
Cognos(R)

Application Development Tools
PowerHouse(R) 4GL

VERSION 8.4E

PDL AND UTILITIES REFERENCE

PDL and Utilities Reference

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

PDL AND UTILITIES REFERENCE

Product Information

This document applies to PowerHouse(R) 4GL Version 8.4E and may also apply to subsequent releases. To check for newer versions of this
document, visit the Cognos support Web site (http://support.cognos.com).

Copyright
Copyright © 2007, Cognos Incorporated. All Rights Reserved

Printed in Canada.

This software/documentation contains proprietary information of Cognos Incorporated. All rights are reserved. Reverse engineering of this
software is prohibited. No part of this software/documentation may be copied, photocopied, reproduced, stored in a retrieval system,
transmitted in any form or by any means, or translated into another language without the prior written consent of Cognos Incorporated.

Cognos, the Cognos logo, Axiant, PowerHouse, QUICK, and QUIZ are registered trademarks of Cognos Incorporated.

QDESIGN, QTP, PDL, QUTIL, and QSHOW are trademarks of Cognos Incorporated.

OpenVMS is a trademark or registered trademark of HP and/or its subsidiaries.

UNIX is a registered trademark of The Open Group.

Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corporation.

FLEXlm is a trademark of Macrovision Corporation.

All other names mentioned herein are trademarks or registered trademarks of their respective companies.

All Internet URLs included in this publication were current at time of printing.

While every attempt has been made to ensure that the information in this document is accurate and complete, some typographical or
technical errors may exist. Cognos does not accept responsibility for any kind of loss resulting from the use of the information contained in
this document.

This page shows the publication date. The information contained in this document is subject to change without notice. Any improvements or
changes to either the product or the publication will be documented in subsequent editions.

U.S. Government Restricted Rights. The software and accompanying materials are provided with Restricted Rights. Use, duplication, or
disclosure by the Government is subject to the restrictions in subparagraph (C)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, or subparagraphs (C) (1) and (2) of the Commercial Computer Software - Restricted Rights at
48CFR52.227-19, as applicable. The Contractor is Cognos Corporation, 15 Wayside Road, Burlington, MA 01803.

Information about Cognos Products and Accessibility can be found at www.Cognos.com.

http://support.cognos.com

PDL and Utilities Reference 3

About this Book 7

Overview 7
Conventions in this Book 7
Getting Help 8
Cognos PowerHouse 4GL Documentation Set 8
Cognos PowerHouse Web Documentation Set 9
Cognos Axiant 4GL Documentation Set 10

Chapter 1: Introducing the PowerHouse Dictionary 13
About PowerHouse 13
PowerHouse Dictionary and Entities 15
PDL 16
PowerHouse Dictionary on OpenVMS 18

Chapter 2: PDL Statements 21
Summary of PDL Statements 21
APPLICATION SECURITY CLASS 23
BEGIN STRUCTURE 28
CANCEL 29
CREATE DICTIONARY 31
DATABASE 33
DESCRIPTION 39
DICTIONARY SECURITY CLASS (OpenVMS) 40
ELEMENT 43
END STRUCTURE 56
EXECUTION TIME PARAMETERS (OpenVMS) 57
EXIT 59
FILE 60
INDEX 69

Discussion 70
ITEM 74
LOAD 78
PERMIT 79
QUIT 85
RECORD 86
REVISE 92
SAVE 94
SEGMENT 95
SET 97
SHOW DICTIONARY 99
SYSTEM OPTIONS 100
TRANSACTION 113
USAGE 118
USE 121
USER MODE (OpenVMS) 122

Chapter 3: Standard Elements and Usages 125

Chapter 4: QSHOW Statements 131
Summary of QSHOW Statements 131
EXIT 132

Table of Contents

4 PowerHouse(R) 4GL Version 8.4E

GENERATE 133
QUIT 137
REVISE 138
SAVE 140
SET 141
SHOW 149
USE 156

Chapter 5: QUTIL Statements 157
Summary of QUTIL Statements 157
CREATE (MPE/iX, UNIX, Windows) 158
CREATE (OpenVMS) 162
DELETE (MPE/iX) 164
DELETE (OpenVMS, UNIX, Windows) 165
EXIT 166
QSHOW 167
QUIT 168
REVISE 169
SAVE 171
SET 172
USE 174

Chapter 6: ITOP Utility 175
Converting to PDL 175
Issues for Consideration 176

IMAGE Security 176
Duplicate Names 176
Date Elements 176

Refine Your Dictionary Design 177

Chapter 7: ETOP Utility 179
Converting to PDL 179
Issues for Consideration 180

Eloquence Security 180
Duplicate Names 181
Date Elements 181

Refine Your Dictionary Design 181
The ETOP Environment 181

Chapter 8: QCOBLIB Utility 183
Generating COBOL Definitions 183

Resolving Incompatibilities 184

Chapter 9: PH Integrator Utility 185
What is PowerHouse Integrator? 185

What Does PowerHouse Integrator Translate? 185
Security 186
Valid Entity Types 188

Translating PowerHouse Dictionary to CDD/Repository 189
Element, Record, and Index Definitions 189
Missing and Default Information 189
Translating Elements and Items 190
Item Attributes 191
Resolving Conflict Syntax 191
Translating the SELECT Option 191
Translating Record-structures 192
Translating BEGIN...END Structures 192
Translating PowerHouse Dictionary Redefinitions 192
Translating Files 193
Translating Indexes 193

PDL and Utilities Reference 5

Output 194
Translating CDD/Repository to PDL 194

Field, RMS Record, and Index Definitions 194
Missing and Default Information 194
Translating Fields 195
Translating Record-structures 198
Translating RMS Databases 202

Running PowerHouse Integrator 205
Designated Files in PowerHouse Integrator 205
PowerHouse and CDD/Repository Datatypes 205
PowerHouse Integrator Program Parameters 206
Summary of PowerHouse Integrator Statements 206
EXIT 208
GENERATE 209
GO 211
QSHOW 212
REVISE 213
SAVE 215
SOURCE 216
TRANSLATE 218
USE 221

Index 223

6 PowerHouse(R) 4GL Version 8.4E

PDL and Utilities Reference 7

About this Book

Overview
This book is intended for Cognos PowerHouse users who use PDL to create PowerHouse
dictionaries. It also provides detailed information about dictionary-related utilities.

Chapter 1, "Introducing the PowerHouse Dictionary", introduces PDL and the other
PowerHouse components and utilities.

Chapter 2, "PDL Statements", provides concise summaries and detailed information about PDL
statements. Syntax summaries, detailed syntax discussions, and examples are provided for each
PDL statement, where applicable.

Chapter 3, "Standard Elements and Usages", is a summary of the attributes of standard usages
provided when you create a dictionary with the PRELOADED option.

Chapter 4, "QSHOW Statements", provides concise summaries and detailed information about
QSHOW statements. Syntax summaries, detailed syntax discussions, and examples are provided
for each QSHOW statement, where applicable.

Chapter 5, "QUTIL Statements", provides concise summaries and detailed information about
QUTIL statements. Syntax summaries, detailed syntax discussions, and examples are provided for
each QUTIL statement, where applicable.

Chapter 6, "ITOP Utility", explains how to use the IMAGE to PDL conversion utility to generate
PDL statements directly from an existing IMAGE database.

Chapter 7, "ETOP Utility", explains how to use the Eloquence to PDL conversion utility to
generate PDL statements directly from an existing Eloquence database.

Chapter 8, "QCOBLIB Utility", documents how to use the QCOBLIB utility to generate COBOL
definitions from a PDL dictionary.

Chapter 9, "PH Integrator Utility", describes how to use the PowerHouse Integrator utility to
assist in the translation of the CDD/Repository and PowerHouse dictionary.

Conventions in this Book
This book is for use with MPE/iX, OpenVMS, UNIX, and Windows operating systems. Any
differences in procedures, commands, or examples are clearly labeled.

In this book, words shown in uppercase type are keywords (for example, SAVE). Words shown in
lowercase type are general terms that describe what you should enter (for example, filespec).
When you enter code, however, you may use uppercase, lowercase, or mixed case type.

The term PDL can refer to the PowerHouse component, the PowerHouse Definition Language,
and the PDL and PHDPDL executables used to compile PowerHouse source statements.
Whenever it is necessary to differentiate between the compilers, the terms PDL and PHDPDL are
used.

8 PowerHouse(R) 4GL Version 8.4E

About this Book

Getting Help
For more information about using this product or for technical assistance, visit the Cognos Global
Customer Services Web site (http://support.cognos.com). This site provides product information,
services, user forums, and a knowledge base of documentation and multimedia materials. To
create a case, contact a support person, or provide feedback, click the Contact Us link at the
bottom of the page. To create a Web account, click the Web Login & Contacts link. For
information about education and training, click the Training link.

Cognos PowerHouse 4GL Documentation Set
PowerHouse 4GL documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Objective Document

Install
PowerHouse 4GL

Cognos PowerHouse 4GL & PowerHouse Web
Getting Started book. This document provides
step-by-step instructions on installing and
licensing PowerHouse 4GL.

Available in the release package or from the
following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web
Release and Install Notes. This document provides
information on supported environments, changes,
and new features for the current version.

Available in the release package or from the
following website:

http://support.cognos.com

Get an
introduction to
PowerHouse 4GL

Cognos PowerHouse 4GL Primer. This document
provides an overview of the PowerHouse language
and a hands-on demonstration of how to use
PowerHouse.

Available from the PowerHouse 4GL
documentation CD or from the following website:

http://powerhouse.cognos.com

About this Book

PDL and Utilities Reference 9

Cognos PowerHouse Web Documentation Set

PowerHouse Web documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Get detailed
reference
information for
PowerHouse 4GL

Cognos PowerHouse 4GL Reference documents.
They provide detailed information about
PowerHouse rules and each PowerHouse
component.

The documents are
• Cognos PowerHouse 4GL PowerHouse Rules
• Cognos PowerHouse 4GL PDL and Utilities

Reference
• Cognos PowerHouse 4GL PHD Reference
• Cognos PowerHouse 4GL PowerHouse and

Relational Databases
• Cognos PowerHouse 4GL QDESIGN

Reference
• Cognos PowerHouse 4GL QUIZ Reference
• Cognos PowerHouse 4GL QTP Reference

Available from the PowerHouse 4GL
documentation CD or from the following
websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Objective Document

Objective Document

Start using
PowerHouse Web

Cognos PowerHouse Web Planning and
Configuration book. This document introduces
PowerHouse Web, provides planning information
and explains how to configure the PowerHouse
Web components.

Important: This document should be the starting
point for all PowerHouse Web users.

Also available from the PowerHouse Web
Administrator CD or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Install
PowerHouse Web

Cognos PowerHouse 4GL & PowerHouse Web
Getting Started book. This document provides
step-by-step instructions on installing and
licensing PowerHouse Web.

Available in the release package or from the
following website:

http://support.cognos.com

10 PowerHouse(R) 4GL Version 8.4E

About this Book

Cognos Axiant 4GL Documentation Set
Axiant 4GL documentation includes planning and configuration advice, detailed information
about statements and procedures, installation instructions, and last minute product information.

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web
Release and Install Notes. This document provides
information on supported environments, changes,
and new features for the current version.

Available in the release package or from the
following website:

http://support.cognos.com

Get detailed
information for
developing
PowerHouse Web
applications

Cognos PowerHouse Web Developer’s Guide.
This document provides detailed reference
material for application developers.

Available from the Administrator CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Administer
PowerHouse Web

The PowerHouse Web Administrator Online Help.
This online resource provides detailed reference
material to help you during PowerHouse Web
configuration.

Available from within the PowerHouse Web
Administrator.

Objective Document

Objective Document

Install Axiant 4GL Cognos Axiant 4GL Web Getting Started book.
This document provides step-by-step instructions
on installing and licensing Axiant 4GL.

Available in the release package or from the
following website:

http://support.cognos.com

Review changes
and new features

Cognos Axiant 4GL Release and Install Notes.
This document provides information on supported
environments, changes, and new features for the
current version.

Available in the release package or from the
following website:

http://support.cognos.com

About this Book

PDL and Utilities Reference 11

 For More Information
For information on the supported environments for your specific platform, as well as last-minute
product information or corrections to the documentation, see the Release and Install Notes.

Get an
introduction to
Axiant 4GL

A Guided Tour of Axiant 4GL. This document
contains hands-on tutorials that introduce the
Axiant 4GL migration process and screen
customization.

Available from the Axiant 4GL CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Get detailed
reference
information on
Axiant 4GL

Axiant 4GL Online Help. This online resource is a
detailed reference guide to Axiant 4GL.

Available from within Axiant 4GL or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Objective Document

12 PowerHouse(R) 4GL Version 8.4E

About this Book

PDL and Utilities Reference 13

Chapter 1: Introducing the PowerHouse
Dictionary

Overview
This chapter introduces PDL and its utilities. It also provides overview information about other
PowerHouse components and utilities, and about how a dictionary stores information.

About PowerHouse
PowerHouse 4GL is an application development environment that allows you to create business
applications quickly and easily.

Components
PowerHouse 4GL is divided into the following separate, yet integrated components:

PowerHouse Dictionary

The PowerHouse dictionary is the foundation of PowerHouse applications. As the backbone of all
PowerHouse systems, the PowerHouse dictionary stores definitions of the data used by your
PowerHouse applications.

There are two dictionary types—PDC and PHD. PDC dictionaries exist as a single file and have a
.pdc extension (OpenVMS, UNIX, Windows) or file code 655 (MPE/iX). PHD dictionaries exist
as five indexed files and have a .phd extension. PHD dictionaries are OpenVMS-specific.

For more information about the PHD dictionary, see the PHD Reference and PowerHouse Rules
books, and the section, "PowerHouse Dictionary on OpenVMS" on (p. 18).

PDL

The PowerHouse Definition Language (PDL) allows you to create and maintain a PowerHouse
dictionary.

PDL source code can be compiled in either the PDL or PHDPDL (OpenVMS) compiler.

PDL Compiler
PDL compiler is the component that compiles PDL source statements to a PowerHouse dictionary.
Dictionaries generated with the PDL compiler have a .pdc extension (OpenVMS, UNIX,
Windows) or file code 655 (MPE/iX).

PHDPDL Compiler (OpenVMS)
PHDPDL is an OpenVMS-specific component that compiles PDL source statements to a
PowerHouse dictionary. Dictionaries generated with PHDPDL have a .phd extension.

For more detailed information on PHDPDL, see the section, "PowerHouse Dictionary on
OpenVMS", on (p. 18).

PHD Screen System (OpenVMS)

PHD is a screen interface to PHD dictionaries. You can initiate PHD with the POWERHOUSE or
POW command.

14 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing the PowerHouse Dictionary

For more information about running PHD, see Chapter 1, "Running PowerHouse", in the
PowerHouse Rules book.

QDESIGN and QUICK

QUICK is an interactive screen processor with a powerful development tool: QDESIGN. As a
screen designer, you use QDESIGN to build data entry and retrieval screen systems. QUICK
screens are used by data-entry operators and other end-users to process data quickly or to browse
effortlessly through their files.

QUICK includes an interactive debugger that lets you analyze and control QUICK screens as they
run.

QUIZ

QUIZ is the PowerHouse report writer. It takes the information you request and gives it a
structure. Your information is automatically displayed in columns with headings. The key to the
simplicity of QUIZ lies in its relationship with the data dictionary. QUIZ references the rules and
standards defined in the data dictionary by the application designer when it formats your report.

QTP

QTP is a high-volume transaction processor. It gives you the power to change the data in your files
in one sweep. Because QTP is easy to use and designed for fast, high-volume file updating, it
should be used by someone who is familiar with the implications of updating active files.

QTP includes a trace facility that lets you debug QTP requests.

Utilities
PowerHouse also contains the following data dictionary utilities:

QSHOW

QSHOW is the data dictionary reporting program. It allows you to view and obtain
cross-reference information about the contents of your PowerHouse dictionaries. It also allows
you to generate PDL source for a PowerHouse dictionary.

QUTIL

QUTIL is a utility that creates and deletes non-relational files and databases.

ITOP (MPE/iX)

ITOP is a IMAGE to PDL conversion utility that generates PDL statements directly from an
existing IMAGE database.

QCOBLIB (MPE/iX)

QCOBLIB is a utility that generates COBOL definitions from a PDL dictionary.

PHDMAINTENANCE (OpenVMS)

PHDMAINTENANCE creates and manages PHD dictionaries. It is also referred to as
PHDMAINT.

PHDADMIN (OpenVMS)

PHDADMIN is a run-time utility for administering security classes in PHD dictionaries.

Chapter 1: Introducing the PowerHouse Dictionary

PDL and Utilities Reference 15

PowerHouse-Related Products

Axiant 4GL

Axiant 4GL is a visual Windows-based development environment for creating PowerHouse
applications. With Axiant 4GL, you can build applications that can be deployed in a variety of
thin-client, fat-client, mobile, stand-alone, and server-only architectures. Axiant 4GL gives
PowerHouse a Windows-like user interface.

PowerHouse Web

PowerHouse Dictionary and Entities

Dictionary
A PowerHouse dictionary contains information about the entities that PowerHouse applications
manipulate. PowerHouse components and utilities use the information in the dictionary to access
and manipulate data.

16 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing the PowerHouse Dictionary

Entities
The PowerHouse entities are as follows:

PDL
PDL, PowerHouse Definition Language, is an English-like language that allows you to enter
definitions for your data in straightforward statements. PDL statements are parsed by the PDL
compilers.

With the PDL or PHDPDL compiler, you can
• create a dictionary
• define entities for a new dictionary
• add entities to an existing dictionary
• compile a dictionary

Entity Description

Usage A usage is a template for defining elements. A single usage can serve as a template
for many element definitions.

Element An element describes the attributes of a class of data. Each element must have a
type (character, numeric, or date), a size, and a unique name. An element also has
a display format and other attributes.

File A file is a set of records. Each file in a dictionary has a unique name, which is not
necessarily the same as the operating system's name for the file. Each file has one
or more record-structures associated with it.

Record A record names a record-structure. A record-structure is an ordered collection of
items. Each record-structure has a unique name. Each record-structure is
associated with exactly one file.

Item An item is an entity in a record-structure that holds a value. Each item has the
same name as an element, and has that element's attributes.

Index An index helps locate data quickly and provides a way to link records in one file
with those in another.

Indexes can be either primary or alternate. When an indexed file is defined, one
index is the primary index and the others are the alternate indexes. By default, the
first index is the primary index but you can override the default and specify a
different primary index.

Indexes can be unique or repeating. In a unique index, every record will have a
unique set of values for the items that are segments. In a repeating index, two or
more records may have the same set of values for the items that are segments.

Segment In PowerHouse, an index is composed of one or more segments. A segment is an
item that is part of an index. The order of segments is significant.

An INDEX statement must be followed immediately by at least one SEGMENT
statement. The SEGMENT statements define the items that are included in the
index.

Database A database names and gives attributes to a relational database.

Transaction A transaction is a group of operations treated as a unit by a relational database.
All database activities take place within one or more transactions.

Chapter 1: Introducing the PowerHouse Dictionary

PDL and Utilities Reference 17

The Order of PDL Statements
PDL statements must be written in a specific order. The basic statements, in order, for defining a
dictionary are

CREATE DICTIONARY

USAGE

ELEMENT

FILE

RECORD

ITEM

INDEX

SEGMENT

DATABASE

TRANSACTION

LOAD

All statements between the CREATE DICTIONARY statement and the LOAD statement belong
to one dictionary.

USAGE statements must be defined before ELEMENT statements so that they can be used in
ELEMENT statements to set element attributes to predetermined values.

A dictionary contains one or more ELEMENT statements. ELEMENT statements must be entered
before any record-structure that references them.

A FILE statement can come after any ELEMENT statement.

Each FILE statement is followed by one or more RECORD statements. The RECORD statements
that follow a FILE statement define record-structures that belong to that FILE.

Each RECORD statement is followed by one or more ITEM statements. Every item must have the
same name as an ELEMENT that has already been defined. The order of the ITEM statements
defines the order in which the data will be stored in the records in the file. (BEGIN STRUCTURE
and END STRUCTURE statements may appear among the ITEM statements.)

The ITEM statements are followed by zero or more INDEX statements. The index applies to the
record-structure, and through the record-structure to the file.

Each INDEX statement is followed by one or more SEGMENT statements. The SEGMENT
statements define the items that are part of the index.

The DATABASE statement can be entered at any time.

The TRANSACTION statement must follow any DATABASE statement that it refers to. Each
TRANSACTION statement defines a transaction and its attributes.

You can use the REVISE, SAVE, SET, and USE statements anywhere in a PDL session without
affecting the order given above.

Using Existing Dictionaries
PDL and PHDPDL allow you to add new elements, files, and record-structures to an existing PDC
or PHD dictionary, respectively. PDL and PHDPDL do not allow you to modify or delete existing
entities in the dictionary. With PDL, you must be the dictionary creator to add new dictionary
entities to an existing dictionary. With PHDPDL, you must be the dictionary creator, or if
dictionary security is specified, you must be a dictionary manager to add new dictionary entities.

To access an existing dictionary, use the SET DICTIONARY statement in place of the CREATE
DICTIONARY statement. Then define the new entities as you would if you were defining a new
dictionary.

You can use existing element definitions in new ITEM statements. You can use existing usage
definitions in new ELEMENT statements.

18 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing the PowerHouse Dictionary

You can add new record-structures to an existing file by giving a FILE statement that refers to an
existing file, followed by the RECORD statement. You must give the file's name and organization
exactly as they appeared in the original definition.

PowerHouse Dictionary on OpenVMS
PowerHouse on OpenVMS includes additional components that let you create and manage a
PHD dictionary. These components are the PHD Screen System, the PHDPDL compiler,
PHDMAINT, and PHDADMIN. With these components, you can
• use PHDMAINT or PHDPDL to create a PHD dictionary
• use the PHDPDL compiler to compile the PHD dictionary using PDL syntax
• update the PHD dictionary interactively using the PHD Screen System and PHDADMIN

Dictionary Types
There are two dictionary types available on OpenVMS. They are the PHD and PDC dictionaries.
When choosing the dictionary type, it is important to consider the differences between the PHD
and PDC dictionaries. Other considerations to take into account when choosing the dictionary
type are the size of the dictionary and the amount of the dictionary that is actually used by each
user or application.

The PHD and PDC dictionary differ in
• the physical structure of the file
• dictionary access
• dictionary maintenance

The PHD dictionary is comprised of five indexed files—the traditional PowerHouse dictionary
format on OpenVMS. These indexed files contain dictionary information that is updateable and
accessible using indexed retrieval. Indexed retrieval lets you obtain specific pieces of information
when needed.

The PDC dictionary exists in the platform-generic format of a single file. It is not updateable and
is accessed by being loaded into memory in its entirety when PowerHouse is started. The PDC
dictionary can make use of Global Sections to optimize the memory load that a large dictionary of
this type can put on the system. Using Global Sections allows the dictionary memory to be shared
among users. Because the dictionary is all in memory, initial access may be slightly slower while
general access may be faster than that provided by indexed access.

PH_CREATE_SHARED Logical

The PDC type dictionary is read into memory when the product is activated. For large dictionaries
and large numbers of users, this can cause excessive memory usage.

To address this issue, you can use the logical PH_CREATE_SHARED to cause the dictionary to be
loaded into shared memory using global sections in the same manner as QUICK screens can be
shared. This logical is defined in PH_LOCATION:SETPH.COM to "G" or Group sharing, the
default. The logical can be changed locally.

The valid options are "P" for Private, "G" for Group and "S" for System. "S" requires privilege
to implement. In QUICK, the QKGO setting for screen sections also affects the sharing of the
dictionary. For more information, see the Cognos PowerHouse 4GL Getting Started book.

For more information about the PDC and PHD dictionaries, see Chapter 1, "Running
PowerHouse", in the PowerHouse Rules book.

Dictionary Maintenance
There are two ways to maintain dictionaries on OpenVMS. One method is to use the
syntax-based compilers, PDL and PHDPDL. PDL is used with PDC dictionaries and PHDPDL is
used with PHD dictionaries. The compilers let you add new information to an existing dictionary
but do not let you modify information that already exists in the dictionary. To modify information
using the syntax-based compilers, the entire dictionary must be recreated.

Chapter 1: Introducing the PowerHouse Dictionary

PDL and Utilities Reference 19

The other method of maintaining a PHD dictionary is to use the menu-driven QUICK application,
the PHD Screen System. The PHD Screen System allows you to maintain a PHD dictionary
without knowing any syntax. The information you add is inserted directly into the dictionary and
requires no recompilation. Information in the dictionary can be modified as desired. The PHD
Screen System does not support PDC dictionaries.

Whether you use the syntax-based compilers or the PHD Screen System to maintain your
dictionary, it is important to remember that screens, reports, and runs must be recompiled in order
to pick up changes made in the dictionary.

PDL syntax has some restrictions based on the compiler being used. PHDPDL accepts all syntax
with the exception of the SET NO|UP|DOWNSHIFT statement which it accepts, but ignores. PDL
accepts, but ignores, the syntax relating to dictionary security, as this syntax applies only to PHD
dictionaries.

The PHD Screen System allows you to add incomplete definitions to the dictionary, whereas the
syntax-based compilers do not. Incomplete definitions are allowed even though they can create
inconsistencies in the dictionary should you try to use them. For example, with the PHD Screen
System, it is possible to create an indexed file definition without specifying an index. You can’t
create or use the indexed file without the index, but PHD doesn’t stop you from creating the
incomplete definition until you need to use it. PDL and PHDPDL do not allow these
inconsistencies. You get errors in PDL or PHDPDL if you try to do this.

The PHD Screen System and the syntax-based compilers handle ELEMENT types and sizes
differently. Cases exist where the PHD Screen System allows for softer rules regarding ELEMENT
types and sizes. PHDPDL tolerates these issues and does not produce warnings whereas PDL
(which was not designed to co-exist with PHD) produces warnings.

Differences Between PDL, PHDPDL, and the PHD Screen System
The following table describes the main differences between the syntax-based compilers PDL and
PHDPDL and the menu-driven interface, the PHD Screen System:

PDL/PHDPDL PHD Screen System

designed to be used primarily in batch mode designed to be used interactively

provides a command-driven approach to data
definition, requiring you to define each entity
explicitly and in a particular order

provides a form-oriented approach to data
definition and helps you along by prompting
you and by defining certain entities
automatically

provides a quick, simple interface for the
syntax-proficient

provides a productive interface for the novice
user

can’t create a data file. Use QUTIL. uses the File, Records, or File Maintenance
Screen to create data files

can take definitions in the form of PDL
statements from one dictionary and then load
them into another dictionary all at once

you must enter each definition separately on a
screen

lets you enter new data definitions into a
dictionary. PDL doesn’t let you change or
delete most existing definitions without
recompiling the entire dictionary. You can add
new entities without recompiling.

lets you enter new data definitions into a
dictionary. PHD lets you easily change options.

provides syntax help has extensive online help messages and
explanations

provides a way to back up a PowerHouse
dictionary with verifiable source statements

source statements can be generated using
QSHOW for use as a backup

20 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Introducing the PowerHouse Dictionary

PowerHouse Components on OpenVMS
The following diagram shows the relationship between the various PowerHouse components on
OpenVMS.

PDL Source

PHDPDL Compiler PDL Compiler

QSHOW
QUTIL

QUIZ, QTP,
QDESIGN,
QUICK

Dictionary (.phd) Dictionary (.pdc)

editable syntax

PHD Screen
System

PDL and Utilities Reference 21

Chapter 2: PDL Statements

Overview
This chapter describes each of the PDL statements and options in detail. Syntax descriptions and
statement discussions are provided for each statement. Where applicable, examples are also
provided.

PDL uses the syntax and language rules discussed in Chapter 5, "PowerHouse Language Rules",
in the PowerHouse Rules book.

Summary of PDL Statements

Statement Purpose

APPLICATION SECURITY CLASS Defines an application security class (ASC) and
assigns members to the ASC.

BEGIN STRUCTURE Begins an item substructure.

CANCEL Cancels the current set of dictionary design
specifications.

CREATE DICTIONARY Creates a new dictionary or replaces an existing
dictionary.

DATABASE Identifies a relational database.

DICTIONARY SECURITY CLASS
(OpenVMS)

Names a dictionary security class (DSC) and assigns
members to the DSC.

DESCRIPTION Provides a description of an application security class,
dictionary security class (PHDPDL) element, file,
record, or usage.

ELEMENT Declares an element.

END STRUCTURE Ends an item substructure.

EXECUTION-TIME PARAMETERS
(OpenVMS)

Defines a default location for data files.

EXIT Ends a PDL and PHDPDL session.

FILE Defines a file and its attributes.

INDEX Declares an index in a record-structure.

ITEM Declares an item.

LOAD Loads the current PDL definitions into the dictionary.

PERMIT Gives or denies an application security class access to
a record-structure or element.

22 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements

QUIT Ends a PDL and PHDPDL session.

RECORD Declares a record-structure.

REVISE Invokes the system editor to edit PDL source
statement files.

SAVE Saves the current PDL statements in a file.

SEGMENT Declares a segment in an index.

SET Changes the default settings for a session.

SHOW DICTIONARY Displays the name of the current dictionary.

SYSTEM OPTIONS Determines system-wide options and defaults for
PowerHouse applications.

TRANSACTION Defines transactions used for relational files.

USAGE Declares a usage.

USE Processes PDL statements contained in source
statement files.

USER MODE (OpenVMS) Defines a user mode and assigns its members.

Statement Purpose

Chapter 2: PDL Statements
APPLICATION SECURITY CLASS

PDL and Utilities Reference 23

APPLICATION SECURITY CLASS
Defines an application security class (ASC) and assigns members to the ASC.

Syntax
APPLICATION SECURITY CLASS name [option]...

ASC name [option]...

name

Names a new ASC, or one that has already been defined.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters defined in the dictionary by the SPECIAL NAME CHARACTERS option
of the SYSTEM OPTIONS statement.

Options

DESCRIPTION string [[,] string]...

The strings contain a description of the ASC. The description can be reported by QSHOW reports.

Limit: 60 characters per string. Each string must be enclosed in quotation marks.

LOGONID logonid [[,]LOGONID] logonid]...

Assigns user names that are potential members of the application security class LOGONID.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is LOGONID, and if the user’s logon ID is listed in a LOGONID
option of an ASC statement, the user becomes a member of the ASC. Otherwise, the user becomes
a member of ASC UNKNOWN.

MPE/iX: Logonid is defined in the form username.account.

OpenVMS: A logonid is an OpenVMS user name with a limit of 12 characters.

UNIX: A logonid is a UNIX logonid.

Windows: A logonid is a Windows user name.

For more information, see the PERMIT statement (p. 79).

Limit: Logonids must be enclosed in quotation marks if they begin with a numeric.

PASSWORD password [[,] password]... (OpenVMS)

Assigns passwords that the user may enter to become a member of the application security class
PASSWORD.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is PASSWORD, PowerHouse prompts the user for a password. If the
user enters one of the passwords listed after the PASSWORD option of an ASC statement, the user
becomes a member of that ASC. Otherwise, the user becomes a member of the ASC UNKNOWN.

Limit: 64 characters. Enclose the password in quotation marks if it contains characters other than
letters, digits, or the special name characters defined in the dictionary by the SPECIAL NAME
CHARACTERS option of the SYSTEM OPTIONS statement.

Application Security Class (ASC) Options

DESCRIPTION LOGONID PASSWORD

PORTID UIC WEBLOGONID

24 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
APPLICATION SECURITY CLASS

PORTID portid [[,] portid]... (OpenVMS)

Assigns port IDs to an ASC. A portid is an OpenVMS device name. A user who accesses
PowerHouse through one of the port IDs listed may become a member of this ASC.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is PORTID, and if the user’s port ID is listed in an ASC statement, the
user becomes a member of that ASC. Otherwise, the user becomes a member of the ASC
UNKNOWN.

Limit: 16 characters. The port IDs can be listed either with or without quotation marks around
each one.

UIC [gid,uid] [[,] [gid,uid]]... (UNIX)
UIC [gid,mid] [[,] [gid,mid]]... (OpenVMS)

Lists members of the ASC by their UICs:

The brackets around the [gid,uid] and [gid,mid] portion are required syntax.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is UIC, and if the user’s UIC is listed in an ASC statement, the user
becomes a member of that ASC. Otherwise, the user becomes a member of the ASC UNKNOWN.

WEBLOGONID username [[,] username]...

Assigns user names that are potential members of this ASC. Username is case sensitive.

When PowerHouse Web opens a dictionary it checks the ID method in the APPLICATION
SECURITY ID METHOD option of the SYSTEM OPTIONS statement. If the ID method is
WEBLOGONID, PowerHouse Web checks authenticated usernames against the list of usernames
in the WEBLOGONID option. If the authenticated username is listed in a WEBLOGONID option
of an ASC statement, the user becomes a member of that ASC and the KNOWN class. If an
authenticated username is not listed in any WEBLOGONID option of any ASC statement, the
user is treated as a member of the ANONYMOUS class and the UNKNOWN class.

If there is no authenticated username, or the ASC ID METHOD is not WEBLOGONID, the user
becomes a member of the ASC UNKNOWN.

Discussion
An application security class is a group of PowerHouse users who share the same access (through
PowerHouse) to the data used in your application. QUICK, QUIZ, and QTP automatically
enforce the data security provisions specified in the data dictionary, based on your application
security class. Application security does not override operating system security.

All ASC options may be placed in the dictionary. However, the active security option depends on
the ASC ID METHOD option specified in the SYSTEMS OPTIONS statement.

If a user is associated with a given application security class that allows access to a specific file, the
user can access that file. If the user is not associated with an application security class that has
access to a specific file, access is denied. Access to individual files and/or record items can be
restricted to a subset of users.

You can assign the same user to more than one APPLICATION SECURITY CLASS statement. If
the same user is assigned to more than one ASC with the same ID method, the user becomes a
member of all those ASCs. The user's access rights are the union of the access rights of each ASC.

OpenVMS: The UIC is defined by a gid and a mid (member id number). The gid can be
from 0-37776 (octal) and the mid can be from 0-177776 (octal). The gid and
mid must be declared as a pair.

UNIX: The UIC is defined by a gid (group id number) and a uid (user id number).
The gid and uid can be any number from 1 to 30,000 and must be declared
as a pair.

Chapter 2: PDL Statements
APPLICATION SECURITY CLASS

PDL and Utilities Reference 25

You can't assign the same user more than once to the same ID method of the same ASC statement.

The following information is compiled into QUIZ reports, QTP runs, and QUICK screens:
• ASC ID Method
• the name of the ASC and the association of the ASC with records and elements
• User Modes and location specified in the ETP statement (OpenVMS)

If any of this information changes, the corresponding screens, reports, and runs need to be
recompiled.

OpenVMS: For PHD dictionaries, the membership of ASCs and User Modes is dynamic. You can
add to and delete IDs from ASCs without requiring that screens, reports, and runs be recompiled.

UNKNOWN Security Class
A default class can be used for dealing with PowerHouse users who aren't included in any of the
security classes of the USER statements. In most cases, any PowerHouse user not included in a
security class list is considered a member of the application security class, UNKNOWN. This is a
special application security class that you can specify in a PERMIT statement. It always exists in
PowerHouse.

Members of the UNKNOWN application security class are given access to data for which security
isn't specified, or for which the security class is unknown. If unidentified users are using
PowerHouse applications, it's useful to specify security for the UNKNOWN class. The simplest
way to declare security for the UNKNOWN class is to specify the class, UNKNOWN, in the list of
classes in each PERMIT statement.

SAFETY-NET Security Class
A simple way to ensure the security of your sensitive data is to use the preloaded class called
SAFETY-NET. The SAFETY-NET class has no members. Specify that SAFETY-NET has read
access to all sensitive record-structures and elements. This way, all other ASCs which are not
explicitly given access to the sensitive data will be denied access to it.

Examples
In the following examples, no other PERMIT statements reference the INVENTORY record
structure or elements in the INVENTORY record. In these example:
• PowerHouse components use application security classes combined with PERMIT statements

to determine access rights to record-structures and elements.
• The users with LOGON IDs, "PRG" and "MANAGER", can read or write the INVENTORY

record-structure.
• User "CLERK" can read the INVENTORY record-structure, but can only write to the

QTYONHAND field of the INVENTORY record-structure
• No other users can access the INVENTORY record-structure.

MPE/iX
> SYSTEM OPTIONS &
> ASC ID METHOD LOGONID
.
.
.
> ASC DEVELOPMENT &
> LOGONID PRG.DOC
>
> ASC CLERK &
> LOGONID CLERK.DOC
>
> ASC PRODUCTION &
> LOGONID MANAGER.DOC &
> LOGONID PRG.DOC
.

26 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
APPLICATION SECURITY CLASS

.

.
> PERMIT WRITE &
> OF RECORD INVENTORY BY &
> DEVELOPMENT &
> PRODUCTION
>
> PERMIT READ &
> OF RECORD INVENTORY BY &
> CLERK
>
> PERMIT CLERK TO &
> READ &
> ELEMENT &
> INVENTORY-NUM &
> INVENTORY-ITEM &
> UNIT-COST &
> UNIT-MARKUP
>
> PERMIT CLERK TO &
> CHANGE &
> ELEMENT &
> QTY-ON-HAND

UNIX
> SYSTEM OPTIONS &
> ASC ID METHOD UIC
.
.
.
> ASC DEVELOPMENT &
> UIC [26,123] [26,128]
>
> ASC CLERK &
> UIC [26,185]
>
> ASC PRODUCTION &
> UIC [26,190] &
> [26,195]
.
.
.
> PERMIT WRITE &
> OF RECORD INVENTORY BY &
> DEVELOPMENT &
> PRODUCTION
>
> PERMIT READ &
> OF RECORD INVENTORY BY &
> CLERK
>
> PERMIT CLERK TO &
> READ &
> ELEMENT &
> INVENTORYNUM &
> INVENTORYITEM &
> UNITCOST &
> UNITMARKUP
>
> PERMIT CLERK TO &
> CHANGE &
> ELEMENT &
> QTYONHAND

OpenVMS
> SYSTEM OPTIONS &
> ASC ID METHOD LOGONID

Chapter 2: PDL Statements
APPLICATION SECURITY CLASS

PDL and Utilities Reference 27

.

