|SCREEN|[LINES] INPUT B|C|SAME

NOCONSOLE NOWARN

ON ERROR CONTINUE|TERMINATE REFRESH ALL|SCREEN|[LINES]

RESPONSE WAIT|NOWAIT

470 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN REPORT

NOCONSOLE (Windows)

Suppresses opening a Command Console window. Normally QUICK opens a second Command
Console window to run QUIZ. If QUIZ runs in the background, does not require user input, or
does not display useful output, the second command console window may not be necessary.

NOWARN

Specifies that if a command returns a non-zero status (and the ON ERROR CONTINUE option
was specified), QUICK does not issue a warning message after executing the command. However,
any message issued by the command itself is displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if a system error occurs during the execution of a command. If
TERMINATE is in effect, a system error causes QUICK to process the error as it would for an
ERROR verb (p. 420). TERMINATE is the default value of the option. If CONTINUE is
specified, a system error is ignored and processing continues as if the error did not occur.

REFRESH ALL|SCREEN|[LINES] n [TO m]

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINE n by itself refreshes only line n.

RESPONSE

Prompts the QUICK screen user for a response after the command finishes executing. This delay
allows the screen user to view the results of the command before QUICK refreshes the screen.

WAIT|NOWAIT (Windows)

The WAIT option instructs QUICK to suspend current screen processing until after the report
executes, at which time control returns to the screen. The NOWAIT option specifies that screen
processing continues immediately and the report executes concurrently.

Default: NOWAIT

Chapter 8: QDESIGN Verbs and Control Structures
RUN RUN

QDESIGN Reference 471

RUN RUN
Specifies a QTP program to execute.

Syntax
RUN RUN filespec [options...]

filespec
The file specification of an executable QTP program.

Options

CLEAR ALL|SCREEN|[LINES] n [TO m]

Clears an area of the terminal memory before the command is invoked. Any output to the
terminal from the command appears starting on the first line of the cleared area. Lines that are
cleared are refreshed automatically when the screen is reactivated and QUICK is ready to prompt
the user.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINE n by itself clears only line n.

INPUT B|C|SAME (MPE/iX)

Puts the terminal in the specified input mode prior to executing the command. QUICK returns the
terminal to the original mode after the command is completed.

Default: SAME. However, if a CLEAR, REFRESH, or RESPONSE option is specified, the default
is C.

B
Puts the terminal in Block mode. B should be used only for commands that must be run in Block
mode.

C
Puts the terminal in Character mode.

SAME
Leaves the terminal in the current input mode. If the screen can be run in Block mode, SAME
should be used only for commands that do not write to the terminal.

Default: The mode that the terminal was in before QUICK was invoked.

RUN COMMAND options

CLEAR ALL|SCREEN|[LINES] INPUT B|C|SAME

NOCONSOLE NOWARN

ON ERROR CONTINUE|TERMINATE REFRESH ALL|SCREEN|[LINES]

RESPONSE WAIT|NOWAIT

472 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN RUN

NOCONSOLE (Windows)

Suppresses opening a Command Console window. Normally QUICK opens a second Command
Console window to run QTP. If QTP runs in the background, does not require user input, or does
not display useful output, the second command console window may not be necessary.

NOWARN

Specifies that if a command returns a non-zero status (and the ON ERROR CONTINUE option
was specified), QUICK does not issue a warning message after executing the command. However,
any message issued by the command itself is displayed.

ON ERROR CONTINUE|TERMINATE

Specifies the action to be taken if a system error occurs during the execution of a command. If
TERMINATE is in effect, a system error causes QUICK to process the error as it would for an
ERROR verb (p. 420). TERMINATE is the default value of the option. If CONTINUE is
specified, a system error is ignored and processing continues as if the error did not occur.

REFRESH ALL|SCREEN|[LINES] n [TO m]

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINE n by itself refreshes only line n.

RESPONSE

Prompts the QUICK screen user for a response after the command finishes executing. This delay
allows the screen user to view the results of the command before QUICK refreshes the screen.

WAIT|NOWAIT (Windows)

The WAIT option instructs QUICK to suspend current screen processing until after the run
executes, at which time control returns to the screen. The NOWAIT option specifies that screen
processing continues immediately and the run executes concurrently.

Default: NOWAIT

Chapter 8: QDESIGN Verbs and Control Structures
RUN SCREEN

QDESIGN Reference 473

RUN SCREEN
Invokes a lower-level screen.

Syntax
RUN [SCREEN] filespec|{ITEM item} [option]...

filespec
Names the file containing the compiled QUICK screen that you want to invoke.

Limit: You cannot call subscreens named ITEM unless you precede the file specification with a
percent sign (%).

ITEM item
Indicates that the subscreen's file specification is defined in an item.

item
Names the item in which the subscreen's file specification is defined. The item can be either a
record item, a temporary item, or a defined item.

Limit: The item type must be CHARACTER or VARCHAR.

Options

CLEAR ALL|SCREEN|[LINES] n [TO m]

Clears an area of terminal memory before the screen is called. Any terminal writes from the screen
appear, starting on the first line of the cleared area. Lines cleared are refreshed automatically when
the screen is reactivated and QUICK is ready to prompt the user.

The CLEAR option doesn’t require the restore=lines program parameter to be used.

ALL
Clears the entire terminal memory.

SCREEN
Clears the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears the area between and including lines n to m, numbering from the first line of terminal
memory. LINE n by itself clears line n only.

INPUT B|C|SAME (MPE/iX)

Specifies the input mode the subscreen is to be in when it appears. The terminal is not put back to
the original mode on return from the called screen.

Default: SAME

RUN SCREEN options

CLEAR ALL|SCREEN|[LINES] INPUT B|C|SAME

KEEP ROLLBACK MODE

ON ERROR CONTINUE|TERMINATE PASSING

REFRESH ALL|SCREEN|[LINES] RESPONSE

WINDOW

474 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN SCREEN

B
Starts the screen in Block mode if the subscreen can be run in Block mode.

C
Starts the subscreen in Character mode.

SAME
Starts the subscreen in the current mode of the calling screen.

KEEP ROLLBACK [INFORMATION]

Overrides the default behavior of clearing the non-relational rollback buffers when the subscreen
is loaded.

Limit: Affects non-relational records only.

Limit: KEEP ROLLBACK INFORMATION is allowed only on a RUN SCREEN statement in a
recoverable procedure or in an INTERNAL procedure invoked from a recoverable procedure.

INFORMATION
For documentation purposes only.

MODE E|F|S|NULL|SAME|GHOST

Specifies the mode of the subscreen.

Default: E for subscreen invoked during the standard Entry sequence; otherwise NULL.

E|F|S
Indicates that the subscreen is in one of Entry (E), Find (F), or Select (S) mode when it first
appears.

NULL
Indicates no mode. QUICK prompts for a mode at the Action field when the screen appears.

SAME
Indicates that the subscreen is in the same mode as the current screen when the screen named in
the verb is invoked.

GHOST
Indicates that the subscreen being called is a "ghost" screen. This causes QUICK to skip the
refreshing of the calling screen when returning from the subscreen call.

When QUICK runs a subscreen with the GHOST option, the default mode is used.

The GHOST option should only be used to call a ghost screen; that is, a screen that does all its
work in the INITIALIZE procedure with no terminal output. If the GHOST option is used on a
subscreen that is not a ghost screen, results will be unpredictable and screen corruption may occur.

ON ERROR CONTINUE|TERMINATE

Determines whether processing on the calling screen continues or terminates if an error which the
user had no opportunity to correct occurs on the subscreen. This option only has an effect when
an error on a subscreen is not displayed to the user on that subscreen.

CONTINUE
The execution of the calling screen continues, regardless of the fact that an error which the user
had no opportunity to correct, occurred on the subscreen.

Chapter 8: QDESIGN Verbs and Control Structures
RUN SCREEN

QDESIGN Reference 475

TERMINATE
When an error which the user had no opportunity to correct, occurs on the subscreen, processing
on the calling screen terminates as if the SUBSCREEN statement failed.

Default: TERMINATE

Prior to 7.33C (UNIX), 7.10E1 (OpenVMS), and 8.09 (MPE/IX), the default behavior was
equivalent to CONTINUE.

PASSING record-structure|item [,record-structure|item]...

Specifies which of the current screen's existing record-structures, defined items, and temporary
items are passed to the named screen.

Entity names in the list must be separated by commas. Items must match, on the basis of identical
item attributes, with the items named in the RECEIVING option of the lower-level SCREEN
statement. The names themselves may differ.

Passing a defined item allows you to use a higher-level screen expression on the lower-level screen
without having to redeclare it. No value is passed. Defined items on higher-level screens can only
be passed to defined items on lower-level screens; temporary items on higher-level screens can
only be passed to temporary items on lower-level screens.

Limit: A combined maximum of 16 files and items.

REFRESH ALL|SCREEN|[LINES] n [TO m]

Clears and rewrites an area of the terminal memory when the screen is reactivated and QUICK is
ready to prompt the user. REFRESH options are performed before, and in addition to, an
automatic refresh from any CLEAR option.

ALL
Clears and rewrites the entire terminal memory.

SCREEN
Clears and rewrites the area taken by the current QUICK screen.

[LINES] n [TO m]
Clears and rewrites the area between and including lines n to m, numbering from the first line of
terminal memory. LINE n by itself refreshes line n only.

RESPONSE

Prompts the QUICK screen user for a response after the subscreen finishes executing. This delay
allows the screen user to view the results of the subscreen before QUICK refreshes the screen.

WINDOW WIDTH CONSTANT|DEFAULT WHEN CALLING|
WHEN RETURNING

Overrides the default behavior and sets the terminal to the correct screen width (80 or 132
columns).

WHEN CALLING
Keeps the current screen width when calling a subscreen.

WHEN RETURNING
Keeps the screen width of the subscreen when returning from the subscreen.

Discussion
The RUN SCREEN verb initiates the activities necessary to invoke a screen. QDESIGN generates
one RUN SCREEN verb in the ENTRY procedure for each SUBSCREEN statement with an
AUTO or IF option. SCREEN is used for documentation only.

476 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN SCREEN

Limit: The combined maximum number of SUBSCREEN statements, RUN SCREEN, and RUN
COMMAND verbs is 256 per screen; if you exceed this limit, QDESIGN issues an error message.

Note: For information about verb and procedure compatibility, see (p. 239).

Dynamic Screen Calls in QDESIGN and QUICK

You can call subscreens by using the SUBSCREEN statement, the THREAD statement, the RUN
SCREEN verb, or the RUN THREAD verb. Each of these statements/verbs works in either of two
ways:
• You provide the subscreen's file specification directly in the statement or verb syntax. Thus,

the same subscreen is called every time the statement or verb is executed.
• You use the ITEM keyword to point the statement or verb to an item that contains the

subscreen's file specification. Thus, a different subscreen might be called each time depending
on what file specification the item contains at the moment of execution.

The latter method is known as dynamic screen calling because you control which subscreens are
called based on run-time variables. This allows you to build context-sensitive applications in
which different users may see different screens based on these variables.

For more information about the SUBSCREEN statement or the THREAD statement, see (p. 210)
and (p. 221), respectively. For more information about the RUN THREAD verb, see (p. 478).

Rollback and Subscreens

By default, when a subscreen is called, all rollback information for non-relational records on the
calling screen is lost.

You can call screens in the Update phase from the recoverable procedures without losing rollback
information for the non-relational records PUT on the calling screen. To do this, you specify the
KEEP ROLLBACK [INFORMATION] option on the RUN SCREEN verb.

If you use this option, then PUTs performed before the RUN SCREEN verb is executed can be
rolled back in the event of an error occurring on the subscreen, or after return to the calling
screen.

Example
The following example illustrates how the RUN SCREEN verb can invoke a subscreen to perform
a lookup on a field. In this example:
• Entering an exclamation mark (!) in the BRANCH field of the EMPBRNCH screen causes the

display of a lower-level screen that lists valid BRANCH codes.
• The MODE F option determines that the subscreen appears in Find mode.
• The SCREEN statement of BRNCHCHK must have a receiving specification that accepts the

item TEMPBRANCH.
> SCREEN EMPBRNCH
> TEMPORARY TEMPBRANCH CHARACTER*2
> FILE EMPLOYEES PRIMARY
> FIELD EMPLOYEENUMBER OF EMPLOYEES REQUIRED &
> NOCHANGE LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD BRANCH OF EMPLOYEES
> PROCEDURE INPUT BRANCH
> BEGIN
> IF FIELDTEXT = "!"
> THEN BEGIN
> RUN SCREEN BRNCHCHK &
> PASSING TEMPBRANCH MODE F
> LET FIELDTEXT = TEMPBRANCH
> END
> END
> BUILD
>
.
.

Chapter 8: QDESIGN Verbs and Control Structures
RUN SCREEN

QDESIGN Reference 477

.
> SCREEN BRNCHCHK RECEIVING TEMPBRANCH &
> ACTIVITIES FIND
>
> TEMPORARY TEMPBRANCH CHARACTER *2
> FILE BRANCHES PRIMARY &
> OCCURS 15
> ACCESS SEQUENTIAL
>
> SKIP TO 3
> TITLE "Enter the ID-Number for the desired Branch." &
> CENTERED
> SKIP 1
> ALIGN (1,,4) (,,10) (,,35)
>
> CLUSTER OCCURS WITH BRANCHES
> FIELD BRANCH OF BRANCHES &
> REQUIRED &
> NOCHANGE &
> LOOKUP NOTON BRANCHES
> FIELD BRANCHNAME OF BRANCHES
> FIELD BRANCHMGR OF BRANCHES
> CLUSTER
>
> PROCEDURE DESIGNER 01
> BEGIN
> LET TEMPBRANCH = BRANCH OF BRANCHES
> RETURN
> END
>
> BUILD

In the following example, the conditional-expression in item SUB1 tests the user's application
security class, resulting in a file specification for either a restricted-access screen or a full-access
screen, as appropriate:
> SCREEN STAFF
>
> DEFINE SUB1 CHAR*31 = &
> "Employee_All" IF MATCHUSER ("MANAGER") &
> ELSE "Employee_Restricted"
.
.
.
> RUN SCREEN ITEM SUB1

478 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN THREAD

RUN THREAD
Specifies a screen thread.

Syntax
RUN [THREAD] filespec|{ITEM item} [option]...

filespec
Names the root screen of a screen thread.

Limit: You cannot call root screens named ITEM unless you precede the file specification with a
percent sign (%).

ITEM item
Indicates that the root screen's file specification is defined in an item.

item
Names the item in which the root screen’s specification is defined. The item can be either a record
item, a temporary item, or a defined item.

Limit: The item type must be CHARACTER or VARCHAR.

Options

INPUT B|C (MPE/iX)

Specifies the input mode the thread is to be in when it appears. (Although the SAME sub-option is
accepted syntactically, it has no meaning in the context of threads.)

Default: Unless overridden by other means, such as in QKGO or the SCREEN statement, when a
thread is first opened, it will be opened in Character mode. When toggling back to a thread, it will
be in the same input mode that it was in when it was left.

B
Starts the thread in Block mode if the thread can be run in Block mode.

C
Starts the thread in Character mode.

MODE E|F|S|NULL|SAME

Specifies the mode of the thread.

Default: E for thread invoked during the standard Entry sequence; otherwise NULL.

E|F|S
Indicates that the thread is in one of Entry (E), Find (F), or Select (S) mode when it first appears.

NULL
Indicates no mode. QUICK prompts for a mode at the Action field when the screen appears.

RUN THREAD options

INPUT B|C MODE E|F|S|SAME

RESPONSE SHARED

WINDOW

Chapter 8: QDESIGN Verbs and Control Structures
RUN THREAD

QDESIGN Reference 479

SAME
Indicates that the thread is in the same mode as the current screen when the screen named in the
verb is invoked.

RESPONSE

Prompts the QUICK screen user for a response after the thread finishes executing. This delay
allows the screen user to view the results of the thread before QUICK refreshes the screen.

SHARED

If the SHARED option is specified and the thread already exists, then the RUN THREAD verb is
ignored.

WINDOW WIDTH CONSTANT|DEFAULT WHEN CALLING

Overrides the default behavior and sets the terminal to the correct screen width (80 or 132
columns).

Discussion
The RUN THREAD verb specifies the screen to be loaded as the root of a new screen thread. This
is functionally equivalent to the RUN SCREEN verb, except that no passing and receiving lists are
possible.

Note: For information about verb and procedure compatibility, see (p. 239).

Dynamic Screen Calls in QDESIGN and QUICK

You can call subscreens by using the SUBSCREEN statement, the THREAD statement, the RUN
SCREEN verb, or the RUN THREAD verb. Each of these statements/verbs works in either of two
ways:
• You provide the subscreen's file specification directly in the statement or verb syntax. Thus,

the same subscreen is called every time the statement or verb is executed.
• You use the ITEM keyword to point the statement or verb to an item that contains the

subscreen's file specification. Thus, a different subscreen might be called each time depending
on what file specification the item contains at the moment of execution.

The latter method is known as dynamic screen calling because you control which subscreens are
called based on run-time variables. This allows you to build context-sensitive applications in
which different users may see different screens based on these variables.

For more information about the SUBSCREEN statement or the THREAD statement, see (p. 210)
and (p. 221), respectively. For more information about the RUN SCREEN verb, see (p. 473).

Example
The following example illustrates how the RUN THREAD verb can invoke a separate screen
hierarchy. In this example:
• Entering two asterisks (**) in the BRANCH field of the EMPBRNCH screen causes the

display of a screen (in a separate hierarchy) that lists valid BRANCH codes.
• The MODE F option determines that the screen appears in Find mode.
> SCREEN EMPBRNCH
> TEMPORARY TEMPBRANCH CHARACTER*2
> FILE EMPLOYEES PRIMARY
> FIELD EMPLOYEENUMBER OF EMPLOYEES REQUIRED &
> NOCHANGE LOOKUP NOTON EMPLOYEES
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
> FIELD BRANCH OF EMPLOYEES
>
> PROCEDURE INPUT BRANCH
> BEGIN
> IF FIELDTEXT = "**"

480 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
RUN THREAD

> THEN BEGIN
> RUN THREAD BRNCHCHK MODE F
> END
> END
> BUILD
>
.
.
.

In the following example, the conditional-expression in item SUB1 tests the user's application
security class, resulting in a file specification for either a restricted-access screen or a full-access
screen, as appropriate:
> SCREEN STAFF
>
> DEFINE SUB1 CHAR*31 = &
> "Employee_All" IF MATCHUSER ("MANAGER") &
> ELSE "Employee_Restricted"
.
.
.
> RUN THREAD ITEM SUB1

Chapter 8: QDESIGN Verbs and Control Structures
SELECT

QDESIGN Reference 481

SELECT
Prompts for a selection value in Select Mode.

Syntax
SELECT [ITEM] field

field
Specifies the field to be used in the selection of data records on a QUICK screen.

Discussion
In the default SELECT procedure, SELECT verbs determine the fields in which a QUICK screen
user can enter selection criteria for the retrieval of data records. When QUICK processes a
SELECT verb, the user is prompted for a value in the field referenced by the SELECT verb.
QUICK then uses this value as a selection criterion when selecting data records.

Where the SELECT Verb is Used

The SELECT verb is used primarily in the default SELECT procedure. Each QUICK screen field
causes QDESIGN to generate a SELECT verb in the SELECT procedure, except fields for which
the NOSELECT option is specified. No prompting occurs for a field with the NOSELECT option,
even if the SELECT procedure contains a SELECT verb for that field.

No SELECT procedure is generated for screens that are created with the NOPANEL option
specified for either the SCREEN or the SET statement.

Processes Initiated by the SELECT Verb

The following figure illustrates the processes that are performed when the SELECT verb is
executed, and contrasts these steps with the steps that are performed by other field processing
verbs:

482 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
SELECT

The SELECT verb follows the same steps as the ACCEPT verb except that Steps 4, 5, and 7
(editing and processing) are bypassed. For details about the steps listed in the preceding figure, see
(p. 364).

Differences Between the REQUEST, SELECT, and PROMPT Verbs

The REQUEST, SELECT, and PROMPT verbs prompt the QUICK screen user for data in a field
but store the entered values in different internal buffers.

The REQUEST verb places the response entered in the request buffer for the current screen. The
values in the request buffer are used to retrieve data based on the PATH and FIND procedures.
The values in the request buffer are used by the underlying file system to establish a retrieval
criteria.

The SELECT verb places the response entered in the select buffer for the current screen. QUICK
uses the values in this buffer after it has retrieved values determined by the retrieval criteria.

The PROMPT verb prompts for a value and stores the entered response into the field that's
referenced by the PROMPT verb.

Always use the REQUEST verb rather than the PROMPT verb when you prompt for segment
values to be used in record retrieval.

Using the SELECT Verb in Procedures Other Than the SELECT Procedure

You can use the SELECT verb in procedures other than the SELECT procedure. For example, the
use of SELECT verbs in the POSTFIND procedure allows you to specify additional selection
criteria after QUICK has retrieved data in the FIND procedure.

Chapter 8: QDESIGN Verbs and Control Structures
SELECT

QDESIGN Reference 483

Example
The following example illustrates the use of the SELECT verb to restrict prompting in Select
mode. In this example, the SELECT procedure restricts the specification of selection values to the
fields CITY, PROVSTATE, and POSTALCODE.
> PROCEDURE SELECT
> BEGIN
> SELECT CITY OF EMPLOYEES
> SELECT PROVSTATE OF EMPLOYEES
> SELECT POSTALCODE OF EMPLOYEES
> END

484 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
SEVERE

SEVERE
Aborts processing and issues a severe-level message.

Syntax
SEVERE [MESSAGE] string|=string-expression|n

string
Defines the contents of the message using a string.

=string-expression
Defines the contents of the message using a string expression.

n
Defines a message number that corresponds to a message in a designer message file. The
designated file is QKMSGDES.

For more information about message files, see Chapter 4, "Messages in PowerHouse", in the
PowerHouse Rules book.

Discussion
Other than in Compatible Block mode (MPE/iX), the SEVERE verb instructs QUICK to display
the stated message on the message line, perform the BACKOUT procedure (if specified),
reinitialize the buffers, and reprompt at the Action field.

A SEVERE message has the highest priority in the four-level message hierarchy and is displayed if
the message line is empty or if it contains an ERROR, WARNING, or INFORMATION message.

MPE/iX: In Compatible Block mode, the SEVERE verb instructs QUICK to highlight fields in
error, display the stated message on the message line, reinitialize the buffers, perform the
BACKOUT procedure (if specified), and position the cursor at the field associated with the error
message.

Note: For information about verb and procedure compatibility, see (p. 239).

Chapter 8: QDESIGN Verbs and Control Structures
START

QDESIGN Reference 485

START
Starts a transaction.

Syntax
START [TRANSACTION] transaction_name [,transaction_name]

TRANSACTION
An optional keyword for documentation purposes only.

transaction_name
Names the transaction with which the START verb is associated.

Discussion
In most cases, the START verb is not required as transactions are started implicitly by
PowerHouse. The START verb lets you start a transaction without doing any explicit I/O to the
database. It also forces all physical transactions associated with QUICK's logical transaction to
start together, ensuring a consistent start time across databases.

If a transaction definition contains a RESERVING list, the tables are reserved at the start of the
transaction and are therefore available for the duration of the transaction. For a full description of
the RESERVING list impact, see the appropriate database documentation.

A START issued on an already active transaction will cause a run-time error to occur.

486 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
STARTLOG (MPE/iX)

STARTLOG (MPE/iX)
Marks the start of a transaction set in an IMAGE log file.

Syntax
STARTLOG filespec [string-expression]

filespec
Names a file that is a dataset in an IMAGE database for which updates are to be logged.

string-expression
Defines a string expression that specifies a message written to the standard IMAGE log file.

Default: The screen name.

Discussion
STARTLOG is used to indicate the start of a transaction set (a set of records that are to be treated
as a single transaction for backup and recovery purposes).

For IMAGE files, STARTLOG issues a DBBEGIN call. For other types of files, the verb is ignored.
A STARTLOG can be issued for each database defined on a screen. Use the name of any IMAGE
dataset in the desired database.

If no STARTLOG or STOPLOG verb is included in your UPDATE procedure, but MEMOLOG is,
then the message is written to the log file using DBMEMO. STARTLOG only issues an IMAGE
DBBEGIN the first time it is invoked for a given IMAGE database. If you issue STARTLOG again
with any file that belongs to the same database before invoking STOPLOG, then the message is
written to the log file using DBMEMO.

Note: For information about verb and procedure compatibility, see (p. 239).

Chapter 8: QDESIGN Verbs and Control Structures
STOPLOG (MPE/iX)

QDESIGN Reference 487

STOPLOG (MPE/iX)
Marks the end of a transaction set in an IMAGE log file.

Syntax
STOPLOG [string-expression]

string-expression
Defines a string expression that specifies a message written to the standard IMAGE log file.

Default: The screen name.

Discussion
STOPLOG is used to perform end-of-transaction processing for any STARTLOG verbs that have
been executed since the last STOPLOG. For IMAGE files, STOPLOG issues a DBEND call for
each DBBEGIN call issued by STARTLOG. For other types of files, the verb is ignored.

Note: For information about verb and procedure compatibility, see (p. 239).

488 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
UNLOCK

UNLOCK
Unlocks a file.

Syntax
UNLOCK [ALL|filespec [BASE|FILE|RECORD]] (MPE/iX)

UNLOCK [ALL|filespec [FILE|RECORD]] (OpenVMS, UNIX, Windows)

ALL
Unlocks all files at all lock levels. If an unlock is executed on any file, all files sharing the open are
unlocked.

filespec
Names the file to be unlocked.

BASE (MPE/iX)
Specifies that only base-level and file-level locks are to be released.

FILE
OpenVMS, UNIX, Windows: Specifies that only file-level locks are to be released.

MPE/iX: Specifies that only base-level and file-level locks are to be released.

RECORD
Specifies that only record-level locks are to be released.

Discussion
The UNLOCK verb releases locks applied using the LOCK verb, including LOCK verbs generated
by the LOCK option of the SCREEN statement. If no lock has been established, the UNLOCK
verb has no effect. If neither the FILE nor RECORD option is specified, then both file and
record-level locks are released.

The UNLOCK verb is ignored for all relational database products. Locks are released when the
transaction ends.

MPE/iX: It is not possible to unlock individual files or records in an IMAGE database. If an
UNLOCK is done, then all locks that are held through the same physical open of the database are
released at the same time. This can have unexpected results if file-level, record-level, or a
combination of file and record-level locks exist on more than one dataset in the database when the
UNLOCK is done.

For IMAGE datasets, the BASE and FILE options are equivalent. These options can be added to
the UNLOCK verbs to document the original lock level. Both options release any base-level and
file-level locks that are held. If file-level locks are being used and more than one dataset is locked
through the same physical open of the database, the locks on all of these datasets are released. If
only record level locks exist through this open of the database, these locks are not released by the
BASE or FILE options. If, however, both file-level and record-level locks are held through the same
physical open of the database, the record-level locks are released.

