
Keven
Rectangle

The
Application

Guide
Version 3.0X March 1998

Table of Contents

Chapters

Chap. 1: Introduction

Chap. 2: The Database

Chap. 3: The 3-D Spreadsheet

Chap. 4: Spreadsheet Operations

[enclosed]

[enclosed]

[enclosed]

[enclosed]

Chap. 5: Spreadsheet Functions

Chap. 6: Query Questions [enclosed]

Chap. 7: First Reports

Chap. 8: Printing the Report

Chap. 9: Graphics

Chap. 10: Search Sets [enclosed]

Chap. 11: UDQFs

Chap. 12: Macroprogramming

Chap. 13: Detail List Reports

Chap. 14: QueryCa1c's Editor

Chap. 15: External File Reads

Chap. 16: Pseudodatabases

[enclosed]

[enclosed]

[enclosed]

Chap. 17: Advanced Statistical Functions

Technical Appendices

A: Installing QueryCa1c
B: Loading QueryCa1c's Dictionary (IMAGE, KSAM, MPE & SQL)
C: The differences & similarities between MPE, KSAM, IMAGE & SQL
D: How a QueryCalc cell is constructed
E: How a query question is constructed
F: How the spreadsheet is constructed
G: How the detail list report writer operates

1 The design philosophy of QueryCalc

An Introduction

A Simple but At the heart of every HP3000 lies a very simple idea. The HP3000's data-
Powerful Idea base, IMAGE, was designed to be no more than an electronic filing cabinet,

and it was orginally meant to be just as easy to use. Somehow, over the
years, this simple idea has been confused by a river of jargon. From this
point on, we would like you to forget the stack of manuals you have on the
shelf describing IMAGE and the intricacies of DBGETs, DBFINDs and
DBPUTs. None of that information is particularly necessary to understand-
ing why you would want to use IMAGE databases, nor how you might use
existing databases to your advantage.

You bought your HP3000 to replace your steel filing cabinets with electron-
ic ones. Now you should be able to get the information out at least as easily
as you would have from the old filing cabinets. QueryCalc was designed to
allow you to create management reports with ease, without a great deal of
fuss or memorization. QueryCalc combines two very basic office ideas,
spreadsheets and filing cabinets, into a powerful tool. All that's changed is
that now the spreadsheets and filing cabinets are electronic.

This ease of use doesn't mean that anything's hidden from you. Quite the
opposite, in fact. If you're ever really going to understand what's going
on, you must be able to see what's in your databases. QueryCalc opens
IMAGE up and makes your information visible to you.

The success of spreadsheets on computers has been historic, especially on
personal computers. A spreadsheet encourages a "What if .. " form of anal-
ysis. But this is not the primary manner by which you are going to use
QueryCalc. QueryCalc allows you to extract information directly from the
databases resident on your HP3000 and manipulate that information in the
ways you require. If the computer is ever going to pay for itself, at least in
the way you imagined it would before you bought it, this is where it's go-
ing to do it.

1- 2 / An Introduction

The
Spreadsheet
as a Report

Writer

Power
Software on
the HP3000

The single feature that made the electronic spreadsheet a success was visible
calculation. You can see the relationships between the numbers on the page
and you can change them. This feature alone accounts for much of the pop-
larity of spreadsheets on personal computers.

QueryCalc is a 26-page, true three-dimensional spreadsheet. And Query-
Calc can be used simply as a spreadsheet. Operations may occur over indi-
vidual cells scattered over multiple pages, columns, rows, vectors through
pages or as complete cubes. QueryCalc has all of the features and behaviors
you would expect from the very best of the personal computer spread-
sheets. But that's only the surface; QueryCalc is much more than that.

A normal spreadsheet is a large, flat plane of rows and columns. If you
wanted to enter the sales figures for January, February and March, you
would have to go off to the side, add the sales receipts yourself and type the
answers in. Or you might use some form of a program to get that same in-
formation out of your IMAGE databases and transfer it into your PC by
down-loading an HP3000 file to a PC, Doing either procedure is cumber-
some, tedious work where nothing is immediately intuitive or transparent.
And it will be just as much trouble to do it next month when a newly calcu-
lated, updated report is needed again.

Nevertheless, it's obvious that there is a strong pressure to do something
exactly like that. Probably someone in your organization is already using
one or the other procedures, trying to get information out of your IMAGE
databases into a form that he or she can understand and is familiar with on a
personal computer.

QueryCalc is different. Where a normal spreadsheet is thin and flat, Query-
Calc has depth because of its links into IMAGE. Every cell in QueryCalc's
26 pages can be a database inquiry question into anyone of 10 IMAGE da-
tabases. Defining sums and relationships between the information extracted
from the databases is simple because of the spreadsheet nature of the report.
Text formatting and reorganization take on word processing-like attributes.
QueryCalc is a "what-you-see-is-what-you-get" (WYSIWYG) report writ-
er. No trial formats or trial compilations are necessary. You know what the
output will look like before you print it because it's right there on the
screen.

How a
Typical
Report
is Built

The spreadsheet as report writer / 1-3

The database
and the
spreadsheet

Idaho/Montana/Nevada Division

Books
Best Sellers
Literature
Sports
Nature
Biography
Reference
Computer

Periodicals

QueryCa1c was designed so that everything is visible while you are putting
a report together. The report you create, while you are creating it, is like
putty. If you don't like what you've done, you can change it immediately.
The data you retrieve from the IMAGE databases is completely open for
your inspection. Reports can often be assembled 5 to 20 times faster than
they could be using any other method. And yet the entire process is simple
enough that you can learn to use it by mimicking someone else's report.
QueryCa1c can then be scheduled to run in the middle of the night, gather-
ing and building your standard reports, week after week, without any fur-
ther operator intervention.

Consider the report on the following page. QueryCa1c has a variety of cal-
endar functions so that date and time equations may be placed in cells, as
they have been in the upper left hand comer of this report. QueryCa1c read-
ily allows you to transmit any escape sequences necessary for your particu-
lar printer to print in bold, italics or enlarged print, as was done for the title
headings shown.

The text that fills the left hand column of the report is nothing more compli-
cated than text labels, typed in by the person composing the report as he or
she wished them to be.

1-4 / An Introduction

But it is the right hand column of numbers that defines the power of Query-
Calc. The numbers in the right hand column were not simply typed in, as
would normally be the case, but are the results of database query questions
which reside in their respective cells. The displayed results came directly
out of IMAGE database(s) into the spreadsheet, were summed and format-
ted and are now ready to be printed.

Creating the query questions is easily done. A uniform but powerful Eng-
lish-like syntax was created to allow you to ask just about anything imagin-
able. A question for one cell in this report might be "(Show me the) sum of
sales+receivables when date ib (is between) 19880611,19880617 and divi-
sion is NW and category is 521".

The next query question down the right hand column is quite likely to be
very similar to the one above it, except that now perhaps the category is 522
instead of 521. Because of the spreadsheet nature of QueryCalc, a single
query question may be replicated down a column. The query questions
may then be modified using QueryCalc's on-line cell editor. More sweep-
ing changes can be as easily accomodated with QueryCalc's search and re-
place function.

That's all there is to getting data out of IMAGE, KSAM or MPE databases.
If you don't specify the dataset or database, QueryCalc will determine the
proper database and dataset to get this information on its own. If multiple
chained paths are available, QueryCalc will optimize the question to search
down the shortest path. A variety of techniques were employed in the de-
sign of QueryCalc to make its database searches as fully self-optimizing as
possible.

To complete the report on the right, only the column totals remain. Subto-
tals are created as column sums of the cells directly above [e.g., "SUM
(EI5:E21)"]. Displaying a grand total is no more difficult than composing a
statement summing the subtotal cells, such as "E23+E34".

The report is now done. Putting an actual QueryCalc report together is no
more difficult than it appears to be here.

A typical report /1-5

Date: 1\1,
Tjlh Onday J
-ue: 9:24 ' I1ne 19AM ,1995

Total sales' Td
• .il ahO/AK

OregOn;w. <V10ntana/N,
13 aShington D' eVada
ooks IVision
Best SL' ellers
lteratl1re

SPOrts
Natl1re
Biograph
§eferenc!
Ol11Pl1ter

R·e110dica1s
Maga .Nt 21nes
eWspa

JOl1rnals 'Pers

4,562.90
2,567.23

~
83,430.82

44,745.98
9,523.23
6,942.02
3,382.25

12,242.79
6,130.33

The time to assemble this report may be as long as
a few hours if it is your first report. But, by your
third or fourth report, you will easily be able to put
together a similar report in 30 minutes or less.
The majority of that time will be consumed in
nothing more elaborate than just typing the report
in the way you wish it to appear.

1-6 / An Introduction

The Design
Criteria of
QueryCalc

How
QueryCalc

Works

It doesn't take a good manager long to realize that the information being ac-
cumulated in the corporation's databases can tell him much about his com-
pany, especially about what's making money and what's not. The reports
that are needed are often spur-of-the-moment questions, such as shipping
cost analyses, inventory turn-around times, profit and loss sheets for the
various subdivisions. These reports weren't initially planned for, but now
they could be eminently profitable.

QueryCalc was designed from its inception to provide a mechanism so that
members of the management staff could go to lunch, talk about what infor-
mation they need, go back to the office and have the reports ready, with
graphics, by about three in the afternoon. The report may be written by ei-
ther a member of the programming staff or, even more likely, by one of the
people at lunch. QueryCalc reports can be assembled so quickly that the fi-
nal report can be put together while it is still being discussed.

Quite likely, better than 70% of the ad hoc reports that were designed on the
spur of the moment have lasting value when regularly updated with new
data, and will be used again. QueryCalc was designed to produce reports
which are efficient, self-optimizing and capable of being run as regularly
scheduled production reports.

Each of QueryCalc's 26 pages is composed of 26 columns by 90 rows
(2340 cells) for a total of 60,840 cells. If you've had any previous spread-
sheet experience, you already have a very good idea how to use QueryCalc.
Although QueryCalc performs all normal spreadsheet functions (indeed
many functions like depreciation or cashflow are far better implemented than
you've ever seen them before), QueryCalc was meant first and foremost to
be an HP3000 IMAGE database report writer.

To be the most plastic report writer possible, QueryCalc was designed
around the concept that characterizes the best of the word processors:
"what-you-see-is-what-you-get". If you make a change in a column's
width, move text, or insert rows, what you see on the screen will be what
you will see on the printed page. The output from QueryCalc can be directed
to any printer on the HP3000, your terminal's printer or to an MPE(flat)
ASCII file where it can be picked up by HPWORD, DSG, or other such
software for further processing or incorporation into another, longer docu-
ment.

How to
Use The

Applications
Guide

How QueryCalc works /1-7

page E

Books
Best Sellers 34,345
Literature 4,523
Sports 13,982
Nature 1,582
Biography 983
Reference 11,150
Computer 1,609

Periodicals

The 3-dimensional nature of QueryCalc

The column widths for each page are independently configurable. Thus
each page can be formatted differently, However, QueryCalc is fully three
dimensional. A normal QueryCalc cell reference might be Ag15, where the
first letter specifies the page (A), the second the column (g) and the number
the row (15) indicating where the data is to come from. A sum [e.g.,
"SUM(BG1S:EN25)"] may range over a column, a row, a rectangle, a vec-
tor through the spreadsheet, or a cube as in this example, Any cell that ex-
ists anywhere on any page is referenceable, even if its width has been col-
lapsed to zero so that it will not print.

This Applications Guide is constructed in much the same fashion as Query-
Calc. QueryCa1c is a language-like program constructed of primitives.
There are only four types of cells in QueryCalc (numeric equations, text la-
bels, text equations and query questions) and only one command line.
Everything in QueryCalc is built around these few primitives. What this
means is that if you know how to do all of the simple procedures in
QueryCalc, you'll have a good idea how to do something more complex.

Each chapter in the Applications Guide is directed towards a specific sub-
ject. Most of the chapters contain examples of actual reports, many of
which reference the reports found in the demonstration account supplied
with QueryCalc.

For the first several chapters, the keystrokes necessary to create each report

1-8 / An Introduction

are listed, either in whole or in part. Practice entering and executing these
reports. You will learn best by doing, not just by simply reading.

Advice
for the

New User

QueryCa1c was designed so that one useful report may be mimicked many
times over. And that, by the way, is one of the three basic "tricks" known
to every successful programmer. At the risk of giving away the sorcerer's
secrets, there are just these three items worth remembering:

1. Be aggressive. This is the most important trick of program-
ming you'll ever learn. QueryCa1c was designed precisely so
that you can be aggressive. QueryCa1c opens your IMAGE,
KSAM or MPE databases in a read-only mode without locking
the datafiles. Because you can't modify, create or delete any in-
formation in the database, you can do no harm to the database.
QueryCalc opens your databases with such a light touch that
system backups can proceed while you are executing you re-
ports.

NOTE

The worst harm that you can do is destroy your own work. But
if sufficient time has elapsed since the report was first created,
quite likely an earlier (if not identical) version of the report has
been stored on a backup tape. If you work in a large organiza-
tion and do not know your system managers well, such times
are excellent opportunities to get to know them better.

QueryCa1c was designed to automatically generate efficiently
executed reports and will guide you towards the creation of a
well thought-out construction. How can you tell if your report
is efficient? Generally, just by the time it takes to execute. If
you have done something that is quite slow (which may imply
some sort of inefficiency), you will especially notice it in ses-
sion mode. Execution that is taking some time can always be
stopped in mid-process by pressing the CNTL- Y keys. You
may then examine the cells that are taking so much time. By the
time you are ready to job-stream your reports, they are almost
always quite well-constructed and efficient.

The bottom line moral remains: be agressive. You can do no
harm to the databases, to the HP3000, or generally do anything
that is all that inefficient. Being agressive is the only way you
will learn.

NOTE

Advice to the new user / 1-9

2. Program by imitation. The second great trick of program-
ming is called"ditto programming". Every good programmer
knows the trick. When you look at someone else's reports,
think abstractly. The report you see won't be precisely the same
one you need, but it is probably more similar than different. You
already know a great deal of information about your own data-
bases. Even if you don't know what the databases are called or
where they are, you have a very good idea of what's in them
and how important that information is to you. And you know
what information you need to see. Search through the Applica-
tions Guide and find reports which generate report structures
similar to those which would be useful to you. You should be
able to write comparable reports using your own databases in 2
or 3 days.

3. Know your databases. This third bit of advice is critical.
There is a growing tendency among many companies which
manufacture report writing programs to isolate the user from the
database, to relieve him of the requirement of intimately know-
ing the databases from which he is extracting his information. If
that is not an easy recipe for disaster, it is at least a quick recipe
for confusion and error.

A database is meant to be the image of a steel filing cabinet,
filled with paper records. Nothing more. If you could have
found the information you needed in a standard filing cabinet,
you can find it in your databases. This is especially true of
IMAGE on the HP3000, as you'll see in the following chapter.
Almost all of the difficulty you'll have in using databases will
come from determining what someone else called the items and
finding out where they're located. But that's much the same
problem you'd have when first using someone else's standard
filing cabinets. The easiest solution is the obvious one: ask
whomever is in charge of your databases for an explanation.

Keven
Rectangle

2

What is
an IMAGE
Database?

Understanding the electronic filing cabinet

The Database

The HP3000, with its IMAGEt databases, was bought to replace steel filing
cabinets and paper records. The advantage that accrues in making your
records electronic is the ease with which you can now search, collate and
extract information. You now have the capability to generate analytical sum-
maries which you never would have previously done using the paper
records, simply due to the magnitude of the effort required.

IMAGE is a particularly simple, but powerfully and efficiently implemented
database. IMAGE was designed from its beginnings to be the image of a
steel file cabinet (hence its name). QueryCalc extends this basic idea as a
combination of two procedures that are common to every office: filing cabi-
nets and spreadsheets. The filing cabinets and spreadsheets have simply be-
come electronic. Even so, procedures remain unchanged from those you
would normally perform if you were to gather up the information from the
paper records. With QueryCalc, you are going to flip through the records in
filing cabinets, calculate sums and averages, and enter that information di-
rectly onto the spreadsheet, creating complex summary reports rather easily.

So, if QueryCalc is to be used effectively, it becomes important to under-
stand how the filing cabinet is put together. To do this, we'll use the train-
ing database that was supplied with your copy of QueryCalc. This training
database is a real database, containing 10,000 invoices and 6,000 labor tick-
ets. The database was supplied by one of QueryCalc's user organizations, a
construction company. The names of individual people, projects and com-
panies have been altered, but otherwise, it's real.

tIMAGE is not the only database structure found on the HP3000, but it is the one most
commonly used. Other common databases which QueryCalc supports are KSAM and
MPE files (often called flat files). All database structures are fundamentally the same. And
all database queries are identical in QueryCalc. Because IMAGE is the most commonly
used database, this chapter emphasizes IMAGE. But, if you understand IMAGE, you au-
tomatically have a good feel for the others.

A database is the electronic equivalent of a filing cabinet. Each of its indi-
vidual drawers are datasets. The names come from mathematical set theory,
but the names are generally inconsequential. It would have been just as
easy to call the database the filing cabinet and the datasets filing drawers. If
IMAGE had been designed in today's "user-friendly" climate, the names
would probably be different. But IMAGE was designed in the early 1970's

when the principal users were data processing
professionals with substantial mathematical
training. Databases and datasets were appropri-
ate names to their education and backgrounds.
We want you to think of IMAGE as a steel filing

2-2 I The Database

Visualizing
a Database

The Database

cabinet filled with drawers.

What should you expect to find when you open
a file drawer (a dataset)? Hundreds of manila
folders. In IMAGE, the folders are called
records. An electronic database differs from a
paper-filled cabinet drawer in one very particular
way. In any single real cabinet drawer you may
have a mix of folder types: some personnel
records, some invoices, and anything else that
might fit in the drawer. That won't happen in a
database. An electronic file drawer (a dataset)

can contain only one type of record. The whole drawer must be dedicated to
invoices (or payroll checks or employee records). The dataset (the drawer)
may be very large or it may be very small, but it will always be consistent

Datasets

and uniform.

This same requirement of uniformity holds true for what's written into each
manila folder (record). With paper records, you have the capacity to write
information in the margins, scribbling notes anywhere where you can find
room. Again, that can't happen in an electronic record. You can only write
or read information from lines previously specified on the record. Every
record in the dataset (the drawer) is identical in format. It's what's entered
in those specific lines that makes up your database information. These line-
by-line entries are called dataitems in IMAGE.

Who decided what dataitems make up a record? Quite often, it's you-or
someone just like you sometime in the past. The electronic record in the da-
taset is generally no more than what you would have typed onto a paper

Designing
the

Database

Designing the database / 2-3

record if it had been up to you to generate a form. Presume that you are in
charge of a construction company and it's your responsibility to generate a
labor ticket form for the employees to fill out daily. What would you make
the labor ticket look like if it had to be done on paper?

Quite likely, you would choose something like this:

EMPLOYEE LABOR TICKET
Name: _
Date: _

Job Number: _
Regular hours: _
Overt ime hours: _

The electronic version will be virtually identical, but with one important dif-
ference. Space in a computer is generally expensive. Text almost always re-
quires more room than a number. Storing a person's name as text has two
principal disadvantages. The first is the waste of space in storing a complete
name where a number (employee number, social security number) would
do. And the second is the ambiguity associated with names. Anyone per-
son can have a variety of things he or she may be called (Mary Smith, M.B.
Smith, etc.). So rather than use names, it is almost always preferable to use
a number to identify a person.

Thus, the computer-equivalent record would probably look like this:

LABOR DATASET
SOCSECNUM:

DATE:
JOBNUM:

REGULAR:
OVERTIME:

CAPACITY: 10000 ENTRIES: 5792

While this looks a little computer-ish, the reasons for making it so are
straightforward. Social Security Number, which now takes the place of the
person's name, has been reduced to SOCSECNUM for three reasons: (1)
spaces aren't allowed in a dataitem's name, (2) no dataitem name can be

2-4 / The Database

Retrieving
Information

from the
Database

longer than 16 characters, and (3) it's just simply easier to type. Other than
that, the form of the record is identical to the paper form. This one form will
be duplicated in the LABOR file drawer (dataset) perhaps 1,000 times,
10,000 times or possibly 100,000 times, depending on how many records
you think you'll need to serve the time period the records should cover. The
number of potential records in a dataset is called its capacity. The capacity of
a dataset is not a fixed amount; it can be changed as more space is required.

An IMAGE database (the filing cabinet) may have up to 199 separate data-
sets (drawers) in it, each with its own record format. For a construction
company, other datasets we would need are for JOBS-IN-PROGRESS,
EMPLOYEE RECORDS, and INVOICES.

Presume that current information fills the database. How would you find
something in the database? Let's say the question you need to ask is:

What was the sum of all invoices charged to job 8404
during the first half of 1989?

The important question to ask is: how would you go about obtaining the in-
formation if all of the records were in paper form? You would open the file
drawer labeled INVOICES, find the invoices for job 8404, flip through
them and add up the total charges for those with dates which properly quali-
fy. That's exactly what you're going to do with QueryCalc and IMAGE
too. The question in QueryCalc looks like this:

@Using INVOICES, sum of AMOUNT when
JOBNUM is 8404 and DATE ib 890101,890630

The question (called a database query) is written in a stylized English form
both you and the computer can understand. It will always look something
like this one, although you have a great many options in what you can ask.

The standard QueryCalc sentence will always occur in three basic parts: (1)
the "Using ... " phrase specifies which dataset (and optionally database) you
wish to search through, (2) the "sum of .. " phrase specifies what informa-
tion you would like to retrieve, and (3) the "when ... " phrase specifies the
conditions that must be satisfied before the record is incorporated into what-
ever calculation is requested. As you'll see in a following chapter, the
"Using ... " phrase is not always necessary. QueryCalc can often deduce the

The database QCDEMO and
some of its datasets

JOBS

High Speed
Searches

Asking a query question / 2-5

proper dataset (file drawer) from which to retrieve the information without it
being fully specified.

INVOICES

An actual database is likely to have
more than a few datasets. Indeed,
a database will probably have
more file drawers than can be easi-
ly drawn. Six of the fifteen data-
sets of the training database,
QCDEMO, are shown here. These
are among the more important da-
tasets in the database and will fig-
ure prominently in the exercises
which will appear throughout the
remainder of this Guide.

There are two ways to search a da-
taset for a particular piece of infor-
mation. The first is straightfor-
ward. Open the dataset, begin at

the beginning and read every record, front to back, marking those records
which meet the qualifying criteria. This is called a serial search. This is a
perfectly legitimate way to search a dataset, but it is also the slowest possi-
ble way to obtain a summary of qualifying records. If there are a 100,000
records in the dataset, this method may be too time consuming to be accept-
able.

ACCOUNTS

The second way to search a dataset for a particular record or set of records
uses indexing datasets (called master datasets). A master dataset sits on top
of the filing cabinet like a file of 3x5 index cards, not unlike the indexing
cards in a library file. But in this case, the 3x5 master dataset cards contain
record numbers. If we wanted to find all of the invoices in the INVOICES
dataset which are associated with the the job 8404, and the dataitem JOB-
NUM was a search item, the master dataset will point to first and last in-
voices which have JOBNUM = 8404. Each succeeding invoice itself will
point to next and previous records which also have JOBNUM = 8404, thus
forming a chain. The first record obviously can't point to a previous
record, so it becomes the chain head. Likewise, the last record is the chain
tail. Now, instead of searching the entire dataset, record by record, we can
simply go to the 3x5 index card file, find the record for JOBNUM = 8404,

2-6 / The Database

go to that particular record in INVOICES, starting optionally at either the
chain head or the tail, follow the chain and read only those records which
have the proper JOBNUM, as shown. In place of reading 10,000 records,
we now may have to read only 30 records. This form of search will be

much faster. The moral? Al-
ways use a chained search if
possible. QueryCalc will do
this automatically if one of
the dataitems used in your
query question is a search
item. If there are multiple
search items in your query
question (implying multiple
3x5 card-like master data-
sets), QueryCalc will choose
the chained path with the
fewest number of entries. Al-
ternatively, if your query
question uses no search
items at all, QueryCalc must
use a serial search. Query-

"chained path"
for JOBNUM

the detail dataset
INVOICES

Calc will announce that too, specifying how many records will have to seri-
ally searched, thereby providing you with an estimate of how long the query
question is likely to take.

Selecting the
Search
Items

There are two kinds of datasets in an IMAGE database, detail datasets (the
file drawers) and master datasets (the 3x5 index cards). And there are two
kinds of dataitems. Technically, these are called either key items (search
items) or attributes (non-search items), although these names aren't com-
monly used in reference to IMAGE databases. A search dataitem is a data-
item which has a chaining path back to a 3x5 card master dataset. The ques-
tion is: which items should be search items. And which items should not
be? The answer partly depends on your use of the database.

Consider the employee LABOR tickets dataset that we just constructed.
Which items are good candidates for search items? The better way to ask
that question is: how many ways are you likely to want to retrieve informa-
tion from the LABOR dataset? Certainly, you would like to know the sum
of hours that a particular person has worked. That means that SOCSEC-
NUM must be a search item. You would also like summaries of all of the

Penalties
Associated
with Search

Items

Search items / 2-7

labor tickets charged to a particular job, thus JOBNUM must also be a
search item. Therefore, we can be sure that these two items on the LABOR
dataset need to be search items. Are there any others?

LABOR DATASET

SOCSECNUM:
DATE:

JOBNUM:
REGULAR:

OVERTIME:

[search item]

[search item]

CAPACITY: 10000 ENTRIES: 5792

Why shouldn't the dataitems for regular and overtime hours also be search
items? Because you are rarely going to need to search for all of the records
that have 13.1 hours of regular labor recorded in them. It's not the kind of
question that you would normally ask. The only items that should be search
items are those items that have some definite value, not an indeterminate val-
ue like 13.1. What about DATE then? It certainly has definite values.
Should it be a search item? Possibly. Whether it should be or not wholly
depends on what kind of questions you are likely to ask.

Are there penalties associated with making some items search items and oth-
ers not? Yes, there are several, but they are generally small. IMAGE will
only allow 16 items in anyone dataset to be search items. This limit is not a
severe restriction however. Good database design practice would generally
not have more than about four, five or six search items in a single dataset.
Each additional search item in a dataset requires that the dataset take up a bit
more space on the disc; so there is a small penalty paid for disc space. A
slightly more substantial penalty is that new entries placed into a dataset re-
quire greater processing time than they otherwise would. Existing search
chains must be altered for each newly inserted dataset record. Or, alterna-
tively, if a chain for the newly entered value does not already exist, a chain
for the new value must be created. Again, these are generally not severe re-
strictions. The final penalty can occasionally be the most bothersome. A
search item is a key item in the database and IMAGE will not allow key
items to be modified or updated the way that non-key (attribute) items can
be. The only easy way to modify a key item is to delete the entire record
and re-enter it, thus automatically rebuilding all of the necessary chains.

2-8 / The Database

Fred White's
Rules for
Chained

Search Paths

Schematizing
The

Database

Search items will never be beneficial when entering data into a database. In
general, they can only slow data entry down. But they will be invaluable
when extracting and summarizing informationfrom the database. All report
generators use available chained search paths, if possible. QueryCa1c makes
especially good use of the available chains. When, then, should search
chains be defined? Fred White, one of the original members of the HP de-
sign team for IMAGE and now associated with Adager, offers these rules:

A chained path should be defined if:

• it is necessary for the application,
• its speed of access is better than a serial search and

it's frequently used, or
• its speed of access is so much better than a serial

search that it's cost effective even if it's
seldom used.

If you are responsible for participating in the initial design of the database,
the only question that usually arises concerns dataitems such as the DATE.
Should DATE be a chained search item or not? Will it be used often enough
to warrant a chain? Fred White's conclusion is: "when in doubt, leave it
out". If the omission of a search item becomes a burden because of long se-
rial search times, or searches are performed on the database in a manner not
originally anticipated, that fact will become increasingly obvious. It's pos-
sible add a search path to an IMAGE database by using anyone of the avail-
able products which restructure an IMAGE database (e.g., ADAGER from
Adager, DB GENERAL from Bradmark Computer Systems, or DB-
CHANGE from Hewlett-Packard). But we politely disagree with Fred,
who is otherwise a good friend. Our own experience suggests that if you
have doubts, the item should be made a search item now rather than later.

An IMAGE database can quickly grow so complicated that attempting to
draw it as a filing cabinet would become fairly messy. Thus, if you wish to
draw the database, it becomes necessary to schematize it in the fashion
shown on the facing page. Using standard symbols, master datsets (the 3x5
indexing cards) are drawn as triangles. Detail datasets (the file drawers) are
drawn either as trapezoids (Hewlett-Packard's preferred notation) or as rec-
tangles, as shown. Chained search paths are drawn as connecting lines
from the master datasets to the detail datasets, landing on their respective

A Walking
Tour of

QCDEMO

Database schematics / 2-9

EMP-ID
(master) CAT-ID

(master)

JOB-ID
(master)

LABOR INVOICES
(detail) (detail)

EMPLOYEES

JOBNUM (detail) JOBNUM

SOCSECNUM LNAME CATEGORY

DATE
FNAME

REGULAR
SOCSECNUM AMOUNT

OVERTIME CITY
BALANCE

STATE
DATE

ZIP
MARRIED
NUMDEPEND

search items. But even the figure shown above is only a small fragment of
the training database, QCDEMO; not all of the dataitems are shown for the
detail datasets illustrated nor are all of the master datasets and their search
paths shown. Most commonly, the structural form of the database is simply
printed out rather than drawn.

How can you determine the form of your own databases? That's easily
done using the @FORM command in QueryCalc. An examination of the
structure of QCDEMO is a worthwhile brief exercise. Quite logically, you
will not be able to fully utilize the information contained in your databases
until you understand how the databases are constructed.