.

.
> ASC DEVELOPMENT &
> PASSWORD "dev"
> LOGONID PROGRAMMER

> ASC CLERK &
> PASSWORD "entry" &
> LOGONID CLERK &
> UIC [26,12] [26,12]
>
> ASC PRODUCTION &
> PASSWORD "prod" &
> LOGONID MANAGER &
> LOGONID PROGRAMMER &
.
.
> PERMIT WRITE &
> OF RECORD INVENTORY BY &
> DEVELOPMENT &
> PRODUCTION
>
> PERMIT READ &
> OF RECORD INVENTORY BY &
> CLERK
>
> PERMIT CLERK TO &
> READ &
> ELEMENT &
> INVENTORY_NUM &
> INVENTORY_ITEM &
> UNIT_COST &
> UNIT_MARKUP
>
> PERMIT CLERK TO &
> CHANGE &
> ELEMENT &
> QTY_ON_HAND

If, instead of the SYSTEM OPTIONS statement in the previous example, the dictionary contains
> SYSTEM OPTIONS &
> ASC ID METHOD PASSWORD

the component prompts you for a password. If you enter "dev" or "prod" you can read or write
the INVENTORY record-structure. If you enter "entry" you can read the INVENTORY
record-structure, but can only change the QTY_ON_HAND field of the INVENTORY
record-structure. If you enter anything else, you can’t access the INVENTORY record-structure at
all.

28 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
BEGIN STRUCTURE

BEGIN STRUCTURE
Begins an item substructure.

Syntax
BEGIN STRUCTURE

Discussion
Substructures allow you to deal with parts of an item instead of the entire item, without storing
data twice.

The BEGIN STRUCTURE statement marks the beginning of a set of ITEM statements which are
related as subitems to the last referenced ITEM statement. These relationships are generated until
an END STRUCTURE statement is encountered.

Items in substructures can be subdivided into further levels of substructures. Each level of
substructure is defined the same way using the BEGIN STRUCTURE and END STRUCTURE
statements.

Each item declared in a substructure must correspond either to an ELEMENT statement that's
already been declared or to an element that already exists in the dictionary. PowerHouse allows
up to fifteen levels of substructures.

When you put a substructure on a numeric item, the item datatype must be ZONED. If you
attempt to substructure a PACKED, INTEGER, or FREEFORM item, the substructure will not
contain the correct portion of the data item.

The BEGIN STRUCTURE statement marks the beginning of a set of ITEM statements that define
subitems in a substructure. The ITEM statements form a substructure of the item that was most
recently defined before the BEGIN STRUCTURE statement. The END STRUCTURE statement
must be used to mark the end of a block of ITEM statements in a substructure.

Example
This example shows how to access the year, month, and day of a date:
> ELEMENT DATEINVOICE DATE &
> SIZE 8 FORMAT YYYYMMDD &
> DEFAULT ITEM DATATYPE ZONED &
> SIZE 8
.
.
.
> FILE INVOICEMASTER &
> ORGANIZATION INDEXED &
> OPEN INVOMAS
> RECORD INVOICEMASTER
> ITEM INVOICENUM
> ITEM CUSTOMER
> ITEM EMPLOYEE
> ITEM CUSTOMERORDNUM
> ITEM TERMS
> ITEM INVOICEPAID
> ITEM DATEINVOICE DATATYPE ZONED SIZE 8
> BEGIN STRUCTURE
> ITEM DATEYEAR DATATYPE ZONED SIZE 4
> ITEM DATEMONTHDAY DATATYPE ZONED SIZE 4
> BEGIN STRUCTURE
> ITEM DATEMONTH DATATYPE ZONED SIZE 2
> ITEM DATEDAY DATATYPE ZONED SIZE 2
> END STRUCTURE
> END STRUCTURE
.
.
.

Chapter 2: PDL Statements
CANCEL

PDL and Utilities Reference 29

CANCEL
Cancels the current set of dictionary design specifications.

Syntax
CANCEL [CLEAR]

CLEAR

Clears the temporary source statement save file.

Discussion
The CANCEL statement cancels all previous statements in the current PDL or PHDPDL session,
with the exception of SET statements.

All PDL statements that you enter are automatically stored in a temporary save file.

The CANCEL statement doesn't clear the source statements in the temporary save file unless the
CLEAR option is used. PDL performs an implicit CANCEL after a LOAD statement.

By using the CLEAR option, you ensure that statements with errors aren't retained in the
temporary save file. This is important when you save PDL source statements to permanent files.

The SAVE statement saves the contents of the temporary save file to a permanent file, including
any erroneous statements. Your permanent source file will contain invalid PDL statements if the
temporary save file contains invalid PDL statements and hasn't been cleared by the CLEAR option
of the CANCEL statement.

The CANCEL CLEAR statement removes all of the statements that you've entered from the
temporary save file. As a result, you must always re-enter all cleared statements after using the
CANCEL CLEAR statement. To correct an improperly entered statement without clearing the
temporary save file, use the REVISE statement to edit the contents of the temporary save file.

Example
The following example shows how CANCEL is used to correct errors in PDL design statements. It
demonstrates how you can use the CANCEL CLEAR statement to clear the temporary save file
when you've made an entry that PDL doesn't understand. In this example,
• All statements entered before CANCEL CLEAR are canceled.
• All statements after the CANCEL CLEAR statement are valid until the next CANCEL

CLEAR statement is entered.
> ELEMENT CUSTNAME CHARACTER SIZE 20
> ELEMENT
.
.
.
>
> FILE INVOICE ORGANIZATION INDEXED
> RECORD INVOICE
> ITTEM CUSTNAME
> ^^^^^
E Expected: CANCEL CREATE EXIT QUIT REVISE SAVE
SET SHOW USE <eol> ITEM

> CANCEL CLEAR
> ELEMENT CUSTNAME CHARACTER SIZE 20
.
.
.
>
> FILE INVOICE ORGANIZATION INDEXED
> RECORD INVOICE
> ITEM CUSTNAME

30 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
CANCEL

>
.
.
.
> SAVE INVOICE

Chapter 2: PDL Statements
CREATE DICTIONARY

PDL and Utilities Reference 31

CREATE DICTIONARY
Creates a new dictionary or replaces an existing dictionary.

Syntax
CREATE DICTIONARY filespec [[NOT] PRELOADED]

filespec

Names the file in which the dictionary is stored.

NOT PRELOADED|PRELOADED

NOT PRELOADED indicates that the dictionary won't be preloaded with the standard dictionary
usages and elements and security options.

PRELOADED indicates that the dictionary will be preloaded with the standard dictionary usages
and elements and security options.

For information about creating your own usages, see (p. 118). For information about standard
dictionary usages, see Chapter 3, "Standard Elements and Usages".

Default: PRELOADED

Discussion
The CREATE DICTIONARY statement creates a new dictionary. If the dictionary name you enter
already exists, you receive the following prompt:

Note that when the dictionary is created, the dictionary name is used as the default dictionary
title. You can set your own dictionary title using the SYSTEM OPTIONS TITLE statement.
Although the dictionary is created immediately, dictionary definitions are loaded into the
dictionary when you enter the LOAD statement.

The CREATE DICTIONARY statement issues an implicit CANCEL statement; any statements
you enter prior to the CREATE DICTIONARY statement are therefore canceled.

OpenVMS: The dictionary logical(s) are set by this command to this dictionary.

Examples
In the following example, the CREATE DICTIONARY statement creates a dictionary called
INVENTOR in the current directory:
> CREATE DICTIONARY INVENTOR
>
> ELEMENT ACCOUNTNUMBER NUMERIC SIZE 4
> ELEMENT LASTNAME CHARACTER SIZE 20
> ELEMENT FIRSTNAME CHARACTER SIZE 10
>
> FILE CUSTOMER ORGANIZATION INDEXED
> RECORD CUSTOMER
> ITEM ACCOUNTNUMBER
> ITEM LASTNAME
> ITEM FIRSTNAME
>
> INDEX ACCOUNTS UNIQUE
> SEGMENT ACCOUNTNUMBER
>
> LOAD

MPE/iX, UNIX,
Windows:

The file (name) already exists. Is it OK to delete? [Y/N]

OpenVMS: The file already exists. Create new one? [Y/N]

32 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
CREATE DICTIONARY

Statements following CREATE DICTIONARY are saved in a temporary save file until the LOAD
statement is entered. LOAD enters the definitions into the data dictionary named INVENTOR.

Chapter 2: PDL Statements
DATABASE

PDL and Utilities Reference 33

DATABASE
Identifies a relational database.

Syntax
DATABASE name TYPE type [option]...

name

A unique name given to the database to identify it to the PowerHouse dictionary. This name does
not have to be the same as the database's physical name. For more information, see the OPEN
option on (p. 34).

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

TYPE type

Type of relational database. The following table shows the supported relational database types for
each platform.

ODBC
Windows: For Microsoft SQL Server, use ODBC. UNIX: PowerHouse supports the DataDirect
ODBC connection to Microsoft SQL Server.

SYBASE
Accesses the database using the client library gateway (CTLIB).

RDB
Accesses the database through an SQL interface, using the PowerHouse data access layer. This
allows you to use SQL statements and SQL-related syntax, such as the DECLARE CURSOR and
CURSOR statements and the SQL-related verbs.

RDB/VMS
Accesses the database directly through the native API. There will likely be performance differences
between this interface and the one used with TYPE RDB. The situation determines which interface
is fastest.

Options

MPE/iX: ALLBASE

OpenVMS: ORACLE, RDB, RDB/VMS

UNIX: DB2, ODBC, ORACLE, SYBASE

Windows: DB2, ODBC, ORACLE, SYBASE

DATABASE Options

DEFAULT DATE [IS] NULL DESCRIPTION HIGH

LOW NULL VALUES OPEN

OWNER PASSWORD USERID

34 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
DATABASE

DEFAULT DATE [IS] NULL

Enables NULL support for date fields. DEFAULT DATE [IS] NULL specifies that when a user
enters a value of 0 in a date field, the date column is set to null. Setting the value to null lets users
enter dates with a value of 0, but prevents PowerHouse from storing the date as 0 which is an
invalid value in the database. Dates that are read as null are automatically converted to 0.

DESCRIPTION string [[,]string]...

Specifies a description that serves as documentation about a database. The description can be seen
in QSHOW reports.

Limit: 60 characters per string.

HIGH [FILL] [HEXADECIMAL] string
LOW [FILL] [HEXADECIMAL] string

Specifies the high and/or low fill character used to formulate SQL queries for generic (@ and @@)
search criteria.

If you use HEXADECIMAL, the string must be two hexadecimal digits. If you don't use
HEXADECIMAL, the string must be a single ASCII character.

The defaults are database specific:

For information about using the low and high fill options, see (p. 37).

NULL VALUES [NOT] ALLOWED

Determines whether PowerHouse enables null value support for a particular database. If support
is enabled, PowerHouse maintains null values in expressions, conditions, and aggregate functions,
and nulls are stored when items are not initialized. If support is disabled, null character items are
initialized to spaces (or dictionary initial values), and null date or numeric items are initialized to
zeros (or dictionary initial values).

Default: NULL VALUES NOT ALLOWED

OPEN filespec|open-name-string

Specifies the physical database that is accessed and associated with the name that identifies it to
the PowerHouse dictionary.

Default: The PDL database name is used.

filespec
Specifies a valid file specification. It can be the physical name of the database as it is known to the
operating system. For ALLBASE/SQL, the filespec must point to the root DBEnvironment.

Limits: For ALLBASE/SQL (MPE/iX) or Oracle Rdb (OpenVMS) databases only.

Default: The default filespec is the name after the DATABASE keyword.

Database HIGH fill character LOW fill character

ALLBASE/SQL HEX "FF" HEX "00"

DB2 HEX "5A" HEX "00"

MS SQL Server HEX "7A" HEX "00"

ODBC HEX "FF" HEX "00"

Oracle Rdb HEX "FF" HEX "00"

ORACLE HEX "7F" HEX "01"

SYBASE the highest printable character on the machine HEX "20"

Chapter 2: PDL Statements
DATABASE

PDL and Utilities Reference 35

open-name-string (OpenVMS, UNIX, Windows)
A string which is passed directly to the database server in order to gain access to the database.

An open-name-string contains delimited parameters such as userid, password, physical database
name, network connection parameters, and possibly other parameters. If you include a userid and
password in the open-name-string, it must resemble the following format:

Please refer to your database documentation for more details on acceptable parameters, format,
and syntax for your particular database's valid open specifications.

For ORACLE databases, the string, "ORACLE@", is inserted at the beginning of the supplied
open-name-string if it does not exist.

Default: If no OPEN options are specified, the database server will look for default environment
variables or logicals that are specific to running that database's environment.

Limit: For DB2, ODBC, ORACLE, and SYBASE databases only.

OWNER name

Specifies the owner for tables in a database when none is explicitly indicated. Also specifies the
default owner of modules created by PowerHouse in ALLBASE/SQL.

Some relational databases support owners for entities such as modules or tables. If a program
needs to access an entity owned by another user, you specify the owner as part of the entity name.

Defaults: username (MPE/iX) or logonid (OpenVMS, UNIX, Windows).

UNIX, Windows: The program parameters, noshift, upshift, downshift, and the SET statement
shifting options in use may affect the case-sensitivity of the name literal.

PASSWORD string (OpenVMS, UNIX, Windows)

If the password is not included in the open-name-string of the OPEN option, the PASSWORD
option specifies the password to be used to connect to the database server. Passwords are set up by
the database administrator.

PowerHouse combines the open-name-string, USERID, and PASSWORD options into a valid
database open specification. The separator before a password is a slash (/), which PowerHouse
inserts if the password does not start with it.

UNIX, Windows: The string may be an environment variable, which must be preceded by a dollar
sign ($).

Limit: This option is required if a password is not included in the OPEN open-name-string option
or in an associated DATABASE resource file statement.

SYBASE <database physical name>@userid/password

ORACLE ORACLE@userid[@<network connection parameters>]/password

DB2 not allowed

ODBC not allowed

OpenVMS: If the close_detach or noprefix_openname program parameter is used, the
open-name-string can be a logical name containing the full open-name
information.

UNIX,
Windows:

The open-name-string may be an environment variable, which must be
preceded by a dollar sign ($). If the string contains a required dollar sign, which
is not used to specify an environment variable, use the backslash (\) to interpret
it literally. For example:
ORACLE@OPS\$<userid>

36 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
DATABASE

USERID string (OpenVMS, UNIX, Windows)

If the userid is not included in the open-name-string of the OPEN option, the USERID option
specifies the userid to be used to connect to the database server. Userids are set up by the database
administrator.

PowerHouse combines the open-name-string, USERID, and PASSWORD options into a valid
database open specification. The separator before a userid is an at-sign (@), which PowerHouse
inserts if the userid does not start with it.

UNIX, Windows: The string may be an environment variable, which must be preceded by a dollar
sign ($).

Limit: This option is required if a userid is not included in the OPEN open-name-string option or
in an associated DATABASE resource file statement.

Discussion

Identifying a Relational Database to PowerHouse
PowerHouse treats a relational database's catalog (or metadata) as a subdictionary of a
PowerHouse dictionary. Once the relational database is identified to the PowerHouse dictionary,
all PowerHouse components can access the information from the database. PowerHouse cannot
define or create relational databases.

The database name in PowerHouse is the name specified in the DATABASE statement. It does not
have to match the physical filespec. To use a different open name, use the OPEN option to give a
file specification of a valid database. For more information, see the OPEN option on (p. 34).

Examples

MPE/iX
This example declares the ALLBASE/SQL database, ABASE, to the dictionary.
> DATABASE ABASE &
> TYPE ALLBASE &
> OPEN ABASE.TEST.PAYROLL &
> OWNER MGR.PAYROLL

UNIX, Windows
This example declares the SYBASE database, NAGI, to the dictionary. The database name in
PowerHouse is the name specified after the DATABASE statement. It does not have to match the
physical name of the database. If it doesn't, use the OPEN option to give a valid file specification
for the database.
> DATABASE NAGI &
> TYPE SYBASE &
> NULL VALUES ALLOWED &
> DESCRIPTION &
> "NORTH AMERICAN GEOGRAPHICAL", &
> "INFORMATION (SYBASE DB)" &
> OPEN "NAGI_SB@DBUSER/DBPASS"

OpenVMS
This example declares the Oracle Rdb database, ATLAS, to the dictionary.
> DATABASE ATLAS &
> TYPE RDB &
> DESCRIPTION &
> "NORTH AMERICAN GEOGRAPHICAL INFORMATION" &
> OPEN ATLAS.RDB &
> NULL VALUES ALLOWED

Chapter 2: PDL Statements
DATABASE

PDL and Utilities Reference 37

LOW and HIGH Options
When a user specifies generic search criteria, PowerHouse uses fill characters in the BETWEEN
clauses of queries.
> SQL DECLARE EMPLIST CURSOR FOR &
> SELECT EMPLOYEE, FIRST_NAME, LAST_NAME, &
> BRANCHES.BRANCH, BRANCH_NAME &
> FROM EMPLOYEES, BRANCHES &
> WHERE EMPLOYEES.BRANCH = BRANCHES.BRANCH
> ACCESS EMPLIST
> CHOOSE FIRST_NAME PARM PROMPT "Enter a name: "
.
.
.

If the user enters K@ as the generic search criteria in the preceding example, the following
BETWEEN clause of the SQL query is built using low and high fill characters:
BETWEEN 'Kll' AND 'Khh'

where ll is the low fill character and hh is the high fill character. The default fill characters depend
on the type of database.

If the search criteria is K@@, the BETWEEN clause is
BETWEEN 'Kll' AND 'hh'

DB2: Determining the High and Low Fill Characters

The DB2 database manager compares character data using a collating sequence. The DB2
database manager allows databases to use custom collating sequences that are specified at
database creation time. Once the database has been created, the collation sequence cannot be
changed.

In DB2, the order in which data in a database is sorted depends on the collating sequence defined
for the database. If the ASCII code page is used as the default collation sequence, the default
PowerHouse values for the high and low fill characters are correct and no changes have to be
made.

However, if another collating sequence is used for the database, you have to define your own high
and low fill characters in your dictionary file.

With DB2, collating sequence sort order depends on the collating sequence defined for the
database. The database might be an ASCII database with code page 850, or an EBCDIC database
with code page 500.

For example, consider the relative collation of four characters in a EBCDIC code page 500
database, when they are collated in binary:

Character Code Page 500 Code Point
t

The code page 500 binary collation sequence, the desired sequence, is:

'a' < 'b' < 'A' < 'B'

If you create the database with ASCII code page 850, binary collation would yield:

Character Value

a Hex ’81’

b Hex ’82’

A Hex ’C1’

B Hex ’C2’

38 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
DATABASE

Character Code Page 850 Code Point

The code page 850 binary collation, which is not the desired sequence, is:

'A' < 'B' < 'a' < 'b'

So the above EBCDIC-based sort and ASCII-based sort is different.

Usually, the PowerHouse collation sequence is the same as the collation sequence in the database.
However, the two collation sequences can be different.

As an English language example, suppose you created your PowerHouse application with code
page 850, but you want the character strings to be collated as if the data actually resides in an
EBCDIC database with code page 500. The high and low fill characters you would set in your
dictionary file are determined by the database collation sequence.

In the code page 500 table, ‘a’ (hex’ 81’) is the lower value character and ‘9’ (hex ’F9’) is the high
value character for English language sort.

In the code page 850 table, you need to find the positions and hex values of low and high fill
characters defined in the code page 500 table. For example, letter ‘a’ position and value is Hex’61’
and ‘9’ position and value is Hex’39’. Therefore, you need to set Hex’61’ as low fill string and set
Hex’39’ as high fill string in your dictionary file as though ‘a’ is not the low value character in the
code page 850 and ‘9’ is not the high value character code page 850.

To see the complete database collation sequence tables, refer to your DB2 documentation set.

Character Value

a Hex ’61’

b Hex ’62’

A Hex ’41’

B Hex ’42’

Character
Code Page 500
Hexadecimal Value

Code Page 850
Hexadecimal Value

a 81 61

9 F9 39

Chapter 2: PDL Statements
DESCRIPTION

PDL and Utilities Reference 39

DESCRIPTION
Provides a description of a dictionary entity.

Syntax
DESCRIPTION OF entity name string [[,] string]...

entity

Specifies the type of entity that's being described. This entity must be one of the following: ASC,
DSC, ELEMENT, FILE, RECORD, or USAGE.

Limit: DSC is valid only in PHDPDL. Using DSC syntax in PDL generates a warning that the
syntax will be ignored.

name

Names the entity being described.

string

A series of letters, numbers, or special characters enclosed in single or double quotation marks.

Limit: 60 characters per string.

Discussion
The DESCRIPTION statement gives an entity a description in the form of strings of text. The
description serves as documentation for the entity.

The description can be seen in QSHOW reports. QUICK displays the description of an element
when the user enters the extended help command (??) in a field that references the element.

You can use either this statement or the DESCRIPTION option of the entity you want to describe.
It's an error to specify a description for an entity that already has one.

Examples
This example shows how to use the DESCRIPTION statement to add a description to an element
> ELEMENT ACCOUNTNUMBER &
> USAGE NUMERIC-ID &
> SIZE 4 &
> HEADING "Account^Number"
.
.
.
> DESCRIPTION OF ELEMENT ACCOUNTNUMBER &
> "A four digit account number"

The DESCRIPTION option of the ASC, DATABASE, DSC, ELEMENT, FILE, RECORD, and
USAGE statements offers the same function:
> ELEMENT ACCOUNTNUMBER &
> USAGE NUMERICID &
> SIZE 4 &
> HEADING "Account^Number" &
> DESCRIPTION "A four digit account number"

40 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
DICTIONARY SECURITY CLASS (OpenVMS)

DICTIONARY SECURITY CLASS (OpenVMS)
Names a dictionary security class (DSC) and assigns members to the DSC.

Limit: DSC is valid only in PHDPDL. DSC is parsed in PDL but generates a warning.

Syntax
DICTIONARY SECURITY CLASS name TYPE dsc-type

option[option]...

DSC name TYPE dsc-type option[option]...

name

Names a new DSC or one that has already been defined.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

PowerHouse dictionaries created with the PRELOADED option are preloaded with empty classes
named DICTIONARY-MANAGER, APPLICATION-MANAGER, and DICTIONARY-USER.

dsc-type

Specifies the type of dictionary access allowed to this DSC. The type must be one of
• DICTIONARY MANAGER or DMGR
• APPLICATION MANAGER or AMGR
• DICTIONARY USER or USER

Default: USER

Options
The options are DESCRIPTION, LOGONID, PASSWORD, PORTID, and UIC.

DESCRIPTION string [[,] string]...

The strings contain a description of the DSC. The description appears on the appropriate
Description Screen in the PhD Screen System and when the user types SHOW SECURITY in
QSHOW (if the user’s dictionary security class is APPLICATION or DICTIONARY MANAGER).

Limit: 60 characters per string.

LOGONID logonid [[,] logonid]...

Assigns user names that are potential members of this dictionary security class (DSC). A logonid is
an OpenVMS user name.

When a user enters a SET DICTIONARY statement in PDL or a SET SECURITY statement in
QSHOW, PowerHouse checks the ID method in the DICTIONARY SECURITY ID METHOD
option of the SYSTEM OPTIONS statement. The user becomes a member of the DSC if the ID
method is LOGONID, and if the user’s logon ID is one of the logonids. Otherwise, the user
becomes a member of the default DSC, USER.

Limit: 12 characters. Logonids must be enclosed in quotation marks if they begin with a numeric.

PASSWORD password [[,] password]...

Assigns passwords that users must enter to identify themselves as a member of this DSC. A
password is a 31-character string, with or without quotation marks.

When a user enters one of the following:
• a SET DICTIONARY statement in PDL
• a SECURITY statement in PDL
• a SET SECURITY statement in QSHOW,

Chapter 2: PDL Statements
DICTIONARY SECURITY CLASS (OpenVMS)

PDL and Utilities Reference 41

PowerHouse checks the ID method in the DICTIONARY SECURITY ID METHOD option of the
SYSTEM OPTIONS statement. If the ID method is PASSWORD, PowerHouse prompts the user
for a password. The user becomes a member of the DSC if the user enters one of the passwords
listed after the PASSWORD option of DSC statement. Otherwise, the user becomes a member of
the default DSC, USER.

Limit: 64 characters. Enclose the password in quotation marks if it contains characters other than
letters, digits, or the special name characters defined in the dictionary by the SPECIAL NAME
CHARACTERS option of the SYSTEM OPTIONS statement.

PORTID portid [[,] portid]...

Assigns port IDs. A portid is an OpenVMS device name. A user who accesses PowerHouse
through one of the port IDs listed may become a member of this DSC.

When a user enters a SET DICTIONARY statement in PDL or a SET SECURITY statement in
QSHOW, PowerHouse checks the ID method in the DICTIONARY SECURITY ID METHOD
option of the SYSTEM OPTIONS statement. The user becomes a member of the DSC if the ID
method is PORTID, and if the user’s port ID is one of the listed portids. Otherwise, the user
becomes a member of the default DSC, USER.

Do not use this option when terminals are connected via a line multiplexer.

Limits: 16 characters. The port IDs can be listed either with or without quotation marks around
each one.

UIC [gid,mid] [[,] [gid,mid]]...

Lists members of the DSC by their UICs. The UIC is defined by a gid (group id number) and a mid
(member id number). The gid can be from 0-37776 (octal) and the mid can be from 0-177776
(octal). The gid and mid must be declared as a pair. The brackets around [gid,mid] are required
syntax.

When a user enters a SET DICTIONARY statement in PDL or a SET SECURITY statement in
QSHOW, PowerHouse checks the ID method in the DICTIONARY SECURITY CLASS ID
METHOD option of the SYSTEM OPTIONS statement. The user becomes a member of the DSC
if the ID method is UIC, and if the user’s UIC is one of the listed UICs. Otherwise, the user
becomes a member of the default DSC, USER.

Discussion
PDL uses a user’s DSC and the DSC’s type to determine the user’s access rights to the dictionary.

All users who aren’t members of a specific dictionary security class become members of the class
USER.

In the PhD Screen System, Application Managers and members of the USER class can modify the
dictionary as specified below. In PHDPDL, only Dictionary Managers and Dictionary Owners can
modify the dictionary.

A user can only use these PDL statements:

CANCEL DATABASE1 ELEMENT

EXIT FILE1 INDEX

ITEM LOAD RECORD

REVISE SAVE SEGMENT

SET SHOW DICTIONARY USE

1The database and the file must already exist in the dictionary.

42 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
DICTIONARY SECURITY CLASS (OpenVMS)

In addition to all the statements a user can use, the application manager can use the following
PDL statements:

The dictionary manager can use all PDL statements.

The dictionary owner always has dictionary manager rights to the dictionary. The SHOW
SYSTEM statement in QSHOW displays the logon ID of the dictionary owner.

Example
Suppose your dictionary contains the following statements:
> SYSTEM OPTIONS &
> DSC ID METHOD PASSWORD

> DICTIONARY SECURITY CLASS DBA &
> TYPE DICTIONARY MANAGER &
> PASSWORD "dev"
> LOGONID MANAGER

> DICTIONARY SECURITY CLASS DEVELOPMENT &
> TYPE APPLICATION MANAGER &
> PASSWORD "apps" &
> LOGONID PROGRAMMER

If you start QSHOW, the PhD Screen System, or PHDPDL with this dictionary, the component
prompts you for a password. If you enter "dev", you have dictionary manager privileges. If you
enter "apps", you have application manager privileges. If you enter anything else, you have user
privileges.

If instead of the SYSTEM OPTIONS statement in the previous example, the dictionary contained
> SYSTEM OPTIONS & DSC ID METHOD LOGONID

then the user MANAGER has dictionary manager privileges. User PROGRAMMER has
application manager privileges. All other users have user privileges.

ASC DATABASE ETP (Execution-Time Parameters)

FILE PERMIT SYSTEM OPTIONS1

TRANSACTION USAGE USER MODE

1Except DSC ID METHOD and DICTIONARY OWNER

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 43

ELEMENT
Declares an element.

Syntax
ELEMENT name element-type [SIZE] n [option]...

ELEMENT name USAGE [IS] usage [SIZE n [BYTES]] [option]...

name

A unique name that's meaningful to system users, designers, and programmers. The name is used
for all references to the element in PowerHouse.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

element-type

The element type must be one of the following:
• CHARACTER or C
• DATE or D
• NUMERIC or N

[SIZE] n

Specifies the maximum number of characters or digits allowed for values of the element.

If you use the first form of the ELEMENT statement (without a usage), you must enter a number
for the element size; the keyword SIZE is optional.

If you use the second form of the ELEMENT statement (with USAGE), the size is usually
determined by the usage and you can't change it. However, there are some usages that don't set
the element size (they show an element size of 0). If you use one of these usages, then you must
enter both the keyword, SIZE, and a number for the size as part of the ELEMENT statement.

PowerHouse uses element sizes to determine default pictures and item sizes. The number of
substitution characters (^) in the picture, the item datatype and size, and the allowed values
determine the actual number of characters that can be entered or displayed for a value.

The size of a date element must be one of 6, 8, 10, 12, 14, 15, or 16.
• a size of 8 means that the date includes a two-digit century
• a size of 6 means that the century is excluded
• a size of more than 8 means date, century and time are included

Date and Time Support
The SIZE option controls the time portion to be formatted and displayed. It also determines the
default datatype. The following table shows the different time formats that are available based on
the DATE SIZE option. Assume the date format is YYYYMMDD and the separator is a slash (/):

Size Display Format Example

8 YYYY/MM/DD 2001/12/29

10 YYYY/MM/DD HH 2001/12/29 23

12 YYYY/MM/DD HH:MM 2001/12/29 23:59

14 YYYY/MM/DD HH:MM:SS 2001/12/29 23:59:59

15 YYYY/MM/DD HH:MM:SS:N 2001/12/29 23:59:59 9

44 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ELEMENT

Any value greater than eight in the ELEMENT DATE SIZE statement assumes that the datatype is
DATETIME. All other datatypes result in an error. A DATETIME item always has the century
included, so the date portion of the item is considered to be a full date.

Limit: 2047 for character elements; up to 31 for numeric elements. Numeric elements are also
limited by the datatype.

USAGE [IS] usage

Identifies the usage on which the element is to be based.

The usage must have been defined previously. It can be one of the predefined usages that are
supplied with the PowerHouse dictionary, or it can be a usage that has previously been defined by
the USAGE statement. For information about the predefined usages that are available, see Chapter
3, "Standard Elements and Usages".

Since usages determine the value of most element attributes, you can only use the following
attributes in combination with a usage:
• default item datatype
• item size (in bytes)
• number of occurrences
• default column heading for QUIZ reports
• default item label
• default help message for the item
• element description

Options

ALLOW|NOALLOW CENTURY

ALLOW CENTURY specifies that the user can enter a century on date fields even though only a
two-digit year is specified in the date format. The option applies to century-included date fields
with a two-digit year format.

When ALLOW CENTURY is specified, date fields become horizontal scrolling fields. The user can
then enter the date, including the century, in the same space as the date without the century. The
century is not displayed after input.

Limit: Valid only for century-included dates.

16 YYYY/MM/DD HH:MM:SS:NN 2001/12/29 23:59:59 99

Size Display Format Example

ELEMENT Options

ALLOW|NOALLOW CENTURY BWZ DECIMAL

[DEFAULT][ITEM]
DATATYPE

DESCRIPTION DOWNSHIFT|UPSHIFT

FILL FLOAT FORCE|NOFORCE CENTURY

FORMAT HEADING HELP

INITIAL INPUT SCALE LABEL

LEADING SIGN NULLSEPARATOR|
NONULLSEPARATOR

OCCURS

OUTPUT SCALE PATTERN PICTURE

SEPARATOR SIGNIFICANCE TRAILING SIGN

VALUES

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 45

Default: The ELEMENT default depends on what is specified for the same option on a related
USAGE statement or the SYSTEM OPTIONS statement in PDL.

BWZ

Means blank when zero. When this option is in effect, PowerHouse displays blanks instead of
zeros for numeric item values that equal zero. This option is useful for elements such as phone
numbers or customer numbers, whose values are not used in calculations. For example, you don't
usually want to display the value "000-0000" for a North American telephone number. If you
don't include the BWZ option for a numeric item, then zero values are displayed as 0.

Limit: Valid only for numeric elements that don't have a usage.

Default: 0

DECIMAL n

Specifies the number of decimal positions in a numeric element. PowerHouse uses this option to
determine defaults for the input scale, significance, and picture.

[DEFAULT] [ITEM] DATATYPE type [SIGNED|UNSIGNED] [SIZE n [BYTES]]

Specifies the default item datatype, size, and number of occurrences. DEFAULT and ITEM are for
documentation only.

The values specified here are used if these attributes are not specified in the ITEM statement. If
nothing is specified here or in the ITEM statement, PowerHouse provides defaults based on the
element type and size.

DATATYPE type
Specifies how item values are stored. The PowerHouse datatypes are:

Datatype
Item
Type1 Stores

CHARACTER C character items in one character per byte

DATETIME D 10, 12, 14, 15 or 16 digit datetimes

FLOAT D2, N numeric items as standard floating point numbers

FREEFORM D2, N numeric items as a series of characters

G_FLOAT (OpenVMS) D2, N numeric items as eight-byte floating point numbers

INTEGER D2, N numeric items as binary numbers

INTERVAL N difference between two datetimes

JDATE D dates as the Julian date

PACKED D2, N numeric items as packed decimal numbers

PHDATE D dates as PowerHouse dates

VARCHAR C one or more characters preceded by an integer
representing the current string length

VMSDATE (OpenVMS) D the standard eight-byte (64-bit) OpenVMS date

ZDATE D dates in vendor-specific format

ZONED D2,N numeric items as zoned decimal numbers

46 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ELEMENT

SIGNED|UNSIGNED
Indicates whether the datatypes INTEGER, PACKED, and ZONED are SIGNED or UNSIGNED.
INTEGER SIGNED can store negative values; INTEGER UNSIGNED cannot. ZONED and
PACKED datatypes can store positive or negative numbers, regardless of whether SIGNED or
UNSIGNED is specified.

Limit: Valid only for datatypes INTEGER, PACKED, and ZONED. The SIGNED and
UNSIGNED options are mutually exclusive and must immediately follow the datatype.

Default: SIGNED for datatypes INTEGER and PACKED; UNSIGNED for ZONED.

SIZE n [BYTES]
Specifies the storage size, in bytes, of items based on this element.

DESCRIPTION string [[,]string]...

Specifies a description that serves as documentation about the element. The description can be
seen in QSHOW reports. QUICK screen users can also see the description when they enter two
question marks (??) in a field that references the element.

Limit: 60 characters per string.

DOWNSHIFT|UPSHIFT

UPSHIFT causes QUICK to change the user's input to uppercase for this element. DOWNSHIFT
causes QUICK to change the user's input to lowercase. If you specify neither, QUICK leaves the
input in the case that the user enters, and treats uppercase and lowercase letters as distinct.

Limit: Valid only for character elements that don't have a usage.

FILL char

Specifies the character that's used to fill any unused space to the left of the most significant digit,
float character, or leading sign in the picture. The fill character also replaces unnecessary leading
nonsubstitution characters (including commas and leading spaces).

For example, the following attributes work together to display a dollar amount that is preceded
by leading asterisks:

Limit: Valid only for numeric elements that don't have a usage.

FLOAT char

Specifies the float character that's inserted immediately to the left of the most significant digit.

Add either a space or an extra picture substitution character (^) to the left side of the picture to
make room for the float character, or else the field may overflow.

1Key: C, Character; D, Date; N, Numeric
2Note that FLOAT, FREEFORM, INTEGER, PACKED, and ZONED may be defined as the
item datatype for date type elements in PDL.

Datatype
Item
Type1 Stores

Fill Float Picture Value Display

* $ "^,^^^,^^^.^^" 123456 ***$1,23.56

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 47

For example, the following element attributes work together to display a dollar sign ($) in front of
an item value:

Limit: Valid only for numeric elements that don't have a usage.

FORCE|NOFORCE CENTURY

FORCE CENTURY specifies that the user must enter a century on all century-included date fields.
The option applies to century-included dates with two or four-digit year formats.

Limit: Valid only for century-included dates.

Default: The ELEMENT default depends on what is specified for the same option on a related
USAGE statement or the SYSTEM OPTIONS statement in PDL.

FORMAT date-format

Specifies the format for entering and displaying date item values. Date values can be entered either
with or without separator characters. A date-format can be one of the following:

Stored value Picture Float Displayed value

1234 "^^^^^" $ $1234

56789 "^^^.^^" $ $567.89

Date-format Example Date-format Example

YYMMDD 01/05/23 YYMMMDD 01/MAY/23

YYYYMMDD 2001/05/23 YYYYMMMD
D

2001/MAY/23

YYMM 01/05 YYMMM 01/MAY

YYYYMM 2001/05 YYYYMMM 2001/MAY

YYDDD 01/125 YYYYDDD 2001/125

MMDDYY 05/23/01 MMMDDYY MAY/23/01

MMDDYYYY 05/23/2001 MMMDDYYY
Y

MAY/23/2001

MMYY 05/01 MMMYY MAY/01

MMYYYY 05/2001 MMMYYYY MAY/2001

MMDD 05/23 MMMDD MAY/23

DDMMYY 23/05/01 DDMMMYY 23/MAY/01

DDMMYYYY 23/05/2001 DDMMMYYY
Y

23/MAY/2001

DDMM 23/05 DDMMM 23/MAY

DDDYY 125/01 DDDYYYY 125/2001

48 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ELEMENT

If the FORMAT option is used but the SEPARATOR option isn’t, the only separator character
that QUIZ accepts is the separator character specified by System Options, or if it isn’t specified, a
slash (/).