The RECORD option can only be used with IMAGE datasets. It releases any record-level locks
that are held. If record-level locks are held on more than one dataset through the same physical
open of the database, the locks on all of these datasets are released. If only base-level or file-level
locks exist, these locks are not released by the RECORD option. If, however, both record-level
and file-level locks are held through the same physical open of the database, the file-level locks are
released.

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] UPDATE

QDESIGN Reference 489

[SQL] UPDATE
Updates rows in a table.

Syntax
[SQL[IN database]
[TRANSACTION transaction_name

[FOR {CONSISTENCY|{[CONCURRENCY]
phase-option [,phase-option]...}}]]]

UPDATE tablespec SET column-name = {sql-expression|NULL}
[,column-name = {sql-expression|NULL}]...
[WHERE sql-condition|{DBKEY=:expression}]

IN database

Specifies the name PowerHouse uses to attach to the database. This is the name used to declare the
database in PDL.

TRANSACTION transaction_name [FOR {CONSISTENCY|
{[CONCURRENCY] phase-option[,phase-option]...}]...

Defines transactions used for relational data structures.

transaction_name
Any valid PowerHouse name.

FOR CONSISTENCY
Determines that the SQL statement is associated with a particular transaction in Consistency
model.

Limit: Only one transaction association can be specified.

FOR [CONCURRENCY] phase-option [,phase-option]...
Determines that the SQL statement is associated with a particular transaction or transactions in
Concurrency model.

Limit: Up to three transaction associations can be specified.

phase-option

Specifies the screen phase with which the transaction is associated.

UPDATE tablespec

Identifies the table where rows are to be updated. The syntax for tablespec is:

Phase option Description

PROCESS The phase in which you are entering, correcting, or changing data
records on the screen.

QUERY The phase in which data is retrieved from the database.

UPDATE The phase in which data is updated.

MPE/iX: [[database.]owner.]table-name

OpenVMS, UNIX,
Windows:

 server-name.[database-name.] [owner-name.]table-name

490 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
[SQL] UPDATE

If server-name is included in a Sybase tablespec, double quotation marks are required for the
server-name and database-name. For example,
"dbsvr01.accnt".manager.billings_tbl

For Oracle, the syntax is
[owner-name.]table-name[@database-linkname]

If the database-linkname is included, it is treated as part of the table-name, and double quotation
marks are required. Here is an example:
manager."billings_tbl@dblnk01"

Oracle synonyms may be used for table-names. For more information about how PowerHouse
uses Oracle synonyms, see "PowerHouse Language Rules" in the PowerHouse Rules book.

SET column-name = sql-expression|NULL
[,column-name = sql-expression|NULL]...

Identifies the columns to be updated and their new values.

WHERE sql-condition|DBKEY=:expression

Sql-condition identifies the rows of the table to be updated. If you don't specify a WHERE clause,
all the rows in the relational table are changed. DBKEY is available only if the underlying
database supports it.

The sql-condition is a condition which is limited for use within Cognos SQL syntax. For more
information about SQL conditions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book, or refer to an SQL reference manual.

Limit: DBKEY cannot be used with Sybase.

Discussion
The SQL UPDATE statement acts directly on a table or view in the database and is never shown in
PowerHouse procedural code.

Chapter 8: QDESIGN Verbs and Control Structures
WARNING

QDESIGN Reference 491

WARNING
Issues a warning message.

Syntax
WARNING [MESSAGE] string|=string-expression|n

[NOW [RESPONSE]]

Defines the contents of the message. MESSAGE is used only for documentation.

string
Defines the contents of the message using a string.

=string-expression
Defines the contents of the message using a string expression.

n
Defines a message number that corresponds to a message in a designer message file. The
designated file is QKMSGDES.

For more information about message files, see Chapter 4, "Messages in PowerHouse", in the
PowerHouse Rules book.

NOW [RESPONSE]
Forces the display of the specified message on the screen when the WARNING verb is executed in
a procedure. Otherwise, the message isn't displayed until the next time QUICK prompts for user
input. When you use the NOW option, QUICK writes the contents of the display buffer to the
screen. This action refreshes the screen and any function key labels.

RESPONSE temporarily erases the top line of the screen and prompts the user to press [Return].

Discussion
The WARNING verb instructs QUICK to display the stated message on the message line, but has
no effect on processing unless the RESPONSE option is included. (There is one exception: if the
string is greater than the screen width, you are prompted to press Return even if the RESPONSE
option is not used.) If a warning is issued during an UPDATE or PREUPDATE procedure, QUICK
treats any update command as a US (Update Stay) command so that the current data and the
warning remain visible after the update.

A warning message can be displayed only when the message line is empty or when it contains an
INFORMATION message, unless the NOW option is included.

Once the message has been displayed, the message line in the display buffer is cleared.

Note: For information about verb and procedure compatibility, see (p. 239).

492 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
WHILE

WHILE
Executes the next procedural statement as long as the condition is true.

Syntax
WHILE condition

condition
States a condition to be evaluated.

For more information about conditions, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

Discussion
The WHILE control structure is used for executing the next procedural statement as long as a
condition is true. The statement can be a compound statement. The WHILE condition creates a
looping effect that ends when the condition fails or when a BREAK verb is encountered.

Nesting FOR, WHILE, and WHILE RETRIEVING Control Structures

You can nest control structures within other control structures as follows:

Although there are limitations on which of these control structures you can nest explicitly, you can
often get around these by calling from within the loop another procedure that contains the control
structure you want to nest.

Example
In the following example, a WHILE control structure is used to retrieve a specified number of
SALESHIST (sales history) records. These records are then used to calculate the Total Sales, the
sales representative's highest and lowest year of sales, and the average yearly sales. The user is
prompted to enter a value for "How many years of history?". This value determines the maximum
number of times the WHILE loop is processed. In this example:
• CURR-YR is initialized to the current year.
• LOW-SALES is initialized to the highest possible value.
• FILE SALESHIST DESIGNER counts the number of history records.
• WHILE YRS-REQUESTED NE ACTUAL-YRS indicates the start of WHILE loop.
• The format for the SHIST-IDX looks like this:

INDEX SHIST-IDX PRIMARY UNIQUE
SEGMENT EMPLOYNO
SEGMENT SALES-YEAR

• IF YRLY-SALES LT LOW-SALES determines LOW SALES and year of sales.
• IF YRLY-SALES GT HIGH-SALES determines HIGH SALES and year of sales.
• LET CURR-YR = CURR-YR + 1 indicates that the value of CURR-YR is increased by 1 each

time the WHILE loop is processed and is used in place of the segment SALES-YEAR when
reading a SALESHIST record.

• BREAK indicates the end of ACCESSOK
> SCREEN HIST ACTIVITIES FIND

The control structure ... Can contain the control structure(s) ...

FOR WHILE

WHILE FOR, WHILE, or WHILE RETRIEVING

WHILE RETRIEVING FOR or WHILE

Chapter 8: QDESIGN Verbs and Control Structures
WHILE

QDESIGN Reference 493

> TEMP CURR-DATE DATE INIT SYSDATE
> TEMP CURR-YR NUM*4 INITIAL &
> DATEEXTRACT (CURR-DATE, YEAR)
> TEMP YRS-REQUESTED NUM*2
> TEMP TOTAL-SALES NUM*9
> TEMP HIGH-SALES NUM*8
> TEMP HIGH-YEAR NUM*4
> TEMP LOW-SALES NUM*8 INITIAL 99999999
> TEMP LOW-YEAR NUM*4
> TEMP ACTUAL-YRS NUM*2
> TEMP NUM-YEAR NUM*2
> FILE EMPLOYEES PRIMARY
> FILE SALESHIST DESIGNER
> DEFINE SALESREP CHAR*35 = &
> PACK(FIRSTNAME + " " + LASTNAME)
> DEFINE SYSYEAR = DATEEXTRACT (CURR-DATE, YEAR)
> DEFINE AVG-SALES NUM*8 = TOTAL-SALES / ACTUAL-YRS
> TITLE "Sales History Screen"
> SKIP 2
> ALIGN (10,14,25) (,38,44)
> FIELD EMPLOYNO OF EMPLOYEES REQUIRED NOCHANGE &
> LABEL "Salesrep:"
> FIELD SALESREP LABEL "Name:"
> SKIP 1
> ALIGN (,24,53)
> FIELD YRS-REQUESTED &
> LABEL "How many years of history?" &
> FIXED BWZ VALUES 1 TO 99
> SKIP 2
> ALIGN (,14,48)
> FIELD TOTAL-SALES PIC " ^,^^^,^^^.^^" FLOAT "$" &
> LABEL "Total Sales for previous years:"
> SKIP 1
> ALIGN (,14,28) (,36,50)
> FIELD HIGH-YEAR LABEL "Best Year:"
> FIELD HIGH-SALES LABEL "Sales were:" &
> PIC " ^^^,^^^.^^" FLOAT "$"
> FIELD LOW-YEAR LABEL "Lowest Year:"
> FIELD LOW-SALES LABEL "Sales were:" &
> PIC " ^^^,^^^.^^" FLOAT "$"
> SKIP 1
> ALIGN (,14,50)
> FIELD AVG-SALES LABEL "Average Yearly Sales:" &
> PIC " ^^^,^^^.^^" FLOAT "$"
> PROCEDURE POSTFIND
> BEGIN
> LET NUM-YEAR = SYSYEAR - JOINEDYEAR
> LET ACTUAL-YRS = 0
> REQUEST YRS-REQUESTED
> EDIT YRS-REQUESTED ; to force the values
> ; to be evaluated.
> LET CURR-YR = CURR-YR - YRS-REQUESTED
> WHILE YRS-REQUESTED NE ACTUAL-YRS
> BEGIN
> GET SALESHIST VIAINDEX SHIST-IDX &
> USING EMPLOYNO, CURR-YR OPTIONAL
> IF ACCESSOK ; Sales history record on file
> THEN BEGIN ; Start of ACCESSOK
> LET ACTUAL-YRS = ACTUAL-YRS + 1
> LET TOTAL-SALES = TOTAL-SALES + YRLY-SALES
> IF YRLY-SALES LT LOW-SALES
> THEN BEGIN
> LET LOW-SALES = YRLY-SALES
> LET LOW-YEAR = SALES-YEAR
> END
> IF YRLY-SALES GT HIGH-SALES
> THEN BEGIN
> LET HIGH-SALES = YRLY-SALES

494 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
WHILE

> LET HIGH-YEAR = SALES-YEAR
> END
> LET CURR-YR = CURR-YR + 1
> END
> ELSE ; SALESHIST record not on file (not ACCESSOK)
> BEGIN
> INFO = "This is " + ASCII(ACTUAL-YRS) + &
> "years of " + ASCII(YRS-REQUESTED) + &
> " year(s) sales history requested." &
> NOW RESPONSE
> BREAK
> END
> END ; End of WHILE loop
> END ; End of POSTFIND

Chapter 8: QDESIGN Verbs and Control Structures
WHILE RETRIEVING

QDESIGN Reference 495

WHILE RETRIEVING
Retrieves and processes data records in a loop.

Syntax
WHILE RETRIEVING record-structure [option]...

record-structure
Names a record-structure in a DESIGNER file. The record-structure may be one of:
• a cursor defined in a DECLARE CURSOR statement
• a record-structure named in the dictionary
• a table or view defined in a relational database

Limit: The WHILE RETRIEVING control structure is valid for DESIGNER files only.

Options

BACKWARDS

Reverses the sequence in which the data records are usually read.

Limit: Valid only for C-ISAM, DISAM, RMS ISAM, and IMAGE datasets with keyed access.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

GENERIC|NOGENERIC

GENERIC allows partial index retrieval. NOGENERIC prevents partial index retrieval.

Limit: Not valid for IMAGE indexes, unless they are B-Tree or OMNIDEX indexes.

Default: GENERIC

ORDERBY item [ASCENDING|DESCENDING]
[,item[ASCENDING|DESCENDING]]...

Allows the ordered retrieval of records in a relational table or view by any column (or
combination of columns) defined in the table or view.

If the ORDERBY option occurs with the VIAINDEX option, ordering is performed according to
the columns of the ORDERBY option and the ordering imposed by the VIAINDEX option is
ignored.

Limit: Valid only for relational structures.

Default: ASCENDING

SEQUENTIAL

Accesses the data record sequentially.

Limit: The SEQUENTIAL and USING options can't be used in the same WHILE RETRIEVING
control structure.

Limit: The BACKWARDS and SEQUENTIAL options cannot be used together for RMS ISAM
files.

USING expression [,expression]...

Accesses the data records of the specified record-structure using the results of the specified
expression as
• the value for corresponding linkitems
• the data record number for record-structures in direct files

(MPE/iX, OpenVMS) or relative files

496 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
WHILE RETRIEVING

• the value of a column in a relational table

For direct files (MPE/iX, OpenVMS), or relative files there can be only one value which QUICK
interprets as a record number.

For indexed files, or IMAGE datasets, there can be more than one value (for segmented indexes),
but QUICK interprets the values as a single index value in that file.

Otherwise, a series of expressions may be specified which correspond one-to-one with the
segments established by either the VIA or VIAINDEX options. If neither the VIA nor the
VIAINDEX option is specified, and the record-structure has only one associated index structure,
this index structure will be used as if the VIAINDEX option had been specified except that index
retrieval order will not be enforced.

If a record-structure is a relational table, there can be several values in the USING option which
QDESIGN interprets as the values of the columns in the table. The VIA or VIAINDEX options
must be used to indicate which columns the values belong to if more than one index is in use or if
no index is used.

If the VIA option is specified, the number of expressions specified must correspond one-to-one
with the number of segments specified on the VIA option.

If the VIAINDEX option is specified and the VIA option isn't specified, the number of expressions
specified may be less than or equal to the number of segments contained within the index
structure specified. There must always be at least one expression.

Limit: 255 expressions.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of a
multi-segment index, unless the index is a B-Tree or OMNIDEX index. An expression must be
specified for every segment of the index.

VIAINDEX indexname

Names an index of an indexed file, IMAGE dataset or relational table. When VIAINDEX is used
with the USING option, there can be as many USING values as there are segments in the index, or
fewer values than the index segments. In the latter case, the values are matched to the index
segments in order, starting from the first segment; the leftover segments are not used. When using
VIAINDEX, the retrieval always follows the order specified by that index.

Use VIA instead of VIAINDEX with relational tables. By explicitly referencing an index with the
VIAINDEX option, it becomes harder to change the database definitions. If the index is deleted,
then the source code must be modified. If VIA is used instead, the index can be deleted and the
screen continues to work properly.

VIA linkitem [,linkitem]...[ORDERED[ASCENDING|DESCENDING]

Accesses the record-structure via the specified linkitems. A linkitem is a segment of an index for an
indexed file or a column in a relational database.

When a VIA list is used in combination with the USING option, there must be a one-to-one match
between the USING expressions and VIA linkitems. This option is valid for indexed files, IMAGE
datasets, and relational tables only.

For indexed files, and IMAGE datasets, the series of linkitems declared must define a series of
segments contained within the index structure associated with the record-structure. In this case,
the first linkitem is the first segment within the index structure, the second linkitem is the second
segment, and so on.

For relational tables, a series of linkitems may represent any series of columns in a table as long as
the VIAINDEX option is not specified. If VIAINDEX is specified, a series of linkitems must be a
series of segments contained within a specific index structure: match the first linkitem to the first
segment, the second linkitem to the second segment, and so on.

THE ORDERED option allows ordered retrieval of records in a relational table or view by any
column or combination of columns defined in a table of view.

The ORDERED option is a convenient method of specifying ORDERBY items when the specified
items are the same as those in the VIA list.

Chapter 8: QDESIGN Verbs and Control Structures
WHILE RETRIEVING

QDESIGN Reference 497

If the ORDERED option occurs with the VIAINDEX option, which also imposes an ordering, the
ordering is done by the columns of the VIA option. The implicit ordering imposed by the
VIAINDEX option is ignored.

Limit: 255 segments.

Limit (MPE/iX): IMAGE does not support retrieval via an initial subset of the segments of a
multi-segment index, unless the index is a B-Tree or OMNIDEX index. The series of linkitems
must include all of the segments in the index.

Discussion
The WHILE RETRIEVING control structure is a repetitive statement used for specialized
processing of a related set of data records. The WHILE RETRIEVING control structure allows
the designer to specify a control structure that is executed for all data records in a chained
retrieval. It creates a looping effect that ends when the end of the chain is reached or when a
BREAK verb is encountered. The control structure retrieves data records as specified and executes
the code in the procedural statement following it.

Unlike the FOR control structure, which executes the procedural statement a specified number of
times (based on the number of repetitions of the file or item), the WHILE RETRIEVING control
structure executes the procedural statement once for each data record retrieved. The file that
contains the record-structure doesn't have to repeat, since data records are read into the buffer,
overwriting the previous data record.

Breaking Out of a WHILE RETRIEVING Control Structure

The WHILE RETRIEVING control structure is executed once for each data record retrieved. The
BREAK verb can be used to stop retrieval and the processing of the control structure.

Nesting WHILE RETRIEVING Control Structures

WHILE RETRIEVING control structures can't be explicitly nested. In addition, a WHILE
RETRIEVING control structure can't be nested within a FOR control structure. Similarly, a FOR
control structure can't be nested within a WHILE RETRIEVING control structure.

The Effect of PUT Verbs in WHILE RETRIEVING Constructs

When using the WHILE RETRIEVING control structure to change indexes down a chain, the
PUT verbs must reference a different record buffer and data record pointer, using the ALIAS and
OPEN options of the FILE statement. Executing a PUT verb on the same file may change the data
record pointer for the next retrieval.

Use caution if you attempt to commit an update inside a WHILE RETRIEVING construct.
Committing the retrieval transaction may cause the retrieval to end prematurely.

Retrieving Data Records by Index Values

The VIA option with the SEQUENTIAL option retrieves data records sequentially using the
specified key. The VIA option without the SEQUENTIAL option retrieves data records using the
specified index, in the sorted order of that index.

Example
The job assignment screen displays the previous jobs held by each employee.
> SCREEN JOBASSIGN
>
> FILE DIVISIONS PRIMARY
> FILE EMPLOYEES DETAIL OCCURS 5
Item DIVISION initialized (fixed) to DIVISION OF
DIVISIONS.
> FILE EMPLOYEEDETAIL DESIGNER
>
> TEMPORARY MESSAGE CHARACTER*50 INITIAL &
> "Previous positions for this employee are: "

498 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
WHILE RETRIEVING

> FIELD DIVISION OF DIVISIONS &
> REQIRED NOCHANGE LOOKUP NOTON DIVISIONS
> SKIP 2
> title "Name" AT ,10
> TITLE "Position Assigned" AT ,40
> CLUSTER OCCURS WITH EMPLOYEES
> ALIGN (1,,10) (,,48)
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> REQIRED NOCHANGE LOOKUP NOTON EMPLOYEES
> FIELD POSITION OF EMPLOYEES
> CLUSTER
> PROCEDURE APPEND
> BEGIN
> ACCEPT EMPLOYEENUMBER OF EMPLOYEES
> WHILE RETRIEVING EMPLOYEEDETAIL &
> VIA EMPLOYEENUMBER &
> USING EMPLOYEENUMBER OF EMPLOYEES
> LET MESSAGE = TRUNC(MESSAGE) + &
> " " + POSITION OF EMPLOYEEDETAIL
> INFORMATION = MESSAGE
> ACCEPT POSITION OF EMPLOYEES
> END
>
> PROCEDURE ENTRY
> BEGIN
> ACCEPT DIVISION
> FOR EMPLOYEES
> BEGIN
> PERFORM APPEND
> END
> END
>
> BUILD

This while retrieving control structure specifies a procedure that is executed for each data record
retrieved from the designer file employeedetail. Data records in the file employeedetail are
retrieved by the employeenumber index if they match the employeenumber value in employees.
For each data record retrieved, QUICK displays previous position values following the message:
Previous positions for this employee are:

When the while retrieving control structure is used to process and update related data records in a
chain, be careful not to destroy the record pointers required for the next retrieval. The following
example allows the user to change the value of the item employee. In both the employees and skills
record-structures, the item employee is a segment.
> SCREEN EMPCHG ACTIVITIES FIND, CHANGE
> TEMPORARY NEWEMPLOYEE INTEGER
> FILE EMPLOYEES PRIMARY
> ACCESS VIA EMPLOYEE REQUEST EMPLOYEE
> FILE SKILLS DESIGNER
> FILE SKILLS DESIGNER ALIAS NEWSKILLS OPEN 1
> ITEM SKILL FINAL SKILL OF SKILLS
> FIELD EMPLOYEE OF EMPLOYEES REQUIRED NOCHANGE &
> LOOKUP NOTON EMPLOYEES
> FIELD FIRSTNAME OF EMPLOYEES ID SAME
> FIELD LASTNAME OF EMPLOYEES ID SAME
> FIELD NEWEMPLOYEE LOOKUP NOTON EMPLOYEES &
> VIA EMPLOYEE VALUES 1 TO 9999
> PROCEDURE PREUPDATE
> BEGIN
> IF NEWEMPLOYEE = 0
> THEN ERROR "No update without a valid employee"
> END

> PROCEDURE UPDATE
> BEGIN
> WHILE RETRIEVING SKILLS VIA EMPLOYEE &
> USING EMPLOYEE OF EMPLOYEES
> BEGIN

Chapter 8: QDESIGN Verbs and Control Structures
WHILE RETRIEVING

QDESIGN Reference 499

> LET EMPLOYEE OF NEWSKILLS = NEWEMPLOYEE
> PUT NEWSKILLS RESET
> DELETE SKILLS
> PUT SKILLS
> END
> LET EMPLOYEE OF EMPLOYEES = NEWEMPLOYEE
> PUT EMPLOYEES
> END
> BUILD

When the value of the segment in the SKILLS record-structure is changed, the data record with the
new index value is written by a PUT verb. The data record with the old index value is deleted by
another PUT verb. The two PUT verbs for the record-structure must reference different file
buffers. The second file buffer is obtained using the ALIAS option of the FILE statement. Forcing
a separate open for the second file provides a second set of file pointers. We recommend that you
add the new record before deleting the old one because the reverse order may break the WHILE
RETRIEVING chain on some file systems.

The following example shows the use of the WHILE RETRIEVING with a cursor:
> CURSOR EMPNOTES DESIGNER
.
.
.
> PROCEDURE DESIGNER CDES HELP &
> "Copy description to a file"
> BEGIN
> LET RECORDCOUNT = 1
> SQL OPEN EMPNOTES &
> WHERE(EMPLOYEE=:EMPLOYEE ORDER BY DESCRIPTIONLINE)
> WHILE RETRIEVING EMPNOTES
> BEGIN
> LET cmdline = "echo" + trunc(description) + "'"
> IF RECORDCOUNT = 1
> THEN LET cmdline = trunc(cmdline) + ">/tmp/descrip"
> ELSE LET cmdline = trunc(cmdline) + &
> ">>/tmp/descrip"
> RUN COMMAND cmdline
> LET RECORDCOUNT = RECORDCOUNT + 1
> END
> END

For an additional example of the WHILE RETRIEVING control structure, see (p. 319).

500 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QDESIGN Verbs and Control Structures
WHILE RETRIEVING

QDESIGN Reference 501

Chapter 9: Debugger

Overview
This chapter describes the uses of the QUICK Interactive Debugger. It includes information about
• running Debugger
• compiling and running screens with Debugger
• setting breaks in a screen
• getting Help
• displaying source code and finding text in the source code
• controlling the execution of screens
• exiting Debugger
• producing a transcript of a Debugger session

Debugger Overview
Debugger lets you analyze and control QUICK screens as they run. With debugging enabled,
QUICK runs screens as if Debugger were not there, until it encounters a break.

QUICK always gives control to Debugger before it executes the first statement of a screen (as long
as the screen was compiled for debugging). This allows you to examine the initial state of the
screen or to set breaks in it.

A break causes QUICK to pass control to Debugger. Debugger displays the statements around the
break, then waits for your commands to display or change the value of an item, list the source
statements of the screens, and set and clear breaks.

The QUICK Debugger chapters (9-10) cover these steps in detail. These chapters assume you have
experience with QUICK screens. Only Debugger is explained in detail.

Chapter 9 is an introduction organized by topic for those not familiar with Debugger operation.

Chapter 10 describes Debugger options and syntax for all the Debugger commands.

General Terms
This section defines general terms that the Debugger chapters use frequently.

item A record item declared in the dictionary, a defined item declared in a
DEFINE statement, a temporary item declared in a TEMPORARY
statement, or a predefined value.

predefined condition one of ACCESSOK, COMMANDOK, PROMPTOK, ENTRYMODE,
FINDMODE, CORRECTMODE, CHANGEMODE, NEWRECORD,
ALTEREDRECORD, or DELETEDRECORD.

Return status is TRUE if the condition is set to on.

predefined item one of FIELDTEXT, FIELDVALUE, or PATH

predefined value A predefined condition, predefined item, or a system function.

502 PowerHouse(R) 4GL Version 8.4E

Chapter 9: Debugger

Running Debugger

To use QUICK Debugger:
1. Compile screens to run in debugging mode.
2. Run QUICK in the debugging mode.
3. Set breakpoints and watchpoints and run screens.

Compiling Screens for Debugger
Debugger needs information about a screen that normally is not included in a compiled screen. To
use Debugger, you must start QDESIGN with the debug program parameter and compile all the
screen you want to debug. To start QDESIGN with debug, enter
QDESIGN DEBUG

or

RUN QDESIGN.CURRENT.COGNOS;INFO="DEBUG" (MPE/iX)

When QDESIGN compiles a screen under the debugging mode, it generates two files in the same
location as the compiled screen. The files contain the following extra information that Debugger
needs

Without the generated files, you are not able to use Debugger on the screen. When compiling a
series of QUICK screens using QDESIGN debug, QDESIGN ignores SET SAVE CLEAR
statements and NODETAIL options. This ensures that the Debugger list file contains the
fully-expanded screen source. After building each screen, QDESIGN automatically clears the save
file before the next screen compile.

MPE/iX:

In the above table, "screen" is the first seven characters of the compiled screen’s filename.

Eight-character screen names ending with "D" or "L" do not work in debugging mode for
QDESIGN. They are truncated and the letter "D" and the letter "L" are appended to create
symbol and list file names, respectively.

For example, if you have a compiled screen called SALARIED, Debugger tries to create
symbol file: SALARIE + D = SALARIED
list file: SALARIE + l = SALARIEL
compiled screen: SALARIED

system function one of AUDITSTATUS, PROCESSLOCATION, COMMANDCODE,
SCREENLEVEL, COMMANDMESSAGE, OCCURRENCE,
SYSNAME, SYSDATE, or SYSTIME.

user break Ctrl-Y (MPE/iX)

Ctrl-C (OpenVMS, UNIX, Windows)

value A string or a number depending on the item type.