To see how QCDEMO, the construction company database, is put together,
type the following at your terminal:

:HELLO USER.AlCS
:RUN QC.QCPROGS.AlCS

2-10 / The Database

Automatic
vs. Manual

Masters

You are now in QueryCa1c. Press RETURN to move into the first spread-
sheet screen and type:

@OPENDB QCDEMO/FRONT

to open the database. The database password (FRONT) must be in all caps.
To insure that the database was successfully opened, type:

@SHOWDB

If you have obtained proper entry into the database, QCDEMO will have an
arrow pointing at its name, indicating that it is the default database (the data-
base that will be chosen should there be several open at a time and you have
not specified which you wish to use). If the open has failed, the most likely
cause is that QCDEMO has not yet been entered into QueryCalc's diction-
ary. Press RETURN to return to the spreadsheet.

Now we are free to look at QCDEMO. Type:

@FORM

The first screen displays the datasets of QCDEMO and is duplicated on the
opposite page. Just as 3x5 index cards rest on top of a filing cabinet,
QueryCalc will place the master datasets on top of the detail datasets in the
map of datasets. The information displayed is the name of the datasets,
their current number of entries and their maximum capacities. Datasets more
than 80% full are marked with an asterisk (the 80% full mark is often con-
sidered to be the maximum useful density of a dataset). Additionally, if the
dataset is a master dataset, @FORM will indicate whether the dataset is a
manual master or an automatic master.

The difference between an automatic and a manual master is illustrated by
the following example. If you were entering new employee labor tickets into
the LABOR dataset and typed JOBNUM = 8912, and the indexing master
dataset for JOBNUM was an automatic master and there were no previous
entries in the master dataset for 8912, that job number would automatically
be entered into the master dataset and a chained search path would be imme-
diately established for the new value, 8912. This feature can be either use-
ful or troublesome, depending on your perspective. If 8912 was typed in
error, you would never know it. But if the master dataset (JOB-ID) had

Master Datasets

Detail Datasets

The form of the database / 2-11

SETS OF DATABASE QCDEMO

MASTER DATASETS: ENTRIES CAPACITY
CAT-ID automatic 120 501
SUBCAT-ID automatic 70 101
JOB-ID automatic 76 101
ACCOUNT-ID automatic 483 1001
EMPLOYEE-ID automatic 185 501
KEYNAME-ID automatic 1 1 *DUMMYSORT automatic 476 1001
NAME-ID automatic 133 501

DETAIL DATASETS: ENTRIES CAPACITY

JOBS 53 102
CHANGES 59 78
JOBESTCOST 3598 4572
TAXRATE 55 507
CATEGORIES 120 510
SUBCATS 67 114
EMPLOYEES 181 505
PAYRATE 737 1005
LABOR 5796 7336
PAYRECORD 4051 5137
ACCOUNTS 482 1002
INVOICES 9962 12610
CHECKS 5445 6900
SCHEDULES 0 1004
FIXEDASSETS 82 504

The master and detail datasets ofQCDEMO

been constructed as a manual master and the value 8912 had not already
been entered manually into the master, ajobnum of 8912 would be rejected
when you attempt entry into the detail dataset. All search item values en-
tered into a detail dataset must be previously entered into their respective
manual masters to prevent just this mistake.

Manual masters also have a few other attributes that differentiate them from
automatic masters. An automatic master can never have more than one data-
item in it, the search item, and it must have at least one path to one detail da-
taset. Manual masters, in contrast, may contain many dataitems. And they
may be "standalone" datasets (that is, they do not need to be associated with
any detail dataset). However, neither form of the master dataset can ever
have more than one search (key) dataitem in it..

2-12/ The Database

Mastering
the Details

All of the master datasets in QCDEMO are automatic masters. That's often
the case when the data entry (application) programs are written to check the
validity of the data before it's entered into the database rather than use value
checking features inherent to a manual master.

FORM OF DATABASE QCDEMO

LABOR [detail dataset]

ITEMS
SOCSECNUM
JOBNUM
REGULAR
OVERTIME
DATE
AMOUNT
SUBCAT
FICA
FUTA
NMESC

DATA TYPE
UI0 [text]
II [num]
R2 [num]
R2 [num]
U6 [text]
R4 [num]
II [num]
R2 [num]
R2 [num]
R2 [num]

[search item]
[search item]

[search item]

CAPACITY: 7336 ENTRIES: 5796
The LABOR tickets dataset of QCDEMO

To see what a dataset or dataitem looks like in detail, you can simply type
the name of the dataset or dataitem once you are in @FORM. For example,
type LABOR. What will appear on your terminal will be a map of the labor
tickets dataset, as shown above.

This is the actual form of the LABOR tickets in QCDEMO, not all that dif-
ferent from the one designed a few pages earlier. The three chained search
items, SOCSECNUM, JOBNUM, and DATE are marked. The maximum
capacity of the dataset and its current entry count are shown, as are the data-
item types for each of the items. Only two types of data are stored in a data-
base: text and numbers. QueryCa1c is not particularly sensitive to the manner
in which a number is stored. All numbers, regardless of their original data
types, are automatically converted into high-resolution numbers (double
reals) when they are imported from the database into the spreadsheet. Thus,
displaying the numeric datatype is more for your information than for practi-
cal use. Although you are not likely to be greatly concerned about the actual
datatypes of the individual dataitems, you'll find it useful to know what each
data type means.

Numeric
Dataitem

Types

Text
Dataitem

Types

Printing
the Form

of the
Database

Dataitem types / 2-13

Two basic types of number representations commonly exist in computers:
integers (whole numbers) and reals (a "real" number is said to be a number
with a decimal point) (Table 2-1). Both numeric types may be specified to
be of various resolutions (that is, capable of resolving and accurately keep-
ing track of perhaps a penny in a billion dollars). Real numbers are speci-
fied as either short (32-bit) or long (64-bit) numbers. Their respective data
types are labeled R2 and R4 in IMAGE. Integer numbers (numbers without
decimal points) may be either short (l6-bit), intermediate (32-bit) or long
(64-bit) integers, written as 11, 12 or 14 data types, respectively.

Slight modifications of the integer number types occur for the J1, 12 and 14
data types, which are used principally in COBOL, a common programming
language. COBOL places additional restrictions on the range of values that
an integer number may take. The 1 data types observe these restrictions.
Another form of modified integers are the K data types, called logicals. A
K1 or K2 number is identical to an 11 or 12 number, but is limited to posi-
tive values only.

Various other techniques have also been devised to store numbers. Two of
these techniques involve the storage of numbers more like text than a normal
numeric representation. Integer numbers stored in this fashion are called
packed and zoned integers (P and Z data types, respectively). The resolu-
tion capacity of a packed or zoned integer is not fixed but is specified at the
time of database creation.

Only two types of text data types exist: either wholly upper case (the U data
type) or both upper and lower case (the X data type). The length of the
string of characters which can be entered into a text dataitem field is speci-
fied at the time the database is designed. Due to the manner in which text is
stored, the length must always be an even number. Text dataitem lengths
greater than 40 characters are rarely used.

If you are going to successfully extract information from your databases,
you will find it useful to have printed copies of the structures of the relevant
databases. In general, it is impossible to remember all of the dataitems and
datasets if the databases are complex. Although the @FORM command is
always available, printed copies of the database structures are a valuable ref-
erence.

2-14 / The Database

DATA IMAGE TYPE COMMONLY LENGTH IN
TYPE SPECIFICATION CALLED BITS RESOLUTION

NUMBER R2 SHORT REAL 32 BITS 1 IN ± 4 MILLION
NUMBER R4 LONG REAL 64 BITS 11N ±2x 1016

NUMBER 11 SHORT INTEGER 16 BITS 1 IN ± 32,768
NUMBER 12 MED. INTEGER 32 BITS 1 IN ± 2 BILLION
NUMBER 14 LONG INTEGER 64 BITS 11N±2x1019

NUMBER J1 SHORT COBOL 16 BITS 1 IN ±10,000
NUMBER J2 MED. COBOL 32 BITS 1 IN ±1 BILLION
NUMBER J4 LONG COBOL 64 BITS 1 IN ±1 x 1019

NUMBER K1 SHORT LOGICAL 16 BITS 1 IN 65,536
NUMBER K2 LONG LOGICAL 32 BITS 1 IN 4 BILLION

NUMBER P PACKED 4 BITS/DIGIT USER SPECIFIED
NUMBER Z ZONED 8 BITS/DIGIT USER SPECIFIED

TEXT X TEXT STRING 8 BITS/CHAR USER SPECIFIED
TEXT U UPPERCASE 8 BITS/CHAR USER SPECIFIED

Table 2-1. The data types used in IMAGE

Three views of the database are recommended for printing. They are: func-
tion key [fl], the sets of the database; function key [f4], the paths of the da-
tabase; and function key [f2], the complete structure of the database. To
print these views to your system line printer, press first [f6] ,print to the line
printer, and then in turn [fl], [f4], and [f2]. Press [f7] , print to terminal, to
redirect the output of @FORMback to your terminal's screen.

From these three views you have all of the information necessary to draw
the database schema in the manner shown on page 2-9. All that needs to be
done is to connect the master datasets with their respective search items in
the detail datasets. The view [f4], the paths of the dataset, shows you how
that is to be done. As you become more familiar with IMAGE, you will be
able to draw the appropriate schemas more rapidly and will soon dispense
with the need to draw them at all.

The complete printed @FORM of the training IMAGE database, QCDEMO,
appears on the next several pages, printed in the order: Sets [fl], Paths [f4],
and All [f2].

Form of the database QCDEMO / 2-15

ISETS OF IMAGE DATABASE QCDEMOI

MASTER DATASETS: ENTRIES CAPACITY

CAT-ID automatic 120 501
SUBCAT-ID automatic 70 101
JOB-ID automatic 76 101
DATE-ID automatic 951 3659
ACCOUNT-ID automatic 483 1001
EMPLOYEE-ID automatic 185 501
DUMMY SORT automatic 1 1 *
KEYNAME-ID automatic 476 1001
NAME-ID automatic 133 501

DETAIL DATASETS: ENTRIES CAPACITY

JOBS 53 102
CHANGES 59 78
JOBESTCOST 3598 4572
TAXRATE 55 507
CATEGORIES 120 510
SUBCATS 67 114
EMPLOYEES 181 505
PAYRATE 737 1005
LABOR 5796 7336
PAYRECORD 4051 5137
ACCOUNTS 482 1002
INVOICES 9962 12610
CHECKS 5445 6900
SCHEDULES 0 1004
FIXEDASSETS 82 504

* The indicated dataset(s) are now more than 80% full.

The [fl J printout. A listing of the master and detail sets in
the selected database.

2-16 / The Database

I PATHS OF DATABASE QCDEMO I

this master
dataset has

paths to these
detail datasets

using this with this item
search item sorting the chain

CAT-ID CATEGORIES
INVOICES
SCHEDULES
FIXEDASSETS

CATEGORY
CATEGORY
CATEGORY
CATEGORY

SUBCAT-ID JOBESTCOST
SUBCATS
INVOICES

SUBCAT
SUBCAT
SUBCAT

The Paths printout compactlyI JOB-ID JOBS JOBNUM
displays much the sameCHANGES JOBNUM

JOBESTCOST JOBNUM information shown in the
TAXRATE JOBNUM database schematic (page 2-9)
PAYRATE JOBNUM
LABOR JOBNUM ~ and the filing cabinet
INVOICES JOBNUM drawing (page 2-6) for the

master dataset job-id and two

DATE-ID LABOR DATE of the detail datasets (labor
PAYRECORD DATE and invoices) it links to. All
INVOICES DATE three views are equally valid.
CHECKS DATE

The moral? Never let your
mental image of IMAGE

ACCOUNT-ID ACCOUNTS ACCTCODE become more complicated
INVOICES ACCTCODE
CHECKS ACCTCODE than the filing cabinet.

EMPLOYEE-ID EMPLOYEES SOCSECNUM
PAYRATE SOCSECNUM
LABOR SOCSECNUM DATE
PAYRECORD SOCSECNUM

DUMMYSORT EMPLOYEES ENTER-AN-X LNAME
ACCOUNTS ENTER-AN-X KEYNAME

KEYNAME-ID ACCOUNTS KEYNAME

NAME-ID EMPLOYEES LNAME

The [f4 J printout. A list of the chained paths which link the master

datasets to detail datasets in the selected database.

Form of the database QCDEMO / 2-17

I SETS OF DATABASE QCDEMO I

CAT-ID [automatic master]

ITEMS
CATEGORY

DATA TYPE
11 [num] [key item with 4 paths]

CAPACITY: 501 ENTRIES: 120 24% FULL

SUBCAT-ID [automatic master]

ITEMS
SUBCAT

DATA TYPE
I1 [num] [key item with 3 paths]

CAPACITY: 101 ENTRIES: 70 69% FULL

JOB-ID [automatic master]

ITEMS
JOBNUM

DATA TYPE
11 [num] [key item with 7 paths]

CAPACITY: 101 ENTRIES: 76 75% FULL

DATE-ID [automatic master]

ITEMS
DATE

DATA TYPE
U6 [text] [key item with 4 paths]

CAPACITY: 3659 ENTRIES: 951 26% FULL

ACCOUNT-ID [automatic master]

ITEMS
ACCTCODE

DATA TYPE
11 [num] [key item with 3 paths]

CAPACITY: 1001 ENTRIES: 483 48% FULL

EMPLOYEE-ID [automatic master]

ITEMS
SOCSECNUM

DATA TYPE
Ul0 [text] [key item with 4 paths]

CAPACITY: 501 ENTRIES: 185 37% FULL

The [j2I printout. A complete listing of all of the datasets, data-
items, and dataset capacities for the selected database.

2-18 / The Database

DUMMYSORT [automatic master]

ITEMS
ENTER-AN-X

DATA TYPE
U2 [text] [key item with 2 paths]

CAPACITY: 1 ENTRIES: 1 100% FULL

KEYNAME-ID [automatic master]

ITEMS
KEYNAME

DATA TYPE
U14 [text] [key item with 1 path]

CAPACITY: 1001 ENTRIES: 476 48% FULL

NAME-ID [automatic master]

ITEMS
LNAME

DATA TYPE
U14 [text] [key item with 1 path]

CAPACITY: 501 ENTRIES: 133 27% FULL

JOBS [detail set]

ITEMS DATA TYPE
JOBNUM I1 [num] [search item]
DESCRIPTION1 U40 [text]
DESCRIPTION2 U40 [text]
DESCRIPTION3 U40 [text]
DESCRIPTION4 U40 [text]
SITENUM I1 [num]
CONTRACTAMOUNT R4 [num]
BIDDATE U6 [text]
STARTDATE U6 [text]
MONTH U2 [text]
ESTCOMPDATE U6 [text]
ACTCOMPDATE U6 [text]
WCEXEMPT U2 [text]
BUILDERSRISK U2 [text]
OWNER U20 [text]
ADDRESS U40 [text]
CITY U16 [text]
STATE U2 [text]
ZIP U10 [text]
PHONE U12 [text]
JOBCOST R4 [num]
WORKCOMPLETE R4 [num]
PRIORCOST R4 [num]
PRIOREARNED R4 [num]
BILLED R4 [num]
RETAINAGE R4 [num]
GRT R4 [num]

CAPACITY: 102 ENTRIES: 53 52% FULL

CHANGES [detail set]

ITEMS
JOBNUM
DESCRIPTIONI
DESCRIPTION2
DESCRIPTION3
DESCRIPTION4

CAPACITY: 78

DATA TYPE
II [num]
U40 [text]
U40 [text]
U40 [text]
U40 [text]

ENTRIES: 59

Form of the database QCDEMO / 2-19

[search item]

76% FULL

JOBESTCOST [detail set]

ITEMS
SUBCAT
JOBNUM
ESTCOST

CAPACITY: 4572

DATA TYPE
II [num]
I1 [num]
R4 [num]

ENTRIES: 3598

[search item]
[search item]

79% FULL

TAXRATE [detail set]

ITEMS
JOBNUM
SITETAX
STARTDATE
TERMDATE

CAPACITY: 507

DATA TYPE
II [num]
R2 [num]
U6 [text]
U6 [text]

ENTRIES: 55

[search item]

11% FULL

CATEGORIES [detail set]

ITEMS
CATEGORY
SCHEDULE
DESCRIPTIONI
AMOUNT
DATE

CAPACITY: 510

DATA TYPE
I1 [num]
U2 [text]
U40 [text]
R4 [num]
U6 [text]

ENTRIES: 120

[search item]

24% FULL

SUBCATS [detail set]

ITEMS
SUBCAT
DESCRIPTIONI
SUBCONTRACTED

CAPACITY: 114

DATA TYPE
II [num]
U40 [text]
U2 [text]

ENTRIES: 67

[search item]

59% FULL

2-20/ TheDatabase

EMPLOYEES [detail set]

ITEMS DATA TYPE
ENTER-AN-X U2 [text] [search item]
LNAME U14 [text] [search item] [sort item]
FNAME U10 [text]
SOCSECNUM U10 [text] [search item]
ADDRESS U40 [text]
CITY U16 [text]
STATE U2 [text]
ZIP U10 [text]
PHONE U12 [text]
MARRIED U2 [text]
NUMDEDUCTIONS I1 [nurn]
STARTDATE U6 [text]
TERMDATE U6 [text]
TERMREASON U30 [text]
INSURANCE R2 [nurn]
FICA R2 [nurn]
FUTA R2 [nurn]
NMESC R2 [nurn]

CAPACITY: 505 ENTRIES: 181 36% FULL

PAYRATE [detail set]

ITEMS DATA TYPE
SOCSECNUM U10 [text] [search item]
JOBNUM I1 [nurn] [search item]
CLASS U2 [text]
RATE 1 R2 [nurn]
RATE 2 R2 [nurn]
RATE3 R2 [nurn]
RATE4 R2 [nurn]
RATE5 R2 [nurn]
RATE 6 R2 [nurn]
RATE7 R2 [nurn]
RATE 8 R2 [nurn]
RATE 9 R2 [nurn]

CAPACITY: 1005 ENTRIES: 737 73% FULL

LABOR [detail set]

ITEMS
SOCSECNUM
JOBNUM
REGULAR
OVERTIME
DATE
AMOUNT
SUBCAT
FICA
FUTA
NMESC

CAPACITY: 7336

Form of the database QCDEMO 12-21

DATA TYPE
Ul0 [text]
11 [num]
R2 [num]
R2 [num]
U6 [text]
R4 [num]
11 [num]
R2 [num]
R2 [num]
R2 [num]

ENTRIES: 5796

[search item]
[search item]

[search item] [sort item]

79% FULL

PAYRECORD [detail set]

ITEMS
SOCSECNUM
GROSS
FICA
FUTA
NMESC
FEDWITH
STATEWITH
DEDUCTION
CHECKNUM
AMOUNT
DATE
REGULAR
OVERTIME
INSURANCE

CAPACITY: 5137

DATA TYPE
Ul0 [text] [search item]
R4 [num]
R2 [num]
R2 [num]
R2 [num]
R2 [num]
R2 [num]
R2 [num]
11 [num]
R4 [num]
U6 [text] [search item]
R2 [num]
R2 [num]
R2 [num]

ENTRIES: 4051 79% FULL

ACCOUNTS [detail set]

ITEMS
ENTER-AN-X
DESCRIPTIONl
KEYNAME
ADDRESS
CITY
STATE
ZIP
PHONE
ACCTCODE

CAPACITY: 1002

DATA TYPE
U2 [text] [search item]
U40 [text]
U14 [text] [search item] [sort item]
U40 [text]
U16 [text]
U2 [text]
Ul0 [text]
U12 [text]
11 [num] [search item]

ENTRIES: 482 48% FULL

2-22/ TheDatabase

INVOICES [detail set]

ITEMS
CATEGORY
SUBCAT
JOBNUM
ACCTCODE
INVOICENUM
AMOUNT
DISCOUNT
BALANCE
DATE

CAPACITY: 12610

DATA TYPE
I1 [num] [search item]
I1 [num] [search item]
I1 [num] [search item]
I1 [num] [search item]
I1 [num]
R4 [num)
R2 [num)
R4 [num)
U6 [text) [search item)

ENTRIES: 9962 79% FULL

CHECKS [detail set)

ITEMS
ACCTCODE
AMOUNT
DATE
CHECKNUM

CAPACITY: 6900

DATA TYPE
I1 [num) [search item)
R4 [num)
U6 [text] [search item]
I1 [num)

ENTRIES: 5445 79% FULL

SCHEDULES [detail set)

ITEMS
CATEGORY
DESCRIPTION1
DESCRIPTION2
DESCRIPTION3
DESCRIPTION4
AMOUNT
DATE

CAPACITY: 1004

DATA TYPE
I1 [num)
U40 [text]
U40 [text)
U40 [text)
U40 [text)
R4 [num)
U6 [text]

[search item)

ENTRIES: 0 0% FULL

FIXEDASSETS [detail set)

ITEMS
CATEGORY
DESCRIPTION1
DESCRIPTION2
AMOUNT
DATE
SCHEDULE
YEARDEPR
NETVALUE
TERMDATE

CAPACITY: 504

DATA TYPE
I1 [num)
U40 [text)
U40 [text)
R4 [num)
U6 [text)
U2 [text)
R4 [num)
R4 [num]
U6 [text]

ENTRIES: 82

[search item)

16% FULL

Concepts
Introduced in

Chapter 2

Concepts introduced /2-23

DETAILDATASET the basic "file drawer"

MASTERDATASET

SEARCH ITEM

CHAINED PATH

NON-SEARCH ITEM

AUTOMATIC MASTER

SERIAL SEARCH

DATABASE FORM

REAL NUMBERS

INTEGER NUMBERS

RESOLUTION

the 3x5 card index dataset

a dataitem in a dataset for
which a chained search path
exists

the linking together of all of
the records which share a
common search item value

any of the other dataitems in a
dataset for which no search
chain exists

search item values (for which
no chained search path cur-
rently exists) are automatically
created when an automatic
master is used

a search of all of the records in
a dataset, first to last

the schematic drawing of the
database's structure

numbers with decimal points

whole (non-fractional)
numbers

the largest usable number after
which accuracy will be lost

- I

- I

3

Introduction
to the

Spreadsheet

Using the spreadsheet as a report generation platform

The 3-D Spreadsheet

Although the electronic spreadsheet is now extraordinarily popular and
widely used, it's sometimes difficult to remember that it is not very old. The
electronic spreadsheet was invented by Dan Bricklin in 1977 during his time
as a graduate student at Harvard. As a business major, Bricklin was re-
quired to generate pro forma (paper spreadsheet) analyses of various com-
mercial situations as part of his course work. Part and parcel of any spread-
sheet is the characteristic that if you change one number, the effects ripple
down the columns and across the rows. Bricklin invented the electronic
spreadsheet simply because he grew tired of erasing holes in his papers due
to constantly changing numbers.

The electronic spreadsheet makes an ideal report generating platform be-
cause of its inherent plasticity and its WYSIWYG nature. If you are not
presently familar with spreadsheets, two attributes account for much of the
spreadsheet's value. They are the ease by which columns and rows may be
inserted, deleted and reformatted (while automatically adjusting all relevant
cell references) and the capacity to replicate and edit blocks of cells. These
two features alone eliminate a great deal of the effort necessary to put a re-
port together. The design of QueryCalc especially emphasizes the report
formatting features of the spreadsheet.

QueryCalc is a spreadsheet, and you can simply use it as a spreadsheet. But
QueryCalc's more than that. QueryCalc is a combination of the most pro-
ductive features of interactive computer languages, page-oriented word pro-
cessors, spreadsheets and query languages. QueryCalc mimics a page-
oriented word processing program as much as it does a spreadsheet. Where
a standard spreadsheet is built as one very large, flat XY plane, QueryCalc
is composed of 26, independently configurable pages.

You'll use QueryCalc differently than a standard spreadsheet. A PC-based
spreadsheet is often used as a small database. Thousands of cells may be

3-2 I The 3-D Spreadsheet

Printing the
QueryCalc

Page

used to store information such as outstanding invoices. If only eight cells in
a row were used to list items such as customer name, account number, in-
voice number, invoice date, etc., a thousand cells will be consumed in list-
ing of just 120 entries. One hundred entries obviously represents a very
small database; nonetheless, 1000 cells take up a substantial area on the
spreadsheet. You simply will not tend to use QueryCa1c in such a fashion.
IMAGE databases easily contain tens of thousands of records. A single cell
in QueryCa1c can request a summarization of all of those records.

QueryCa1c also differs from standard spreadsheets in the manner it which
printing occurs. QueryCa1c will always print from the upper left-hand visi-
ble comer of the spreadsheet page out to the right margin and down to the
bottom margin. A PC-based spreadsheet, by comparison, prints by speci-
fying ranges of cells taken anywhere from within the body of the spread-
sheet. In QueryCalc, the upper left-hand corner of each spreadsheet page is
the image of the physical page that will be printed. Although the cell widths
on each page are independently configurable, the printing area remains the
same on every page of the spreadsheet. That's because the size of the paper
you're printing to won't change, from page to page.

columns
a b c ---,z

rows

90

right margin
set to
physical
width of

Non-printing
page area
available for
scratch
calculations

bottom margin set to
printable length of paper

Only fifteen rows will be displayed on your
terminal's screen at anyone time, although 90
rows are available on the spreadsheet page.
No readily available piece of paper is greater
than 90 rows in length. The printable length
of the spreadsheet page will be dynamically
determined based on: (1) the paper size you
specify, (2) the number of lines per page, and
(3) the top and bottom margin settings. As
you increase the size of the top and bottom
margins, or add headers or footers, you si-
multaneously shrink the number of rows
available to you in the print area. The physi-
cal size of the paper can't change, therefore
the printable area must shrink (for more infor-
mation, see Chap. 7, "Printing the Report").

On a QueryCalc page, the
printable area is defined by the
right and bottom margin
markers.

Learning to
Become a
Marginal

Programmer

The Three
Standard
Report
Forms

Marginal programming techniques /3-3

Traditionally, when numbers are entered into the rows and columns on an
accountant's paper greensheet, they are placed there neatly and with preci-
sion. But the necessary scratch calculations are scribbled in the margins.
We want you to use QueryCalc's margins in the same manner. All of the
area to the right and below the margins on a page can be used for scratch
calculations, temporary variables, or anything else you need to have availa-
ble during report development, but don't wish to appear in the final printed
form.

With a QueryCalc spreadsheet, the margins don't even necessarily have to
be at the sides. Individual columns can be collapsed to zero width [using
the /CWID command (see Ch. 4)]. Zero-width columns will no longer
print, but the information in these hidden cells will recalculate normally and
the results can be referenced as any other cell would be.

Cell definitions on anyone of QueryCalc's 26 pages can reference cells
anywhere in the spreadsheet. Sums (averages, variances or whatever) may
range over columns, rows, rectangles, cubes or any combination of these.
This feature accounts for the true three-dimensional nature of QueryCalc.
But you'll find that the three-dimensional nature is more valuable than sim-
ply that. Although each page may be substantially different in what it is
calculating and where it is obtaining its information, the easy reference to
previously obtained values on other pages makes the preparation of com-
plex reports simple.

People tend to only write three kinds of reports on the HP3000. They are:

• The indefinite detail list report
• The management summary report
• Graphics

Each of these forms is easily done in Queryf.alc. The first, the indefinite
detail list report, is of this form: "Find me all of the people who owe us
money and print me a list". The formating structure for the indefinite list
report tends to be generally simple, but the length of the report is unknown
before it's run, thus its indefinite nature. The second report form, a man-
agement summary report, is usually much more complicated to put togeth-
er, and is generally quite complex in its formatting. Information is not sim-
ply repeated over and over as it is a detail list report. A management
summary report is composed of many summarizations taken from many

3-4 I The 3-D Spreadsheet

The Four Cell
Types of

QueryCalc

different sources and then placed on specific areas of the page. The spread-
sheet structure is obviously ideal for constructing the management summary
report. The first and most obvious reason is the flexibility allowed in refor-
matting the page layout. But the most important reason is the interactive na-
ture of the spreadsheet.

Standard spreadsheets such as VisiCalc and 1-2-3 possess only two types
of cells: numeric equation cells (which include simple numeric entries) and
text labels. In contrast, QueryCalc has four cell types. They are the two
VisiCalc cell types, text equations and query questions.

A numeric cell equation may be anyone of the following forms:

34
sqr(g34)*1.0675*(g37+g38)
bd15*4
sum(aa1:cd13)

A text label is simply text written on the surface of the spreadsheet, not
unlike this sentence. Text labels are not active cell types (that is, they do not
change on recalculation). Examples are:

AJan 1992
'Expense Report for FY94

A text equation, on the other hand, is an active cell type. The text equa-
tion extracts text information from other cells anywhere on the spreadsheet
and recombines the text as you desire. Examples are:

$"The value is: "+ups$(g34)
$a34+", "+a35
dat3(sysdate)+", "+hrs$(24)

A query question extracts and summarizes information from any of the
databases (IMAGE, KSAM or MPE) which you presently have open. Ex-
amples are:

@Using invoices, sum of amount when
category is 501 and date>890530

@Using qcdemo.labor, avg of overtime
when jobnum is 8404

The Triple
Nature of

Every Cell
In

QueryCalc

NOTE

Visible calculation / 3- 5

Every cell in QueryCalc, regardless of cell type, is composed of three parts:
the cell equation, the cell's text value and the cell's numeric value. t

the text value:the numeric value:
4.875000000000000e 1 "48.75 n

as formatted by
the selected format..........................; L.1.

1 8.75 1 L------~i ---~
.... · 1 ~ · ! "
......................... '1" the cell equation:

::::~::::::-::r-::":::::::_r~~t~~~:~!l~~~ntwhen
QueryCalc is extremely weakly typed. That means you can add numbers
and text together and get an answer. Any text cell that contains only numer-
ic characters takes on the numeric value of that text (that is, "3956" =
3956). Text cells which contain both alpha and numeric characters (or
punctuation symbols) cannot be converted to a number, thus they are given
a numeric value of zero ("-56A-" = 0). Conversely, all cells have a text
value. Text from any or all of the four cell types can be combined in a sin-
gle text equation.