Single-digit day and month entries are accepted if the user enters the separator character, as in
4/8/2001. An entry of 4AUG2001 is also allowed, because PowerHouse accepts a single-digit day
entry if the middle value is a three-character month.

If a two-digit year is specified in the date format, applications won’t accept a four-digit year. A
two-digit year is represented by YY (for example, 01).

A three-digit day of the year from 1 to 366 is represented by DDD.

If a four-digit year is specified in the date format, you can only enter a two-digit year if you enter
a separator character between the year and any adjacent numeric component of the date. The
default century is added automatically.

Dates can always be entered with either the MM or MMM month format. Although values for
date items can be entered in a variety of formats, the values are always stored in either YYMMDD
or YYYYMMDD form.

Limit: Valid only for date items. This option only affects the entry format; the display format isn’t
affected.

Default: YYYYMMDD for eight-digit dates; YYMMDD for six-digit dates.

HEADING string

Provides a default column heading for QUIZ reports.

A multiline heading character (^) embedded in the heading produces multi-line headings. For
example, the heading "Employee^Number" appears in a QUIZ report as
Employee
 Number

If you do not specify a multiline heading, when the column heading is much longer than the
column data width, PowerHouse wraps the heading automatically. PDC dictionaries determine
the heading at dictionary compile time; PHD dictionaries determine the heading at component
runtime. The algorithms used to determine where to split the text and the resultant column width
are different for PDC and PHD dictionaries. If you are switching between dictionary types, you
may have to reformat your reports or specify your own wrapped headings.

If no heading is specified, QUIZ uses the element name as a column heading.

Limit: 60 characters per string.

Default: The element name with all hyphens and underscores replaced with blanks. The first letter
of each word is upshifted; the remaining letters are downshifted. Multi-line headings, to a
maximum of three lines, are constructed by replacing blanks with the multiline heading character
whenever a word or group of words is longer than the element display size. The first and second
line in a heading is less than or equal to the display size, but the third may be longer.

HELP string

Specifies the help string that QUICK displays when the user enters the help command (?) in a field
that references the element.

YYYY - four digit year (e.g., 2001)

MM - two digit month (e.g., 05)

MMM - three character month name (e.g., MAY)

DD - two digit day for a month (e.g., 23)

DDD - three digit day for a year (e.g., 365)

Regardless of the output order of the date, the internal working format is YYMMDD (for dates
without centuries), YYYYMMDD (for dates with (for Julian dates)

Date-format Example Date-format Example

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 49

Limit: 60 characters per string.

Default: The element name, size, and type.

INITIAL value

Specifies the default value for items that correspond to this element. QUICK and QTP initialize
items with the initial value. QUIZ uses the initial value to fill in default values in optional linkages.

Limit: The value can't have more digits than the element's element size, nor can it have more
decimal places than the element's number of decimal places.

Default: Character items are initialized to spaces; numeric and date items are initialized to zero.

INPUT SCALE n

Specifies the value of the input scale. QUICK multiplies the user's input value by 10 raised to the
power of the input scale before it stores the value.

Limit: -16 to 16

Default: The value specified on the DECIMAL option.

LABEL string

Specifies the default prompt when the PARM prompt option is used in the CHOOSE statement in
QUIZ or QTP, and the default field label for QUICK screens.

For example, the label "Valid 6-digit Employee Number:" causes QUIZ to display the prompt
Valid 6-digit Employee Number:

if the employee number item is specified in a CHOOSE statement with a PARM option.

Limit: 60 characters per string.

Default: The element's heading. If no heading is specified, the element's name.

LEADING SIGN char

Specifies a character that's placed to the left of a value when the value is negative.

Add either a space or an extra substitution character (^) to make room for the leading sign, or else
the field may overflow.

Limit: Valid only for numeric elements that don't have a usage.

Default: "-" if the DEFAULT ITEM DATATYPE is FLOAT, FREEFORM, INTEGER SIGNED,
PACKED SIGNED, or ZONED SIGNED. Otherwise the default is a blank, that is, no leading
sign.

NULLSEPARATOR|NONULLSEPARATOR

NULLSEPARATOR specifies that all dates are to be displayed without a separator. This allows
display of century-included dates in the same space as century-excluded dates.

The DATE SEPARATOR option is used for display formatting if NULLSEPARATOR is not used,
or is canceled by the NONULLSEPARATOR option.

The DATE SEPARATOR option may be used during input. If NULLSEPARATOR is specified, the
value is redisplayed after formatting without the separator.

Default: The ELEMENT default depends on what is specified for the same option on a related
USAGE statement or the SYSTEM OPTIONS statement in PDL.

OCCURS n

Specifies the number of times an item repeats in an array.

The value specified here is used if this attribute is not specified on the ITEM statement.

Limit: 1 to 4,096. (QUICK can handle a maximum occurrence of 255.)

Default: 1

50 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ELEMENT

OUTPUT SCALE n

Establishes the output scaling factor that's applied when values are displayed.

Before it's displayed, the stored value of the item is multiplied by 10 raised to the power of the
output scale value.

OUTPUT SCALE is needed for floating point numbers since fractional portions of stored values
are rounded for display. If the output scale is zero, all digits to the right of the decimal in a
floating-point number are truncated when the number is rounded.

For example, the following item attributes work together with the output scale to display floating
point values:

Limit: -16 to 16. Valid only for numeric elements that don't have a usage.

Default: 0

PATTERN string

Specifies a string of characters and metacharacters that provides a general description of values.
QUICK compares the user's input with the pattern. If the input doesn't match the pattern, QUICK
displays an error message.

Limit: 60 characters per string.

PICTURE string

Establishes the output picture used to format the item value for display. The string is made up of
substitution characters (^), and nonsubstitution characters (any other characters).

Character items are formatted in the following way:
1. The item is processed from left to right, substituting one character from the item for each

substitution character in the picture. Nonsubstitution characters remain unchanged.
2. If there are fewer substitution characters in the picture than characters in the item value, the

remaining characters in the item aren't displayed.
3. If there are more substitution characters in the picture than characters in the item value,

spaces are padded to the right of the item.

As an example, the item value "FHSMITH" is formatted as follows:

Numeric items are formatted in the following way:
1. The item is scaled by the output scale and rounded to the nearest whole number.
2. The integer portion of the item is processed from right to left, substituting one digit from the

item for each substitution character in the picture until all significant (nonzero) digits have
been processed. Nonsubstitution characters remain unchanged.

3. Until the element significance is reached, leading zeros are substituted for each substitution
character. Nonsubstitution characters remain unchanged.

4. The float character is added.
5. Leading and trailing signs are added for negative values.

Stored value Picture Output scale Displayed value

12.54 "^^^^.^^" 0 0.13

12.54 "^^^^.^^" 2 12.54

Picture display Resulting

"^^^^^^^" FHSMITH

"^^^^^" FHSMI

"^.^. ^^^^^" F.H. SMITH

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 51

6. The remaining portion of the picture is filled with the fill character.
7. If there isn't enough room in the picture to accommodate all of the significant digits of the

item value or the leading or trailing signs, the item is filled with the overflow character (#).

For example, the value 1578 is formatted as follows:

Limit: 60 characters per string. Valid only for numeric and character elements that don't have a
usage.

Defaults: The number of substitution characters in the default picture for numeric items is the
number of digits in the item plus one (to accommodate the leading sign).

For character elements, the default picture is one substitution character for each character in the
element.

For numeric elements, the default consists of:
• one leading blank if a LEADING SIGN character other than blank is specified
• one leading blank if a FLOAT character other than blank is specified
• one substitution character for each digit to the left of the decimal place. The SYSTEM

OPTIONS DECIMAL character is inserted every fourth position from right to left.
• the SYSTEMS OPTIONS DECIMAL character plus one substitution character for each digit

to the right of the decimal place if the ELEMENT DECIMAL option is greater than 0
• one or two trailing blanks (corresponding to the characters in the sign) if a TRAILING SIGN

other than blank is specified

SEPARATOR char

Specifies the character that separates the day, month, and year portions of a date element for
display.

For example, the separator character "-" produces dates that are displayed like this: "99-05-25".

Limit: Valid only for date elements that don't have a usage.

Default: A slash (/) unless a different date separator is specified in the SYSTEM OPTIONS
statement.

SIGNIFICANCE n

Specifies the minimum number of digits and characters displayed. The SIGNIFICANCE option
forces the printing of leading nonsubstitution characters and leading zeros.

For example, if letters or special characters must always appear as part of an element picture, the
significance must be large enough to force the display of all desired letters or characters. The value
"1578" is displayed as follows, based on the indicated significance:

Picture display Resulting

"^^^^" 1578

"^^.^^" 15.78

"^^,^^^,^^^" 1,578

Picture Significance Displayed value

"^^.^^^^" 6 0.1578

"^^^^.^^" 3 15.78

"^^^^.^^" 7 0015.78

"^^.^^^^" 4 1578

" P.O.^^^^-^^" 11 P.O.0015-78

52 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ELEMENT

Limit: 60 characters or digits.

Default: The number of decimal positions of the element, plus one if the number of decimal
positions is greater than zero, plus the length of the trailing sign, plus one.

TRAILING SIGN string

Specifies a string of one or two characters to be placed to the right of a value when the value is
negative.

You must provide sufficient nonsubstitution characters in the right-most portion of the picture to
accommodate the trailing sign. If the picture is too small, then values based on the element will be
filled with the overflow character (#). To accommodate a trailing sign, you must include one or
two nonsubstitution characters (usually spaces) in the right-hand side of the element picture.

If no leading or trailing sign is specified, the entry of negative values isn't allowed in fields on
QUICK screens.

To place parentheses around negative numbers, use the LEADING SIGN and TRAILING SIGN
options together. For example, a leading sign of "(" with a trailing sign of ")" displays the value
-123.45 as
(123.45)

A leading or trailing sign is required to store or display negative values.

For example, the number -1578 is formatted as follows:

Limit: Valid only for numeric elements that don't have a usage.

Default: Two spaces (no trailing sign).

VALUES value-set

Specifies acceptable values for an element.

QUICK uses the allowed values to validate user entries. QTP uses them to perform bulk validation
of input files and to validate user-entered execution-time parameters. QUIZ also uses dictionary
values to validate execution-time parameters. For more information, see the CHOOSE and EDIT
statements in the QUIZ and QTP Reference books and the FIELD statement in the QDESIGN
Reference book.

Limit: The value of the element can't have more digits than the element size, nor can it have more
decimal places than the element's number of decimal places.

You can specify descriptive captions that are used when the corresponding item is referenced by a
field with a selection box; the captions are displayed in the selection box in place of the actual
entry values for the field. The value-set includes the CAPTION option, as in
value [CAPTION string][TO value [CAPTION string]]
 [[,] value [CAPTION string][TO value [CAPTION string]]]...

Selection boxes may be unsuitable for fields that accept ranges of values (using value TO value
syntax), because they display only the first and last values of each range.

CAPTION string
Displays descriptive captions in selection boxes in place of the actual entry values for the field.
When the user chooses a caption in the selection box, the corresponding value is entered and
displayed in the field.

"^^.^^^^%" 5 1578%

Picture Significance Displayed value

Picture Leading sign Trailing sign Resulting Display

"^^^,^^^ " none CR 1,578CR

"..^^^,^^^ " () (1,578)

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 53

Limits: The maximum size of the caption string is 60 characters. Captions are used only in
selection boxes; if no selection box is specified, then the captions are ignored.

Discussion
The ELEMENT statement defines an element in the PowerHouse dictionary. An element is the
smallest category of data in a PowerHouse application.

One form of the ELEMENT statement includes a name, a type, and a size. The other form
includes a name and a usage. All other attributes are optional.

Examples

Using the Element Statement
The following example demonstrates the use of multiple options on the ELEMENT statement in a
dictionary design.
> ELEMENT DISCDAYS NUMERIC SIZE 3 BWZ
> ELEMENT DISCPCT NUMERIC SIZE 4 &
> DECIMAL 2 INPUT SCALE -2 &
> SIGNIFICANCE 5 &
> OUTPUT SCALE 4 PICTURE "^^.^^%" &
> HEADING "VENDOR^DISCOUNT^(%)" &
> LABEL "DISCOUNT %" &
> HELP "THE VENDOR'S DISCOUNT AS A PERCENTAGE" &
> DESCRIPTION "THIS FIELD CONTAINS" &
> "VENDOR'S DISCOUNT PERCENTAGE" &
> "THAT IS APPLIED TO ALL" &
> "PURCHASES FROM THE VENDOR" &
> "AND IS USED TO CALCULATE THE" &
> "INVENTORY ITEM PRICE"

These statements are taken from a larger design for an inventory system.

In the next example, the three ELEMENT statements describe the display that's generated for the
elements TRANSNO, TRANSTOTAL, and TOTALQTY.
• TRANSNO describes a transaction number that displays a maximum of seven digits.
• PICTURE illustrates the display format.
• SIGNIFICANCE specifies a maximum of eight digits, forcing the display of leading zeros in

associated items.
• TRANSTOTAL displays a maximum of ten digits with two decimal positions. PICTURE and

FLOAT display a dollar amount for this element's corresponding items.
• LEADING SIGN indicates that this amount can have a negative value.
> ELEMENT TRANSNO
> NUMERIC SIZE 7 &
> PICTURE "^^^-^^^^" &
> SIGNIFICANCE 8
>
>
>
>
>
> ELEMENT TRANSTOTAL NUMERIC SIZE 10 DECIMAL 2 &
> PICTURE " ^^,^^^,^^^.^^" &
> FLOAT "$" LEADING SIGN "-"
>
>
> ELEMENT TOTALQTY NUMERIC SIZE 8 &
> PICTURE " ^^^^^^^^" &
> LEADING SIGN "-"

54 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ELEMENT

In many systems, attributes of one element are often the attributes for other elements. For
example, the attributes assigned to the element TRANSNO could be the same for a number of
other elements in this dictionary. Instead of defining the same attributes for a number of different
elements, you could create a usage describing an element of this type:
> USAGE IS INVENID &
> NUMERIC SIZE 7 &
> PICTURE "^^^-^^^^" &
> SIGNIFICANCE 8

Once the usage is defined, the ELEMENT statement for TRANSNO is
> ELEMENT TRANSNO &
> USAGE INVENID

Using the BWZ Option
The following example illustrates the use of the BWZ option. In this example:
• BUYERNO isn't displayed unless a non-zero value for the application user is entered.
• BWZ displays a space if the value for this element's corresponding item is zero.
> ELEMENT BUYERNO &
> NUMERIC SIZE 2 &
> SIGNIFICANCE 3 &
> BWZ &
> PICTURE "B^^"

Using the INPUT SCALE and OUTPUT SCALE Options
The INPUT SCALE and OUTPUT SCALE options in the following example display the
corresponding item at its entered value multiplied by 105. An input scale of zero stores the value
of the item in its entered state. (If the item is stored as an integer, only the integer portion of the
value is stored.) This element can ultimately be used for an item that acts as a method of quickly
determining the retail value of a piece of merchandise.
> ELEMENT CONVUNIT NUMERIC SIZE 8 DECIMAL 5 &
> INPUT SCALE 0 OUTPUT SCALE 5 &
> DESCRIPTION "CONVERSION FACTOR BETWEEN UNIT" &
> "WHOLESALE AND UNIT RETAIL."

Using the DATE SIZE Option
The following PDL code is an example of date support. In the following example:
• ITEM ONE is correctly specified.
• ITEM TWO defaults to datatype DATETIME.
• ITEM THREE defaults to datatype PHDATE.
• ITEM FOUR defaults to INTEGER SIZE 4.
> ELEMENT ONE DATE SIZE 15 FORMAT YYYYMM
> ELEMENT TWO DATE SIZE 16 FORMAT MMDDYYYY
> ELEMENT THREE DATE SIZE 6
> ELEMENT FOUR DATE SIZE 8
> ELEMENT FIVE DATE SIZE 11
E Invalid date element/usage size.
> ELEMENT SIX DATE SIZE 10
.
.
.
> ITEM ONE DATATYPE DATETIME
> ITEM TWO
> ITEM THREE
> ITEM FOUR
> ITEM SIX DATATYPE PHDATE
E THE SPECIFIED DATA TYPE IS INVALID FOR THIS ELEMENT TYPE.

Chapter 2: PDL Statements
ELEMENT

PDL and Utilities Reference 55

Using the CAPTION Option
In the following example, the LANGUAGE element includes the captions "English", "French",
and "German" for the entry values "E", "F", and "G", respectively. If the corresponding item is
referenced by a field with a selection box, then the selection box displays the captions in place of
the entry values:
> ELEMENT LANGUAGE CHARACTER SIZE 1 &
> VALUE "E" CAPTION "English" &
> VALUE "F" CAPTION "French" &
> VALUE "G" CAPTION "German"

56 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
END STRUCTURE

END STRUCTURE
Ends an item substructure.

Syntax
END STRUCTURE

Discussion
The END STRUCTURE statement marks the end of a set of ITEM statements that define a
substructure. The BEGIN STRUCTURE statement marks the beginning of the substructure. The
ITEM statements form a substructure of the item that was most recently defined before the
BEGIN STRUCTURE statement.

For more information the BEGIN STRUCTURE statement, see (p. 28).

Example
For an example of the END STRUCTURE statement, see (p. 28).

Chapter 2: PDL Statements
EXECUTION TIME PARAMETERS (OpenVMS)

PDL and Utilities Reference 57

EXECUTION TIME PARAMETERS (OpenVMS)
Defines a default location for data files.

Syntax
EXECUTION TIME PARAMETERS usermode [DEFAULT]

LOCATION location

ETP usermode [DEFAULT] LOCATION location

usermode

The name of a user mode that has been defined in the dictionary.

DEFAULT

An optional word, used only for documentation.

LOCATION

Indicates the parts of an OpenVMS file specification that PowerHouse can use in combination
with file open names to find files in specific locations. The location is not used to locate subfiles.

Discussion
The ETP statement assigns a file location to a group of PowerHouse users who make up a user
mode. Use the USER MODE statement to declare each user mode and list its members or to
reference a user mode that already exists in the dictionary. PowerHouse uses the file location at
execution time to determine the complete file specification for accessing application data.

Security and Compiled Applications
The following information is compiled into QUIZ reports, QTP runs, and QUICK screens:
• ASC ID Method
• the name of the ASC and the association of the ASC with records and elements
• User Modes and locations specified in the ETP statement

If any of this information changes, the corresponding screens, reports, and runs need to be
recompiled.

The membership of ASCs and User Modes is dynamic. You can add IDs to and delete IDs from
ASCs without requiring that screens, reports, and runs be recompiled.

Examples
The file open name declared in the dictionary combines with the file location to create a complete
file specification. For example,

The location doesn’t override any part of the file specification given in the open name. For
example,

Open Name: MYFILE.DAT

File Location: [INVENTORY.TEST]

File Specification: [INVENTORY.TEST]MYFILE.DAT

Open Name: [INVENTORY.PROD]MYFILE.DAT

File Location: [INVENTORY.TEST]

58 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
EXECUTION TIME PARAMETERS (OpenVMS)

Suppose your dictionary contains the following statements:
> SYSTEM OPTIONS
> ASC ID METHOD PASSWORD
>
>USER MODE DEVELOPMENT &
> PASSWORD "DEV" &
> LOGONID TEST
>
> USER MODE PRODUCTION
> PASSWORD "prod" &
> LOGONID PROD
.
.
.
> EXECUTION TIME PARAMETERS DEVELOPMENT &
> LOCATION TEST:
> EXECUTION TIME PARAMETERS PRODUCTIONS &
> LOCATION PROD:

If you start a PowerHouse component with this dictionary, the component prompts you for a
password. If you enter "dev", you access data files pointed to by TEST. If you enter "prod", you
access data files pointed to by PROD.

If, instead of the SYSTEM OPTIONS statement in the previous example, the dictionary contains
> SYSTEM OPTIONS
> ASC ID METHOD LOGONID

then user, "test", accesses data files pointed to by TEST, and user, "prod", accesses data files
pointed to by PROD.

File Specification: [INVENTORY.PROD]MYFILE.DAT

Chapter 2: PDL Statements
EXIT

PDL and Utilities Reference 59

EXIT
Ends a PDL and PHDPDL session.

Syntax
EXIT

Discussion
The EXIT statement ends your session and returns control to the operating system or invoking
program.

EXIT and QUIT are interchangeable.

60 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
FILE

FILE
Defines a file and its attributes or identifies a relational database.

Syntax
FILE name ORGANIZATION file-organization [TYPE type]
 [option]...

name

Names a unique PowerHouse file name (not an operating system file name). It can be given to a
database to identify it to the PowerHouse dictionary. The name does not have to be the same as
the file's or database's physical name (see the OPEN option on (p. 63)).

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

ORGANIZATION file-organization

Determines the type of file access allowed. PowerHouse supports the following types of file
organizations:

DATABASE (MPE/iX, UNIX, Windows)
On MPE/iX, specifies that the file is an IMAGE database ("TYPE IMAGE").

On UNIX and Windows, specifies that the file is an Eloquence database ("TYPE
ELOQUENCE").

DIRECT
Specifies that records can be read sequentially or by record number. The first record is 0 (MPE/iX,
UNIX, Windows) or 1 (OpenVMS).

New records are added at the end of the file. Existing records can be updated, but not deleted.

INDEXED
Specifies that records can be read sequentially or by index value. Records can be added, updated,
and deleted.

Limit: An indexed file must have at least one INDEX statement.

RELATIONAL
Specifies that the file is a relational database.

RELATIVE (MPE/iX, OpenVMS)
The same as DIRECT, except that records can also be deleted. New records can be added in a
specific location by a record number. Deleting records leaves "gaps" in the file.

SEQUENTIAL
Specifies that records can only be read sequentially. New records are added to the end of the file.
Existing records can't be updated or deleted.

For information about the relationship between ORGANIZATION and TYPE, see (p. 67).

TYPE type

PowerHouse supports the following file types:

Platform Supported File Type

MPE/iX: ALLBASE, IMAGE, KSAM, KSAMXL, KSAM64, MPE

Chapter 2: PDL Statements
FILE

PDL and Utilities Reference 61

KSAM, KSAMXL, KSAM64 (MPE/iX)
KSAMXL file type specifies a Native Mode KSAM file system. These files allow re-use of deleted
records.

PowerHouse considers KSAM, KSAMXL, and KSAM64 files to be identical with respect to file
access from QUICK, QUIZ, and QTP.

ODBC (UNIX, Windows)
Windows: For MS SQL Server, use ODBC. UNIX: PowerHouse supports the DataDirect ODBC
connection to Microsoft SQL Server.

For information about the relationship between ORGANIZATION and TYPE, see (p. 67).

Options

ASCII|BINARY (MPE/iX)

ASCII indicates that short records are padded with blanks and the record sizes are in bytes.
BINARY pads short records with zeros, but the record sizes are in two-byte words. This is
important when the data is accessed with other software tools.

Limit: Valid only with direct, indexed, relative, and sequential files.

Default: ASCII

BLOCKING FACTOR n (MPE/iX)

Sets the number of records per block when QUTIL creates a file.

Limit: Valid only with direct, indexed, relative, and sequential files.

CAPACITY n (MPE/iX)

Sets the number of records allotted by QUTIL when creating a file.

Limit: Valid only with direct, indexed, relative, and sequential files.

Default: 1,023 records

OpenVMS: MBX, ORACLE, RDB, RDB/VMS, RMS

UNIX: C-ISAM, SYBASE, ORACLE, DB2, ODBC, ELOQUENCE

Windows: DOS, UNIXIO, DISAM, DB2, ODBC, ORACLE, SYBASE, ELOQUENCE

Platform Supported File Type

FILE Options

ASCII|BINARY BLOCKING FACTOR

CAPACITY CHRONOLOGICAL|NOCHRONOLOGICAL

CREATE|NOCREATE [NO]CRITICAL ITEM UPDATE

DEFAULT DATE [IS] NULL DESCRIPTION

HIGH [FILL] [HEXADECIMAL] string KEYFILE

LOW [FILL] [HEXADECIMAL] string NULL VALUES [NOT] ALLOWED

OPEN OWNER

PASSWORD RECORD FORMAT

REUSE SCOPE

SUPERSEDE USERID

62 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
FILE

CAPACITY n (OpenVMS)

For relative files, capacity specifies the maximum number of records allowed. RMS will not
expand the file past the specified number of records.

The capacity is also used to determine the initial file size for RMS indexed, sequential, and direct
files. The initial file size is set to (capacity X record size)/512=number of blocks.

For direct, indexed, and sequential files, and for relative files without a specified capacity, RMS
automatically expands the file to accommodate new records within your system’s limits.
PowerHouse does not assign a default capacity.

For MBX files, the capacity specifies the size of the mailbox, which limits the number of messages
that can be stored.

Limit: Not available for relational databases.

CHRONOLOGICAL|NOCHRONOLOGICAL (UNIX, Windows)

The CHRONOLOGICAL option states that values for a repeating index are stored
chronologically in their order of entry. If you specify the NOCHRONOLOGICAL option, values
are stored randomly, using any available space in the file.

CREATE|NOCREATE

Notifies QUTIL to create a file when the CREATE ALL statement is specified, and not to create a
file when NOCREATE is specified.

The CREATE|NOCREATE options are overridden when QUTIL CREATE is used to explicitly
specify the file.

When two or more files of the same file type use the same open name, this option designates
which file is to be declared to the file management system when the file is created. QUTIL creates
the first file in alphabetical order which does not have the NOCREATE option. The specified file
determines the record length, number of keys, key positions, and other key attributes when the file
is created.

OpenVMS: When using the PhD Screen System to maintain your dictionary, NOCREATE does
not allow the file to be created with the CREATE Action field command on the PhD Record
Screen. Instead, the File Maintenance Screen must be used to create the file. This option enables
application and dictionary managers to prevent general dictionary users from accidentally losing
data by recreating existing files.

Limit: Not available for relational files.

Default: CREATE

[NO]CRITICAL ITEM UPDATE (MPE/iX, UNIX, Windows)

When critical item update is enabled for a database, IMAGE and Eloquence allow detail dataset
key items to be updated in place using DBUPDATE instead of deleting the record and then adding
it. Critical item update is used only with detail dataset records.

Critical item update capability must be specified in PowerHouse and enabled externally by the
database administrator. When critical item update is enabled for both the dictionary and the
database, all data updates performed on detail datasets will update in place. If critical item update
is enabled only for the database, or only for PowerHouse, then the item is deleted and added using
DBDELETE and DBPUT.

The use of this option does not change the chronological order of the affected data.

The use of this option results in significantly faster updates of detail datasets. A critical item is a
search item (also known in PowerHouse as a Key item) or sort item for the detail data set.

Limit: Valid only for IMAGE files (MPE/iX) and Eloquence files (UNIX, WIndows).

Default: NO CRITICAL ITEM UPDATE

Chapter 2: PDL Statements
FILE

PDL and Utilities Reference 63

DEFAULT DATE [IS] NULL

Enables NULL support for date fields in relational databases. Specifies that when a user enters a
value of 0 in a date field, the date column is set to null. Setting the value to null lets users enter
dates with a value of 0, but prevents PowerHouse from storing the date as 0 which is an invalid
value in the database. Dates that are read as null are automatically converted to 0.

DESCRIPTION string [[,]string]...

Specifies a description that serves as documentation about a file. The description can be seen in
QSHOW reports.

Limit: 60 characters per string.

HIGH [FILL] [HEXADECIMAL] string
LOW [FILL] [HEXADECIMAL] string

Specifies the high and/or low fill character used to formulate SQL queries for generic (@ and @@)
search criteria.

If you use HEXADECIMAL, the string must be two hexadecimal digits. If you don't use
HEXADECIMAL, the string must be a single ASCII character.

The defaults are database specific:

Limit: Valid only for ORGANIZATION RELATIONAL (databases).

For information about using the low and high fill options, see (p. 68).

KEYFILE filespec (MPE/iX)

Indicates the name to be used by QUTIL when creating a KSAM key file. If the option is omitted,
QUTIL creates a default from the file open name.

Using the FILE statement’s KEYFILE option with KSAMXL files causes an error.

Limit: Valid only for KSAM files.

NULL VALUES [NOT] ALLOWED

Determines whether PowerHouse enables null value support for a particular database. If support
is enabled, PowerHouse maintains null values in expressions, conditions, and aggregate functions,
and nulls are stored when items are not initialized. If support is disabled, null character items are
initialized to spaces (or dictionary initial values), and null date or numeric items are initialized to
zeros (or dictionary initial values).

Default: NULL VALUES NOT ALLOWED

OPEN filespec|open-name-string

Specifies a valid filespec or database that is accessed and associated with the name that identifies it
to the PowerHouse dictionary.

Database HIGH fill character LOW fill character

ALLBASE/SQL HEX "FF" HEX "00"

DB2 HEX "5A" HEX "00"

MS SQL Server HEX "7A" HEX "00"

ODBC HEX "FF" HEX "00"

Oracle Rdb HEX "FF" HEX "00"

ORACLE HEX "7F" HEX "01"

SYBASE the highest printable character on the machine HEX "20"

64 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
FILE

filespec
Specifies a valid file specification. It can be a physical file or database name, a file equation
(MPE/iX), a logical name (OpenVMS), or an environment variable (UNIX, Windows).

Default: The default filespec is the name after the FILE keyword.

filespec (Eloquence)
The format of an OPEN name for Eloquence is

[[server_name][:service_name]/]database_name

For example, nt001:eloqdb/qdb

Server_name is the name or IP address of the system running the database server. If the server is
not specified in the PowerHouse open name, Eloquence first checks the value of the environment
variable, EQ_DBSERVER. If EQ_DBSERVER is not set, the value of server defaults to the local
system.

Service_name is the service name or port number of the database server. If it is not included in the
open name, the Eloquence software uses its own rules to determine which service to use. It first
checks the value of the environment variable, EQ_DBSERVER and, if that’s not set, the default
service name "eloqdb" is assumed.

open-name-string (OpenVMS, UNIX, Windows)
A string which is passed directly to the database server in order to gain access to the database.

An open-name-string contains delimited parameters such as userid, password, physical database
name, network connection parameters, and possibly other parameters. If you include a userid and
password in the open-name-string, it must resemble the following format:

Please refer to your database documentation for more details on acceptable parameters, format,
and syntax for your particular database's valid open specifications.

UNIX, Windows: The open-name-string may be an environment variable, which must be
preceded by a dollar sign ($). If the string contains a required dollar sign, which is not used to
specify an environment variable, use the backslash (\) to interpret it literally. For example:
ORACLE@OPS\$<userid>

MPE/iX: For ALLBASE/SQL, the filespec must point to the root DBEnvironment.

The PDL file name is truncated at the first non-alphanumeric character or after
the first eight characters (six with IMAGE), whichever occurs first.

OpenVMS: Files of type MBX (mailbox) can use only logical names, not file specification.

The square brackets are required when you enter a directory name.

Limit: Can contain up to 70 characters. Can use any valid combination of node,
device, directory, extension, and version number. Consult OpenVMS
documentation for more information about different parts of the file
specification.

UNIX,
Windows:

An environment variable must be preceded by a dollar sign ($).

Limit: This form of the OPEN option cannot be used to identify databases other
than Eloquence.

SYBASE <database_physical_name>@userid/password

ORACLE ORACLE@userid[@<network _connection_parameters>]/password

DB2 not allowed

ODBC not allowed

Chapter 2: PDL Statements
FILE

PDL and Utilities Reference 65

For ORACLE databases, the string, "ORACLE@", is inserted at the beginning of the supplied
open-name-string, if it does not exist. The at-sign is a delimiter used if other options are specified.

Default: If no OPEN options are specified, the database server will look for default environment
variables or logicals that are specific to running that database's environment.

OWNER name

Specifies the owner for tables in a database when none is explicitly indicated. Also specifies the
default owner of modules created by PowerHouse in ALLBASE/SQL.

Some relational databases support owners for entities such as modules or tables. If a program
needs to access an entity owned by another user, you specify the owner as part of the entity name.

Limit: Valid only for ORGANIZATION RELATIONAL (databases).

Defaults: username (MPE/iX) or logonid (OpenVMS, UNIX, Windows).

Note: The program parameters, noshift, upshift, downshift, and SET statement shifting options
that are in use may affect the case-sensitivity of the name literal.

PASSWORD string (MPE/iX)

Specifies the password required by PowerHouse for read/write access to the entire database.

Limit: 8 characters. Valid only for IMAGE.

Default: If the password is not supplied, PowerHouse uses a semicolon (;) for accessing or
building a database, but only the database creator has write access, regardless of the file and
element security specified. All others have read only access.

PASSWORD string (OpenVMS, UNIX, Windows for ORGANIZATION RELATIONAL)

If the password is not included in the open-name-string of the OPEN option, the PASSWORD
option specifies the password to be used to connect to the database server. Passwords are set up by
the database administrator.

PowerHouse combines the open-name-string, USERID, and PASSWORD options into a valid
database open specification. The separator before a password is a slash (/), which PowerHouse
inserts if the password does not start with it.

UNIX, Windows: The string may be an environment variable, which must be preceded by a dollar
sign ($).

This option is required if a password is not included in the OPEN open-name-string option or in
an associated DATABASE resource file statement.

PASSWORD string (UNIX, Windows for ORGANIZATION DATABASE)

For Eloquence, this clause is used to specify a master password for the database. For PowerHouse
to work correctly, this password must give full read/write access to all data in the database. It
must be a string of the form

[password]/user

This must match an already existing "user" within the Eloquence DBEnvironment. This is true
whether the database is created outside of PowerHouse or is created by QUTIL.

If the Eloquence database is to be created by QUTIL, the specified "[password]/user" must
identify a user with DBA (Database Administrator) privileges in the DBEnvironment. QUTIL
generates the correct code to grant this user full access to all data in the database.

If the Eloquence database was created by an outside process, the "[password]/user" only needs to
identify a user with full access to the data and DBA privilege is not required.

If no master password is provided for an Eloquence database, the Eloquence utilities use their own
rules to determine what user(s) to use. They first look for the environment variables EQ_DBUSER
and EQ_DBPASSWORD. If these are not found, the utility defaults are used. All of the utilities
used by QUTIL will use the default "dba" user. Data access from the other products will use the
default "public" user.

66 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
FILE

Note that, if no master password is provided for an Eloquence database in PDL, QUTIL may still
be able to create the database, but will not be able to grant access to the data to the database
creator.

RECORD FORMAT FIXED|VARIABLE (OpenVMS)

Establishes whether the file contains fixed-length or variable-length records. Direct files must have
a fixed format.

Limit: Not valid for relational files.

Default: The default for MBX files is variable; the default for other files is fixed.

REUSE (MPE/iX)

Enables the record reuse capability of Native Mode KSAM files. This option causes an error if
used with KSAM file types.

Limit: Valid only with KSAMXL file types.

Default: No reuse capability.

SCOPE TEMPORARY|PERMANENT (OpenVMS)

Determines how long a file of type MBX (mailbox) exists after it is created. You must have the
OpenVMS system privilege PRMMBX and SYSNAM in order to create a permanent mailbox file
in PowerHouse.

Temporary mailboxes are deleted by OpenVMS automatically when no channels are assigned to
it; that is, when no one is using it. Use QUTIL to delete permanent mailboxes.

For more information about mailboxes, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

Limit: Applies only to mailbox files.

Default: TEMPORARY

SUPERCEDE (OpenVMS)

Specifies that existing versions of the file should be overwritten each time the file is created.

SUPERCEDE is used in conjunction with the version number on the open name to designate
whether the creation of a file will or will not overwrite an existing version of the file.

Default: By default, the PhD Screen System doesn’t overwrite existing versions.

USERID identifier|string (OpenVMS, UNIX, Windows)

If the userid is not included in the open-name-string of the OPEN option, the USERID option
specifies the userid to be used to connect to the database server. Userids are set up by the database
administrator.

PowerHouse combines the open-name-string, USERID, and PASSWORD options into a valid
database open specification. The separator before a userid is an at-sign (@), which PowerHouse
inserts if the userid does not start with it.

UNIX, Windows: The string may be an environment variable, which must be preceded by a dollar
sign ($).

Supersede=Yes Supersede=No

Open name includes a version
number

The existing data file is
overwritten

An error message is issued

Open name does not include
the version number

A new version of the data file
is created

A new version of the data file
is created

Chapter 2: PDL Statements
FILE

PDL and Utilities Reference 67

Limit: Used only for SYBASE and ORACLE databases. This option is required if a userid is not
included in the OPEN open-name-string option or in an associated DATABASE resource file
statement.

Discussion
The FILE statement is used to declare a PowerHouse file. PowerHouse uses the file definition
when opening, closing, creating, and deleting files. Every file must have a name and an
organization. Files are referenced in PowerHouse by the name that you assign. The actual physical
and logical files that PowerHouse gets its data from are defined by the file open name.

The FILE statement can also be used to identify a relational database to the PowerHouse
dictionary. However, the DATABASE statement is recommended.

For more information on relational databases, see the PowerHouse and Relational Databases
book.

Relationship Between ORGANIZATION and TYPE

File organization and file type are related. For example, relational databases must use the
organization, RELATIONAL. Mailbox files (type MBX) must use the organization,
SEQUENTIAL. RMS files can use any organization except RELATIONAL. MPE/iX and
OpenVMS files can use RELATIVE organization, whereas, UNIX and Windows files cannot.

File organization is required in the FILE statement, but file type is required only for
RELATIONAL. If the file type is not specified, PowerHouse determines it from the file
organization. When the file type is specified, PDL confirms the appropriate type for the file
organization.