Generated Files Description

screenD the symbol file that contains the debugging information
required for the screen

screenL the list file that contains the fully expanded source listing

Chapter 9: Debugger

QDESIGN Reference 503

OpenVMS, UNIX, Windows

In the above table, "screen" is the compiled screen’s filename. For example, compiling a QUICK
screen named "entry" produces the following files:
• entry.qkd, the symbol file
• entry.qkl, the list file
• entry.qkc, the compiled QUICK screen

Running Screens with Debugger (MPE/iX)
For Running Screens with Debugger (OpenVMS, UNIX, Windows), see (p. 503).

To run QUICK with source-level debugging capability turned on:
:QUICK "DEBUG=SOURCE"

or
:RUN QUICK.CURRENT.COGNOS;INFO="DEBUG=SOURCE"

When QUICK is running with debugging enabled, it looks for the debug information in the
screenD and screenL files generated by QDESIGN. QUICK uses the location specified in the
filespec of the screen being run. For example, if you start QUICK as follows,
:QUICK INFO="AUTO=SALES.DEV DEBUG=SOURCE"

QUICK looks for all three files in the DEV group.

If there are file equations, QUICK uses them to find each of the three files (compiled screen,
symbol, and list files). For example,
:FILE SALES=SALES.DEV
:FILE SALESD=SALESD.DEV
:FILE SALESL=SALESL.DEV

If you use QKGO to point to a screen, you must have three file equations:
:FILE QKGO=EMPLOYEE
:FILE QKGOD=EMPLOYED
:FILE QKGOL=EMPLOYEL

As each screen is called, QUICK looks for the screenD and screenL files. If it finds them, the screen
runs with debugging enabled. If QUICK does not find the debugging files for a screen, it still runs
the screen, but you cannot use Debugger on the screen.

To output Debugger information and accept Debugger commands, Debugger restores the terminal
to the configuration it had before QUICK was started. This is true whether running in Character
mode or Block mode.

Before starting QUICK for debugging, you must configure your system as you do to run
QDESIGN interactively. This is because Debugger requires the same configuration to run as
QDESIGN.

Running Screens with Debugger (OpenVMS, UNIX, Windows)
For Running Screens with Debugger (MPE/iX), see (p. 503).

To run QUICK with source-level debugging capability turned on, use the debug=source program
parameter. For example,
quick debug=source

To debug a screen you do not have to compile higher level screens with debug. You need only
compile those screens that you want to debug.

Generated Files Description

screen.qkd the symbol file that contains the debugging information
required for the screen

screen.qkl the list file that contains the fully expanded source listing

504 PowerHouse(R) 4GL Version 8.4E

Chapter 9: Debugger

When QUICK is running with debugging enabled, it looks for the debug information in the
screen.qkd and screen.qkl files generated by QDESIGN.

As each screen is called, QUICK looks for the screen.qkd and screen.qkl files. They must be in the
same directory as the compiled screen file. If QUICK finds them, the screen runs with debugging
enabled. If QUICK does not find the debugging files for a screen, it still runs the screen, but you
cannot use Debugger on the screen.

To output Debugger information and accept Debugger commands, Debugger restores the terminal
to the configuration it had before QUICK was started. This is true whether running in Field mode
or Panel mode.

Before starting QUICK with Debugger enabled, you must configure your system as you do to run
QDESIGN interactively. This is because Debugger requires the same configuration to run as
QDESIGN.

Setting Breaks in a Screen
A break causes QUICK to pass control to Debugger. Debugger displays the statements around the
break, then waits for your commands to display or change the value of an item, list the source
statements of the screens, and set and clear breaks.

There are three ways to set breaks in a screen:

breakpoint
You set a breakpoint on a statement in the screen's source. QUICK then gives control to Debugger
just before it executes the statement.

watchpoint
You set a watchpoint on an item or items. QUICK gives control to Debugger just after the value of
the item changes.

STEP command
Causes QUICK to execute a certain number of statements, then give control back to Debugger.

In addition, you can force QUICK to pass control to Debugger at any time by typing a user break.
This is useful if your screen unexpectedly goes into a long loop, or if you forget to set breaks in a
screen before you run it.

Getting Help
For a list of available commands, enter a question mark.
> ?
Expected: BREAK BYE CLEAR CONTINUE DISPLAY EXIT FIND LET LIST NEXT
PREVIOUS QSHOW SAVE SCREEN SHOW STEP USE WATCH <eol>

If you are in the middle of typing a command, enter a question mark to see a list of all expected or
allowable entries.
> CLEAR ?
Expected: ALL LINE <line>

Exiting Debugger
The BYE and EXIT commands end the QUICK debugging session without returning to the
QUICK screen. You can also end the QUICK Debugger session by exiting QUICK.

Windows: If you have Dr. Watson installed and you exit from the QUICK Debugger rather than
from QUICK, you may see a trapped exception error. This is normal because the QUICK
Debugger raises an exception in order to exit from within QUICK. If you exit from QUICK rather
than the Debugger, no exception is raised.

Chapter 9: Debugger

QDESIGN Reference 505

Continuing Execution
To give control back to QUICK for screen execution, enter
> CONTINUE

at the Debugger prompt.

The STEP command also causes QUICK to execute some of the screen.

Displaying Source Code
When you first start running a screen compiled for debugging, Debugger clears the terminal
window and displays the first 20 lines of screen source code. Thus, before QUICK executes the
first statement of a screen you can examine the initial state of the screen or set breaks in it.
Debugger displays, for example:
0001 SCREEN EMPLOYEE
0002 FILE EMPLOYEE
0003 FILE BILLINGS DESIGNER
0004 FIELD EMPLOYEE OF EMPLOYEE REQUIRED &
0005 LOOKUP NOTON EMPLOYEE VIA EMPLOYEE
0006 FIELD LASTNAME OF EMPLOYEE REQUIRED NOCHANGE
0007 FIELD FIRSTNAME OF EMPLOYEE
0008 FIELD STREET OF EMPLOYEE
0009 FIELD CITY OF EMPLOYEE
0010 FIELD PROVSTATE OF EMPLOYEE
0011 FIELD POSTALCODE OF EMPLOYEE
0012 FIELD PHONE OF EMPLOYEE
0013 FIELD BRANCH OF EMPLOYEE
0014 FIELD DIVISION OF EMPLOYEE
0015 FIELD POSITION OF EMPLOYEE
0016 FIELD SEX OF EMPLOYEE
0017 FIELD LANGUAGE OF EMPLOYEE
0018 FIELD BILINGUAL OF EMPLOYEE
0019 FIELD DATEJOINED OF EMPLOYEE
0020 FIELD BILLING OF BILLINGS DISPLAY
>

The Debugger prompt (>) follows the source code. At the prompt, QUICK is waiting for you to
enter a Debugger command. (To change the Debugger prompt, use the prompt program
parameter of QUICK.)

The NEXT, PREVIOUS, and LIST commands are used to display additional QDESIGN source
code.

To display the next 20 lines of source code, enter
> NEXT
0020 FIELD DATELEFT OF EMPLOYEE
0021 FIELD DATEAPPOINTED OF EMPLOYEE
.
.
.
0038 ACCEPT PROVSTATE OF EMPLOYEE
0039 ACCEPT POSTALCODE OF EMPLOYEE
>

For the next 10 lines, enter
> NEXT 10
0039 ACCEPT POSTALCODE OF EMPLOYEE
0040 ACCEPT PHONE OF EMPLOYEE
.
.
.
0047 ACCEPT MARITALSTATUS OF EMPLOYEE
0048 ACCEPT FILLER OF EMPLOYEE
>

For the previous 20 lines of source code, enter

506 PowerHouse(R) 4GL Version 8.4E

Chapter 9: Debugger

> PREVIOUS
0010 FIELD BRANCH OF EMPLOYEE REQUIRED NOCHANGE
0011 FIELD DIVISION OF EMPLOYEE REQUIRED NOCHANGE
.
.
.
0028 PROCEDURE ENTRY
0029 BEGIN
>

For the previous 15 lines, enter
> PREVIOUS 15
0001 SCREEN EMPLOYEE
0002 FILE EMPLOYEE
.
.
.
0014 FIELD LASTNAME OF EMPLOYEE REQUIRED NOCHANGE
0015 FIELD BRANCH OF EMPLOYEE REQUIRED NOCHANGE
>

For 20 lines of source code with the current breakpoint position centered on the screen (if
possible), enter
> LIST
0001 SCREEN EMPLOYEE
0002 FILE EMPLOYEE
.
.
.
0019 FIELD DATEJOINED OF EMPLOYEE
0020 FIELD DATELEFT OF EMPLOYEE
>

For a specified range of lines (20-30 in this case), enter
> LIST 20 TO 30
0020 FIELD DATELEFT OF EMPLOYEE
0021 FIELD DATEAPPOINTED OF EMPLOYEE
.
.
.
0029 BEGIN
0030 ACCEPT EMPLOYEE OF EMPLOYEE
>

For all lines of the current screen, enter
> LIST ALL

Finding Text in the Source Code
Use the FIND command to find specified text in the current screen. To find lines that have the
string "employee", enter
> FIND employee

Debugger searches from the beginning of the screen until "employee" is found in any combination
of upper and lowercase.

Debugger displays 20 lines of source code centered on the line that contains the text. An "F"
beside the line number identifies the first line that contains the text.
0001F SCREEN EMPLOYEE
0002 FILE EMPLOYEE
0003
0004 TITLE "Employee Screen" CENTERED
0005 SKIP 5
0006 ALIGN (1,4,21) (41,44,61)
.
.

Chapter 9: Debugger

QDESIGN Reference 507

.

Enter FIND with no arguments to look for the same text again, starting from the line that is
marked "F".
> FIND
0001 SCREEN EMPLOYEE
0002F FILE EMPLOYEE
0003
0004 TITLE "Employee Screen" CENTERED
0005 SKIP 5
0006 ALIGN (1,4,21) (41,44,61)
.
.
.

For exact text matches, including the case of the letters, put quotation marks around the text. For
example, to find an uppercase "S" followed by lowercase "creen", enter
> FIND "Screen"
0001 SCREEN EMPLOYEE
0002 FILE EMPLOYEE
0003
0004F TITLE "Employee Screen" CENTERED
0005 SKIP 5
0006 ALIGN (1,4,21) (41,44,61)
.
.
.

You can also search for text that matches a PowerHouse pattern. To find "employee" at the end of
a line, use FIND PATTERN with the PowerHouse pattern-matching character at-sign (@) before
the string you want to find. For example,
> FIND PATTERN "@EMPLOYEE"
0001F SCREEN EMPLOYEE
0002 FILE EMPLOYEE
0003
0004 TITLE "Employee Screen" CENTERED
.
.
.

You must put quotation marks around the pattern. Patterns must represent the complete line. For
example, to find lines beginning with EMPLOYEE (the string EMPLOYEE followed by any other
characters), enter
> FIND PATTERN "EMPLOYEE@"

To find lines containing EMPLOYEE (the string EMPLOYEE surrounded by any other
characters), enter
> FIND PATTERN "@EMPLOYEE@"

You can also search for text with a PowerHouse SOUNDEX string. For more information on
pattern matching and the SOUNDEX function, see Chapter 5, "PowerHouse Language Rules",
and Chapter 6, "Functions in PowerHouse", respectively, in the PowerHouse Rules book.

For all variations of FIND, you can restrict the search to a range of lines. After the string, pattern,
or SOUNDEX string, enter the start and end line numbers.
> FIND "Then" 10 TO 70

Controlling Execution
QUICK Debugger provides control of screen execution with
• breakpoints
• stepping
• watchpoints
• user Breaks

508 PowerHouse(R) 4GL Version 8.4E

Chapter 9: Debugger

When QUICK encounters one of these breaks, it passes control over to Debugger so you can
examine the screen. Then you can resume execution of the screen until another break is
encountered, or the screen completes execution.

Breakpoints
You can set a breakpoint at any line in the screen. When QUICK encounters a breakpoint, it gives
control to Debugger before executing the breakpoint statement.

Typically, you would set a breakpoint at the start of code that you suspect may be causing a
problem. Then you use a CONTINUE command to run the screen. QUICK gives control back to
Debugger at the breakpoint and you examine the state of the screen and the values of items to
determine the source of the problems.

For example, to set a breakpoint at line 34, enter
> BREAK 34
Set at line: 34
>

To see the line numbers of all breakpoints in the current screen, enter
> BREAK
Set at line: 30
Set at line: 34
>

Once a breakpoint is set, QUICK gives control to Debugger every time it reaches the statement. To
remove a breakpoint, enter CLEAR followed by the line number of the breakpoint.
> CLEAR 34
Breakpoint cleared at line: 34
>

Stepping
With the STEP command, QUICK executes one or more statements and then gives control back to
Debugger as if it had encountered a breakpoint. To execute just the next statement, enter
> STEP

To execute the next 5 statements, enter
> STEP 5

Typically, you use breakpoints to get close to suspect code, then use STEP to follow every
statement until the problem is found.

Watchpoints
A watchpoint causes QUICK to give control to Debugger whenever the value of a specified item
changes. This gives you an easy way to find the statement that unexpectedly changes the value of
an item.

You can set a watchpoint on a record item, a defined item, or a predefined item. To set a
watchpoint on the item LASTNAME, enter
> WATCH LASTNAME
Watchpoint is set for LASTNAME OF EMPLOYEE
>

You can set a watchpoint on all the items in a file by giving a file name instead of an item name, as
in
> WATCH FILE EMPLOYEE ON
Watchpoint is set for EMPLOYEE OF EMPLOYEE
Watchpoint is set for LASTNAME OF EMPLOYEE
Watchpoint is set for FIRSTNAME OF EMPLOYEE
Watchpoint is set for ADDRESS OF EMPLOYEE
Watchpoint is set for STREET OF EMPLOYEE
Watchpoint is set for CITY OF EMPLOYEE
Watchpoint is set for PROVSTATE OF EMPLOYEE

Chapter 9: Debugger

QDESIGN Reference 509

Watchpoint is set for POSTALCODE OF EMPLOYEE
Watchpoint is set for PHONE OF EMPLOYEE
Watchpoint is set for DATEJOINED OF EMPLOYEE
Watchpoint is set for DATELEFT OF EMPLOYEE
Watchpoint is set for BRANCH OF EMPLOYEE
Watchpoint is set for DIVISION OF EMPLOYEE
Watchpoint is set for POSITION OF EMPLOYEE
Watchpoint is set for DATEAPPOINTED OF EMPLOYEE
Watchpoint is set for NOOFAPPTS OF EMPLOYEE
Watchpoint is set for LANGUAGE OF EMPLOYEE
Watchpoint is set for SEX OF EMPLOYEE
Watchpoint is set for MARITALSTATUS OF EMPLOYEE
Watchpoint is set for FILLER OF EMPLOYEE
>

QUICK predefined items are items that contain information about the state of records or of
QUICK. To set a watchpoint on a predefined item, enter
> WATCH PREDEFINED NEWRECORD OF EMPLOYEE ON
Watchpoint is set for NEWRECORD OF EMPLOYEE.
>

For the predefined values AUDITSTATUS, ALTEREDRECORD, DELETEDRECORD, and
NEWRECORD, you must specify a file with an OF option.

To turn a watchpoint off, enter
> WATCH LASTNAME OFF
Watchpoint cleared for LASTNAME OF EMPLOYEE.
>

Due to the interaction between QUICK and Debugger, Debugger sometimes does not gain control
immediately after a watched item changes. This is because QUICK sometimes changes the value of
items internally, such as when it initializes a defined item. In this case, Debugger may display a line
for a watchpoint that has no apparent connection with the watched item.

User Break
Any time you enter a user break [Ctrl-Y (MPE/iX) or Ctrl-C (OpenVMS, UNIX, Windows)]
during the execution of a screen compiled for debugging, QUICK gives control to Debugger, even
when you do not have breakpoints set.

Again, because of the way QUICK and Debugger interact, Debugger sometimes does not gain
control immediately after a user break. Often a user break must be typed with something else (find
a record, for example) to make QUICK pass control to Debugger.

The Screen Environment
QUICK preserves the debugging environment of the screen as you go from screen to screen. When
you leave a higher level screen for a subscreen, QUICK maintains all breakpoints for the higher
level screen.

During a debugging session, all commands refer to the current debugging environment. Normally
this is the current screen. If you want to look at any other active screen, you have to change the
current environment.

To display the active screens, enter
> SCREEN

Debugger displays a message that looks like this:
QUICK813c L1 MAINMENU(98/02/23) QDESIGN813c HP2392 (c) COGNOS INCORPORATED.
QUICK813c L2 EMPLOYEE(98/02/23) QDESIGN813c HP2392 (c) COGNOS INCORPORATED.
>

"L1" and "L2" are the level numbers of the screen. You can refer to a screen by either its level
number or its name.

To change the current environment to the environment of another active screen, enter a screen
name or level number. For example, to make the MAINMENU screen the current screen, enter

510 PowerHouse(R) 4GL Version 8.4E

Chapter 9: Debugger

> SCREEN 1

or
> SCREEN MAINMENU

From now until you change environments again, all commands refer to the MAINMENU screen.

When you list the source code of a screen, the next line that QUICK executes is highlighted. If you
change environments and list source code, you may still see a highlighted line. If the new
environment is the environment of a higher level screen, the highlighted line will be the line that
called a subscreen.

When you enter CONTINUE or STEP, QUICK automatically restores the current environment to
the environment that was running when the break occurred.

The list of active screens a SCREEN command produces includes the current screen and all the
screens above it, plus all its active descendants. A screen's active descendants are
• the last screen that returned to the current screen
• the active descendants of that screen

If screen A calls B which calls C, then C returns to B and B calls D, then the descendant of B is D
only, not C and D.

Transcript of the Debugging Session
If the file qkdebug exists when you start QUICK in one of the debugging modes, QUICK writes
the screen information and line numbers executed during the session to the file. This enables you
to follow the execution of your screen on a line-by-line basis.

OpenVMS: QKDEBUG is a logical name equated to an existing file. For example, before invoking
QUICK, create DBGOUT.TXT (an empty file) and equate it to the logical name QKDEBUG, as
follows:
define QKDEBUG DBGOUT.TXT

Used with qkecho (which contains terminal input for the session) and qkout (which contains
terminal output for the session), qkdebug is an effective way of tracing the flow of control through
an application.

B

C D

A

QDESIGN Reference 511

Chapter 10: Debugger Commands

Overview
This chapter describes each of Debugger's commands.
• syntax summaries
• detailed syntax descriptions
• setting breakpoints to stop execution of a QUICK screen
• stepping through source code
• stopping execution of a screen when an item value changes
• displaying the contents of a record, defined, or temporary item
• listing the screen source code

Debugger Command Summary
The following table lists QUICK Debugger commands and briefly describes what they do:

Command Purpose

BREAK Sets or displays a breakpoint.

BYE Exits Debugger and QUICK.

CLEAR Clears breakpoints.

CONTINUE Continues execution of a screen after Debugger has gained control for any
reason.

DISPLAY Displays values of items and predefined items.

EXAMINE Displays values of items and predefined items.

EXIT Exits Debugger and QUICK.

FIND Searches for text in the source code.

GO Continues execution of the screen after Debugger has gained control for any
reason.

LET Sets the value of an item.

LIST Displays either a range of lines of source code or all lines on the current
screen.

NEXT Displays either the specified lines or the next page of source code.

PREVIOUS Displays either the specified number of lines or the previous page of source
code.

QSHOW Runs QSHOW to display information from the dictionary.

SAVE Saves Debugger commands to a file.

512 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands

SCREEN Lists Debugger environments or changes the current environment.

SCROLL Displays source code.

SHOW Shows information about items, record-structures, or screens.

STEP Executes one or more statements of a screen.

TYPE Displays either a range of lines of source code or all lines on the current
screen.

USE Reads and executes Debugger commands from a file.

User Break Breaks to Debugger from QUICK.

WATCH Sets or displays a watchpoint.

Command Purpose

Chapter 10: Debugger Commands
BREAK

QDESIGN Reference 513

BREAK
Sets or displays a breakpoint.

Syntax
BREAK [[AT] [LINE] n]

AT

For documentation only.

LINE

For documentation only.

n

A line number. There is no warning if you enter a non-existent line number.

Discussion
A BREAK command with a line number sets a breakpoint at that line.

To set a breakpoint at a source statement, provide the line number of the statement.
> BREAK 33
Set at line: 33
>

The BREAK command without a line number shows all the line numbers in the current screen that
have breakpoints.

To display all breakpoints in the current screen, enter BREAK alone.
> BREAK
Set at line: 33
Set at line: 52
>

When QUICK reaches a breakpoint, it gives control to Debugger. Debugger gains control at a
point immediately before execution of the statement marked as a breakpoint.

Debugger replaces the QUICK screen display with a listing of the ten source statements before the
breakpoint line and the nine source statements after the breakpoint line. Debugger then waits for
the entry of other Debugger commands. Use Debugger commands to display the values of items,
set and clear breakpoints, and so on.

To see the context of breakpoints, use the LIST command.
> LIST 30 TO 40
0030 ACCEPT FIRSTNAME OF EMPLOYEE
0031 ACCEPT STREET OF EMPLOYEE
0032 ACCEPT CITY OF EMPLOYEE
0033B ACCEPT PROV-STATE OF EMPLOYEE
0034 ACCEPT POSTALCODE OF EMPLOYEE
0035 ACCEPT PHONE OF EMPLOYEE
0036 ACCEPT BRANCH OF EMPLOYEE
0037 ACCEPT DIVISION OF EMPLOYEE
0038 ACCEPT POSITION OF EMPLOYEE
0039 ACCEPT SEX OF EMPLOYEE
0040 ACCEPT LANGUAGE OF EMPLOYEE
>

Enter CONTINUE or STEP to continue executing the QUICK screen after a breakpoint.

Whenever Debugger lists source statements, a "B" appears to the right of the line numbers that
are breakpoints.

514 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
BREAK

In most cases, breakpoints should be set on procedure code that gets executed, not constructs such
as PROCEDURE, BEGIN or END, which are intended for the QDESIGN parser. If breakpoints
are set on non-procedural QDESIGN statements (like FIELD), the breakpoint may not occur
where planned.

Chapter 10: Debugger Commands
BYE

QDESIGN Reference 515

BYE
Exits Debugger and QUICK.

Syntax
BYE

Discussion
BYE terminates the QUICK Debugger and the QUICK screen session, and returns control to the
operating system or the invoking program.

BYE and EXIT are interchangeable.

516 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
CLEAR

CLEAR
Clears breakpoints.

Syntax
CLEAR [LINE] n

CLEAR ALL

LINE

For documentation only.

n

A line number.

ALL

Clears all breakpoints in the current screen.

Discussion
The CLEAR command with a line number removes the breakpoint at that line.
> CLEAR LINE 421
Breakpoint cleared at line: 421
>

Specifying a line that has no breakpoint set results in a message, as in:
> CLEAR LINE 5310
No breakpoint set at line: 5310

The CLEAR ALL command removes all breakpoints in the current screen.
> CLEAR ALL
Breakpoint cleared at line: 113
Breakpoint cleared at line: 297
Breakpoint cleared at line: 421
>

Chapter 10: Debugger Commands
CONTINUE

QDESIGN Reference 517

CONTINUE
Continues execution of a screen after Debugger has gained control for any reason.

Syntax
CONTINUE

Discussion
Starts or restarts execution of a QUICK screen after Debugger has gained control for any reason.
QUICK continues executing screens until
• QUICK reaches a breakpoint
• a variable monitored by the WATCH command changes
• a user break is entered
• the user leaves QUICK

STEP is another command for controlling screen execution.

CONTINUE and GO are interchangeable.

518 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
DISPLAY

DISPLAY
Displays values of items and predefined items.

Syntax
DISPLAY [ITEM] item [OF [FILE] record-structure]

[(occurrence)]

DISPLAY FILE record-structure [(occurrence)]

DISPLAY PREDEFINED [predefined-value
[OF [FILE] record-structure] [(occurrence)]]

[ITEM] item [OF [FILE] record-structure]

The item name to display and, optionally, the record-structure that the item is from.

FILE record-structure

Displays all items associated with the named record-structure.

PREDEFINED [predefined-value [OF [FILE] record-structure]]

Indicates a specific predefined value to display, and, optionally, the record-structure the predefined
value is for. Predefined values include predefined items, system functions, and predefined
conditions. To display AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and
DELETEDRECORD, display each one by name and specify the record-structure, or use the
SHOW FILE command.

(occurrence)

Specifies which occurrence of an item or a record-structure in the cache to display.

Discussion
The result of the display is the current internal representation of the value assigned to the item or
items. To see the screen representation, use the SHOW SCREEN IMAGE command.

If an item is specified with no FILE qualifier, Debugger checks to see if the item is the name of a
temporary or defined item. If it is, Debugger displays the value. If not, Debugger checks to see if
the item is the name of a record item in each record-structure in the order that the
record-structures were declared in the FILE statements of the screen. The value of the first such
record item is then displayed.

The following example shows how to display the contents of the item EMPLOYEE:
> DISPLAY ITEM EMPLOYEE
EMPLOYEE OF EMPLOYEE = 1
>

If a record-structure occurs more than once in a screen, and it contains items that occur more than
once, then the occurrence specification applies to the record-structure and the DISPLAY command
always displays the first occurrence of the item in the cache.

The DISPLAY FILE command displays all items in the record-structure.

The following example shows how to display the fourth occurrence of the SKILLS file:
> DISPLAY FILE SKILLS (4)
EMPLOYEE OF SKILLS (4) = 1
SKILL OF SKILLS (4) = "Cobol "
>

All character items are fully displayed between quotation marks, including leading and trailing
spaces.

To view the storage type information, use the SHOW command.

Chapter 10: Debugger Commands
DISPLAY

QDESIGN Reference 519

QUICK recalculates the value of a defined item any time the value is accessed. The DISPLAY
command shows the value of an item as last calculated by QUICK, but does not itself cause the
value to be recalculated. To see the current value of a defined item, set a breakpoint immediately
after a statement that accesses the item, or set a watchpoint on the item.

The DISPLAY PREDEFINED command displays the value of all the predefined values except
AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and DELETEDRECORD. In the
following example:
• DISPLAY PREDEFINED displays all the predefined values.
• Include the name of a predefined value to display its value alone.
• To display AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and DELETEDRECORD,

display each one by name and specify the record-structure.
> DISPLAY PREDEFINED

ACCESSOK = FALSE
FIELDTEXT = <This item has no assigned value>
FIELDVALUE = <This item has no assigned value>
PROMPTOK = FALSE
PATH = 0
OCCURRENCE = 1
SYSNAME = "Future Industries Staff System "
SYSTIME = 8594200
SYSDATE = 931028
SCREENLEVEL = 1
PROCESSLOCATION = <This item has no assigned value>
COMMANDOK = FALSE
COMMANDCODE = <This item has no assigned value>
COMMANDMESSAGE = <This item has no assigned value>
STATUSTEXT = <This item has no assigned value>
ENTRYMODE = FALSE
CORRECTMODE = FALSE
FINDMODE = FALSE
SELECTMODE = FALSE
CHANGEMODE = FALSE
OSACCESS = FALSE

>
> DISPLAY PREDEFINED ALTEREDRECORD OF EMPLOYEE
ALTEREDRECORD = TRUE
>

The SHOW command displays information about items, record-structures, screens, and
predefined values.