A numeric equation, such as

b37*1.4

extracts and uses the numeric value from the cell B37. A text equation such
as

$"Result: "+b37

extracts the text (formatted) value from cell 1337. Although the cell format-
ting routine will often round off the text in a cell to the specified number of
digits, the actual numeric value is never rounded off. The effect is only su-
perficial. The numeric equation always works with QueryCalc's maximum
resolution of 16.5 decimal points and never throws away information.

tA detailed explanation of how a QueryCa1c cell is constructed appears in the Technical
Appendix, Section A: "How a QueryCa1c Cell is Constructed".

3-6 I The 3-D Spreadsheet

The dual text/numeric nature of cells in QueryCa1c is especially important to
query questions. Text and numbers are the only two forms of items that can
be stored in a database. To properly find (qualify) items in a database, text
must be matched with text and numbers must be matched with numbers.

The following examples illustrate the point:

1. @Using invoices, sum of amount when
category is [b7]

2. @Using invoices, sum of amount when
category is [$b7]

For Example 1, presume that the dataitem CATEGORY is a numeric
(I,J,K,P,Z or R) dataitem type. The equation in brackets which retrieves in-
formation off of the spreadsheet should therefore be a numeric equation
(B7). A numeric value will properly be matched against a numeric value.

For Example 2, presume that CATEGORY is a text (X or U-type) dataitem.
The equation in brackets must therefore be a text equation ($B7). The
spreadsheet -extracted text will be matched against a text dataitem.

QueryCalc will do its best to properly match item types, but it may occasion-
ally require your help. Should you ever have problems qualifying items in a
database with values taken off of the spreadsheet, the problem almost al-
ways lies in mistaking a text field for a numeric field. Text fields are used
surprisingly often to store only numbers. When numbers appear in a text
field, they may look like numbers, but they're not. They're text characters
and they must be treated that way.

Text and numeric equations which appear in query questions do not need to
be simple spreadsheet data extractions. You may dynamically "manufacture"
the patterns to be matched, as illustrated in the following examples:

@Using labor.tickets, avg of regular-hours
when date is [190000+ab7*100+ab8]

(where date is a numeric dataitem)

@Using parts.partfields, find when partnum
lS [$"MJR"+hg34+"-OO-lA"]

(where partnum is a text dataitem)

The three page types / 3-7

The Three
Page Types

of
QueryCalc

A QueryCa1c report is composed of three distinct page types:

• summary pages
(standard spreadsheets with or without
query questions in the cells)

• graphics definition pages
(used to define a graph)

• detail list report generation pages
(used to create a detailed list of items).

The cells found in each of the pages, however, are identical. Any cell on
any page can access any of the open databases, local or remote, to which
you have access. The combination of the three page types allows the crea-
tion of virtually every possible form of report. Although the page types are
distinct in their usages, the standard spreadsheet summary page is the basis
of all three page types.

Three page types exist in
QueryCalc: the standard summary
page (a standard spreadsheet), a
graphics definition page, and a
detail list report generation page.
All three types can be mixed in one
QueryCalc report. Any cell on any
page type can directly access any
open database.

3-8 /The 3-D Spreadsheet

A graphics definition page is a standard spreadsheet summary page with a
graphic template superimposed. By filling in the requisite information in
the template, anyone of six basic graph types (standard bar, stacked bar,
clustered bar, pie, point plot, and highllow!close chart) is defined. Informa-
tion may come from anywhere else in the spreadsheet or be calculated im-
mediately in the definition cell itself (see Chap. 9, "Graphics").

The indefinite detail list report page is the most distinct page type of the
three page types found in QueryCalc. Only four columns are used on the
report page. You cannot increase or decrease the number of columns, nor
can you change the column widths. The columns have pre-defined usages.
The first column, column A, is used only for cell equations. The second
column, B, is used to the name the extracted or calculated dataitems. Col-
umns C and D are optionally used to define sort order and allocated print
width, respectively. Rows are used to define groupings within the report
(see Chap. 13, "Indefinite Lists").

When the completed report is to be printed, only the standard spreadsheet
summary pages will print as they appear. The graphic definition pages can-
not of course be printed directly. Rather the information specified on the
graphic definition pages is transformed into the graphs they define. Nor
will the indefinite list report pages print as they appear. Although a detail
list report is composed on only one spreadsheet page, it may result in sev-
eral to several hundred actual (paper) pages of output.

A QueryCalc report may be any mixture of the three page types you desire.
An example is shown on the previous page. The first two pages are finan-
cial summaries while the third page (indefinitely) lists all open accounts.
The fourth page is an additional financial summary with an attached graph.
The sixth page is a standard assets and liability summary while the seventh
page is another detail list listing all current fixed assets. A report as compli-
cated as that shown is never more than a simple combination of simple ide-
as used over and over again. Each cell on each page type is identical. Most
importantly, the procedure to put each report page together is the same.
You enter the cell equation, check the results, and interactively repeat the
process until you are satisfied.

Concepts
Introduced in

Chapter 3

Concepts introduced / 3-9

SUMMARY REPORT

GRAPHICS PAGE

DETAIL LIST REPORT

NUMERIC CELLS

TEXT LABELS

TEXT EQUATIONS

QUERY QUESTIONS

a standard spreadsheet page.
Cells may directly summarize
database information.

a modified spreadsheet page
with a predefined template.
Information filling the cells
defines the graph.

an indefinite list of items ex-
tracted from a database(s), to-
talled and sorted within
groups.

a standard mathematical equa-
tion which may be as simple
as a single number.

Text written on the "surface"
of the spreadsheet. Text
labels are non-calculating
cells.

equations capable of active
text reorganization during re-
calculation

database summarizations.

- I

4

Getting Around
in QueryCalc

current
page

\
B

Mastering the basic spreadsheet functions

Spreadsheet Operations

When you first enter QueryCa1c, you will see a blank display showing the
upper-left section of the first page, consisting of 15 rows. The cell cursor
will appear on row 1, column A of page A. You may move the cursor
around the spreadsheet in either of two ways. Pressing individual function
keys ([Fl] to [FS]) will shift the cursor up or down, left or right, jump from
the current page to the next or previous pages, or scroll the screen up or
down 15 rows at a time, as indicated by the function key labels. You'll find
the function keys the easiest way to move around the spreadsheet within a
local area.

current last command
filename executed

(<,
SALESRPT ;rCOL 3

a b

direction of
recalculation
(columnwise)

"" Col /
global cell
format

Dec2 , RJ~ __~ ~ ~c~~I~
present
right margin
setting

1,582.
982.

11,150.23
1,509.53

cursor

1 IdahO/Montana/NevadaDivision
2
3 Books
4 Best Sellers
5 Literature
6 Sports
7 Nature
8 Biography
9 Reference

10 Computer
11
12 Periodicals
13 Magazines
14 Newspapers
15 cTournals

4,562.90
2,567.23

459.04

The standard features of the QueryCalc screen

4-21 Spreadsheet operations

Alternatively, if where you wish to be on the spreadsheet is some distance
away, you can type any of the following jump command forms:

IJ G014*

IJ 813

IJ M

jumps to page G, column D, row 14
jumps to column B, row 13 on the current page
jumps to page M (column A, row 1)

Because the width of a column may be adjusted from 0 to 36 characters,
you may occasionally jump to a zero-width column. Should you specify a
jump to a zero-width column, QueryCalc will automatically move the cur-
sor to the first non-zero column to the right. Because QueryCalc will not let
you collapse all of the column widths on a page to zero, you can be sure
that the cursor will be visible somewhere on page.

*A Nate on Cell References

Cells in QueryCalc are referenced by a two, three or four-character code indicating the
cell's Page, Column, and Row position on the spreadsheet.

CR34
G3

{DI2}

- indicates page C, column R, row 34
- indicates column G, row 3 on the page you're now on
- an absolute cell reference to cell DI2

A cell reference which contains all three attributes (page, row and column) is said to be ful-
ly qualified. Optionally, when referring to cells on the current page, the page may be omit-
ted. In this instance, the page value is implied. The case of the letters in cell references is
unimportant: CR34 is the same as cr34.

An absolute cell reference is one that will not change when the cell is replicated. Relative
cell references (cell references without braces surrounding them) will be adjusted by the
magnitude of the offset between the cell's original position and its final resting place.

There is some advantage to using page-implied cell references for cells which are on the
current page. Cell reference processing will be slightly faster. More importantly, you will
find that insertion, deletion and replication of pages will generally be easier.

Entering Text,
Equations &

Database
Queries

NOTE

The entry prefix is key /4-3

Once you've positioned the cursor at the cell of interest, simply begin typ-
ing at the Command: prompt to enter text, numeric values, equations, or da-
tabase queries into a cell. The cell highlighted by the cursor is the cell where
your entry will appear.

QueryCa1c is constructed throughout as afinite state automaton. You move
from state to state depending upon which input symbol was received. This
design philosophy is most evident at the Command: line. Every input to
QueryCa1c is preceeded by a prefix character.

The prefix character is the key to the way QueryCalc works. QueryCalc
transfers your input to the appropriate subprocessor based on the prefix
character that begins your input line.

The five classes of Command: line prefixes are shown below:

@

The most common mistake you'll make when first using QueryCa1c will
probably be due to either leaving the necessary prefix off or using the
wrong prefix. But this phase won't last long. The prefixes used in
QueryCa1c are common to most spreadsheets and will soon become second-
nature.

4-4/ Spreadsheet operations

Examining
and Editing

Cells

Examining the contents of a cell is straightforward. Move the cursor to the
cell you wish to examine. The cell equation, format, print enhancements (if
any) and recalculation errors (if any) will appear in the area just above the
command line.

If you make a mistake when entering a cell equation, or wish to change a
cell in your report, or redo your last command, you'll want to edit the cell's
text. QueryCalc provides three editors for this purpose (which are in reality
all the same editor). One editor edits only the contents of a cell. Another is
specifically reserved to edit the last entry attempted, regardless of whether it
was accepted by QueryCalc's syntax checking routines or not. The third ed-
itor allows you to edit the last command typed. The editors are accessed
through one of these three commands:

IE
IREDO

ILAST

to edit the contents of a cell
to edit the last entry attempted
to edit the last command given

To edit a specific cell, move the cursor to the cell of interest and type IE. If
the cell contains a text, numeric, or query equation or a text label, a window
will appear listing the editor commands and the cell contents. If the text you
wish to change is on the first line segment of the editor, press the SPACE

NOTE bar to move the cursor underneath the first character to be changed. Don 't
use the arrowed cursor keys when in QueryCalc. The cursor keys are local
keys only. They do not transmit to the computer. Although the terminal's
cursor will move on the screen with each press of the cursor keys, the
HP3000 and QueryCalc are unaware that you have hit any key at all.

Once you're underneath the text you wish to modify, you have several
choices (indicated by the editor command letters shown in the window). To
delete text, press D's under each character to be deleted. To delete and then
insert text, press D's under each character to be deleted and then press an I

followed by the desired new text (as shown on the facing page). To replace
text, if the new text does not begin with one of the editor's command letters,
you may simply type the new text underneath the text to be replaced. If
however your text does begin with a reserved letter, begin your entry with a
R followed by the desired text. If you are familiar with MPE's :REDO edi-
tor or EDIT/3000 on the HP3000, you will immediately recognize the simi-
larity in command forms.

Editing a celli 4-5

Using the cell editor to delete and insert new text in one pass

Two slashes (II) will get you out of any QueryCalc subsystem with no ef-
fect. The editor follows this convention. A question mark (?) will get you
help. Preceding your text with the command letter A will append new text
to the end of the present edit line, regardless of where the cursor is present-
ly positioned. You'll find the append feature useful in adding additional
qualifying phrases to a long equation.

The edited line takes effect when you press U, for use. The text is inter-
preted by QueryCalc exactly as if you typed it in at the Command: line. The
editor will display a cell's contents, up to the cell's maximum of 186 char-
acters. The text may be broken into perhaps as many as four line segments.
If the portion of the text you wish to edit is not on the first segment, press
the RETURN key once for each line segment you need to bounce past and
then press the SPACE bar to position the cursor underneath the text to be
modified. [Pressing the RETURN key four times (sometimes less) is an
easy way to resynchronize the editor screen with the cursor should some-
thing go awry.]

NOTE

4-6/ Spreadsheet operations

Loading and
Saving Files

While you are creating a spreadsheet, type ISAVE every so often. Doing
this guarantees you won't lose your work. If the file name you wish to use
already exits, QueryCalc will ask whether or not you want to purge the ex-
isting file with this name and create the new file. This question will occur
whether the file is a QueryCalc spreadsheet or any other HP3000 file type.
If you did not know that there was another file in your logon group with
this same name, prudent action would suggest that you do not answer YES
until you determine what the other file is and how dispensible it might be.

ISAVEwill record the spreadsheet's cells, including all open databases, cell
equations, page margins, formatting information, screen color, number rep-
resentation selected (American or European), terminal width (80 or 132) and
all other relevant information in a file within your current account and
group. For reasons of simple security, you cannot save your spreadsheets
in any other group on the HP3000 other than your own. You may however
load a spreadsheet from any group on your machine (or even a remote
HP3000), if you have standard MPE access to the necessary file. The
SAVE command is like most commands in QueryCalc. You have two ways
to use the command. The first is by simply typing ISAVE. Questions will
follow asking for additional information (in this case for file name). Alter-
natively, you may type the command followed immediately by all of the ne-
cessary parameters.

Retrieving a spreadsheet is as easy. Type ILOAD, optionally followed by
the name it was stored under. When a file is ILOADed,QueryCalc automati-
cally restores all the file's ancillary settings (margins, screen color, etc). All
of the databases which are open prior to the ILOADare closed and the data-
bases associated with the new file are opened.

Additional commands related to the files are IKILL, used to purge a spread-
sheet from the HP3000, and /INFO, used to display the cell usage informa-
tion for the currently loaded spreadsheet. The IKILLcommand is different
from the standard MPE :PURGE command only in that it also automatically
updates QueryCalc's directory. Should you purge a file using the MPE
command while outside of QueryCalc, the name will remain in QueryCalc's
directory as a ghost file. There is no penalty associated with the maintenance
of ghost file name other than the obvious confusion it will engender. To ex-
orcise the ghost file name, simply IKILLthe ghost file while you are in
QueryCalc.

The File
Commands

Setting Page
Margins

The file commands /4-7

To load a spreadsheet report:

ILOAD
ILOAD myfile[.group[.account]]

To save a spreadsheet report:

ISAVE
ISAVE myfile

To see a listing of the QueryCalc files in your logon group:

ICAT or IDIR

To delete a QueryCalc file:

IKILL
IKILL myfile

To display information about the currently loaded spreadsheet:

/INFO

The size of the print area for each spreadsheet page in a QueryCalc report is
set with the IMARG command. When the page margins are set in Query-
Calc, you have described (1) the size of the paper you're using, (2) the
margin sizes you wish to maintain at the top, bottom and sides of the paper,
and (3) the number of lines per page your printer will print. A separate
screen (a portion of which is shown below) is used to set each of these
margin features. The use of the IMARG command is explained fully in
Chapter 7, "Printing the Report".

Lines/page
Paper Feed

Top Margins

Bot Margin
Lft Margin
Rgt Margin

4-8/ Spreadsheet operations

Every Input
is Syntax

Checked in
QueryCalc

When an equation or a spreadsheet command is typed at the Command:
line, the input is immediately checked for correctness. Syntax-checking ex-
ists to protect you from careless errors. QueryCalc will let you do very little
harm to your currently active spreadsheet without warning you first.

But more is to be gained from extensive syntax checking than simple securi-
ty. When your report is ready to be calculated, you can be virtually certain
that the report will execute properly. Syntax-checking often represents a
10-20 times increase in programming productivity.

Only those equations which pass syntax check are entered into a cell. An
equation which does not pass syntax check is rejected. More than 500 plain-
ly-worded error messages are associated with the syntax checker. Should
your input fail syntax check, the resulting error message should be clear
enough to tell you precisely what's wrong with your typed input. Use the
REDO editor to modify the equation until it's correct.

Equations which are accepted into a cell are marked either as:

• recalculating cells
or

• non-recalculating cells

The only cell types which can be non-recalculating are text labels and nu-
meric equations which do not contain cell references. Examples are:

AExpenses for January, 1997
56*sqr(457+56)

All other cell types (query questions, text equations or numeric equations
containing cell references) are marked as recalculating cells. Recalculating
cells will be re-executed every time the spreadsheet is recalculated.

Equations do not automatically calculate on entry. A recalculating cell equa-
NOTE tion which does not end with an "!" is only syntax-checked. Query ques-

tions may take substantial time to execute. Once you become familiar with
QueryCalc, you will not tend to request immediate calculation for every new
query question. An equation which has been syntax checked but which has
not yet been calculated is marked as:

"<ok>"

Syntax-checking cell inputs /4-9

What
Happens
to a Cell

Equation on
Input?

The logical flow of syntax checking a cell equation is outlined below. The
specific path travelled by the example shown is marked by the bold arrows.
Because the query question in this example was terminated with an "!", the
query question was calculated immediately on input rather than being de-
ferred until global recalculation.

Input at the Command line:
@Using invoices, sum of amount when

category is 501!

Result placed in the cell:
"23,984.97"

4-10 / Spreadsheet operations

Recalculating
the Spreadsheet

QueryCalc has two modes of recalculation. The first recalculates only the
surface of the spreadsheet. The second recalculates both the spreadsheet
and extracts new data from the database(s). Recalculation in either mode
may be specified for the entire spreadsheet or a selected range of pages or
cells.

Command to recalculate the entire report without new database inquiry:

Command to recalculate the entire report with new database inquiry:

! !

Command to recalculate any portion of the spreadsheet:

!e9,f10:f30 recalculates only math and text cells
in local page cells e9, fIO thru no

!A:C,K,N:P recalculates only math and text cells
in pages A thru C, K, and N thru P

!!M:Q,Z,az5 recalculates query questions, math
and text cells in pages M thru Q, Z
and the single cell AZ5.

!!g34 recalculates the query question in the
single cell G34 on the current page

The recalculation of any spreadsheet begins at the upper left-hand corner of
the spreadsheet and proceeds more or less diagonally down to the lower
right-hand corner.

QueryCalc recalculates the spreadsheet in either one of two directions, row-
wise or columnwise. QueryCalc does not employ automatic recalculation.
Automatic recalculation would quickly become unacceptable due to the
length of execution times of most query questions.

Recalculating the spreadsheet/4-11

A B C D E C
1 ·l..·..· ·..··i..· · t·..· ·..·..j' ..· · l ···t ·..
........1 1 ~ 1 .,

~ .J.. 1 L J .
~ ~ · J } ·f ·..

4 I I I I.. ~....... . ~., "' ~ .
5 ! !!!........~ ~ .;. ; .

6 I I I I
······1······· ················r·················r················1·· .

7 J i r j ~ ~ .
~ ~ ~ 1 ~ ~

A B D E

:-~F·;·-li----'iir-r----r-;l~~r:~-
~""""r""[! !:! ! ·T ·..
········~········· ..······i·· ···· ..····~· ..·············~··················i·· ~ ,

4 I I I I I I.....-: ~ ~ ~ ~ ~ .
5! ! ! ! ! !

· ··.; •... · · .. ·j.·· .. ·· · ·;. · .. · .. · .. · .. i···· .. ····· .. ·.. ··i···· .. ·.. ·.. ·.. ·..i· · ·

: ·~1"~·:::t:~---t-~~~~·t~--~:~t---:~~r::::
ROW-WISE

RECALCULATION
COLUMN-WISE
RECALCULATION

Database inquiries in QueryCalc may be written so that they are dependent
upon the results obtained in a previous query question. Dependent query
questions offer a simple mechanism to improve the efficiency of data extrac-
tion from databases (see Chap. 6, "Query Questions"). The dependency of
one query question on another is sequential. On the spreadsheet, cellular po-
sition and the recalculation direction dictates the order of execution. If the
direction of recalculation is row-wise, dependent query questions should lie
basically to the right of the query question they reference. Conversely, if the
direction is column-wise, dependent query questions should lie basically
underneath the independent cells they reference.

The direction of recalculation may be independently specified for each page
of the spreadsheet. The default direction is column-wise for all pages. To
change the direction of one or several pages, the command forms are:

IORDER the basic command. Questions
requesting more information will
follow.

IORDER ALL C sets all pages to column-wise
recalculation order.

IORDER B:G,M R sets pages B thru G and M to
row-wise recalculation order.

4-12/ Spreadsheet operations

Setting
Column
Widths

Screen
Settings

The column widths on a page may be individually set to any width between
o and 36 characters wide. A zero-width column will not print, nor will the
cursor "land" on it. A zero-width column is in all other respects a normal
column of cells. Its equations will calculate normally and may be referenced
as any other cells. The default character width for a blank spreadsheet is 12
characters wide for all columns.

ICWID the basic command. Questions
requesting more information will
follow

ICWID B:G,M,R 10 sets columns B thru G, M and R to
10 characters wide

You may examine the current column width settings for a page by typing
ICOlS. The current widths will be printed at the bottom of the page.

Text that is too wide for a cell's width will simply be extended rightward
into the adjacent cells. If the cells to the right are empty, the text will be dis-
played. If they are not, the right-lying cells' contents take precedence over
any extended text. Numbers that are too large are treated differently. If a
numeric display is too large for a cell's width, the display you will see will
be a series of asterisks:

"***************"

Other settable screen attributes are the color of the screen, the display width,
and the form of the numeric display (American or European).

ICOlOR sets the color (black, white, gray) of
the border, background and cursor

180

1132

sets terminal to 80 or l32 column dis-
play. Only available on newer terminals

IUS

lEUR
sets numeric displays in common
American or European formats

Information
Requests

Interrupting
QueryCalc

Spreadsheet information /4-13

A number of informational screens are available. They display current
memory usage, current page usage, column widths for the current page, and
a calendar.

/INFO displays current memory usage
and current marging settings

fPAGS displays current cell count on
each page in QueryCalc

fCOlS displays column widths for the
current page

fCAlEN displays a Gregorian calendar.
The calendar's range is October, 1582
to December, 9999

fT displays current time and date

Various processes in QueryCalc, such as spreadsheet recalculations and
printing, may be interrupted by pressing CTRL- Y. This is called a subsys-
tem break. If you are unfamiliar with the process, press and continue to
hold the CTRL key. Then press "Y". The subsystem break has been ena-
bled in QueryCalc everywhere that it was felt that it was necessary. The
subsystem break will take effect immediately. However QueryCalc may not
come to an immediate stop. It will come to a stop at the earliest opportune
(and safe) moment.

Long listings may be temporarily stopped by pressing CTRL-S and re-
sumed by pressing CTRL-Q. These key combinations form what are called
the XoniXoff transmission protocol characters. (Xon means transmission
on; Xoff means transmission off).

The system break key, BREAK, has been disabled everywhere in Query-
Calc. However, you may temporarily return to the MPE operating system
by typing fSYSTEM at the Command: line, as explained on the following
page.

4-14/ Spreadsheet operations

Leaving
QueryCalc

QueryCalc may be exited in three ways: (1) to temporarily return to the
MPE operating system, (2) to run another program within QueryCalc, and
(3) as a complete exit.

To momentarily return to MPE, type:

ISYSTEM*

MPE commands which do not require invoking a new
process (such as :LISTF, :PURGE, :BUILD, :HELP,
etc.) may be executed.

ISYSTEM FILE QCLlSTF;DEV=103;CCTL*

A one-line version of the /SYSTEM command can be
formulated as above. This form is macro-executable.
Command returns immediately to QueryCalc on both
successful and unsuccessful execution.

To suspend QueryCalc and run another program, type:

IRUN EDITOR.PUB.SYS*

The name of the program must be qualified, if not
in the user's signon group or account.

UDC's (user defined commands) and MPE's run
command qualifiers are not supported.

Upon completion of the invoked program, QueryCalc
resumes at the point of suspension.

To fully exit QueryCalc, type:

IEXIT

*Note: The ISYSTEM and IRUN commands may be disallowed by your
HP3000 System Manager.

Concepts
Introduced in

Chapter 4

Concepts introduced / 4-15

CURSOR a movable marker on the
spreadsheet indicating which
cell is the active cell

CELL ADDRESS a one- or two-letter/numeric
address specifying the page,
column and row

ABSOLUTE CELL a cell address that does
not change when replicated

RELATIVE CELL a cell address that is altered
when replicated. The cell
reference is altered by the
amount of the displacement
from its original position

PREFIX the initial character of an input
at the Command: line. The
prefix specifies how the text is
to be interpreted

CELL EDITING the capacity to easily modify
the contents of a cell (or last
attempted input)

SYNTAX-CHECK a procedure where every input
is checked for correctness
before entry onto the
spreadsheet. Syntax -checking
is one of the primary methods
to improve user productivity

CALC ORDER the direction of recalculation
of the spreadsheet. The
choices are either rowwise or
columnwise. Each page may
be independently specified

InterChapter Reminder

The only way QueryCalc will become useful to you is for you to know what's in your databases.
That means understanding how a database on the HP3000 is put together and what each dataitem in
your own databases means. This advice doesn't apply solely to QueryCa1c. It's only common
sense. However, this is not difficult. If necessary, review Chapter 2. And then ask someone
about the databases on your machine. If you are confused and you can't get help locally or from
your applications program supplier(s), call us. We'll do our best to help. Our telephone numbers
are:

(800) AICS-INC (United States)
(505) 524-9800 (elsewhere)
(505) 526-4700 (FAX)

Our hours are 8AM to 5PM, Mountain Time, weekdays. To relate our time zone to yours, if you
are in London, subtract 7 hours from your local time. If you are in Sydney, add 7 hours to your
local time.

Keven
Rectangle

6

The Single
Dataset
Query

Question

Creating a summary of dataitem(s) from a single dataset

Query Questions

The query question which summarizes data from a single dataset is the heart
of QueryCa1c. Although a variety of methods exist in QueryCa1c to simulta-
neously extract data from multiple datasets, databases and multiple
HP3000's (as explained in Chapters 10, 11, and 13), each of these methods
is built around the question that gets data from a single dataset.

The single-dataset query question will always look something like this:

@Using invoices, sum of amount when
category is 501 and date > 930101

The word "when" is the keyword in a query question. The phrase to the
left of "when" specifies what statistics are to be summarized. The phrase(s)
following "when" specify under what conditions retrieved records are to be
added into the summarization. These restrictions are called the qualifying
phrase(s). The records in the dataset which pass these restrictions are com-
monly called the qualifying entries.

The statistics which may be summarized in a query question are these:

Sum of
Avg of
Max of
Min of
Var of
Dev of
Val of

The last statistic in the list should be read as: "get me the first value of...".
This statistic is different than the others. The search of a dataset stops im-
mediately once a single record has been qualified. The value returned is
thus the "First Value". This form of query question will be predominantely
used in dataset "rereadings" (an idea which will be explained shortly).

6-2/ Query Questions

The Query
Question

Explained

The
"V sing ... "

Phrase

A complete query question will always look basically like this:

@Using qcdemo.invoices, avg of amount
when jobnum ib 8000,8100 and date>=19950601

In order to explain what's possible in a query question, each phrase in the
query question will be described in detail in the next few pages.

The initial "Using ..." phrase at the beginning of a query question specifies
which dataset in which database is to be searched. The phrase may be
typed in any of four different fashions. Three of them are:

@Using database.dataset,
@Using database, .
@Using dataset, .

Or the phrase may be left off altogether. If the phrase is left off, Query-
Calc will look only in the last-used database (called the default database). A
query question is not complete until it is fully specified as to which database
and dataset is to be searched. QueryCalc will automatically attempt to fill in
whatever information you omit. If you specify only the database, as in the
second example, QueryCa1c will change default databases and look only
there. If no single dataset contains all of these items, QueryCa1c will an-
nounce that as an error. Should more than one dataset possess all of the
items, QueryCa1c will present you with a list of choices.

The "@Using ... " phrase
determines which database
(file cabinet) and which
dataset (file drawer) is to be
searched by the query
question.

@Using
qcdemo.invoices,

The Item(s) to
be Summarized

maybe
Specified as an

Equation

Dataitem equations /6-3

The item to be summarized in the query question can either be a single data-
item, as in this example:

@Using db.ds, sum of amount

or it can be a calculated combination of various dataitems:

@Using db.ds, sum of
amount*workcomplete/jobcost

Because of this feature in QueryCalc, the object of the summarization is
called a dataitem equation. Both the item amount by itself and the phrase
amount+workcomplete/jobcost are dataitem equations. The rules for use of
dataitem equations are these:

1. All of the dataitems must come from the
same dataset.

2. Only the five basic mathematical operators
(+ , - , * , / , /I.) are allowed. No functions
are permitted. Function manipulation of
the retrieved items can be handled using the
user-defined query functions (see Chap. 11).

3. Parentheses are not allowed. (Parentheses
are used for other purposes in specifying
dataitems.) If you need to enter an equation
such as

A* (B+C)

where A, B, and Care dataitem names, multiply
the equation through and enter it as

A*B+A*C

A common practice used by many database programmers is to create datait-
em names which use some or all of the mathematical characters, but which
were not meant to be interpreted mathematically. Hyphens are especially
commonly used.

6-4/ Query Questions

Resolving
Ambiguities in

Dataitem
Names

The
Qualifying

Phrases

How can you tell what's what in a dataitem equation such as this:

@avg of current-age-age-operated-on

Surprisingly, QueryCalc can often work these equations out by itself.
QueryCalc does this by examining each part of the dataitem equation piece
by piece. If the specified database contains the item current, the next hy-
phen must be a minus sign. If current is not a dataitem, current-age is tried.
If this dataitem name exists, the following hyphen is interpreted as a minus
sign. This step-wise process of parsing dataitem names will fail however if
there are two dataitems in the database, one named current and the other
current-age. The second dataitem will never be seen and equation processor
will unsucessfully attempt to subtract age-age-operated-on from current.

You can remove any ambiguities in your specified dataitem equations by
placing backslashes (" \ ") around the dataitem names:

@avg of \current-age\-\age-operated-on\

Dataitem names specified in this manner are unambiguous. An added ad-
vantage of the backslashes is that the processing of the query question is
slightly faster.