The following table illustrates the relationship between file organization and file type:

Compatibility Between Eloquence and IMAGE

Although PowerHouse treats Eloquence databases as if they were IMAGE databases, there are
some functional differences based on the internal structures of the two databases. Most of these
are hidden because Eloquence traps the IMAGE intrinsic calls and maps them to Eloquence calls.
For details of the internal differences, see the following page on the Marxmeier Web site:

http://www.hp-eloquence.com/hp3k

Note that an Eloquence database will not have the same record numbers as the corresponding
IMAGE database nor does Eloquence use the same algorithms for positioning MASTER dataset
entries. Synonym chains and migrating secondaries do not exist in Eloquence. Applications should
not depend on record numbers or the ability to return records in a specific sequence before and
after adds, updates, and deletions.

Organization Default Type Alternate Type

RELATIONAL no default MPE/iX: ALLBASE

OpenVMS: ORACLE, RDB, RDB/VMS

UNIX: ORACLE, SYBASE, ODBC, DB2

Windows: ORACLE, DB2, ODBC, SYBASE

DATABASE IMAGE (on MPE/iX);

ELOQUENCE (on UNIX,
Windows)

DIRECT,
SEQUENTIAL

MPE/UNIXIO/RMS/DOS

RELATIVE MPE/RMS

INDEXED KSAM/C-ISAM/RMS/DISAM KSAMXL, KSAM64

68 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
FILE

IMAGE Emulators (UNIX, Windows)

PowerHouse 4GL supports Eloquence. Other third party IMAGE emulators exist that use the
same call interface. This call interface is available on all supported UNIX platforms (HP-UX, AIX,
and Solaris) as well as Windows. As a result, PowerHouse treats other third party IMAGE
emulators as it treats Eloquence, as an IMAGE database. Cognos has not tested third party
IMAGE emulators and does not directly support them. If an issue arises that can be duplicated
using Eloquence, it will be treated as a PowerHouse 4GL or PowerHouse Web issue. If it cannot
be duplicated using Eloquence, it will be treated as an issue with the third party IMAGE emulator.
Cognos will work with the third party to resolve the issue.

LOW and HIGH FILL Options

When a user specifies generic search criteria, PowerHouse uses fill characters in the BETWEEN
clauses of queries.
> SQL DECLARE EMPLIST CURSOR FOR &
> SELECT EMPLOYEE, FIRST_NAME, LAST_NAME, &
> BRANCHES.BRANCH, BRANCH_NAME &
> FROM EMPLOYEES, BRANCHES &
> WHERE EMPLOYEES.BRANCH = BRANCHES.BRANCH
> ACCESS EMPLIST
> CHOOSE FIRST_NAME PARM PROMPT "Enter a name: "
.
.
.

If the user enters K@ as the generic search criteria in the preceding example, the following
BETWEEN clause of the SQL query is built using low and high fill characters:
BETWEEN 'Kll' AND 'Khh'

where ll is the low fill character and hh is the high fill character. The default fill characters depend
on the type of database.

If the search criteria is K@@, the BETWEEN clause is
BETWEEN 'Kll' AND 'hh'

For more information, see "DB2: Determining the High and Low Fill Characters" (p. 37).

Chapter 2: PDL Statements
INDEX

PDL and Utilities Reference 69

INDEX
Declares an index in the last-declared record-structure.

Syntax
INDEX name [option]...

name

Specifies a unique name for an index.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

Options

ALTERNATE|PRIMARY

Specifies whether the index is an alternate or primary index. An indexed record-structure always
contains one primary index, and can also contain alternate indexes. When an indexed file is
defined, the first index becomes the primary index, by default, and all subsequent indexes become
alternate indexes:

ASCENDING|DESCENDING

Indicates the order in which segments are stored in the index.

MPE/iX: ASCENDING can be specified, but is for documentation only. DESCENDING is not
valid on MPE/iX.

UNIX, Windows: The default is overridden when you specify the ASCENDING or
DESCENDING option on the SEGMENT statement. For information on using the ASCENDING
and DESCENDING options of the SEGMENT statement, see (p. 95).

Limit: The ASCENDING option results in an error for IMAGE (MPE/iX).

Default: ASCENDING (OpenVMS).

LINKS TO record-structure [SORT ON item] (MPE/iX, UNIX, Windows)

Required for, and only valid with, IMAGE and Eloquence detail datasets. LINKS TO identifies
which master or automatic master the detail dataset is associated with. SORT ON defines the
IMAGE/Eloquence sort-item for the index that must be defined in the record-structure for the
index, but cannot be a segment within this index, nor can a sort-item be part of the
multi-segmented index within a record.

INDEX options

ALTERNATE|PRIMARY ASCENDING|DESCENDING LINKS TO

NULL OMNIDEX|TPI ORDERED|UNORDERED

REPEATING|UNIQUE

MPE/iX: This option does not apply to IMAGE master and automatic master datasets.

OpenVMS: For RMS files, primary indexes cannot be changed. PowerHouse deletes and
adds any record whenever the index value for that record needs to be updated.

70 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
INDEX

NULL [VALUE [IS] char] (OpenVMS)

Specifies that records with a null value for the index item are not to be indexed by that key. The
null value for numeric and date items is always 0. By default, the null value for character items is
0, but this can be changed with the VALUE option. Not indexing null values can often save
unnecessary overhead.

When the NULL option is not specified, all records are indexed, regardless of the index value. If
the NULL option is specified, no index entry is created for records whose index value is null. Null
is valid only for alternate indexes.

OMNIDEX|TPI (MPE/iX, UNIX, Windows)

Indicates a TPI (Third Party Indexing) or OMNIDEX sorted-sequential index within
PowerHouse. PowerHouse supports TPI and OMNIDEX index retrievals directly through
IMAGE or Eloquence. TPI and OMNIDEX provide the same functionality.

Because TPI indexes can only be associated to IMAGE or Eloquence databases, you must declare
your files with an organization of DATABASE.

Limit: Not valid with the following options: ASCENDING, LINKS TO, ORDERED, and
UNIQUE.

ORDERED|UNORDERED (MPE/iX)

Specifies whether the index records for duplicate keys are stored in chronological or random
order.

Limit: Valid only for KSAM or KSAMXL indexes.

REPEATING|UNIQUE

REPEATING specifies that records may have the same index values. UNIQUE specifies that every
record in the file must have a unique index value.

MPE/iX: Indexes in IMAGE master and automatic master datasets are always unique; the
REPEATING option does not apply. The UNIQUE option is incompatible with KSAM or
KSAMXL indexes if the ORDERED or UNORDERED options have been specified.

Default (MPE/iX): REPEATING for all files except IMAGE master and automatic master
datasets.

Discussion
The INDEX statement defines an index, which is made up of between one and eight segments. A
change to any of the index attributes requires you to unload, create, and reload any associated
files and record-structures.

The INDEX statement is not valid with DIRECT, RELATIVE, SEQUENTIAL, or RELATIONAL
file organizations.

MPE/iX, UNIX, Windows: With IMAGE and Eloquence, each master and automatic master must
have exactly one index but a detail dataset can have 0-16 indexes. The index for an automatic
master dataset is the entire record.

MPE/iX: With KSAM or KSAMXL, at least one index must be declared, and a maximum of 16
physical indexes can be declared. (Although PDL does not enforce this restriction, QUTIL passes
only 16 valid indexes.)

OMNIDEX Indexes

Segments in OMNIDEX indexes need not be contiguous or of the same data type.

OMNIDEX indexes in PowerHouse support the following retrieval mechanisms:
• fixed-value range retrieval
• relational retrieval (<,<=,>,>=) for single-segment ASCII indexes
• PowerHouse generic (partial-key) retrieval for single-segment ASCII indexes
• OMNIDEX wildcard-character retrieval (#, ?, @) for single-segment ASCII indexes

Chapter 2: PDL Statements
INDEX

PDL and Utilities Reference 71

Before using OMNIDEX indexes for PowerHouse retrievals, you must create them with
OmniUtil. For more information about OmniUtil, see the DISC documentation.

The OMNIDEX index definition in PDL must match the OmniUtil definition exactly. PDL does
not report discrepancies between the two definitions at parse time.

OMNIDEX indexes are verified at run time.

Index Compatibility in Eloquence and IMAGE

On MPE/iX for IMAGE, PowerHouse provides support for both B-Tree indexes and Third Party
Indexing (TPI) indexes. B-Tree indexes are part of Hewlett Packard's standard IMAGE product
and are identified in PDL using the INDEXED option on the RECORD statement for a MANUAL
or AUTOMATIC MASTER dataset. QUTIL creates B-Tree indexes based on the INDEXED
option. TPI indexes are extensions to the database provided by third party products. These are
identified in PDL using the TPI or OMNIDEX option on the INDEX statement, but are not
created by QUTIL. They must be added to the database after it is created using a third party
utility. The functionality provided by B-Tree and TPI indexes is similar, but not identical.

In Eloquence, most TPI functionality is provided by the database without any need for a third
party product. As is the case with IMAGE, TPI indexes are not created by QUTIL, but must be
added after the database is created using the Eloquence utility, dbutil. At the database level, all
indexes are implemented using the same technology. The low level calls that PowerHouse makes
for B-Tree index access can be used with both the MASTER dataset search items created by
QUTIL and the extra indexes added using dbutil to give results that are compatible with B-Tree
access in IMAGE. Similarly, the low level calls that PowerHouse makes for TPI access can be used
with both types of index to give results that are compatible with TPI access in IMAGE.

It is not possible for an index to be both TPI and B-Tree, either in IMAGE or in Eloquence.

PowerHouse support for Eloquence mimics IMAGE as much as possible even where Eloquence
does not have the same restrictions as IMAGE. This was done so that the functionality and user
expectations of an application migrated from IMAGE to Eloquence matches the original as much
as possible. In order to provide this compatibility, the following rules apply to Eloquence.

For B-Tree indexes,
• You must specify INDEXED on the RECORD statement for your MASTER file.
• QUTIL creates B-Trees.
• Generic or ranged retrieval in QUICK will stop retrieving records as soon as a record is

changed. Although this restriction is not required for Eloquence, it matches the IMAGE
restriction. This does not apply to TPI.

For TPI indexes,
• You must specify TPI or OMNIDEX on the INDEX statement.
• QUTIL does not create TPI indexes. They must be added using a product specific utility.

How PowerHouse Creates Indexes

As it is more efficient to maintain fewer indexes, PowerHouse will merge indexes where possible.

If multiple indexes for a record-structure share the same initial subset of segments, then none of
the shorter indexes can be the PRIMARY index.

PowerHouse will create one physical index for the longest index if two or more logical indexes
meet all of the following criteria:
• the segments of the smaller indexes are a subset of the segments in the longer index
• the segments are in the same order
• the indexes have the same initial segment
• their attributes do not conflict (such as index ordering) and do not impact index integrity.

(OpenVMS, UNIX, Windows)

OpenVMS, UNIX and Windows Example
Consider index X that is made up of segment A, index Y that is made up of segments A and B, and
index Z that is made up of segments B and A.

72 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
INDEX

A physical index will be created for index Z since the initial segment is different from X and Y.
Whether one or two physical indexes for indexes X and Y is created is dependent on the index
attributes for X and Y. If index X is repeating, then PowerHouse will only create one physical
index for index Y since it can be used for both indexes. If, however, index X is unique, two
physical indexes are created since a separate index is needed for index X to ensure the entries for
segment A are unique.

MPE/iX
For KSAM and IMAGE
• the segments in the index must be contiguous. For example, if you have a Record X with Item

A, Item B and Item C, then Index ABC is valid, but Index AC is not.
• the segments in the index are in the same order as the Record. For example, if you have

Record X with Item A, Item B, and Item C, then Index BA would not be valid because the
segments in the index don’t appear in the same order as the corresponding items in the
Record.

Limits:

Examples
In this generic example, ORDER-DETAIL is a repeating index; the same account number can
occur in more than one record.
> FILE ORDER-DETAIL &
> ORGANIZATION INDEXED &
> OPEN ORDERDET
>
> RECORD ORDER-DETAIL
> ITEM ORDER-NUMBER
> ITEM CUSTOMERKEY
> ITEM PART-NUMBER
> ITEM PART-VARIANT
> ITEM QUANTITY-ORDERED
> ITEM QUANTITY-SHIPPED
>
> INDEX ORDER-DETAIL &
> PRIMARY REPEATING
> SEGMENT ORDER-NUMBER
>
> INDEX ORDER-PART &
> ALTERNATE REPEATING
> SEGMENT PART-NUMBER
> SEGMENT PART-VARIANT

To define an index on two items (a multi-segment index):
> FILE POSITION &
> ORGANIZATION INDEXED
> DESCRIPTION "This file contains" &
> "a record of each position. The POSITION" &
> "is uniquely identified by DIVISION." &
> "For example, the position programmer (PRG)" &
> "can exist many times. However, the entry PRG" &
> "marketing division (MKT) is unique."

MPE/iX: For IMAGE, indexes cannot overlap. OMNIDEX indexes are not created by
PowerHouse. They must be added to the database using OmniUtil.

OpenVMS: Even though "n" number of logical indexes may be described, there is a
limitation that only 8 physical indexes may be defined against an RMS file.

UNIX,
Windows:

There is no limit to the number of indexes that a C-ISAM or DISAM file can
have, however, it is more efficient to maintain fewer indexes. The number of
segments a C-ISAM or DISAM file can have is 8, with the total segment size a
maximum of 120 bytes.

Chapter 2: PDL Statements
INDEX

PDL and Utilities Reference 73

> RECORD POSITION
> ITEM POSITION
> ITEM DIVISION
> ITEM POSITION-TITLE
>
> INDEX POSITION UNIQUE
> SEGMENT POSITION
> SEGMENT DIVISION

In the preceding example, POSITION is a unique index; only unique positions can be entered.
POSITION is the most significant segment in the index.

MPE/iX
The following declares three OMNIDEX indexes on the BILLINGS IMAGE database. In this
example:
• EMPLOYEE-NO indicates a non-OMNIDEX index that represents an IMAGE search item.
• EMPNO-OMNIDEX indicates an OMNIDEX index, for which the segment is

EMPLOYEE-NO.
• PROJNO-OMNIDEX indicates a multi-segment OMNIDEX index. Up to eight segments can

be declared in an OMNIDEX index.
• CPY-OMNIDEX indicates a single-segment ASCII OMNIDEX index.
> FILE BILLINGS ORGANIZATION DATABASE TYPE IMAGE
>
> RECORD BILLINGSINDEX ORGANIZATION AUTOMATIC
> ITEM EMPLOYEE-NO
>
> INDEX EMPLOYEE-NO UNIQUE
> SEGMENT EMPLOYEE-NO
>
> RECORD BILLINGS ORGANIZATION DETAIL
> ITEM EMPLOYEE-NO
> ITEM MONTH
> ITEM PROJECT-NO
> ITEM BILLING
> ITEM COMPANY
>
> INDEX EMPLOYEE-NO LINKS TO BILLINGSINDEX
> SEGMENT EMPLOYEE-NO
>
>
>
>
>
> INDEX EMPNO-OMNIDEX OMNIDEX
> SEGMENT EMPLOYEE-NO
> INDEX PROJNO-OMNIDEX OMNIDEX
> SEGMENT EMPLOYEE-NO
> SEGMENT PROJECT-NO
> SEGMENT BILLING
>
>
>
> INDEX CPY-OMNIDEX OMNIDEX
> SEGMENT COMPANY

74 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ITEM

ITEM
Declares an item in the last declared record-structure.

The ITEM statement is not valid for relational files.

Syntax
ITEM element [option]...

element

Names an element to be included as an item in the record-structure. The element must have
already been declared in an ELEMENT statement.

Options
The options are CREATE, DATATYPE, OCCURS, REDEFINE, and SELECT.

CREATE

Instructs QUTIL to create this item when creating a file. Useful for specifying which item to create
in an item redefinition.

DATATYPE type [SIGNED|UNSIGNED] [SIZE n [BYTES]]

Establishes how item values are stored. The type and size of the corresponding element determines
the allowed and default item datatypes and sizes.

DATATYPE type
The PowerHouse datatypes are:

Limit: Items based on character elements must use the datatype CHARACTER or VARCHAR,
which can accommodate any ASCII letter, digit, symbol, or space. (There is no restriction,
however, against using non-ASCII characters in CHARACTER or VARCHAR fields.)

Items based on date elements can use the datatype DATETIME, JDATE, PHDATE, VMSDATE
(OpenVMS), ZDATE, INTERVAL, or any numeric datatype. Items based on numeric elements can
use FLOAT, FREEFORM, INTEGER, PACKED, ZONED, or INTERVAL.

Default: PowerHouse sets the datatype according to the following table:

CHARACTER DATETIME FLOAT

FREEFORM G_FLOAT (OpenVMS) INTEGER

INTERVAL JDATE PACKED

PHDATE VARCHAR VMSDATE (OpenVMS)

ZDATE ZONED

Element type Element size Default datatype

CHARACTER n/a CHARACTER

NUMERIC 1 to 9 INTEGER

NUMERIC 10 and over FLOAT

DATE 6 PHDATE

DATE 8 INTEGER

Chapter 2: PDL Statements
ITEM

PDL and Utilities Reference 75

NUMERIC
Indicates that the datatype, ZONED, is to have a type of LEADING SIGN NUMERIC rather than
RIGHT OVERPUNCHED NUMERIC.

Limit: Valid only for ZONED datatypes.

SIGNED|UNSIGNED
Indicates whether the INTEGER, PACKED, and ZONED datatypes are SIGNED or UNSIGNED.
INTEGER SIGNED can store negative values, but INTEGER UNSIGNED cannot. ZONED and
PACKED datatypes can store positive or negative numbers, regardless of whether SIGNED or
UNSIGNED is specified. The SIGNED and UNSIGNED options are mutually exclusive and must
immediately follow the datatype.

Limit: Valid only for INTEGER, PACKED, and ZONED. SIGNED and UNSIGNED must
immediately follow the datatype.

Default: SIGNED for datatypes INTEGER and PACKED; UNSIGNED for ZONED.

SIZE n [BYTES]
Specifies the storage size of the item.

Default: The default storage size depends on the element size.

The following table illustrates element size and default item size for character and numeric
datatypes:

The following table illustrates element size and default item size for date datatypes:

Datatype Element Size Default Item Size

CHARACTER 1 to 2047 same

FLOAT 1 to 6

7 to 16

4

8

FREEFORM 1 to 31 same

INTEGER 1 to 4

5 to 9

10 to 141

15 to 311

10 to 312

2

4

6

8

8

INTERVAL 16 8

PACKED 1 to 31 FLOOR(n/2) + 1

ZONED 1 to 31 same

1 PDL and PHDPDL with INTSIZE6 (OpenVMS)
2 PHDPDL and PDL with NOINTSIZE6 (OpenVMS)

Datatype Element Size Default Item Size

DATETIME 16 8

FLOAT 61

81

4

8

76 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
ITEM

For more information about item datatypes and sizes, see Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

OCCURS n

Specifies the number of times an item repeats (in an array).

Limit: 1 to 4096. QDESIGN has a limit of 255 occurrences.

Default: 1

REDEFINES [ITEM] item

Indicates that this item redefines the most recently declared item on the same level.

Limit: ITEM is for documentation only.

SELECT value

Assigns a selection value that identifies a particular record-structure in a file that contains more
than one record-structure. You must specify a value that's consistent with the type and size of the
element. You can declare a selection value for more than one item in a record-structure.

Items that are defined with SELECT values serve as identifiers for coded record-structures. When
the record-structure is accessed by PowerHouse, each record in the file is read, but only those
records with the appropriate selection value are retrieved. Selection values also serve as
unalterable initial values when a record is created.

Limit: Eight characters for CHARACTER items; nine digits for NUMERIC items.

Discussion
The ITEM statement defines an item in a record-structure. All of the ITEM statements for a
particular record-structure must come immediately after the RECORD statement. PDL does not
define elements automatically from item definitions, so the elements that are used in ITEM
statements must already have been defined in ELEMENT statements. Note that the maximum
number of items allowed in a record-structure is 1023.

Examples
The following PDL statements set up a record-structure. In this example:
• The DATATYPE option is specified on the numeric items within the substructure. Otherwise,

the items would not contain the correct portion of the substructured data item.

INTEGER 6 or 8 4

JDATE 6 or 8 2

PACKED 6

8

4

5

PHDATE 6 or 8 2

VMSDATE (OpenVMS) 8 8

ZDATE 8 6

ZONED 6

8

6

8

1 Dates with four-digit years have element size 8; dates with two-digit years have element size 6.

Datatype Element Size Default Item Size

Chapter 2: PDL Statements
ITEM

PDL and Utilities Reference 77

• In this example, using the REDEFINES option allows the employee number to be referenced
as either numeric or character, depending on the specified item name.

> FILE INVOICE-MASTER &
> ORGANIZATION INDEXED &
> OPEN INVOMAS
>
>ELEMENT DATE_INVOICE &
> DATE CENTURY INCLUDED &
> DEFAULT ITEM DATATYPE ZONED &
> SIZE 8

> RECORD INVOICE-MASTER
> ITEM INVOICE-NUM
> ITEM CUSTOMER
> ITEM EMPLOYEE
> ITEM CUSTOMER-ORD-NUM
> ITEM TERMS
> ITEM INVOICE-PAID
> ITEM DATE-INVOICE DATATYPE ZONED SIZE 8
> BEGIN STRUCTURE
> ITEM DATE-YEAR DATATYPE ZONED SIZE 4
> ITEM DATE-MONTHDAY DATATYPE ZONED SIZE 4
> BEGIN STRUCTURE
> ITEM DATE-MONTH DATATYPE ZONED SIZE 2
> ITEM DATE-DAY DATATYPE ZONED SIZE 2
> END STRUCTURE
> END STRUCTURE
.
.
> ELEMENT NEXT-EMPLOYEE NUMERIC SIZE 5
> ELEMENT NEXT-EMPLOYEE-CHAR CHARACTER SIZE 4
.
.
> FILE CONTROL ORGANIZATION DIRECT
> RECORD CONTROL
> ITEM NEXT-EMPLOYEE
> ITEM NEXT-EMPLOYEE-CHAR &
> REDEFINES NEXT-EMPLOYEE

The following example shows how to use the SELECT option of the ITEM statement to
implement coded record-structures. SELECT causes this record-structure to only retrieve records
from the file CONTACTS that have "C" in the RECORDTYPE item.
> FILE CONTACTS &
> ORGANIZATION INDEXED &
> OPEN CONTACTS
> RECORD CUSTOMERS
> ITEM CUSTOMER-KEY
> BEGIN STRUCTURE
> ITEM RECORD-TYPE &
> SELECT "C"
> ITEM ACCOUNT-NUMBER
> END STRUCTURE
> ITEM CUSTOMER-NAME
> ITEM STREET
> ITEM CITY
> ITEM PROVSTATE
> ITEM POSTALZIP
> ITEM PHONE-NUMBER
>
> INDEX CUSTOMERS &
> PRIMARY UNIQUE
>
> SEGMENT CUSTOMER-KEY

78 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
LOAD

LOAD
Loads the current PDL definitions into the dictionary.

Syntax
LOAD

Discussion
PDL and PHDPDL don't enter definitions into the dictionary when they first read and accept
them. Instead, they store all the definitions in memory until the LOAD statement is entered and
then load them into the dictionary all at once.

PDL and PHDPDL don't perform the load if they detect any errors up to the LOAD statement.
After the LOAD statement, PDL and PHPDL perform an implicit CANCEL statement.

Examples
In the following example, the CREATE DICTIONARY statement creates a dictionary called
INVENTOR. LOAD enters the definitions into the dictionary.
> CREATE DICTIONARY INVENTOR
>
> ELEMENT ACCOUNT-NUMBER NUMERIC SIZE 4
> ELEMENT LASTNAME CHARACTER SIZE 20
> ELEMENT FIRSTNAME CHARACTER SIZE 10
>
> FILE CUSTOMER ORGANIZATION INDEXED
> RECORD CUSTOMER
> ITEM ACCOUNTNUMBER
> ITEM LASTNAME
> ITEM FIRSTNAME
> INDEX ACCOUNTS UNIQUE
> SEGMENT ACCOUNT-NUMBER
>
> LOAD

In a subsequent PDL or PHDPDL session, use the SET DICTIONARY statement to set the current
dictionary to INVENTOR and add another file to the dictionary. Once you've done this, you can
then enter the additional PDL statements that you require to define the new file and add them to
the INVENTOR dictionary with the LOAD statement, as in
> SET DICTIONARY INVENTOR
>
> ELEMENT SALESREP CHARACTER SIZE 4
> ELEMENT LASTNAME CHARACTER SIZE 20
> ELEMENT REGION CHARACTER SIZE 10
>
> FILE SALES ORGANIZATION INDEXED
>
> RECORD SALES
> ITEM SALESREP
> ITEM LASTNAME
> ITEM REGION
> INDEX SALESREP UNIQUE
> SEGMENT SALESREP
>
> LOAD

Chapter 2: PDL Statements
PERMIT

PDL and Utilities Reference 79

PERMIT
Allows or denies an application security class access to a record-structure or element.

Syntax
PERMIT asc TO capability [[,] capability]...

{ELEMENT|RECORD} name [[,] name]...

PERMIT capability [[,] capability]...
[OF] {ELEMENT|RECORD} name BY asc [[,] asc]...

asc

Names an application security class (ASC) that has been already defined in an APPLICATION
SECURITY CLASS statement.

capability

Specifies the type of access permitted to the ASC for this record-structure or element. If you
specify the ELEMENT option, the capabilities may be READ, CHANGE, or UNSPECIFIED. If
you specify the RECORD option, the capabilities may be READ, WRITE, or UNSPECIFIED.

{ELEMENT|RECORD} name

Names a record-structure already defined in a RECORD statement, or an element already defined
in an ELEMENT statement.

Discussion
The PERMIT statement allows specified ASCs access permission to record-structures or elements.
A PERMIT statement with the RECORD option specified assigns record security; a PERMIT
statement with the ELEMENT option specified assigns item security. To assign both record and
item security, use more than one PERMIT statement.

The PERMIT statement cannot be used to define access rights to tables in a relational database.
Granting permissions to elements will provide PowerHouse security on matching column names.
Security settings for tables and columns are set in, and performed by the relational database to
which they belong.

The PERMIT statement also denies access, since all ASCs not explicitly granted access are denied
access.

If a user has write permission for a record-structure, he or she can read and write all items in the
record-structure, and can create and delete records. Element security is ignored except for
relational databases. Element security is applied to columns in a relational database regardless of a
user's read or write access to the database.

If a user has no permission to access a record-structure and at least one application security class
does have permission to access the record-structure, then the user is denied permission to access
the record-structure.

If the user has read permission for a record-structure, then PowerHouse checks the user's item
security for each item in the record-structure.

The following table summarizes how PowerHouse grants access permission:

Record
Security Other ASCs

Record
Capability
Granted

Element
Security Other ASCs

Element
Capability
Granted

Write Ignored Read, Update Ignored Ignored Read, Change

Insert, Delete

80 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
PERMIT

All users belong, by default, to the application security class, UNKNOWN. The UNKNOWN
class is a predefined class used to grant minimum capabilities to any user. You can assign
additional permissions to this class the same as you would for any other class.

UNKNOWN is a preloaded ASC to which PowerHouse assigns any user that it cannot identify as
a member of another ASC. If you give UNKNOWN explicit access to an element, you are
effectively giving all ASCs at least the same access, because no ASC can have a lower level of
access than UNKNOWN.

PERMIT doesn't override operating system security. If a user doesn't have operating system read
or write permission for a file, he or she won't be able to access the file no matter what permissions
you give with the PERMIT statement. This does not apply if you’re using Enhanced Application
Security (OpenVMS).

PERMIT only affects users while they're using PowerHouse. A user who has operating system
write permission to a file can use operating system utilities to change the file, even if you use
PERMIT to deny them access to the file when they're using PowerHouse. Use PERMIT as a
supplement to operating system security, not as a replacement.

Enhanced Application Security (OpenVMS)
Since PowerHouse application security specifications cannot override OpenVMS security, the
security specifications in the dictionary do not always reflect the actual security encountered by
users. To help improve this situation, PowerHouse has the ability to grant users access to any files
to which the dictionary has access. This feature, called "Enhanced Application Security", is
available only if PowerHouse has been installed with either the SYSPRV or GRPPRV privilege.

Under OpenVMS, each file carries a protection declaration that determines who has access to it.
The protection declaration can recognize four classes of users:

Read Ignored Read, Update Read Ignored Read

Change Ignored Read, Change

Unspec Yes None

Unspec No Read

Unspec Yes None Ignored Ignored None

No Read, Update Ignored Ignored Read, Change

Insert, Delete

Record
Security Other ASCs

Record
Capability
Granted

Element
Security Other ASCs

Element
Capability
Granted

Class of User Description

OWNER Is the user who created the file.

GROUP Includes all users who belong to the same User Identification Code (UIC)
group as the owner of the file. If the users are all members of the same UIC
group, then GRPPRV may be used instead of SYSPRV.

WORLD Includes all users.

SYSTEM Includes all users and programs which
• belong to the system group (by default, group numbers 1 to 10)
• have the GRPPRV privilege and belong to the same group as the owner of

the file they’re trying to access
• have the SYSPRV privilege

Chapter 2: PDL Statements
PERMIT

PDL and Utilities Reference 81

Each class of user can be assigned one or more of the following capabilities: READ, WRITE,
EXECUTE, and DELETE.

In most installations, the default file protection provides the SYSTEM with READ, EXECUTE,
and WRITE capabilities so that backup and recovery can be performed. When PowerHouse is
installed with SYSPRV, it is able to access file with the capabilities for SYSTEM.

Whenever an attempt is made to access a file using PowerHouse, PowerHouse checks the
record-structure definition in the dictionary for security specifications. If there are any, and if the
user satisfies them, PowerHouse opens the file with its SYSPRV privilege (which it immediately
turns off again until next time) and checks the OpenVMS protection declarations for the file.
PowerHouse allows the user access to the file if any of the following conditions are true:
• WORLD access is allowed.
• GROUP access is allowed and the UIC group number of the data file matches that of the

dictionary owner or that of the user.
• OWNER access is allowed and the UIC group number of the data file matches that of the

dictionary owner or that of the user.

In the last two cases, PowerHouse is extending its own privilege to access the file to the user
because the dictionary owner has access to the file. Thus, through application security
specifications, the dictionary owner can grant his or her own file access capabilities to any user.

Users could take advantage of this feature to grant themselves access to secured files by changing
the security specifications in the dictionary. To prevent this, the dictionary owner (or any other
dictionary manager) can use dictionary security. Simply deny such users access to application
security functions within PhD Screen System or PHDPDL by assigning them to the USER
dictionary class.

Enhanced Application Security is never applied to files whose record-structure definitions in the
dictionary have no security specifications.

Examples

MPE/iX
In the following example, the users with login IDs "PRG" and "MANAGER" can read or write
the INVENTORY record-structure. The final three PERMIT statements are evaluated together to
determine access granted to the user CLERK. No other users can access the INVENTORY
record-structure.

PowerHouse components use application security classes combined with PERMIT statements to
determine access rights to record-structures and elements.
> SYSTEM OPTIONS &
> ASC ID METHOD LOGONID
.
.
.
> ASC DEVELOPMENT &
> LOGONID PRG.DOC
>
> ASC CLERK &
> LOGONID CLERK.DOC
>
> ASC PRODUCTION &
> LOGONID MANAGER.DOC &
> LOGONID PRG.DOC
.
.
.
> PERMIT WRITE &
> OF RECORD INVENTORY BY &
> DEVELOPMENT &
> PRODUCTION
.
.
.

82 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
PERMIT

> PERMIT READ &
> OF RECORD INVENTORY &
> BY CLERK
> PRODUCTION
.
.
.
> PERMIT CLERK TO &
> READ &
> ELEMENT &
> INVENTORY-NUM &
> INVENTORY-ITEM &
> UNIT-COST &
> UNIT-MARKUP
>
> PERMIT CLERK TO &
> CHANGE &
> ELEMENT &
> QTY-ON-HAND

UNIX, Windows
In the following example
• the users, "DEVELOPMENT" and "PRODUCTION", can read or write the INVENTORY

record-structure.
• PowerHouse components use application security classes combined with PERMIT statements

to determine access rights to record-structures and elements.
• The final three PERMIT statements are evaluated together to determine access granted to the

user, "CLERK". No other users can access the INVENTORY record-structure.
• READ permission on a record-structure grants READ and UPDATE access to all items.

However, when a READ permission on a record-structure is encountered, PowerHouse checks
for item security.

• CLERK can read INVENTORYNUM, INVENTORYITEM, UNITCOST, and
UNITMARKUP.

• CLERK can change the QTYONHAND field of the INVENTORY record-structure.
> SYSTEM OPTIONS &
> ASC ID METHOD UIC
.
.
.
> ASC DEVELOPMENT &
> UIC [26,123] [26,128]
>
> ASC CLERK &
> UIC [26,185]
>
> ASC PRODUCTION &
> UIC [26,190] &
> [26,195]
.
.
.
> PERMIT WRITE &
> OF RECORD INVENTORY BY &
> DEVELOPMENT &
> PRODUCTION
> PERMIT CLERK TO &
> READ &
> ELEMENT &
> INVENTORYNUM &
> INVENTORYITEM &
> UNITCOST &
> UNITMARKUP
>
> PERMIT CLERK TO &

Chapter 2: PDL Statements
PERMIT

PDL and Utilities Reference 83

> CHANGE &
> ELEMENT &
> QTYONHAND

OpenVMS
In the following example
• the users with logon ID, "PRG", can read or change the INVENTORY record-structure.
• The logon ID, "MANAGER", can only read INVENTORY.
• The logon ID, "CLERK", can read the entire record-structure, but can only change the

QTY_ON_HAND item. No other users can access the INVENTORY record-structure.
• PowerHouse components use application security classes combined with PERMIT statements

to determine access rights to record-structures and elements.
• READ permission on a record-structure grants READ and UPDATE access to all items.

However, when a READ permission on a record-structure is encountered, PowerHouse checks
for element security for each item in the record-structure.

• The user PRG has full access to the listed elements since PRG is a member of both the
PRODUCTION and DEVELOPMENT application security classes.

• As a member of the ASC PRODUCTION, the user MANAGER has only read access to the
elements.

• CLERK can read INVENTORY_NUM, INVENTORY_ITEM, UNIT_COST, and
UNIT_MARKUP.

• CLERK can change the QTY_ON_HAND field of the INVENTORY record-structure.
> SYSTEM OPTIONS &
> ASC ID METHOD LOGONID
.
.
> ASC DEVELOPMENT &
> LOGONID PRG
>
> ASC ENTRY &
> LOGONID CLERK
>
> ASC PRODUCTION &
> LOGONID MANAGER
> LOGONID PRG
.
> PERMIT READ &
> OF RECORD INVENTORY BY &
> DEVELOPMENT &
> PRODUCTION
> ENTRY
>
> PERMIT DEVELOPMENT TO CHANGE ELEMENT &
> INVENTORY_NUM &
> INVENTORY_ITEM &
> UNIT_COST &
> UNIT_MARKUP &
> QTY_ON_HAND
>
> PERMIT PRODUCTION TO READ ELEMENT &
> INVENTORY_NUM &
> INVENTORY_ITEM &
> UNIT_COST &
> UNIT_MARKUP &
> QTY_ON_HAND
>
> PERMIT ENTRY TO READ ELEMENT &
> INVENTORY_NUM &
> INVENTORY_ITEM &
> UNIT_COST &
> UNIT_MARKUP &
>
> PERMIT ENTRY TO CHANGE ELEMENT &

84 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
PERMIT

> QTY_ON_HAND

Chapter 2: PDL Statements
QUIT

PDL and Utilities Reference 85

QUIT
Ends a PDL or PHDPDL session.

Syntax
QUIT

Discussion
The QUIT statement ends the session and returns control to the operating system or to the
invoking program.

QUIT and EXIT are interchangeable.

86 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
RECORD

RECORD
Declares a record-structure.

Syntax
RECORD name [option]...

name

Specifies a unique record-structure name.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters as defined in the SYSTEM OPTIONS statement.

Options

CAPACITY n (MPE/iX, UNIX, Windows)

Declares the number of records QUTIL should allow for when creating the record.

Limit: Valid only with IMAGE or Eloquence datasets. With Eloquence, it is valid but ignored.

Default: 1,023 records

CREATE|NOCREATE

CREATE specifies that the record-structure is to be selected by QUTIL as the one which will be
used to establish record length and index structures when the associated file is created. This is
useful when more than one record-structure has been defined for a file. The rules are slightly
different for records in DATABASE files than for records in non-DATABASE files. (MPE/iX)

NOCREATE can be used to designate record-structures that are not to be selected by QUTIL.
QUTIL will then select among the other record-structures defined for the file.

If a file contains only one record-structure, QUTIL always declares that record-structure to the file
creation utility, regardless of whether CREATE or NOCREATE has been specified for it.

If a non-DATABASE file contains more than one record-structure, QUTIL applies the following
rules, in order, in deciding which one to declare:
1. If one record-structure has the CREATE option, and the other record-structures have the

NOCREATE option or do not have any creation option, QUTIL uses the record-structure
with the CREATE option.

2. If one of the record-structures has the same name as the file, QUTIL uses that one, regardless
of its creation option.

3. If there is no other way to make the decision, QUTIL uses the record-structure that was
entered into the dictionary first, regardless of its creation option.

For more information about the CREATE and NOCREATE options, see the Discussion on
(p. 88).

DESCRIPTION string [[,] string]...

Specifies a description that serves as documentation about the record-structure. The description
can be reported in QSHOW.

Limit: 60 characters per string.