Notes: If a character item contains unprintable values while in 7-bit display mode, the unprintable
values are shown as octal values enclosed between the brackets "<" and ">". For example, an
ASCII formfeed character displays as "<14>". The display mode (ASCII7 or ASCII8) is
determined by the ASCII7/ASCII8 flag in the dictionary.

DISPLAY and EXAMINE are interchangeable.

520 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
EXAMINE

EXAMINE
Displays values of items and predefined items.

Syntax
EXAMINE [ITEM] item [OF [FILE] record-structure]

[(occurrence)]

EXAMINE FILE record-structure [(occurrence)]

EXAMINE PREDEFINED [predefined-value
[OF [FILE] record-structure] [(occurrence)]]

[ITEM] item [OF [FILE] record-structure]

The item name to EXAMINE and, optionally, the record-structure that the item is from.

(occurrence)

Specifies which occurrence of an item or a record-structure in the cache to display.

FILE record-structure

Displays all items associated with the named record-structure.

PREDEFINED [predefined-value [OF [FILE] record-structure]]

Indicates that you want to display specific predefined values, and, optionally, the record-structure
that the item is from. Predefined values include predefined items, system functions, and predefined
conditions. To display AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and
DELETEDRECORD, display each one by name and specify the record-structure, or use the
SHOW FILE command.

Discussion
The result of the display is the current internal representation of the value assigned to the item or
items. To see the screen representation, use the SHOW SCREEN IMAGE command.

If an item is specified with no FILE qualifier, Debugger checks to see if the item is the name of a
temporary or defined item. If it is, Debugger displays the value. If not, Debugger checks to see if
the item is the name of a record item in each record-structure in the order that the
record-structures were declared in the FILE statements of the screen. The value of the first such
record item is then displayed.

The following example shows how to examine the contents of the item EMPLOYEE:
> EXAMINE ITEM EMPLOYEE
EMPLOYEE OF EMPLOYEE = 1
>

If a record-structure occurs more than once in a screen, and it contains items that occur more than
once, then the occurrence specification applies to the record-structure and the EXAMINE
command always displays the first occurrence of the item in the cache.

The EXAMINE FILE command displays all items in the record-structure.

The following example shows how to examine the fourth occurrence of the SKILLS file:
> EXAMINE FILE SKILLS (4)
EMPLOYEE OF SKILLS (4) = 1
SKILL OF SKILLS (4) = "Cobol "
>

All character items are fully displayed between quotation marks, including leading and trailing
spaces.

To view the storage type information, use the SHOW command.

Chapter 10: Debugger Commands
EXAMINE

QDESIGN Reference 521

QUICK recalculates the value of a defined item any time the value is accessed. The EXAMINE
command shows the value of an item as last calculated by QUICK, but does not itself cause the
value to be recalculated. To see the current value of a defined item, set a breakpoint immediately
after a statement that accesses the item, or set a watchpoint on the item.

The EXAMINE PREDEFINED command displays the value of all the predefined values except
AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and DELETEDRECORD. In the
following example:
• EXAMINE PREDEFINED examines all the predefined values.
• Include the name of a predefined value to display its value alone.
• To display AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and DELETEDRECORD,

display each one by name and specify the record-structure.
> EXAMINE PREDEFINED
ACCESSOK = FALSE
FIELDTEXT = <This item has no assigned value>
FIELDVALUE = <This item has no assigned value>
PROMPTOK = FALSE
PATH = 0
OCCURRENCE = 1
SYSNAME = "Future Industries Staff System "
SYSTIME = 8594200
SYSDATE = 931028
SCREENLEVEL = 1
PROCESSLOCATION = <This item has no assigned value>
COMMANDOK = FALSE
COMMANDCODE = <This item has no assigned value>
COMMANDMESSAGE = <This item has no assigned value>
STATUSTEXT = <This item has no assigned value>
ENTRYMODE = FALSE
CORRECTMODE = FALSE
FINDMODE = FALSE
SELECTMODE = FALSE
CHANGEMODE = FALSE
OSACCESS = FALSE
>
> EXAMINE PREDEFINED ACCESSOK
ACCESSOK = TRUE
>
> EXAMINE PREDEFINED ALTEREDRECORD OF EMPLOYEE
ALTEREDRECORD = TRUE
>

The SHOW command displays information about items, record-structures, screens, and
predefined values.

Note: If a character item contains unprintable values while in 7-bit display mode, the unprintable
values are shown as octal values enclosed between the brackets "<" and ">". For example, an
ASCII formfeed character displays as "<14>". The display mode (ASCII7 or ASCII8) is
determined by the ASCII7/ASCII8 flag in the dictionary.

EXAMINE and DISPLAY are interchangeable.

522 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
EXIT

EXIT
Exits Debugger and QUICK.

Syntax
EXIT

Discussion
EXIT terminates the QUICK Debugger and the QUICK screen session, and then returns control to
the operating system or the invoking program.

EXIT and BYE are interchangeable.

Chapter 10: Debugger Commands
FIND

QDESIGN Reference 523

FIND
Searches for text in the source code.

Syntax
FIND

FIND string|"string" [n1 [[TO] n2]]

FIND PATTERN "pattern" [n1 [[TO] n2]]

FIND SOUNDEX "string" [n [n1 [[TO] n2]]]

string|"string"

Specifies that you want to find a string. When the string is in quotation marks, the search is made
for an exact match (upper and lowercase match).

[n1 [[TO] n2]]

The range of lines you want to search. TO is for documentation only.

A line number range causes the FIND command to search only the inclusive limits n1 to n2. If a
range is not specified, then n1 is 1 and n2 is the last line of the file. If n2 is not specified, then n2 is
the last line of the file.

PATTERN "pattern"

Specifies that you want to find a pattern. The pattern must be enclosed in quotation marks and
must match a complete line.

For more information about patterns, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

SOUNDEX "string"

Specifies that you want to find a string that sounds similar to the specified string, which must be
enclosed in quotation marks.

Note that the syntax for the SOUNDEX function in Debugger does not include brackets (). For
information about the SOUNDEX function, see Chapter 6, "Functions in PowerHouse", in the
PowerHouse Rules book.

n
Specifies the size of the SOUNDEX result.

Discussion
When the string has no quotation marks, Debugger ignores the letter case (lowercase a equals
uppercase A). The string is called a case- insensitive string (ci-string).

In the following example, when a search is successful, the line number is marked with an "F" and
the source is centered in the terminal window.
> FIND position
0002 FILE EMPLOYEE
0003
.
.
.
0011 FIELD BRANCH OF EMPLOYEE REQUIRED NOCHANGE
0012 FIELD DIVISION OF EMPLOYEE REQUIRED NOCHANGE
0013F FIELD POSITION OF EMPLOYEE REQUIRED NOCHANGE
0014 FIELD FIRSTNAME OF EMPLOYEE
0015 FIELD STREET OF EMPLOYEE

524 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
FIND

.

.

.
>

The FIND "string" with quotation marks treats upper and lowercase letters differently: a
lowercase "a" is not the same as an uppercase "A".

For example, to search lines 1 to 25 for a match on the string "employee", enter:
> FIND "employee" 1 TO 25

The FIND command with no options repeats the last search starting at the current line and
searches to the last line of the screen.

To search again for "employee" starting from the current line, enter:
> FIND

Chapter 10: Debugger Commands
GO

QDESIGN Reference 525

GO
Continues execution of a screen after Debugger has gained control for any reason.

Syntax
GO

Discussion
Starts or restarts execution of a QUICK screen after
• QUICK reaches a breakpoint
• a variable monitored by the WATCH command changes
• a user break is entered
• the user leaves QUICK

STEP is another command for controlling screen execution.

GO and CONTINUE are interchangeable.

526 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
LET

LET
Sets the value of an item.

Syntax
LET [ITEM] item [OF [FILE] record-structure]

[(occurrence)] = value|TRUE|FALSE

LET PREDEFINED predefined-value [OF [FILE]
record-structure] [(occurrence)] = value|TRUE|FALSE

[ITEM] item [OF [FILE] record-structure]

An item to assign a value to and, optionally, the record-structure that the item is from.

(occurrence)

Specifies which occurrence to assign the value to.

value

The value assigned to the named item. If the item is a character datatype, you must enclose the
value in quotation marks.

TRUE|FALSE

Used to assign a TRUE or FALSE status to a predefined item; a Y (Yes) or N (No) to a character
item; or a 1 or 0 to a numeric item.

PREDEFINED [predefined-value [OF [FILE] record-structure]

Used to assign a value to a predefined value, and, optionally, the record-structure the predefined
value is for. You can use the LET PREDEFINED command to change the value of the following
predefined values:

For the predefined values ALTEREDRECORD, DELETEDRECORD, and NEWRECORD, a
record-structure must be specified.

Discussion
The LET command is a convenient way to control the route QUICK takes through the screen
code. Item values can be changed to direct the route through the screen.

The following example:
• Assigns a value of Smith to the item LASTNAME.
• Assigns TRUE to the character item BILINGUAL to give it a value of Y.
> LET ITEM LASTNAME OF FILE EMPLOYEE = "Smith"
Changing LASTNAME OF EMPLOYEE.
Old Value = "<0><0><0><0><0><0><0><0><0><0><0><0><0>"
New Value = "Smith "
> LET BILINGUAL = TRUE
Changing BILINGUAL OF POSITIONS.
Old Value = " "
New Value = "Y "

ACCESSOK ALTEREDRECORD COMMANDOK

DELETEDRECORD FIELDTEXT NEWRECORD

PATH PROMPTOK

Chapter 10: Debugger Commands
LET

QDESIGN Reference 527

When the value of a record item is changed with the LET command, the status of the record buffer
(ALTEREDRECORD) is not automatically changed. The record is only written to the file if you
do an update action and ALTEREDRECORD is TRUE. If QUICK changes any values in the
record, then ALTEREDRECORD is set to TRUE, and the value assigned to the item with the LET
command is written to the file.

If QUICK does not change any values, you can force your change to be written to a file by using
the LET command to set ALTEREDRECORD to TRUE. Values of items to be written to a file can
be forced by assigning the appropriate value to predefined items.
> LET PREDEFINED ALTEREDRECORD OF EMPLOYEE = TRUE
Changing ALTEREDRECORD OF EMPLOYEE.
Old Value = FALSE
New Value = TRUE
>

528 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
LIST

LIST
Displays either a range of lines of source code or all lines on the current screen.

Syntax
LIST [[n [[TO] m]]|ALL]

[n [[TO] m]]

Range of lines to list. TO is for documentation only.

ALL

Lists all source statements of the current screen.

Discussion
If no range is specified, the LIST command displays the source code around the statement that
QUICK was executing when Debugger gained control. The display is centered on the terminal
window.

The following example displays the statements before and after the statement that QUICK was
executing when Debugger gained control.
> LIST
0001 ; Positions file screen
0002 SCREEN POSITION
.
.
.
0019 REQUEST POSITION OF POSITIONS
0020 IF PROMPTOK
>

If you specify a line range (n TO m) the LIST command lists source code statements only within
that range.

If m is missing, Debugger prints 20 lines centered around n.

The LIST command ignores invalid line numbers.

In the following example, LIST 15 lists 20 lines around line 15 and LIST 100 TO 120 displays
lines 100 to 120.
> LIST 15
0005 LOOKUP NOTON EMPLOYEE VIA EMPLOYEE
0006 FIELD LASTNAME OF EMPLOYEE REQUIRED NOCHANGE
0007 FIELD FIRSTNAME OF EMPLOYEE
0008 FIELD STREET OF EMPLOYEE
0009 FIELD CITY OF EMPLOYEE
0010 FIELD PROV-STATE OF EMPLOYEE
0011 FIELD POSTALCODE OF EMPLOYEE
0012 FIELD PHONE OF EMPLOYEE
0013 FIELD BRANCH OF EMPLOYEE
0014 FIELD DIVISION OF EMPLOYEE
0015 FIELD POSITION OF EMPLOYEE
0016 FIELD SEX OF EMPLOYEE
0017 FIELD LANGUAGE OF EMPLOYEE
0018 FIELD BILINGUAL OF EMPLOYEE
0019 FIELD DATEJOINED OF EMPLOYEE
0020 FIELD BILLING OF BILLINGS DISPLAY
0021 FIELD DATE-APPOINTED OF EMPLOYEE
0022
0023
0024
> LIST 100 TO 120
0100 THEN GET...
0101 IF PATH = 5

Chapter 10: Debugger Commands
LIST

QDESIGN Reference 529

.

.

.
0119 PUT EMPLOYEE
0120 END
>

The LIST ALL command lists all the source code statements in the current screen.
> LIST ALL

LIST and TYPE are interchangeable.

530 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
NEXT

NEXT
Displays either the specified lines or the next page of source code.

Syntax
NEXT [n]

n

The number of statement lines that you want to display.

Default: 20

Discussion
The NEXT command with no number displays the next page of source code. The next page
includes the last line of the previous listing.

To display the next page, enter
> NEXT

The NEXT command with a number displays n lines instead of 20 lines.

To display the next 10 lines, enter
> NEXT 10

NEXT and SCROLL DOWN are interchangeable.

Chapter 10: Debugger Commands
PREVIOUS

QDESIGN Reference 531

PREVIOUS
Displays either the specified lines or the previous page of source code.

Syntax
PREVIOUS [n]

n

The number of statement lines that you want to display.

Default: 20

Discussion
The PREVIOUS command with no number displays the previous page of source code.

To display the previous page, enter
> PREVIOUS

The PREVIOUS command with a number displays n lines instead of 20 lines.

To display the previous 10 lines, enter
> PREVIOUS 10

PREVIOUS and SCROLL UP are interchangeable.

532 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
QSHOW

QSHOW
Runs QSHOW to display information from the dictionary.

Syntax
QSHOW

Discussion
QSHOW lets users make inquiries about elements and files in the dictionary. QSHOW is enabled
when the prompt (QSHOW>) appears.

To run QSHOW, enter
> QSHOW

For detailed information about QSHOW, see Chapter 4, "QSHOW Statements", in the PDL and
Utilities Reference book.

Chapter 10: Debugger Commands
SAVE

QDESIGN Reference 533

SAVE
Saves Debugger commands to a file.

Syntax
SAVE filespec [CLEAR]

filespec

The specification for the file where Debugger commands are to be saved.

OpenVMS, UNIX, Windows: The default extension is ".qkl".

CLEAR

The CLEAR option erases the command history after saving the history in the specified file.

Discussion
The SAVE command saves the current command history in the file named by filespec. It contains
all Debugger commands entered since Debugger last gained control, or since the last SAVE
command.

Use the SAVE command to save commands that are often repeated; reuse saved commands with
the USE command.

In the following example the SAVE command is used to save the current history in a file called
COMMANDS and clear the command history.
> SAVE COMMANDS CLEAR

534 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
SCREEN

SCREEN
Lists Debugger environments or changes the current environment.

Syntax
SCREEN [ENVIRONMENT] [name|level]

ENVIRONMENT

For documentation only.

name|level

You can specifies which screen to make the current screen by the screen's name or level number.

Discussion
The SCREEN command (without name or level options) lists all Debugger environments in the
environment list, starting with the top level and ending with the lowest level. (Use SHOW
SCREEN INFO to show which level is the current environment.)

In the following example, the SCREEN command shows a list of all active screen environments.
> SCREEN
QUICK840E L1 MAINMENU.QKC(2006/11/30) QDESIGN840E VT100 (c) COGNOS
INCORPORATED

The environment list contains all the screens compiled with the Debugger option that QUICK
executed to get to the current screen, and all the screens below the current screen that returned
back to the current screen.

The fields ... represent ...

QUICK840E QUICK version number

L1 screen level number

MAINMENU.QKC (2006/11/30) screen name and date compiled

QDESIGN840E QDESIGN version that compiled the screen

VT100 terminal type

(c) COGNOS INC. copyright notice

Chapter 10: Debugger Commands
SCREEN

QDESIGN Reference 535

The environment list is a chain, not a tree. If A calls B and B calls C, then C returns to B and B
calls D, then D returns to B, then the environment list will be A, B, D.

The SCREEN name command and the SCREEN level command change the current environment
to the named screen or level. All Debugger commands then refer to the named screen
environment. The CONTINUE and STEP commands always resume from the line where
Debugger gained control, and also reset the environment to the environment of the current line.

In the following example:
• The SCREEN TEST command is used to set the screen environment to screen TEST.
• The SCREEN 2 command is used to set the screen environment to screen level 2.
> SCREEN TEST
>
> SCREEN 2
>

The SCREEN command is useful for finding the line that called the current screen. Set the screen
environment to the previous level and enter LIST. The line that called the current screen is
highlighted.

B

C D

A

536 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
SCROLL

SCROLL
Displays source code.

Syntax
SCROLL UP|DOWN [n]

UP|DOWN

The direction to scroll.

n

The number of statement lines that you want to display.

Default: 20

Discussion
The SCROLL UP command with no number displays the previous page of source code. To display
the previous page, enter
> SCROLL UP

The SCROLL UP command with a number displays n lines instead of 20 lines. To display the
previous 10 lines, enter
> SCROLL UP 10

The SCROLL DOWN command with no number displays the next page of source code. The next
page includes the last line of the previous listing. To display the next page, enter
> SCROLL DOWN

The SCROLL DOWN command with a number displays n lines instead of 20 lines. To display the
next 15 lines, enter
> SCROLL DOWN 15

Note: The NEXT command is interchangeable with SCROLL DOWN. The PREVIOUS command
is interchangeable with SCROLL UP.

Chapter 10: Debugger Commands
SHOW

QDESIGN Reference 537

SHOW
Shows information about items, record-structures, predefined items or screens.

Syntax
SHOW option

Options
The SHOW options are ITEM, FILE, PREDEFINED, SCREEN, and DB.

ITEM [item [OF [FILE] record-structure] [(occurrence)]]

With no options, SHOW ITEM shows the storage characteristics of all items in all
record-structures named in the current screen.

[item [OF [FILE] record-structure]]
Specifying an item with no record-structure designation causes Debugger to display storage
characteristics for all items of that name in all record-structures in the current screen. If a
record-structure name is specified, Debugger displays only the item from the named
record-structure.

(occurrence)
Displays information for the specified occurrence of the named record-structure.

FILE [record-structure|ALL [OPENED] [LOCKED] [(occurrence)]]

With no options, SHOW FILE displays the names of the files named in the current screen.

record-structure|ALL
Specifying a record-structure limits the information displayed to that record-structure; ALL
displays information about all record-structures named in the current screen.

OPENED

 LOCKED
Displays information about files that are locked.

(occurrence)
Displays information for the specified occurrence of the named record-structure.

PREDEFINED

Lists all available predefined items.

SCREEN INFO|IMAGE

INFO
Displays information about the current screen. This is the same information that is displayed by
entering "I" in the Action field.

IMAGE
Displays the current screen as it would appear on the screen with the values of displayed items.

MPE/iX, UNIX, Windows: Displays information about files that are open.

OpenVMS: Displays information about files and mailboxes that are open.

538 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
SHOW

DB

ALL [SOURCE]
Displays the same information for relational databases as the following SHOW commands:
SHOW DB ATTACH

SHOW DB LOGICAL TRANSACTION

SHOW DB PHYSICAL TRANSACTION

SHOW DB REQUEST

SOURCE
Displays the BLR/SQL source structure containing the symbolic BLR values.

ATTACH [db_handle]
Displays information on each attach that is currently active.

db_handle
Displays information for the specified db_handle.

LOCALLY ACTIVE TRANSACTION
Displays information for each logical transaction that has been defined and is locally active.

LOGICAL TRANSACTION [transaction_name]
Displays information for each logical transaction that has been defined.

transaction_name
Displays information only for the specified logical transaction.

PHYSICAL TRANSACTION [transaction_handle]
Displays information about each physical transaction associated with each defined logical
transaction.

transaction_handle
Displays information about the specified physical transaction.

REQUEST [request_handle] [SOURCE]
Displays information for each request that has been compiled.

request_handle
Displays information only for the specified request_handle.
SOURCE
Displays the BLR/SQL source structure containing the symbolic BLR values.

SCREEN TRANSACTION
Displays information for each logical transaction that has been defined by the current screen
context.

DB Options

ALL ATTACH

LOCALLY ACTIVE TRANSACTION LOGICAL TRANSACTION

PHYSICAL TRANSACTION REQUEST

SCREEN TRANSACTION

Chapter 10: Debugger Commands
SHOW

QDESIGN Reference 539

Discussion
The SHOW command displays information about items, record-structures, predefined items, and
screens.

In the following example, the SHOW command shows the storage characteristics of the record
item EMPLOYEE in the file EMPLOYEE.
> SHOW ITEM EMPLOYEE OF FILE EMPLOYEE
EMPLOYEE
 EMPLOYEE Num
>

If the item name specified is not unique, all items by that name are listed along with their record
name, or marked as a temporary or defined item.

The SHOW FILE command shows the available files with their open name and occurrence.
> SHOW FILE
EMPLOYEE(1)
BRANCHES(1)

Specifying a file or the ALL option shows more information about the named files, including
• the QUICK file type (for example, PRIMARY, SECONDARY)
• the physical file type
• the open mode
• the values of the predefined items AUDITSTATUS, NEWRECORD, ALTEREDRECORD, and

DELETEDRECORD

In the following example, the SHOW command shows the characteristics of the record
EMPLOYEE, the status of the record, the type of record declaration, and any open information
associated with the record.
> SHOW FILE EMPLOYEE
EMPLOYEE
Primary (Indexed) Occurs 1
Open: EMPLOYEES Update Share #0/-1 (Closed)
Audit Status: N NEWRECORD is TRUE ALTEREDRECORD is FALSE DELETEDRECORD is
FALSE
>

The line EMPLOYEE identifies the file. If the occurrence option is used, the occurrence is shown.
For example, EMPLOYEE(4). The first number in "#0/-1" is the file number given in the OPEN
option of the FILE statement. If an open number was not specified, Debugger displays 0. The
second number is the physical file number. It is -1 when the file is closed.

In the following example, the SHOW command shows the information for all files.
> SHOW FILE ALL

The OPENED option causes Debugger to display the information only if the file is open. The
LOCKED option causes Debugger to display the information only if the file is locked.

The SHOW PREDEFINED command shows the names of all predefined values, as in:
> SHOW PREDEFINED
ACCESSOK
FIELDTEXT
FIELDVALUE
PROMPTOK
PATH
OCCURRENCE
AUDITSTATUS
SYSNAME
SYSTIME
SYSDATE
SCREENLEVEL
PROCESSLOCATION
COMMANDOK
COMMANDCODE
COMMANDMESSAGE
STATUSTEXT

540 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
SHOW

ENTRYMODE
CORRECTMODE
FINDMODE
SELECTMODE
CHANGEMODE
NEWRECORD
ALTEREDRECORD
DELETEDRECORD
OSACCESS
>

The SHOW SCREEN INFO command shows the screen information for the current screen as it
would be shown by entering "I" in the Action field of the screen. This information includes the
screen name and its level in the environment list. In the following example, the SHOW SCREEN
INFO command is useful for showing which screen is the current screen.
> SHOW SCREEN INFO
QUICK830C L1 MAINMENU.QKC(2000/11/30) QDESIGN830C VT100 (c) COGNOS
INCORPORATED.

The SHOW SCREEN IMAGE command shows the current screen as QUICK would display it. To
return to Debugger, press [Return]. The SHOW SCREEN IMAGE command shows the values of
displayed items as they appear on the screen.
> SHOW SCREEN IMAGE

The SHOW DB command provides for the periodic examination of all or some subset of the
database operations currently active. This may be used by the application designer in combination
with breakpoints placed in the procedure code. When a break is signaled, QUICK gives control to
Debugger. You can then display information stored in the QUICK relational data structures.

Information about Database Attaches

The command
> SHOW DB ATTACH [db_handle]

results in the following output
ATTACH <db_handle> TO <db_type> <db_name>

for each attach that is currently active, or for the specified db_handle.

Note: Descriptions of terms used in the preceding example are shown on (p. 541).

Information about Logical Transactions

The command
> SHOW DB LOGICAL TRANSACTION [transaction_name]

produces the following output
LOGICAL TRANSACTION <transaction_name> <details>

for each logical transaction that has been defined, or for the specified transaction_name. For each
relational physical transaction associated with the logical transaction, the following information:
PHYSICAL TRANSACTION <transaction_handle> IN <db_handle_list>

will be produced.

Information about Locally Active Transactions

The command
> SHOW DB LOCALLY ACTIVE TRANSACTION

produces output similar to that of SHOW DB LOGICAL TRANSACTION, but only for those
logical transactions that are locally active.

Information about Transactions in the Current Screen Context

The command
> SHOW DB SCREEN TRANSACTION

Chapter 10: Debugger Commands
SHOW

QDESIGN Reference 541

produces output similar to that of SHOW DB LOGICAL TRANSACTION, but only for those
logical transactions that have been defined by the current screen context.

Information about Requests

The command
> SHOW DB REQUEST [request_handle] [SOURCE]

produces the following output:
REQUEST <request_handle> IN TRANSACTION <transaction_handle>

for each request that has been compiled, or for the specified request_handle. If SOURCE is
specified, the BLR/SQL source structure containing the symbolic BLR values is displayed.

General Database Information

The command
> SHOW DB ALL [SOURCE]

has the effect of performing the following sequence of commands for relational databases:

For each db_handle:
> SHOW DB ATTACH db_handle

For each logical transaction associated with db_handle:
> SHOW DB LOGICAL TRANSACTION

For each physical transaction associated with the logical transaction:
> SHOW DB PHYSICAL TRANSACTION

For each request_handle associated with transaction_handle:
> SHOW DB REQUEST request_handle [SOURCE]

Terms Used in Command Output

Term Description

db_handle A numeric ID used by PowerHouse.

db_handle_list A comma-separated list of <db_handle>.

db_name The database name.

db_type One of "ALLBASE", "DB2", "ODBC", "ORACLE", "Sybase"
or "Oracle Rdb".

details May contain a combination of the following:
• Active|All Active|Locally Active
• read only|read write
• wait|nowait
• read committed | cursor stability | reproducible read |

phantom protection|serializable
• reserving <reserve_name_comma_list>

request_handle A numeric ID used by PowerHouse.

reserve_name_ comma_list A list of the relation names specified on the reserving list for this
transaction.

transaction_handle A numeric code used to identify physical transactions.

transaction_name A character name used to identify logical transactions.

542 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
STEP

STEP
Executes one or more statements of a screen.

Syntax
STEP [n]

n

Specifies the number of statements to execute.