The qualifying phrase(s) following the word "when" in the query question
determines which records are to be added into the accruing statistics during
the search of the specified dataset. The word "when" is not always re-
quired. A query such as the following:

@Using invoices, sum of amount

will simply qualify every record in the dataset (but because no search items
were specified to be matched, a serial search will be required). A more
standard query question would look like this:

@Using invoices, sum of amount
when category is 501

This query will extract only a subset of the records in the dataset. If the da-
taitem category is a search item, the retrieval time will generally be quite
quick.

The Three
Parts of a

Qualifying
Phrase

Chained or
Serial

Search?

Qualifying phrases /6-5

A qualifying dataitem may also be a dataitem equation, as in this example:

@Using invoices, sum of amount when
amount-balance*1.25 > 10000

Every query qualifying phrase consists of three parts: (1) a dataitem (or da-
tatitem equation), (2) a relational operator ("relop" for short), and (3) a pat-
tern to be matched in the dataset's records.

data item relop ''pattern''

amount 10000>

The qualifying value ("10000") is called a "pattern" to emphasize the nature
of a match in a database. You don't so much match numbers or letters
when you qualify records as you match bit patterns (strings of l 's and O's).
Being a simple machine, that's all the computer can look for. Text forms a
certain set of bit patterns, numbers another set. QueryCalc automatically
generates the proper bit patterns based on the dataitem type being matched.

The qualifying phrases determine whether or not the search is to be chained
or serial. For a chained search to be possible in IMAGE, at least one datait-
em in the qualifying phrase must be (1) a search item, (2) matched with "="
or is relop, and (3) specified as a whole (no partial substrings).

@sum of amount when
category is 501 and date > 19930101

The dataitem category would meet those criteria in this example. Date
would not qualify for a chained search in IMAGE, even if it were a search
item.

The rules are slightly different for KSAM databases. KSAM is less restric-
tive about a precise pattern match than IMAGE is. For a keyed search to be
possible in KSAM, at least one dataitem in the qualifying phrase must be (1)
a search item, (2) the relop may be any relational operator other than not
equals ("<>"), and (3), if a partial string is to be used, it must begin with
the first character.

Otherwise, there is no difference between query questions for IMAGE and
KSAM databases.

6-6 / Query Questions

The Seven
Possible

Relational
Operators

There are only seven relational operators ("relops") possible in a query
question: (1) equals, (2) greater than, (3) less than, (4) greater than or
equals, (5) less than or equals, (6) not equals, and (7) "is between". The
relational operators may be written in a query question in any of the follow-
ing ways:

= lS le eq
> gt igt
< It ilt
>= => ge ige inlt
<= =< Ie ile ingt
<> # ne lne isnot
ib

These are the most common standard representations for the seven possible
relational operators. All of the relop forms on a row are equivalent. How-
ever, there is a restriction with the use of some of the relops. Those relops
which start with a letter, or the"#" symbol, must be separated by a space
from the dataitem name and the pattern to be matched. The reason is alpha
characters and the "#" symbol are legitimate characters in IMAGE dataitem
names. Without spaces, reliable sentence parsing becomes impossible, as
in this case:

@sum of amount when ssn##452567191

QueryCalc will announce its inability to properly parse such a condition.
The query question must be rewritten in this fashion:

@sum of amount when ssn# # 452567191

The qualifying phrase may be run together, without spaces, if the symbolic
relops (=, >, <, etc.) are used. These symbols are illegal characters in
IMAGE dataitem names, thus there is no ambiguity as to what part of the
text is the dataitem name and what is not. An example:

@sum of amount when ssn#<>45267191

Specifying
the Pattern to
be Matched

Matching a
Pattern Off

of the
Spreadsheet

Pattern matching /6-7

A qualifying phrase may be written as simply as this:

." when state is CA

where the pattern to be matched is CA. Quotes are not required around the
pattern if the value to be matched is composed of only alphanumeric charac-
ters, absent of any form of punctuation or spacing. Quotes are required to
surround the pattern to be matched if non-alphanumeric characters appear as
part of the pattern, as in this example:

... when employee lS "Smith, Joe"

The dataitems in these two examples, state and employee, are text dataitems.
If a dataitem is defined as an "X"-type text field in the database, both upper
and lower case text may appear in the dataitem's values (see Chap. 2). If
the text dataitem is defined to be a "U"-type field, then only upper-case val-
ues are expected to appear in the dataitem's values. QueryCalc will automat-
ically upshift all pattern text to match a "U"-type dataitem. If however the
dataitem is an "X"-type field, QueryCalc will leave the pattern to be matched
as you typed it. Therefore you must be careful to specify a text pattern cor-
rectly, letter for letter, in its correct lettercase, if a match is to be found in the
database.

... when idnumber is 134527
... when pressure ib 1e5,7.3e6

Numbers require no such consideration. Regardless of how the number is
stored in the database or how you represent the number in your query ques-
tion, QueryCalc will automatically build the proper bit pattern to match the
datatype used in the database.

Much of QueryCalc's power is derived from its ability to extract pattern val-
ues off of the spreadsheet. Brackets ([...J) are used in a query question to
form a "window" back into the spreadsheet's equation interpreters so that
you can synthesize a pattern to be matched.

Examples of common numeric equation patterns are:

when productno is [ab12]
when idnumber is [1900+g13+g17/10]
when startmonth is [190000+{az5}]

6-8 / Query Questions

Subitems &
Substrings t

When a query question containing equations is replicated, the cell addresses
used in the equations will be automatically adjusted by the amount of dis-
placement traveled on the spreadsheet. The exception are cells surrounded
by braces, which indicate absolute cell references (the third example on the
previous page).

Text equations may be similarly created:

.... when name lS [$g3 4]
.... when date ib [$119"+{az5}], [$119"+{az6}]
... when product= [if (ab7>ab8, IMRJ1501" ,g34)]

Any numeric or text equation that can be placed in a cell on the spreadsheet
may appear with the brackets of a query question. In the third example, the
pattern to be matched is made conditional on the relationship of two cells,
Ab7 and Ab8.

Patterns may similarly be matched to subitems in a dataitem array. The sub-
item is referenced by a single index:

... month-profit (4) > 12000
... store-number (16) = [$r45]

The dataitem may be either text or numeric. It is of course necessary that
the pattern to be matched be the same data type as the dataitem.

Substrings within a text dataitem may also be matched. Substrings are indi-
cated by two indexes:

... date(3,5) = 051

The first index indicates the start position of the first character in the datait-
em's text string; the second indicates the stop position. The example shown

tA string is simply a string of text characters. This sentence is called a string in the com-
mon parlance of programming. A substring is a specified subset of the whole string, with
specific start and stop character positions. Sub items are different. A subitem is part of a
dataitem array. Simple (non-arrayed) dataitems are written as Il , R2, ZlO, X20, etc. Ar-
rays are written as 30X6, 20R2, lOZ6, etc. The simplest way to imagine an array is think
of post office boxes. All of the boxes are given the same (dataitem) name. It's the index
number that is attached to the dataitem name that allows you to select the proper box. In
QueryCalc, if you leave the subitem index off, you select data from the first subitem.

Text Matches
Using

Wildcards
III@"

Substrings, sub items & wild cards / 6-9

would declare a match whenever date equaled any of the following values:
840513, 20051012, MY05167.

Matches searching for substrings within a subitem are indicated by three in-
dices:

... acctcode(4,5,8) is GR7E

The first index indicates the sub item. The second and third indexes indicate
the start and stop positions within the character string. This form of sub-
item matching can be used only with text dataitems.

All of the indexing values for a substring or subitem may be taken off of the
spreadsheet, and thus be made variable rather than remain fixed values. The
previous example could be rewritten as:

... when acctcode(c5,c6,c7) is GR7E

where cells C5, C6, and C7 contain the desired indexes. The index values
may only be cell references, not equations. If the index value is to be calcu-
lated, it must be calculated in the referenced cell. An example which would
violate the proper use of indices is:

... acctcode(cl*4+2,1,4) (illegal)

Otherwise, fixed (constant) values, relative cell addresses, and absolute cell
addresses may be freely intermixed:

... acctcode(cl,1,{d5})

For text dataitems, wild cards may also be used:

name is @ote
name is ote@

... name is @ote@

The first example would find all name values which end in "ote". The sec-
ond would find those that began with "ote". The third would find those that
contained the string "ote" anywhere in their entry. The match is case sensi-
tive for X-type text dataitems. It is case insensitive for U-type text datait-
ems.

6-10 / Query Questions

Table 6.1. Match PatternsReviewed

1. state is CA

2. employee is "Smith, Joe"

3. productno is [ab12]
name is [$g34]

4. acctcode(5) is P

5. productnum(5,8) is [$CG7]

6. @val of acctcode(9, 3, 5)
when productnum(5,8) is
3415

7. @val ofmonth-profit(d5)
when productnum(1,(d6))
is [$g34]

8. name is Hol@
name is @ght
name is @erin@

The pattern to be matched is CA. No quotes are re-
quired if there are no spaces or punctuation marks in
the pattern value.

Quotes are required to surround the pattern if non-
alphanumeric symbols (anything other 0-9,a-z) are
used. If the IMAGE dataitem to be matched is a "U-
type" text dataitem, the pattern will be upshifted to
match the database entries.

Brackets indicate that the pattern to be matched will
come off of the spreadsheet. In the first example,
productno is matched with the numeric value taken
from cell Ab12). A text dataitem must be matched
with a text equation. In the second example, name is
matched with the text value from cell G34.

A dataitem which contains subitems is referenced
with one index. If no subitem is specified for a subi-
temed array, the first subitem is assumed.

A substring of a text dataitem (either X or U type)
can be matched using two indexes. The indexes indi-
cate that the substring to be matched begins with the
fifth character and ends with the eighth.

A substring of a subitem may be matched with three
indexes. The substring of characters residing in char-
acter positions 3 to 5 of the 9th sub item of acctcode
will be the value returned when the indicated
substring of productnum equals 3415.

Cell references (but not equations) may be used in
place of fixed values for any of the indexing values.
The cell references may be either relative or absolute.

"Wild cards" (@) may be used in text string matches.
In the first example, any text value beginning with
"Hol" will qualify. In the second, any text ending-
with "ght" will qualify. In the third example, the
string of characters "erin" anywhere in the text entry
will qualify.

Summing
Subitems with

the": "
Operator

Using And's &
Or's in the
Qualifying

Phrase

Summing sub items / 6-11

For numeric items in a subitemed array, QueryCalc offers an easy way to
sum a range of subitems using the ":" operator:

@sum of month-profit (1:6) when

Inserting a ":" between two subitem indexes is equivalent to summing all of
the month-profit subitem values from the first month to the sixth, as
shown:

@sum of month-profit (1)+month-profit (2)
+month-profit(3)+month-profit(4)

+month-profit (5)+month-profit (6) when

Either or both of the start and stop subitems in the summation may be made
cell references:

@sum of month-profit(1:d5) when

Using cell references for the indexes provides an easy mechanism for rol-
ling calculations. For example, if the cell D5 contained an equation which
automatically calculated the month number relative to the fiscal year, the
year-to-date sum of an array could be calculated automatically.

Up to 20 dataitem qualifying phrases may be appended together in one
query question using "and's" and "or's".

@find when jobnum=8404 and date>850000
or jobnum=8405 and date>850601

or jobnum ib 8406,8499 and contractamount>lOOOOO
and date>850000

or jobnum=8501 or jobnum=8502

The "and" takes logical precedence over the "or". That is, all of the "and'ed"
items before the first "or" are evaluated as a unit. If the first "and" phrase is
found to be true, the record is accepted. If anyone of the "and" matches is
not true in the first phrase, the second series of "and's" beyond the "or" is
tried. The process is repeated until one complete "and" phrase is found to be
true or the end of the sentence is reached. If none of the "and'ed" phrases
are found to be true, the record is rejected.

6-12/ Query Questions

Implicit
OR

Lists

Dependent
Query

Questions

The
@UCS
Form

Because of their use elsewhere in query questions, parentheses cannot be
used to group "and" and "or" phrases. The alternative is to use QueryCalc's
implicit or lists. Virtually any query question can be formulated through the
use of implicit or's.

@sum of hours*1.31+overtime
when facility is 701,711,734,707,749

and unit-number is 3409,3511,3613,4303
and job-number is 673,812,556

Up to 10 items may be specified in a list. The match patterns may be fully
specified, incompletely specified (through the use of wild cards), taken off
of the spreadsheet, or synthesized with an equation:

@find when last-name is
SMITH, ROBERT@, [$a3], [$a4+"GER"],@TON

All of the query question forms discussed to this point have been indepen-
dent query questions. That is, regardless of where the query questions are
placed on the spreadsheet, the answers they extract will be independent of
all prior queries.

QueryCalc also contains two related query question forms which are depen-
dent on the last -asked standard query question. The forms are:

@ucs (using current statistics)
@rereading, sum of

When a standard query question calculates a requested statistic (sum, avg,
max, etc.), all of the statistics are actually calculated. Thus it is a no-cost
query to ask for the other statistical values. The calculated statistics may be
requested by using any of these @UCS (using current statistics) forms:

@ucs, sum
@ucs, dev
@ucs, max
@ucs, num

@ucs, avg
@ucs, var
@ucs, m1.n
@ucs, pct

The statistic "Pet" returns the percentage of those records searched which
were qualified. If the search were serial, the percentage would be of those

The
Recalculation

Order is
Important

Using current statistics /6-13

records which qualified out of the entire dataset. If the search were chained,
the statistic would be the percentage that qualified on the chain.

Frequently, information is required to describe not merely a single statistic
such as the sum or average, but instead the how the population of entries is
distributed. Three statistics describe a Gaussian (Normal) distribution:

n, the number of entries qualified,
u, the mean (or average),

and
a, the standard deviation.

)l

A standard "bell"-shaped Gaussian (Normal) distribution.

These three statistics may be retrieved in QueryCalc by placing the follow-
ing equations in cells immediately after a standard query question:

@UCS I num (n)
@UCS/ avg (J..l)
@UCS/ devt (a)

If the direction of recalculation on the spreadsheet is row-wise, then the
subsequent dependent query questions should lie somewhere to the right of
the last-asked standard query question. If the direction is column-wise,
then the dependent query questions should appear in the column below and
close to the standard query question they reference.

The calculated statistics (called the current statistics) remain in effect until ei-
ther: (1) a new standalone query question, (2) text or (3) numeric equation
is executed. Each of these cell types either clears the current statistics or re-
sets them to new values. Intervening blank cells and text labels however
have no effect on the current statistics.

tStandard deviation is the square root of the variance, which is also calculated (@ucs, var).
The calculated variance is corrected by the factor n/(n-l), which is commonly called the un-
biased estimator.

6-14/ Query Questions

When a
Record is
Qualified,

It's Marked

The
@REREAD

Form

When a record is accepted into the accruing statistics of a standard, indepen-
dent query question, its record number is recorded in a temporary file.
Marking the records in this manner is a little like dog-earing all of the quali-
fied file folders in the file drawer so that you can find them again.

Qualified Record Numbers

12 213 363
25 215 373
39 217 374
67 218 375
68 223 382
73 245 423
76 247 456
79 267 512
80 289 523
103 301 578
104 303 580
156 356 •
185 357 •

The marked records allow the use of the second form of dependent query
question: the reread of data from a qualified sublist. Rereading data from a
qualified sublist often represents a substantial performance improvement
over retrieving the data again. The form of the query question is:

@rereading, sum of balance
@rereading, avg of vacation when regular>=40.0

The first example will reread all of the last-qualified records and return the
sum of the dataitem balance. The second example will reread all of the last-
qualified records and return the average of the vacation days for only those
records which had a regular hours greater than or equal to 40.

Rereading a previously qualified list using the @REREADdoes not alter the
list of qualified records. The current statistics are changed, however, to the
new values calculated.

The @REREAD is also valuable in retrieving multiple dataitem values when
one record has been isolated, such as obtaining the name, address, city and
state of a single person. Dependent @REREAD'swould be placed directly
after a qualifying query question, as shown in the example at the top of the
facing page:

Multilevel
Rereads

(Rereading
Subsets)

@Rereadings/6-15

@using employees, val of lname
when socsecnum is [$g34]

@rereading, val of fname
@rereading, val of address
@rereading, val of city
@rereading, val of state
@rereading, val of zip

The record of interest is loaded into the HP3000's main memory with the
execution of the first query question. Each @REREADING is a low-cost
method of retrieving additional information from the same record. Finding
the correct record on the HP3000's disc drives is the most "expensive" part
of retrieving data. Once the record is in memory, it should be used to the
greatest extent possible.

In contrast to the single-record rereads just described, multilevel rereads al-
low you to progressively isolate records as subsets, thereby minimizing the
need for repetitive serial searches. The technique is especially valuable for
filling in tables of calculated values which are derived from a single dataset,
and is discussed in detail in Chapter 7, "Summary Reports."

The syntax of a multilevel reread is:

@level 3 rereading, sum of amount
when jobnum < 8500

where the level may range from 1 to 9.

Each @REREADING rereads the records previously found at the specified
level and creates a new list of records one level down, based on the qualify-
ing criteria of the rereading query. @LEVEL 1 REREADING is identical to the
standard @REREADING.

Multilevel rereads are a simple but powerful search acceleration mecha-
nism. The speed advantage occurs because each progressively lower-level
reread must now read only a fraction of the qualifying records. But just as
important, the original source pool of records is not discarded and does not
need to be rebuilt by another serial search. A new subset of records can be
redefined at any level by returning to that level and asking a new @LEVEL x
REREADING query question.

6-16/ Query Questions

Query
Forms
Which
Merely
Mark

Records

Viewing the
Qualifying

Records

All of the query questions to this point in the chapter have summarized val-
ues taken from records in a dataset. There are three query question forms
which do not create summaries of values. Rather, they merely mark the
records so that they may be reread. The form of these query questions is:

@find when state is CA
@num when jobnum is 8404 and date>950000
@pct when keyname ib G,M

The first two forms, @FIND and @NUM, are completely synonymous. You
should read the query questions as either "Find me all of the records whose
state is California" or "Get me the number of records when the job number
is 8404 and the date is in the year 1995 or greater." The value that is re-
turned to the cell using either of these forms is the number of records which
were found to qualify.

The third form, @PCT, similarly marks all of the records that meet the qual-
ifying conditions, but it returns the percentage of records which qualified. If
the search was a serial search, the percentage will be the percentage of qual-
ifying records in the entire dataset. If the search was a chained search, the
number returned will be the percentage of qualifying records on the chain.

While the utility of only marking records and not returning a summary value
may not be obvious at first, the @FIND query question form will prove to
be invaluable in user-defined query functions, "UDQF"s (Chap. 11), and in
detail list reports (Chap.l3).

All query question forms (other than "using current stats") mark the records
which pass the qualifying conditions. These individual records can be
viewed after executing a query question by typing @SHOW. The @SHOW

command reads down the list of marked records and displays the individual
record values, one-by-one. To advance the display to the next record, press
the RETURN key. You may stop the list prematurely by typing either Con-
trol- Y, " II ", or pressing the [FS] key.

Showing the qualifying records in this way allows you to quickly determine
that the records you're finding are the records you want. Various command
forms for the @SHOW are shown on the facing page:

The @SHOW
Command

The @Show Command / Page 6-17

To show records found during the last query:

@SHOW The show command shows all of the dataitems for all
of the qualifying records found during the last data-
base query.

@SHOW PRODUCTNO,CITY,STATE

A subset of the dataitems found during the last data-
base query can also be specified to be shown.

To show randomly selected records in a specified dataset:

@SHOW INVOICES

@SHOW INVOICES: AMOUNT, DATE

Either all or a selected few of the dataitems will be
shown for the dataset invoices, record-by-record, in
the currently defined (default) database.

@SHOW QCDEMO.INVOICES

@SHOW QCDEMO.INVOICES: AMOUNT, DATE

Randomly chosen records in a dataset in any open
database may also be shown. The specified database
becomes the default database.

To show the contents of a search list:

@SHOW!A The dataitem values currently held in the specified
search list will be displayed.

To show the list of currently open databases:

@SHOWDB The currently open databases are displayed. The de-
fault database is shown with an arrow ("<---«").

6-18 / Query Questions

Statistical
Sampling

Two clauses may be appended to any query question which modify the
sampling nature of the query question. The reasons for sampling less than
every qualifying record are:

1. The statistical sampling of recorded data for scientific
and engineering purposes.

2. To simply limit the number of records drawn during the
initial phases of putting a report together.

The modifying clauses are called LIMIT and SAMPLE. They are used in this
fashion:

@Using database.dataset, avg of thickness
when jobnum is 8404 and

machinenum is 15061;limit=300;sample=.4

The two clauses are independent. They may be appended to a query ques-
tion individually or in concert. The order of specification is not important.
The LIMIT clause limits the number of records found. The SAMPLE clause
specifies the sample frequency. A sample frequency of 0.4 indicates that
approximately 40% of the qualifying records will be selected.

If both clauses are added to a query question, the order of execution is as
follows: the record is first qualified for acceptance on the basis of whether
or not it meets the standard conditions specified in the qualifying phrase. If
the record is acceptable, and would normally be added in, a coin is tossed.
If the result of the coin flip says that the record should be added in, the limit
value is checked. If the number of records is less than or equal to the limit,
the record is included in the accruing statistics. If this newest record hits
the limit, the query search quits.

If only the SAMPLE clause is used, the entire set of records is searched.
(Which records constitute the searched set is determined by the type of
search employed, as it is in all query questions. The searched set may be ei-
ther the entire dataset if the search is a serial search, or it may be only the set
of records linked together by a common key value.) The selection of
records is random. If you were to search a set of 100 records with a sam-
pling frequency of 0.4, you will not necessarily get exactly 40 records. You
may, on anyone pass, see 38, 39, 40, 41 , or 42 records. This random-

Statistical Sampling /6-19

ness is part of the nature of statistical sampling. If you desire equal sample
sizes, the LIMIT clause allows you to specify the sample size. There is an
important caveat to be considered, however, when both clauses are used si-
multaneously. This caveat is especially important when pseudoreplicating
your data into distinct statistical "trials".

QueryCalc always searches a set in forward-read order. Normally, this or-
der is indicative of the chronological order that the data has been entered
(but not always). The first records are generally the oldest; the last records
the newest. If the number of records in the set to be searched is 1000, and
you specify a limit of 100 and a sample frequency of 0.3, the query will be
satisfied by about the 300th record. Repeating the same query question
again will randomly select a slightly different 100 records. But you are
only reading the first third of the data. It is important to understand that
you may be introducing some bias into your samples when you restrict the
sample size. Earlier records may be somehow different from later ones.

Pseudo- H.G. Wells said that there are only three kinds of liars: (1) liars, (2) damn
Replicating liars, and (3) statisticians. It's very easy to mislead someone else, and

Data more importantly, yourself with statistics. Virtually everyone who has ever
drowned in a river, has drowned in a river whose average depth was about
six inches. A reported average without an accompanying variance is mean-
ingless. Processes which generate identical averages may not be represen-
tative of the same physical process. One process may generate a mean with
very little statistical variance. Such a process is highly predictable. Another
process with exactly the same measured mean may have great variance, and
thus be basically unpredictable.

Pseudoreplication is a simple statistical technique to determine how uniform
your data truly is. Calculating the average and deviation of an entire set of
records may be misleading if the process which produced the data is not
particularly uniform. In the case of measuring the depth of a river, most
measurements may be relatively shallow, but a few may indicate great
depth. These exceptions are called outliers. A single average and deviation
may not provide a true picture of the nature of the data. By dividing the
sample set up into 10 approx. equal-sized subsets (sample=O . 1), and re-
calculating the average and deviation 10 times, you can tell just by looking
at the results if your data is uniform or not. Outlier data will randomly ap-
pear in some data subsets, but not others. Because of the smaller sample
sizes, these outliers will tend to scatter the resulting 10 averages.

6-20/ Query Questions

Search Lists The final query question form is the @STORE list. This query question
form is important enough to be explained in detail (Chap. 10, "Search
Sets"), so I'll only briefly mention its capabilities here. The @STORE form
allows the creation of a set of search item values, which share a common
membership in a class. The basic form of the @STORE query question is:

@using employees, store in !m socsecnum
when state is VT

This query question will create a search list named M which will contain all
of the social security numbers for those people whose home state of resi-
dence is Vermont. Twenty-six such search lists, labeled A to Z, may be
created. The search list is simply a list of search item values. It belongs to
no dataset or database. This independence is what gives the search list its
value. You may view the contents of a search list by typing:

@show !m

You will notice that when you display a list, the search item values will be
alphabetized. The alphabetization of the search list results from QueryCalc
first sorting the list of retrieved values, and then eliminating all duplicate en-
tries. Search lists will always be composed of unique entries.

Search lists are used in standard query questions in place of a single search
item value. Instead of asking:

1. @using payrecord, sum of amount
when socsecnum is 526687191

or socsecnum is 585178564 ...

you would type:

2. @using payrecord, sum of amount
when socsecnum is !m

What occurs in this second form, rather than search for a series of single
dataitem values as in the first example, is that dataitem values are now taken
one-by-one from the search list. The qualifying records are found, sum-
marized, and added into the accruing statistics for each value in the list.

Using Search
Lists to

Accelerate
Serial Reads

@Store lists /6-21

Please note that even in this simple example, two datasets were used. The
item which qualified these social security numbers into a defined class was
the state of home residence. The question that is being answered is a re-
quest for the sum of the total wages paid to the employees from Vermont, a
request requiring information that must come from two different datasets.

An important use of the @STORE form allows you to minimize the use of
serial searches. Presume that date is a search item in a very large invoices
dataset containing 10 years worth of invoices (say 100,000 invoices). Fur-
ther presume that you need to report on only the invoices for a particular
month (31 possible dates). Because date is a search item, there will be a
master dataset for date, called perhaps DATE-ID. A master dataset, by its
nature, contains only one entry for each search item value. Ten years of
dates can total no more than 3,653 entries. Thus, it will be much quicker to
gather a range of dates into a search class by serially searching a master da-
taset than it would be by serially reading the large detail dataset.

The two query questions used in such a search would be of this form:

@using date-id, store in Ja date
when date ib 19950101,19950131

@using invoices, sum of amount
when date is Ja

The first query question will necessarily be a serial search because of the
"is between" relational operator. Although QueryCa1c uses the fastest pos-
sible method to accomplish its serial reads, the second search will be faster
yet. The second query question is a chained read, thus this search will ac-
cess only those records which contain the desired dates in the search set
and will generally be quite quick. The combination of these two techniques
provides QueryCalc with a generic search technique that is comparable in
speed to the very best third-party indexing techniques, with these added ad-
vantages: (1) no additional disk space is required, which is often quite ex-
tensive otherwise, (2) no interception of TurboIMAGE intrinsics is re-
quired, and perhaps most importantly, (3) the method is free and built into
QueryCa1c.

The further use of search lists is explained in Chapter 10, "Search Sets".

6-22/ Query Questions

USER EXERCISES

Signing On 1.

Viewing your 4.
Open Databases

First Query 7.
Question

Sign onto the practice account by typing HELLO USER.AICS at
the colon prompt. Supply any necessary passwords. Passwords, if
they are present, were put there by your system manager and he or
she will know them if you do not.

2. Type QC to run QueryCalc. If this does not work, type RUN

QC.QCPROGS. Press RETURN to bypass the instructions
screen. You are now in QueryCalc proper.

3. Type @OPENDB QCDEMO. Type FRONT (in all caps) in re-
sponse to the password question. IMAGE databases are the only
place in the HP3000 where passwords are case sensitive. You now
have the database open.

Type @SHOWDB to show your open databases. You should see
QCDEMO as the only open database. Press RETURN to return to
the spreadsheet.

5. Type @FORM to see the basic form of QCDEMO. Master datasets
(3x5 card-like sets) are always arranged on top of detail datasets
(file drawer-like sets). Type LABOR to see the labor dataset. Type
JOB to see the JOB dataset. As you'll see, there is no JOB dataset
in QCDEMO. QueryCalc will instead show you all of the dataitem
and dataset names which are close to JOB.

6. Press the [16] function key to direct your output to your system
printer. The system printer is connected to the HP3000 and is gen-
erally located in or near the computer room. Press [f1] to print the
sets of QCDEMO on your system printer. Press [f4] to print the
paths of QCDEMO. Press [f3] to print the entire form of
QCDEMO. Press [f8] or" 1/" to return to the spreadsheet. Re-
trieve your output from the printer before we go any further.

Move the cursor to cell B2. You can do this either by using the
function keys or by typing IJ B2. Type @sum of amount. Be-
cause the dataset isn't specified and because AMOUNT appears in a
number of datasets, QueryCalc will ask you which dataset you wish
to use. Type either the name INVOICES or the number 4 for the

User exercises / 6-23

USER EXERCISES

Immediate
Execution of the

First Query
Question

Viewing the
Individual

Records You
Found

INVOICES dataset and press RETURN. QueryCalc will announce
that the search must be serial, that it must read 9962 records and ask
whether or not you wish to proceed. Respond by typing V (yes) or
U (use). What will appear in the cell will be the phrase, "<ok>".
The dashes indicate that your input has passed syntax check, but the
cell has not yet been recalculated (see Chapter 4, page 4-8).

8. Retype @sum of amount!, but this time with an "!" at the end.
The"!" means execute the query question immediately. Answer the
questions in the same manner as Step 7. This time, QueryCalc
will not come back to you immediately but will instead display a
message saying "Calculating query". Because this is a serial search
of nearly 10,000 entries, the serial read may take a minute or two.
When the answer does appear, it will be a cell full of asterisks,
"**********". The asterisks mean is that the answer is too big for
the current cell width. Type ICWID 20. This will widen the cell
from 12 characters to 20. The answer, -3,616,241.26, is negative
because both invoices and monies received are entered into the same
dataset as positive and negative invoices. If the sum is negative, it
means you took in more money than you spent.

9. Press RETURN to see the equation that has been entered into the
cell. Because QueryCalc operates off of terminals, and because not
as much information per second can be transmitted over a terminal's
connection as in a personal computer, the cell equations aren't auto-
matically displayed. You must ask for them. What you should see
is "@Using qcdemo.invoices, sum of amount". Notice that Query-
Calc automatically entered the "Using ..." phrase for you and sup-
plied the name of the database.