RECORD options

CAPACITY CREATE|NOCREATE DESCRIPTION

INDEXED OPEN ORGANIZATION

Chapter 2: PDL Statements
RECORD

PDL and Utilities Reference 87

INDEXED (MPE/iX, UNIX, Windows)

Specifies that the key of the master dataset is created with a B-Tree index.

Limit: This is valid only for IMAGE or Eloquence records with an organization of MASTER or
AUTOMATIC MASTER.

OPEN name (MPE/iX, UNIX, Windows)

Declares the name of the IMAGE or Eloquence dataset for PowerHouse to use when accessing the
record.

Limit: The name can be up to 16 characters. Valid only with IMAGE or Eloquence datasets.

Default: If not specified, a default name is created from the first 16 characters of the record name.

ORGANIZATION type (MPE/iX, UNIX, Windows)

Declares the type of IMAGE or Eloquence dataset. The options are MASTER, AUTOMATIC
[MASTER], and DETAIL.

Limit: Valid only with IMAGE or Eloquence datasets.

Default: DETAIL

Discussion
The RECORD statement names a record-structure and lists its attributes. The RECORD
statement must be entered immediately after the FILE statement that describes the file to which
the record-structure belongs, or after another record-structure definition that belongs to the same
file. The ITEM, INDEX, and SEGMENT statements for each record-structure must come
immediately after their associated RECORD statements.

Coded Record-structures
To declare a file that contains more than one record-structure within the same physical file, first
define the file using the FILE statement. Then declare each record-structure immediately after the
FILE statement that describes the file to which the record-structure belongs, or after another
record-structure definition that belongs to the same file. For example, when the DEDUCTIONS
file contains the record-structures, MANDATORYDEDUCT and VOLUNTARY-DEDUCT, enter
the two RECORD statements following a single FILE statement for the DEDUCTIONS file.

Selection values can be declared for each record-structure. PowerHouse uses the values to
differentiate between the record-structures. Any item can be used as a record code, and any
number of items can be used. To declare selection values for record codes, use the SELECT option
of the ITEM statement.

Note (MPE/iX): The record-structures representing the datasets of an IMAGE database are not
coded record-structures.

Combining Coded Record-structures
When combining different record-structures in the same file, you must ensure that the file
management system can find the items for indexes which have been declared. This is only true if
all such items are found in the part of the record-structure that is common to all of the different
record-structures. When the variant part of a record-structure contains items on which indexes are
declared, it is advisable to group these items at the start of the variant section.

Coded record-structures function best if you:
• place items common to all record-structures at the beginning of the record-structures
• place items that depend on codes at the end of the record-structures

You should avoid complex index structures whose segments correspond to items in the variant
part of a coded record-structure. In such cases, you must ensure that the various coded
record-structures overlap appropriately. If the items on which indexes are declared do not overlap
properly, the file management system cannot handle the indexes correctly.

88 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
RECORD

Filler data items are used to ensure that all of the records in a file containing coded
record-structures are the same size. They are not necessary if you are using variable length records
(OpenVMS). The record size consists of the total of all the item sizes in the record-structure.

For example, two record-structures, MANDATORY-DEDUCT and VOLUNTARY-DEDUCT, are
combined in the DEDUCTIONS file. As each of the record-structures is defined, selection values
are specified for the DEDUCTION-CODE item (which is included in both record-structures). The
selection value for DEDUCTION-CODE in MANDATORY-DEDUCT is M. In
VOLUNTARY-DEDUCT the selection value for DEDUCTION-CODE is V.

When the PowerHouse components access VOLUNTARY-DEDUCT, the DEDUCTIONS file is
opened and each record is read. If a record has a value of V for DEDUCTION-CODE, the record
is used. Records with a value of M are ignored.

A record-structure can have more than one item with a selection value. For example,
record-structure XYZ could include the items A, B, C, and D. Item A has a selection value of 1; B
has a selection value of 2. When record-structure XYZ is accessed, the only records that are used
are those in which the item A has a value of 1 and B has a value of 2.

Coded records are said to have the same index layouts if the following are true:
• the number of indexes are the same
• the index sizes are the same
• the segment types are the same (note that multi-segmented indexes are treated as

CHARACTER)
• the starting offsets are the same

The RECORD statement must declare a new record-structure; it can't reference an existing
record-structure.

Discussion (MPE/iX)
The record layout of an IMAGE automatic master or master dataset must define exactly one
index. Master and automatic master records must be declared before any detail records can
reference them. Multiple RECORD statements with the same open name in the same IMAGE
database are treated as coded records. Such records should have the same dataset organization,
the same length in bytes, and the same index layout.

CREATE|NOCREATE for IMAGE DATABASE files
Multiple record-structures are used with DATABASE files to specify different datasets in an
IMAGE database. An IMAGE database generally contains more than one dataset, so more than
one record-structure is selected by QUTIL.

NOCREATE specifies that a record-structure can never be selected by QUTIL. If there is only one
record-structure for a dataset (that is, only one RECORD statement with a given OPEN name),
and NOCREATE is specified, the dataset can never be created by QUTIL.

If there is more than one record-structure for a dataset (that is, more than one RECORD
statement with a given OPEN name) QUTIL applies the following rules, in order, in deciding
which one to declare:
1. If one record-structure has the CREATE option, and the other record-structures have the

NOCREATE option or do not have a creation option, QUTIL uses the record-structure with
the CREATE option.

2. QUTIL uses the first record in alphabetical order.

Examples
This example is generic. For an MPE/iX example using an IMAGE database, see (p. 90).

The following example shows the creation of two record-structures, SALESREP and
CUSTOMERS.
• The element SALESREP appears in both record-structures as an item.
• The first record-structure contains items that are in the file SALESREP.
• The second record-structure contains items that are in the file CUSTOMERS.

Chapter 2: PDL Statements
RECORD

PDL and Utilities Reference 89

> ELEMENT SALESREP NUMERIC SIZE 4
> ELEMENT LASTNAME CHARACTER SIZE 20
> ELEMENT FIRSTNAME CHARACTER SIZE 10
> ELEMENT QUOTA NUMERIC SIZE 9 DECIMAL 2 &
> PICTURE "^,^^^,^^^.^^"
> ELEMENT COMMISSION NUMERIC SIZE 4 DECIMAL 2 &
> PICTURE "^^,^^%"
> ELEMENT CUSTOMER CHARACTER SIZE 5
> ELEMENT BILLING NUMERIC SIZE 7 DECIMAL 2 &
> PICTURE "^^,^^^.^^"
> ELEMENT ADDRESS CHARACTER SIZE 60
> ELEMENT REGION NUMERIC SIZE 10
> ELEMENT AMOUNTOWING NUMERIC SIZE 7 DECIMAL 2
> ELEMENT AMOUNTPAID NUMERIC SIZE 7 DECIMAL 2
>
> FILE SALESREP ORGANIZATION INDEXED OPEN SALES
> RECORD SALESREP
> ITEM SALESREP
> ITEM LASTNAME
> ITEM FIRSTNAME
> ITEM QUOTA
> ITEM COMMISSION
> INDEX SALESREP UNIQUE
> SEGMENT SALESREP
> FILE CUSTOMERS ORGANIZATION INDEXED OPEN CUST
> RECORD CUSTOMERS
> ITEM CUSTOMER
> ITEM ADDRESS
> ITEM REGION
> ITEM BILLING
> ITEM SALESREP
> ITEM AMOUNTOWING
> ITEM AMOUNTPAID
> INDEX CUSTOMERS UNIQUE
> SEGMENT CUSTOMER
> INDEX SALESREP REPEATING
> SEGMENT SALESREP
> LOAD

To define coded record-structures in a single file:
> FILE CONTACTS &
> ORGANIZATION INDEXED &
> OPEN CONTACTS
>
> RECORD CONTACTS
> ITEM CONTACTKEY
> BEGIN STRUCTURE
> ITEM RECORDTYPE
> ITEM ACCOUNTNUMBER
> END STRUCTURE
> ITEM CONTACTNAME
> ITEM STREET
> ITEM CITY
> ITEM PROVSTATE
> ITEM POSTALZIP
> ITEM PHONENUMBER
> INDEX CONTACTS &
> PRIMARY UNIQUE
> SEGMENT CONTACTKEY
> INDEX CONTACTNAME &
> ALTERNATE REPEATING
> SEGMENT CONTACTNAME
> RECORD CUSTOMERS
> ITEM CUSTOMERKEY
> BEGIN STRUCTURE
> ITEM RECORDTYPE &
> SELECT "C"
> ITEM ACCOUNTNUMBER

90 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
RECORD

> END STRUCTURE
> ITEM CUSTOMERNAME
> ITEM STREET
> ITEM CITY
> ITEM PROVSTATE
> ITEM POSTALZIP
> ITEM PHONENUMBER
> INDEX CUSTOMERS &
> PRIMARY UNIQUE
> SEGMENT CUSTOMERKEY
>
> INDEX CUSTOMERNAME &
> ALTERNATE REPEATING
> SEGMENT CUSTOMERNAME
> RECORD SUPPLIERS
> ITEM SUPPLIERKEY
> BEGIN STRUCTURE
> ITEM RECORDTYPE &
> SELECT "S"
> ITEM ACCOUNTNUMBER
> END STRUCTURE
> ITEM SUPPLIERNAME
> ITEM STREET
> ITEM CITY
> ITEM PROVSTATE
> ITEM POSTALZIP
> ITEM PHONENUMBER
> INDEX SUPPLIERS &
> PRIMARY UNIQUE
> SEGMENT SUPPLIERKEY
> INDEX SUPPLIERNAME &
> ALTERNATE REPEATING
> SEGMENT SUPPLIERNAME

The values in the SELECT options determine which records are retrieved for each
record-structure.

MPE/iX
For a generic example, see (p. 88).

An IMAGE database is defined using a single FILE statement followed by one RECORD
statement for each dataset in the database. The IMAGE definition ends when PDL encounters
another FILE statement.
> FILE INVDB ORGANIZATION DATABASE
>
> RECORD INVEN-ITEM ORGANIZATION MASTER &
> OPEN INVDB01
> ITEM STOCK-CODE
> ITEM STOCK-DESC
> ITEM PURCHASE-UNITS
> ITEM BUYER-NO
>
> INDEX INVEN-ITEM-IDX &
> UNIQUE
> SEGMENT STOCK-CODE
.
.
.
> RECORD ITEM-LOC-AM ORGANIZATION AUTOMATIC MASTER &
> OPEN INVDB03
> ITEM STOCK-LOCATION
>
> INDEX ITEM-LOC-AM-IDX &
> UNIQUE
> SEGMENT STOCK-LOCATION
.
.

Chapter 2: PDL Statements
RECORD

PDL and Utilities Reference 91

.
> RECORD ITEM-DESC ORGANIZATION DETAIL &
> OPEN INVDB07 &
> DESCRIPTION " This file contains a variable " &
> "number of lines of description for each " &
> "inventory item. These descriptions will " &
> "appear in the stock catalog"
> ITEM STOCK-CODE
> ITEM LONG-DESC
> ITEM SEQUENCE-NO
>
> INDEX ITEM-DESC &
> LINKS TO INVEN-ITEM &
> PRIMARY UNIQUE
> SEGMENT STOCK-CODE
> FILE VENDOR ORGANIZATION INDEXED
> RECORD VENDOR
> ITEM VENDOR-NUM
> ITEM VENDOR-NAME
> ITEM VENDOR-SHORT-NAME
> ITEM VENDOR-ADDRESS
> ITEM VENDOR-PHONE
>
> INDEX VENDOR-IDX &
> UNIQUE
> SEGMENT VENDOR-NUM

92 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
REVISE

REVISE
Invokes the system editor to edit PDL source statement files.

Syntax
REVISE [*|filespec [option]...]

*

Specifies that PDL's temporary save file is to be revised.

You must use an asterisk when you want to revise PDL's temporary save file and also specify
options. For example, you cannot revise the temporary save file with the NOUSE option by
specifying
> REVISE NOUSE

because this tells PDL to look for a specific file named "NOUSE". To revise the source statement
save file with the NOUSE option, enter
> REVISE * NOUSE

filespec

Names the file you want to revise.

Options
The options are DETAIL, NODETAIL, LIST, NOLIST, USE, and NOUSE.

DETAIL|NODETAIL

DETAIL writes the contents of the revised file to PDL's temporary file after the revision is
completed; NODETAIL specifies that the contents are not written to the temporary file.

If a file other than PDL's temporary save file is being revised with USE and NODETAIL in effect,
then a USE statement is written to PDL's temporary save file.

Limit: NODETAIL isn't valid with REVISE *.

Default: DETAIL

LIST|NOLIST

LIST displays the statements in the revised file as PDL processes them; NOLIST does not.

Default: LIST

USE|NOUSE

USE processes the revised statements when you exit from the system editor. NOUSE returns you to
PDL at the point from which you left it, without processing the revised statements.

Default: USE

Discussion
The REVISE statement lets you use the system editor to edit either PDL's temporary save file or a
permanent file from within PDL. The temporary save file is edited by default.

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the REVISE statement. For more about the procloc program parameter, see Chapter 2, "Program
Parameters", in the PowerHouse Rules book.

When you enter REVISE without a filespec, PDL automatically performs a CANCEL CLEAR
statement prior to processing the statements. If you enter REVISE with a filespec, the automatic
CANCEL CLEAR statement isn't performed.

Chapter 2: PDL Statements
REVISE

PDL and Utilities Reference 93

MPE/iX
By default, the REVISE statement uses the editor defined by the file equation, COGEDITR. If
COGEDITR is not defined, the REVISE statement fails.

If you do not qualify the filename, PDL locates the file using a sequence of steps. For more
information about locating files, see Chapter 1, "Running Powerhouse", in the PowerHouse Rules
book.

OpenVMS
The REVISE statement invokes the DCL command assigned to the global symbol, PHEDIT
(usually used to designate an editor). By default, the SET POWERHOUSE command sets PHEDIT
to
$ PHEDIT :== EDIT/EDT

causing the REVISE statement to invoke the EDT editor.

You can change the default editor by changing the setting of the PHEDIT symbol. For example, to
use the special interface to EDT called UTILITIES:EDT.COM, change the setting to
$ PHEDIT :== @UTILITIES:EDT.COM

We recommend that you use either EDIT/EDT or EDIT/TPU as the setting for PHEDIT. In either
of these cases, the editor can be called directly; otherwise, a subprocess is spawned.

If you intend to use the nodcl program parameter to restrict user access to the operating system,
we further recommend that you do not select editors (such as TPU) that provide operating system
access. When nodcl is in effect, users will continue to be able to access the system editor through
the REVISE statement.

For more information about setting global symbols and about the various editors that are
available, see the OpenVMS General User’s Manual.

UNIX, Windows
By default, the REVISE statement uses the editor defined by the environment variable, PHEDIT. If
PHEDIT is not defined, the system checks the environment variable, EDITOR. If you have not
defined either of these variables, the REVISE statement fails.

Example
To edit a permanent file, you must enter a filespec in the REVISE statement. The following
statement
> REVISE PDLSRC

invokes the text editor and allows you to edit the file PDLSRC.

94 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SAVE

SAVE
Saves the current PDL statements in a file.

Syntax
SAVE filespec [CLEAR]

filespec

Names the permanent file that will be created to contain the PDL statements.

CLEAR

Removes any source statements in the temporary save file, once the contents are saved to a
permanent file.

Discussion
The SAVE statement copies the contents of the temporary save file to the file that you name. PDL
uses the temporary save file to record all PDL statements as they are entered (except the SAVE
statement). The temporary save file is deleted when you exit from PDL.

The SAVE statement creates a new, permanent file and copies the contents of the temporary save
file into it. You can then use the new file either as a source file for documentation and future
changes, or as a working file for modification using the system editor. The saved statements can
also be processed by PDL with the USE statement.

The CLEAR option clears the temporary save file after its contents have been saved so that you
can enter and then save a new set of PDL statements in the same session. To clear the temporary
save file without saving its contents, use SET SAVE CLEAR or CANCEL CLEAR.

SAVE saves everything. If you have entered statements with errors, those statements are included
in the temporary save file. You should enter a CANCEL CLEAR statement after each error to
clear the PDL temporary save file or use the REVISE statement to correct the errors. This ensures
that the statements you save to a permanent file are error free. If you don't clear the file before you
save statements, you might inadvertently include statements that you don't want.

Example
The SAVE statement saves all statements, including those with errors, to a permanent file called
PDLSRC. The statements can then be modified using REVISE.
> CREATE DICTIONARY INVENTOR
>
> ELEMENT ACCOUNT-NUMBER NUMERIC SIZE 4
> ELEMENT LASTNAME CHARACTER SIZE 20
> ELEMENT FIRSTNAME CHARACTER SIZE 10
> FILE CUSTOMER ORGANIZATION INDEXED
> RECORD CUSTOMER
> ITEM ACCOUNT-NUMBER
> ITEM LASTNAME
> ITTEM FIRSTNAME

^^^^^
E Expected: CANCEL CREATE EXIT QUIT REVISE SAVE SET SHOW USE <eol> ITEM

> INDEX ACCOUNTS UNIQUE
> SEGMENT ACCOUNT-NUMBER
>
> SAVE PDLSRC CLEAR

Chapter 2: PDL Statements
SEGMENT

PDL and Utilities Reference 95

SEGMENT
Declares a segment in an index.

Syntax

item

Specifies the name of an item in the record-structure.

ASCENDING|DESCENDING (MPE/iX, UNIX, Windows)

Indicates the order in which segments are stored in the index.

Limit (MPE/iX): The ASCENDING option is for documentation purposes only. The
DESCENDING option is not valid.

If these options are not specified, the ASCENDING and DESCENDING options of the INDEX
statement determine the order in which segments are stored. For information on the
ASCENDING and DESCENDING options of the INDEX statement, see (p. 69).

DATATYPE datatype [SIGNED|UNSIGNED] [SIZE n [BYTES]]

Establishes how the segment value is stored. The datatype used must be equivalent to the datatype
of the segment's corresponding item.

Limit: The DATATYPE option is for documentation only.

SIGNED|UNSIGNED
The option used must be equivalent to that of the segment’s corresponding item.

Limit: Applies only to INTEGER, PACKED, and ZONED. SIGNED and UNSIGNED must
immediately follow the datatype.

Default: SIGNED for datatypes INTEGER and PACKED; UNSIGNED for ZONED.

SIZE n [BYTES]
Specifies the number of bytes to be reserved in each record for storage of the segment value. The
size specified must be equivalent to the size of the segment's corresponding item.

Limit: The SIZE option is for documentation only.

Discussion
An index may have a maximum of eight segments defined.

OpenVMS: When two or more segments are used, the item datatype must be CHARACTER or
ZONED.

The SEGMENT statements must come immediately after the INDEX statement that they belong
to.

The segment statement is not valid with direct, relative (MPE/iX, OpenVMS) and sequential file
organizations. A segment item cannot be an occurring item. That is, if an item is defined by the
statement
> ITEM DEPT OCCURS 4

MPE/iX,
UNIX,
Windows:

SEGMENT item [ASCENDING|DESCENDING]
[DATATYPE datatype [SIGNED|UNSIGNED]
[SIZE n [BYTES]]]...

OpenVMS: SEGMENT item [DATATYPE datatype [SIGNED|UNSIGNED]
[SIZE n [BYTES]]]...

96 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SEGMENT

then the item DEPT cannot be used in a SEGMENT statement.

If the item DEPT in the example above had the OCCURS option on its corresponding ELEMENT
statement, then the item DEPT cannot be used as a segment in an index.

Multi-Segment Indexes Limits (MPE/iX)

Segments of a multi-segment index must form a "contiguous block". The list of segments in the
index must be an exact sequence of their corresponding items in the record-structure.

For KSAM and KSAMXL files, if multiple indexes for a record-structure share the same initial
subset of segments, then none of the shorter indexes can be the PRIMARY index. IMAGE indexes
cannot overlap.

Example
The following example shows how to define an index on two items (a multi-segment index). In
this preceding example:
• POSITION is a unique index; only unique positions can be entered.
• POSITION is the most significant segment in the index.
> FILE POSITION &
> ORGANIZATION INDEXED
> DESCRIPTION "This file contains" &
> "a record of each position. The POSITION" &
> "is uniquely identified by DIVISION." &
> "For example, the position programmer (PRG)" &
> "can exist many times. However, the entry PRG" &
> "marketing division (MKT) is unique."
>
> RECORD POSITION
> ITEM POSITION
> ITEM DIVISION
> ITEM POSITIONTITLE
>
> INDEX POSITION &
> UNIQUE
> SEGMENT POSITION
> SEGMENT DIVISION

Chapter 2: PDL Statements
SET

PDL and Utilities Reference 97

SET
Changes the default settings for a session.

Syntax
SET DEFAULT

SET option...

DEFAULT

In PDL, resets the SET statement options to the default values: DETAIL, LIST, NOPRINT,
NOVERIFY ERRORS, VERIFY DELETE, and WARNINGS

In PHDPDL, resets the SET statement options to the default values: NOPRINT, NOVERIFY
ERRORS, and WARNINGS.

If DEFAULT is used, no other SET statement options can be used.

Options

DETAIL|NODETAIL

The NODETAIL option prevents information from being loaded by way of a USE file into the
temporary save file.

Limit: Valid in PDL; not valid in PHDPDL.

Default: DETAIL

DICTIONARY filespec

Establishes which PowerHouse dictionary to use for the current session.

OpenVMS: The dictionary logical(s) are set by this command to this dictionary.

Default: The PDL and PHDPDL compiler sets PHD as the default dictionary.

DOWNSHIFT|UPSHIFT|NOSHIFT

Specifies that the values of entered identifiers be shifted to lowercase, uppercase, or left as entered.

For system-wide access to mixed, lowercase, or uppercase identifiers, you can specify the SHIFT
option in the SYSTEM OPTIONS statement.

If you specify NOSHIFT to PDL, you must also specify NOSHIFT in any other PowerHouse
component where you require access to mixed or lowercase identifiers.

Limit: DOWNSHIFT, UPSHIFT and NOSHIFT are parsed in PHDPDL but you get a warning
that UPSHIFT is being used. The downshift, upshift, and noshift program parameters are ignored
in both PHDPDL and the PhD Screen System.

Default: UPSHIFT

LIST|NOLIST

Set the NOLIST option if a USE file echoed on the screen is not wanted.

Default: LIST

SET options

DETAIL|NODETAIL DICTIONARY DOWNSHIFT|UPSHIFT|NOSHIFT

LIST|NOLIST PRINT|NOPRINT SAVE CLEAR

VERIFY|NOVERIFY WARNINGS|NOWARNINGS

98 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SET

PRINT|NOPRINT (OpenVMS)

PRINT sends the source listing either to the file defined with the logical name SYSPRINT, or
printer SYS$PRINT if SYSPRINT is not defined; NOPRINT does not. PRINT and NOPRINT are
mutually exclusive options.

Limit: Valid only for PHDPDL.

SAVE CLEAR

Instructs PDL to clear the temporary save file for PDL statements. By default, PDL writes all
statements entered to a temporary save file.

You may want to use this option before entering some other statements and then saving them with
the SAVE statement. For more information about saving statements, see (p. 94).

VERIFY|NOVERIFY [DELETE][ERRORS]

The VERIFY option instructs PDL to interrupt processing, when necessary, with prompts for
permission to proceed. When the VERIFY ERRORS option is used, PDL pauses when errors are
found while processing statements from a file with the USE statement. You must press [Return] to
continue after each error. When the VERIFY DELETE option is used, PDL requests authorization
to delete an existing file and replace it with a new file of the same name.

The NOVERIFY option instructs PDL not to interrupt processing with prompts for permission to
proceed. When the NOVERIFY ERRORS option is used, PDL does not pause when processing
statements from a file with the USE statement. When the NOVERIFY DELETE option is used,
PDL does not request authorization to delete an existing file.

Limit: DELETE is not valid in PHDPDL.

Defaults: NOVERIFY ERRORS; VERIFY DELETE

WARNINGS|NOWARNINGS

WARNINGS instructs PDL to issue warning messages when necessary. NOWARNINGS does not.

Default: WARNINGS

Discussion
The SET statement sets processing options that are in effect during a PDL or PHDPDL session.
You can use it to change the default options that are in effect during a session. When the
DEFAULT option is specified, it must be the only option in the SET statement. The SET
DICTIONARY statement performs an implicit CANCEL statement.

Chapter 2: PDL Statements
SHOW DICTIONARY

PDL and Utilities Reference 99

SHOW DICTIONARY
Displays the name of the current dictionary.

Syntax
SHOW DICTIONARY

Discussion
The SHOW DICTIONARY statement displays the name of the current PDL dictionary. This
setting can be changed with the SET DICTIONARY statement.

Example
If you enter
> SHOW DICTIONARY

the following is displayed on your terminal screen:

MPE/iX: Current Dictionary is INVENTOR.DEVELOP.DOC.

OpenVMS: PHDPDL:
PATH$WRITER:[WRITER.MANAGER]VMSDICT.PHD

PDL:
Current Dictionary is PATH$WRITER:[WRITER.MANAGER]VMSDICT.PDC.

UNIX,
Windows:

Current Dictionary is INVENTOR.

100 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

SYSTEM OPTIONS
Declares system-wide options and defaults for PowerHouse applications.

Syntax
SYSTEM OPTIONS option...

Options

ALLOW|NOALLOW CENTURY

ALLOW CENTURY specifies that the user can enter a century on date fields even though only a
two-digit year is specified in the date format. The option applies to century-included date fields
with a two-digit year format.

When ALLOW CENTURY is specified, date fields on QUICK screens become horizontally
scrolling fields. The user can then enter the date including the century in the same space as the
date without the century. The century is not displayed after input.

The "more data" character, which identifies horizontally scrolling fields, is displayed outside the
data area. This could result in compilation warnings if the "more data" character is displayed on
top of the screen background.

Limit: Valid only for century-included dates.

Default: NOALLOW CENTURY

ASCII7|ASCII8

ASCII7 uses the seven-bit ASCII sort, upshift, and downshift tables. ASCII8 uses the eight-bit
ASCII sort, upshift, and downshift tables. ASCII7 and ASCII8 are mutually exclusive options.

Default: ASCII7

SYSTEM OPTIONS Options

ALLOW|NOALLOW CENTURY ASCII7|ASCII8

APPLICATION SECURITY|ASC CENTURY INCLUDED|EXCLUDED

CHARACTER SET DATE FORMAT

DATE SEPARATOR DECIMAL

DEFAULT CENTURY DEFAULT ENTRY AND FIND IN model SELECT IN
model

DEFAULT TRANSACTION MODEL model DICTIONARY OWNER

DICTIONARY SECURITY|DSC FLOAT

FORCE|NOFORCE CENTURY GENERIC RETRIEVAL CHARACTER

INPUT CENTURY MESSAGE SUBSTITUTION CHARACTER

MULTILINE HEADING CHARACTER NULL|MISSING VALUE CHARACTER

NULLSEPARATOR|NONULLSEPARATOR PATTERN

PICTURE SUBSTITUTION CHARACTER PORT

RELEASE SHIFT

SHOW|NOSHOW SPECIAL NAME CHARACTERS

SYSMONTHS TITLE

VERSION

Chapter 2: PDL Statements
SYSTEM OPTIONS

PDL and Utilities Reference 101

APPLICATION SECURITY ID METHOD id-method
ASC ID METHOD id-method

Establishes the ID method that PowerHouse uses to put users in an application security class
(ASC).

id-method

Default: NONE

CENTURY {INCLUDED|EXCLUDED}

Specifies whether dates include a four-digit year or a two-digit year.

Default: CENTURY INCLUDED

CHARACTER SET REPLACED BY option...
CHARACTER SET {ENGLISH|FRENCH|GERMAN} [option]...

Establishes the language of the character set used by PowerHouse. The possible values are
ENGLISH, FRENCH, GERMAN, or REPLACED BY. The REPLACED BY option allows
creation of a unique character set. If this option is selected, all 128 characters must be entered (if
seven-bit ASCII is selected) or all 256 characters (if eight-bit ASCII is specified).

In combination with the seven or eight-bit ASCII specification, this option determines what
collating sequence PowerHouse uses for sorting and comparing alphanumeric values. This option
also determines the correspondences PowerHouse uses to upshift and downshift special letters (for
example, lowercase é to uppercase É in French).

For more information about character sets, see (p. 110).

Default: ENGLISH

Character set options are sort-spec, UPSHIFT upspec, and DOWNSHIFT down-spec.

[sort-spec]
Sort-spec establishes the collating sequence used by PowerHouse to sort and compare values.

UPSHIFT up-spec
Used to shift entered value of character to uppercase.

Limit: 60 characters

DOWNSHIFT down-spec
Used to shift entered value of character to lowercase (DOWNSHIFT). Using same case values
avoids ambiguous entries. Otherwise, uppercase and lowercase letters are treated as distinct.

Limit: 60 characters

The syntax for sort-spec, up-spec, and down-spec takes the general form:
ASCII|HEXADECIMAL string [ASCII| HEXADECIMAL string]...

If the REPLACED BY option is used, then the sort-spec must contain 128 characters for seven-bit
ASCII or 256 characters for eight-bit ASCII, depending on which was specified in the current PDL
session or in the data dictionary. If neither 128 nor 256 is specified, then a syntax error is issued.
If REPLACED BY is used, the only options available are ASCII string or HEXADECIMAL string.

MPE/iX: Either LOGONID, WEBLOGONID, or NONE.

OpenVMS: Either LOGONID, PASSWORD, PORTID, UIC, WEBLOGONID, or NONE.

UNIX: Either LOGONID, UIC, WEBLOGONID, or NONE.

Windows: Either LOGONID, WEBLOGONID, or NONE.

102 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

If using hexadecimal values, ensure that CHARACTER SET REPLACED BY HEXADECIMAL is
specified in both PDC and PHD dictionaries. This ensures consistent behavior in QSHOW when
generating hex values.

The UPSHIFT and DOWNSHIFT options determine the correspondences used when shifting the
case of special letters. Any of these options can be applied to the character set selected, or to the
user-defined character set. That is, begin by specifying the English, French, or German character
sets and then make modifications to the character set selected by specifying any combination of a
sort sequence, upshift, and downshift specifications. If a base language is not specified, English is
used.

DATE FORMAT date-format

Sets the default date format for all date elements. Unlike the date format in an ELEMENT
statement, the system-wide date format must include the day, month, and year. Date values can be
entered either with or without separator characters. Dates can be displayed using any of the
following date formats.

These examples use the slash (/) as a date separator, and a default century of 20.

The default date format can be overridden in other PowerHouse components. For more
information, see the CENTURY INCLUDED option of the SYSTEM OPTIONS statement on
(p. 101) and DEFAULT CENTURY option of the SYSTEM OPTIONS statement on (p. 102).

Default: YYMMDD for two-digit years if the CENTURY EXCLUDED option of the SYSTEM
OPTIONS statement is specified; otherwise, the default is YYYYMMDD.

DATE SEPARATOR char

Assigns the default character that separates different portions of a date. For example, a
system-wide date format of YYYYMMDD and a system-wide date separator of a hyphen (-)
produce dates such as 2006-08-21. This option can be used alone or with the DATE FORMAT
option.

Default: A slash (/)

DECIMAL char

Sets the character to be used as a decimal marker when entering and displaying numbers. The
decimal character must be either a comma or a period. The decimal character affects all default
pictures for element and usage definitions.

When the decimal character is set to a period, the comma is used to delimit 1000s. If a comma is
used as the decimal character, the delimiter is a space.

Default: A period (.)

DEFAULT CENTURY n

Establishes the century to be used as the default for dates with four-digit years.

The default century is retrieved from the dictionary at run-time. You can change the default
century by changing the option and recompiling the dictionary.

date-format Example date-format Example

YYMMDD 01/05/23 YYMMMDD 01/MAY/23

YYYYMMDD 2001/05/23 YYYYMMMDD 2001/MAY/23

MMDDYY 05/23/01 MMMDDYY MAY/23/01

MMDDYYYY 05/23/2001 MMMDDYYYY MAY/23/2001

DDMMYY 23/05/01 DDMMMYY 23/MAY/01

DDMMYYYY 23/05/2001 DDMMMYYYY 23/MAY/2001

Chapter 2: PDL Statements
SYSTEM OPTIONS

PDL and Utilities Reference 103

Default: 19

DEFAULT ENTRY [AND FIND] [IN]
 CONCURRENCY|CONSISTENCY|OPTIMISTIC
 SELECT [IN] CONCURRENCY|CONSISTENCY|OPTIMISTIC

Specifies what default models are used for screens using the DUAL model. Screen designers can
override these defaults by using the TRANSACTION MODEL option of the SCREEN statement.

If the same model is specified for both Select and Entry/Find modes, a warning message is issued.

Defaults:

ENTRY AND FIND IN CONSISTENCY

SELECT IN CONCURRENCY

DEFAULT TRANSACTION MODEL
 CONCURRENCY|CONSISTENCY|DUAL|OPTIMISTIC

Specifies the default transaction model used by QUICK screens. Screen designers can override this
default by using the TRANSACTION MODEL option of the SCREEN statement.

Default: CONCURRENCY

CONCURRENCY
Specifies that the Concurrency transaction model is used.

CONSISTENCY
Specifies that the Consistency transaction model is used.

DUAL
Specifies that the Dual transaction model is used. The default models used for the Entry/Find and
Select modes for the Dual model are:

Defaults:

ENTRY AND FIND IN CONSISTENCY

SELECT IN CONCURRENCY

OPTIMISTIC
Specifies that the Optimistic transaction model is used.

DICTIONARY OWNER string (OpenVMS)

Defines the owner of the dictionary. The owner can always change the dictionary, no matter what
dictionary security class is in effect.

string
Specifies the logon ID of the user who is to be the dictionary owner. Ensure that you specify a
valid logon ID to avoid the possibility of restricting all users from the dictionary.

Default: The creator of the dictionary.

DICTIONARY SECURITY ID METHOD id-method (OpenVMS)
DSC ID METHOD id-method

Establishes the ID method that PowerHouse uses to put users in a dictionary security class (DSC).
You can only define one ID method at a time for any given dictionary.

The syntax is parsed in PDL but only used in PHDPDL and the PhD Screen System.

id-method
One of LOGONID, NONE, PASSWORD, PORTID, or UIC.

104 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

Default: NONE. When the ID method is set to NONE, all PhD Screen System users have full
access to the dictionary.

FLOAT {IEEE|NONIEEE} (MPE/iX)

Native Mode PowerHouse supports both IEEE and NONIEEE FLOAT formats.

Default: IEEE

FORCE|NOFORCE CENTURY

FORCE CENTURY specifies that the user must enter a century on all century-included date fields.
The option applies to century-included dates with two or four-digit year formats.

Limit: Valid only for century-included dates.

Default: NOFORCE CENTURY

GENERIC RETRIEVAL CHARACTER char

Establishes the character used for partial-index retrieval in QTP and QUIZ CHOOSE statements.
In QUICK, the generic retrieval character specified in the QKGO file is used instead of the generic
retrieval character in the dictionary.

Default: An at-sign (@)

INPUT CENTURY century FROM [YEAR] year

Establishes an input century window. The window is used to determine which century value will
be added to a century-included date when only a two-digit year is input.

This option applies to century-included dates input in QUICK, QUIZ, and QTP.

The INPUT CENTURY values are not compiled into PowerHouse applications. To change the
INPUT CENTURY values, you change the PDL option and recompile the dictionary. It is not
necessary to recompile your application to change the INPUT CENTURY window.

If the INPUT CENTURY is not specified, the DEFAULT CENTURY is used as the default input
century.

century
The century to be used if the year of the entered date is equal to or greater than the FROM year.
Entered dates with a year that is less than the FROM year will use the value of century + 1.

Limits: 1 to 99

year
The lower limit of the input century window. The upper limit is always 99.

Limits: 0 to 99

MESSAGE SUBSTITUTION CHARACTER char

Establishes the character that marks where PowerHouse puts variable parts of messages into the
standard PowerHouse messages (for example, the file name in a "File exists?" message). If you
change this character, you must change the substitution character in existing message files to the
new character.

Default: A caret (^)

MULTILINE HEADING CHARACTER char

Establishes the character that indicates where QUIZ splits a heading onto another line. If you
change this character, you must change the strings in all HEADING options in your dictionary
definition and reload the dictionary. You must also change the HEADING options in all your
QUIZ reports.

Default: A caret (^)

Chapter 2: PDL Statements
SYSTEM OPTIONS

PDL and Utilities Reference 105

NULL|MISSING VALUE CHARACTER char

Establishes what character is to be displayed when a defined or temporary item is null (missing),
or when an item in a table is displayed but not retrieved from the database.

Default: A blank

NULLSEPARATOR|NONULLSEPARATOR

NULLSEPARATOR specifies that all dates are to be displayed without a separator. This allows
display of century-included dates in the same space as century-excluded dates.

The DATE SEPARATOR option is used for display formatting if NULLSEPARATOR is not used,
or is canceled by the NONULLSEPARATOR option.

The DATE SEPARATOR option may be used during input. If NULLSEPARATOR is specified, the
value is redisplayed after formatting without the separator.

Default: NONULLSEPARATOR

PATTERN [metachar]... [RESERVED [CHARACTERS]string]

Specifies a set of special characters (metacharacters) that PowerHouse uses during pattern
matching. You would change the metacharacters if the PowerHouse default character conflicts
with a common character in the local language, or if the character isn't supported by the platform
on which your application runs.

metachar
Represents a PDL keyword describing a pattern matching metacharacter. It is a character that
describes a class of characters or something about the pattern rather than simply matching itself.
A metacharacter equates a metacharacter name and function with a character. For example, to
change the ANY metacharacter from the default question mark (?) to percent sign (%), enter
> SYSTEM OPTIONS &
> PATTERN ANY "%"

The following table lists the metacharacters defined in PowerHouse.

Metacharacter PDL Keyword Function

^ ALPHA Matches any single uppercase or lowercase alphabetic
character.