Discussion
The STEP command with no number causes QUICK to execute the next line, then return to
Debugger.
> STEP

The STEP command with a number causes QUICK to execute the next n lines, then return to
Debugger. In the following example, the next five lines will be executed.
> STEP 5

If QUICK reaches a breakpoint, if a watched variable changes, or if a user break is entered before
QUICK executes all n statements, Debugger still gets control. Debugger does not remember the
previous STEP command; if CONTINUE is then entered, QUICK runs until it hits another
breakpoint, a watched variable changes, or a user break is entered.

Chapter 10: Debugger Commands
TYPE

QDESIGN Reference 543

TYPE
Displays either a range of lines of source code or all lines on the current screen.

Syntax
TYPE [[n [[TO] m]]|ALL]

[n [[TO] m]]

Range of lines to list. TO is for documentation only.

ALL

Lists all source statements of the current screen.

Discussion
If no range is specified, the TYPE command displays the source code around the statement that
QUICK was executing when Debugger gained control. The display is centered on the terminal
window.

In the following example, the TYPE command is used to display the statements before and after
the statement that QUICK was executing when Debugger gained control.
> TYPE
0001 ; Positions file screen
0002 SCREEN POSITION
.
.
.
0019 REQUEST POSITION OF POSITIONS
0020 IF PROMPTOK
>

If you specify a line range (n TO m), the TYPE command lists source code statements only within
that range.

If m is missing, Debugger prints 20 lines centered around n.

The TYPE command ignores invalid line numbers.

In the following example:
• TYPE 15 lists 20 lines around line 15.
• TYPE 100 TO 120 displays lines 100 to 120.
> TYPE 15
0005 LOOKUP NOTON EMPLOYEE VIA EMPLOYEE
0006 FIELD LASTNAME OF EMPLOYEE REQUIRED NOCHANGE
0007 FIELD FIRSTNAME OF EMPLOYEE
0008 FIELD STREET OF EMPLOYEE
0009 FIELD CITY OF EMPLOYEE
0010 FIELD PROV-STATE OF EMPLOYEE
0011 FIELD POSTALCODE OF EMPLOYEE
0012 FIELD PHONE OF EMPLOYEE
0013 FIELD BRANCH OF EMPLOYEE
0014 FIELD DIVISION OF EMPLOYEE
0015 FIELD POSITION OF EMPLOYEE
0016 FIELD SEX OF EMPLOYEE
0017 FIELD LANGUAGE OF EMPLOYEE
0018 FIELD BILINGUAL OF EMPLOYEE
0019 FIELD DATEJOINED OF EMPLOYEE
0020 FIELD BILLING OF BILLINGS DISPLAY
0021 FIELD DATE-APPOINTED OF EMPLOYEE
0022
0023
0024
> TYPE 100 TO 120

544 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
TYPE

0100 THEN GET...
0101 IF PATH = 5
.
.
.
0119 PUT EMPLOYEE
0120 END
>

The TYPE ALL command lists all the source code statements in the current screen.
> TYPE ALL

 TYPE and LIST are interchangeable.

Chapter 10: Debugger Commands
USE

QDESIGN Reference 545

USE
Reads and executes Debugger commands from a file.

Syntax
USE filespec [DETAIL|NODETAIL] [LIST|NOLIST]

filespec

The specification of the file where Debugger commands are saved.

UNIX, Windows, OpenVMS: The default extension is ".qkl".

DETAIL|NODETAIL

The DETAIL option saves the contents of the file in the command history. The NODETAIL option
saves only "USE filename NODETAIL" in the command history.

Default: DETAIL

LIST|NOLIST

The LIST option causes Debugger to display statements as they are read. The NOLIST option
causes Debugger to read the statements in the file without showing them.

Default: LIST

Discussion
Debugger reads and interprets each statement as if it were entered from the terminal. The file can
contain other USE commands, to a maximum of 20 levels. If the USE file contains a CONTINUE
or STEP command, Debugger starts QUICK and stops reading input from the file.

In the following example, previously saved commands from a file called COMMANDS are used.
The file contains a SHOW SCREEN INFO command and a BREAK command.
> USE COMMANDS
> SHOW SCREEN INFO
QUICK830C L1 MAINMENU.QKC(2000/11/30) QDESIGN830C VT100 (c) COGNOS
INCORPORATED.
> BREAK
Set at line: 33
Set at line: 52
>

To save Debugger commands in a source file, use the SAVE command.

546 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
User Break

User Break
Breaks to Debugger from QUICK.

Syntax

 A user break is not a command entered at Debugger prompt, but occurs whenever the user
presses Ctrl-Y or Ctrl-C.

Discussion
[Ctrl-Y] and [Ctrl-C] break to Debugger from QUICK. Debugger receives a user break when the
interrupt key for the system is used while QUICK is executing a screen.

A user break causes QUICK to give control to Debugger as soon as it can. Because of the way
QUICK and Debugger interact, QUICK may not give control to Debugger immediately. Often a
user break must be typed with something else (find a record, for example) to make QUICK pass
control to Debugger.

MPE/iX: Ctrl-Y

OpenVMS, UNIX, Windows: Ctrl-C

Chapter 10: Debugger Commands
WATCH

QDESIGN Reference 547

WATCH
Sets or displays a watchpoint.

Syntax
WATCH

WATCH [ITEM] item
[OF [FILE] record-structure] [(occurrence)] [ON|OFF]

WATCH PREDEFINED predefined-value
[OF [FILE] record-structure] [(occurrence)] [ON|OFF]

WATCH FILE record-structure [(occurrence)] [ON|OFF]

WATCH ALL [ON|OFF]

Options

[ITEM] item [OF [FILE] record-structure]

Specifies an item name for which to set a watchpoint, and optionally the record-structure that the
item is from.

(occurrence)

Specifies which occurrence of an item or record-structure to watch.

FILE record-structure

Sets watchpoints on all items associated with the named record-structure.

PREDEFINED [predefined-value [OF [FILE] record-structure]]

Sets a watchpoint on a specified predefined value and, optionally the record-structure the
predefined value is for. Predefined values include predefined items, system functions, and
predefined conditions.

ALL

Sets a watchpoint on all items in the current screen except predefined items.

ON|OFF

The ON option sets a watchpoint; the OFF option removes a watchpoint.

Discussion
The WATCH item command sets a watchpoint on the named record-structure, record item or
temporary item. Whenever the value of the watched item changes, Debugger gets control. The
current line is the line after the line that changed the variable (except in certain circumstances
discussed below).

The following example shows how to set a watch on the item LASTNAME:
> WATCH LASTNAME OF EMPLOYEE
Watchpoint is set for LASTNAME OF EMPLOYEE.
>

The WATCH item OFF command removes the watch on a record-structure or temporary item.
The following example shows how to turn off the watch on the item LASTNAME:
> WATCH LASTNAME OFF
Watchpoint cleared for LASTNAME OF EMPLOYEE.
>

548 PowerHouse(R) 4GL Version 8.4E

Chapter 10: Debugger Commands
WATCH

The WATCH PREDEFINED predefined-value command sets a watch on a predefined value. For
the predefined values AUDITSTATUS, ALTEREDRECORD, DELETEDRECORD, and
NEWRECORD, a record-structure must be specified. The following example shows how to set a
watch on the predefined value NEWRECORD:
> WATCH PREDEFINED NEWRECORD OF EMPLOYEE ON
Watchpoint is set for NEWRECORD OF EMPLOYEE.
>

The WATCH ALL command watches all items. The WATCH ALL OFF command removes and
lists all watchpoints cleared from the current screen.

The WATCH command by itself lists all watched items in the current screen. The following
example shows how to list all the items being watched:
> WATCH
> Watchpoint is set for EMPLOYEE OF EMPLOYEE.
> Watchpoint is set for LASTNAME OF EMPLOYEE.
> Watchpoint is set for CITY OF EMPLOYEE.>

When Debugger gets control because of a watchpoint, the display is
Watchpoint trap encountered at line: 52, for EMPLOYEE OF EMPLOYEE
Old Value = 0
New Value = 1
>

Note: Debugger can only gain control when QUICK is executing procedure code, which is either
user generated or from QUICK. If a watched item changes when QUICK is not executing
procedure code, Debugger does not notice the change until the next procedure code statement.

QDESIGN Reference 549

A
ACCEPT verb, 364-369
access

sequential, disabling, 334
ACCESS statement, 64-69

PATH procedure, 335
accessing

data by unique index, 65
data via specific index, 67
failure, 114
files, exclusivity options, 133
operating system commands from DESIGNER procedure,

304
record-structures, 132
sequential, 65
subscreens from DESIGNER procedure, 304
via index, 432

ACCESSOK
predefined condition, 245
predefined value and LET Debugger command, 526

access-type options
FILE statement, 132

Action bar, 28
Action commands, 70
and Action field, 72, 165, 194
assigning menu keys, 202
creating, 71, 165, 193
displaying strings, 70, 164
invoking Action command, 71, 165, 193
menus and actions in, 71, 165, 193
pull-down menus, adding, 164
setting, 183

action bars
entering commands, 28-29

Action command
Action bar, 28
Action field, 28

Action commands
selecting from pull-down menus, 164

action commands, 20, 28-29
Action field

commands, customizing, 303-306
setting, 182

Action Field commands screen, 268
ACTION option

ACTIONMENU statement, 70, 71, 193
KEY statement, 157
MENUITEM statement, 164
SCREEN statement, 182

Action/Date Field commands screen, 269
ACTIONBAR option

SCREEN statement, 71, 183, 193
ACTIONMENU statement, 70-73

ACTIVITIES option
SCREEN statement, 183

adding
data, 21-22

adding data
find mode, 26
select mode, 26

alias names, assigning to
cursors, 89
files, 129

ALIAS option
CURSOR statement, 89
FILE statement, 129

ALIGN statement, 74-75
aligning fields, 74
ALL option

CLEAR Debugger command, 516
CLEAR verb, 378
COMMAND statement, 84, 86
DO BLOB verb, 387
LIST command in Debugger, 528
query-specification (SELECT) statement, 169
REFRESH verb, 459
REPORT statement, 173, 175
RUN COMMAND verb, 466, 467
RUN REPORT verb, 469, 470
RUN RUN verb, 471, 472
RUN SCREEN verb, 473, 475
RUN statement, 178, 180
SCREEN statement, 189
SUBSCREEN statement, 210, 213
TYPE Debugger command, 543
UNLOCK verb, 488
WATCH Debugger command, 547

ALLBASE/SQL database
table naming rules, 126

ALLOW option
FIELD statement, 105

ALTEREDRECORD
predefined value, DISPLAY Debugger command, 519
predefined value, EXAMINE Debugger command, 521
predefined value, LET Debugger command, 526
predefined value, SHOW Debugger command, 539

Append mode processing, 252
APPEND option

FILE statement, 132
APPEND procedure, 295-297

CLUSTER statement, 296
DETAIL files, 296
ENTRY procedure, 314
error processing, 420
error-handling, 295
executing, 451

Index

550 PowerHouse(R) 4GL Version 8.4E

Index

APPEND procedure (cont'd)
initiating, 295
modifying, 295
repeating record-structures, 295
suppressing generation, 90, 131

Append processing
Action field commands, 253
APPEND procedure, 252
controlling, 295-297
DETAIL DELETE procedure, 252
DETAIL POSTFIND procedure, 252
DETAIL procedure, 252
DETAIL record-structures, 253
entering data, 297
MODIFY procedure, 328
PERFORM APPEND verb, 252
procedures and verbs, 252
terminating, 253

application lines
clearing, 378
mapping to terminal memory, 192
parameter, 191, 261, 264
terminal memory, 191-194

assigning values to TRUE and FALSE items, 526
ASSUMED option

SET statement, 199
asterisk (*), indicating indexed items, 206
AT option

CLUSTER statement, 79, 80
COMMAND statement, 85
FIELD statement, 112
of BREAK Debugger command, 513
PUT verb, 455
REPORT statement, 174
RUN statement, 179
SCREEN statement, 187
SUBSCREEN statement, 211
THREAD statement, 222
TITLE statement, 226

attributes
declaring and defining in TRANSACTION statement, 231
overriding pre-defined transactions, 231

AUDIBLE option
FIELD statement, 106
HILITE statement, 148

AUDIT
file type, 127
record-structure, 127

AUDITSTATUS predefined value
DISPLAY Debugger command, 519, 521, 539

AUTO option
COMMAND statement, 84
REPORT statement, 173
RUN statement, 178
SUBSCREEN statement, 210
THREAD statement, 221

auto program parameter, 255, 256
AUTOCOMMIT option

CURSOR statement, 89
FIELD statement, 114
FILE statement, 129

automatic
commit points in TRANSACTION statement, 228
commit points, TRANSACTION statement, 228, 229
item initialization summary, 153-154
retrieval of REFERENCE record-structures, 138

AUTOMODIFY option
SCREEN statement, 41, 183

AUTONEXT option
FIELD statement, 106

AUTORETURN option
SCREEN statement, 183

AUTOUPDATE option
SCREEN statement, 183
UPDATE procedure, 357

B
B option

COMMAND statement, 85
DO BLOB verb, 388
DO EXTERNAL verb, 390
REPORT statement, 174
RUN COMMAND verb, 466
RUN REPORT verb, 469
RUN RUN verb, 471
RUN SCREEN verb, 474
RUN statement, 179
RUN THREAD verb, 478
SUBSCREEN statement, 211
THREAD statement, 222

B|C
execution time parameter in QKGO, 38

B|C screen command
block mode enabled HP terminals, 37

backing out
UPDATE procedure, 357

BACKOUT procedure, 298-299
error processing, 421
EXIT procedure, 317
PUT verb, 298

Backup command, 21
ACCEPT verb, 367

BACKWARDS option
ACCESS statement, 64
FIELD statement, 114
GET verb, 431
WHILE RETRIEVING control structure, 495

BALANCE option
ITEM statement, 151

Bank Labels QKGO parameter, 272
BASE option

CLUSTER statement, 79
LOCK verb, 442
UNLOCK verb, 488

BEGIN...END control structure, 370
breakpoints, 514

BINARYoption
DO BLOB verb, 387

Binding Section
QUICK command numbers, 285
TIC files, 284

Index

QDESIGN Reference 551

blank when zero
see BWZ option

BLINKING option
FIELD statement, 111
HILITE statement, 148

BLOBs
handling contents, 387
non-text, 387

BLOCK ALL option
CLUSTER statement, 41, 79

BLOCK EACH option
CLUSTER statement, 41, 79

Block Mode retries, 261, 264
BLOCK TRANSFER control structure, 372-374

ACCEPT verb, 365
Panel input, 41

BLOCKMODE option
SCREEN statement, 39, 183

BLOCKMODE program parameter, 40
BLOCKTRANSFER option

KEY statement, 156
boxes

changing information, 30
entering information, 30

BREAK command
Debugger, 508, 513-514

BREAK verb, 375
breakpoints

clearing, 508
clearing with CLEAR command, 516
continuing execution after, 517
control, 513
controlling execution, 507
displaying, 513-514
setting, 504, 508, 513-514

breaks, 509
watchpoint, 504, 508, 509

breaks, STEP command, 504, 508
B-Tree indexes, 56
buffers

Pending Screen Input Buffer, 49
Rapid-Fire Buffer, 50
storing data entries, 247

BUILD statement, 76-77
GO statement, 146
results, writing to source statement save file, 200, 201

BWZ option
FIELD statement, 106

BYE Debugger command, 515

C
C

calling conventions, 413
format, 412

C option
COMMAND statement, 85
DO BLOB verb, 388
REPORT statement, 174
RUN COMMAND verb, 466
RUN REPORT verb, 469
RUN RUN verb, 471

C option (cont'd)
RUN SCREEN verb, 474
RUN statement, 179
RUN THREAD verb, 478
SUBSCREEN statement, 211
THREAD statement, 222

CACHE option
CURSOR statement, 89
FILE statement, 57, 129

caches, contents, 58
calculations, Entry phase, 248
CALL option

SQL DECLARE CURSOR (stored procedure) statement,
96

CALL stored-procedure option
SQL CALL verb, 377

calling
external subroutines, 390-416
lower-level screens, 473-477

calling conventions
C, 413
PASCAL, 413

Cancel All Block Transfer, 272
CANCEL option

KEY statement, 157
CANCEL statement, 78
canceling

UPDATE procedure, 357
canceling design specifications, 78
captions

selection box value, 125
caption-set option

FIELD statement, 122
case-processing

DEFINE statement, 99
CENTERED option

TITLE statement, 226
CENTRED option

TITLE statement, 226
CENTURY EXCLUDED option

DEFINE statement, 98
FIELD statement, 106
TEMPORARY statement, 217

CENTURY INCLUDED option
DEFINE statement, 98
FIELD statement, 106
TEMPORARY statement, 217

Change phase
Retrieval Cycle phase, 251

CHANGEMODE
MODIFY procedure, 328-330
predefined condition, testing processing mode, 245

changing
APPEND procedure, 295
data, 22
data in pop-up windows, 30
record item value, 527
volumes, 26

changing data
find mode, 25
select mode, 25

CHAR option, 38

552 PowerHouse(R) 4GL Version 8.4E

Index

char option
DRAW statement, 102

CHARACTER field type
ACCEPT verb, 367

CHARACTER items, formatting, 119
character mode, See Field mode
CHARACTER option

FIELD statement, 106
CHARMODE program parameter, 39
class option

SCREEN statement, 189
CLEAR command

Debugger, 508, 516
CLEAR option

CANCEL statement, 78
COMMAND statement, 84
DO BLOB verb, 387
FILE statement, 132
of SAVE Debugger command, 533
REPORT statement, 173
RUN COMMAND verb, 466
RUN REPORT verb, 469
RUN RUN verb, 471
RUN SCREEN verb, 473
RUN statement, 178
SAVE statement, 181
SUBSCREEN statement, 210

CLEAR verb, 378
clearing

application lines, 378
breakpoints, 508
breakpoints with CLEAR Debugger command, 516
source statement save file, 78, 203
temporary save file, 78

CLOSE option
FILE statement, 130

CLOSE verb, 140
closing

cursors, 379
files, 379
files, leaving for higher-level screens, 130
relational files, 140

CLUSTER statement, 79-83
APPEND procedure, 296
BLOCK EACH|ALL option, 41
generating, 144

clusters
assigning ID-numbers, 79, 80
blocking in Panel mode, 79
creating, 79
deleting specific occurrences, 300
enabling fieldmarking, 80
facts, 81
FOR control structures, 425
generating CLUSTER statements, 144
ID-numbers, 81
named DESIGNER procedures, 304
positioning on screen, 79
side-by-side, 81

codes
generated, writing to source statement save file, 200, 201

Color Display Attributes screen
QKGO screen, 281

color option
FIELD statement, 111
HILITE statement, 148

column headings
positioning, 226

Command Mapping screen
in QKGO, 257, 279

COMMAND option
DO BLOB verb, 387

command option codes
QKGO, 275-277

command sources, 49
COMMAND statement, 84-87

effect of noosaccess program parameter, 87
QKView, 33

command-list options
DESIGNER procedure, 303

COMMANDOK
predefined value, LET Debugger command, 526

commands
Action, 28
action, 20, 28-29
assigning to dynamic function keys, 303
Backup, 21
backup, ACCEPT verb, 367
data, 20
Debugger, 502-505
Debugger, table, 511
Delete, 26
Delete Occurrence, 26
Delete Range, 26
Duplicate, 22
Duplicate with the ACCEPT verb, 368
executing operating system, 466
issuing programmatically, 49-55
making a limited set available, 72, 165, 194
Next, 25
Next Data, 25
placing at top of command stack, 454
Popup Toggle (+), 120
Previous Data, 25
processing, 49-55
QUICK action and data context, 286
QUICK action bar, 287
QUICK action context, 285
QUICK data context, 286
QUICK field mark, 288
QUICK in Binding Section, 285
QUICK line edit, 288
QUICK menu, 287
QUICK popup messages, 287
QUICK screen, 19
QUICK selectbox, 287
QUICK system, 289
QUICK text edit, 288
Recall, 23
Return to Start, 20
Select Box (#), 121
Separator, 22
Skip All, 21

Index

QDESIGN Reference 553

commands (cont'd)
Skip All with the ACCEPT verb, 368
Skip Cluster, 21
Skip to a field, 21
Update, 23
Update Next, 23
Update Return, 23
Update Stay, 23
using function keys, 20
using with repeating fields, 23

COMMIT ON option
TRANSACTION statement, 228

COMMIT option
SCREEN statement, 183

commit points, automatic, 184
COMMIT verb, 140, 380
Common area size execution-time parameter, 261
compatibility

verbs and procedures, 237-239
Compatible Block input mode, 42-49
Compatible Block mode, 37
COMPILE option

SET statement, 200
compiled

screen definitions, 247
components

PowerHouse, 13-14
compound statements, 370

combining with control structures, 370
Concurrency model

setting, 188
CONCURRENCY option

SCREEN statement, 188
condition general term

IF control structure, 435
WHILE verb, 492

conditional commands, DESIGNER procedure, 303
conditional statements

establishing, 435
conditional-command-list option

KEY statement, 157
conditional-expression

DEFINE statement, 99
configuration

QKView, 31
configuration files, 31
conflicts

WAIT|NOWAIT option of TRANSACTION statement,
230

CONSISTENCY option
SCREEN statement, 188

Consistency transaction model
setting, 188

console size, 194
Console window

DOS Console fonts, 102
DOS Console line drawing characters, 102

CONSTRAINTS option
TRANSACTION statement, 229

Construction and Maintenance screen
in QKGO, 258-260

contents of cache, 58

context, edit DFK screen, 273
CONTEXT-BINDING

TIC screens, 260
context-option

KEY statement, 157
CONTINUE Debugger command, 505, 517

SCREEN Debugger command, 535
CONTINUE option

COMMAND statement, 86
REPORT statement, 175
RUN statement, 180

control structures
BEGIN...END, 370
BLOCK TRANSFER, 372-374
FOR, 425
IF, 435
QDESIGN table, 361-363
WHILE loop conditional prompting, 492
WHILE loop, QDESIGN, 492-494
WHILE RETRIEVING, 495-499

conversion
non-relational rollback, 322, 345, 351

converting
QKGO file sets, 258, 259

COPY designer procedure in QKGO, 259
copying

QKGO file-sets, 258
Terminal Interface Configuration (TICs) in QKGO, 259

Copyright, 2
correcting

data, 22
Correction phase

Entry mode, 248
CORRECTMODE

MODIFY procedure, 328-330
testing processing mode, 245

COUNT option
CURSOR statement, 90
FILE statement, 130

creating
data, Entry mode, 248
internal subroutines, 326
QKGO file-sets, 256, 257, 259, 260
side-by-side clusters, 81
temporary items, 217

crosshatches (#)
indicating errors, 331

cursor box
using, 275

CURSOR statement, 88-93
cursors

assigning alias names, 89
closing, 379
specifying relationships between, 89

Custom Commands Mapping screen
QKGO screen, 281

customizing
Action field commands, 303-306

554 PowerHouse(R) 4GL Version 8.4E

Index

D
data

accessing records sequentially, 495
adding in find mode, 26
adding in select mode, 26
changing, 22
changing in find mode, 25
changing in select mode, 25
correcting, 22
deleting, 26
editing, 23
entering, 21-22
finding, 24-25
fixed fields, 29
next screenload, 25
pattern matching, 24
reading types, 38
recalling, 23
records

retrieving, 431-434
records, aborting, 484
records, retrieving related, 495-499
responding to prompts, 27
retrieving by partial value, 24
retrieving index value records, 497
retrieving previous, 25
saving, 23
scrolling fields, 29
section of design layer, 16
selecting, 24
updating, 23
updating records, 455-458

DATA AT option
FIELD statement, 107

data commands, 20
data

dictionaries, see also dictionaries
data entry

Backup command, 21
moving between fields, 21
Skip All command, 21
Skip Cluster command, 21
Skip to a field command, 21

data fields
grouping into panels, 37, 40
selection boxes, 30

DATA option
ALIGN statement, 74
FIELD statement, 120, 121
KEY statement, 157

Data Retrieval phase
Retrieval Cycle phase, 251

data screens, 19
DATABASE option

SET statement, 200
databases

see also relational databases
RDB/VMS database functionality, 359
setting time-out values, 265

DATABASES option
SHOW statement, 206

DATE option
FIELD statement, 106

dates
displaying screen creation, 27
entering, 22
Field commands, 270
formats, specifying, 106, 109
formatting for display, 366
optional separator characters, 121
specifying formats, 109

DATETIME datatype
support, 123

DB ALL option
SHOW Debugger command, 538

DB ATTACH option
SHOW Debugger command, 538

DB LOGICAL TRANSACTION option
SHOW Debugger command, 538

DB PHYSICAL TRANSACTION option
SHOW Debugger command, 538

DB REQUEST option
SHOW Debugger command, 538

DB SCREEN TRANSACTION option
SHOW Debugger command, 538

DBKEY option
SQL UPDATE verb, 490

DBMODE option
FILE statement, 132

deadlock protection, 444
deadlock-free transactions, 232
Debugger, 548

command, 502-505
commands, BREAK, 508, 513-514
commands, BYE, 515
commands, CLEAR, 508, 516
commands, CONTINUE, 505, 517
commands, DISPLAY, 518-519
commands, EXAMINE, 520-521
commands, EXIT, 522
commands, FIND, 506, 523
commands, GO, 525
commands, LET, 526-527
commands, LIST, 528-529
commands, NEXT, 530
commands, PREVIOUS, 531
commands, SAVE, 533
commands, SCREEN, 534-535
commands, SCROLL, 536
commands, SHOW, 537-541
commands, STEP, 508, 542
commands, table, 511
commands, TYPE, 543-544
commands, USE, 545
commands, user break, 546
commands, WATCH, 547
controlling execution, 507-509
description, 14
displaying source code, 505
executing, 502-505
exiting, 504
overview, 501
prompt character, 505

Index

QDESIGN Reference 555

Debugger (cont'd)
session log, 510

decimal
indicating substructured items, 206

DECLARE option
SQL DECLARE CURSOR (query-specification) statement,

94
SQL DECLARE CURSOR (stored procedure) statement,

96
DEFAULT option

FIELD statement, 107, 111, 367
HILITE statement, 149

default transactions, 232
defaults

DESIGNER procedure, 304
ENTRY procedure, 248, 314
file association, summary, 91, 134
FIND procedure, 318
MODIFY procedure, 328
overriding transaction attributes, 231
PATH procedure, 333-334
procedures, 235-236
SELECT procedure, 356
UPDATE procedure, 357

DEFINE statement, 98-100
defined items

FIELD statements, 123
passing between screens, 100

defining
terminal interface configuration, 279

definition
recoverable procedure, 322

DELETE
file type, 128
record-structure, 128
record-structure, retrieval, 140

Delete command, 26
Delete Occurrence command, 26
DELETE option

SET statement, 203
DELETE procedure, 300-301

default, 300
deleting file occurrences, 300
DISABLE verb, 384
error processing, 421
errors, 301
initiating, 300
user-defined, 300