10. Type @showto see the invoices you found with the query question
of Step 8. The display will show you all of the dataitem names in
the INVOICES dataset, the values for the first record found, and
which items are search and sort items. Press RETURN to advance
the listing. Press either" /I If, Control-V, or [f8] to return to the
spreadsheet.

6-24/ Query Questions

USER EXERCISES

A Chained
Search

Synthesizing
Search

Patterns

Dependent
Query

Statistics

11. Now for a chained search. Move the cursor to cell B3 by pressing
[f6]. Type @using invoices, sum of amount when category is

501!. The answer that is returned is 23,984.97. Notice the differ-
ence in speed from the previous serial search. CATEGORY is a
search item in INVOICES. The purpose of a database is to find the
data you need as quickly and directly as possible. Using search
items in your qualifying phrases (to the extent possible) greatly ac-
celerates data retrieval. Which dataitems are search items are
marked on the database @ FORM listing we generated in Step 6

12. Move the cursor to cell A4. Type "501. This enters a text value of
"SOl" into the cell. Now move the cursor to cell B4. Type
@using invoices, sum of amount when category is [a4]!' The
"[...]" construct is a "window" back onto the spreadsheet which al-
lows you to manufacture the search value. Any numeric or text
equation may be placed within the brackets. Simply remember that
a numeric equation uses no prefix (as in this example) and that a text
equation always begins with a "$". The answer that you get should
be the same as in Step 11. The only difference is that the search val-
ue came off of the spreadsheet and wasn't hard-coded into the query
question itself..

13. Move the cursor to cell AS. Type "459445550 to enter a social se-
curity number into the cell. Move the cursor to cell B5. Type
@using labor, sum of regular when socsecnum is [$a5]!. The
answer that should be returned is 1530 hours. This example is sim-
ilar to Step 12, except that SOCSECNUM is a text dataitem. The
pattern synthesized in the brackets must therefore be a text equation.
Numbers are commonly stored in text dataitem fields. They may
look like numbers, but they're not. They're text characters and they
must be treated that way.

14. Move the cursor to B6. Type @ucs avg!. Although the query
question in Step 13 asked only for the sum of regular hours, the av-
erage, variance, standard deviation, maximum, and minimum were
calculated as well. Retrieving this information by using the current
statistics (@UCS) is free. Virtually no system overhead is incurred.
Move the cursor to B7 and type @ucs maxI.

User Exercises (cant/d) /6-25

USER EXERCISES

Rereading
Previously

Found
Records

Creating and
Using Search

Lists

More Examples
& Using Your

Databases

15. Every record that qualified in Step 13 was marked and may be re-
petitively reread. Doing this is generally much more efficient than
finding the records again. Move the cursor to cell B8 and type
@rereading, sum of overtime!. The returned answer will be 202
hours of overtime. The set of records you are rereading is the same
set of records that is shown if you type @SHOW. Notice that the
@UCS query questions did not disturb the list of records found in
Step 13. The list of records remains in effect until another standard
(non-@REREADING)query question is executed.

16. Move the cursor to cell B9. Type @using employees, store in m
socsecnum when numdeductions ib 4,6!. We have just created
a search list named M filled with employee social security numbers
for those people who claim 4 to 6 deductions in their payroll taxes.
As you can see, there are 57 such people. To see the values in this
list, type @show !m. @STORE lists will always be composed of
unique entries. Duplicate values are eliminated. The people repre-
sented by these social security numbers represent a class whose
membership is defined by their number of deductions. Press RE-
TURN to return to the spreadsheet.

17. To use the list, move the cursor to cell B 10. Type @using labor,
sum of regular+overtime*1.5 when socsecnum is !m!. This
question will sum all of the effective labor hours charged by this
group of people (48,555.21 hours). Because SOCSECNUMis a
search item, this question will search down 57 different chains and
add all of the hours together. @STORElists allow you to collect
data and statistics on classes exactly as you would on individuals.

18. Additional query question exercises exist in Chapter 7, Chapter 10,
Chapter 11, Chapter 12, and Chapter 13.

To ask these same kinds of question using your own data, you need
to learn your own databases. The first step is to repeat Steps 3-6
with names relevant to your databases.

6-26/ Query Questions

Concepts
Introduced in

Chapter 6
STANDARD QUERY The query question which

summarizes data from a single
dataset.

"USING ... " PHRASE The first phrase in a query
question. The phrase which
specifies which database and
which dataset is to be used.

RELOPS The relational operators which
match a dataitem value to a
data "pattern".

"REREADING, ..." A dependent query question
which rereads the list of
records previously qualified
by a standard query question.

CURRENT STATS The various statistics (sum,
average, max, min, etc.) sum-
marized by a query question.
Although only one statistic
may be asked for in a query
question, all are calculated.

SUB ITEMS Dataitem values held in a data-
item array. Dataitem arrays
are denoted by 30X6, 10R2,
etc.

SUBSTRINGS Specified subsections of a text
dataitem's string of charac-
ters.

InterChapter Reminder

All numeric dataitems are converted to high-resolution real numbers when they are brought into
QueryCalc, regardless of how they are stored in your databases. The I, J, K, P and Z datatypes
cannot however store "real" numbers (numbers with a decimal point). In order to maintain accura-
cy to the penny when these datatypes are used, a programming "trick" quite often employed, espe-
cially by COBOL application developers, is to "offset" certain data fields by multiplying the num-
ber by 100 (or more) before it is entered into the database.

Some report writers, such as HP's QUERY, use an edit mask to correct this offset. The numbers
are used in the report writer in their offset fashion. It's only on printing that a decimal point is re-
inserted to make the number look correct. QueryCalc doesn't do that. A numeric value is pre-
sumed to mean what it says. Because of this, data can be extracted and mixed from a great diversi-
ty of sources. If you must extract data from an offsetted field, the solution in QueryCalc is
straightforward. Divide the value by its offset during extraction. Examples of the syntax for such
division is:

@using parts, sum of amount/100 when
@using payrecord, sum of \gross-billing\/lOOO when

For more information about mathematical operations available in a query question, please refer to
pages 6-3, 6-4, 6-5.

10

Defining
Sets of

Records

Operating on sets of data items as members of a class

Search Sets

It's possible to define records in QueryCa1c as sets on the basis of common
attributes. This is one of the more powerful features of QueryCa1c, and yet
quite simple to use. You will find search sets useful for a variety of rea-
sons, but search sets are particularly valuable for (1) statistical and financial
analyses, and (2) high-speed generic searches. Using search sets, employ-
ees in a database can be divided and subdivided into classes for purposes of
insurance risk analyses. Or school children can be broken into economic
and ethnic classes for the purposes of demographic analyses. And manufac-
turing processes can be subdivided into distinct classes for purposes of reli-
ability and yield analyses.

If you think of a class-as in a class-action lawsuit-every member of the
class shares some common property. In the case of a class-action lawsuit,
every member of the class has been adversely impacted by some common
action. It is the presence of a common attribute that defines a class. A sec-
ond class drawn from the same community of members would be defined
by another feature. Two such classes could potentially have (1) a few
members in common (intersecting sets), (2) have no members in common
(mutually exclusive sets), or (3) one class could be totally contained within
the other (a proper subset). Membership in one class does not preclude
membership in another. Anyone individual could be potentially be a mem-
ber of an infinite number of sets.

Imagine the set, which we'll call Set A, of all people who received at least
one paycheck in 1993. In QueryCa1c, the set is created through the use of a
modified query question:

i8-using payrecord, store in !a emp-num
when date ib 930101,931231

Set A is denoted as fa in QueryCa1c (as always, capitalization is unimpor-

10- 2 / Search sets

Using the
Search Set

tant). The set that is created by this query question will be a list of employ-
ee-id numbers. Most of the people in this class will, of course, have re-
ceived a number of paychecks during the year, but it is the nature of the
@STORE query question to eliminate all duplicate entries once the search set
has been built. The process of duplicate elimination is accomplished by
sorting the retrieved search values and recording only those which are dif-
ferent. Thus, when completed, Set A will contain only one id-number for
each employee who received at least one paycheck in 1993, and by conse-
quence of the duplicate-elimination algorithm used, the set will be presented
in a quasi-ascending order.

Twenty-six such sets may be created, labeled A to Z. The sets may be
reused and redefined any number of times during the course of the execu-
tion of a file.

The use of a defined set in QueryCalc is straightforward. If we wish to de-
termine the average number of dependents that Set A has, the query ques-
tion would be:

@using employees/ avg of numdeductions
when emp-num=!a

The query process proceeds in the following manner. The "pattern" to be
matched (an employee number in this case) is neither "hard-coded" into the
query question nor taken off of the spreadsheet. Rather, the first employee
number is taken from Set A's list and a keyed search is performed on that
particular value. As normally done, all of the statistics appropriate to the
query question are calculated. Once the end of the search chain has been
reached, the next search value is taken from the list and its chain is
searched. The calculated statistics accrue until all of the items' records in Set
A have been searched. In this manner, the average of the deductions in Set
A will be calculated as a class.

The Rules There are a few rules which govern the use of sets in QueryCalc. They are:

1. The search sets contain lists of search item values, not
record numbers. Thus a search set belongs to no single
dataset or database and may be used in any variety of da-
tabase environments, so long as the dataitem type and
length are identical. The dataitem name is unimportant.

A quick user exercise 110-3

2. A set may be formed using any dataitem (keyed or not),
but when the set is used for pattern matching, the speci-
fied dataitem must be a search item in the dataset to be
searched. This rule exists for purposes of speed and
computational efficiency.

3. Only one dataitem may be recorded in a search item list.
This rule is in force because the sets will only be used
against one search item at a time.

A Quick To demonstrate the power of search sets, please type the following:

Exercise
:hello user.aics,qcdemo
:run qc.qcprogs.aics

You are now in QueryCalc. Move to cell B3, and type:

@opendb qcdemo/FRONT
@using employees, store in !b socsecnum

when zip is 88047!

The @STORE query question creates set B, which will be a list of the peo-
ple who live in a certain community. There will be five people who meet
this criterion. To see the list, type:

@show !b

To use the list to determine the gross wages paid to this particular set of
people in 1984, move to cell B4 and type:

@using payrecord, sum of gross when
socsecnum is !b and date ib 840101,841231!

To calculate the average number of regular hours each of these people
worked, using a different dataset, move to cell B5 and type:

@using labor, avg of regular when
socsecnum=!b!

===

10-4 / Search sets

Defining a
Set Using
Multiple
Datasets,

Databases,
or Even
Multiple
HP3000's

The formation of a set of search item values may often require extracting in-
formation from several different datasets, perhaps located in different data-
bases or on different HP3000s. It's quite possible to do this, but it's done
one dataset at a time, sequentially. The method used is that a set of search
values defined from one dataset are applied to a second dataset, where the
set is redefined and further qualified. In the example shown here, three da-
tabases are used. The first database is an MPE flat file, the second a KSAM
file, and the third an IMAGE database. Set A will not be completely de-
fined until the third query question has been executed.

@using mpedb.employees, store in !a idnumber
when startyear ib 1980,1984

@using ksamdb.insurance, store in !a idnumber
when idnumber=!a and disability=Y

@using imagedb.accidents, store in !a emp-number
when emp-number=!a and accident-type>3
and accident-date ib 19900101,19901231

The Set A created by this series of query questions is a list of id-numbers
for those people who started with the company in the years 1980 to 1984
(information found only in the first dataset), who have disability insurance
(information found only in the second dataset) and who suffered an accident
greater than type 3 in a particular range of dates (information found only in
the third dataset).

Notice that in the third query question, the employee id-number has a differ-
ent name, yet the search list can still be used. That's because the search list
contains only values. If the search item is of the same data type and length,
you can use the search list, without regard to the item's name.

When qualifying a search list from multiple datasets and databases, you will
find it most efficient to execute your @STOREquery questions in that order
which will eliminate as many search entries as possible in the first query,
and then in the second, and so on. The only exception to this general rule is
when the dataitem to be @STOREd is not a search item in one of the data-
sets. That dataset will always have to be the first dataset to be searched.

Nested
Subsets

Nested subsets /10-5

Nested subsets are created in an identical manner. It is quite easy to break a
population of entries into a series of hierarchically-organized subsets for
further statistical analyses. For example:

@using dbl.employees, store in !a idnumber
when termdate<999999 and startdate>=920601

@using dbl.employees, store in !m idnumber
when sex is M and idnumber=!a

@using dbl.employees, store in !n idnumber
when idnumber is !m and right-handed is N

These three @STORE query questions create three sets. Set M is a subset of
the male employees, drawn from the list of people who began work on or
after June 1, 1992 and continue to work now (Set A). The second @STORE

creates set N, a subset of the set M, which is composed of only those males
who are left-handed and meet the criteria of set A. By breaking an original
population into these and similar smaller groups, you are offered the possib-
lity of performing high-speed, repeated statistical or financial analyses on
selected groups. An example of such an analysis appears on the following
page.

The subset of
males.

The set of
employees who
started June 1,
1992 or later. The subset of

left-handed
males

10-6/ Search sets

An Example
of a Nested

Subset
Analysis

The following analysis is an example drawn from real data and a program
in actual use. The analysis represents a general estimate of the surgical risk
associated with coronary arterial bypass-graft surgeries (CABGRISK)
when broken into several categories of risk factors and intra- and post-
operative complications.

The analysis begins on Page A with the creation of nine sets, labeled A
through I. Because the data must be extracted from a variety of datasets, a
series of query questions must be used. Set A isolates all of the patient
numbers who had operations in the specified range of dates (cell Ad7). Set
B is formed by using Set A's list of patient id-keys to determine those pa-
tients who had the proper form of operation while eliminating any patients
which had complicating factors such as vascular disease (vsd) or additional
valve surgery (cell Ad8). As occasionally happens, the length of the query
question necessary to form Set B exceeds the 187-character limit of the cell.
Thus, a second set, C, is formed as a subset of Set B, further refining the
list of qualifying patient numbers (cell Ad9). This is not a particularly effi-
cient procedure, but it is sometimes necessary.

The @STORE equations for Page A are shown on the opposite page. The
actual number of items each equation generates are shown below.

Risk factors in females having CABG

From:1981
To:1983

Date select List A: 1,407.00
CABG-I List B: 846.00

CABG-II List C: 837.00
Female List D: 164.00

Age > 60 List E: 105.00
Obesity List F: 43.00

Diabetes List G: 12.00
Hypertension List H: 10.00

Smoker List I: 0.00

The output that results from the construction of
the nested subsets on Page A of the CABGRISK
report.

A nested subset analysis / 10-7

0 (Ad4) : 1981 0(Ad5) : 1983
(Ad7) : @Using cardio.name, store in !a id-key when surg-date

ib [d4 *10000 1 r [d5*10000 1
(Ad8) : @Using cardio.op, store in !b id-key when id-key=!a and

0 \coro-art-surg\=Y and \resection-va\<>Y and \repair-vsd\<>Y and 0\va1ve-surg\<>Y and \cong-surg\<>Y and \thoracic-surg\<>Y
(Ad9) : @Using cardio.op, store in !c id-key when id-key=!b and

\peri-vasc-surg\<>Y and \graft-rep\<>Y
(Ad10) : @Using cardio.name, store in !d id-key when id-key=!c

0 and sex=F 0
(Ad11) : @Using cardio.name, store in !e id-key when id-key=!d

and age-operated-on>=6000
(Ad12) : @Using cardio.preop, store in !f id-key when id-key=!e

and obesity=Y
0 (Adl3) : @Using cardio.preop, store in !g id-key when id-key=!f 0

and diabetes=Y
(Ad14) : @Using cardio.preop, store in !h id-key when id-key=!g

and hypertension=Y
(Ad15) : @Using cardio.preop, store in I· id-key when id-key=!h0 .1 0and smoker=Y

o

o

o A 1__ a__ I __ b __ I __ c__ I __ d__ I __ e__ I __ f__

11
21
31
41
51
61
71
81
91

101
111
121
l31
141
151
161
171

Risk factors in females having CABG

o
From:

To:
(Ad4)
(Ad5)

Date select List A: (Ad7)
(Ad8)
(Ad9)

(Ad10)
(Ad11)
(Ad12)
(Adl3)
(Ad14)
(Ad15)

CABG-I List B:

o CABG-II List C:
Female List D:

Age> 60 List E:
Obesity List F:

Diabetes List G:
Hypertension List H:

Smoker List I:

Equations for Page A

The equations of Page A necessary to create the nine hierarchically
nested subsets used in the CABGRISK report.

o

o

o

o

o

10-8 / Search sets

Surgical Risk
Analysis by

Class
(Continued)

The use of the defined sets in the actual cardiovascular surgical risk analysis
appears on Page B of the report. Five of the eight data columns of the re-
port are shown below. A portion of the equations which comprise Page B
are shown on the opposite page.

The first column (CABG ALL) refers to the patients of Set C. The next col-
umn (Females) references those in Set D. The following columns use the
data in Sets E, F, and G respectively. The columns using Sets H and I, as
well as some additional summary statistics, occur off-page.

Females
CABG Females Females >60, obese
ALL Females over 60 >60, obese diabetic

-------- -------- -------- -------- --------
Count and 837 164 105 43 12

Percentage 100.0% 19.6% 12.5% 5.1% 1.4%

Intra-operative 19 5 4 1 0
myocardial 2.3% 3.0% 3.8% 2.3% 0.0%
infarction 2.3% 0.6% 0.5% 0.1% 0.0%

Peri-operative 28 7 5 0 0
myocardial 3.3% 4.3% 4.8% 0.0% 0.0%
infarction 3.3% 0.8% 0.6% 0.0% 0.0%

Stroke 11 1 1 0 0
File III 1.3% 0.6% 1.0% 0.0% 0.0%

1.3% 0.1% 0.1% 0.0% 0.0%

Operative 12 3 3 1 0
mortality 1.4% 1.8% 2.9% 2.3% 0.0%

1.4% 0.4% 0.4% 0.1% 0.0%

Myocardial 0 0 0 0 0
infarction 0.0% 0.0% 0.0% 0.0% 0.0%

File IV 0.0% 0.0% 0.0% 0.0% 0.0%

The data as extracted by class of patient. 837 of the 1407
surgeries performed during the two year period were
coronary bypass grafts, without additional complicating
factors. 164 of these operations were on females.

Keven
Rectangle

Page B's equations 110-9

0 (Bb7) : AD9 0
(Bb8) : 1

(BblO) : @Using cardio.post, num when id-key=!c and \kpl-d(3)\=Y
(Bbll) : B1O/B7

0 (Bb12) : B1O/{B7}
0(Bb14) : @Using cardio.post, num when id-key=!c and \kpl-d(4)\=Y

(Bb15) : B14/B7
(Bb16) : B14/{B7}
(Bb18) : @Using cardio.post, num when id-key=!c and \kpl-d(12)\=Y

0 (Bb19) : B18/B7 0(Bb20) : B18/{B7}
(Bb22) : @Using cardio.post, num when id-key=!c and alive-or-dead=D
(Bb23) : B22/B7
(Bb24) : B22/{B7}

0 (Bb26) : @Using cardio.postpost, num when id-key=!c and \kpl-d(4)\=Y 0(Bb27) : B26/B7
(Bb28): B26/{B7}
(Bc7) : AD10
(Bc8) : C7/B7

0 (BclO) : @Using cardio.post, num when id-key=!d and \kpl-d(3)\=Y 0
(Bcll) : C1O/C7
(Bc12) : C1O/{B7}
(Bc14) : @Using cardio.post, num when id-key=!d and \kpl-d(4)\=Y

0
(Bc15) : C14/C7
(Bc16) : C14/{B7} 0
(Bc18) : @Using cardio.post, num when id-key=!d and \kpl-d(12)\=Y
(Bc19) : C18/C7
(Bc20) : C18/{B7}

0 (Bc22) : @Using cardio.post, num when id-key=!d and alive-or-dead=D 0(Bc23) : C22/C7
(Bc24) : C22/{B7}
(Bc26) : @Using cardio.postpost, num when id-key=!d and \kpl-d(4)\=Y
(Bc27) : C26/C7

0 (Bc28) : C26/{B7} 0

o oEquations for Page B

The equations for two of the columns on the opposite page. Thefirst column
(spreadsheet column B) analyzes the risk of complications for the entire set of
patients, Set C. The second column (spreadsheet column C) analyzes exactly the
same risks for female patients, Set D. Because the columns are basically identical,
column C is a IREPlicated duplicate of column B. Column Cwas modified using the
search-and-replace command (IS&R), replacing "!c" with "Id"everywhere in the
column. Each of the remaining columns was built in same manner. The time
necessary, therefore, to construct the entire page was only 10-15 minutes.

10-10 / Search sets

High-Speed
Generic

Searches in
IMAGE

An unanticipated benefit of @STORE sets in QueryCa1c is that they provide
a mechanism for high-speed generic searches of IMAGE datasets under
specific conditions. Other database structures, such as ISAM, KSAM, and
SQL t, often have advantages over IMAGE when a query question's rela-
tional operator (relop) is "greater than" or "is between". These relops do
not imply a search for a single value, but rather a range of values. High-
speed range searches, unfortunately, are normally impossible in IMAGE.

The mechanism by which a generic search is implemented in ISAM, KSAM
and SQL is called a b-tree, short for binary-tree. IMAGE, in contrast, uses
hashed keys. In a hashing algorithm, the search item value, even though it
may be text, is considered to be a number. All data stored in a database is
stored as l's and O's.Whether those bits are to represent text or numeric in-
formation depends only on the person defining the database, not the storage
mechanism itself. It's therefore quite possible to take any value and view it
as a number. In a hashing key scheme, this number will represent an ad-
dress in a look-up table. The value held at the table address will be the
record number of the first record containing the search item value. Being
only a two-step process, hashing is the most efficient search algorithm
known, but it suffers from a severe drawback in that the search item value
must be known in its entirety before it can be used.

B-trees are different. A b-tree operates by asking a series of yes-no ques-
tions (hence the term, binary). The questions are of the form: is the search
value is greater or less than a particular value? By navigating a b-tree,
records may either be found (1) which possess exactly the search value
specified, or (2) lie within a specified range of values. This latter form of
search is called a generic search. The capacity for generic searches under-
lies the appeal of b-tree search indexes. However, this enhanced search
capability is not without its cost. B-tree indexes are usually quite a bit slow-
er than hashed searches.

Generic searches may be simulated in IMAGE databases using @STORE

sets. But what you may find to be surprising is that generic searches in IM-
AGE using QueryCa1c's @STORE sets are often significantly faster than
KSAM b-tree searches. The trick is quite simple. Any search item in an
IMAGE detail dataset must have a master dataset attached to it. A serial-

tISAM stands for indexed sequential access method. ISAM is an IBM product. KSAM is
an HP product and is very similar to ISAM. KSAM stands for keyed sequential access
method. SQL was originally an IBM sublanguage, part of the DB2 database, but the use
of the term has now become generic. SQL stands for structured query language.

High-speed generic searches /10-11

search of the master dataset is almost always much less expensive in time
and CPU resources than a serial search of the detail dataset. All of the
search values which qualify in a partial-key serial search of the master data-
set are @STOREd in a QueryCalc search set. That set is then applied in a
search of the corresponding detail dataset. The query questions will be of
this nature:

@using employee-id, store in 1m socsecnum
when socsecnum=58@

@using payrecord, sum of gross
when socsecnum is 1m

In this example, EMPLOYEE-ID is an IMAGE master dataset. PAYRE-
CORD is a detail dataset. The acceleration advantage that search sets offer
accrues because there are often a large number of entries attached to each
search chain in an IMAGE detail dataset. Although serially searching the
master dataset and building the search Set M requires some resources, the
technique is actually faster than either serially searching the detail dataset or
using a b-tree search against an identical KSAM dataset. Indeed, as shown
by the figure below, the speed advantage can often be quite significant.

1.0 ~---
\\ IMAGE Serial Search

\.
\ KSAM Partial

\ KeySearch
------------\

'----~\\\
------, \ IMAGE Search Sets

IMAGE Search Sets', (1st Pass)
(2nd Pass) " \

',\
,\

\-.:..-:::-::::::;-"'-:=-::::-:::.----=--=.
o ~~-----.----_.----_.-----.---==T

5@ 58@ 585@ 5851 @ 58517@ 585173@
(2767) (1620) (1617) (209) (25) (0)

Partial Key Pattern to be Matched

The ratio of measured search times for vari-
ous generic search techniques. The partial
key pattern to be matched is shown along
the x-axis. The "@" represents a wild card
symbol. The number of records that quali-
fied in each search is shown in parentheses.

A serial search of a detail dataset will gener-
ally be the slowest method. Its time-of-
search will however be independent of the
number of records that are qualified. When
the number of records qualified becomes
large enough (10-30%) of the dataset, serial
searches often become faster than b-tree
searches.

Two IMAGE search set curves are shown.
The "1st Pass" curve includes both query
questions shown in the text above (a serial
search of the master dataset followed by a
keyed search of the detail dataset). But once
a search set has been built, it may be reused
again and again without further overhead.
The reuse times are shown in "2nd Pass".

10-12/ Search sets

High-Speed
Partial Key
Searches of

Concatenated
Keys

The capacity to search for only a portion of a key item's value is called a
partial key search. The b-trees keys of KSAM and SQL allow you to do
this quite easily, but only if you are searching for the first few characters of
the key. Quite often however the need arises to seek out records on the ba-
sis of values lying somewhere in the middle of the key value. In this case,
unfortunately, a b-tree will be of no use. However, IMAGE inquiries using
QueryCalc's @STORE sets will continue to work as efficiently and offer
distinct advantages over b-tree generic searches.

Intermediate partial key searches become an important topic if your database
uses concatenated keys. A concatenated key is one where a number of sep-
arate characteristics are put together in a single key. An example of a con-
catenated key is shown here:

13MJR450912921345s,y,fTI 1;co

'o<

Number Model Number
Number

Manufacture
Date

Concatenated keys can often be quite useful. They allow you to locate spe-
cific records quite quickly. But just often, they represent a significant barri-
er to efficient report writing. If you must search for an item in the middle of
the key, such as fund number in this example, generally the only recourse
in KSAM, IMAGE, and SQL is to use a serial search.

The search-accelerating method discussed on the previous two pages works
just as well for intermediate partial key searches, but only when IMAGE da-
tabases are used. The technique will be exactly the same: (1) first perform a
serial search of the master dataset, storing the qualified key values, and then
(2) apply the formed set to the detail dataset, as shown:

@using part-master, store in !a part-key
when part-key(6,8) = 450

@using part-detail, sum of qty-on-hand
when part-key is !a and stock-region is AZ

This technique will not work with MPE flat files, KSAM, or SQL datasets

When to Use
the Method

Concatenated key searches / 10-13

because they do not have directly accessible master datasets. The presence
of such accessible key files (master datasets) in IMAGE is the reason the
method works.

If the key item is text, there are a number of ways to search for pieces of the
key item value. The search may proceed either by absolute position or
through the use of "wild cards". Please see Chap. 6, "Query Questions" for
a complete list of partial search capabilities.

The generic-search technique of using search sets is often quite advanta-
geous, but like most things, it is no universal panacea. There are specific in-
stances when it should and shouldn't be used. The rules on when to use the
technique are these:

1. Use the method if you are likely to qualify less than 20-30%
of the records in the dataset. Qualifying more records than
this percentage and a single serial search of the dataset be-
comes faster than multiple chained searches. In these cir-
cumstances, write the query question in the normal fashion,
as shown here:

@using part-detail, sum of qty-on-hand
when part-key(6,8) is 450 and stock-region is AZ

2. Don't use the method if there is a more direct way to retrieve
the records. If you know some special information about
your records, such as that the Arizona stocking region rep-
resents only a very small proportion of records in your data-
base, and STOCK-REGION is a search item, then again
write the query question as shown above. Searching down
just one short search chain will be much faster than search-
ing through multiple chains.

3. Use the method when there are many records in the detail
dataset for each master dataset key-item value. The tech-
nique works best when a one-to-many ratio exists. The
greater the number of records per chain in the detail set, the
greater the speed advantage of the technique. But if only one
record exists per chain, no advantage exists. Indeed, then
there will be a small "cost" to the technique.

10-14/ Search Sets

Boolean Set
Algebraic
Operations

Order
Dependence

QueryCalc allows the extensive manipulation of search sets using standard
Boolean algrebra set operations. The only requirement is that the sets must
be of matching data types (e.g., 12, R4, Z8, etc.). Normally, you do not
need to be aware of the data type of the search values you are manipulating.
It becomes a matter of concern here simply because there is no easy way to
combine text and numbers into a single set.

The syntax for the set manipulation algebra is:

@Using sets, !y=!a+!b

Set Y will be defined as the union of Sets A and B. Four set algebraic oper-
ators are possible and are represented in the facing figure, along with the re-
sulting set. They are: union, subtraction, intersection, and exclusion. In all
set algebra operations, duplicate entries are eliminated. No value will appear
more than once.

If set operations are to be performed on multiple sets, the operations must
be placed in a series of cells:

@using sets, !y=!a+!b
@using sets, !y=!y+!c
@using sets, !y=!y-!d

This sequence of set operations is equivalent to

!y= (!a+ !b+ !c) - !d

Using a series of cells, any Boolean algebraic manipulation is possible.

All of the algebraic operations [other than set subtraction (-)] are commuta-
tive, that is, the order is unimportant. For the commutative operations, each
of the equations shown below are equivalent:

@using sets, !y=!a+!b @using sets, !y=!b+!a
@using sets, !y=!a/!b @using sets, !y=!b/ !a
@using sets, !y=!a*!b @using sets, !y=!b* !a

Set subtraction is the exception. Order is very important, as you can visual-
ize by looking at the set diagram.

Set algebra / 10-15

union subtraction

!y =!a +!b !y = !a - !b

intersection exclusion

!y = !a * !b !y = !a /!b

The Boolean algebraic set operations of QueryCalc.