? ANY Matches any single character (alphabetic, numeric, or
special) including blanks.

DIGIT Matches any single numeric digit.

! ESCAPE Signifies that the character immediately following the
escape character is to be interpreted as a regular
character rather than as a special character, reserved
character, or metacharacter. For example, the pattern,
"^^^^!?", requires a question mark as the fifth
character. The escape character cannot be used with
alphabetic or numeric characters (except !0) and it has
no effect on other characters that aren't metacharacters.

() LEFTP, RIGHTP Together, these metacharacters determine the order in
which the characters in a pattern are to be interpreted.

!0 NULL Matches a no-character or null entry. The NULL
metacharacter is always the active escape character
followed by 0. The escape character is normally an
exclamation mark.

106 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

RESERVED [[CHARACTERS] string]
Changes the list of PowerHouse reserved metacharacters.

By default, PDC dictionaries reserve a seven character string for future expansion of pattern
matches; PHD dictionaries reserve a six character string. They are:

Replacement characters must be matched one-for-one with the list of special characters. The first
character you specify will replace the left bracket ([), the second character will replace the right
bracket (]), and so on.

For example, the following entry in a PDC dictionary
> SYSTEM OPTIONS PATTERN &
> RESERVED CHARACTERS "$%:=;-&"

changes the list of PowerHouse reserved metacharacters to
$ % : = ; - &

OpenVMS: PowerHouse accepts a minimum of six characters and a maximum of seven characters
in reserved character strings. If five character strings are used, the compiler converts them to six
character strings. For more information about how five character strings are converted, see
(p. 111).

\ NOT Disallows the character that immediately follows. For
example, the pattern, "###\0", accepts any three-digit
number followed by any digit other than 0.

< OPTIONAL Matches zero or one occurrence of the immediately
preceding character (or pattern string in parentheses).
For example, the pattern, "a<", accepts either a null
value or the character, "a".

* OPTREP Matches zero or more occurrences of the immediately
preceding character (or pattern string in parentheses).
For example, the pattern, "a*", accepts either a null
value or a string containing one or more occurrences of
the character, "a".

| OR Matches a single occurrence of either the preceding or
the following character. For example, the pattern, "a|b",
matches either the character, "a", or the character, "b".
You can match groups of characters (strings) by
enclosing the group in parentheses.

> REPEAT Matches one or more occurrences of the immediately
preceding character (or pattern string in parentheses).
For example, the pattern, "a>", doesn't accept a null
value, but it does accept a string containing one or more
occurrences of the character, "a".

@ WILD Matches zero or more characters (alphabetic, numeric,
or special).

Platform Dictionary Type Default Reserved Characters

MPE/iX, OpenVMS, UNIX,
Windows

PDC [] : = ; _ &

OpenVMS PHD [] : = ; &

Metacharacter PDL Keyword Function

Chapter 2: PDL Statements
SYSTEM OPTIONS

PDL and Utilities Reference 107

Although the underscore (_) is no longer considered a reserved character for PDC dictionaries, it is
included as a default reserved character for backwards compatibility. Users that want to allow the
underscore in patterns without having to use an escape character can use the six character string,
"[] : = ; &".

PICTURE SUBSTITUTION CHARACTER char

Establishes the substitution character for PICTURE options in QUICK and QUIZ. If you change
this character, you must change your dictionary definition and any QUICK screens and QUIZ
reports that have PICTURE options.

Default: A caret (^)

PORT port# [TO port#] [TERMINAL] [TYPE] string (MPE/iX)
PORT ttyname [TERMINAL] [TYPE] string (UNIX)

Assigns a terminal type to a port.

port# [TO port#] (MPE/iX)
A logical device number (or range of numbers) of the terminal ports to be used for QUICK
applications.

ttyname (UNIX)
Indicates the pathname for a terminal; for example, /dev/ttydqp2.

[TERMINAL] [TYPE]
Specify one or both of these keywords prior to specifying the terminal type used. These keywords
are for documentation only.

string
A string identifying the termtype. A name used to identify a terminal's manufacturer and model to
PowerHouse, for example, HP2392. Using the port option to specify the terminal type prevents
QUICK from prompting the user for the terminal type. (For information on supported terminal
names, see the supplied terminfo file.)

RELEASE n [VERSION n]

PowerHouse checks the release number in the dictionary before it runs a compiled report, run, or
screen. PowerHouse displays an error message if the current release number in the dictionary is
different from the release number when the report, run, or screen was compiled. This prevents
PowerHouse from producing erroneous results due to a changed dictionary.

Limit: 0 to 255

VERSION n
The VERSION option sets a number that supplements the release number. The version number is
a documentation aid and is not checked by the PowerHouse components at execution time.

Note: The VERSION suboption also exists as the VERSION option of the SYSTEM OPTIONS
statement. See (p. 107).

Limit: 0 to 255

SHIFT DOWNSHIFT|NOSHIFT|UPSHIFT

Specifies the system-wide access to mixed, lowercase or uppercase identifiers. The SHIFT option is
valid for both PDC and PHD dictionaries.

Except for PHDPDL and the PhD Screen System, the DOWNSHIFT, NOSHIFT, and UPSHIFT
options of the SET statement and the downshift, upshift, and noshift program parameters can be
used to override the SHIFT option of the SYSTEM OPTIONS statement. The DOWNSHIFT,
NOSHIFT, and UPSHIFT options of the SET statement are not available in PHDPDL. The
downshift, upshift, and noshift program parameters are ignored in both PHDPDL and the PhD
Screen System.

108 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

Limit: SHIFT does not affect the syntax name shifting in the PhD Screen System or PHDPDL. The
PhD Screen System and PHDPDL use the default, UPSHIFT, except for the PASSWORD and
USERID options of the FILE and DATABASE statements.

Default: UPSHIFT

SHOW|NOSHOW

SHOW places no restrictions on the user's ability to report dictionary contents. NOSHOW
ensures that PowerHouse users cannot report the contents of the dictionary with QSHOW or with
the SHOW statement in QDESIGN, QTP, and QUIZ.

OpenVMS: NOSHOW does not restrict dictionary owners or Dictionary Managers from
reporting the contents of PHDPDL dictionaries.

Default: SHOW

SPECIAL NAME CHARACTERS string

Establishes the set of special characters that can be used in entity names in the data dictionary, for
example, file and element names.

Limit: Spaces and nonprinting characters cannot be used in names.

The following group of special characters and control characters are not allowed in entity names
since these characters are part of the syntax of PowerHouse:

The special characters that are safe to use are:

The special characters that should be used with caution are:

ampersand & semicolon ;

comma , tab

carriage return space

exclamation mark ! number sign #

close single quote ’ tilde ~

backslash \ vertical bar |

percent sign % dollar sign $

brackets { } underscore _

caret ^ asterisk *

parentheses () minus sign -

plus sign + colon :

square brackets [] double quotation marks "

angle brackets <> open single quote ’

forward slash / equal sign =

decimal point . question mark ?

at sign @

Chapter 2: PDL Statements
SYSTEM OPTIONS

PDL and Utilities Reference 109

You must use caution with these characters because they serve not only as characters in dictionary
names, but also in mathematical operations and PowerHouse functions. This can cause problems
in PowerHouse components. For example, if a hyphen is allowed in dictionary names, the QUIZ
statement
> DEFINE TOTAL NUM*6 = INVOICE-DISCOUNT

could be ambiguous. It could be interpreted as TOTAL being equal to the value of the item,
INVOICE-DISCOUNT, or as TOTAL being equal to the result of subtracting the value of
DISCOUNT from the value of INVOICE. If no item named INVOICE-DISCOUNT exists there is
no ambiguity. But in most cases, if these special characters are used in dictionary names, users of
the PowerHouse components should precede these characters with a space when using them in
mathematical operations or functions. The statement
> DEFINE TOTAL NUM*6 = INVOICE - DISCOUNT

cannot be misinterpreted.

In a similar way, if a question mark (?) is used as the last character in a dictionary name, some
confusion could result with the use of a question mark to find out the acceptable entries at any
point in a QUIZ, QDESIGN, QTP, PDL, or QSHOW session.

The at sign (@) character can cause problems if it is used as the last character in a dictionary name
(for example, INVOICE@). When partial retrieval is used in the PhD Screen System or QUICK
screens, the @ character is interpreted as initiating partial retrieval, not as the last character in a
name.

If the SPECIAL NAME CHARACTERS option is not used, the default characters are:

SYSMONTHS string

Specifies a 36-character string consisting of 12 three-character abbreviations for the month names.

The abbreviations are used in QUIZ reports and QUICK screens. For example, the following entry
changes the abbreviations from English to French.
> SYSTEM OPTIONS SYSMONTH &
> "JANFEVMARAVRMAIJUNJULAOUSEPOCTNOVDEC"

Note: There are no French three-character abbreviations for the months of June and July. The
preceding example uses the abbreviations, "JUN" and "JUL", respectively, for June and July.

Default string: JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC

TITLE string

Specifies the default report title used by QUIZ and QSHOW, and the title returned by the
PowerHouse system function SYSNAME.

Limit: 40 characters

VERSION n

The VERSION option sets a number that supplements the release number. The version number is
a documentation aid and is not checked by the PowerHouse components at execution time.

Note: The VERSION option also exists as a suboption of the RELEASE option. See (p. 107).

Limit: 0 to 255

hyphen - percent sign %

underscore _ number sign #

open single quote ’ dollar sign $

110 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

Discussion
The SYSTEM OPTIONS statement sets system-wide options. System-wide options influence the
default used by the PowerHouse components, including PDL. Although you can enter only one
SYSTEM OPTIONS statement, you can include as many options as you like on that one
statement.

The system-wide options govern the following:
• the character set used
• the default appearance of dates
• special characters used for generic retrieval, picture substitution, message substitution, or as

the multi-line heading character
• the character used as a decimal point
• the special characters allowed in entity names
• current ASC ID methods
• current DSC ID methods (OpenVMS: PHDPDL)
• dictionary owner (OpenVMS: PHDPDL)
• the release and version of the dictionary
• the characters used as metacharacters in pattern matching

They also govern the following:
• the character string consisting of abbreviations for month names
• the default report title used by QUIZ and QSHOW
• the user’s ability to report dictionary contents
• assigning a terminal type to a port

The eight date options provide flexibility when entering, displaying, and storing dates. These
options are: ALLOW|NOALLOW CENTURY, FORCE|NOFORCE CENTURY, INPUT
CENTURY, NULLSEPARATOR|NONULLSEPARATOR, CENTURY INCLUDED|EXCLUDED,
FORMAT, SEPARATOR, and DEFAULT CENTURY.

The date options specified on ELEMENT and USAGE statements take precedence over equivalent
or conflicting options specified on the SYSTEM OPTIONS statement. The DEFAULT CENTURY
and INPUT CENTURY options apply system-wide, and can be used only with the SYSTEM
OPTIONS statement.

Many of the SYSTEM OPTIONS can be overridden in QUICK, QTP, and QUIZ.

Character Set
The CHARACTER SET option allows you to use one of three pre-established character sets or to
establish your own. It works with the seven or eight-bit ASCII specification to establish internal
tables that PowerHouse uses for sorting, upshifting, and downshifting item values. PowerHouse
supports different sorting (collating) sequences for English, French, and German. As well, you can
define your sort sequence. The sort, upshift, and downshift specifications of the CHARACTER
SET option can be applied to the character set selected, or to the user-defined character set. If a
base language is not specified, English is used.

Modifying the Sort Sequence

The sort specification takes the general form
ASCII|HEXADECIMAL string [ASCII|HEXADECIMAL string]...

The ASCII keyword is followed by a string of ASCII characters. The HEXADECIMAL keyword is
followed by a string of a series of characters in hexadecimal notation. The first character in the
string is the starting point for the modified sorting sequence. The rest of the string gives the
characters that are to follow the first character. For example, special characters fall in four
different places in the ASCII sorting sequence. If you want all special characters to precede the
digit 0 in sorting, the CHARACTER SET option looks like this:
> SYSTEM OPTIONS &
> CHARACTER SET ASCII "/:;<=>?@[\}^_‘{|}~"

Chapter 2: PDL Statements
SYSTEM OPTIONS

PDL and Utilities Reference 111

The first character in the string is the starting point for the modified sort sequence. The following
characters in the string give the new sort sequence. In this example the new sort sequence specified
that the characters :;>=>?@[\}^_‘{|}~ are to sort after the slash (and thus, before the digit 0).

The HEXADECIMAL option works the same way as the ASCII option. The above example can
be achieved using the following statement:
> SYSTEM OPTIONS &
> CHARACTER SET HEXADECIMAL &
> "2F3A3B3C3D3E3F405B5C5D5E5F607B7C7D7E"

The HEXADECIMAL option is useful when specifying the sort sequence of unprintable ASCII
characters.

Defining Shift Specifications

As well as specifying a non-standard sort sequence, you can specify your own upshift and
downshift tables. PowerHouse uses the shift tables to change the case of letters. It does this with
the
• UPSHIFT and DOWNSHIFT functions
• UPSHIFT and DOWNSHIFT options of the QUIZ and QTP CHOOSE, EDIT, and DEFINE

statements
• UPSHIFT and DOWNSHIFT options of the QTP GLOBAL TEMPORARY statement
• UPSHIFT and DOWNSHIFT options of the QDESIGN FIELD statement

The shift tables are also used in pattern matching to determine valid alphabetic characters when
the ALPHA metacharacter is used

The purpose of the shift tables is to allow you to specify the correct shift character for a
nonstandard ASCII character. You can specify the upshift and downshift correspondences in
ASCII or hexadecimal notation. If you enter either the UPSHIFT or DOWNSHIFT option, you
erase the default shift tables and replace them with new shift tables. The new shift tables contain
the standard equivalencies of upper and lowercase letters for the 26 letters of the English alphabet,
plus the equivalencies specified in the UPSHIFT or DOWNSHIFT option. PowerHouse always has
the shift information for the 26 letters of the English alphabet.

PowerHouse shifts each odd character (or pair of hexadecimal digits) to the character (pair of
digits) that follows it. For example, if you have
UPSHIFT ascii "éÉñÑ"

PowerHouse will change the lowercase accented letters to the correct uppercase accented letters.

Handling Reserved Characters (OpenVMS)
To allow backwards compatibility, both the PDL and PHDPDL compilers can parse reserved
character strings containing five characters. When the compiler encounters a five character string,
it issues a warning that the five character string is obsolete. At least six characters are required on
input. The compiler accepts the five character string and appends an additional character to create
a six character string. If a user-defined Kanji metacharacter exists, it is inserted into the five
character string after the second reserved character, otherwise the colon (:) is used. The resulting
six character string is accepted as input. For example, the five character string
 "[] = ; &"

 changes to the six character string
 "[] : = ; &"

In QSHOW, the SHOW SYSTEM statement displays the 6 character string derived from the five
character string.

For more information on the reserved characters, see the RESERVED option on (p. 106).

Examples
The SYSTEM OPTIONS statement in the following example specifies the format and default
separator for the date:
> CREATE DICTIONARY PHD

112 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
SYSTEM OPTIONS

> SYSTEM OPTIONS &
> DATE FORMAT DDMMMYYYY &
> DATE SEPARATOR "*" &
> CENTURY INCLUDED
.
.
.

An example of a date format in this system would be 09*JAN*1999.

The following SYSTEM OPTIONS statement uses all the year 2000 features. The DEFAULT
CENTURY is not specified, but its value is, by default, 19. The processing applies to all relevant
screens, reports and runs in the application. To be more selective in the use of the options, use
them on specific elements, usages, or statements in screens, reports or runs.
> SYSTEM OPTIONS &
> ALLOW CENTURY &
> FORCE CENTURY &
> INPUT CENTURY 19 FROM YEAR 80
> NULLSEPARATOR

In the following example, the input century window is from 85 to 99. All dates with a year from
85 to 99 will have a default input century of 19. All dates with a year less than 85 will have a
default input century of 20.
> SYSTEM OPTIONS &
> INPUT CENTURY 19 FROM YEAR 85

In the next example, the input century window is from 0 to 99. All input dates will have a default
input century of 20.
> SYSTEM OPTIONS &
> INPUT CENTURY 20 FROM YEAR 0

Chapter 2: PDL Statements
TRANSACTION

PDL and Utilities Reference 113

TRANSACTION
Defines transactions used for relational files. Override the default transaction characteristics that
PowerHouse uses.

Syntax
TRANSACTION name [option]...

name

Any valid PowerHouse name. The transaction name must be unique within the dictionary.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

Options
:

CONSTRAINTS [ALL|{CHECK|REFERENTIAL|UNIQUE}
 [,{CHECK|REFERENTIAL|UNIQUE}]...] DEFERRED

Allows specific types of constraints to be deferred while others are checked immediately.

Limit: Valid only for ALLBASE/SQL transactions.

Default: The default constraint type is ALL. If constraints are not deferred, they are checked every
time a value is inserted, altered or deleted.

{COMMIT [ON] automatic-commit-point}|NOCOMMIT

The COMMIT option is used to indicate the default points at which automatic commits are
executed by QUICK.

The NOCOMMIT option indicates that QDESIGN does not generate automatic commit actions.
This does not affect the CONTINUE option.

automatic-commitpoint
The automatic-commit-points are UPDATE, MODE, NEXT PRIMARY, and EXIT.

Determines the points at which an automatic commit for the COMMIT option, or an automatic
save for the CONTINUE option occur during screen processing.

Limit: Any automatic-commit-points specified on the PDL TRANSACTION statement are
ignored by QUIZ and QTP.

For more information about automatic commit points, see Chapter 3, "QDESIGN Statements", in
the QDESIGN Reference book.

DATABASE name isolation-level [DATABASE name isolation-level]...

Allows the specification of an isolation level per database. The database name must refer to the
logical name as defined in an earlier DATABASE statement. The isolation-level is as described
under the isolation-level option.

isolation-level

Lets the designer specify the degree to which this transaction is to be protected from the effects of
concurrent transactions.

TRANSACTION Options

CONSTRAINTS COMMIT|NOCOMMIT DATABASE

isolation-level PRIORITY READ ONLY|READ WRITE

RESERVING WAIT|NOWAIT

114 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
TRANSACTION

The isolation levels are listed below from lowest to highest:

READ UNCOMMITTED
A very low level of isolation that allows a transaction to see all changes made by other
transactions, whether committed or not.

Also known as a "dirty read".

READ COMMITTED
A transaction can read any data that has been committed by any transaction as of the time the
read is done.

STABLE CURSOR
While a transaction has addressability to a record (that is, has just fetched it), no other transaction
is allowed to change or delete it.

REPEATABLE READ
Any data that has been read during a transaction can be re-read at any point within that
transaction with identical results.

PHANTOM PROTECTION
A transaction does not see new records, or "phantoms", that did not exist when the transaction
started.

SERIALIZABLE
The results of the execution of a group of concurrent transactions must be the same as would be
achieved executing those same transactions serially in some order.

Default: READ COMMITTED if the string "QUERY" (case-insensitive) appears anywhere in the
transaction's name. Otherwise, REPEATABLE READ is the default.

The support available for the various isolation level options depends on the support provided by
the underlying database software.

If a database doesn't support a specified isolation level, PowerHouse uses the next available higher
isolation level without issuing a run-time warning. If a higher level is unavailable, PowerHouse
uses the highest available lower level and issues a run-time warning.

PRIORITY n

Lets you specify the transaction priority for an ALLBASE/SQL transaction.

n
An integer in the range 0 to 255.

Limit: Valid only for ALLBASE/SQL.

READ ONLY|READ WRITE

Determines the type of activities that can be performed by this transaction. It also affects what
type of transaction is started in the underlying database system.

Default: READ ONLY if the string "QUERY" (case-insensitive) appears anywhere in the
transaction's name. Otherwise, READ WRITE.

RESERVING FOR [EXCLUSIVE|PROTECTED|SHARED]
READ|WRITE {table [IN database]}...

Lets you specify database specific reserving on a table-by-table basis for a particular transaction.

ORACLE synonyms may be used for table-names. For more information about how PowerHouse
uses ORACLE synonyms, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse
Rules book.

Chapter 2: PDL Statements
TRANSACTION

PDL and Utilities Reference 115

READ only lets you read data from the reserved tables; WRITE lets you insert, update, or delete
data in the table.

Limit: The RESERVING option is ignored by QUIZ and QTP. It is not supported for SYBASE
databases.

Default: READ for read-only transactions. WRITE for read/write transactions. The defaults are
determined from the READ ONLY| READ WRITE option.

SHARED|PROTECTED|EXCLUSIVE
SHARED lets others work with the same table(s). PROTECTED lets others read the table you are
using; they cannot have write access. EXCLUSIVE prevents others from reading records from the
table(s) included in your transaction.

Default: SHARED

WAIT|NOWAIT

Allows you to specify whether the transaction should wait in the case of lock or resource conflicts.

If NOWAIT is specified, then a resource or lock conflict causes the transaction to end with an
error condition.

If WAIT is specified, then a resource or lock conflict causes the transaction to wait, subject to
other system parameter and timeout settings.

Default: Determined at run-time by the dbwait program parameter or resource file statement. If
no values have been specified for dbwait, WAIT is used.

Discussion
The TRANSACTION statement is used to define a transaction and its attributes. Only QDESIGN
uses the COMMIT automatic-commit-point options and the RESERVING option.

The PowerHouse Default Transactions
The PowerHouse default transactions are:

Overriding the Default Transactions
If you are satisfied with the attributes of the PowerHouse default transactions, then there is no
need to define TRANSACTION statements in the dictionary. These default transactions can still
be referenced by name on the FILE and CURSOR statements, on SQL DML statements/verbs, or
in control structures without being explicitly defined each time.

To change the attributes of the PowerHouse default transactions, you include a TRANSACTION
statement with the name of the default transaction along with the attributes to be changed. All
unspecified attributes remain unchanged. For example, the following changes the isolation level of
the Query transaction to SERIALIZABLE.
> TRANSACTION QUERY SERIALIZABLE

Transaction Access Isolation-level
PowerHouse
Component

Consistency read/write SERIALIZABLE QDESIGN, QTP

Query read-only READ COMMITTED QDESIGN, QUIZ, QTP

Update (DB2, Oracle Rdb,
SYBASE)

read/write REPEATABLE READ QDESIGN, QTP

Update (ALLBASE/SQL,
ODBC, ORACLE)

read/write READ COMMITTED QDESIGN, QTP

116 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
TRANSACTION

Only the isolation level is affected; all other attributes are retained.

Customizing Transactions
You can define your own transactions or modify the attributes of the PowerHouse default
transactions with the TRANSACTION statement.

QDESIGN
In QDESIGN, the attributes for a transaction are determined as follows:
1. The attributes are set to default values.
2. If the transaction is defined in the dictionary, then the attributes specified in the dictionary are

applied and override any default attributes.
3. If there is a transaction defined on the screen, then the attributes specified on the QDESIGN

TRANSACTION statement are applied and override any attributes defined previously.

QUIZ
The behavior of the transaction that QUIZ uses may be customized. In QUIZ, the attributes for
the Query transaction are determined as follows:
1. QUIZ sets the attributes by looking in the dictionary for a transaction named QUIZ_QUERY.
2. If a QUIZ_QUERY transaction has not been defined in PDL, then QUIZ sets the attributes by

looking in the dictionary for a transaction named QUERY.
3. If there is no QUIZ_QUERY or QUERY transaction defined in the dictionary, then the

transaction name defaults to QUERY and the attributes are set to the default values specified
for the options of the PDL TRANSACTION statement.

QTP
The behavior of the transaction that QTP uses may be customized. In QTP, the attributes for the
Query, Consistency, and Update transactions are determined as follows:
1. QTP sets the attributes by looking in the dictionary for a transaction named QTP_QUERY.
2. If a QTP_QUERY transaction has not been defined in PDL, then QTP sets the attributes by

looking in the dictionary for a transaction named QUERY.
3. If there is no QTP_QUERY or QUERY transaction defined in the dictionary, then the

transaction name defaults to QUERY. Its attributes are set to the default values specified for
the options of the TRANSACTION statement described above.
The same three-step process applies for determining attributes for the Consistency and Update
transactions, in which case QTP looks for the QTP_CONSISTENCY, CONSISTENCY,
QTP_UPDATE, and UPDATE transactions.

QTP does not look in the dictionary for a transaction with an appended open number. For
example, QTP will not look in the dictionary for a transaction named QUERY_02.

The Effect of the PDL TRANSACTION Statement on QDESIGN
Options specified on the TRANSACTION statement in PDL are used in QDESIGN for
transactions of the same name.

Reserving on a Table-by-Table Basis
Tables to be reserved are specified using the "table IN database" of the RESERVING FOR option,
on the TRANSACTION statement. This allows you to include tables in the RESERVING list that
are not defined on the screen where the transaction is started. For example, you can reserve tables
that are used in a group of screens.

Note: This applies to QUICK only.

Chapter 2: PDL Statements
TRANSACTION

PDL and Utilities Reference 117

If a transaction is started automatically as a result of an access or write to a database, those tables
in the reserving list from a different database will not be reserved. If a transaction is started
explicitly using the START TRANSACTION verb, then all tables from all databases in the
reserving list will be reserved.

Reserving options are specified using keywords that match options available in the underlying
database software.

The RESERVING option is especially useful for high contention applications, such as those which
involve reservation of inventory or seats. It also provides a means of ensuring deadlock-free
transactions, since all tables are locked before the transaction does any other work. (Consider,
however, the impact that any table locking has on concurrent database users—there is always a
trade-off. Remember also that table locks cannot be released until the transaction terminates.) The
RESERVING option also provides a means of guaranteeing successful serializable updates to the
reserved tables.

118 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
USAGE

USAGE
Declares a usage.

Syntax
USAGE name element-type [SIZE] n [option]...

name

Assigns a name to a new usage or identifies a usage that has already been defined in the dictionary.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters defined in the dictionary by the SPECIAL NAME CHARACTERS option
of the SYSTEM OPTIONS statement.

element-type

Specifies the element type that will be used for elements created from this usage. The type must be
one of the following:
• CHARACTER or C
• DATE or D
• NUMERIC or N

 [SIZE] n

Specifies the number of characters or digits allowed in elements created from this usage. The
keyword SIZE is optional, but you must specify a number. If you enter SIZE 0 for the usage, then
you must enter the element size on the ELEMENT statement for each element that uses this usage.

While most usages specify an element size (for example, the usage NAME has an element size of
20), sometimes you may want to let different elements that use the usage have different sizes. You
can do this by entering 0 when declaring the size of a usage in the USAGE statement. The default
item size will specify a minimum size, which is expanded when the user enters an element size. The
standard usages ID and NUMERIC-ID use this feature.

When establishing a usage with an element size of 0, you can't anticipate the correct number of
substitution characters (^) to use in the picture; that depends on the element size in the ELEMENT
statement. However, you can declare pictures for numeric elements that PDL can adjust for all
element sizes chosen by the user. Enter a picture that is large enough for all reasonable element
sizes that users might choose. When a size is specified, extra substitution characters and any
characters in between them on the left are removed.

Limit: Dates must have a size of between 6 and 16. Numeric types have a limit of up to 31 except
for ZONED and PACKED datatypes on MPE/iX which have a limit of 28. Characters have a limit
of 2047.

Options
Most of the optional attributes of element usages are identical to those of elements. For
explanations of the following attributes, see (p. 44) to (p. 53).

USAGE options

ALLOW|NOALLOW CENTURY BWZ

DECIMAL n DOWNSHIFT

FILL char FLOAT char

FORCE|NOFORCE CENTURY FORMAT date-format

INITIAL value INPUT SCALE n

LEADING SIGN char NULLSEPARATOR|NONULLSEPARATOR

OCCURS OUTPUT SCALE n

Chapter 2: PDL Statements
USAGE

PDL and Utilities Reference 119

The remaining options are as follows:
[DEFAULT] [ITEM] DATATYPE type [SIGNED|UNSIGNED]
[SIZE n [BYTES]] [OCCURS n]

Defines the default item datatype and size for element definitions created from this usage.
DEFAULT and ITEM are for documentation only. The datatype specified in the usage definition
can be changed in the element definition, or in any particular item definition. For more
information, see the ELEMENT statement on (p. 43) and the ITEM statement on (p. 74).

DATATYPE type
Specifies how item values are stored. The PowerHouse datatypes are:

SIGNED|UNSIGNED
Indicates whether the datatypes INTEGER, PACKED and ZONED are SIGNED or UNSIGNED.
INTEGER SIGNED can store negative values; INTEGER UNSIGNED cannot. ZONED and
PACKED datatypes can store positive or negative numbers, regardless of whether SIGNED or
UNSIGNED is specified. The SIGNED and UNSIGNED options are mutually exclusive and must
immediately follow the datatype.

Limit: Applies only to INTEGER, PACKED, and ZONED. SIGNED and UNSIGNED must
immediately follow the datatype.

Default: SIGNED for datatypes INTEGER and PACKED; UNSIGNED for ZONED.

SIZE n [BYTES]
Specifies the storage size, in bytes, of items based on this element.

DESCRIPTION string [[,]string]...

This is the only attribute of a usage that is not used to set an element attribute. This description
serves as documentation for the usage itself. The description can be seen in QSHOW reports.

Limit: 60 characters per string.

Discussion
The USAGE statement defines usages or references existing usages. Usages are used in the
ELEMENT statement to set element attributes to predetermined values. If an element has a usage,
most of its attributes are taken from the usage definition rather than from the element definition.
A single usage can serve as a template for many element definitions.

Standard usages are preloaded in all PDL dictionaries with the PRELOADED option of the
CREATE DICTIONARY statement. For information about standard dictionary usages, see
Chapter 3, "Standard Elements and Usages".

PATTERN string PICTURE string

SEPARATOR char SIGNIFICANCE n

TRAILING SIGN string UPSHIFT

VALUES value-set

CHARACTER DATETIME FLOAT

FREEFORM G_FLOAT (OpenVMS) INTEGER

INTERVAL JDATE PACKED

PHDATE VARCHAR VMSDATE (OpenVMS)

ZDATE ZONED

USAGE options

120 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
USAGE

Example
The attributes assigned to the element, TRANSNO, could be the same for a number of other
elements in this dictionary. Instead of defining the same attributes for a number of different
elements, you could create a usage describing an element of this type
> USAGE IS INVENID &
> NUMERIC SIZE 7 &
> PICTURE "^^^-^^^^" &
> SIGNIFICANCE 8

Once the usage is defined, the ELEMENT statement for TRANSNO is
> ELEMENT TRANSNO &
> USAGE INVENID

Chapter 2: PDL Statements
USE

PDL and Utilities Reference 121

USE
Processes PDL statements contained in source statement files.

Syntax
USE filespec [DETAIL|NODETAIL] [LIST|NOLIST]

filespec

Names the file containing PDL source statements.

OpenVMS, UNIX, Windows: The default extension is .pdl.

DETAIL|NODETAIL

DETAIL writes the contents of the source file to PDL's temporary save file. NODETAIL doesn't
write the contents of the source file to the temporary save file; it only writes the USE statement to
the temporary save file.

Default: DETAIL

LIST|NOLIST

LIST displays the statements as they are read; NOLIST does not.

Default: LIST

Discussion
The USE statement instructs PDL to read the named file for statement input. PDL reads and
interprets each statement as if it had been entered from the terminal. The file can contain other
USE statements.

For more information on locating files, see Chapter 1, "Running PowerHouse", in the
PowerHouse Rules book.

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the USE statement. For more information about the procloc program parameter, see Chapter 2,
"Program Parameters", in the PowerHouse Rules book.

Example
This USE statement processes a PDL source file without listing it. It copies the statements in
UXDICTS but doesn't copy the statement, USE UXDICTS, to PDL's temporary save file.
> USE UXDICTS DETAIL NOLIST

122 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
USER MODE (OpenVMS)

USER MODE (OpenVMS)
Defines a user mode and assigns its members.

Syntax
USER MODE name [option]...

name

Names a new user mode, or one that has already been defined.

Limit: 64 characters. Must begin with a letter. The rest of the name can contain letters, digits, and
special name characters that are defined in the dictionary.

Options
The options are LOGONID, PASSWORD, PORTID, and UIC.

LOGONID logonid [[,] logonid]...

Assigns user names that are potential members of this user mode. The logonid is an OpenVMS
user name.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is LOGONID, and if the user’s logon ID is one of the logonids, the
user becomes a member of the user mode.

Limit: 12 characters. Logonids must be enclosed in quotation marks if they begin with a numeric.

PASSWORD password [[,] password]...

Assigns passwords that users must enter to become a member of this user mode. A password is a
31-character string, with or without quotation marks.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is PASSWORD, PowerHouse prompts the user for a password. If the
user enters one of the passwords listed after the PASSWORD option of a USER MODE statement,
the user becomes a member of that user mode.

Limit: 31 characters.

PORTID portid [[,] portid]...

Assigns port IDs. A portid is an OpenVMS device name. A user who accesses PowerHouse
through one of the port IDs listed becomes a member of the user mode.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is PORTID, and if the user’s port ID is included as one of the portids,
the user becomes a member of the user mode.

Limit: 10 characters

UIC [gid,mid] [[,] [gid,mid]]...

Lists members of the user mode by their OpenVMS numeric UICs. The UIC is defined by a gid
(group id number) and a mid (member id number). The gid can be from 0-37776 (octal) and the
mid can be from 0-177776 (octal). The gid and mid must be declared as a pair. The brackets
around [gid,mid] are required syntax.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is UIC, and if the user’s UIC is one of the UICs listed, the user
becomes a member of the user mode.

Chapter 2: PDL Statements
USER MODE (OpenVMS)

PDL and Utilities Reference 123

WEBLOGONID name|string [[,] name|string]...

Assigns user names that are potential members of this user mode.

The name option can be used if the username is a valid PowerHouse name, otherwise, string must
be used. Depending on the platform where they originate, user names are case sensitive.

When a user opens a dictionary from any PowerHouse component, PowerHouse checks the ID
method in the APPLICATION SECURITY ID METHOD option of the SYSTEM OPTIONS
statement. If the ID method is WEBLOGONID, and if the user’s WEBLOGONID is one of the
web logonids listed, the user becomes a member of the user mode.

Discussion
A user mode defines a set that have similar characteristics. The EXECUTION TIME
PARAMETERS statement assigns default data file locations to user modes.

Users who aren’t members of a specific user mode have no execution time parameters. For more
information, see the EXECUTION TIME PARAMETERS statement on (p. 57).

Security and Compiled Applications
The following information is compiled into QUIZ reports, QTP runs, and QUICK screens:
• ASC ID Method
• the name of the ASC and the association of the ASC with records and elements
• User Modes and locations specified in the ETP statement

If any of this information changes, the corresponding screens, reports, and runs need to be
recompiled.

The membership of ASCs and User Modes is dynamic. You can add IDs to and delete IDs from
ASCs without requiring that screens, reports, and runs be recompiled.

Examples
For examples of the USER MODE statement, see the examples for the EXECUTION TIME
PARAMETERS statement on (p. 57).

124 PowerHouse(R) 4GL Version 8.4E

Chapter 2: PDL Statements
USER MODE (OpenVMS)

PDL and Utilities Reference 125

Chapter 3: Standard Elements and Usages

Overview
All dictionaries built with PDL, PHDPDL, and PHDMAINT can be preloaded with a set of
standard usages. The following tables describe these standard elements and usages.

For information about how to create your own usages, see (p. 118).

FACTOR FILLER FILLER-NUMERIC

Type/Size Numeric/9 Character/1 Numeric/1

Item Datatype FLOAT Size 8 CHARACTER Size 1 INTEGER SIGNED Size 2

BWZ
(Blank When
Zero)

Yes n/a No

Decimal Positions 5 n/a 0

Leading Sign "-" n/a " "

Pattern "#*(.#<#<#<#<#<)<" n/a n/a

Input Scale 0 n/a 0

Output Scale 5 n/a 0

Picture " ^^^^.^^^^^" n/a "^"

Significance 7 n/a 1

Shift Input n/a n/a n/a

Trailing Sign n/a n/a n/a

Description For elements with
fractional values
intended for use in
calculations. All values
are stored as floating
point numbers.

A standard element
added to a
record-structure to
make it longer. It can
be used once in any
record-structure or
item substructure to
specify an area of
storage that is unused.
Because FILLER is a
character element, its
data area is initialized
to spaces. You can
define other elements,
such as FILLER-1,
FILLER-2, etc., if you
need more than one.

The same characteristics
as FILLER. Because
FILLER-NUMERIC is a
numeric element, its data
area is initialized to zeros.

Examples UNIT_PRICE

126 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Standard Elements and Usages

FLAG ID INTERVAL

Type/Size Character/1 Character/0 Numeric/0

Item Datatype CHARACTER Size 1 CHARACTER Size 0 INTERVAL Size 8

BWZ
(Blank When
Zero)

n/a n/a Yes

Decimal Positions n/a n/a 0

Leading Sign n/a n/a " "

Pattern n/a n/a n/a

Input Scale n/a n/a n/a

Output Scale n/a n/a 9

Picture n/a n/a "^^^^^
^^.^^.^^.^^^"

Significance n/a n/a 15

Shift Input Upshift Upshift n/a

Trailing Sign n/a n/a n/a

Description For elements that serve
as checks, flags, or
selection criteria. FLAG
has an initial value set to
"N". The value can be
changed to "Y".

For character elements to
be used in an item
definition for which an
index is declared.

For elements used as
amounts of time.

Examples BILINGUAL in a
personnel application.
Each time a record is
created, the
corresponding item
BILINGUAL is assigned
an initial value of "N"
(which can be changed
to "Y" if the employee
is bilingual).

DEPARTMENTCODE
represents codes for
different departments in a
purchase order tracking
application.

TIMETOPAY in a
purchase order
system.