Delete Range command, 26
DELETE verb, 381
DELETED option

PUT verb, 455
DELETEDRECORD

predefined value, DISPLAY Debugger command, 519
predefined value, EXAMINE Debugger command, 521
predefined value, LET Debugger command, 526
predefined value, SHOW Debugger command, 539

deleting
data, 26
DETAIL files, 307
file occurrences, 300
new data records, Correction phase, 249

deleting (cont'd)
PRIMARY and DETAIL files, 300-301
QKGO file-sets, 259
record-structures, 300
reversing, 26
specific occurrences of clusters, 300
undoing, 26

derived tables
query-specification statement, 169

DESCRIPTION statement, 101
descriptions

Debugger, 14
PDL, 13
PDL compiler, 13
PHD screen system, 13
PHPDL compiler, 13
PowerHouse, 13
PowerHouse dictionary, 13
QDESIGN, 14
QSHOW, 14
QTP, 14
QUICK, 14
QUIZ, 14
QUTIL, 14

design layer, 15
design specifications

canceling, 78
DESIGNER procedure, 303-306

error processing, 421
errors, 304
executing, 304
multiple, 237
named, 304
numbered, 304
overriding, 249

designer procedure
COPY in QKGO, 259

DESIGNER record-structures, 128
FOR control structure, 427
retrieval, 139

designer-written procedures, 235-236
designing screens, 76
detail

scrolling records, 57-59
DETAIL DELETE procedure, 307

error processing, 421
DETAIL files

APPEND procedure, 296
data records, deleting, 307
data records, retrieving, 309-310
deleting with PRIMARY files, 301

DETAIL FIND procedure, 309-310
DETAIL POSTFIND procedure, 311
error processing, 421

DETAIL option
BUILD statement, 76
GENERATE statement, 143
REVISE statement, 176
SET statement, 200
USE Debugger command, 545
USE statement, 233

556 PowerHouse(R) 4GL Version 8.4E

Index

DETAIL POSTFIND procedure, 311
error processing, 421

DETAIL record-structures, 128
APPEND procedure, 295
Append processing, 253
FOR control structure, 426
Skip All command, 368

device settings
HP terminals, 37

DFK
see dynamic function keys (DFK)

DFK Definition Entry
QKGO screen, 275

dictionaries
displaying items, 206
PowerHouse, 13
specifying for a session, 200

Dictionaries file
QKGO parameter, 255

DICTIONARY option
SET statement, 200

DISABLE option
KEY statement, 157

DISABLE verb, 384
disabling

sequential access, 334
Display Data phase

Retrieval Cycle phase, 251
DISPLAY Debugger command, 518-519
DISPLAY option

FIELD statement, 107
display options, 148
DISPLAY verb, 385-386
DISPLAYED option

FOR control structure, 425, 426, 427
displaying

see also listing, viewing
breakpoints, 513-514
dates, item values, 109
dictionary items, 206
field options, selection boxes, 121
information on available record-structures, 206
initial values in fields, 187
leading zeros, 121
messages, 27
multiple screens, 27
screen creation date, 27
screen names, 27
source code, 505, 528-529, 531
strings on Action bar, 70, 164
values in fields, 385-386
values in fields, suppressing, 116
values of items, 518-519, 520

DISTINCT option
query-specification (SELECT) statement, 169

DO BLOB verb, 387-389
ON ERROR CONTINUE option, 388
ON ERROR TERMINATE option, 388
REFRESH option, 388

Do Ext Save/Restore execution-time parameter, 261
DO EXTERNAL verb, 390-416

formatting, 413-414

DO INTERNAL verb, 417
document

version, 2
DOS Console

fonts, 102
line drawing characters, 102

DOUBLE option
DRAW statement, 102

DOWN option
SCROLL Debugger command, 536

DOWNSHIFT option
FIELD statement, 107
SET statement, 201

DRAW statement, 102
drawing lines and boxes on screens, 102
drop-down menus

assigning menu keys, 202
DUAL option

SCREEN statement, 188
Dual transaction model

setting, 188
Duplicate command, 22

ACCEPT verb, 368
DUPLICATE option

FIELD statement, 108, 367
duplicating

see copying
Dynamic Function Keys (DFK)

activating with QKGO, 158
banked and unbanked labels, 161
defining, 271, 273
highlighting labels, 162
inheriting from calling screens, 159
label highlighting, 274
overriding inheritance rules, 160
parameters, 271-272
QKGO screen, 271-272
shift rules, 158
specifying function, 156
specifying labels, 274

dynamic screen calls
QDESIGN and QUICK, 214

E
E option

RUN SCREEN verb, 474
SUBSCREEN statement, 212
THREAD statement, 223

EACH LEVEL option
FILE statement, 131

EDIT command
DFK screen, 272

Edit DFK Definitions
QKGO screen, 273

Edit menu
QKView, 35

EDIT option
FIELD statement, 120, 121

EDIT procedure, 312-313
ACCEPT verb, 366
error processing, 422

Index

QDESIGN Reference 557

EDIT verb, 418-419
EDIT/3000, 177
editing

see also changing, modifying, redefining
field entries, 312-313
files, 176
null entries, 312
procedures, guidelines, 237
QKGO file-sets, 259
values in fields, 418-419

editor
calling, 176
choosing, 177
PHEDIT environmental variable, 177

eight-digit dates
specifying, 106

ELSE option
IF control structure, 435

enabling
field blocks for input, 373

ending
see also exiting

entering
ACCESS statement, 67
action commands, 28-29
data, 21-22
data in pop-up windows, 30, 120
data, Append processing, 297
data, standard sequence, 314-316
dates, 22
null values, 22
numbers, 21

entering data
moving between fields, 21

entities
grouping on screen, 79

entries
duplicating last, 22
multiple in one field, 22

ENTRY IF option
COMMAND statement, 85
FIELD statement, 108
REPORT statement, 174
RUN statement, 179
SUBSCREEN statement, 211
THREAD statement, 222

Entry mode
Correction phase, 248
Entry phase, 248
Initialization phase, 248
processing, 248-250
record status, table, 244
Update phase, 249

Entry phase
Entry mode, 248

ENTRY procedure, 314-316
APPEND procedure, 314
default, 248
error processing, 421
FIELD statement, 315
PREENTRY procedure, 347-348

ENTRYMODE predefined condition
testing processing mode, 245

environment list, 535
ENVIRONMENT option

of SCREEN Debugger command, 534
error

conditions of WAIT|NOWAIT option, 230
handling on calling screens, 212
handling, PRESCROLL procedure, 349
messages, 420-423
messages, issued for QKGO parameters, 255
messages, prompting user for verification, 203

error handling
calling screens, 474

ERROR option
SET statement, 203

ERROR verb, 420-423
error-handling

APPEND procedure, 295
BACKOUT procedure, 298

ERRORRECALL option
FIELD statement, 108

errors
APPEND procedure, 295
BACKOUT procedure, 298
BLOCK TRANSFER control structure, 373
crosshatch (#) indication, 331
DELETE procedure, 301
DESIGNER procedure, 304
DETAIL DELETE procedure, 307
DETAIL FIND procedure, 309
DETAIL POSTFIND procedure, 311
EDIT procedure, 312
ENTRY procedure, 315
EXIT procedure, 317
FIND procedure, 319
INITIALIZE procedure, 322
INPUT procedure, 324
INTERNAL procedures, 326
MODIFY procedure, 328
OUTPUT procedure, 331
PATH procedure, 334
POSTDATE procedure, 344
POSTFIND procedure, 338
POSTPATH procedure, 340
PREENTRY procedure, 347
PREUPDATE procedure, 351
PROCESS procedure, 353
processing, 388
QDESIGN procedures, table, 420-422
UNIX processing, 472
UNIX, processing, 467, 470
UPDATE procedure, 357

EXAMINE Debugger command, 520-521
exclusive locks, 443
EXCLUSIVE option

FILE statement, 133
LOCK verb, 443

exclusivity option
FILE statement, 133

executing
see also processing

558 PowerHouse(R) 4GL Version 8.4E

Index

executing (cont'd)
APPEND procedure, 451
Debugger, 502-505
Debugger from QUICK, 546
DESIGNER procedures, 304
external programs, 390-416
internal procedures, 417
operating system commands, 84, 466
procedure code conditionally, 492
QKGO, 256
QSHOW from Debugger, 532
QSHOW from QDESIGN, 168
screens, 507-509
screens, continuing, 517
screens, Debugger, 503

execution-time parameters, 261
setting with QKGO, 255-257, 266

Execution-Time parameters screen
in QKGO, 261-267

EXIT
automatic commit point, 184, 229
automatic commit point in TRANSACTION statement,

228
EXIT Debugger command, 522
EXIT procedure, 317

error processing, 421
EXIT statement, 104

Debugger, 504
exiting

Append processing, 253
Debugger, 504, 515, 522
QDESIGN, 104, 172
QKGO, 257
screens, 463

Expression size
QKGO parameter, 265

Expression size execution-time parameter, 261
expressions

assigning names, 98
case-processing, 99
conditional, 99

Ext. subroutines execution-time parameter, 261
extended

records, 136
extended help

Action field command, 303
in QKGO, 257

external subroutines
executing, 390-416
naming, 412
strings, 412

F
F option

RUN SCREEN verb, 474
SUBSCREEN statement, 212
THREAD statement, 223

FALSE option
LET Debugger command, 526

features
advanced user interface, 27

Field input mode, 40
Field mode
FIELD option

DESCRIPTION statement, 101
FIELD statement, 105-125

full field processing, 21
Field terminators execution-time parameter, 262
FIELDMARK option

SCREEN statement, 184
fieldmarking

enabling for clusters, 80
FIELD statement, 116
subscreens, 212, 222

fields
Action command, 28
aligning, 74
automatic generation of FIELD statements, 143
blank when zero, 106
blocks

enabling for input, 373
data conversion, 324-325, 331
default procedures, overwriting, 304
default values, 107
display only, 107
display options, 111, 147, 148
display, suppressing, 116
displaying initial values, 120, 187
displaying options, 121
duplicating last entries, 22
editing data, 23
editing values, 418-419
empty, selection criteria, 252
entering action commands, 28-29
entries, editing, 312-313
extended help, 101
fixed data, 29
grouping into panels, 37, 40
grouping under same ID-number, 112
hiding, 121
horizontal scrolling, 30
ID-numbers, suppressing, 74, 79
making multiple entries, 22
Mode, enabling, 187
multiple procedures, 237
patterns, specifying, 118
picture, establishing, 118
positioning on screen, 107
preventing skipping, 120
prompting for values, 452-453
right-justified, 120
scrolling, 109
scrolling data, 29
sharing ID-numbers, 211, 221
size, specifying, 122
specifying item types, 106
suppressing labels, 74
testing values, 246
types, differing from item types, 106
using commands for repeating, 23
values, processing, 353-355
values, summing, 152
vertical scrolling, 30

Index

QDESIGN Reference 559

FIELDTEXT
predefined item, 246
predefined item, EDIT procedure, 312
predefined item, INPUT procedure, 324
predefined item, OUTPUT procedure, 331
predefined value, LET Debugger command, 526

FIELDVALUE
predefined item, 246
predefined item, EDIT procedure, 312

FIELDVALUE predefined item
ACCEPT verb, 366

File menu
QKView, 35

FILE option
DISPLAY Debugger command, 518
DO BLOB verb, 388
EXAMINE Debugger command, 520
LOCK verb, 442
SHOW Debugger command, 539
SHOW Debugger commands, 537
UNLOCK verb, 488
WATCH Debugger command, 547

file parm
DO EXTERNAL verb, 412

FILE statement, 126-142
displaying items accessed with, 206

file types
AUDIT, 127
DELETE, 128
DESIGNER, 128
DETAIL, 128
MASTER, 128
PRIMARY, 129
REFERENCE, 129
SECONDARY, 129

file-level locks, 443
filename

see also filespec
files

access, exclusivity options, 133
accessing, 88, 126
accessing, FIELD statement, 115
adding data, 21-22
assigning alias names, 129
association, default, 91, 134
closing, 379
closing, leaving for higher-level screens, 130
configuration, 31
copying in QKGO, 259
creating in QKGO, 260
deleting data, 26
deleting in QKGO, 259
designated in QKGO, 255
editing, 176
forcing a write, 527
forcing multiple opens, 131
locking, 443
modifying in QKGO, 259
modifying TIC, 283
opens for relational databases, 132
qkdebug, 510
QKGO, 256

files (cont'd)
QUICK initialization, 290
relationships, 135
showing information about, 537-541
specifying relationships, 127-132
unlocking, 488
updating, 357-359

FILES option
SHOW statement, 206

filespec
RUN RUN verb, 471

filespec option
MEMOLOG verb, 448
RUN SCREEN verb, 473
RUN THREAD verb, 478
STARTLOG verb, 486
UNLOCK verb, 488

fill characters
specifying, 108

FILL option
FIELD statement, 108

FINAL option
ITEM statement, 151

FIND Debugger command, 523
Find mode

controlling data retrieval, 333-337
Initialization phase, 250
Path Determination phase, 250
processing, 250-252
record status, table, 244
Retrieval Cycle phase, 250
retrieving next data, 25

find mode
adding data, 26
changing data, 25

FIND procedure, 318-321
DISPLAY verb, 386
error processing, 421
PATH procedure, 333
relationship to PATH procedure, 251
SQL, 319
supplementing with POSTFIND procedure, 338

finding data, 24-25
FINDMODE predefined condition

testing processing mode, 245
first screen

QKGO parameter, 255, 258
fixed

data fields, 29
data records, 136

FIXED option
FIELD statement, 108
ITEM statement, 151

float characters
specifying, 108

FLOAT option
FIELD statement, 108

FOR CONCURRENCY option
CURSOR statement, 91
FILE statement, 133
SQL CALL verb, 376
SQL DELETE verb, 382

560 PowerHouse(R) 4GL Version 8.4E

Index

FOR CONCURRENCY option (cont'd)
SQL INSERT verb, 438
SQL UPDATE verb, 489

FOR CONSISTENCY option
CURSOR statement, 91
FILE statement, 133
SQL CALL verb, 376
SQL DELETE verb, 382
SQL INSERT verb, 438
SQL UPDATE verb, 489

FOR control structure, 425
BLOCK TRANSFER control structure, 373
DETAIL record-structures, 426
MISSING option, 42
PRIMARY record-structures, 426
repeating items, 427
screen design, 57

FOR EACH option
FOR control structure, 427

FOR item
FOR control structure, 425

FOR MISSING item
FOR control structure, 426

FOR MISSING option
FOR control structure, 427

FOR MISSING record-structure
FOR control structure, 426

FOR n
FOR control structure, 425

FOR option
CLUSTER statement, 79
FIELD statement, 109
SCREEN statement, 184

FOR record-structure
FOR control structure, 425

FORCE CENTURY option
FIELD statement, 109

FORMAT option
FIELD statement, 109

formatting
CHARACTER and NUMERIC items, 119
DO EXTERNAL calls, 413-414
TIC files, 283

four-digit year
specifying, 110

FROM option
DISPLAY verb, 385
DRAW statement, 102
query-specification statement, 169
SCREEN statement, 185

function
keys, support mode, DFK screen, 271

Function Key Support mode QKGO parameter, 271
function keys

inheritance rules, 159
labels, banked and unbanked, 161
labels, highlighting, 162
QKView, 33
specifying, 156
using to enter commands, 20

functionality for RDB/VMS databases, 359

G
GENERATE option

SET statement, 200, 201
GENERATE statement, 143-145

exclusion of null values, 144
results, writing to source statement save file, 200, 201

generating
BLOCK TRANSFER control structure, 374
CLUSTER statements, 144
procedure code, Panel mode screens, 202

GENERIC option
ACCESS statement, 64
FIELD statement, 114
GET verb, 431
WHILE RETRIEVING control structure, 495

generic retrieval
SUBPATH, 334

GET verb, 431-434
GHOST option

RUN SCREEN verb, 474
SUBSCREEN statement, 212

GLOBAL option
FILE statement, 132

GO Debugger command, 525
GO statement, 146

implicit screen building, 76
graphics

drawing lines and boxes on screens, 102
GROUP BY option

query-specification statement, 170
grouping

entities, 79
fields under same ID-number, 112

H
HALFTONE option

FIELD statement, 111
HILITE statement, 149

HAVING option
query-specification statement, 170

headings
positioning columns, 226

help, 28
see also messages
command, question mark (?), 504
extended, 101
in QKGO, 257
messages, 110, 303
pop-up windows, 185

Help menu
QKView, 36

HELP option
FIELD statement, 110

Help option
DESIGNER procedure, 303

HELP POPUP option
SCREEN statement, 185

HIDDEN option
CLUSTER statement, 79
COMMAND statement, 84
FIELD statement, 111

Index

QDESIGN Reference 561

HIDDEN option (cont'd)
REPORT statement, 173
RUN statement, 178
SUBSCREEN statement, 211
THREAD statement, 221

hiding fields, 121
hierarchy

of screens, 60
highlighting

dynamic function key labels, 274
function key labels, 162
hardware limitations, 149
using color, 149

highlight-options
defaults for screen objects, 147
HILITE statement, 148

HILITE DISPLAY option
FIELD statement, 111

HILITE statement, 147-150
Horizontal lines execution-time parameter, 262
HP terminal has LDW execution-time parameter, 262
HP terminals

device settings, 37

I
ID AT option

FIELD statement, 112
ID NEXT option

CLUSTER statement, 80
FIELD statement, 112
SUBSCREEN statement, 211
THREAD statement, 222

ID option
ALIGN statement, 74
COMMAND statement, 84
FIELD statement, 112
REPORT statement, 173
RUN statement, 178
SUBSCREEN statement, 211
THREAD statement, 221

ID SAME option
FIELD statement, 112
THREAD statement, 221

ID-numbers
assigning to clusters, 79, 80
cluster occurrences, 81
eliminating, 112
positioning, 211, 222
prompting for, 71, 165, 193
specifying, 112, 211, 221
specifying in an action, 71, 165, 193
specifying location, 112
subscreens, suppressing, 211, 221
suppressing, 74, 79, 84, 111, 173, 178

IF control structure, 435
IF option

COMMAND statement, 85
FIELD statement, 108
REPORT statement, 174
RUN statement, 179
SUBSCREEN statement, 211

IF option (cont'd)
THREAD statement, 222

IMAGE INFO option
SHOW Debugger command, 537

IN database option
SQL CALL verb, 376
SQL INSERT verb, 438

IN option
SQL CALL verb, 377
SQL DECLARE CURSOR (query-specification) statement,

94
SQL DECLARE CURSOR (stored procedure) statement,

96
SQL DELETE verb, 382

INCREMENT
CLUSTER statement, 79

indexes
accessing data records, 432
accessing data records with, 67
IMAGE B-Tree, 56
indicating with asterisk (*), 206

INFORMATION verb, 437
informational messages, 437
inheritance rules

function keys, 159
INHERITED option

TRANSACTION statement, 228
initial

processing, 322-323
Initial mode execution-time parameter, 262
INITIAL option

ITEM statement, 151
TEMPORARY statement, 218

initial values
assigning to temporary items, 218
displaying, 120, 187

initialization
items, automatically, 153-154
of values in QKGO file-sets, 259
prior to data entry, 347-348
QKGO file-sets, 258

Initialization phase
Entry mode, 248
Find mode, 250

INITIALIZE procedure, 322-323
initializing

non-relational data structure, 155
null values, 154
temporary items, 218

initiated by user, 509
initiating

DETAIL DELETE procedure, 307
FIND procedure, 318

INPUT B|C option
RUN THREAD verb, 478
THREAD statement, 222

INPUT B|C|SAME option
block mode capable HP terminals, 37
COMMAND statement, 85
DO BLOB verb, 388
DO EXTERNAL verb, 390
REPORT statement, 174

562 PowerHouse(R) 4GL Version 8.4E

Index

INPUT B|C|SAME option (cont'd)
RUN COMMAND verb, 466
RUN REPORT verb, 469
RUN RUN verb, 471
RUN SCREEN verb, 473
RUN statement, 179
SUBSCREEN statement, 211

Input Mode, 262
input modes, 37-49

Compatible Block, 42-49
Field, 40
overriding defaults, 39
Panel, 40
syntax options, 39

INPUT option
COMMAND statement, 85
FIELD statement, 120, 121
REPORT statement, 174
RUN statement, 179
THREAD statement, 222

INPUT procedure, 324-325
ACCEPT verb, 366
error processing, 422

input scale
establishing, 112

INPUT SCALE option
FIELD statement, 112

INSERT INTO option
SQL INSERT verb, 438

internal
subroutines, 326

INTERNAL procedure, 237, 326
error processing, 421
standardizing field processing, 326

INTO option
PROMPT verb, 452
TEMPORARY statement, 219

INVERSE option
FIELD statement, 111
HILITE statement, 149

inverted master
records, 136

isolation levels
support, 230

isolation-level option
TRANSACTION statement, 229

item
temporary, creating, 217
types, specifying fields, 106
datatypes, see datatypes

ITEM option
DISPLAY Debugger command, 518
EXAMINE Debugger command, 520
LET Debugger command, 526
RUN SCREEN verb, 473
RUN THREAD verb, 478
SHOW Debugger command, 539
SQL DECLARE CURSOR (stored procedure) statement,

96
SUBSCREEN statement, 210
THREAD statement, 221
WATCH Debugger command, 547

item option
SQL CALL verb, 377

item parm
DO EXTERNAL verb, 412

ITEM statement, 151-155
items

datatype defaults, tables, 217
displaying values, 518-519
incompatible with pictures, 107
initialization, automatic, 153-154
setting values equal to expressions, 440
showing information about, 537-541
types, overridden by field type, 106
values, displaying, 520

ITEMS option
SHOW statement, 206

iterations
FOR control structure, 427

K
KEEP ROLLBACK option

RUN SCREEN verb, 474
key bindings

printing list, 281
KEY option

CURSOR statement, 90
Key Section

TIC files, 283
KEY statement, 156-163
keys

edit DFK screen, 273
mnemonics defining in QKGO, 279
QKView function, 33
TIC screen, 281
using to enter commands, 20

KEYSEQUENCE
TIC screen, 260

L
LABEL option

ACTIONMENU statement, 70
ALIGN statement, 74
COMMAND statement, 85
FIELD statement, 112
KEY statement, 156
MENUITEM statement, 164
REPORT statement, 174
RUN statement, 179
SCREEN statement, 187
SUBSCREEN statement, 212, 222

labels
banked and unbanked on DFKs, 161
fields, suppressing, 74
highlighting on DFKs, 162
specifying subscreens, 212, 222

Labels Active QKGO parameter, 272
layers

design and procedural, 15
layout

drawing lines and boxes on screens, 102
listing on screen, 201

Index

QDESIGN Reference 563

layout (cont'd)
section of design layer, 16
text positioning, 226

LAYOUT option
SET statement, 201

leading
sign, 112
zeros, displaying, 121

LEADING SIGN option
FIELD statement, 112

leaving
see exiting

LET command in Debugger
ITEM option, 526
PREDEFINED option, 526

LET Debugger command, 526-527
LET verb, 440
level

edit DFK screen, 273
LEVEL option

KEY statement, 156
Line intersections execution-time parameter, 262
LINE option, 38

BREAK Debugger command, 513
CLEAR Debugger command, 516

LINES option
CLEAR verb, 378
COMMAND statement, 84, 86
DO BLOB verb, 387
REFRESH verb, 459
REPORT statement, 173, 175
RUN COMMAND verb, 466, 467
RUN REPORT verb, 469, 470
RUN RUN verb, 471, 472
RUN SCREEN verb, 473, 475
RUN statement, 178, 180
SUBSCREEN statement, 210

linking
external subroutines, DO EXTERNAL verb, 407
record-structures, 67

LIST Debugger command, 505, 528-529
LIST option

BUILD statement, 76
GENERATE statement, 143
REVISE statement, 176
SET statement, 201
USE Debugger command, 545
USE statement, 233

listing
see also displaying, viewing

LOCAL option
KEY statement, 156

locating
data, 24-25
QKGO file set in QUICK, 255

Lock attempts execution-time parameter, 262
lock function keys

DFK screen, 272
lock items

specifying, 446
LOCK option

SCREEN statement, 185

Lock retry interval execution-time parameter, 263
Lock unconditional execution-time parameter, 263
LOCK verb, 442-447
LOCKED option

SHOW Debugger command, 537
locking

files, 443
records, 445
specifying record or file level, 185
tables, 443
using SCREEN, 443

locks
exclusive, 443
file-level, 443

logging a Debugger session, 510
logical key names, 279
LOOKUP NOTON option

FIELD statement, 113
LOOKUP ON option

FIELD statement, 113
lookups

in QKGO, 257
loops

breaking, 504, 509
FOR control structures, 425

lowercase
characters, shifting to lowercase, 107

lower-level screens
calling, 473-477

M
mapping

application lines onto terminal memory, 192
QUICK screen commands, 279

MARK option
CLUSTER statement, 80
COMMAND statement, 86
FIELD statement, 116
REPORT statement, 175
RUN statement, 180
SUBSCREEN statement, 212
THREAD statement, 222

marking
screeen fields, 29

MASTER files
slave screens, 190

MASTER record-structures, 128
retrieving, 138

matching
see also pattern matching

Maximum number of threads execution-time parameter, 263
MEMOLOG verb, 448
memory

terminal refreshing, 459
menu keys

QDESIGN and QUICK, 202
MENU option

SCREEN statement, 186
menu screen

setting, 189

564 PowerHouse(R) 4GL Version 8.4E

Index

MENU screens
PATH procedure, 334

menu screens, 19
MENUITEM statement, 164-167
MENUKEY option

ACTIONMENU statement, 70
MENUITEM statement, 164

MENUKEYS option
SET statement, 202

menus
Action commands, 164
assigning menu keys, 202
QKView, 35
QKView Edit, 35
QKView File, 35
QKView Help, 36
QKView QUICK, 35
QKView Settings, 36
QKView View, 35
setting menu screens, 186, 189
specifying for pull-down, 71, 165, 193

MESSAGE option
FIELD statement, 114
SCREEN statement, 186

MESSAGE POPUP option
SCREEN statement, 186

messages, 27
see also help
errors, issued for QKGO parameters, 255
help, 28, 110, 303
informational, 437
lookup failure, 114
message line positioning, 186
pop-up windows, 186
severe, 484
warning, 491
warning, display options, 147

metacharacters
see also characters, special characters

MISSING option
FOR control structure, 42

MISSING VALUE option
FIELD statement, 116

mnemonics
defining key mnemonics in QKGO, 279

MODE
automatic commit point, 184, 229
automatic commit point, TRANSACTION statement, 229

MODE option
RUN SCREEN verb, 474
RUN THREAD verb, 478
SCREEN statement, 187
SUBSCREEN statement, 212
THREAD statement, 223

modes
Append processing, 252
Compatible Block, 37, 42-49
Entry processing, 248-250
Field, 37, 40
fields, enabling, 187
Find processing, 250-252
input, 37-49

modes (cont'd)
input syntax options, 39
overriding input defaults, 39
Panel, 40
Panel, specifying, 187
Select processing, 252
selection-box, FIELD statement, 121
subscreens, 212, 223