Manually Search sets may also be manually defined rather than be assembled from
Defining a data in the database. Examples of the syntax are:

Search Set @using sets, define !a as
holland, "smith, john",

yankees,valley-plum;type=U20

@using sets, define !b as
576,711,2303;type=I2

The rules for set assembly are simple. If the items to be defined to comprise
the list are text, they must be surrounded by quotes if the item contains a
comma or a semicolon; otherwise, they may simply be listed, as shown.
Text will be upshifted if the dataitem type is specified to be "U" and left as
is if the type is "X". If the dataitem type is specified to be a numeric data
type, all of the items in the list must be numeric values. Duplicate entries
will be eliminated and the list will be sorted, as is normal for all sets.

10-16/ Search sets

Using
External
Files to
Define

Search Sets

Search sets may also be defined using external flat ASCII files. The syntax
is:

@using sets, define !c from
filename.groupname.acctnameitype=R4

Please note that the difference between these this set-definitional form and
the previous one is the use of the "as" and "from" prepositions.

The italicized names specify the group and account of the file and are op-
tional. The file must be a flat ASCII file containing only printable charac-
ters. If you can text in and read the file using EDIT/3000, then it meets
these specifications. You may create this file using EDIT/3000, but the file
must be kept unnumbered. The flat ASCII file containing the search item
values must look like this:

abercrombie
wallace
mustafa
chin
hruska
miller
lucky
syvertson

•
•

Only one search item value should appear in each row. The item should be
left justified. If leading blanks must appear as part of the key item value,
type them in that way. They will be retained. All trailing blanks will be de-
blanked, however. The defined list will be sorted on entry and duplicate
entries will be eliminated.

Concepts
Introduced in

Chapter 10

Concepts introduced /10-17

SEARCH SET A list of search item values
that belongs to no dataset or
database.

NESTED SUBSET A set of items which is de-
rived from a larger set. All of
the items in the subset appear
in the larger set.

GENERIC SEARCH A search which proceeds by
looking for all of the records
which lie between specified
limits. The exact values of
the search items are not
known in advance, as they are
in a specific search.

PARTIAL-KEY SEARCH A search which proceeds by
looking for a part of search
item value.

SET ALGEBRA The algebra of logical sets.
The common operations are
set union, intersection, sub-
traction. Union is equivalent
to logical ORs. Intersection is
equivalent to logical ANDs.

10-18/ Search sets

Technical Appendix: Comparing SQL
to QueryCalc

Introduction
to SQL

SQL (structured query language) is a database/query language that was de-
fined in the early 1970's by IBM. SQL was built around the idea of sets,
and thus it is appropriate to compare SQL to QueryCalc at the end of this
chapter. QueryCalc, in many ways, is surprisingly similar to SQL, especial-
ly in its query questions. But there are also significant differences. These
differences are not only the result of different design purposes but also very
different views on how the data should be presented and how much power
should be given to the user.

SQL, in contrast to QueryCalc, contains its own database structure. Query-
Calc accesses pre-existing databases, generally IMAGE and KSAM. SQL,
on the other hand, is not a report writer per se. Although SQL has a well-
designed interface which may be used to interactively test query questions
or be used as an ad hoc, "quick-and-dirty" report generator, any complicat-
ed output that would normally be associated with a production-level report
must be written in another language, such as PASCAL.

One of the design criteria of SQL was to hide as much of the database struc-
ture as possible from the user. Ideally, the user would not need to learn or
know anything of keys, datatypes, or the like. In actual practice, as you
might expect, that becomes impossible. The skilled SQL user must eventu-
ally become at least as knowledgeable about his database structures as a
user of IMAGE.

SQL datasets are constructed as tables, as shown at the right. The dataitem
names are listed at the top of the columns. The presentation order is rotated
90° from the way data is presented in QueryCalc. Each record entry is a row
in the table. Two attributes differentiate SQL datasets from IMAGE: (1) No
row (record entry) may be repeated in a table (this is a major difference)And
(2), key item values in SQL may be the result of the concatenation of sever-
al adjacent dataitems, as shown in the SPJ table, a suppliers-parts-jobs
table. The other tables in the example are the suppliers, parts, and jobs
tables. Key items are marked where a value is encircled by a light box.

S S# SNAME STATUS CITY
SI Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London

~
Adams 30 Athens

P P# PNAME COLOR WEIGHT CITY
PI Nut Red 12 London

@] Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris

J J# JNAME CITY
11 Sorter Paris

@] Punch Rome
13 Reader Athens
J4 Console Athens
J5 Collator London
J6 Terminal Oslo
17 Tape London

Comparing SQL to QueryCalc / 10-19

SPJ S# P# J# QTY

SI PI 11 200
SI PI J4 700
S2 P3 11 400
S2 P3 J2 200
S2 P3 13 200
S2 P3 J4 500
S2 P3 J5 600
S2 P3 17 400
S2 P5 J2 100
S3 P3 11 200
S3 P4 12 300
S4 P6 13 500
S4 P6 17 300

I S5 P2 J2 I 200
S5 P2 J4 100
S5 P5 J5 500
S5 P5 17 100
S5 P6 J2 200
S5 P6 13 100
S5 P6 J4 900
S5 P6 17 100

A simple SQL-like database for suppliers, parts, and projects.

10-20/ Search sets

Query
Questions
in SQL &
QueryCalc

SQL is a
Relational
Database

Query questions in the two languages are quite similar. For example, to find
the records which meet a specified set of selection criteria, the syntaxes are:

@using parts, find when status=30 (QC)

Select * from parts where status=30; (SQL)

The "*" in SQL means retrieve and display all columns (dataitems) in the
table. SQL organizes the records it finds into a new table, called a result
table. QueryCalc marks its qualified records in basically the same way. A
@FIND is followed by a @SHOW command. In SQL, you may specify that
the retrieved record table only contain certain dataitems:

Select pname,color from parts
where status=30; (SQL)

In QueryCalc, the command following an @ FIND would be:

@show pname,color (QC)

In both query languages, statistical calculations may be performed on the
data in a dataset as a search proceeds. Examples of the two syntaxes are:

@using parts, sum of weight*454
when status=30 (QC)

Select sum(weight*454) from parts
where status=30; (SQL)

SQL was built around the "Relational Model" of Dr. Edgar Codd. The word
"relational" in a relational database has nothing to do with the common use
of the English word, where you might suspect that items in different data-
sets can somehow be easily related to one another. Rather, the word is de-
rived from the mathematical definition of a relation in set theory. A relation
R is a n-tuple defined as

where d] ED], dz E D2, , dn E Dn, where D], D2, ... , Dn are the do-
mains for each of the d ED. A domain specifies the allowed set of values

Structured
Query

Questions

Relational databases / 10-21

which each element in the n-tuple may assume. A relation R is simply one
table in an SQL database. The various d; are the column entries (color
pname, city, etc.). Entry values in an SQL table are "drawn" either from the
set of allowed values (the domains) or classified as either one of two miss-
ing categories, important or not important. In contrast, IMAGE and KSAM
do not intrinsically impose limits on what data may be entered into a datait-
em's field. Nor do KSAM or IMAGE allow marks for missing data.

The word structured in Structured Query Language comes from the capacity
in SQL to nest a sequence of query questions. Each query subpart estab-
lishes a qualifying set of records which may then be used to qualify another
set of records in another table (dataset). In SQL, if you wished to list all of
the suppliers who manufacture red parts, three tables (suppliers, parts,
supp-parts) might be used. If so, the syntax would be:

Select suppliername
from suppliers
where suppliernum in

Select suppliernum
from supp-part
where partnum in

Select partnum
from parts
where color='Red'));

The syntax in QueryCalc is different, but the result is precisely the same:

@Using parts, store in !a partnum
when color=Red

@Using supp-parts, store in !b suppliernum
when partnum=!a

@Using suppliers, find
when suppliernum=!b

@show suppliername

In SQL, the nested query sequence is read from bottom-to-top. In Query-
Calc, the order is not only reversed, but the individual query parts must be
placed in separate cells. Which is better? Beyond personal preferences, the
differences between the two approaches speak to the core of the differences
underlying the design philosophy of the two languages.

10-22/ Search sets

The Concept
of Joins

SQL allows you to combine columns from various tables into a new result
table. This process is called ajoin. In most commercial SQL implementa-
tions, only a few types of joins are possible. In HP's ALLBASE/SQL, only
natural joins and outer joins are supported. An example of a natural join is
the SQL nested query on the previous page. A natural join only returns
records for which there are exact matches in the joined tables. Outer joins
allow the union of records where matches don't exist. Codd (1990, The Re-
lational Model for Database Management: Version 2) has defined 43 differ-
ent forms of joins, giving them names such as recursive join, semi-theta-
join, and symmetric equi-join, while suggesting that the list is by no means
complete. QueryCalc is completely differently designed at this level of or-
ganization than is SQL. QueryCalc uses no joins at all. Rather, it was de-
signed (1) to read from only one dataset at a time, and then (2) relate that
data to any other dataset in any way that the user might wish.

These philosophical differences do make substantial practical differences.
Dr. Paula Hawthorne, director of applications and technologies at Hewlett-
Packard, recently said, "I was at one point in charge of the quality assu-
rance group ... SQL as a language is very confusing to the users. At least
half of our bug calls were because people didn't understand an SQL query
and what the right answer to that query was. In fact, often reading the litera-
ture, we didn't understand it either. Part of the problem with quality in rela-
tional database system is a problem with SQL" (/nterexpress, June 1991).

SQL was designed with the best possible intentions: to make the data pres-
entation as simple as possible. No presentation can be simpler than a row-
column table. But we have always felt that motives directed towards the iso-
lation of the user from the data storage were a fundamental mistake. Such
an approach not only confuses even the most astute user, because he does
not know precisely what the program is doing for him, it places an immense
burden on the query language designer. The designer must generate large-
scale data operations capable of every possible manipulation the user might
desire. The far preferable tack would seem to be to generate a few, very
powerful primitives that can connected together indefinitely.

13

The Indefinite
Nature of the
List Report

Producing long detailed lists of items, sorted and summarized

Detail List Reports

If you were the manager of a library, you might want to create a list report
like this: "Print a list all of the students who have books overdue. List the
books for each of the students and calculate the value of the penalty for that
book. Summarize the penalties for each student and give me a total for all of
the students. The output should look something like this:"

Able, John
The Grapes of Wrath
The Witches of Eastwick

505-52-6841
63
38

14.38
6.14

20.45
Anderson, Beverley

Fish King of Alaska
568-45-7191

128 56.45

56.45
Asaud, Ron M.

A Guide to DB2
Thoughts & Discourses

205-56-3682
23
7

6.14
1.12

7.26

Such a report is composed of two groups: the outer group is the alphabe-
tized list of students, the inner group is the list of books that each student
has out, sorted by the length of time the book is out. We call this kind of
report an indefinite (detail) list report. The indefinite nature of the detail re-
port is due to the fact that initially you don't have any idea of how long a list
you're going to generate. That indefinite nature is in direct contrast to the
fixed rowlcolumn format of a financial spreadsheet report where summaries
will occur in specific, preassigned locations.

13-2/ Detail List Reports

Construction
of a Detail
List Report

A detail list report format will always be reminiscent of the outline format
you used in your high-school History class:

I. major subject heading
A. minor subject heading

1. sub-subheading
a. example
b. example
c. example

2. sub-subheading
a. example
b. example

B. minor subject heading
1. sub-subheading

a. example
b. example

II. major subject heading
A. minor subject heading

•
•
•

Each indention represents a new group. Four groups occur in the example
above. In the abstract, the information found in each group is identical, al-
though the values will obviously differ. The information presented within
each indented group must be somehow directly related to information ap-
pearing in the group level immediately above it.

The idea of a group is key to understanding a detail list report. The group
is where items are listed, sorted and summarized. In QueryCa1c, 50 differ-
ent summarizations (averages, maximums, sums, counts, etc.) can be si-
multaneously maintained for a single detail list report. Items which appear
in lower levels can be summarized in all higher group levels, allowing you
to create grandtotals (or grandaverages, or whatever) at every successively
higher level.

QueryCa1c repeats the basic pattern of the History-class outline in its report
layout structure, even to the point of automatically indenting the report in its
default layout setting.

What is a
Group?

How a
Report is

Built

The notion of a group is key /13-3

A group occurs every time a new, more detailed list of items is desired. To
illustrate, let us presume that we would like a detailed list of all of the gener-
als who participated in all of the wars that the United States has fought since
the Revolutionary War, listed battle-by-battle.

The outermost group (Group 1) will be a list of the wars. The second group
(Group 2) will be a list of each of that war's battles, and the third group
(Group 3) will be a list of the generals for each battle. The format of a multi-
group report will always be somewhat similar to the outline form shown on
the opposite page.

Let us presume that the information we will need for the report appears in
three different datasets, WARS, BATTLES and GENERALS. If you are fa-
mililar with the concept of JOINs and MULTIFINDs, we want you to for-
get everything that you know. The way QueryCa1c is put together is much
simpler and much more powerful. In QueryCa1c, a query question extracts
information out of only one dataset. Once that extracted information appears
in a cell, you may use it as part of the qualifying information for your next
query question. In QueryCa1c, the process of linking or joining datasets to-
gether is very straightforward and intuitive.

The first command of any list report is IREPORT. This command converts
a standard spreadsheet page into a detail list report page. The first query
question on the IREPORT page might be:

@using wars, find when year> 1775
and country is US

What QueryCa1c will do when this question is executed is find every record
in the WARS dataset that meets the specified criteria. The qualifying records
will be remembered, and once the initial search pass has been completed,
each record will be brought back up, one at a time. All of the information
that you wish to get from that one record is then read onto the spreadsheet
by a series of @REREADING query questions:

@rereading, val of war-code
@rereading, val of war-name
@rereading, val of start-date
@rereading, val of end-date

13-4/ Detail List Reports

The Report's
Query

Questions

Reading
the

@FIND
Lists

The second group, which is to be a list of all of the battles for a specific
war, will be found in the same manner. And the same is true of the third
group, the generals who commanded each battle in each war. The sequence
of query questions will always look something like this:

Al: @using wars, find when year > 1775
and country is US

A2: @rereading, val of war-code
A3 : @rereading, val of war-name
A4: @rereading, val of start-date
AS: @rereading, val of end-date

A6: @using battles, find when war-code is [a2)
A7: @rereading, val of battle-code
AS: @rereading, val of battle-name

A9 : @using generals, find when war-code is [a2)
and battle-code is [a7)

A1O: @rereading, val of Iname
All: @rereading, val of fname
A12: @rereading, val of command-strength

Each new group is defined by an @FIND.In this example, Group 1 begins
in Cell AI, Group 2 begins in Cell A6, and Group 3 begins in Cell A9.

The first line of a IREPORT page must always be an @FIND,and it is normal-
ly stand-alone (that is, it does not depend on any other cell for its informa-
tion). But the subsequent @FINDson the IREPORT page should always be
written such that they back-reference information in the earlier groups. In
this example, Group 2 (Cell A6) finds the appropriate battles for the war that
is currently displayed in Group 1. And Group 3 (Cell A9) finds the appro-
priate generals for the war and battle currently displayed in Groups 1 and 2.

QueryCa1c maintains three lists in a 3-group report. The first group's list,
which is a list of wars, is read very slowly. The second group, the battles,
is read more quickly. And the last group, the generals, is read very quickly
indeed. When the list of generals for the first battle is exhausted, the next
battle for the current war is read from the Group 2 list and a new list of gen-
erals is found. When this new list is exhausted, the next battle is read. The
process repeats until the list of all of the battles for the war is done, and then
the first group moves forward one war. The process simply repeats until all
of the values in all of the lists have been read.

The
Resulting

Report

The
Sequence of
Commands

An example / 13-5

The resulting report may be formatted in an almost infinite number of ways.
One possibility is shown here:

0 u.s. civil War, 1861-1865 0
July 1861, First Battle of Bull Run

0 Johnston, CSA 13,000 0
Beauregard, CSA 28,100
McDowell, USA 31,800

0 May 1862, Yorktown 0
Lee, CSA 63,600
Johnston, CSA 47,200

0 McClellan, USA 83,450 0
June 1862, Seven Days Battle

0 Johnston, CSA 41,400 0Lee, CSA 57,300
McClellan, USA 75,700

0 Sept 1862, Antietam 0
Lee, CSA 103,650

Four commands are used to build a list report. They are used in this order:

IREPORT
!!
ILAYOUT
IPRINT

Three new commands are unique to the detail list report writer:

IREPORT converts a standard spreadsheet page into a
detail list report page

ILAYOUT M invokes QueryCalc's editor, allowing you to
modify the basic formatting structure for page
M. If the page is not specified, the current
page is assumed.

INEWLAYOUT B invokes QueryCalc's editor, but erases the
previous layout and builds a new default lay-
out for Page B. If the page is not specified,
the current page is assumed.

13-6 I Detail List Reports

The Report
Page

A IREPORT page consists of four prespecified columns. You cannot in-
crease or decrease that number, nor can you change the widths of the col-
umns. Each column is used for a specific bit of information.

DEMOREPT
B I equation (a)

/report
name (b)

Col Dec2 I RJ
sort(c) I width(d)

1
2
3
4
5
6
7
8
9

10
12
13
14
15

-----------------find when
ZLEOSS keyname
SANTOS LEOS name
1313 EAST MADRID address
TAOS
NM
88003
TAOS,NM 88003
101
20,652.82

keyname<>Oilimit=100----------
1a

city
acctcode
amount

The layout of a single group IREPORT page

Column A may contain only equations (query questions, text equations,
etc.) which will be used in extracting information from the database(s).

Column B will contain the names you wish to assign to the results. These
names are important for two reasons. They will become the default column
headers and the item value names used in ILAYOUT. The names also define
which items can be sorted.

Column C can contain only sorting information. Within each group, items
to be sorted are identified as "1a", "2d", "3a" ,etc. The number refers to the
level of the sort (1=first level), "a" & "d" meaning ascending and descend-
ing, respectively. Each group level may have up to nine sort levels. Group
1 sort items take precedence over Group 2 items, Group 2 items take prece-
dence over Group 3, and so on. The maximum number of sort levels within
one report is 20. Sort level requests greater than 20 are simply ignored.

Column D will contain the widths you wish to associate with each item on
the printout. Default widths are 36 characters for text items, 10 characters
for numeric items. You may respecify these widths if you find them inap-
propriate.

Examples
of Report

Pages

The IREPORT page 113-7

Looking at the example on the opposite page, you'll notice that basically
only columns A and B are filled in. These two columns must have some-
thing in them or you don't have a report. Columns C and D, on the other
hand, are only optionally used.

The detail list report writer uses two auxiliary temporary files for each page
in QueryCalc that is defined to be a fREPORT page. The first is a flat file
which records all of the extracted data. This intermediate file is also used
for sorting. Whenever the page is recalculated (!!), this temporary file is re-
built. If you make any changes on the fREPORT page (other than in sort col-
umn C or simple formatting changes in column A), the file is purged and
must be recalculated again.

Once the data file exists though, you may fPRINT the report page repeatedly
without having to recalculate the data. This will prove to be particularly
useful when reformatting the output using the flA YOUT command.

Although the intermediate data file is not meant to be seen, it can be read by
EDITORl3000, and you may want to look at it. It's name is QCRPLSTx,
where x is the report page letter of interest.

The second temporary file stores the formatting information used in the for-
matting command flA YOUT. Again, one file exists for each fREPORT page.
Typing flAYOUT invokes QueryCalc's internal editor and brings up the cur-
rent layout file for the page. The first time a report page is laid out,
QueryCalc will create a default formatting file for you based on the names
and widths specified on the report page. Because of this default feature, it
is possible-and many times desirable-to skip the layout step and simply
print the results of the recalculated report page.

To illustrate the operation of fREPORT pages, I will refer to example reports
found in the training account, QCDEMO.AICS. The file of interest is called
DEMORPRT. If you wish to follow along in QueryCalc, type:

:hello user.alCS
:run qc.qcprogs.aics

Iload demorprt

All of the examples referred to in the remainder of this chapter are pages in
DEMORPRT.

13-8/Detail List Reports

Pages A & B:
A Simple,

Single Group
Report

The demonstration database, QCDEMO, is an actual construction compa-
ny's database. The first two report pages of DEMORPRT were put togeth-
er to list all of the suppliers to the construction company, in the alphabetical
order of their keynames, and the total amount of money spent with each
supplier over the years.

A I equation (a) I_name (b)__ I_sort (c)_I_width (d)
11 find when keyname<>Oilimit=100 _
21
31
41
51
61
71
81
91

101
111

(Aa2)
(Aa3)
(Aa4)
(Aa5)
(Aa6)
(Aa7)
(Aa8)
(Aa9)

(Aal0)

keyname
name
address

la

city
acctcode
amount

Equations for Page A

(Aal): @Using qcdemo.accounts, find when keyname<>Oilimit=100
(Aa2): @rereading, val of keyname
(Aa3): @rereading, val of descriptionl
(Aa4): @rereading, val of address
(Aa5): @rereading, val of city
(Aa6): @rereading, val of state
(Aa7): @rereading, val of zip
(Aa8): $A5+", "+A6+" "+A7
(Aa9): @rereading, val of acctcode

(Aal0): @Using qcdemo.invoices, sum of amount when acctcode is [a9]

The /PRINTEQ equations for Page A

Pages A & B of the file DEMORPRT are almost identical. The only differ-
ence between the two pages is that page A uses the default layout format
created by QueryCa1c while page B uses an edited formatting structure that
was put together in just a few minutes. The two layout files (QCREPRTA
and QCREPRTB) and their resulting outputs appear on the following pages.

There is an important take-horne-lesson in this first example: Do not confuse
a single-group report with single-dataset access. The example above access-
es two datasets, ACCOUNTS and INVOICES. The datasets are related by
the dataitem ACCTCODE, which appears in both datasets. A second group

The IREPORT order 113-9

would be necessary only if you wanted a detail listing of each invoice from
each vendor, not simply a summarization as used here.

Cell A9 of the report page retrieves the dataitem ACCTCODE. This value
is the "link" between datasets. Although its retrieval is necessary to join the
information in the two datasets, it is not necessary that the linking item be
given a name in Column B. If you did not need ACCTCODE to appear on
the printed report, nor wanted to use it as a sorting key, then no reason ex-
ists for you to give it a specific name.

The names you choose for Column B are abitrary. They do not have to re-
flect the dataitems being retrieved. Those values which are named are the
values which will be written onto the intermediate flat file. The values can
be the direct results of query questions (as in line A2) or the calculated re-
sults of text and numeric equations (as in line AS).

The list generator in QueryCalc is built using the same basic ideas em-
ployed in the UDQFs (user defined query functions). Each group level fol-
lows this basic pattern:

• The first line of a new group will always be a
@FIND query question. This query
indentifies the records to be selected. If the
group level is greater than the first level, a
portion of the qualifying requirements for the
@FIND are expected to come from the
information in the group level immediately
above it.

• Cells filled with @REREADINGs will then
follow, extracting required dataitems from the
dataset being searched by the @FIND.

Before the IREPORT page is executed,
QueryCalc compiles the page. For the sake
of computational efficiency, it is best to
group all of the @REREADINGstogether.

• Following the @REREADINGs may come
numeric equations, text equations and other
summarizing query questions referencing
other datasets and databases.

13-10/ Detail List Reports

0 keyname name ad 0
ADAMSMOULDING ADAMS MOULDING & LUMBER CO. INC. 13
ADDCO ADDCO MILLWORK 13
ADVENTURE ADVENTURE TRAVEL AGENCY, INC. 13

0 AICS AICS 13 0ALLEY ALLEY-CONNELL & ASSOCIATES 13
ALLREDSPECIAL ALLRED'S AUTO SPECIALTIES 13
AMERICANLINEN AMERICAN LINEN SUPPLY 13
AMIGO AMIGO LEASING, INC. 13

0
APSCO ALAMO PIPE & SUPPLY CO., INC. 13

0ARGYLE ARGYLE WELDING & MEDICAL SUPPLY CO. 13
BLUPRINTS BLUEPRINTS & MAPS INC. 13
BOTSFORD BOTSFORD LAND SURVEYING INC. 13
BURKE THE BURKE COMPANY 13
CASH PETTY CASH 13

0 CENTURYDOOR WDC DOOR CORPORATION 13 0
CONSTRSPECIAL CONSTRUCTION SPECIALTIES SUPPLIERS 13
CORDELL CORDELL PAVING COMPANY 13
DASAVINGS DONA ANA SAVINGS & LOAN ASSOCIATION 13
DGUILLEN DANIEL S. GUILLEN 13

0 DODGEREPORTS F.W. DODGE DIVISION 13 0DONCUMMINGS DON J. CUMMINGS CO. r INC. 13
DUMMY JOURNAL ENTRY 13
ELDER ELDER EQUIPMENT LEASING, INC. 13
EPMACHINE EL PASO MACHINE & STEEL CO. 13

0 FALCON FALCON SPRINKLER SYSTEMS, INC. 13 0FEDEXPRESS FEDERAL EXPRESS CORPORATION 13
FIESTAPOOL FIESTA POOLS 13
FRONTIER FRONTIER ROOFING CO. OF EL PASO 13
G&GFLOOR G & G FLOOR COVERINGS .13

0
GASCO GAS COMPANY OF NEW MEXICO 13
GE GENERAL ELECTRIC COMPANY 13 0
GLOVER GLOVER PLUMBING & HEATING CO. r INC. 13

QCREPRTA
10 GROUP 1
20 H
30 H, "keyname" ,1; "name" ,39; "address" ,77; "city" ,115; "acctcode" ,-160&

;"amount" ,-170
40 H
50 D,KEYNAME,1;NAME,39;ADDRESS, 77;CITY, 115;ACCTCODE,-160;AMO UNT,-170
60 F,"---------",-160;"---------",-170
70 F,ACCTCODE,-160,SUM;AMOUNT,-170,SUM
80 F
90 ENDGROUP

The printout and default layoutformat (QCREPRTA) for Page A. QueryCalc auto-
matically trims the printed line to the width of the margins specified in IMARG. The
36-character widths associated with the first several items results from the default
width being assigned to text items. Footer sums are automatically generated in the
default layout format for all numeric items.

Pages A&B /13-11

o

o

o

o

o

o

o

ADAMSMOULDING ADAMS MOULDING & LUMBER CO. INC.
1313 EAST MOCKINGBIRD
UNIVERSITY PARK, NM 88003
AMOUNT: 3,606.82

ACCOUNT CODE: 346

ADDCO ADDCO MILLWORK
1313 EAST MOCKINGBIRD
UNIVERSITY PARK, NM 88003
AMOUNT: 44,403.79

ACCOUNT CODE: 22

ADVENTURE ADVENTURE TRAVEL AGENCY, INC.
1313 EAST MOCKINGBIRD
UNIVERSITY PARK, NM 88003
AMOUNT: 514.00

ACCOUNT CODE: 463

AICS AICS
1313 EAST MOCKINGBIRD
UNIVERSITY PARK, NM 88003
AMOUNT: 21,723.42

ACCOUNT CODE: 115

ALLEY ALLEY-CONNELL & ASSOCIATES
1313 EAST MOCKINGBIRD
UNIVERSITY PARK, NM 88003
AMOUNT: 1,276.40

ACCOUNT CODE: 145

QCREPRTB
10 GROUP 1
20 d,"---&

-----------------------",l;unify 6
30 d
40 D,KEYNAME,l;NAME,20;"ACCOUNT CODE: ",-70;acctcode,72
50 d,address,20
60 d,city,20
70 d, "AMOUNT: ",20 ;amoun t r 28
80 d
90 endgroup

The printout and modified layout format (QCREPRTB) for Page B. The header
lines were eliminated and data item values were redistributedon the report. The re-
port layout is now composed solely of detail lines. In a layout file, each line of H, D
or F indicates one print line. A strict requirement is that each group's lines must
have all of the H's together, followed by all of the D's and then all of the F's. The
syntax checker in QueryCa1c's editor will insure that this required order is ob-
served. Notice that type case (upper or lower) is unimportantin the layout file.

o

o

o

o

o

o

o

13-12/ Detail List Reports

How to Build
a Detail List

Report
Step-by-Step

1 . Go to the spreadsheet page you wish to make a
report page and type IREPORT.

2 . Enter the first @FIND equation. You will find it
easiest to work with real data, so terminate the
@FIND with an "!'' to cause your query to execute
immediately. If the @FIND is likely to take some
time, append a temporary LIMIT clause to the end of
the query statement to limit the number of records
you will find.

3 . Proceeding down Column A, enter the
@REREADING cells, terminating each query with an
''!". Format the cells (using IFORM) in the fashion
you wish the data to appear on the report.

4 . Enter any other summary queries from other
databases or datasets in Column A.

5 . If you desire more complex results derived from
several of the query values, enter the necessary
equations in Column A.

6 . If another group level of detail is necessary, enter the
second @FIND equation. A portion of the qualifying
requirements should come from information in the
cells of the immediately preceeding group. Repeat
the procedure in Steps 2 to 5.

7. Go to Column B and provide names (typed in as text
labels) for those items you wish to appear on the
printed report or which will be used as sort items.

8 . Go to Column C and optionally enter the sort order
(typed in as text labels). Nine sort levels (l through
9) can be specified within each group.

9 . Go to Column D and optionally enter any width
values you wish to change from the default values of
36 characters for text and 10 characters for numbers.

The Types
of Lines
Which
May

Appear in
a Layout

File

The layout file / 13-13

1 O. Recalculate the report page by typing "!!"

11. IPRINT the report to see the results of your first try.

12. Type ILAYOUT to modify the default layout format.

13. IPRINT the modified report. Repeat steps 12 & 13
until you are satisfied with the results.

The line types which are allowed in a ILA YOUT file are these:

GROUP
H (header lines)
D (detail lines)
F (footer lines)
ENDGROUP

BREAKON
ENDBREAK
ONNEWPAGE
ENDPAGE

Header lines are composed of only text labels, print positions, and op-
tionally, print enhancement requests.

H
H, "Date" ,30;" Amount" ,-50,bO,s2
H,"The Bayard Company, Ltd.",c

A single letter "H" indicates a blank print line in the headers. A header line
with quoted text followed by a positive number indicates that the text is to
be left justified, beginning at the position indicated. A negative number in-
dicates that the text is to be right justified, the rightmost character to be
placed at the position indicated, with the text going "backwards". Other ac-
ceptable print position values are R,L, and C. "L" left justifies text at
print position of 1. "R" right justifies text at the current right margin (as set
in IMARG). "C" center justifies the text between the present left and right
margin settings. These print position conventions are used in all of three
line types (H,D,F).