MONEY MONEY-CR MONEY-DR

Type/Size Numeric/9 Numeric/9 Numeric/9

Item Datatype INTEGER SIGNED Size
4

INTEGER SIGNED Size 4 INTEGER SIGNED
Size 4

BWZ
(Blank When
Zero)

No n/a n/a

Chapter 3: Standard Elements and Usages

PDL and Utilities Reference 127

Decimal Positions 2 2 2

Leading Sign n/a n/a n/a

Pattern n/a n/a n/a

Input Scale 2 2 2

Output Scale 0 0 0

Picture "^,^^^,^^^.^^ " "^,^^^,^^^.^^ " "^,^^^,^^^.^^DR"

Significance 5 6 6

Shift Input n/a n/a n/a

Trailing Sign "-" "CR" "CR"

Description For currency elements
that don't require
specialized leading or
trailing signs to display
negative numbers.

For currency elements for
which negative values are
displayed with a CR
notation to indicate a
credit.

For currency elements
for which negative
values are displayed
with the CR notation
to indicate a credit,
and positive values
are displayed with the
DR notation to
indicate a debit.

Examples SALARY in a payroll
application.

BALANCEOWING in a
customer invoicing
application.

DEFERREDTAXES in
a financial statement
reporting application.

MONEY-PR NAME NUMERIC-ID

Type/Size Numeric/9 Character/20 Numeric/0

Item Datatype INTEGER SIGNED
Size 4

CHARACTER
Size 20

ZONED Unsigned Size 0

BWZ
(Blank When
Zero)

No n/a Yes

Decimal Positions 2 n/a 0

Leading Sign "(" n/a n/a

Pattern n/a n/a n/a

Input Scale 2 n/a 0

Output Scale 0 n/a 0

Picture "^,^^^,^^^.^^" n/a "^^^^^^^^^^^^^^^^^^^^^^^^^^
^^"

Significance 5 n/a 28

Shift Input n/a n/a n/a

MONEY MONEY-CR MONEY-DR

128 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Standard Elements and Usages

Trailing Sign ")" n/a n/a

Description For currency
elements for which
negative values are
displayed in
parentheses.

For standard
elements that
aren't likely to be
used in an item
definition for
which an index is
declared.

For numeric elements that are
likely to be used in an item
definition for which an index is
declared.

Examples NETPROFIT in a
financial reporting
application.

LASTNAME in a
personnel
application.

EMPLOYEENUMBER for which
an index is declared in a personnel
record-structure.

PERCENT PHONE POSTAL-CD

Type/Size Numeric/5 Numeric/10 Character/6

Item Defaults FLOAT Size 4 INTEGER
UNSIGNED Size 8

CHARACTER
Size 6

BWZ
(Blank When
Zero)

Yes Yes n/a

Decimal Positions 2 0 n/a

Leading Sign "-" " " n/a

Pattern n/a n/a "^#^#^#"

Input Scale -2 0 n/a

Output Scale 4 0 n/a

Picture "^^^.^^%" "^^^ ^^^-^^^^" "^^^ ^^^"

Significance 5 8 n/a

Shift Input n/a n/a Upshift

Trailing Sign n/a n/a n/a

Description For elements with fractional
values used in calculations
and displayed as
percentages.

For elements that
represent North
American telephone
numbers. The values
are displayed as
555-1212 or
613 555-1212.

For elements that
represent Canadian
postal codes.

Examples CUSTOMERDISCOUNT in
an invoicing application. A
value of 15 is stored as .155
and displayed as 150%.

HOMEPHONE in a
personnel system.

POSTALCODE in a
mailing list
application.

MONEY-PR NAME NUMERIC-ID

Chapter 3: Standard Elements and Usages

PDL and Utilities Reference 129

QUANTITY TIME TIME-STAMP

Type/Size Numeric/0 Numeric/4 Numeric/8

Item Datatype INTEGER SIGNED Size
2

INTEGER UNSIGNED
Size 2

INTEGER UNSIGNED
Size 4

BWZ
(Blank When
Zero)

Yes n/a Yes

Decimal Positions 0 0 0

Leading Sign "-" n/a n/a

Pattern n/a "((1<#|2(0|1|2|3))<(0|1|2
|3|4|5))<#"

n/a

Input Scale 0 0 0

Output Scale 0 0 0

Picture "^,^^^,^^^,^^^,^^^,^^
^"

"^^:^^" "^^:^^:^^.^^."

Significance 1 5 11

Shift Input n/a n/a n/a

Trailing Sign n/a n/a n/a

Description For numeric elements
that are not likely to be
used in an item
definition for which an
index is declared and for
items for which the
values will be integers.

For elements that
represent time values in
hours and minutes.

For elements that
represent precise times
that include hours,
minutes, seconds, and
hundredths of seconds.
Generally, items with
this usage are initialized
with the current system
time.

Examples ONHAND,
ONORDER, or
ONREQUEST in an
inventory control
application.

MPE/iX:
SHIFTSTARTTIME in a
payroll application.

OpenVMS, UNIX,
Windows:
HOURSWORKED in a
payroll application.

ZIP-CODE

Type/Size Numeric/5

Item Datatype INTEGER UNSIGNED Size 4

BWZ (Blank When Zero) Yes

Decimal Positions 0

130 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Standard Elements and Usages

Leading Sign n/a

Pattern n/a

Input Scale 0

Output Scale 0

Picture "^^^^^"

Significance 5

Shift Input n/a

Trailing Sign n/a

Description For elements that represent American zip codes.

ZIP-CODE

PDL and Utilities Reference 131

Chapter 4: QSHOW Statements

Overview
QSHOW lets you display or print the names and attributes of PowerHouse
• files and databases
• record-structures
• elements
• indexes
• usages

QSHOW uses the syntax and language rules discussed in Chapter 5, "PowerHouse Language
Rules", in the PowerHouse Rules book.

Summary of QSHOW Statements
The following table summarizes the purpose of each QSHOW statement:

Statement Purpose

EXIT Ends a QSHOW session.

GENERATE Generates PDL or SQL source statement definitions from a compiled
dictionary.

QUIT Ends a QSHOW session.

REVISE Invokes the editor to edit the current temporary save file or a specified file.

SAVE Saves QSHOW source statements in a file.

SET Changes the default settings for a session.

SHOW Reports dictionary definitions.

USE Processes QSHOW source statements contained in a file.

132 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
EXIT

EXIT
Ends a QSHOW session.

Syntax
EXIT

Discussion
The EXIT statement ends the QSHOW session and returns control to the operating system or to
the invoking program.

EXIT and QUIT are interchangeable.

Chapter 4: QSHOW Statements
GENERATE

PDL and Utilities Reference 133

GENERATE
Generates PDL or SQL source statement definitions from a compiled dictionary.

Syntax

With SET LANGUAGE PDL (default):
GENERATE ALL

GENERATE {DATABASE|ELEMENT|FILE|TRANSACTION|
USAGE} [name-option|ALL]

GENERATE SYSTEMS

With SET LANGUAGE SQL:
GENERATE DATABASE [name-option|ALL]

Options

ALL

Generates PDL definitions for all the entities in the data dictionary. The GENERATE ALL
statement generates all the types of PDL statements that the GENERATE FILE statement
generates. In addition, the GENERATE ALL statement generates
• the USAGE and ELEMENT statements for usages and elements that are in the data dictionary

but are not used in any item in any record-structure
• the ASC and PERMIT statements for application security classes; the ETP and USER MODE

statements (OpenVMS); the DSC statements (PHD Dictionaries, OpenVMS).
These statements are generated only if the SET SECURITY statement is used before using the
GENERATE ALL statement and the dictionary creator and the user are the same person
or
the user has Account Manager capabilities for the account where the dictionary is located or
the user has System Manager capabilities. (MPE/iX)
or
the user is a member of the appropriate dictionary security class. (PHD Dictionaries,
OpenVMS)
General users cannot generate any security information. Application managers can generate
ASC, USER MODE, and PERMIT statements but not DSC statements. Dictionary managers
and creators can generate all security information.

• the SYSTEM OPTIONS statements as specified in the data dictionary
• DATABASE statements
• TRANSACTION statements

DATABASE

With SET LANGUAGE PDL in effect (default), generates PDL DATABASE statements for the
database or databases specified by the name-option.

With SET LANGUAGE SQL in effect, generates the complete SQL from the relational database
specified by the name-option. If the name-option is a non-relational file, QSHOW will generate
the SQL based on the dictionary definition. The generated SQL is created in a file named
qshogen.sql (UNIX, Windows), QSHOGEN.TXT (OpenVMS), or QSHOSQL (MPE/iX).
QSHOW does not provide the ability to change the name of the output file.

134 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
GENERATE

FILE

Generates the PDL statements for entities in the file(s) specified by the name-option. This
statement produces the following types of PDL statements:
• a USAGE statement for each usage that is used by elements referenced by the specified files
• an ELEMENT statement for each element that is used as an item in the specified files
• a FILE statement for each specified file
• a RECORD statement for each record-structure that is used in the specified files
• an ITEM statement for each item that is used in the specified files
• a BEGIN STRUCTURE statement and an END STRUCTURE statement for each substructure

that is used in the specified files
• an INDEX and SEGMENT statement for each index and segment that is used in the specified

files.

ELEMENT

Generates PDL statements for elements and associated usages specified by the name-option. This
option produces the following types of PDL statements:
• a USAGE statement for each usage that's referenced by a specified element
• an ELEMENT statement for each specified element

TRANSACTION

Generates PDL TRANSACTION statements.

SYSTEMS

Generates the SYSTEM OPTIONS statements specified in the data dictionary.

USAGE

Generates PDL code for a set of usages specified by the name-option.

Name-Options
The name-options are ALL, namelist, PATTERN, and SOUNDEX.

ALL

Specifies that definitions should be generated for all files, elements, or usages defined in the
dictionary.

nameset

Identifies files, elements or usages by a combination of single names, lists of names, and ranges of
names, using the general form:
name [TO name] [,name [TO name]]...

The name list is restricted to ten names or less.

PATTERN string

Identifies files, elements, or usages whose names match the pattern specified by the string. For
more information, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules
book.

SOUNDEX (string[,n])

Identifies files, elements, or usages whose names sound like the string. For example, the
SOUNDEX string "stockfile" retrieves names such as STOCKFL and STOCK-FL. For more
information, see the section, "Using the SOUNDEX Option", in Chapter 5, "PowerHouse
Language Rules", in the PowerHouse Rules book.

Chapter 4: QSHOW Statements
GENERATE

PDL and Utilities Reference 135

Discussion
When SET LANGUAGE PDL is in effect, the GENERATE statement generates PDL code from the
definitions in a PowerHouse data dictionary.

When SET LANGUAGE SQL is in effect, the GENERATE DATABASE statement generates SQL
from a database or from dictionary files. The latter allows you to generate skeleton SQL from
non-relational files. To convert multiple non-relational files into a single relational database,
generate the SQL for each file one by one. After each file, copy the results from qshogen.sql into
another text file and make the appropriate changes.

How It Works
The GENERATE statement writes generated PDL or SQL statements to the file, qshogen. Within a
given QSHOW session, the first time you generate PDL or SQL statements and qshogen exists,
you are asked whether you want to overwrite the file (MPE/iX, UNIX, Windows) or to create a
new version (OpenVMS). Subsequent GENERATE statements cause QSHOW to append
statements to the qshogen file. If you explicitly specify the name of a file in which to store
generated PDL statements, QSHOW will append statements to that file.

OpenVMS, UNIX, Windows: The default extension for a source PDL file is .pdl. The fixed
extension for a source SQL file is .sql.

The file to which PDL statements are written can be changed using the statement
> SET GENERATE DEVICE options

The file to which SQL statements are written can only be qshogen.sql (UNIX, Windows),
QSHOGEN.TXT (OpenVMS), or QSHOSQL (MPE/iX).

For more information, see the SET statement (p. 141).

Option Defaults
QSHOW only generates PDL statements for entity attributes explicitly set by the PDL statements
used to create the dictionary. It doesn't generate PDL statements for entity attributes that have
default values. If you load generated PDL statements in a dictionary with different system options,
the resulting dictionary may contain different attributes.

Modifying Existing Dictionaries
You can't change existing ELEMENT, USAGE, FILE, or RECORD definitions in PDL or
PHDPDL. If you have to change one of these, you must generate the full PDL code for the existing
dictionary with the GENERATE statement in QSHOW. Then change the definition(s), create the
dictionary, use the PDL source statements, and load the new dictionary as follows:
1. Use GENERATE in QSHOW to produce a source file that contains the PDL statements

needed to recreate the dictionary.
2. Use the system editor to modify the generated source code.
3. Use CREATE DICTIONARY, USE, and LOAD to recreate and load the dictionary.

OpenVMS: Alternatively, you can use the PhD Screen System to make the needed changes to PHD
dictionaries.

Loading a New Dictionary with Generated Definitions
The GENERATE statement loads a new dictionary with definitions from another dictionary,
which eliminates the need to re-enter definitions. The following example shows the statements
entered, using QSHOW and PDL or PHDPDL, to load a new dictionary with generated
definitions.

In QSHOW
> SET DICTIONARY OLD
> SET LANGUAGE PDL
> GENERATE ALL

136 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
GENERATE

> EXIT

This creates a source file named qshogen.pdl (OpenVMS, UNIX, Windows) or qshogen
(MPE/iX). In PDL or PHDPDL, enter
> CREATE DICTIONARY NEW NOT PRELOADED
> USE QSHOGEN
> LOAD
> EXIT

The SET DICTIONARY statement points QSHOW to the OLD dictionary. The SET LANGUAGE
statement tells QSHOW to generate the definitions in PDL. The GENERATE ALL statement
produces definitions for all the entities in the OLD dictionary.

In PDL or PHDPDL, the dictionary NEW is created using the CREATE DICTIONARY statement.
The USE statement processes the definitions in the designated file, qshogen. The LOAD statement
enters the definitions into the NEW dictionary.

It is important to remember to use the NOT PRELOADED option of the CREATE DICTIONARY
statement if loading definitions from an old dictionary that does not use the standard usages. If
source code is generated for the entire dictionary, the usages from the old dictionary are loaded
into the new one.

Chapter 4: QSHOW Statements
QUIT

PDL and Utilities Reference 137

QUIT
Ends a QSHOW session.

Syntax
QUIT

Discussion
The QUIT statement ends your QSHOW session and returns control to the operating system or to
the invoking program.

QUIT and EXIT are interchangeable.

138 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
REVISE

REVISE
Edits the current temporary save file or a specified file.

Syntax
REVISE [*|filespec [option]...]

*

An asterisk (*) tells QSHOW to edit the current qshosave file. The qshosave file is a temporary file
that QSHOW opens at the beginning of a session.

All QSHOW statements except the save and revise statements are recorded in the qshosave file as
you enter them. The asterisk is not required if you are editing the qshosave file without changing
any default options. However, the asterisk is required if you are overriding any of the default
options, as in
> revise * nouse

filespec

The filespec is the name of an existing permanent file. If this file does not contain QSHOW
statements, use the NOUSE option so that QSHOW does not try to process the file when you exit
from the system editor.

Options
The options are DETAIL, NODETAIL, LIST, NOLIST, USE, and NOUSE.

DETAIL|NODETAIL

DETAIL copies the contents of the revised file into the qshosave file when you exit from the
system editor; NODETAIL does not. If you are revising a permanent file with the use statement
and the NODETAIL option in effect, then a use statement is written to the current qshosave file
and is invoked when you exit from the editor, as in
> USE ORDERS NODETAIL

Limit: The NODETAIL option is not valid when you are revising qshosave.

Default: DETAIL

LIST|NOLIST

LIST displays each statement from the revised file as it is executed; NOLIST does not.

Default: LIST

USE|NOUSE

USE processes the revised statements when you exit from the system editor. NOUSE returns you to
QSHOW at the point from which you left it without processing the revised statements.

Default: USE

Discussion
The REVISE statement lets you use the system editor to edit either the qshosave file or a
permanent file from within QSHOW. The qshosave file is edited by default. When you enter the
REVISE statement without a filename, a CANCEL CLEAR statement is automatically applied;
when you enter the REVISE statement with a filename, the automatic CANCEL CLEAR
statement is not in effect.

MPE/iX: By default the REVISE statement chooses EDITOR/3000 as the system editor.
You can change this by using a file equation for COGEDITR.

Chapter 4: QSHOW Statements
REVISE

PDL and Utilities Reference 139

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the REVISE statement. For more information about the procloc program parameter, see Chapter
2, "Program Parameters", in the PowerHouse Rules book.

UNIX,
Windows:

By default, the REVISE statement uses the editor defined by the environment
variable, PHEDIT. If PHEDIT is not defined, the system checks the environment
variable, EDITOR. If you have not defined either of these variables, the REVISE
statement fails.

OpenVMS: By default, the REVISE statement chooses EDT as the system editor. You can
change this by using the DCL symbol, PHEDIT.

140 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SAVE

SAVE
Saves QSHOW source statements in a file.

Syntax
SAVE filespec [CLEAR]

filespec

Names a file that will contain the QSHOW statements.

CLEAR

Removes any source statements in the temporary save file, qshosave, once the contents are copied
to a permanent file.

Discussion
The SAVE statement relates to QSHOW's temporary source statement save file, qshosave
(MPE/iX) or qshosave.txt (OpenVMS, UNIX, Windows). Statements are written to this file as
you enter them. The SAVE statement itself is not included in the file.

The SAVE statement creates a permanent copy of qshosave at the point where the SAVE statement
was entered. You can use the saved contents as a source file for documentation and future
changes, or as a working file for modification using the system editor. The saved statements can
also be processed by QSHOW with the USE statement.

The CLEAR option clears the temporary save file after its contents have been saved so that you
can enter and then save a new set of QSHOW statements in the same session. To clear the
temporary save file without saving its contents, use the SET SAVE CLEAR statement.

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the REVISE statement. For more information about the procloc program parameter, see Chapter
2, "Program Parameters", in the PowerHouse Rules book.

MPE/iX, UNIX,
Windows:

If QSHOW finds an existing file with the same name, it prompts for
confirmation before overwriting the existing file (unless SET NOVERIFY
DELETE is in effect).

OpenVMS: If QSHOW finds an existing file with the same name, it prompts for
confirmation before creating a new version.

Chapter 4: QSHOW Statements
SET

PDL and Utilities Reference 141

SET
Changes the default settings for a session.

Syntax
SET DEFAULT|option...

DEFAULT

This resets all QSHOW SET options to the following default values:

SET DEFAULT doesn't reset the SET DICTIONARY option. If DEFAULT is used, it must be the
only option of the SET statement.

SET statements override default options normally in effect during a QSHOW session.

Options

CLOSE|NOCLOSE

The CLOSE option closes the output file after each QSHOW report is sent to the system printer.
Reports are not printed until the output file is closed. The NOCLOSE option leaves the output file
open until a SET DEVICE TERMINAL or SET CLOSE statement is entered, or until the QSHOW
session is ended.

Default: CLOSE

COMPRESSED|NOCOMPRESSED

COMPRESSED produces QSHOW reports that use the smallest possible format by eliminating
headings, page numbers, page breaks, and white space. NOCOMPRESSED restores the reports to
the default format.

Default: NOCOMPRESSED

CLOSE PAGE LENGTH 23 (for terminals), 60 (for printers)

COPIES 1 PRIORITY 8 (MPE/iX)

LANGUAGE PDL QUEUE SYS$PRINT (OpenVMS)

NOCOMPRESSED REPORT DEVICE TERMINAL

NOPASSWORD (MPE/iX) SORT (MPE/iX)

NOPRINT XREF

NOSECURITY

SET Options

CLOSE|NOCLOSE COMPRESSED|NOCOMPRESSED COPIES

DICTIONARY DOWNSHIFT|UPSHIFT|NOSHIFT GENERATE DEVICE

LANGUAGE PAGE LENGTH PASSWORD|NOPASSWORD

PRINT|NOPRINT PRIORITY REPORT DESTINATION

REPORT DEVICE SAVE CLEAR SECURITY|NOSECURITY

SORT|NOSORT XREF|NOXREF

142 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SET

COPIES n

Sets the number of copies to be produced when routing output to a printer.

Default: 1

DICTIONARY filespec [TYPE PHD|PDC]

Names the dictionary for the current QSHOW session. All subsequent QSHOW statements report
on entities in this dictionary.

The SET DICTIONARY statement can be used any number of times in a single session. SET
DICTIONARY overrides the dictionary program parameter.

[TYPE PHD|PDC] (OpenVMS)
Specifies the default dictionary type. If the TYPE option is specified in a PowerHouse component,
it applies to subsequent SET DICTIONARY statements in the component.

When searching for a dictionary, PowerHouse limits searches to the dictionary type specified by
the TYPE option. If the TYPE option is not specified, PowerHouse searches first for a PHD
dictionary, then a PDC dictionary.

Default: PHD

DOWNSHIFT|UPSHIFT|NOSHIFT

Specifies that the values of entered identifiers be shifted to lowercase, uppercase, or left as entered.

Default: UPSHIFT

GENERATE DEVICE option (OpenVMS)

Directs the generated output of QSHOW to the specified location. The options included are:
TERMINAL|[PRINTER [printer-option]]|[DISC [NAME filespec]]

Default: The default output device is DISC. If output is directed to disk and no filename is
specified, the default output file is qshogen.pdl (when used after SET LANGUAGE PDL) or
qshogen.sql (when used after SET LANGUAGE SQL).

For information on the printer options, see (p. 145).

LANGUAGE COBOL|PDL|SQL

COBOL (MPE/iX)
The COBOL option is used with the QSHOW GENERATE statement to generate COBOL from a
PDL dictionary. For example, to generate COBOL definitions for all the files in your dictionary,
enter
> SET LANGUAGE COBOL
> GENERATE FILE ALL

For more information about generating COBOL, see Chapter 7, "QCOBLIB Utility".

PDL
Specifies that PowerHouse Definition Language (PDL) is to be generated by the GENERATE
statement.

The LANGUAGE PDL option provides compatibility with other versions of PowerHouse.

SQL
Specifies that SQL statements are to be generated by the GENERATE statement.

PAGE LENGTH n

Specifies the number of lines in a QSHOW report page.

Default: 23 for terminals; 60 for printers.

Chapter 4: QSHOW Statements
SET

PDL and Utilities Reference 143

PASSWORD|NOPASSWORD (MPE/iX)

PASSWORD reports IMAGE database passwords, and KSAM and MPE lockwords, in file reports;
NOPASSWORD does not.

Limit: SET PASSWORD has no effect unless you are the dictionary creator, or you have system
manager or account manager capability.

Default: NOPASSWORD

PRINT|NOPRINT

Default: NOPRINT

PRIORITY n (MPE/iX)

Sets the MPE/iX priority for printer output.

Limit: The priority can be from 0 to 13.

Default: 8

For information about the PRIORITY printer option on OpenVMS, see (p. 147).

[REPORT] DESTINATION printername (UNIX, Windows)

Specifies the printer where the report is to be sent.

Use the DESTINATION option instead of the PRINTER string option to identify a specific printer
if operating system access is not allowed.

The DESTINATION option is ignored if a string is specified on the SET DEVICE PRINTER
statement.

Limit: Valid for SET DEVICE PRINTER only.

Default: Determined by the system used.

[REPORT] DEVICE [DISC|PRINTER|TERMINAL]

Specifies the destination output device for the QSHOW report. DEVICE also closes the output
file, and sets the default page length.

[DISC [NAME filespec]]
Specifies that the output is directed to disc.

Defaults: If you don’t enter a name when you select the DISC option, the default file name is
qsholist (MPE/iX) or qsholist.txt (OpenVMS, UNIX, Windows).
PRINTER (MPE/iX)
PRINTER [printer-option] (OpenVMS)
PRINTER [string] (UNIX, Windows)

Specifies that the output is directed to the printer.

string (UNIX)
The optional string is the UNIX Shell command used to send the report to the printer.

MPE/iX: PRINT causes the statements you have entered during the QSHOW session
to be sent to a spool file (STDPRINT). When you end the session or issue a
SET NOPRINT statement, the spool file is closed and the output is printed
on the system printer. NOPRINT immediately closes a previously opened
spool file, and prints the output.

OpenVMS, UNIX,
Windows:

PRINT sends the source listing to the default printer; NOPRINT does not.

144 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SET

A string is not valid if the noaccess program parameter is specified or the OSACCESS resource file
option equals OFF. A syntax error will result.

If the string is omitted, PowerHouse follows these steps to determine the appropriate values:
1. If a string was used in the last SET DEVICE PRINTER [string] statement, PowerHouse uses

that value. The DESTINATION option is ignored.
2. If the value of the environment variable PH_PRINTER is defined, PowerHouse uses this

value. The DESTINATION option is ignored. QSHOW assumes this argument is available in
the PH_PRINTER environment variable.

3. The system default string is used. If specified, PowerHouse uses the DESTINATION, option;
otherwise the default DESTINATION value is used.
If the string is null, options 2 and 3 are used to obtain a value.

For a list of the OpenVMS printer options for the REPORT DEVICE PRINTER statement, see
(p. 145).

Default: For batch jobs, the default is PRINTER (OpenVMS).

TERMINAL
Specifies that the output is directed to the terminal.

Defaults:

SAVE CLEAR

Immediately removes any source statements from the temporary save file. The temporary save file
is qshosave (MPE/iX) or qshosave.txt (OpenVMS, UNIX, Windows).

For more information, see the SAVE statement on (p. 140).

A CLEAR is always performed after a SAVE.

SECURITY|NOSECURITY

SECURITY reports application security in file and element reports. It enables the reporting of
security specifications and the generation of security specifications by the PDL code generator.

NOSECURITY does not report application security in file and element reports. SET SECURITY
has no effect unless you are the creator of the dictionary.

MPE/iX, UNIX,
Windows:

TERMINAL for interactive sessions. The statement is ignored for batch
jobs.

OpenVMS: TERMINAL for interactive sessions. For batch jobs, the TERMINAL option
is not valid, and the default is PRINTER.

Chapter 4: QSHOW Statements
SET

PDL and Utilities Reference 145

The following table provides information about security for PDC and PHD dictionaries on
different platforms:

Default: NOSECURITY

SORT|NOSORT (MPE/iX)

SORT produces alphabetically sorted lists when reporting files, elements, records, and usages.
NOSORT suppresses the sorting of PowerHouse entities. Choosing NOSORT can save time when
reporting entities from large dictionaries.

Default: SORT

XREF|NOXREF

XREF reports cross-referenced information in each report. For example, a cross-referenced
element in a QSHOW report contains a list of records in which the element name appears.
NOXREF doesn't report cross-referenced information. You can save time when reporting entities
from large dictionaries by choosing not to report cross-referenced information.

Default: XREF

DEVICE PRINTER Options (OpenVMS)

PDC Type Dictionaries PHD Type Dictionaries

OpenVMS: SHOW APPLICATION SECURITY
and SHOW USERS statements are
only available to the dictionary
creator.

When SET SECURITY is entered,
QSHOW checks the access to the
dictionary to identify the dictionary user.
If the dictionary security type
PASSWORD is specified, QSHOW
prompts the user for a password.

SHOW APPLICATION SECURITY and
SHOW USERS statements are only
available to dictionary users who have
application manager or dictionary
manager access.

SHOW DICTIONARY SECURITY
statement is only available to dictionary
users who have dictionary manager
access.

UNIX,
Windows:

SHOW APPLICATION SECURITY
and SHOW USERS statements are
only available to the dictionary
creator.

MPE/iX: SHOW APPLICATION SECURITY
and SHOW USERS statements are
only available to the dictionary owner
or to those who have account
manager (AM) privileges for the
account in which the dictionary
resides or have system manager (SM)
privileges.

SET REPORT DEVICE PRINTER Options

AFTER BURST|NOBURST COPIES

FLAG|NOFLAG FORMS HOLD|NOHOLD

146 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SET

AFTER[absolute-time]+|- delta time]
Specifies the time at which the report is to start executing. An absolute-time is a specific date
and/or time of day. It has the general form:
{dd-mmm[-yyyy][:[hours][:[minutes][:[seconds]
[.[hundredths]]]]]} | {TODAY|TOMORROW|YESTERDAY}

A delta-time is an offset from the current time to a time in the future. It has the general form:
[days][-[hours]][:[minutes][:[seconds][.[hundredths]]]]

You must indicate either an absolute time, a delta time, a combination of both absolute and delta
time or the time indicators TODAY, TOMORROW, and YESTERDAY.

In the following absolute time example, the report executes at noon on May 15, 2001:
> SET REPORT DEVICE PRINTER AFTER 15-MAY-2001:12

In the next example, the report executes according to a delta time, three hours from the current
time:
> SET REPORT DEVICE PRINTER AFTER 15-MAY-2001:12

In the next example, the report executes according to a delta time, three hours from the current
time:
> SET REPORT DEVICE PRINTER AFTER +3

In this final example, the report executes at 11:00 p.m. on the current date:
> SET REPORT DEVICE PRINTER AFTER TOMORROW -1

Default: The default is the time that the job reaches the top of the queue.

BURST|NOBURST
BURST specifies that a burst page is to be printed prior to the flag page at the front of the report.
This enables you to easily identify where one report ends and another begins. The burst page
contains the same information as the flag page, but prints over the perforation. When BURST is
specified, FLAG need not be specified. NOBURST does not print the burst page.

Default: BURST

COPIES n
Specifies the number (n) of copies of a report to be printed.

Limit: Valid only for the SET REPORT DEVICE PRINTER statement. The maximum number of
copies is 255.

Default: 1

FLAG|NOFLAG
FLAG indicates that a flag page is to be printed at the front of the report. The flag page contains
information about the file being printed. This option need not be specified if the BURST option
has been used, as a flag page is automatically produced when BURST is specified. NOFLAG
suppresses the flag page.

Default: FLAG

FORMS number|string
Specifies which form is to be used for the report. The value entered can be a number or a string of
characters.

IDENTIFY|NOIDENTIFY LOWERCASE|NOLOWERCASE NOCHARACTERISTIC|CHARACTERISTIC

NOTE NOTIFY|NONOTIFY OPERATOR|NOOPERATOR

PRIORITY QUEUE RESTART|NORESTART

TRAILER|NOTRAILER

SET REPORT DEVICE PRINTER Options

Chapter 4: QSHOW Statements
SET

PDL and Utilities Reference 147

A string is a series of displayable characters (letters, numbers, or special characters) in double or
single quotation marks. This string can be an actual form name or a logical name for a form. If
FORM is not specified, the system’s regular stock forms are used. To see the forms that are
available for your system, use the DCL command $SHOW QUEUE/FORM.

Limit: If an actual form name is used, the string can be up to 31 characters in length. If a logical
name is used, the string can be up to 255 characters in length.

HOLD|NOHOLD
HOLD indicates that the job is to be held in queue until specifically released; NOHOLD does not.

Default: NOHOLD

IDENTIFY|NOIDENTIFY
IDENTIFY indicates that the message containing the job number and queue message is to be
displayed when the report is sent to the print queue; NOIDENTIFY does not.

Default: IDENTIFY

LOWERCASE|NOLOWERCASE
LOWERCASE indicates that the report is to be printed on a printer that supports both uppercase
and lowercase letters. NOLOWERCASE indicates that the report can be printed on a printer that
supports either uppercase or lowercase letters.

Default: LOWERCASE

NOCHARACTERISTIC|CHARACTERISTICS number|string [,number|string]...
CHARACTERISTICS specifies one or more characteristics that you can use in defining the
printing format of the report.

The DCL command, $SHOW QUEUE|CHAR, shows you the characteristics that are in effect for
your system. NOCHARACTERISTIC specifies that any previously set characteristics are to be
canceled.

Limit: A maximum of 127 characteristics can be defined. If numbers are specified, they must be
within the range of 0 to 127. If you indicate a string, you can specify a maximum of 31 characters
for a physical characteristic and a maximum of 255 characters for a logical characteristic. These
characteristics are installation-specific.

Default: NOCHARACTERISTIC

NOTE
Specifies that a note is to be printed on the flag page of the report.

Limit: The note can be up to 255 characters long.

NOTIFY|NONOTIFY
NOTIFY indicates that a message is to be sent to the user’s terminal when the report has been
printed. NONOTIFY indicates that the user is not to be notified.

Default: NONOTIFY

OPERATOR|NOOPERATOR
OPERATOR specifies that a message is to be sent to the system operator. The report is not printed
until the operator responds to the message. NOOPERATOR indicates that no message is to be
sent to the system operator.

Limit: The message can be up to 255 characters long.

Default: NOOPERATOR

PRIORITY n
Specifies the job’s scheduling priority.

Limit: 255

148 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SET

QUEUE queuename
Specifies the name of the queue in which the printed report is to be queued, and also determines
the device where the report is to be printed.

Default: The default printer device is SYS$PRINT.

RESTART|NORESTART
RESTART indicates that the report is to be restarted after a crash or after the DCL command
STOP/QUEUE/REQUEUE has been issued. NORESTART indicates that the report is not to be
restarted.

Default: RESTART

TRAILER|NOTRAILER
TRAILER indicates that a trailer page is to be printed at the end of the report. NOTRAILER
indicates that a trailer page is not to be printed at the end of the report.

Default: The system default is TRAILER.

Discussion
You can override the default options that are in effect for SHOW statements with the SET
statement.

For example, a report without headings, page numbers, and other aspects of the default report
format can be produced with the statement
> SET COMPRESSED

Examples
To choose a different dictionary without exiting from QSHOW, enter SET DICTIONARY,
followed by the name of the file containing the dictionary to be reported, as in
> SET DICTIONARY NEWDICT

By default, QSHOW reports appear on the terminal. To send QSHOW reports to the printer, use
the REPORT DEVICE option of the QSHOW statement as follows:
> SET REPORT DEVICE PRINTER

With this statement in effect, all reports from subsequent SHOW statements are sent to the printer.
To change back to terminal output, enter
> SET REPORT DEVICE TERMINAL

Chapter 4: QSHOW Statements
SHOW

PDL and Utilities Reference 149

SHOW
Reports dictionary definitions.

Syntax
SHOW option

Options

ALL [SUMMARY|DETAIL]

Reports the entire contents of the dictionary.

SUMMARY|DETAIL
Controls the level of detail that's provided in the report of the dictionary contents.

Default: DETAIL

[APPLICATION] SECURITY [SUMMARY|DETAIL] (UNIX, Windows)

For information about security on MPE/iX, see (p. 152), and on OpenVMS, see (p. 149).

Reports all application security classes and the UICs that belong to them.

Limit: The SET SECURITY statement must be in effect in order to report application security
classes. The SET SECURITY and SHOW APPLICATION SECURITY statements are only
available to dictionary owners. (The dictionary owner is the person who created the data
dictionary.)

[APPLICATION|DICTIONARY] SECURITY [SUMMARY|DETAIL] (OpenVMS)

For information about security on MPE/iX, see (p. 152), and on UNIX/Windows, see (p. 152).

For PDC dictionaries, specifies and reports application security classes. For PHD dictionaries,
specifies and reports application and dictionary security classes. If neither the APPLICATION nor
the DICTIONARY keyword is specified, both are displayed.

Limit: The SET SECURITY option must be in effect for security to be reported. If it is not,
QSHOW issues a warning. The APPLICATION|DICTIONARY SECURITY option can only be
used by users with application or dictionary manager status, and by the dictionary creator.

BASES [DETAIL|SUMMARY] (MPE/iX)

Reports on IMAGE databases in QDD and QDDR dictionaries only. Only IMAGE databases are
reported.

Default: SUMMARY

DATABASES [name-option] [DETAIL|SUMMARY]

Shows the database names (including IMAGE) from databases that are declared with either the
FILE or DATABASE statements. It also shows PowerHouse file names included in the dictionary.
Tables, views, and record-structures are only displayed if the DETAIL option is used.

SHOW Options

ALL APPLICATION SECURITY BASES

DATABASES DESCRIPTION OF ELEMENTS|FILES|USAGES

OPTIONS PORTS RECORDS

SECURITY SUBFILE SUBFILE RECORD

SYSTEMS TRANSACTION USAGES

USERS

150 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SHOW

name-option
If you don't specify a name-option, QSHOW reports the descriptions for all definitions of the
specified entity.

For more information about name-options, see (p. 134).

DETAIL|SUMMARY
Controls the level of detail that QSHOW provides about the given entity. SHOW DATABASES
DETAIL also includes the dictionary status of the [NO] CRITICAL ITEM UPDATE option on the
FILE statement:
CRITICAL ITEM UPDATE : ON

QSHOW cannot tell you whether the database has critical item update enabled since the database
administrator has the ability to enable or disable critical item update externally. The actual status
is verified by QUICK or QTP when they access the database.

Default: DETAIL if you specify a name-option; otherwise SUMMARY.

DESCRIPTION OF ASC [name-option] (UNIX, Windows)
DESCRIPTION OF ELEMENTS [name-option]
DESCRIPTION OF FILES [name-option]
DESCRIPTION OF RECORDS [name-option]
DESCRIPTION OF USAGES [name-option]

Reports descriptions of specified entities.

ASCS (UNIX, Windows)
Reports application security classes.

ELEMENTS
Reports element descriptions.

FILES
Reports file descriptions. This option recognizes relational tables.

RECORDS
Reports record-structure descriptions.

USAGES
Reports usage descriptions.

name-option
Specifies that QSHOW is to report the descriptions for a particular subset of the specified entity.

If you don't specify a name-option, QSHOW reports the descriptions for all definitions of the
specified entity.

For more information about name-options, see (p. 134).

ELEMENTS|FILES|USAGES [name-option] [SUMMARY|DETAIL]

Generates a report of entity definitions.

ELEMENTS
Reports element definitions.

FILES
Shows the names of record structures, tables, or views from files and databases that are declared
with FILE or DATABASE statements in PDL.

Chapter 4: QSHOW Statements
SHOW

PDL and Utilities Reference 151

USAGES
Reports usage definitions.

name-option
Specifies that QSHOW report a specific subset of the specified entity. If you don't specify a
name-option, QSHOW reports all definitions for the specified entity.