MODIFY command
Correction phase, 249

MODIFY procedure, 328-330
and Panel input, 42
error processing, 421
starting automatically, record retrieval, 183

modifying
see changing, editing, redefining
ENTRY procedure, 315
FIND procedure, 318
procedures, 235-236
QKGO file-sets, 258
QKGO performance, 266
terminal interface configuration, 278
TIC files, 283

moving among threads, 224
multiple

ACCESS statements, 67
alignment groups, 74
command processing, 49-55
fields, procedures, 237
retrieval methods, REFERENCE record-structures, 139

multiple active screens hierarchy, 224
multiple-line scrolling fields

specifying, 109
MYVIEW option

FILE statement, 130

N
named DESIGNER procedures, 304
naming

DESIGNER procedures, 303
expressions, 98
external subroutines, 412

NEED option
FILE statement, 130

NEGATIVE option
TEMPORARY statement, 218

negative values
specifying leading sign, 112
specifying trailing sign, 122

nesting
BLOCK TRANSFER control structures, 374
FOR control structures, 426
INTERNAL procedures, 326
USE statements, 233
WHILE RETRIEVING control structure, 497

NESTING option
SET statement, 202

NEW option
PUT verb, 455

NEWRECORD
predefined value, DISPLAY Debugger command, 519

Index

QDESIGN Reference 565

NEWRECORD (cont'd)
predefined value, EXAMINE Debugger command, 521
predefined value, LET Debugger command, 526
predefined value, SHOW Debugger command, 539

Next (N)
FIND procedure, 318

Next command, 25
Next Data command, 25
NEXT Debugger command, 505, 530
NEXT keyword, 79
NEXT option

COMMAND statement, 84
REPORT statement, 173
RUN statement, 178

NEXT PRIMARY
automatic commit point, 184, 229
automatic commit point in TRANSACTION statement,

229
NO CONSOLE option

RUN RUN verb, 472
NOACTION option

SCREEN statement, 182
NOACTIONBAR option

SCREEN statement, 183
NOALLOW option

FIELD statement, 105
NOAPPEND option

CURSOR statement, 90
FILE statement, 131

NOAUTONEXT option
FIELD statement, 106

NOBLOCKTRANSFER option
KEY statement, 156

NOBWZ option
FIELD statement, 106

NOCHANGE option
DESIGNER procedure, 304
FIELD statement, 116

NOCOMMIT option
SCREEN statement, 183
TRANSACTION statement, 229

NOCONSOLE option
COMMAND statement, 86
REPORT statement, 175
RUN statement, 180

NOCORRECT option
DESIGNER procedure, 304
FIELD statement, 116

NODATA option
Designer procedure, 303

NODELETE option
CURSOR statement, 90
FILE statement, 131

NODETAIL option
BUILD statement, 76
GENERATE statement, 143
of USE Debugger command, 545
REVISE statement, 176
SET statement, 200
USE statement, 233

NOECHO option
FIELD statement, 116

NOENTRY option
FIELD statement, 117

NOERRORRECALL option
FIELD statement, 108

NOFIELDMARK option
SCREEN statement, 184

NOFORCE CENTURY option
FIELD statement, 109

NOFORMAT option
FIELD statement, 117

NOGENERIC option
ACCESS statement, 64
FIELD statement, 114
GET verb, 431
WHILE RETRIEVING control structure, 495

NOID option
CLUSTER statement, 80
COMMAND statement, 85
FIELD statement, 112
REPORT statement, 173, 174
RUN statement, 178, 179
SUBSCREEN statement, 211
THREAD statement, 222

NOITEMS option
CURSOR statement, 90
FILE statement, 131

NOLABEL option
COMMAND statement, 86
FIELD statement, 112
REPORT statement, 175
RUN statement, 179
SUBSCREEN statement, 212

NOLIST option
BUILD statement, 76
GENERATE statement, 143
REVISE statement, 176
SET statement, 201
USE Debugger command, 545
USE statement, 233

NOMARK option
CLUSTER statement, 80
COMMAND statement, 86
FIELD statement, 116
REPORT statement, 175
RUN statement, 180
SUBSCREEN statement, 212
THREAD statement, 222

NOMENUKEY option
ACTIONMENU statement, 70
MENUITEM statement, 164

NOMENUKEYS option
SET statement, 202

NOMODE option
SCREEN statement, 187

non-relational rollback, 322, 344, 351
non-text BLOBs, 387
NONULLSEPARATOR

FIELD statement, 117
noosaccess program parameter

COMMAND statement, 87
NOPANEL option

SCREEN statement, 39, 187

566 PowerHouse(R) 4GL Version 8.4E

Index

NOPANEL option (cont'd)
SET statement, 202

NOPANEL screens
PATH procedure, 333

NOPRINT option
SET statement, 202

NORECALL option
FIELD statement, 117

NOSELECT option
FIELD statement, 117

NOSEQUENTIAL option
SCREEN statement, 187, 334

NOSHIFT option
FIELD statement, 107
SET statement, 201

NOTDELETED option
PUT verb, 455

NOUSE option
REVISE statement, 176

NOVERIFY option
SET statement, 203

NOW option
INFORMATION verb, 437
WARNING verb, 491

NOWAIT option
COMMAND statement, 86
FILE statement, 134
REPORT statement, 175
RUN REPORT, 470
RUN RUN, 472
RUN statement, 180
TRANSACTION statement, 230

NOWARN option
COMMAND statement, 86
DO BLOB verb, 388
FIELD statement, 114
REPORT statement, 175
RUN COMMAND verb, 467
RUN REPORT verb, 470
RUN RUN verb, 472
RUN statement, 180

NOWARNINGS option
SET statement, 203

NOWRAPAROUND option
SET statement, 203

null
entries, field editing, 312
entries, INPUT procedure, 324
values, automatic exclusion of, 144

NULL option
KEY statement, 158
RUN SCREEN verb, 474
RUN THREAD verb, 478
SUBSCREEN statement, 212
THREAD statement, 223

NULL VALUE option
FIELD statement, 116

null values
entering, 22
initializing, 154

NULL verb, 449

NULLSEPARATOR
FIELD statement, 117

numbers
entering, 21
fill characters, 108
float characters, 108

numeric
attributes, determining field types, 106

NUMERIC items
ACCEPT verb, 366
formatting, 119

NUMERIC option
DEFINE statement, 98
FIELD statement, 106
TEMPORARY statement, 217

O
OCCURS option

CLUSTER statement, 80
CURSOR statement, 90
FILE statement, 57, 131, 427
TEMPORARY statement, 218, 427

OF FILE option
LET Debugger command, 526

OF option
DISPLAY Debugger command, 518

OF record-structure option
DISPLAY verb, 385

OFF option
FIELD statement, 111
HILITE statement, 149
WATCH Debugger command, 547

OLDVALUE function
EDIT procedure, 312

OMIT option
DESIGNER procedures, 304
FIELD statement, 117
ITEM statement, 152

ON ENTRY option
FIELD statement, 107

ON ERROR CONTINUE option
DO BLOB verb, 388
RUN SCREEN verb, 474
SQL CALL verb, 377
SQL DECLARE CURSOR (stored procedure) statement,

96
SUBSCREEN statement, 212

ON ERROR option
COMMAND statement, 86
REPORT statement, 175
RUN COMMAND verb, 467
RUN REPORT verb, 470
RUN RUN verb, 472
RUN statement, 180

ON ERROR TERMINATE option
DO BLOB verb, 388
RUN SCREEN verb, 475
SQL CALL verb, 377
SQL DECLARE CURSOR (stored procedure) statement,

96
SUBSCREEN statement, 213

Index

QDESIGN Reference 567

ON FIND option
FIELD statement, 107

ON FULL option
FILE statement, 135

ON LINE option
SCREEN statement, 187

ON option
WATCH Debugger command, 547

ON RECEIVE option
FILE statement, 135

ON SEND option
FILE statement, 134

one-to-many relationships
establishing, 253

OPEN option
CURSOR statement, 90
FILE statement, 131

OPENED option
of SHOW Debugger command, 537

operating system
commands, accessing from DESIGNER procedure, 304
commands, executing, 84
executing commands, 466
returning, 504
returning QDESIGN, 104, 172
returning to, from Debugger, 515, 522

OPTIMISTIC option
SCREEN statement, 188

Optimistic transaction model
setting, 188

OPTIONAL option
ACCESS statement, 64
FIELD statement, 114
GET verb, 431

options
field display, 147
field entries, displaying in selection boxes, 121

ORACLE
synonyms, table names, 383
table name synonyms, 439, 490

order
data entry, 314-316
data entry, changing with FIELD statement, 315
declaring record-structures, 135
procedures, guidelines, 237
reading data records, reversing, 64
record-structures, 135
reversing record search, 114

ORDER BY option
SQL DECLARE CURSOR (query-specification) statement,

94
ORDERBY option

ACCESS statement, 64
WHILE RETRIEVING control structure, 495

ORDERED option
ACCESS statement, 66

orphaned detail records, 301
OUT option

SQL CALL verb, 377
SQL DECLARE CURSOR (stored procedure) statement,

96

output
picture, establishing, 118
scale, establishing, 118

OUTPUT procedure, 331
ACCEPT verb, 367
error processing, 422

OUTPUT SCALE option
FIELD statement, 118

overriding
chained-type access, indexed files, 65
default DESIGNER procedures, 249
default transaction attributes, 231
predefined transactions, 232

ownernames
qualifying tables, 126

P
Panel input, 37, 40
Panel input mode, 40
Panel mode

generating BLOCK statements, 79
generating required code, 187
specifying, 187

PANEL option
ENTRY procedure, 314
SCREEN statement, 39, 40, 187
SET statement, 40, 202

PANEL screens
PATH procedure, 333

parameters
BLOCKMODE, 40
CHARMODE, 39
execution-time, setting with QKGO, 255-257
passing to external subroutines, 390-416
program, 39

parm general term
DO EXTERNAL verb, 406, 412

partial-index retrieval
QUICK, 56
specifying, 114

PASCAL
calling conventions, 413
format, 412

PASSING file|item parm
DO EXTERNAL verb, 413

PASSING option
RUN SCREEN verb, 475
SUBSCREEN statement, 213

PATH
predefined value, LET Debugger command, 526

Path Determination phase
Find Mode, 250

PATH procedure, 333-337
error processing, 421
errors, 334
FIND procedure, 318-321
POSTPATH procedure, 340-341
relationship to FIND procedure, 251
REQUEST verb, 460

PATTERN option
FIELD statement, 118

568 PowerHouse(R) 4GL Version 8.4E

Index

PATTERN option (cont'd)
FIND Debugger command, 523

patterns
selecting data, 24

patterns, specifying, 118
PDL

description, 13
PDL compiler

description, 13
Pending Screen Input Buffer (PSIB), 49
PERFORM APPEND verb, 451

BLOCK TRANSFER, 373
suppressing generations, 90

period (.)
indicating substructured items, 206

PHANTOM PROTECTION
isolation level, 230

PHD screen system
description, 13

PHDADMIN
description, 14

PHDMAINTENANCE
description, 14

PHEDIT environment variable
editor, 177

PHPDL compiler
description, 13

PICTURE option
FIELD statement, 118

pictures
establishing, 118
incompatible items, 107

pop-up messages, 27
POPUP option

FIELD statement, 120
Popup Toggle (+) command, 120
pop-up windows

data entry, 120
entering data, 30
help, 185
messages, 186

positioning
clusters on screen, 79

POSTFIND procedure, 338-339
error processing, 421
SELECT verb, 482

POSTPATH procedure, 340-341
error processing, 421
Path Determination phase, 250
PATH procedure, 340-341

POSTSCROLL procedure, 342-343
screen design, 57

POSTUPDATE procedure, 344-346
error processing, 421
Update phase, 249

PowerHouse
components, 13-14
description, 13
utilities, 14

PowerHouse dictionary
description, 13

PRECOMMANDS option
DESIGNER procedure, 303

predefined
conditions, ACCESSOK, 245
conditions, PROMPTOK, 245
conditions, testing processing status, 243-245
items, displaying values, 518-519
transactions, overriding, 232
values, ACCESSOK, 526
values, ALTEREDRECORD, 519, 521, 539
values, ALTEREDRECORD, LET Debugger command,

526
values, AUDITSTATUS, 519, 521, 539
values, changing, 526
values, COMMANDOK, 526
values, DELETEDRECORD, 519, 521, 526
values, DELETERECORD, SHOW Debugger command,

539
values, FIELDTEXT, 526
values, NEWRECORD, 519, 521, 526
values, NEWRECORD, SHOW Debugger command, 539
values, PATH, 526
values, PROMPTOK, 526
values, showing, 539

PREDEFINED option
DISPLAY Debugger command, 518, 519
EXAMINE Debugger command, 520, 521
LET Debugger command, 526
SHOW Debugger command, 537
WATCH Debugger command, 547, 548

predefined, values, LET Debugger command, 526
PREDISPLAY option

FIELD statement, 120
SCREEN statement, 187

PREENTRY procedure, 347-348
error processing, 421

PRESCROLL procedure, 349-350
screen design, 57

PREUPDATE procedure, 351-352
error processing, 421
Update phase, 249
UPDATE procedure, 357

Previous Data command, 25
PREVIOUS Debugger command, 505, 531
primary

record-structure, cached, 58
scrolling records, 57-59

PRIMARY record-structures, 129
Append processing, 253
FOR control structure, 426
relationship to SECONDARY record-structures, 135
repeating, APPEND procedure, 295
retrieving, 137
Skip All command, 368

PRINT option
SET statement, 202

printing
screens, 27

PRIORITY option
TRANSACTION statement, 230

procedural
layer, 15

Index

QDESIGN Reference 569

procedural (cont'd)
repeating statements, 425

procedure code
generating Panel mode screens, 202

PROCEDURE control structure
breakpoints, 514

procedures
APPEND, 295-297
BACKOUT, 298-299
codes, breakpoints, 514
default, 235-236
default, obtaining source listings, 236
DELETE, 300-301
DESIGNER, 303-306
designer-written, 235-236
DETAIL DELETE, 307
DETAIL FIND, 309-310
DETAIL POSTFIND, 311
EDIT, 312-313
editing guidelines, 237
ENTRY, 314-316
error processing, table, 420-422
executing internal, 417
EXIT, 317
FIND, 318-321
generated, GO statement, 76
generated, saving, 236
INITIALIZE, 322-323
INPUT, 324-325
INTERNAL, 326
MODIFY, 328-330
modifying, 235-236
OUTPUT, 331
PATH, 333-337
POSTFIND, 338-339
POSTPATH, 340-341
POSTSCROLL, 342-343
POSTUPDATE, 344-346
PREENTRY, 347-348
PRESCROLL, 349-350
PREUPDATE, 351-352
preventing use, 384
PROCESS, 353-355
PUT verb in designer-written, 458
QDESIGN, 293-360
QDESIGN, table, 293-294
recoverable, 322
SELECT, 356
sequence guidelines, 237
UPDATE, 357-359
user-defined, 236
verb compatibility, 237-239
writing, 238
writing guidelines, 237
writing to source statement save file, 200, 201

PROCEDURES option
SET statement, 200, 201

PROCESS option
CURSOR statement, 91
FILE statement, 134
SQL CALL verb, 376, 382, 438, 489

PROCESS procedure, 353-355
ACCEPT verb, 367
error processing, 422

processing
see also executing
ACCEPT verb, 364-367
automatic rollback, 465
continuing after record access failure, 64
DETAIL FIND procedure, 311
field values, 353-355
full field, 21
initial, 322-323
modes, 247
modes, Append mode, 252
modes, Entry mode, 248-250
modes, Find mode, 250-252
modes, Select mode, 252
modes, testing, 245
PUT verb, 456-457
QUICK commands, 49-55
screen items, 29
SELECT verb, 481
sets of related data records, 495-499
status, testing, 243-245
stopping, 420-423

program parameters
auto, 255, 256
BLOCKMODE, 40
CHARMODE, 39
in QKGO, 255
noosaccess and COMMAND statement, 87
restore=lines, 387
update=fkc_put_order, 359

programs
external, executing, 390-416

prompt character
Debugger, 505

PROMPT verb, 452-453
compared to REQUEST verb, 461

prompting
field values, 65, 452-453
following command execution, 86, 175, 180
segments, sequential indexes, 67
verification, 203

PROMPTOK, 526
PROMPTOK predefined condition, 245
prompts

responding, 27
PROTECTED option

LOCK verb, 443
pull-down menus

adding to Action bar, 164
PUSH verb, 454
PUT verb, 455-458

BACKOUT procedure, 298
UPDATE procedure, 358
WHILE RETRIEVING control structure, 497

PUT verbs
functionality for RDB/VMS databases, 359

570 PowerHouse(R) 4GL Version 8.4E

Index

Q
QCOBLIB

description, 14
QDESIGN

control structures, 492-499
description, 14
dynamic screen calls, 214
menu keys, 202
procedures, 293-360
procedures, table, 293-294
relationship, QUICK, 247
statements table, 61-63
verbs, 364-499
WHILE control structure, 492-494

qkdebug file, 510
QKGO

Action Field commands screen, 268
Action/Data Field commands screen, 269
adjusting execution-time parameters, 264
alternatives to custom QKGO file sets, 255
Command Mapping screen, 257, 279
command option codes, 275-277
Construction and Maintenance screen, 258-260
COPY designer procedure, 259
copying a file, 259
creating a file, 260
creating a QKGO file-set, 256, 257, 259
Data Field commands screen, 270
defining key mnemonics, 279
deleting a file, 259
designated files, 255
Execution-Time parameters screen, 261-267
exiting, 257
external-subroutines common area size, 266
full field processing, 21
help, 257
lookups, 257
modifying a file, 259
performance, execution-time parameters, 264
performance, modifying, 266
screen tables and work area parameters, 266
screen tables and work parameters, 264
screens, choosing options, 257
subscreens, 260
work area parameters and screen tables, 264, 266

qkgo command, 256
QKGOMAINTENANCE program

executing, 256
QKView, 31-36

COMMAND statement, 33
configuration, 31
Edit menu, 35
File menu, 35
function keys, 33
Help menu, 36
menus, 35
QUICK menu, 35
RUN COMMAND statement, 33
settings, 32
Settings menu, 36
View menu, 35

QSHOW
Debugger command, 532
description, 14
statement, 168

QTP
description, 14

QUERY option
CURSOR statement, 91
FILE statement, 134
SQL CALL verb, 376, 382, 438, 489

query-specification (SELECT) statement
QDESIGN, 169-171

query-specification option
SQL DECLARE CURSOR (query-specification) statement,

94
question mark (?)

help command, 504
QUICK

action and data context commands, 286
action bar commands, 287
action context commands, 285
CHAR option, 38
command numbers for Binding Section, 285
data context commands, 286
description, 14
dynamic screen calls, 214
field mark commands, 288
initialization file, 290
line edit commands, 288
LINE option, 38
locating QKGO file set, 255
mapping screen commands, 279
menu commands, 287
menu keys, 202
popup message commands, 287
processing modes, 247
relationship with QDESIGN, 247
screen environment, 509
screens, setting up PANEL mode, 195
selectbox commands, 287
system commands, 289
text edit commands, 288

QUICK menu
QKView, 35

QUICK screen commands, 19
QUICK screens, 19

data, 19
menu, 19

QUIT statement, 172
quitting

see exiting
QUIZ

description, 14
QUTIL

description, 14

R
Rapid-Fire Buffer (RFB), 50
RDB/VMS

functionality, 359

Index

QDESIGN Reference 571

READ COMMITTED
isolation level, 230

READ ONLY option
TRANSACTION statement, 230

READ option
FILE statement, 132

READ UNCOMMITTED
isolation level, 230

READ WRITE option
TRANSACTION statement, 230

read/write access
record-structures, 132

read-only
access to record-structures, 132

Recall command, 23
RECEIVING option

SCREEN statement, 188
record

status, DETAIL FIND procedure, 309
RECORD option

LOCK verb, 442
UNLOCK verb, 488

records
aborting, 484
accessing, 64, 65
accessing sequential, 495
accessing via specific index, 67, 432
deleting DETAIL files, 307
effects of LET verb on status, 440
extended, 136
fixed, 136
inverted master, 136
locking, 445
repeating on screen, 90, 131
retrieving, 137-217, 318-321
retrieving based on previous data, 338
retrieving DETAIL files, 309-310
retrieving effects, 67
retrieving index value, 497
retrieving related, 495-499
retrieving, DELETE record-structures, 140
retrieving, establishing path, 333-337
retrieving, testing status, 245
retrieving, using WHILE control structure, 492
status, table, 244
status, testing, 243-244
stopping retrieval, 375
unlocking, 445, 488
UPDATE procedure, 357-359
updating, 455-458

record-structure option
DELETE verb, 381
GET verb, 431
LOCK verb, 442
PUT verb, 455
SQL CLOSE verb, 379
WHILE RETRIEVING control structure, 495

record-structures
access types, 132
accessing via index, 432
accessing via specified segments, 432
assigning alias names, 129

record-structures (cont'd)
AUDIT, 127
declaring correct order, 135
DELETE, 128
deleting, preventing, 300
DESIGNER, 128
DETAIL, 128
displaying information, 206
identifying, 88, 126
linking, 67
MASTER, 128
PRIMARY, 129
PRIMARY, relationship to SECONDARY, 135
REFERENCE, 129
relating SECONDARY to repeating, 137
retrieving, 137-217
reversing search sequence, 114
SECONDARY, 129
SECONDARY, relationship to PRIMARY, 135

RECOVERABLE option
INITIALIZE procedure, 322
POSTUPDATE procedure, 344
PREUPDATE procedure, 351

recoverable procedure
definition, 322

redefining
see changing, editing, modifying

REFERENCE parm
DO EXTERNAL verb, 412

REFERENCE record-structures, 129
automatic retrieving, 138
lookups in Find mode, 138
multiple retrieval methods, 139
retrieving, 138

referencing
see also accessing

REFRESH ALL option
DO BLOB verb, 388

REFRESH LINES option
DO BLOB verb, 388

REFRESH option
COMMAND statement, 86
DO BLOB verb, 388
FIELD statement, 120
REPORT statement, 175
RUN COMMAND verb, 467
RUN REPORT verb, 470
RUN RUN verb, 472
RUN SCREEN verb, 475
RUN statement, 180
SUBSCREEN statement, 213

REFRESH SCREEN option
DO BLOB verb, 388

REFRESH verb, 459
refreshing

application lines, 378
screens, 27
terminal memory, 459

relational
physical transactions, 540
tables, reserving, 232

572 PowerHouse(R) 4GL Version 8.4E

Index

relational databases
see also databases
file opens, 132
generic retrieval, 114
ordered retrieval, 64
tables VIA option ACCESS statement, 432
VIA option, ACCESS statement, 67

relational files
closing, 140, 379

REPEATABLE READ
isolation level, 230

repeating
PRIMARY record-structure, MODIFY procedure, 330

repeating items
see arrays
FOR control structure, 427

repetitive statements, 239
REPORT statement, 173
reports

running, 26
REQUEST option

ACCESS statement, 65
FIELD statement, 120, 121

REQUEST verb, 460
REQUIRED option

FIELD statement, 120, 367
PROMPT verb, 452

RESERVING
transaction definitions, 485

RESERVING option
TRANSACTION statement, 230

RESET AT MODE option
TEMPORARY statement, 218

RESET AT STARTUP option
TEMPORARY statement, 218

RESET option
PUT verb, 455
TEMPORARY statement, 218

resource file
TIC, 281

RESPONSE option
COMMAND statement, 86
REPORT statement, 175
RUN COMMAND verb, 467
RUN REPORT verb, 470
RUN RUN verb, 472
RUN SCREEN verb, 475
RUN statement, 180
RUN THREAD verb, 479
WARNING verb, 491

restore=lines program parameter, 387
RETAIN option

SCREEN statement, 184
Retrieval Cycle phase

Find mode, 250
Retrieval Initialization phase

Retrieval Cycle phase, 251
retrieving

data, 24-25
data based on non-key values, 356
data by partial value, 24
data in QUICK, 68

retrieving (cont'd)
data records, 318-321, 431-434

partial-index, 495
data records, DETAIL files, 309-310
data records, establishing path, 333-337
data records, index value, 497
data records, partial-index, 114
DELETE record-structures, 140
DESIGNER record-structures, 139
MASTER record-structures, 138
previous data, 25
PRIMARY record-structures, 137
records, explicit control, 68
records, testing status, 245
REFERENCE record-structures, 138
related data record sets, 495-499
SECONDARY record-structures, 138

Return (^)
EXIT procedure, 317

Return to Start (^^^)
EXIT procedure, 317

Return to Start command, 20
Return to Stop (^^)

EXIT procedure, 317
RETURN verb, 463
returning

operating system, 504
operating system, from Debugger, 515, 522
operating system, QDESIGN, 104

RETURNING DBKEY option
SQL INSERT verb, 439

returning operating system
QDESIGN, 172

RETURNING option
SQL CALL verb, 377
SQL DECLARE CURSOR (stored procedure) statement,

97
REVERSE option

FIELD statement, 120
REVISE statement, 176-177
right-justification

data in fields, 120
RJ option

FIELD statement, 120
RMS journaled files

SHOW Debugger command, 540
rollback

non-relational, 322, 344, 351
setting time-out values, 265

Rollback Buffer execution-time parameter, 263
Rollback Clear execution-time parameter, 263, 265
Rollback Time-out execution-time parameter, 263
ROLLBACK verb, 465
rollbacks

automatic processing, 465
rules

ALLBASE/SQL support, 126
DFKs shifts, 158
editing procedures, 237
procedures, writing, 237

RUN, 178
Run Cmd Save/Restore execution-time parameter, 263

Index

QDESIGN Reference 573

RUN COMMAND statement
QKView, 33

RUN COMMAND verb, 466
RUN REPORT verb

NOWAIT option, 470
WAIT option, 470

RUN RUN verb
NOWAIT option, 472
WAIT option, 472

RUN SCREEN verb, 473-477
RUN THREAD verb, 478-480
running

see also executing, processing
Debugger, 502-505
QUICK screens with Debugger, 503
reports, 26
script of Debugger commands, 545

S
S option

RUN SCREEN verb, 474
SUBSCREEN statement, 212
THREAD statement, 223

SAME option
COMMAND statement, 84, 85
DO BLOB verb, 388
DO EXTERNAL verb, 390
REPORT statement, 173, 174
RUN COMMAND verb, 466
RUN REPORT verb, 469
RUN RUN verb, 471
RUN SCREEN verb, 474
RUN statement, 178, 179
RUN THREAD verb, 479
SUBSCREEN statement, 211, 212
THREAD statement, 223