The optional print enhancement codes are the same codes used for spread-
sheet cell enhancements (bold, underlining, font changes, etc.) (see Chap.
8, "Printing"). As with cell enhancements, the print enhancement tends to

13-14/ Detail List Reports

stay on once its been turned on, although this behavior varies a bit from
printer type to printer type. In general, you must turn the enhancement off
at the next printable item if you do not want it to continue indefinitely.

Detail lines are basically the same as header lines, but with the optional ad-
dition of the item values named on the /REPORT page.

D
D,"Category:",-60;CATEGORY,62
D," ------ item separator-------" ,c
D,date,14,nr;amount,-30

A detail line may be composed of either simple text (denoted by quotes) or
item value names (no quotes). The format is otherwise identical to header
lines, with one exception. The value "NR" may also be added to any detail
line. "NR" means non-repeating. An example appears in the last line of the
four lines above. Should the same date value immediately recur, the date
value will be printed only the first time it appears. Because NR was not
specified for the amount value, every value of amount will be printed. The
result will look like this:

1114/93 12,237.33
6,781.01

34,676.00
45.12
123.89

18,345.40

1116/93

Footer lines are similar to detail lines. They may be composed of either
simple text or item value names.

F
F," -----------" ,-60;" -----------" ,-80
F, "Grand Total; ",-48;AMOUNT,-60,sum;&
BALANCE,-80,sum,b 1;"" ,-81 ,bO

Simple text only has one necessary parameter: print position. A summar-
ized report item value has two: (1) print position and (2) the summarization
type to be accumulated (sum, num, avg, max, min, var, or dev). As with
header and detail lines, footer lines may also be enhanced. In the example
above, BALANCE is printed in bold. [Notice that the bold enhancement re-
quest (bl) is turned off in the next print item (bO), an empty text string].

Layout Print
Control

Structures

NOTE

Print control structures 113-15

Five print control structures for detail list reports exist in QueryCalc. Four
of them are phrases used in header, detail or footer lines:

NEWPAGE
RESET 15
UNIFY 6
SKIPTO 5

The fifth is a conditional clause used in the ILAYOUT file:

ONNEWPAGE
•

ENDPAGE

NEWPAGE, when placed anywhere within a printable line, causes the
printer to skip to the top of a new page before the line is printed.

RESET 15, when placed anywhere within a printable line, causes the page
number of the current page to be reset to the number specified.

UNIFY 6, when placed anywhere in a line, requires that at least 6 full print
lines remain before bottom of page or the printer will be commanded to skip
to the next page. The effect is that the present line and the following five
lines will always be printed as a whole. Any positive integer may be speci-
fied in the UNIFY command. Negative numbers or numbers larger than or
equal to the number of printable lines on the page (as set in IMARG) will be
ignored. The UNIFY command stays in effect only for the duration of print-
ing of the line in which it appears.

SKIPTO 55, when placed anywhere in a line, causes the printer to skip
print row 55 before the line is printed. If the requested print row has al-
ready been passed, the printer will skip to the next page and go to the re-
quested print row on that page. Negative line numbers or numbers larger
than the number of printable lines on a page (as set in IMARG) will be ig-
nored.

Should you request both NEWPAGE and SKIPTO in the same line, the order
of execution will be first NEWPAGE and then SKIPTO. That is, the printer
will first go the top of the next page and then skip down to the requested
print row before the line is printed. Should you request both UNIFY and
SKIPTO in the same line, UNIFY overrides SKIPTO. That is, if you request a

13-16/ Detail List Reports

The
Conditional

Print Control
Clause

Global
Headers &

Footers

skip to a print row within the number of page bottom rows protected by
UNIFY, UNIFY will cause the printer to skip to the top of the next page.

ONNEWPAGE is a conditional clause. ONNEWPAGE causes a secondary
header to be printed at the top of each continuation page. ONNEWPAGE

takes effect only when the report fills the current page and the printer
"walks" into a new page. That may occur because either too much informa-
tion has been retrieved to fit on the current page or the SKIPTO phrase has
caused the printer a skip to the next page. The ONNEWPAGE clause, it
should be noted, is not activated on a NEWPAGE command. Indeed, NEW-

PAGE resets the ONNEWPAGE trigger.

A different ONNEWPAGE clause may be specified for each group in the re-
port. If no ONNEWPAGE clause is specified for the group level currently
printing, the last ONNEWPAGE encountered will be the one used.

The rules for using the ONNEWPAGE clause are these:

1. Only header line types are allowed in an
ONNEWPAGE clause.

2. The ONNEWPAGE clause is always
placed at the end of a group, just prior to
the ENDGROUP command.

3. An ONNEWPAGE set of header lines used
in a lower group can be cleared by setting
a null ONNEWPAGE clause in a higher
group (that is , the ONNEWPAGE com-
mand is followed immediately by an END-

PAGE command).

Examples of all of the print control structures are used in Pages C & D of
DEMORPRT, sections of which appear in the next several pages.

Global headers and footers for each report page (such as the footer page
number in the example file, DEMORPRT) are set as they would normally
be set for spreadsheet pages, in the /HEAD screen. And as they do for
spreadsheet pages, headers and footers diminish the number of printable
lines on the page by the number of lines they take up.

Pages C&D /13-17

Example 2:
A Two-Group

Expense
Report

Pages C & D of DEMORPRT are identical pages, other than their layout
files. The detail lists they generate are a list of all occupancy expenses for
the year 1984. The report page is organized as two groups, one which ex-
tracts each category of expense, the other each invoice which occurred
within 1984 for that category. The categories are sorted by name. The in-
voices are sorted by date. Three datasets are accessed by the report.

C I equation (a) I__ name (b)__ I_sort (c)_I_width (d)
11 find when category ib 500,600
21 (Ca2)
31 (Ca3)
41 (Ca4) category la 25
51 find when category is [a2] and date ib 8 ...
61 (Ca6) compdate la 10
71 (Ca7) amount
81 (Ca8) balance
91 (Ca9)

101 (CalO)
111 (Call) supplier 30
121 (Ca12) date 15
131

Equations for Page C

(Cal): @Using qcdemo.categories, find when category ib 500,600
(Ca2): @rereading, val of category
(Ca3): @rereading, val of descriptionl
(Ca4): NAM(A3)
(Ca5): @Using qcdemo.invoices, find when category is [a2] and

date ib 840000,850000
(Ca6): @rereading, val of date
(Ca7): @rereading, val of amount
(Ca8): @rereading, val of balance
(Ca9): @rereading, val of acctcode

(CalO): @Using qcdemo.accounts, val of descriptionl when
acctcode is [A9]

(Call): NAM(AIO)
(Ca12): DAT4(A6)

The /PRINTEQ equations for Page C

Two cells, A2 and A9, are used to retrieve information (expense category
number and account code) which is used to link datasets together. Neither
cell is named in Column B. There is no need to name these cells because
this linking information will neither need to appear on the printed report or
be used in sorting.

13-18/ Detail List Reports

QCREPRTC
10 GROUP 1
20 H
30 H, "category", 1
40 H
50 D,CATEGORY,l
60 GROUP 2
70 H
80 H, "compdate" ,4;"amount" ,-23;"balance" ,-33;"supplier" ,36;"date" ,68
90 H

100 D,COMPDATE,4;AMOUNT,-23;BALANCE,-33;SUPPLIER,36;DATE,68
110 F, "---------",-23;"---------",-33
120 F,AMOUNT,-23,SUM;BALANCE,-33,SUM
130 F
140 ENDGROUP
150 F
160 F
170 F
180 ENDGROUP

The default layout format (QCREPRTC) for Page C. The default format automatically gener-
ates sums of all of the numeric items within a group. The default format also automatically in-
dents each new group two spaces to the right.

Items are presented in the default format in the order that they appear on the IREPORT page.
The item COMPDATE was given a name not because it was desired to have it on the printed
report, but because its presence was necessary for sorting. One of the first items to be modi-
fied in the layout in Page D was to drop COMPDATE and move DATE to take its place.

Page Cprintout /13-19

0 category 0
Building Maintenance

compdate amount balance supplier date

0 840101 100.00 0.00 Ccc Investments JAN 01 84 0
840201 100.00 0.00 Ccc Investments FEB 01 84
840301 100.00 0.00 Ccc Investments MAR 01 84
840401 100.00 0.00 Ccc Investments APR 01 84

0
840418 10.40 0.00 Marion H. Phares APR 18 84
840429 51. 21 0.00 Home Centers/Western Region APR 29 84 0
840501 100.00 0.00 Ccc Investments MAY 01 84
840524 71. 96 0.00 Ccc Investments MAY 24 84
840531 166.27 0.00 Ccc Investments MAY 31 84
840701 100.00 0.00 Ccc Investments JUL 01 84

0 840724 152.21 0.00 Hargraves Drilling JUL 24 84 0840801 100.00 0.00 Ccc Investments AUG 01 84
840802 34.35 0.00 Metal Craft Company AUG 02 84
840831 59.90 0.00 Metal Craft Company AUG 31 84

--------- ---------
0 1,246.30 0.00 0

Cleaning Service

compdate amount balance supplier date

0 840103 15.00 0.00 Natalia Vasquez JAN 03 84 0
840109 15.00 0.00 Natalia Vasquez JAN 09 84
840116 15.00 0.00 Natalia Vasquez JAN 16 84
840123 15.00 0.00 Natalia Vasquez JAN 23 84

0
840130 10.00 0.00 Natalia Vasquez JAN 30 84
840206 15.00 0.00 Natalia Vasquez FEB 06 84 0
840213 15.00 0.00 Natalia Vasquez FEB 13 84
840220 15.00 0.00 Natalia Vasquez FEB 20 84
840227 20.00 0.00 Natalia Vasquez FEB 27 84
840305 15.00 0.00 Natalia Vasquez MAR 05 84

0 840312 20.00 0.00 Natalia Vasquez MAR 12 84 0
840319 15.00 0.00 Natalia Vasquez MAR 19 84
840326 15.00 0.00 Natalia Vasquez MAR 26 84
840403 10.00 0.00 Natalia Vasquez APR 03 84
840409 10.00 0.00 Natalia Vasquez APR 09 84

0 840416 20.00 0.00 Natalia Vasquez APR 16 84 0840423 15.00 0.00 Natalia Vasquez APR 23 84
840430 20.00 0.00 Natalia Vasquez APR 30 84
840507 20.00 0.00 Natalia Vasquez MAY 07 84
840515 10.00 0.00 Natalia Vasquez MAY 15 84

0 840521 10.00 0.00 Natalia Vasquez MAY 21 84 0840529 15.00 0.00 Natalia Vasquez MAY 29 84
840604 15.00 0.00 Natalia Vasquez JUN 04 84
840611 20.00 0.00 Natalia Vasquez JUN 11 84
840618 15.00 0.00 Natalia Vasquez JUN 18 84

0 840627 15.00 0.00 Natalia Vasquez JUN 27 84
0840702 10.00 0.00 Natalia Vasquez JUL 02 84

840710 10.00 0.00 Natalia Vasquez JUL 10 84

The default printout for Page C.

13-20/ Detail List Reports

QCREPRTD
100 GROUP 1
110 d,newpagei"---&

--------------------",1
120 d
130 d,"UniCon Construction, Ltd",c,bl,s2
140 d,"University Park, New Mexico",c
150 d,"",l,bO,sO
160 d,"---&

-------------",1
170 d
180 D,"Category:",liCATEGORY,11,m2i"",r,ml
190 GROUP 2
200 H
210 H, "date" ,4i "amount" ,-23i "balance" ,-33i "supplier" ,36
220 H
230 D,unify 3iDATE,4iAMOUNT,-23iBALANCE,-33iSUPPLIER,36,m2i"",ml,r
240 f,"---------",-23i"--------",-33
250 f,"Total:",-13iamount,-23,sumibalance,-33,sum
260 f
270 f,skipto 50i "Count: ",-53iamount,-63,numibalance,-73,num
280 f,"Average:",-53iamount,-63,avgibalance,-73,avg
290 f,"Maximum:",-53iamount,-63,maxibalance,-73,max
300 f,"Minimum:",-53iamount,-63,minibalance,-73,min
310 f,"Variance:",-53iamount,-63,varibalance,-73,var
320 f, "Deviation: ",-53iamount,-63,devibalance,-73,dev
330 F
340 ONNEWPAGE
350 h,"---&

----------------",1
360
370
380
390
400

h
h,"UniCon Construction, Ltd",c,bl,s2
h,"University Park, New Mexico",c
h,"",bO,sO
h,"---&

-----------------",1
401 h,skipto 9
410 END PAGE
420 ENDGROUP
430 f,newpageiskipto 50i"--

-------------------------------",1
440 f
450 f,"Total:",-13iamount,-23,sumibalance,-33,sumi"GRAND TOTALS",r
460 f
470 f,"Count:",-13iamount,-23,numibalance,-33,num
480 f, "Average: ",-13iamount,-23,avgibalance,-33,avg
490 f,"Maximum:",-13iamount,-23,maxibalance,-33,max
500 f , "Minimum:" ,-13iamount,-23,minibalance,-33,min
510 f,"Variance:",-13iamount,-23,varibalance,-33,var
520 f, "Deviation: ",-13iamount,-23,devibalance,-33,dev
530 ENDGROUP

The modified layout format (QCREP RTD) for page D.

Page D printout /13-21

0 ---
0

unicon Construction, Ltd
University Park, New Mexico

0 --- 0
Category: Building Maintenance

date amount balance supplier
0 0JAN 01 84 100.00 0.00 Ccc Investments

FEB 01 84 100.00 0.00 Ccc Investments
MAR 01 84 100.00 0.00 Ccc Investments
APR 01 84 100.00 0.00 Ccc Investments

0 APR 18 84 10.40 0.00 Marion H. Phares 0
APR 29 84 51. 21 0.00 Home Centers/Western Region
MAY 01 84 100.00 0.00 Ccc Investments
MAY 24 84 71.96 0.00 Ccc Investments

0 MAY 31 84 166.27 0.00 Ccc Investments
0JUL 01 84 100.00 0.00 Ccc Inves tmen ts

JUL 24 84 152.21 0.00 Hargraves Drilling
AUG 01 84 100.00 0.00 Ccc Investments
AUG 02 84 34.35 0.00 Metal Craft Company

0 AUG 31 84 59.90 0.00 Metal Craft Company 0--------- --------

Total: 1,246.30 0.00

0 0

0 0

0 Count: 14.00 14.00 0
Average: 89.02 0.00
Maximum: 166.27 0.00
Minimum: 10.40 0.00

0 Variance: 1,734.08 0.00
0Deviation: 41.64 0.00

0 -Page 1- 0

The modified printout for Page D.

13-22/ Detail List Reports

Printing to
Preprinted

Forms

Check
Registers

&
Repeating
Dataitems

The printout for Page D looks very much like the format which would be
used to fill in a standard invoice. With the use of the SKIPTO command
phrase, printing can be commanded to occur at any specific location on a
preprinted form. Because you rarely know beforehand how many items
will fill the invoice, the use of the UNIFY command phrase will allow you to
set an artificial "bottom of page", thus protecting a print area which would
normally contain summations, taxes, etc. Using the ONNEWPAGE clause, a
continuation header can be printed at the top of each new page of an invoice
which has too many items to fit on just one page.

Similarly, filling out other preprinted forms, such as W-2 reports, unem-
ployement reports, wage withholding reports, etc. are as easily done.

Check reconciliation registers are also readily programmable. In a check
register, items from several groups are often desired to be printed on the
same line. That's possible in QueryCalc, given a few constraints. The first
constraint is that higher group level items can be printed in lower groups,
but the reverse is not true (the reason: a higher group value will always be
known by the time the lower group element is to be printed, but QueryCalc
cannot know in advance the value of the lower group item before it is en-
countered). The syntax checker in ILAYOUT will prevent you from describ-
ing a format so that you would violate this rule. The second constraint is
that all ofthe items must be capable of appearing on the same line(s). There
is no way in QueryCa1c for you to have a column of check amounts printed
at the right and on the left print a shorter multi-line description of the ac-
count, such that both columns will be flush at the top. To do that would re-
quire multiple data files with synchronizing print control structures, a fea-
ture QueryCa1c does not possess.

However the use of the non-repeating (NR) modifier offers a range of pos-
sibilities. The default layout of Page C (DEMORPRT) was modified to
produce the output on the opposite page. The item value CATEGORY, a
Group 1 item, has been moved down to Group 2. This will cause the cur-
rent value of CATEGORY to be printed on every Group 2 line. By specifi-
fying the NR modifier for CATEGORY, its value is only printed once at
every group value change. This allows different group item values to be
printed simultaneously on the same line. Notice too that the SUPPLIER
item value is also printed with the NR modifier. This allows the opportuni-
ty to easily recognize a change in vendors.

The non-repeating modifier /13-23

0 Category Date Amount Balance Supplier 0
Building Maintenance JAN 01 84 100.00 0.00 Ccc Investments

FEB 01 84 100.00 0.00
MAR 01 84 100.00 0.00

0 APR 01 84 100.00 0.00
0APR 18 84 10.40 0.00 Marion H. Phares

APR 29 84 51.21 0.00 Home Centers/Western R
MAY 01 84 100.00 0.00 Ccc Investments
MAY 24 84 71.96 0.00

0
MAY 31 84 166.27 0.00
JUL 01 84 100.00 0.00 0
JUL 24 84 152.21 0.00 Hargraves Drilling
AUG 01 84 100.00 0.00 Ccc Investments
AUG 02 84 34.35 0.00 Metal Craft Company
AUG 31 84 59.90 0.00

0 0Cleaning Service JAN 03 84 15.00 0.00 Natalia Vasquez
JAN 09 84 15.00 0.00
JAN 16 84 15.00 0.00
JAN 23 84 15.00 0.00

0 JAN 30 84 10.00 0.00 0FEB 06 84 15.00 0.00
FEB 13 84 15.00 0.00
FEB 20 84 15.00 0.00
FEB 27 84 20.00 0.00

0 MAR 05 84 15.00 0.00 0MAR 12 84 20.00 0.00
MAR 19 84 15.00 0.00
MAR 26 84 15.00 0.00
APR 03 84 10.00 0.00
APR 09 84 10.00 0.00

00 APR 16 84 20.00 0.00
APR 23 84 15.00 0.00

QCREPRTC
10 GROUP 1
20 H
30 H, "Category" ,1;"Date" ,27; "Amount" ,-45; "Balance" ,&

-55; "Supplier" ,57
40 H
50 GROUP 2
60 D,CATEGORY,1,NR;DATE,27;AMOUNT,-45;BALANCE,&

-55;SUPPLIER,57,NR
70 F
80 ONNEWPAGE
90 H

100 H, "Category" ,1; "Date" ,27; "Amount" ,-45; "Balance" ,&
-55;"Supplier",57

110 H
120 END PAGE
130 ENDGROUP
140 ENDGROUP

Theprintout and layout format for a modified Page C.

13-24/ Detail List Reports

Control
Breaks

Quite often, you will need to impose additional subtotals and print controls in the ret
Four items, ACCTCODE, DATE, AMOUNT, and YEAR, are generated on the repor
A control break may be typed into the layout file in the following fashion:

F I equation (a) I__ name (b)__ I_sort (c)_I_width (d)
11 find when jobnum is 8404
21 (Fa2)
31 (Fa3) 2a 10
41 (Fa4) amount
51 (Fa5) company la 20
61 (Fa6) date 10
71 (Fa7) year

(Fal): @Using qcdemo.invoices, find when jobnum is 8404
(Fa2): @rereading, val of acctcode
(Fa3): @rereading, val of date
(Fa4): @rereading, val of amount
(Fa5): @Using qcdemo. accounts , val of keyname when acctcode

is [a2]
(Fa6): DAT5(A3)
(Fa7): YEAR (A3)

D,COMPANY,l,NRiDATE,23iAMOUNT,-42
BREAKON COMPANY

F,"---------",-42

QCREPRTF
10 GROUP 1
20 H,"---_",1
30 H, "company", 1; "date", 23; "amount", -42
40 H,"--",1
50 H
60 D,COMPANY,1,NR;DATE,23;AMOUNT,-42
70 F,"---------",-42
80 F,"job total: ",-30;AMOUNT,-42,SUM
90 F

100 ONNEWPAGE
110 H,"---_",1
120 H, "company", 1; "date", 23; "amount", -42
130 H,"---_",1
140 H
150 END PAGE
160 ENDGROUP

The layout file without control breaks.

Control breaks /13-25

0 ---------------- ------------------------------------ 0company date amount
------------------------------- ---------------------

ARTGLASS 01-MAR-95 1,321.45
0 30-APR-95 317.00 0BORDERMACHINE 26-FEB-95 46.09

BOTSFORD 30-APR-94 256.94
01-JUN-95 73.33

BUILDERSBLOCK 25-APR-94 158.06
0 31-MAY-94 16.68 0

25-JUN-94 2,487.22
25-AUG-94 15,372.90
25-AUG-94 6,441.00

0 25-SEP-94 2,660.00
25-SEP-94 11.18 0
25-0CT-94 28,311.90
25-0CT-94 12,001.35
25-NOV-94 24,852.00

0 25-DEC-94 5.50 025-DEC-94 11,207.15
25-JAN-95 11,044.70
25-JAN-95 21.24
25-FEB-95 22.36

0 25-FEB-95 13,841.50 025-FEB-95 1,500.32
25-FEB-95 550.00
24-MAY-95 9,424.23
25-MAY-95 21. 08

0 25-MAY-95 299.53 025-MAY-95 1,491.50
25-JUL-95 18.00

BURNCO 04-APR-94 42,481.80
03-MAY-94 12,234.60

0 05-JUN-94 2,833.65 0
06-SEP-94 1,450.35
06-SEP-94 10,053.00
12-MAR-95 31,476.60

0 BUSINESSPROD 10-APR-95 23.13
0CAMERASHOP 26-MAR-94 4.17

01-MAY-94 25.66
CASHWAY 27-JAN-94 35.01

26-FEB-94 49.43

0 29-APR-94 51. 38 027-MAY-94 64.40
01-JUL-94 61. 03
01-JUL-94 13.11
29-JUL-94 47.76

0 26-AUG-94 7.54 0

Theprintout of a single group report without control breaks.

13-26/ Detail List Reports

A control break may be typed into the layout file in the following fashion:The
BREAKON

Clause D,COMPANY,l,NRiDATE,23iAMOUNT,-42
BREAKON COMPANY

F,"---------",-42
F,AMOUNT,-42,SUM
F

ENDBREAK
F

The BREAKON clause is triggered by a change in the dataitem specified.
The process is somewhat similar in effect to the non-repeating modifier
(NR) that was discussed just a few pages ago.

QCREPRTF
10 GROUP 1
20 H,"--",1
30 H, "company" ,1;"date" ,23; "amount" ,-42
40 H,"--",1
50 H
60 D,UNIFY 8;COMPANY,l,NR;DATE,23;AMOUNT,-42
70 BREAKON COMPANY
80 F,"---------",-42
90 F,"company total:",-30;AMOUNT,-42,SUM

100 F,"companyaverage:",-30;AMOUNT,-42,AVG
110 F
120 F,"--",1
130 F
140 ENDBREAK
150 F,"---------",-42
160 F,"job total: ",-30;AMOUNT,-42,SUM
170 F
180 ONNEWPAGE
190 H,"--",1
200 H, "company", 1; "date", 23; "amount", -42
210 H,"--",1
220 H
230 END PAGE
240 ENDGROUP

The layout file has now been modified to have one control break. The resulting
output is shown on the opposite page. The !REPORT page was not recalculated
to generate this new printout. Only the layout file was modified.

The BREAKON clause / 13-27

0 --------------------- ------------------------------- 0company date amount
---------------- --------------------------- ---------

BOTSFORD 30-APR-94 256.94
0 01-JUN-95 73.33 0---------

company total: 330.27
company average: 165.14

0 --- ----------- 0
BUILDERS BLOCK 25-APR-94 158.06

31-MAY-94 16.68

0 25-JUN-94 2,487.22
25-AUG-94 15,372.90 0
25-AUG-94 6,441.00
25-SEP-94 2,660.00
25-SEP-94 11.18

0 25-0CT-94 28,311.90 025-0CT-94 12,001.35
2S-NOV-94 24,852.00
25-DEC-94 5.50
25-DEC-94 11,207.15

0 25-JAN-95 11,044.70 025-JAN-95 21.24
25-FEB-95 22.36
25-FEB-95 13,841. 50
25-FEB-95 1,500.32

0 25-FEB-95 550.00 024-MAY-95 9,424.23
25-MAY-95 21.08
25-MAY-95 299.53
25-MAY-95 1,491.50

0 25-JUL-95 18.00 0

company total: 141,759.40
company average: 6,163.45

0 -- 0
BURNCO 04-APR-94 42,481.80

03-MAY-94 12,234.60

0 05-JUN-94 2,833.65 006-SEP-94 1,450.35
06-SEP-94 10,053.00
12-MAR-95 31,476.60

0 company total: 100,530.00 0

The report with one control break.

13-28/ Detail List Reports

Multiple
Control
Breaks

Multiple control breaks may specified for a single report. The breaks are
typed in a nested order such that the item that changes most often is speci-
fied first and the most major summarization appears last. A 2-break example

is shown here:

QCREPRTF
10 GROUP 1
20 H,"--",1
30 H, "company" ,1;"date", 23; "amount", -42
40 H,"---_",1
SO H
60 D,UNIFY 8;COMPANY,l,NR;DATE,23;AMOUNT,-42
70 BREAKON YEAR
80 F,"---------",-S2
90 F,AMOUNT,-S2,SUM

100 F
110 BREAKON COMPANY
120 F,"company total: ",-40;AMOUNT,-52,SUM
130 F, "company average: ",-40;AMOUNT,-S2,AVG
140 F
lS0 F,"--",1
160 F
170 END BREAK
180 ENDBREAK
190 F,"---------",-S2
200 F,"job total: ",-40;AMOUNT,-S2,SUM
210 F
220 ONNEWPAGE
230 H, "--,,,1
240 H, "company" ,1;"date", 23; "amount", -42
2S0 H,"--",1
260 H
270 ENDPAGE
280 ENDGROUP

The layout file modified a second time. Two control breaks are now used,
the first (minor) for the year and the second (major) for the company.
Notice that YEAR is a dataitem that was calculated on the !REPORT page
but is not otherwise used in the layout. This is perfectly legitimate.

Multiple control breaks /13-29

0 -- 0company date amount
--

BUILDERSBLOCK 25-APR-94 158.06
0 31-MAY-94 16.68 025-JUN-94 2,487.22

25-AUG-94 15,372.90
25-AUG-94 6,441.00
25-SEP-94 2,660.00

0 25-SEP-94 11.18 0
25-0CT-94 28,311.90
25-0CT-94 12,001.35
25-NOV-94 24,852.00

0 25-DEC-94 5.50
025-DEC-94 11,207.15

103,524.94

0 25-JAN-95 11,044.70 025-JAN-95 21. 24
25-FEB-95 22.36
25-FEB-95 13,841.50
25-FEB-95 1,500.32

0 25-FEB-95 550.00 024-MAY-95 9,424.23
25-MAY-95 21. 08
25-MAY-95 299.53
25-MAY-95 1,491.50

0 25-JUL-95 18.00 0---------
38,234.46

company total: 141,759.40
0 company average: 6,163.45 0

--

0 BURNCO 04-APR-94 42,481.80
003-MAY-94 12,234.60

05-JUN-94 2,833.65
06-SEP-94 1,450.35
06-SEP-94 10,053.00

0 --------- 069,053.40

12-MAR-95 31,476.60

0 31,476.60 0

The report with control breaks for year and company.

13-30/ Detail List Reports

In a "flat", one-group report, you may often wish to not only generate con-
trol break summaries, but also suppress the detail entries that contribute to
those summary values. The supression of this unwanted information can be
accomplished with the use of the "print-once" (PO) modifer as shown in
line 60 of the ILAYOUT file below. The PO modifier works similarly to the
NR modifier, but with PO, all further detail lines will be suppressed from
printing until the specified item changes in value.

Suppressing
Detail
Lines

QCREPRTF
10 GROUP 1
20 H,"---",1
30 H, "company" ,1;"year" ,-40; "amount" ,-52
40 H,"---",1
50 H
60 D,UNIFY 8;COMPANY,1,PO
70 D,ADDRESS,l
80 BREAKON YEAR
90 F,YEAR,-40;AMOUNT,-52,SUM

100 BREAKON COMPANY
110 F
120 F,"total:",-40;AMOUNT,-52,SUM
130 F,"average invoice: ",-40;AMOUNT,-52,AVG
140 F
150 F,"--",l
160 F
170 ENDBREAK
180 END BREAK
190 F,"---------",-52
200 F,"job total: ",-40;AMOUNT,-52,SUM
210 F
220 ONNEWPAGE
230 H,"--",1
240 H, "company" ,1;"year" ,-40; "amount" ,-52
250 H, "--",1
260 H
270 END PAGE
280 ENDGROUP

The layout file modified a third time. The control breaks in this example are
only very slightly modified from the previous example, but the detail lines
have been print-suppressed. The detail lines now print only once, when the
company name changes, the same condition that the major control break
operates on.

The PRINT-ONCE modifier /13-31

o company

BORDERMACHINE
4545 E. AMADOR, LAS CRUCES 88001

year amount

1995 46.09

o

o

o

o

o

o

o

o

o

o

o

total:
average invoice:

BOTSFORD
1326 FENTON, UNIVERSITY PARK 88003

46.09
46.09

1994
1995

256.94
73.33

total:
average invoice:

o

o

o

o

o

o

o

o

o

o

BUILDERS BLOCK
1200 LOHMAN, LAS CRUCES 88005

330.27
165.14

1994 103,524.94
1995 38,234.46

total: 141,759.40
average invoice: 6,163.45

BURNCO
HWY 70 AT EVANS, CHAMBERINO 88127

1994 69,053.40
1995 31,476.60

total: 100,530.00
average invoice: 16,755.00

BUSINESSPROD
12901 ESPINA, UNIVERSITY PARK 88003

1995 23.13

total:
average invoice:

23.13
23.13

The report modified so that the detail line prints only once.