SAVE CLEAR option
SET statement, 203

SAVE Debugger command, 533
Save Function Keys, 272
SAVE statement, 181
saving

data, 23
generated procedures, 236
screens, 76
source statements, 181

scaling factor
establishing input, 112
establishing output, 118

screen
section of design layer, 16

SCREEN Debugger command, 509, 534-535
screen hierarchy, 223

multiple active, 224
single active, 223

SCREEN IMAGE option
SHOW Debugger command, 540

SCREEN INFO option
SHOW Debugger command, 537, 540

Screen Label
edit DFK screen, 273

Screen levels execution-time parameter, 263
SCREEN option

CLEAR verb, 378
COMMAND statement, 84, 86
DESCRIPTION statement, 101
DO BLOB verb, 387
KEY statement, 156
REFRESH verb, 459
REPORT statement, 173, 175
RUN COMMAND verb, 466, 467
RUN REPORT verb, 469, 470
RUN RUN verb, 471, 472
RUN SCREEN verb, 473, 475
RUN statement, 178, 180
SHOW Debugger command, 537
SUBSCREEN statement, 210, 213

SCREEN statement, 182-197
BLOCKMODE option, 39
NOPANEL option, 39
PANEL option, 39

Screen table execution-time parameter, 264
screen threads, 60, 223

moving among, 224
screen.qkd Debugger file, 503
screen.qkl Debugger file, 503
screens

Action Field commands in QKGO, 268
Action/Date Field commands in QKGO, 269
adding an Action bar, 71, 165, 193
advanced features, 27
calling lower-level, 473-477
canceling design specifications, 78
Color Display Attributes, 281
Command Mapping in QKGO, 257
Compatible Block mode, 37
Construction and Maintenance in QKGO, 258-260
Custom Commands Mapping, 281
Data Field commands in QKGO, 270
data read types, 38
designer options, 57
designing, 76
DFK Definition Entry, 275
displaying multiple, 27
displaying names, 27
Dynamic Function Keys, 271-272
Edit DFK Definitions, 273
entities, aligning, 74
entities, grouping, 79
executing, controlling, 507-509
executing, Debugger, 503
executing, interrupting, 509
Execution-Time parameters in QKGO, 261-267
exiting, 463
extended help, 101
Field mode, 37
finding text, 506
Full Screen Selection, 29
getting help, 28
layout, listing on screen, 201
length, setting, 184
mapping with QKGO, 279
modes, Action bar and Action fields, 72, 165, 194

574 PowerHouse(R) 4GL Version 8.4E

Index

screens (cont'd)
moving between, 20
moving to first, 20
overlayed, 27
Panel input, 37, 40
passing information between, 475
passing information to subscreens, 213
printing, 27
processing threads, 60
QUICK, 19
receiving data from higher-level screens, 188
refreshing, 27
returning control to QUICK, 517
saving, 76
setting attributes, 182
setting menu screens, 186, 189
setting size, 185, 187
showing information about, 537-541
slave screens, 188, 190
stacking, 190
stacking application lines in QKGO, 265
threads, establishing, 221
TIC Terminal Interface Configuration, 278-281
user options, 57
width, 223

SCROLL Debugger command, 536
scrolling

data fields, 29
fields, 109
horizonal, 30
records, primary and detail, 57-59
vertical, 30

searching
for QKGO file set, 255
for text in source code, 523
reversing sequence, 114

SECONDARY record-structures, 129
FOR control structure, 427
relationship, PRIMARY record-structures, 135
relationship, repeating record-structures, 137
retrieving, 138
Skip All command, 368

security
see also access
AB/SQL requirements, 126

segments
values, prompting in QUICK screen fields, 65

Select Box (#) command, 121
Select mode

controlling data retrieval, 333-337
processing, 252
retrieving next data, 25

select mode
adding data, 26
changing data, 25

SELECT option
SCREEN statement, 188

SELECT procedure, 356
error processing, 422
Panel input, 42

SELECT statement, 198

SELECT verb, 481-483
Panel input, 42
preventing generation, 117

SELECTBOX option
FIELD statement, 121

selecting
data, 24
data by pattern matching, 24
screen options in QKGO, 257

selection
box modes, FIELD statement, 121
boxes, displaying field options, 121
boxes, value captions, 125

selection boxes
changing information, 30
entering information, 30

SELECTMODE
predefined condition, testing processing mode, 245

SELECTMODE processing controlling, 356
SEMIEXCLUSIVE option

FILE statement, 133
separator characters

specifying, 121
Separator command, 22
SEPARATOR option

FIELD statement, 121
SEQUENCED option

BLOCK TRANSFER control structure, 372
sequential access

disabling, 334
SEQUENTIAL option

ACCESS statement, 65
FIELD statement, 115
GET verb, 431
WHILE RETRIEVING control structure, 495

SERIALIZABLE
isolation level, 230

SET option
SQL DECLARE CURSOR (stored procedure) statement,

97
SQL UPDATE verb, 490

SET statement, 199-205
PANEL option, 40

setting
Action bar, 183
Action field, 182
breaks, breakpoints, 504, 508, 513-514
breaks, STEP command, 504, 508
breaks, watchpoint, 504, 508, 509
conditions

WHILE loops, 492
DFK parameters, 271-272
watchpoints, 547

settings
QKView, 32

Settings menu
QKView, 36

severe messages, 484
SEVERE verb, 484
SHARE exclusivity

FILE statement, 133

Index

QDESIGN Reference 575

SHARED option
LOCK verb, 443
RUN THREAD verb, 479
THREAD statement, 223

shift
levels in DFK screen, 271

SHOW Debugger command, 537-541
ITEM option, 537

SHOW option
SHOW Debugger command, 540

SHOW statement, 206-207
showing

available predefined values, 539
characteristics of records, 539
source code, 528-529, 530, 531

side-by-side clusters
creating, 81

SIGNED option
DEFINE statement, 98
TEMPORARY statement, 217

SIGNIFICANCE option
FIELD statement, 121

SILENT fields
EDIT verb, 418

SILENT option
FIELD statement, 121

single active screen hierarchy, 223
six-digit dates

specifying, 106
SIZE option

DEFINE statement, 98
FIELD statement, 122
TEMPORARY statement, 217

Skip All command, 21
ACCEPT verb, 368

Skip Cluster command, 21
SKIP statement, 208-209

CLUSTER statement, 81
Skip to a field command, 21
skipping

fields, preventing, 120
specific lines or alignment groups, 208

SLAVE option
SCREEN statement, 188

slave screen
specifying, 188, 190

SLAVE screens
PATH procedure, 334

SOUNDEX option
FIND Debugger command, 523

source code
displaying, 528-529, 531
finding text, 507
procedures, listing, 236
searching for text in, 523

source statements
save file, clearing, 78, 203
saving, 181

SOURCE structure
specifying, 541

special characters
see also characters, metacharacters

special characters (cont'd)
separator characters for dates, 121

specifying
lock items, 446
SOURCE structure, 541

SQL CALL verb, 376-377
SQL CLOSE verb, 379
SQL DECLARE CURSOR (query-specification) statement,

94
SQL DECLARE CURSOR (stored procedure) statement,

96-97
SQL DELETE verb, 382
SQL FETCH verb, 424
SQL in the procedure, 319
SQL INSERT verb, 438-439
SQL OPEN verb, 450
SQL option

SET statement, 201
SQL UPDATE verb, 489
sql-substitution

ACCESS statement, 65
STABLE CURSOR

isolation level, 230
stacking

screens, 190
START verb, 485
STARTLOG verb, 486
STARTUP option

SCREEN statement, 72, 165, 184, 194
statements

ACCESS, 64-69
ACTIONMENU, 70-73
ALIGN, 74-75
BUILD, 76-77
CANCEL, 78
CLUSTER, 79-83
combining with control structures in compound, 370
COMMAND, 84-87
CURSOR, 88-93
DEFINE, 98-100
DESCRIPTION, 101
DRAW, 102
establishing conditional, 435
EXIT, 104, 504
FIELD, 105-125
FILE, 126-142
GENERATE, 143-145
GO, 146
HILITE, 147-150
ITEM, 151-155
KEY, 156-163
marking beginning and end in compound, 370
MENUITEM, 164-167
QSHOW, 168
query-specification (SELECT), 169-171
QUIT, 172
repetitive, 239
REVISE, 176-177
SAVE, 181
SCREEN, 182-197
SELECT, 198
SET, 199-205

576 PowerHouse(R) 4GL Version 8.4E

Index

statements (cont'd)
SHOW, 206-207
SKIP, 208-209
SQL DECLARE CURSOR (query-specification), 94
SQL DECLARE CURSOR (stored procedure), 96-97
SUBSCREEN, 210-215
syntax, help, 504
TARGET, 216
TEMPORARY, 217-220
THREAD, 221-225
TITLE, 226
TRANSACTION, 228-232
USE, 233

STEP command
controlling execution, 507
setting, 504, 508

STEP Debugger command
SCREEN Debugger command, 535

stepping
controlling execution, 507

STOPLOG verb, 487
stopping

record retrieval, 375
STOPSCREEN option

SCREEN statement, 188
stopscreens, 20
stored procedures, 96
storing

data, Entry mode, 248
predefined items, values, 367

strings
displaying on Action bar, 70, 164
external subroutines, 412

subfiles, 140
see also files

SUBPATH
PATH procedure, 334

subroutines
executing external, 390-416
executing internal, 417
external, terminal settings, 267
internal, creating, 326

SUBSCREEN statement, 210-215
subscreens

accessing from DESIGNER procedure, 304
Action field commands, 258
Data field commands, 258
Dynamic Function Keys, 258
error handling, 212, 474
establishing, 210, 221
Execution-Time parameter values, 258
fieldmarking, 212, 222
passing records between, 214
passing temporary items, 219
receiving data from higher-level screens, 188
returning to higher-level screens, 317
specifying mode, 212, 223
suppressing ID-numbers, 211, 221
Terminal Interface Configuration (TIC), 258

SUM option
ITEM statement, 152
TEMPORARY statement, 218

SUMMARY option
SET statement, 203

summing
values in fields, 152

suppressing
APPEND procedure, 90, 131
display of values in fields, 116
field ID-numbers and labels, 74, 84, 173, 178
ID-numbers, 79
ID-numbers, subscreens, 211, 221

syntax
help, 504

SYNTAX option
SET statement, 200

T
tablename option

LOCK verb, 442
tables

adding data, 21-22
Debugger commands, 511
deleting data, 26
effects of PUT verb, 455
error processing, QDESIGN procedures, 420-422
item datatype defaults, 217
locking, 443
naming rule, 126
QDESIGN procedures, 293-294
QDESIGN statements, 61-63
QDESIGN verbs and control structures, 361-363
record status, 244
reserving relational, 232

TARGET statement, 216
temporary

items, assigning initial values, 218, 219
items, passing to subscreens, 219
save file, clearing, 78

TEMPORARY statement, 217-220
terminal

interface configuration, defining, 279
interface configuration, modifying, 278
memory, 191-194
settings, controlling for I/O, 267

Terminal buffer
execution-time parameter, 264
QKGO parameter, 266

terminal lines
clearing, 378

Terminal Time-out execution-time parameter, 264
terminal-group

TIC screen, 260
terminals

manual carriage return and line feed, 203
supported, 279

TERMINATE option
COMMAND statement, 86
REPORT statement, 175
RUN statement, 180

testing
field values, 246
processing modes, 245

Index

QDESIGN Reference 577

testing (cont'd)
record retrieval status, 245
record status, 243-244
user response status, 245

text
positioning, 226

TEXT option
DO BLOB verb, 387

The, 511
THEN option

IF control structure, 435
THICK option

DRAW statement, 102
THIN option

DRAW statement, 102
THREAD statement, 221-225
three-digit year

specifying, 110
TIC files

Binding Section, 284
formatting, 283
Key Section, 283
modifying, 283

TIC resource file, 281
TIC Terminal Interface Configuration

QKGO Screen, 278-281
Time out

execution-time parameter, 264
time-out values

setting for databases, 265
TITLE statement, 226

qualifications, 226
titles

positioning, 226
TO GROUP option

SKIP statement, 208
TO LINE option

SKIP statement, 208
TO option

DRAW statement, 102
trailing sign

FIELD statement, 122
TRAILING SIGN option

FIELD statement, 122
TRANSACTION MODEL option

SCREEN statement, 188
TRANSACTION option, 140

COMMIT verb, 380
CURSOR statement, 91
FILE statement, 133
ROLLBACK verb, 465
SET statement, 201
SQL CALL verb, 376
SQL DELETE verb, 382
SQL INSERT verb, 438
SQL UPDATE verb, 489
START verb, 485

TRANSACTION statement, 228-232
transactions

dead-lock free, 232
default in QDESIGN, 232
definitions RESERVING list, 485

transactions (cont'd)
implicit starts, 485
overriding default attributes, 231
relational physical, 540

transcript of Debugger session, 510
TRUE option

LET Debugger command, 526
two-digit years

specifying, 110
TYPE Debugger command, 543-544
type-option

CURSOR statement, 89
DEFINE statement, 98-100
FILE statement, 127-132
TEMPORARY statement, 217

types
files, 127

U
UNDERLINE option

FIELD statement, 111
HILITE statement, 149

UNIQUE option
ACCESS statement, 65
GET verb, 432

UNIX errors
processing, 467, 470, 472

UNLOCK verb, 488
unlocking

files, 488
records, 445

UNSIGNED option
DEFINE statement, 98
TEMPORARY statement, 217

UP option
SCROLL Debugger command, 536

UPDATE
automatic commit point, 184, 228
automatic commit point, TRANSACTION statement, 228

Update command, 23
Update Next (UN)

FIND procedure, 318
Update Next command, 23
UPDATE option

CURSOR statement, 91
FILE statement, 132, 134
SQL CALL verb, 376, 382, 438, 489
SQL UPDATE verb, 489

Update phase
Entry mode, 249
Retrieval Cycle phase, 251

UPDATE procedure, 357-359
backing out, 357
defaults, 357
DISABLE verb, 384
error processing, 422
handling errors, 357
PREUPDATE procedure, 357
PUT verb, 358
Update phase, 249

578 PowerHouse(R) 4GL Version 8.4E

Index

Update Return (UR)
EXIT procedure, 317

Update Return command, 23
Update Stay command, 23
update=fkc_put_order program parameter, 359
updating

data, 23
data records, 455-458
failure, corrective action, 298-299
files, 357-359
volumes, 26

uppercase
characters, shifting to lowercase, 107

Upshift actions execution-time parameter, 264
UPSHIFT option

FIELD statement, 107
SET statement, 201

USE Debugger command, 545
USE file

listing source statements on screen, 201
USE option

REVISE statement, 176
SET statement, 200

USE statement, 233
user

break, Debugger command, 546
break, executing Debugger from QUICK, 546
options in screens, 57
response status, testing, 245

user interface
advanced features, 27

user-breaks
continuing execution after, 517

user-defined
DELETE procedure, 300

users
break, 509
break, controlling execution, 507

USERS INCLUDE option
SCREEN statement, 189

USING option
ACCESS statement, 65
FIELD statement, 115
GET verb, 432
WHILE RETRIEVING control structure, 495

using terminal memory, 192
utilities

PowerHouse, 14

V
validating

data, Entry mode, 248
multi-segment indexes, 312

VALUE parm
DO EXTERNAL verb, 413

values
editing fields, 418-419
entering null, 22
fields, editing, 312-313
fields, testing, 246
initial, displaying, 120

values (cont'd)
permanent files, 116
prompting, 452-453
recalculating, 519, 521
unprintable, DISPLAY Debugger command, 519
unprintable, EXAMINE Debugger command, 521

VALUES option
FIELD statement, 122
SQL INSERT verb, 439

value-set
DEFINE statement, 99

verbs
ACCEPT, 364-369
BREAK, 375
CLEAR, 378
COMMIT, 380
DELETE, 381
DISABLE, 384
DISPLAY, 385-386
DO BLOB, 387-389
DO EXTERNAL, 390-416
DO INTERNAL, 417
EDIT, 418-419
ERROR, 420-423
GET, 431-434
INFORMATION, 437
LET, 440
LOCK, 442-447
MEMOLOG, 448
NULL, 449
PERFORM APPEND, 451
procedure compatibility, 237-239
PROMPT, 452-453
PUSH, 454
PUT, 455-458
REFRESH, 459
REQUEST, 460
RETURN, 463
ROLLBACK, 465
RUN COMMAND, 466
RUN SCREEN, 473-477
RUN THREAD, 478-480
SELECT, 481-483
SEVERE, 484
SQL CALL, 376-377
SQL CLOSE, 379
SQL DELETE, 382
SQL FETCH, 424
SQL INSERT, 438-439
SQL OPEN, 450
SQL UPDATE, 489
START, 485
STARTLOG, 486
STOPLOG, 487
table, 361-363
UNLOCK, 488
WARNING, 491

VERIFY option
SET statement, 203

version
document, 2

Vertical lines execution-time parameter, 264

Index

QDESIGN Reference 579

VERTICAL option
CLUSTER statement, 80

VIA option
ACCESS statement, 66, 432
FIELD statement, 115
GET verb, 432

VIAINDEX option
ACCESS statement, 67
FIELD statement, 115
GET verb, 432
WHILE RETRIEVING control structure, 496

View menu
QKView, 35

W
WAIT option

COMMAND statement, 86
FILE statement, 134
REPORT statement, 175
RUN REPORT verb, 470
RUN RUN verb, 472
RUN statement, 180
TRANSACTION statement, 230

warning messages, 491
display options, 147
enabling, 203
prompting user for verification, 203

WARNING verb, 491
WARNINGS option

SET statement, 203
WATCH Debugger command, 508, 547

PREDEFINED option, 547
watchpoints

continuing execution after, 517
controlling execution, 507
setting, 504, 508, 509, 547
turning off, 547

WHEN CALLING option
RUN SCREEN verb, 475

WHEN NEGATIVE option
TEMPORARY statement, 219

WHEN POSITIVE option
TEMPORARY statement, 219

WHEN RETURNING option
RUN SCREEN verb, 475

WHERE option
query-specification statement, 170
SQL UPDATE verb, 490

WHILE control structure, 492-494
WHILE loop

conditional prompting, 492
WHILE RETRIEVING control structure, 495-499
WINDOW option

SCREEN statement, 189
WINDOW WIDTH option

RUN SCREEN verb, 475
RUN THREAD verb, 479
SUBSCREEN statement, 213
THREAD statement, 223

windows
pop-up data entry, 30

windows (cont'd)
pop-up, data entry, 120
pop-up, help, 185
pop-up, messages, 186

WRAPAROUND option
SET statement, 203

WRITE option
FILE statement, 132

write-only access
record-structures, 132

writing
DESIGNER procedures, 249
procedures, 238
procedures, guidelines, 237
results of BUILD or GENERATE statement, 200
results of BUILD or GENERATE statement, source

statement save file, 201

Z
zeros

displaying leading, 121

580 PowerHouse(R) 4GL Version 8.4E

Index

	QDESIGN Reference
	Table of Contents
	About this Book
	Overview
	Conventions in this Book
	Getting Help
	Cognos PowerHouse 4GL Documentation Set
	Cognos PowerHouse Web Documentation Set
	Cognos Axiant 4GL Documentation Set

	Chapter 1: Introducing QDESIGN and QUICK
	About PowerHouse
	Introducing QDESIGN
	The Sections of a QDESIGN Screen Design

	Introducing QUICK

	Chapter 2: QUICK User Interface
	Using QUICK Screens
	Menu Screens and Data Screens
	QUICK Screen Commands
	Moving from Screen to Screen
	Entering Data
	Changing Data During Data Entry
	Saving or Updating Data
	Finding Data
	Changing Data in Find or Select Mode
	Adding Data in Find or Select Mode
	Deleting Data
	Running Reports and Volume Updates
	Miscellaneous Commands
	Advanced User Interface Features
	Overlayed Screens
	Messages
	Help
	Entering Action Commands
	Fixed and Scrolling Data Fields
	Pop-up Data Entry Windows
	Selection Boxes

	QKView (Windows)
	Configuration
	Settings
	QKView Considerations
	The QKView Menus

	Input Modes
	Terminology (MPE/iX)
	Device Settings (MPE/iX)
	Read Types (MPE/iX)
	Supporting QDESIGN Syntax
	Program Parameters
	Field Mode
	Panel Mode
	Compatible Block Mode (MPE/iX)

	Multiple Command Processing
	Command Sources
	Input Buffers
	Order of Processing
	Error Handling
	Examples

	Partial-Index Retrieval in QUICK
	Limitation on Retrieval from B-Tree Indexes (MPE/iX)
	Scrolling Primary and Detail Records
	Screen Designer Options
	Screen User Commands
	Cache Contents
	Scrolling Commands

	Screen Threads

	Chapter 3: QDESIGN Statements
	Summary of QDESIGN Statements
	ACCESS
	ACTIONMENU
	ALIGN
	BUILD
	CANCEL
	CLUSTER
	COMMAND
	CURSOR
	[SQL] DECLARE CURSOR (query-specification)
	[SQL] DECLARE CURSOR(stored procedure)
	DEFINE
	DESCRIPTION
	DRAW
	EXIT
	FIELD
	FILE
	GENERATE
	GO
	HILITE
	ITEM
	KEY
	MENUITEM
	QSHOW
	query-specification(SELECT)
	QUIT
	REPORT
	REVISE
	RUN
	SAVE
	SCREEN
	SELECT
	SET
	SHOW
	SKIP
	SUBSCREEN
	TARGET
	TEMPORARY
	THREAD
	TITLE
	TRANSACTION
	USE

	Chapter 4: QDESIGN Procedures Overview
	Default Procedures and Designer-Written Procedures
	Procedure Sequence Guidelines
	QDESIGN Verbs and Control Structures
	Writing Procedures
	Procedural Statements

	Verb and Procedure Compatibility
	Testing Processing Status Using Predefined Conditions
	Testing Record Status
	Testing Record Retrieval Status
	Testing User Response Status
	Testing Processing Modes

	Testing Entered Values in Designer-Written Field Processing Procedures

	Chapter 5: QUICK's Processing Modes
	Understanding the Relationship Between QDESIGN and QUICK
	Understanding QUICK's Processing Modes
	Entry Mode Processing
	The Initialization Phase
	The Entry Phase
	The Correction Phase
	The Update Phase

	Find Mode Processing
	The Initialization Phase
	Path Determination Phase
	The Retrieval Cycle Phase
	Notes on Find Mode

	Select Mode Processing
	Append Mode Processing
	Procedures and Verbs Used in Append Mode Processing
	Action Field Commands Used in Append Mode Processing
	Append Mode Processing and Primary Record-Structures
	Append Mode Processing and Detail Record-Structures
	Notes on Append Mode Processing

	Chapter 6: Customizing QUICK with QKGO
	QKGO: The QUICK Execution-Time Parameter File-Set
	Alternatives to Custom QKGO file-sets
	Starting QKGO
	Exiting QKGO
	Choosing Options on QKGO Screens
	Getting Help
	Performing Lookups in Fields on QKGO Screens

	The Construction and Maintenance Screen
	Specifying QKGO File-Sets
	Creating QKGO File-Sets
	Copying and Converting QKGO File-Sets
	Modifying or Deleting a QKGO File-Set
	Physical QKGO File-Sets
	Changing Values in the Subscreens

	The Execution-Time Parameter Values Screen
	Using QKGO to Adjust Execution-Time Parameters
	Screen Tables and Work Area Parameters
	External Subroutines

	The Action Field Commands Screen
	The Action and Data Field Commands Screen
	The Data Field Commands Screen
	The Dynamic Function Keys Screens
	Action Field Commands

	The Edit DFK Definitions Screen
	Action Field Commands

	The DFK Definition Entry Screen
	The Terminal Interface Configuration Screen
	The TIC System of Screens
	Modifying an Existing Terminal Interface Configuration
	Creating your own Terminal Interface Configuration Group
	The Command Binding Screens
	Action Field Commands

	The Color Display Attributes Screen (OpenVMS)
	The Custom Commands Binding Screen
	Custom Command Binding Options

	Modifying TIC Files
	Introduction
	The Format of a TIC File
	QUICK Commands

	QUICK Initialization File

	Chapter 7: QDESIGN Procedures
	QDESIGN Procedure Summary
	APPEND
	BACKOUT
	DELETE
	DESIGNER
	DETAIL DELETE
	DETAIL FIND
	DETAIL POSTFIND
	EDIT
	ENTRY
	EXIT
	FIND
	INITIALIZE
	INPUT
	INTERNAL
	MODIFY
	OUTPUT
	PATH
	POSTFIND
	POSTPATH
	POSTSCROLL
	POSTUPDATE
	PREENTRY
	PRESCROLL
	PREUPDATE
	PROCESS
	SELECT
	UPDATE

	Chapter 8: QDESIGN Verbs and Control Structures
	Summary of QDESIGN Verbs and Control Structures
	ACCEPT
	BEGIN...END
	BLOCK TRANSFER
	BREAK
	[SQL] CALL
	CLEAR
	[SQL] CLOSE
	COMMIT
	DELETE
	[SQL] DELETE
	DISABLE
	DISPLAY
	DO BLOB
	DO EXTERNAL (MPE/iX)
	DO EXTERNAL (OpenVMS)
	DO EXTERNAL (UNIX)
	QDESIGN - DO EXTERNAL (Windows)
	DO INTERNAL
	EDIT
	ERROR
	[SQL] FETCH
	FOR
	GET
	IF
	INFORMATION
	[SQL] INSERT
	LET
	LOCK
	MEMOLOG (MPE/iX)
	NULL
	[SQL] OPEN
	PERFORM APPEND
	PROMPT
	PUSH
	PUT
	REFRESH
	REQUEST
	RETURN
	ROLLBACK
	RUN COMMAND
	RUN REPORT
	RUN RUN
	RUN SCREEN
	RUN THREAD
	SELECT
	SEVERE
	START
	STARTLOG (MPE/iX)
	STOPLOG (MPE/iX)
	UNLOCK
	[SQL] UPDATE
	WARNING
	WHILE
	WHILE RETRIEVING

	Chapter 9: Debugger
	Debugger Overview
	General Terms
	Running Debugger
	Compiling Screens for Debugger
	Running Screens with Debugger (MPE/iX)
	Running Screens with Debugger (OpenVMS, UNIX, Windows)
	Setting Breaks in a Screen
	Getting Help
	Exiting Debugger
	Continuing Execution

	Displaying Source Code
	Finding Text in the Source Code
	Controlling Execution
	Breakpoints
	Stepping
	Watchpoints
	User Break

	The Screen Environment
	Transcript of the Debugging Session

	Chapter 10: Debugger Commands
	Debugger Command Summary
	BREAK
	BYE
	CLEAR
	CONTINUE
	DISPLAY
	EXAMINE
	EXIT
	FIND
	GO
	LET
	LIST
	NEXT
	PREVIOUS
	QSHOW
	SAVE
	SCREEN
	SCROLL
	SHOW
	STEP
	TYPE
	USE
	User Break
	WATCH

	Index