13-32/ Detail List Reports

Freedom
of Suppress

If you wish to completely suppress the printing of detail lines, use the sup-
press (SUPPRESS) modifier. If the suppress modifier appears anywhere
in a detail line, that line will not print.

When using the SUPPRESS modifier, you will almost certainly want the
variable(s) that set the control break(s) to appear in one of the control break
footer lines. In this example, YEAR appears in footer line 80 and COMPANY

appears in line 110.

QCREPRTF
10 GROUP 1
20 H,"---",1
30 H, "company" ,1; "year", -40; "amount", -52
40 H,"---",1
50 H
60 D,UNIFY 8;SUPPRESS
70 BREAKON YEAR
80 F,YEAR,-40;AMOUNT,-52,SUM
90 BREAKON COMPANY

100 F
110 F,COMPANY, 1; "total: ",-40;AMOUNT,-52,SUM
120 F,"average invoice: ",-40;AMOUNT,-52,AVG
130 F
140 F,"--",l
150 F
160 ENDBREAK
170 ENDBREAK
180 F, "---------" ,-52
190 F,"job total: ",-40;AMOUNT,-52,SUM
200 F
210 ONNEWPAGE220 H, " ",1
230 H, "company" ,1;"year" ,-40; "amount" ,-52
240 H,"--",1
250 H
260 END PAGE
270 ENDGROUP

The layout file modified a fourth time. In this fourth example, the detail line
has been completely suppressed from printing. However, the detail lines
cannot simply be dropped. At least one detail line must still appear in the
flAYOUT file. No report variables need to appear on the detail line. Indeed,
should they be present, they will merely represent wasted processing time.

The SUPPRESS modifier /13-33

o

CAMERASHOP

1994 69,053.40
1995 31,476.60

0 0
BURNCO total: 100,530.00

average invoice: 16,755.00

company year amount

1995 46.09o
BORDERMACHINE total:

average invoice:
46.09
46.09

0
1994 256.94
1995 73.33

0 BOTSFORD total: 330.27
average invoice: 165.14

o 1994 103,524.94
1995 38,234.46

BUILDERS BLOCK total: 141,759.40
average lnVOlce: 6,163.45

o

o
1995 23.13

total:
average invoice:

23.13
23.13

BUSINESSPROD

o

1994 29.83

o total:
average invoice:

29.83
14.91

o

The report modified so that detail lines have been completely suppressed.

o

o

o

o

o

o

o

o

o

o

13-34/ Detail List Reports

Rules for There are only a very few rules for the use of control breaks in a layout file.
Control You do not need to memorize them. QueryCalc will, as it does elsewhere,
Breaks warn you if you violate them.

• The BREAKON clause may appear only after the lowest
group's last detail line and just before the lowest group's
first footer line, as shown in the previous examples.

• The items summed in the BREAKON clause may only ref-
erence items in the lowest level group (referencing higher
level groups makes no logical sense).

• The number of groups and control breaks cannot exceed a
total of 5 levels.

• Only footer lines may appear in a BREAKON clause.

• Summations in a BREAKON clause are identical to stan-
dard footers, thus you may ask for either the SUM, AVO,
MAX, MIN, DEVor VAR of the item (or any combination
of these items in one or more footer lines).

• The BREAKON item does not need to be a sorted item on
the lREPORT page, but a report would rarely have a con-
trol break specified for a non-sorted item.

Final
Thoughts

Information for use in a report page may be extracted from any other cell in
any spreadsheet or graphics definition page in the current file. However,
the reverse is not true. In general, standard spreadsheet or graphic defini-
tion pages cannot extract information from a report page. The information
in the cells of the report page is transitory and exists for only a short time. If
you wish to use summarizations which were calculated during the course of
calculation of a report page, no easy alternative exists but to recalculate
those summaries in individual cells on a standard spreadsheet.

Concepts
Introduced in

Chapter 13

Concepts introduced /13-35

REPORT PAGE the third page type in
QueryCalc. The definition of
a report page allows for the
construction of a single,
independent detail list report.
Up to 26 such reports may be
created in one QueryCalc file.

GROUP a defined level of detail (one
"indention" in an outline).
Sorting occurs within a
group. A group is defined on
a IREPORT page by a new
@FIND statement.

"LINKING" ITEM a dataitem value which is
common to two or more
datasets (in the same or
different databases). The
"linking" item value logically
"relates" the different
datasets.

LAYOUT FILE the format description file

UNIFY a command which demands
that a specified number of
print lines exist before the
bottom of page is to be
encountered, otherwise it
commands a skip to the top of
the next page and resumes the
print there.

ONNEWPAGE a conditional print clause
which activates a secondary
header whenever printing
"walks" into a new page.

Keven
Rectangle

14

A Brief
Introduction
to the Editor

Modifying detail list report layouts and macroprograms

QueryCalc's Editor

QueryCa1c's internal editor, which is used for both modifying report for-
mats for detail list reports and for programming macros, possesses two
modes of operation: layout and macroprogramming. The two modes are
virtually identical, except for slight differences in allowed commands. The
editor is invoked by typing any of the following at the Command line:

ILAYOUT
ILAYOUT M
INEWLAYOUT
INEWLAYOUT B
IPROG
IPROG macrofilename

The mode of the editor is determined by the form of the command which in-
voked the editor.

QueryCa1c's editor was designed to look and operate much like the other
common editors on the HP3000 (EDIT/3000, TDP, QUAD, etc.), being
programmed to look most like EDIT/3000. However the editor has also
been programmed to simultaneously operate as a line-number-oriented edi-
tor, similar to the internal editors found in most BASICs.

The editor holds a maximum of 500 lines of text. Each line is limited to 240
characters in length. Lines longer than 72 characters will be broken into ap-
propriately sized line segments on the screen, terminated with "&" continua-
tion characters. When entering a long line of text, you may either terminate
your line segments with "&" continuation characters, or you may simply
keep typing, letting the terminal wrap the line for you.

Line numbers may be manually or automatically assigned. Line numbers
may range from 1 to 10,000 as integers.

14-2/ Querytlalc's Editor

Commands
Common to
Both Edit

Modes

The standard editing commands are these:

T[ext] filename loads the specified file

A[dd]

A[dd] 17

M[odify] 4
M[odify] 7/10

D[elete] 16

D[elete] 5/10

D[elete] ALL

R[eplace] 5
R[eplace] 16/20

COpy 62 to 190

COpy 5/20 to 145

S&R "old" "new" ALL

S&R "in" "out" 5/20

RENUM

RENUM 1000

RENUM 500,100

L[ist]

L[ist] 5
L[ist] 30/200

P[rint]

P[rint] 45/68

C[at]

DIR

E[xit]

auto adds line(s) to current end of file.
auto adds line(s) at line 17 or next
available line. Type "//" to quit line add.

modifies line 4
modifies lines 7 thru 10

deletes line 16
deletes lines 5 thru 10
clears the program editor

replaces line 5
replaces lines 16 thru 20

copies line 62 to line 190
copies lines 5 thru 20 to 145

replaces "old" with "new" everywhere
replace "in" with "out" in lines 5 thru 20

renumbers, starting at 10, step of 10
renumbers, starting at 1000, step of 10
renumbers, starting at 500, step of 100

lists the entire program
lists line 5
lists lines 30 thru 200

prints entire file to the system printer
prints lines 45 thru 68

displays the group's directory
displays the group's directory

exits the editor

Commands
Unique to the
Macro Mode

Commands
Unique to the
Layout Mode

Switching
Modes While
in the Editor

The editor commands /14-3

These commands operate only in the editor's macro mode:

K[eep] macro name
S[ave] macroname

saves the specified macro in
the group directory

X{execute} executes the macro file currently loaded in
the editor, whether it is saved or not,
whether it is named or not

These commands operate only in the report layout mode:

K[eep]

S[ave]

saves the layout file. User specified
names are disallowed. The temporary file
created is named QCREPRTx, where x is
the current report page.

LAYOUT B loads the current layout file for page B.
If the file does not exist, a default layout
file is built based on the named items on
Page B.

NEWLAYOUT M clears the current layout file for Page M,
if one exists, and builds a default layout
file based on the named items on Page M.

Texting in a macro file automatically converts the editor to the macro mode.
Similarly, "layouting" a layout file converts the editor to the layout mode.

The editor can also be converted to the macro mode in "midstream", without
texting in a macro file. Type: "D ALL" (delete and clear the editor file). The
macro mode is the default mode for an "empty" editor. Should you wish to
convert the editor to layout mode from macro mode, type "D ALL", fol-
lowed by either "LAYOUT x" or "NEWLA YOUT x".

The principal difference between the two modes is that macro mode files are
saved in QueryCalc's directory. In contrast, layout mode files are attached

14-4/ QueryCalc IS Editor

Modifying a
Line in the

Editor

to the spreadsheet pages themselves and never appear as independent files,
although they are given temporary names (QCREPRTx) while the spread-
sheet is loaded. Otherwise, layout and macro files are fundamentally the
same.

The only editor command which is not self-explanatory is M[odify]. The
modify command operates indentically to QueryCalc's cell editor (see Chap.
4, "Spreadsheet Operations") or MPE's :REDO line editor. An example of
the modify command's use is shown on the opposite page for Line 100.

When a line has been selected with the modify command, the line will be
written onto the terminal's screen and the cursor will be placed at the begin-
ning of the line. Use the SPACE bar (not the arrowed keys) to space un-
derneath the first character of the section of text you wish to modify.

The first letter you type at this point will determine the type of modification
to be performed. "I" will cause any text following the "I" to be inserted at
the position of the "I". "R" will replace a section of the text, character-for-
character with any text you type following the "R". A string of "D"'s will
delete text from the line, one character for each "0", for the length of the
"D"'s. A string of "D'''s followed by an "I" will delete the marked text and
then insert any text following the "I". "A" will append any text following
the "A" to the end of the line. If the first letter you type is not one of these
specific characters, the modify editor routine will simply replace the text,
character-for-character, beginning at the present cursor location.

Only one modification can be made per spacing "pass". Press RETURN to
cause your current modification to be inserted into the line. If other modifi-
cations are to be made to this line, repeat the procedure by spacing over to
the next text segment to be modified.

Should the text line be longer than 72 characters and it "wraps" on the ter-
minal screen, continue spacing until you also wrap and space underneath
the text of interest.

To signal the editor that you find your modifications acceptable, press the
RETURN key. This will cause the modified line to be written back into the
edit file and return you to the ''>" prompt.

To cancel a modification attempt without effect, type "//", followed by RE-
TURN. This aborts the modify command, leaves the editor's text line un-
modified, and returns you to the ">" prompt.

Modifying a line / 14-5

PHILMAC
10
20
30

40
50
60
70
80
90

100

110

120
130
140
150
160
170
180
190

>m 100
100

100

/clr all
@opendb qcdemo/FRONT
zal:@using employees, store in a socsecnum when numde&
ductions ib 4,5!
/j ab5
listfile #l=!a
on end of list #1 exit
loop:

read list file #1
*: '%listiteml
*+lc:@using employees, val of Iname when socsecnum=&
[$*-lcl!
*+lc:@using payrecord, sum of gross when socsecnum &
is [$*-2cl!
%col=2
%row=%row+1
if %row>20 then do

%row=5
%pag=%pag+l

doend
goto loop

exit:

*+lc:@using employees, val of Iname when socsecnum=&
[$*-lcl!

dddddilast-name
*+lc:@using employees, val of last-name when socsec&
num= [$*-lcl !

>1 70/120
70 loop:
80 read listfile #1
90 *: '%listitem1

100 *+lc:@using employees, val of last-name when socsec&
num= [$*-lcl !

110 *+lc:@using payrecord, sum of gross when socsecnum &
is [$*-2cl!

120 %col=2

An example of the modification of Line 100.

14-6/QueryCalc's Editor

Using Line
Numbers

Using the
Terminal's
Local Edit
Functions

QueryCalc's internal editor not only operates using a command structure,
but also simultaneously operates as a line-number-oriented editor. A line
of text, when preceeded by a line number, commands the editor to operate
on that line of text. Examples of such entries are:

143 %row=%row+5
250 "---line separator---",c
17

Line-numbered text may be typed into the file in any order. The line num-
ber will cause the text to be properly ordered. Typing a nonexistent line
number will cause the entered text to be inserted between the appropriate
line numbers. Typing a line number which already exists will replace the
old line with the newly entered text. Typing simply a line number (as in the
third example above) will cause the line with that number to be deleted,
should it exist.

Line-number-oriented editors allow the use of the screen editing features
which are common to all HP terminals (as well as all third-party workalike
terminals and PC-based terminal emulation packages). When the editor
screen is brought up in QueryCalc, the function keys are automatically set
to the local screen editing commands of the terminal. To use these local
editing features, press the [fl] function key ("LINE MODIFY"). You will
see an asterisk appear in function key block on the screen. Use the ar-
rowed keys to move the terminal's cursor to the line to be modified. Make
any modifications to any line on the screen you wish. When you are fin-
ished, press RETURN. This action transmits the current cursor's line to
the HP3000, exits the terminal's local edit mode, and returns you to Query-
Calc's editing prompt (a ">").

Ifthe transmitted line should end in an "&" continuation character, a"»"
prompt will appear. This second prompt requests more text. You may ei-
ther: (1) complete the line manually by typing in the remaining text, (2)
move the cursor to the remaining line segment visible on the screen and
press the ENTER key, or (3) you may press [fl], move the cursor to the
remaining line segment, modify the segment, and then press RETURN to
transmit it.

Concepts
Introduced in

Chapter 14

Concepts introduced / 14-7

LAYOUT MODE

MACRO MODE

COMMAND MODE

LINE NUMBER MODE

the editor mode which has
been optimized to edit detail
list report layout files.

the editor mode which has
been optimized to edit
macroprograms.

editing a file through the use
ofEDIT/3000-like commands.

using line-numbered text to
insert, replace and delete lines
from the edit file.

15

Reading
Bulk Data

into the
Spreadsheet

Reading in data from files, programs, & databases

External File Reads

Three numeric functions, which may appear in any cell, allow you to read
external data into a QueryCalc spreadsheet. They are:

READ reads data from a specified flat
ASCII file into the spreadsheet.

CALL executes an external, user-defined
routine and imports its data into the
spreadsheet.

REPORT reads data created on a IREPORT
page onto the spreadsheet

All three functions are similarly constructed. The READ function is the
model for the other two. READ reads data onto the spreadsheet from a user-
specified external ASCII (flat) file. Two formats are available: comma-
delimited format (CDF), used for both text and numbers, and restricted text
(RTX) for text-only files.

The CALL function calls an external, user-defined program or subroutine
(SL-resident). The user-defined routine is expected to write data into a pre-
defined ASCII flat file, QCOUTPUT, which is then read into the spread-
sheet in the same manner as READ.

The REPORT function reads data from the intermediate flat file that is creat-
ed during the execution of a IREPORT page (see pages 13-4, 13-5). The
data values to be read onto the spreadsheet are those associated with the
names you have provided in Column B of the IREPORT page. All or some
of these named data values may be used in the REPORT function, and they
may be specified in any order.

15-21 External File Reads

The READ
Function The form of the READ function is:

te cr v v
REAO(textfi lename,cell range,d irection ,format)

where
te = text in quotes or a text equation
cr = a specified cell range
v = a simple value, not an equation

Example 1:
read ("myfile" ,bb2:dm50, c,cdf)

In Example 1, data from a file named MYFILE will be read into the range of
cells B2 to M50 on pages B to D, in column-wise order (C). The data in
MYFILE is expected to be comma-delimited format (CDF). An example of
this common data exchange format is:

"expenses",12367.56,45.67
"income",10456.15,123.98
"misc.",568.34,O

Items that are to be read as text are surrounded by quotes. Items that are to
be read as numbers are absent of the quotes. Note that commas cannot be
used in numeric entries; commas take on the role of entry delimiters.

After the READ function has executed, the spreadsheet will look like this:

a b c d
1 9.00
2 expenses 12,367.56 45.67
3 income 10,456.15 123.98
4 mlSC. 568.34 0.00

In this instance, the file's data records are read into the spreadsheet column-
wise. Each record's subentry, as defined by a separating comma, is entered
row-wise, one cell to the right. If the specified direction of entry were in-
stead row-wise, these subsequent entries would be entered into the spread-

The READ function / 15-3

sheet down the columns. Text is left-justified by default. Numbers are
right-justified. The format for the numeric entries is that which is currently
defined by the global format setting.

If the READ function were placed in cell AI, as shown, the value returned is
the number of cells for which data was entered. If the specified area was
too small to receive all of the data in MYFILE, an error will appear in cell
Al stating that fact, saying that some data was lost.

Example 2:

read(c13+".pub.aics",ffic5:rc50,c,rtx)

In this second example, the file name will be taken off of the spreadsheet.
The group and account information is concatenated to file name. The con-
catenation of text is a normal function of a text equation. Referencing a cell
on the spreadsheet for the file name allows the file to be accessed to be dy-
namically changed, either by an operator or by a macro program, or possi-
bly even by another READ function.

The data in this second example will also be read in columnar order. But
this time, the data is expected to be solely text. Thus the format specified is
restricted text (RTX). The restriction placed on such text is that only printa-
ble ASCII characters will be read into the spreadsheet. Any ASCII control
characters (OlD - 3110, 12710) which might reside in the file's data will be
stripped from the incoming text stream.

In the restricted text format, all printable characters will be entered. Text
does not need to be surrounded by quotes. Indeed, quotes and commas are
treated just as all other text characters are.

Because the data in the file is text-only, each record (line of data) will take
up no more than one cell (although the text's length may be longer than the
cell's width and therefore appear to be written across multiple cell widths on
the spreadsheet). Thus, the cell range specified in this second example has
the data being written only in Column C, rows 5 to 50, on pages M to R.

The READ, CALL, and REPORT functions are constructed as standard nu-
meric functions. They recalculate on the issuance of a single" !".

15-41 External File Reads

The CALL
Function The form of the CALL function is:

te te cr v v
CALL(routinename,controltext,cellrange,direction,format)

where
te = text in quotes or a text equation
cr = a specified cell range
v = a simple value, not an equation

Examples:

call ("myprog" , "control text", ac5 :mg50, c, cdf)
call(bg13,bg14+bg15,ac5:mg50,c,cdf)

The CALL function executes either an external program or an SL-resident
subroutine (XL's are not currently supported) and then reads the user-
processed data back into the spreadsheet. The most reliable way to pass in-
formation between programs on the HP3000 is in files. Two file names are
reserved for use by the CALL function: QCINPUT and QCOUTPUT.

The execution sequence is as follows:

Step 1. The CALL function creates the file QCINPUT as a temporary flat
ASCII file, 255 bytes wide. The control text in the CALL function is then
written into QCINPUT (see diagram, opposite page).

Step 2. The file directory on the HP3000 is then searched for an executable
file named MYPROG. If found, MYPROG is activated (run). If not, the
group's segmented library (SL) is searched. If MYPROG is not found
there, the pub and system SL's are searched. If found, QueryCalc is sus-
pended and MYPROG is activated. If MYPROG cannot be found, the
CALL function fails with an announced error.

Step 3. Once QueryCalc has suspended, the user routine MYPROG per-
forms whatever function it has been programmed to do. MYPROG is ex-
pected to write its results in the file QCOUTPUT. The user is responsible
for the proper creation of QCOUTPUT as a flat ASCII file. If multiple us-

The CALL Function /15-5

the spreadsheet

CALL()

eQCINPUT, TEMP

I "control text"

a 255 byte-wide, single record file

QCOUTPUT, TEMP

programmatically-
generated data
fileo

The program sequence for the CALL function.

ers are likely to be in the same group at the same time using the CALL func-
tion, the file QCOUTPUT must be created as a temporary file so that it will
be identified with only the calling user's current file domain.

It is generally necessary to pass information to a user routine. Although the
controlling text must be written all in one record, the use of delimiters such
as comma (", ") or back-slash (" \ ") allow you the capacity to provide multi-
ple input parameters. MYPROG will have to be, of course, programmed to
parse this inputted text into its separate components. You may occasionally
find the normal QueryCalc cell equation limitation of 187 characters to be
too small. If so, reference two or more cells as shown in the second exam-
ple. Up to 255 characters may be transfered in this manner.

Step 4. At the termination of MYPROG, control returns to QueryCalc. The
newly-created file QCOUTPUT is then read into the spreadsheet within the
cell range specified. The reading of QCOUTPUT from this point on is
identical to the READ function (see pages 15-2, 15-3).

MYPROG does not necessarily need to be a small program. It may perform
elaborate power spectra statistical analyses or be a gateway into an IBM
mainframe, downloading current information into the HP3000's databases.

15-6/ External File Reads

The REPORT
Function The form of the REPORT function is:

v te cr ov
REPORT(reportpage,detailitemlist,cellrange,numcolumns)

where
te = text in quotes or a text equation
cr = a specified cell range
v = a simple value, not an equation

ov = an optional value

Example:

report (A, "ssn,name,gross",mb2:te30,l)

The REPORT function reads data from the intermediate flat file created by a
IREPORT page into a specified cell range on the spreadsheet. In the exam-
ple shown, the IREPORT page is to be found on Page A. Among the data
values that have been defined on the IREPORT page are name, ssn, and
gross. When Page A was recalculated, these values-among possibly
many others-were written into Page A's intermediate flat file, QCRPLST A
(see pages 13-4, 13-5). The values on this flat file are the values that will
be read back onto the spreadsheet.

A equation (a) I_name (b)__ I_sort (c)_I_width_
1 find when zip<>O, _
2
3
41
51

(Aa2)
(Aa3)
(Aa4)

la
10
15
15

ssn
name
gross

Equations for Page A

(Aal): @Using qcdemo.employees, find when zip<>O
(Aa2): @rereading, val of socsecnum
(Aa3): @rereading, val of lname
(Aa4): @Using qcdemo.payrecord, sum of gross when

socsecnum is [$a2l

The equations for the Page A/REPORT

The REPORT Function / 15-7

a b c d e
1
2 ssn name gross
3 --
4 450134894 ALCALA 4,864.89
5 573277699 AMBRIZ 231.21
6 552458722 ANDRADE 1,716.75
7 526474725 ARRATIA 730.00
8 585079720 AVALOS 17,025.87
9 525066916 BALDERRAMA 915.00
10 585295348 BANEGAS 309.68
11 585662308 BARRAGAN 5,299.51
12 466986450 BARRAZA 512.00
13 051605462 BAST 294.00
14 096625991 BEASLEY 773.50
15 466087356 BELTRAN 769.04
16 527320816 BIGGINS 83,950.00
17 585884806 BIGGINS 25,135.49
18 585801899 BLACK 19,830.43
19 525068122 BLACK 380.00
20 361322407 BLASING 876.16
21 525963550 BROWN 42,700.00
22 450398360 BURCIAGA 2,841.00
23 457984236 BURCIAGA 4,000.50
24 465342237 BURCIAGA 3,916.00
25 526511186 CABRALES 1,536.00
26 585274817 CALDERON 1,401.75
27 449805738 CALDERON, JR. 2,432.50
28 585302203 CARPENTER 4,712.85
29 585078222 CARSON 42,700.00
30 585380764 CARSON 2,450.00

The resulting list on Page M

When the data is read from the QCRPLSTA flat file, it is read into the cell
range specified. In this instance, the data is read into the cell range B2 to
D30, on pages M to T.

The first two header rows are automatically synthesized by the REPORT
function. The selected data value names which appear in Column B of the
IREPORT are used as column headings. Text item names are left justified;
numeric item names are rightjustified. The widths of the columns are based
on the width values specified in Column D of the IREPORT page. If no
width values are specified, default column width values of 36 characters are
used for text items, 12 characters for numeric items. A second row of head-
er is filled with repeated hyphens in each affected column.

Once the two header rows have been built, data is read in the remaining cell

15-8/ External File Reads

range. When page MIs range fills with data, the process continues on to the
next page.

An optional parameter in the REPORT function is the number of major
coumns the data is to be written in. If the parameter is left unspecified, one
major column is assumed. This is the manner in which the example shown
was executed. If more than one major column is desired, the REPORT
function will first write the list of data down the lefthand edge of the cell
range, as shown, and then step over an equal number of columns to the
right, skipping a "gutter" column. The width of the gutter column will al-
ways be set to 6 characters. The widths of the new columns past the gutter
column will be set identically to the first set. This columnar process can be
repeated as many times as will fit in the 26 columns of a QueryCalc spread-
sheet page, but note that the cell range specified specifed as a parameter in
the REPORT function must account for a gutter column for each major col-
umn (even for the rightmost column).

Although in this particular example data is read directly from the database
without modification (that is, the concatenation of text, downshifting text,
or numeric items multiplied together), such calculations are easily per-
formed on the IREPORT page, and indeed is one of the strong points of the
manner in which the IREPORT page is constructed.

When data is read from the intermediate flat file, numeric items retain the
format structure that they were given on the IREPORT page. If this format
is undesirable, or the automatically synthesized headers are unwanted, they
may be changed or erased using standard QueryCalc commands. It is ex-
pected that data read into the spreadsheet from a IREPORT page will be fur-
ther manipulated by hand.

One obvious use for REPORT -created listings is as a check reconciliation
register, where all checks written in the previous month are listed on the
spreadsheet, in sorted order. Cells to the right of checknumber, amount,
and payee could be used to manually identify which checks had been cashed
and which are still outstanding, carrying the actual and anticipated bank bal-
ances forward. Another such use might be pro forma ("what if... ") projec-
tions of future project expenses based on expenses-to-date. A number of
uses for half-manuallylhalf-automatically maintained data can be imagined.

User Exercises /15-9

USER EXERCISES

The REPORT
Function

First Create 4.
a IREPORT

Page

Name the 7.
Dataitems

1. Sign onto the practice account by typing HELLO USER.AICS at
the colon prompt. Supply any necessary passwords. Passwords, if
they are present, were put there by your system manager and he or
she will know them if you do not.

2. Type QC to run QueryCa1c. If this does not work, type RUN

QC.QCPROGS. Press RETURN to bypass the instructions
screen. You are now in QueryCa1c proper.

3. Type @opendb qcdemo. Type FRONT (in all caps) in response
to the password question. IMAGE databases are the only place in
the HP3000 where passwords are case sensitive. You now have the
database open.

Now that you are on Page A, type IREPORT to convert the stan-
dard spreadsheet page into a detail list report page.

5. In cell AI, type @using employees, find when zip-o-nl to select
all of the employees who have a permanent address.

6. Move to cell A2 by pressing the [f6] function key. Type
@rereading, val 01 socsecnum!. Press [16] again to move to
cell A3. Type @rereading, val 01 Iname!. Press [16] one final
time to move cell A4. Type @using payrecord, sum 01 gross

when socsecnum is [$a2]!. The first two @REREADING cells ex-
tract information from the EMPLOYEES dataset, the same set as the
initial @FIND. The third cell sums all of the records for the person in
question from the dataset PAYRECORD, using the person's social
security number as the "linking" item.

Move the cursor to cell B2. Type 'ssn as a dataitem label. Move to
cell B3 and type 'name. Move to cell B4 and type 'gross. These
labeled cells indicate which of the retrieved values are to be written
into the report. In this case, because all three cells are labeled, all of
the retrieved information will be written into the report.

8. Move to cell C3 and type '1A. This entry specifies the sort order.
For this report, the retrieved entries will be sorted by last name.

15-10/ External File Reads

USER EXERCISES

The REPORT
Function

Examine the
Results

Comparing
the REPORT

& PRINT
Functions

9. Move the cursor to cell D2 and type 10. Move the cursor to D3 and
type 15. Move the cursor to D4 and type 15 again. These numeric
values set in the desired column widths for the labeled dataitems.

10. Now jump to Page B by either pressing the [14] key or typing IJ B.
In cell AI, type REPORT(A,"ssn,name,gross" ,mb2:pr30,3).
Four hyphens ("----") will appear in the cell indicating the cell func-
tion has not yet been calculated.

11. Type !! to recalculate the entire report. Doing this will first cause
the report specified in Page A to be calculated, sorted and written
into a temporary flat file. Once Page A has recalculated, the
REPORT function in Page B will read the data written in IREPORT
Page A's temporary file. This data will then be placed it into the
specified locations on the spreadsheet.

12. Jump to Page M by typing IJ M to examine the results. Notice that
the column headers are the names we assigned in Column B of the
IREPORT page. Notice also that the column widths are the widths
assigned in Column D. We specified that three columns be written
into the spreadsheet. If you move the cursor to the right you will
see that three columns have been written. Now jump to Page N.
You'll find that the data that could not fit in the rectangle specified in
the REPORTfunction (B2:R30) is automatically continued into the
next page.

13. To emphasize the difference-and the similarities-between the
REPORT function and a standard report print, type IPRINT A L.
The same data will now be "printed" onto your terminal's screen, as
defined by an automatically generated default layout. The difference
between the two functions is simple: IPRINT prints the report to pa-
per. REPORTreads the same data back into the spreadsheet. The
format of the printed data can be changed by typing ILAYOUT and
modifying the format file (Please see Chapter 13). If the "L" in the
command above were changed to an "S", the list report would be
printed to your system printer.

Concepts
Introduced in

Chapter 15

Introduced concepts / 15-11

BULK DATA READ

COMMA-DELIMITED

RESTRICTED TEXT

ENTRY DIRECTION

A process where data is read
into the spreadsheet from an
external file or database.
Three numeric functions,
READ, CALL, & REPORT are
defined for separate data
sources. The process is often
called "downloading".

A data exchange format where
commas separate subentries
within a data record. Text
entries are surrounded by
quotes. Numeric entries are
absent of quotes.

A second data exchange for-
mat for text-only entries.
ASCII control characters are
stripped out of the incoming
text before being entered into
spreadsheet cells.

The direction of data entry for
the imported bulk data. The
choices are either row-wise
(R) or column-wise (C).