For more information on name-options, see (p. 134).

SUMMARY|DETAIL
Controls the level of detail that QSHOW provides about the given entity.

Default: DETAIL if you specify a name option; otherwise, SUMMARY.

OPTIONS (MPE/iX, UNIX, Windows)

Reports the system-wide options as specified in the dictionary.

PORTS (MPE/iX, UNIX)

Reports the terminal types assigned to ports.

RECORDS [name-option] [IN file|database] [SUMMARY|DETAIL]

Reports record-structure definitions from a data dictionary or reports relational tables or views as
PowerHouse record-structures. For INDEXED files, the report shows the segments of a
multiple-segment index. For relational databases, record detail reports include the names of
columns and indexes that each relation contains. If you are running QSHOW using the default
program parameters, you must use the IN database qualifier when you name particular relations.
Normally, only user-defined relations are reported. Relational system tables are not reported.

The output of the SHOW RECORDS statement displays the letter "r" to indicate that column
values are required. The following table shows how null value specifications affect the QSHOW
display.

name-option
Specifies that QSHOW is to report a specific subset of the record-structure. If you don’t specify a
name-option, QSHOW reports all definitions for the record-structure.

For more information on name-options, see (p. 134).

file
A collection of data records. A file can contain more than one record-structure.

database
The name of a relational database declared in the data dictionary.

SUMMARY|DETAIL
Controls the level of detail that QSHOW provides about the record-structure.

Database column
specification PDL FILE or DATABASE option QSHOW SHOW RECORD display

nulls allowed NULL VALUES NOT ALLOWED "r"

nulls not allowed NULL VALUES NOT ALLOWED "r"

nulls allowed NULL VALUES ALLOWED

nulls not allowed NULL VALUES ALLOWED "r"

152 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SHOW

SECURITY [SUMMARY|DETAIL] (MPE/iX)

For security on UNIX/Windows, see (p. 149). For security on OpenVMS, see (p. 149).

Reports all the application security classes and the logonids that belong to them.

For this report to be displayed, you must enter the SET SECURITY statement.

SET SECURITY has no effect unless you are the creator of the dictionary or have System Manager
or Account Manager capability.

SUMMARY|DETAIL
Controls the level of detail that QSHOW provides about the given entity.

SUBFILE filespec [ALL|ELEMENTS] [SUMMARY|DETAIL]
SUBFILE filespec RECORD

Reports on a subfile from its minidictionary. For QSHOW to create reports on a subfile, the
subfile must already exist. The subfile must be a permanent file, or it must have already been
created by PowerHouse in your current session.

Default: ALL

filespec
Names the subfile to be reported.

ALL
Reports the record-structure of the subfile, as well as each element the subfile contains.
SUMMARY and DETAIL options control the amount of reported information.

Default: SUMMARY

ELEMENTS
Reports each element in the subfile. The SUMMARY and DETAIL options control the amount of
detail in the report.

Default: SUMMARY

SUMMARY|DETAIL
Controls the level of detail that QSHOW provides about the given entity.

RECORD
Reports subfile record-structures.

SYSTEM

Reports the system-wide options as specified in the dictionary.

TRANSACTION [name-option] [SUMMARY|DETAIL]

Reports transaction definitions.

USAGES [name-option] [SUMMARY|DETAIL]

Reports usage definitions.

USERS

Reports all the application security classes and the user ID codes that belong to them.

For the user ID to be displayed, you must enter the SET SECURITY statement. SET SECURITY
has no effect unless you are the creator of the dictionary (MPE/iX, UNIX, Windows).

Limit: SHOW USERS can only be used by users with application manager, dictionary manager, or
creator status (OpenVMS).

Chapter 4: QSHOW Statements
SHOW

PDL and Utilities Reference 153

Name-Options
Name-options restrict reporting to a single name or a set of names. If you don't specify a
name-option, QSHOW reports all definitions of the specified entity.

The name-options are namelist, PATTERN, and SOUNDEX.

namelist

Retrieves the names identified by a combination of single names, lists of names, and ranges of
names.

The general form is:
name [TO name] [,name [TO name]]...

Multiple name-sets must be separated by commas.

Limit: 10 names per set.

PATTERN string

Retrieves names that match the string of characters specified in the pattern string. For more
information, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules book.

SOUNDEX(string[,n])

For more information, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules
book.

Discussion
The SHOW statement generates reports on dictionary definitions. Particular entities or groups of
entities can be included in a report. The following can be specified for elements and files:
• individual names
• lists and ranges of names
• pattern matching
• SOUNDEX matches

With the SHOW statement you can report the entire contents of the dictionary or particular
entities as indicated in the following list:

To report Enter

entire dictionary SHOW ALL

IMAGE databases in QDD and QDDR (MPE/iX) SHOW BASES

databases/files SHOW DATABASES, SHOW FILES

tables and views SHOW DATABASES

tables, views, and record-structures SHOW FILES

application security SHOW SECURITY

dictionary security (OpenVMS) SHOW SECURITY

records and indexes SHOW RECORDS

elements SHOW ELEMENTS

descriptions SHOW DESCRIPTION

154 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
SHOW

Controlling Reported Information

The SUMMARY and DETAIL options control the amount of reported information. When you
don't specify SUMMARY or DETAIL as part of a SHOW statement, QSHOW assumes the
following:

These defaults simplify the most common reporting requirements.

Examples
To report all files, enter
> SHOW FILES

Reporting Entities by Namelist

Any combination of names, lists of names, and ranges of names is referred to in QSHOW as a
namelist. Namelists work exactly the same way for elements and files. To report specific files, list
them by name, as in
> SHOW FILES CUSTOMER, PROJECTS, EMPLOYEES

To report a range of names with a statement, enter
> SHOW FILES C TO F, PROJECTS

This statement reports files with names that begin with C through to those that begin with F, as
well as the file PROJECTS. The same techniques can be used to report element, record, and usage
names.

Reporting Entities by Pattern Matches

As an alternative to searching by namelist, you can make more sophisticated searches for names
using patterns and SOUNDEX matches.

Searching for names by pattern can be accomplished by using the PATTERN option and a pattern
string. For example, the statement,
> SHOW ELEMENTS PATTERN "@POS@"

system-wide standards SHOW OPTIONS (MPE/iX, UNIX,
Windows) SHOW SYSTEM

subfiles SHOW SUBFILES

element usages SHOW USAGES

user ID codes SHOW USERS

To report Enter

Statement Default

SHOW ALL DETAIL

SHOW entity SUMMARY

SHOW entity namelist DETAIL

SHOW entity PATTERN string SUMMARY

SHOW entity SOUNDEX (string) SUMMARY

Chapter 4: QSHOW Statements
SHOW

PDL and Utilities Reference 155

reports all elements containing POS in their names. Pattern matching in QSHOW follows the
same rules as in other PowerHouse components. The only exception is that patterns used in
QSHOW are automatically upshifted. For example, you can enter "@pos@" or "@POS@" and get
the same result. For more information, see Chapter 5, "PowerHouse Language Rules", in the
PowerHouse Rules book.

Reporting Names Using SOUNDEX Codes

SOUNDEX matches words with similar phonetics. For example, the statement
> SHOW ELEMENTS SOUNDEX("LASTNAME")

retrieves names such as LAST_NAME, LST_NAME, LST_NM, and LSTNM.

For more information, see Chapter 5, "PowerHouse Language Rules", in the PowerHouse Rules
book.

Using SHOW DESCRIPTION

The SHOW DESCRIPTION statement allows you to report any file or element descriptions in the
dictionary. To report a selection of element descriptions, use a namelist, as in
> SHOW DESCRIPTION OF ELEMENTS E TO H, CITY

You can follow the keywords, ASCS, ELEMENTS, FILES, RECORDS, or USAGES, with
namelists, patterns, and SOUNDEX matches.

You can control the amount of detail reported with the keywords, SUMMARY and DETAIL. A
SUMMARY report is a one-line-per entity summary of important information. A DETAIL report
is a full feature report that summarizes the entity in several lines and includes cross-references.

156 PowerHouse(R) 4GL Version 8.4E

Chapter 4: QSHOW Statements
USE

USE
Processes QSHOW source statements contained in a file.

Syntax
USE filespec [option]

filespec

Names the file that contains the QSHOW source statements you want to use.

If the file doesn't exist, QSHOW issues an error message.

Options
The options are DETAIL, NODETAIL, LIST and NOLIST.

DETAIL|NODETAIL

DETAIL writes the contents of the file to QSHOW's source statement save file, qshosave, rather
than just the USE statement itself. NODETAIL writes just the USE statement to the temporary
save file rather than the contents of the file being used.

Default: DETAIL

LIST|NOLIST

LIST displays the statements as they are processed; NOLIST doesn't.

Default: LIST

Discussion
The USE statement instructs QSHOW to process the named file for statement input.

QSHOW reads and interprets each statement as if it had been entered from the terminal. By
entering USE statements, you can run standard reports that you've prepared in advance.

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the USE statement. For more information about the procloc program parameter, see Chapter 2,
"Program Parameters", in the PowerHouse Rules book.

Nesting USE Statements
A file referenced in a USE statement can itself contain other USE statements. USE files can be
nested to a maximum of 20 levels. Permanent files and record-structures containing valid source
code can be included at any time provided they are consistent with QSHOW syntax and structure.

PDL and Utilities Reference 157

Chapter 5: QUTIL Statements

Overview
QUTIL is a utility that creates and deletes non-relational files and databases.

QUTIL uses the syntax and language rules that are discussed in Chapter 5, "PowerHouse
Language Rules", in the PowerHouse Rules book.

For more about running QUTIL, see Chapter 1, "Running PowerHouse", in the PowerHouse
Rules book.

Summary of QUTIL Statements
The following table summarizes the purpose of each QUTIL statement:

Statement Purpose

CREATE Creates files.

DELETE Deletes files.

EXIT Terminates QUTIL.

QSHOW Runs QSHOW from QUTIL.

QUIT Terminates QUTIL.

REVISE Edits files from within QUTIL.

SAVE Saves QUTIL source statements in a file.

SET Changes the settings for a QUTIL session.

USE Processes QUTIL statements contained in a file.

158 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
CREATE (MPE/iX, UNIX, Windows)

CREATE (MPE/iX, UNIX, Windows)
For CREATE (OpenVMS), see (p. 162).

Creates files, IMAGE databases, and Eloquence.

Syntax
CREATE ALL

CREATE BASE name [base-option]...[[,] name[base-option]...]...

CREATE FILE name [file-option]...[[,] name[file-option]...]...

Options

ALL

Creates all files, IMAGE databases, and Eloquence databases declared in the dictionary.

Limit: Files declared with the NOCREATE attribute, and IMAGE or Eloquence databases whose
datasets are declared with the NOCREATE attribute are not created.

BASE

Creates the named IMAGE or Eloquence databases. For IMAGE, use the actual database name.
For Eloquence, use the logical name declared in the PDL FILE OPEN clause. For example, if the
PDL code for an IMAGE database is
> FILE mydb ORGANIZATION DATABASE OPEN testdb.mygroup.myaccount

then the QUTIL code to create the database would be
> CREATE BASE testdb

However, if the PDL code for an Eloquence database is
> FILE mydb ORGANIZATION DATABASE OPEN server001:eloqdb/testdb

then the QUTIL code to create the database would be
> CREATE BASE mydb

FILE

Creates all the named files defined in the dictionary, even if some of those files are specified with
the NOCREATE attribute in the dictionary.

Limit: Not valid for relational databases.

base-option (MPE/iX only)

Allows you to override certain attributes of datasets that were specified in the dictionary. The base
options are BLOCKMAX and CAPACITY.

BLOCKMAX n
Specifies the maximum block length (in words) of any dataset in the database.

Limit: This option must be used when the record length of an IMAGE dataset is larger than 512
words. The maximum block length can be from 128 to 2048 words.

CAPACITY n
Specifies the maximum number of records (n) in each dataset in the database. The capacity can be
any number within the limits set by IMAGE. This option overrides the individual capacities
specified for each dataset in the dictionary. Since capacity can be specified in QUTIL, and
QSHOW reflects the capacity specified in the dictionary, the values shown by QSHOW may not
be the actual capacity of the dataset.

Chapter 5: QUTIL Statements
CREATE (MPE/iX, UNIX, Windows)

PDL and Utilities Reference 159

file-option (MPE/iX only)

Allows you to override certain attributes of files that were specified in the dictionary. The file
options are BLOCKING FACTOR, CAPACITY, and TEMPORARY.

BLOCKING [FACTOR] n
Specifies the number of records (n) per block. This option overrides any blocking factor specified
in the dictionary.

CAPACITY n
Specifies the maximum number of records (n) in the file. The capacity can be any number within
the limits set by the operating system. This option overrides the capacity specified in the
dictionary. Since capacity can be specified in QUTIL, and QSHOW shows the capacity specified in
the dictionary, the value shown in QSHOW may not be the actual capacity of the file.

TEMPORARY
Creates a temporary file rather than a permanent file.

Discussion
The CREATE statement builds files, IMAGE databases, and Eloquence databases declared in the
dictionary. If the file already exists, you are prompted for permission to create a new file. QUTIL
doesn't attempt to create files to which you don't have write access (as declared in the dictionary).

If more than one FILE statement specifies the same open name for files of the same type, QUTIL
applies the following rules:
1. If one of the files has the CREATE option specified, that file is created.
2. If one of the files has the NOCREATE option specified, that file is not created.
3. The first file in alphabetical order is created.

To ensure that QUTIL creates the right file, use either the CREATE option on one FILE statement
only, or the NOCREATE option on all but the one file you want to create.

To specify more than one file or database in a single CREATE statement, separate each file name
or database name with a space or a comma.

If only some of the datasets in a database are declared in the dictionary or some datasets are
declared with the NOCREATE option, don’t use QUTIL’s CREATE statement to build the
database. QUTIL attempts to create a database from the definitions in the dictionary, even if
datasets are missing. To prevent QUTIL from trying to build a partial database, specify the
NOCREATE option on each RECORD statement for the database.

For more information on creating files and databases, see the discussion of the
CREATE|NOCREATE options of the FILE and RECORD statements on (p. 62) and (p. 62),
respectively.

Each name that follows the FILE keyword is interpreted as a file name. Similarly, each name that
follows the BASE keyword is then interpreted as a database name.

To combine file and database names in the same statement, follow the FILE keyword with the file
names, and the BASE keyword with the database names, as in
> CREATE BASE INVEN FILE INVEN-AUDIT INEVEN-TXN

This statement creates a database named INVEN, and two files named INVEN-AUDIT and
INVEN-TXN.

Creating an IMAGE database

To create an IMAGE database, QUTIL generates the necessary schema and invokes the HP
programs, DBSCHEMA and DBUTIL. As the IMAGE schema is processed by DBSCHEMA, the
DBSCHEMA output is displayed on your terminal. When DBSCHEMA is finished, QUTIL
invokes the DBUTIL program to create the database. If more than one database is being created,
DBSCHEMA runs separately for each database. DBUTIL runs once for all the IMAGE databases.

160 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
CREATE (MPE/iX, UNIX, Windows)

The record layout for an IMAGE dataset must be defined to have an even storage length, since
IMAGE does not support odd length records. Although QUTIL always creates datasets with
even-length records by adding an extra byte to an odd-length record, the resulting IMAGE schema
cannot be used by PowerHouse because the actual record length doesn’t match the length
recorded in the dictionary. QUTIL issues an error message to indicate this problem.

[NO] CRITICAL ITEM UPDATE option on the FILE statement (MPE/iX)

QUTIL generates the following DBUTIL syntax:
SET BASENAME CIUPDATE=ALLOWED

The ALLOWED option indicates that the [NO] CRITICAL ITEM UPDATE option, specified on
the FILE statement in PDL, is allowed if it is enabled within the database.

The other options of the DBUTIL SET CIUPDATE statement are DISALLOWED and ON.

Limit: If you are creating a database with QUTIL, PowerHouse will not support the ON option of
the DBUTIL SET CIUPDATE statement. This is to avoid data integrity problems that could arise
as a result of using RUN commands or DO EXTERNAL commands to access programs that do
not support critical item update.

Creating a KSAM file

To create a KSAM file, QUTIL generates KSAMUTIL commands for the file creation, and then it
invokes the HP program, KSAMUTIL. If more than one KSAM file is being created, KSAMUTIL
runs once for all the KSAM files.

Creating MPE and KSAMXL files

To create MPE or KSAMXL files, QUTIL uses the MPE BUILD command.

Datatype Mapping Tables

PowerHouse makes few restrictions on datatype usage for keys and indexes. File systems, on the
other hand, are much more restrictive, so PowerHouse maps its datatypes to the best match
available when the file is generated using QUTIL. Also see "DISAM Data Storage" in
PowerHouse Rules.

PowerHouse Datatype IMAGE Datatype KSAM Datatype C-ISAM/DISAM Datatype

CHARACTER X BYTE CHARTYPE

DATE I2 BYTE CHARTYPE

DATETIME I2 BYTE CHARTYPE

FLOAT E2 (4 byte)
E4 (8 byte)

REAL (4 byte)
REAL (8 byte)

FLOATTYPE (4 byte)
DOUBLETYPE (8 byte)

FREEFORM1 X BYTE CHARTYPE

INTEGER SIGNED2 I INTEGER INTTYPE (2 bytes)
LONGTYPE (4 bytes)
CHARTYPE (> 4 bytes)

INTEGER UNSIGNED K BYTE CHARTYPE

INTERVAL R4 LONG DOUBLETYPE

JDATE K BYTE CHARTYPE

PACKED SIGNED 3 P PACKED CHARTYPE

PACKED UNSIGNED 3 P PACKED CHARTYPE

Chapter 5: QUTIL Statements
CREATE (MPE/iX, UNIX, Windows)

PDL and Utilities Reference 161

PHDATE K BYTE CHARTYPE

VARCHAR4 -- BYTE CHARTYPE

ZDATE X6 BYTE CHARTYPE

ZONED SIGNED3 Z BYTE CHARTYPE

ZONED UNSIGNED3 Z NUMERIC CHARTYPE

1 FREEFORM keys and segments do not work due to the nature of the FREEFORM datatype.
2 CHARTYPE won't handle negative numbers correctly.
3 PACKED and ZONED only work for C-ISAM and DISAM if the signs are all the same.
4 The first two bytes which represent the size are ignored.

PowerHouse Datatype IMAGE Datatype KSAM Datatype C-ISAM/DISAM Datatype

162 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
CREATE (OpenVMS)

CREATE (OpenVMS)
For CREATE (MPE/iX, UNIX, Windows), see Creates files (p. 158).

Syntax
CREATE ALL

CREATE FILE filename[[,]filename]...

Options

ALL

Creates all files declared in the dictionary.

Limit: Files declared with the NOCREATE attribute are not created.

FILE

Creates all the named files defined in the dictionary, even if some of those files are specified with
the NOCREATE attribute in the dictionary.

Limit: Not valid for relational databases.

Discussion
The CREATE statement builds files declared in the dictionary. If the file already exists, you are
prompted for permission to create a new file. QUTIL doesn't attempt to create files to which you
don't have write access (as declared in the dictionary).

If more than one FILE statement specifies the same open name for files of the same type, QUTIL
applies the following rules:
1. If one of the files has the CREATE option specified, that file is created.
2. If one of the files has the NOCREATE option specified, that file is not created.
3. The first file in alphabetical order is created.

To ensure that QUTIL creates the right file, use either the CREATE option on one FILE statement
only, or the NOCREATE option on all but the one file you want to create.

To specify more than one file in a single CREATE statement, separate each file name with a space
or a comma.

If FDL is set, then an FDL file is created along with the data file with the name <filename>.fdl.

Datatype Mapping Tables

PowerHouse makes few restrictions on datatype usage for keys and indexes. File systems, on the
other hand, are much more restrictive, so PowerHouse maps its datatypes to the best match
available when the file is generated using QUTIL.

PowerHouse RMS ISAM

CHARACTER character string

DATE 2-byte unsigned integer

DATETIME 8-byte unsigned integer

FLOAT5 not permitted

FREEFORM1 character string

Chapter 5: QUTIL Statements
CREATE (OpenVMS)

PDL and Utilities Reference 163

G-FLOAT5 not permitted

INTEGER SIGNED2 2-byte signed integer
4-byte signed integer
8-byte signed integer

INTEGER UNSIGNED 2, 4, 8-byte unsigned integer

INTERVAL5 not permitted

JDATE 2-byte unsigned integer

PACKED SIGNED 3 packed

PACKED UNSIGNED 3 packed

PHDATE 2-byte unsigned integer

VARCHAR4 character string

VMSDATE 8-byte unsigned integer

ZDATE character string

ZONED SIGNED3 character string

ZONED UNSIGNED3 character string

ZONED NUMERIC character string

1 FREEFORM keys and segments do not work due to the nature of the FREEFORM datatype.
2 CHARTYPE does not process negative numbers correctly.
3 PACKED and ZONED only work for C-ISAM and DISAM if the signs are all the same.
4 The first two bytes which represent the size are ignored.
5 RMS ISAM allows only certain datatypes as index segments.

PowerHouse RMS ISAM

164 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
DELETE (MPE/iX)

DELETE (MPE/iX)
For DELETE (OpenVMS, UNIX, Windows), see (p. 165).

Deletes files and IMAGE databases.

Syntax
DELETE ALL

DELETE BASE name [[,]name]...

DELETE FILE filespec [[,]filespec]...

Options

ALL

Deletes all files and databases declared in the dictionary.

Limit: Files declared with the NOCREATE attribute, and the databases whose datasets are all
declared with the NOCREATE attribute, are not deleted.

BASE

Deletes the named databases.

FILE

Deletes all named files specified in the dictionary, even if some of the files have the NOCREATE
attribute.

Limit: Not valid for relational databases.

Discussion
The DELETE statement deletes files and databases declared in the dictionary. QUTIL does not
delete files and databases to which you don't have write access. Similarly, if you enter DELETE
ALL, QUTIL won't delete files specified as NOCREATE in the dictionary, or databases whose
datasets are declared in the dictionary as NOCREATE. When indexed files are deleted, key files
are deleted along with the data files.

When a database is deleted, all its datasets are deleted, even those not declared in the dictionary.
When KSAM files are deleted, their key files are deleted along with the data files.

To specify more than one file in a single DELETE statement, separate each filename with a space
or comma. DELETE verifies that the file being deleted matches the dictionary definitions. Use
DELETE before changing the dictionary definitions.

Each name that follows the FILE keyword is interpreted as a file name. Similarly, each name that
follows the BASE keyword is interpreted as a database name.

To combine file and database names in the same statement, follow the FILE keyword with the file
names, and the BASE keyword with the database names, as in
> DELETE BASE INVEN FILE INVEN-AUDIT INVEN-TXN

This statement deletes a database named INVEN, and two files named INVEN-AUDIT and
INVEN-TXN.

DELETE verifies that the file being deleted matches the dictionary definitions. Use DELETE
before changing the dictionary definitions.

If you want to change the dictionary definition of a file but keep the data, save the data in a subfile
before making any changes. Once you have recreated the file with the new dictionary definitions,
you can restore the data to the new file.

Chapter 5: QUTIL Statements
DELETE (OpenVMS, UNIX, Windows)

PDL and Utilities Reference 165

DELETE (OpenVMS, UNIX, Windows)
For DELETE (MPE/iX), see (p. 164).

Deletes files.

Syntax
DELETE ALL

DELETE FILE filespec [[,]filespec]...

Options

ALL

Deletes all files declared in the dictionary.

Limit: Files declared with the NOCREATE attribute are not deleted.

FILE

Deletes all named files specified in the dictionary, even if some of the files have the NOCREATE
attribute.

Limit: Not valid for relational databases.

Discussion
The DELETE statement deletes files declared in the dictionary. QUTIL does not delete files to
which you don't have write access. Similarly, if you enter DELETE ALL, QUTIL won't delete files
specified as NOCREATE in the dictionary. When indexed files are deleted, key files are deleted
along with the data files.

To specify more than one file in a single DELETE statement, separate each filename with a space
or comma. DELETE verifies that the file being deleted matches the dictionary definitions. Use
DELETE before changing the dictionary definitions.

If you want to change the dictionary definition of a file but keep the data, save the data in a subfile
before making any changes. Once you have recreated the file with the new dictionary definitions,
you can restore the data to the new file.

OpenVMS: If FDL (File Definition Language) is set and an associated FDL file is found, it is
deleted along with the data file.

166 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
EXIT

EXIT
Terminates QUTIL.

Syntax
EXIT

Discussion
The EXIT statement terminates QUTIL and returns control to the invoking program.

EXIT and QUIT are interchangeable.

Chapter 5: QUTIL Statements
QSHOW

PDL and Utilities Reference 167

QSHOW
Runs QSHOW from QUTIL.

Syntax
QSHOW

Discussion
The QSHOW statement initiates a QSHOW session from within QUTIL. For more information
about QSHOW, see Chapter 4, "QSHOW Statements". When you EXIT from QSHOW, you are
returned to your QUTIL session.

168 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
QUIT

QUIT
Terminates QUTIL.

Syntax
QUIT

Discussion
The QUIT statement terminates QUTIL and returns control to the invoking program.

QUIT and EXIT are interchangeable.

Chapter 5: QUTIL Statements
REVISE

PDL and Utilities Reference 169

REVISE
Edits files from within QUTIL.

Syntax
REVISE [*|filespec [DETAIL|NODETAIL] [LIST|NOLIST]
[USE|NOUSE]]

*

Signifies that the current save file is to be edited. The save file is qutlsave (MPE/iX) and
qutlsave.qus (OpenVMS, UNIX, Windows).

This source statement save file is a temporary file that the PowerHouse component opens at the
beginning of a session. All statements except the SAVE statement are recorded in this file as you
enter them. The asterisk is required only if you change the default options while editing the source
statement file.

filespec

Names an existing permanent file. If this file does not contain component statements, use the
NOUSE option. This ensures that the component will not try to execute the file when you exit
from the system editor.

DETAIL|NODETAIL

DETAIL copies the contents of the revised file into the QUTIL save file when you exit from the
system editor. NODETAIL puts a USE statement with the filespec of the revised file into the
QUTIL save file. If you are revising a permanent file with USE and NODETAIL in effect, then
QUTIL adds the following statement to the save file:
> USE ORDERS NODETAIL

where ORDERS is the name of the revised file.

Limit: The NODETAIL option is not valid with the current source statement save file.

Default: DETAIL

LIST|NOLIST

LIST displays each statement from the revised file as they are executed. NOLIST processes the
statements without displaying them.

Default: LIST

USE|NOUSE

USE executes the revised statements when you exit from the system editor. NOUSE does not.
NOUSE returns you to the PowerHouse component at the point from which you left it.

Default: USE

Discussion
The REVISE statement indicates which file is to be edited and, optionally, how the revised file is to
act upon reentering QUTIL.

Defaults:

MPE/iX: By default, the REVISE statement chooses EDITOR/3000 as the system editor.
You can change this by using a file equation for COGEDITR.

OpenVMS: REVISE uses the editor defined in PHEDIT. You can change the default editor by
changing the setting of the PHEDIT symbol. If PHEDIT is not defined, REVISE
uses the system editor, EDT.

170 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
REVISE

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the REVISE statement. For more information about the procloc program parameter, see Chapter
2, "Program Parameters", in the PowerHouse Rules book.

UNIX,
Windows:

REVISE uses the editor defined in PHEDIT. If PHEDIT is not defined, the system
checks the environment variable, EDITOR. If you have not defined either of
these variables, the REVISE statement fails.

Chapter 5: QUTIL Statements
SAVE

PDL and Utilities Reference 171

SAVE
Saves QUTIL source statements in a file.

Syntax
SAVE filespec[CLEAR]

Options

filespec

Names a permanent file in which to save the QUTIL statements.

CLEAR

Deletes the contents of QUTIL's temporary source statement save file after the contents are copied
to the permanent file named by filespec. The save file is qutlsave (MPE/iX) and qutlsave.qus
(OpenVMS, UNIX, Windows).

Discussion
The SAVE statement copies the contents of the QUTIL save file to a permanent file. The save file is
a temporary file that QUTIL opens at the beginning of a session. All QUTIL statements (except for
the SAVE statement) are recorded into the save file as they are entered. The saved contents can be
used as a source file for documentation and future changes, or as a working file to be modified
using a text editor. The saved statements can also be processed by QUTIL with the USE statement.

The CLEAR option deletes the contents of QUTIL save file after copying the contents to a
permanent file. This allows you to enter and then save a new set of QUTIL statements in the same
session. (To clear the save file without saving its contents, use the SET SAVE CLEAR statement.)

172 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
SET

SET
Changes the settings for a QUTIL session.

Syntax
SET option [option]...

Options

DICTIONARY filespec [TYPE PHD|PDC]

Names the dictionary to be used for the current QUTIL session. SET DICTIONARY can be used
any number of times in a single session, and is helpful when more than one dictionary is being
referenced.

MPE/iX: SET DICTIONARY does not affect file equations directing PowerHouse to a certain
dictionary. However, SET DICTIONARY does override the file equations for the session.

Default: QUTIL references the dictionary you specified before entering PowerHouse.

[TYPE PHD|PDC] (OpenVMS)
Specifies the default dictionary type. If the TYPE option is specified in a PowerHouse component,
it applies to subsequent SET DICTIONARY statements in the component.

When searching for a dictionary, PowerHouse limits searches to the dictionary type specified by
the TYPE option. If the TYPE option is not specified, PowerHouse searches first for a PHD
dictionary, then a PDC dictionary.

Default: PHD

FDL|NOFDL (OpenVMS)

Specifies whether to create or delete FDL (File Definition Language) files. FDL files have the form
filename.fdl. If FDL is specified
• the CREATE statement creates the FDL file
• the DELETE statement deletes the FDL file

Default: NOFDL

GO|NOGO (MPE/iX)

When GO is in effect, QUTIL creates and deletes files and databases as each CREATE and
DELETE statement is entered. When NOGO is in effect, the create and delete actions are deferred.
When used in conjunction with SOURCE, NOGO gives you the opportunity to edit the source file
created by SOURCE and to run the creation or deletion as a batch job.

Limit: NOGO can only be used when SOURCE is in effect.

Default: GO

STATISTICS|NOSTATISTICS

STATISTICS reports details about the file being created, such as, record size, indexes, and physical
location. NOSTATISTICS does not.

Default: NOSTATISTICS

SOURCE [filespec]|NOSOURCE (MPE/iX)

SOURCE creates a file containing the statements required to perform the QUTIL functions you
subsequently enter. NOSOURCE resets the SOURCE option, closing any currently open source
file. The job that is created with SOURCE contains a dummy job control statement that must be
modified before you can stream the file.

Chapter 5: QUTIL Statements
SET

PDL and Utilities Reference 173

With SET SOURCE in effect, the contents of the source file provide documentation of your
activity.

With SET NOGO in effect, the source file can be edited before being run, then streamed as a job.

IF SET SOURCE is specified without a filespec, a file named QUTLSRC is created.

Default: NOSOURCE when SET GO is in effect; SOURCE when SET NOGO is in effect.

VERIFY[ALL|DELETE]|NOVERIFY

VERIFY requests authorization to proceed with processing. NOVERIFY instructs QUTIL not to
prompt for permission to proceed during processing. When VERIFY ALL is specified, QUTIL
prompts you for permission to proceed before creating or deleting a file. If VERIFY DELETE is
specified, QUTIL prompts you for permission to proceed before deleting a file or database
(MPE/iX).

If SET NOGO and SET SOURCE are in effect, the VERIFY prompts will govern which statements
are put into the source file for later execution. For example, if VERIFY ALL is in effect, QUTIL
displays prompts like
DATA BASE INVEN Already exists.

O.K. to generate delete and create statements?

If you respond with a Yes, the commands to delete and then create the file or database (MPE/iX)
are put into the source file.

Default: VERIFY DELETE

Discussion
SET statements override default options normally in effect during a QUTIL session.

174 PowerHouse(R) 4GL Version 8.4E

Chapter 5: QUTIL Statements
USE

USE
Processes QUTIL statements contained in a file.

Syntax
USE filespec[DETAIL|NODETAIL] [LIST|NOLIST]

Options

filespec

Names a file that contains QUTIL source statements.

DETAIL|NODETAIL

DETAIL copies the contents of the source file to QUTIL's temporary save file rather than just the
USE statement itself. NODETAIL copies just the USE statement. For more information about
QUTIL’s temporary save file, qutlsave (MPE/iX), or qutlsave.qus (OpenVMS, UNIX, Windows),
see (p. 171).

Default: NODETAIL

LIST|NOLIST

LIST displays each QUTIL statement contained in the file as they are executed. NOLIST processes
the statements without displaying them.

Default: LIST

Discussion
The USE statement instructs QUTIL to read the named file for statement input. QUTIL reads and
interprets each statement as if it had been entered from the terminal. The file can contain other
USE statements.

Limit: USE statements can be nested to a maximum of 20 levels.

The procloc parameter affects how PowerHouse uses unqualified file names that are specified in
the USE statement. For more information about the procloc program parameter, see Chapter 2,
"Program Parameters", in the PowerHouse Rules book.

PDL and Utilities Reference 175

Chapter 6: ITOP Utility

Overview
In this chapter, you will learn how to:
• use the IMAGE to PDL conversion utility (ITOP)
• handle conversion issues

Converting to PDL
The ITOP utility is used to generate PDL statements directly from an existing IMAGE database.
You can create a basic dictionary from the IMAGE database, shortening the time it takes to design
a full dictionary.

The ITOP utility prompts for
• a dictionary title
• application security class names and associated logon IDs
• database information

In response to this information, ITOP
• reads the IMAGE root file for each database
• generates PDL dictionary design statements for a single dictionary
• places the statements in an automatically created MPE file named PDLSRC

To start an ITOP session
1. Enter

:ITOP

Note: If the dictionary design is likely to contain more than 5000 lines, use the parm program
parameter to specify the maximum number of lines. For example:
:ITOP PARM=8000

2. Enter a dictionary title.
3. Enter an application security class name.
4. Enter the logon IDs of the users belonging to the application security class.

Note: You can enter the same logon ID in more than one application security class.
5. Repeat steps 3 and 4 for each application security class.
6. Enter the name of the IMAGE database.

Include the database group and account if they are different from the current group and
account.

7. Enter the database password.
Enter either Y (Yes) or N (No) depending on whether you want ITOP to duplicate the access
granted by the IMAGE passwords in the dictionary design.

If you select... Then...

N (No) Skip to step 8.

176 PowerHouse(R) 4GL Version 8.4E

Chapter 6: ITOP Utility

8. Repeat steps 6 through 7 for each database.

Issues for Consideration
When using ITOP to generate PDL from an IMAGE database, you need to consider the following:
• IMAGE security
• duplicate names
• date elements

IMAGE Security
ITOP attempts to duplicate existing IMAGE security in the PDL statements that it creates. ITOP
relies on a one-to-one correspondence between PDL application security class names and IMAGE
passwords. ITOP generates the appropriate PERMIT statement to reflect the access specified in
the IMAGE root file.

ITOP prompts for the information that is necessary for a dictionary design that can’t be found in
an IMAGE root file. To duplicate the existing IMAGE security for any of the databases, you must
enter information at the application security class and password prompts. If you do not want to
duplicate existing IMAGE security, you can ignore those prompts.

Duplicate Names
While creating PDL statements, ITOP indicates design errors. The most common errors are
duplicate names, which can result when more than one database is used to create a single
dictionary design. At the end of the ITOP session, you will receive a message indicating duplicate
file names.

Although ITOP can only flag duplicate file names, it does attempt to resolve duplicate element
names. If two elements have the same name and identical attributes, including security, only one is
included in the dictionary design. Because any element can be found in any number of files, this
built-in mechanism for eliminating duplicate element definitions doesn’t make any difference to
the resulting dictionary design. If, however, two elements have the same name but their attributes
aren’t identical, ITOP adds both elements to the dictionary design and flags the second
occurrence.

All errors must be corrected before PDL can create the dictionary. The PDLSRC file can be used as
input to the PDL program.

Date Elements
ITOP does not use PowerHouse DATE datatypes in its generated PDL. To use DATE datatypes,
you will have to modify the definition for IMAGE datatypes used as dates.

Y (Yes) ITOP prompts for the IMAGE password corresponding to each
application security class. For example

MANAGER : SESAME

CLERK : LOOK

In this example, all users belonging to the application security class
MANAGER will have the same access that IMAGE grants users with the
password SESAME.

If you select... Then...

Chapter 6: ITOP Utility

PDL and Utilities Reference 177

Refine Your Dictionary Design
You created the basic dictionary design with ITOP but you can enhance this skeletal design. The
following list contains a sample of the types of changes you might want to make:
• add KSAM and MPE files
• add item redefinitions
• add or change implied decimal positions in element types
• add element descriptions, headings, and labels
• add new logon IDs
• restrict access of application security class to files and elements

178 PowerHouse(R) 4GL Version 8.4E

Chapter 6: ITOP Utility

PDL and Utilities Reference 179

Chapter 7: ETOP Utility

Overview
In this chapter, you will learn how to:
• use the Eloquence to PDL conversion utility (ETOP)
• handle conversion issues

Converting to PDL
The ETOP utility is used to generate PDL statements directly from an existing Eloquence
database. You can create a basic dictionary from the Eloquence database, shortening the time it
takes to design a full dictionary.

PowerHouse supports Eloquence on HP-UX and Windows through its "TurboIMAGE
compatibiliby" interface, which makes it look (for the most part) like IMAGE. Thus ETOP is a
variation on the ITOP utility (p. 175).

The ETOP utility prompts for
• a dictionary title
• application security class names and associated logon IDs (Windows, UNIX) or UICs (UNIX)
• database information

In response to this information, ETOP
• reads the Eloquence metadata for each database
• generates PDL dictionary design statements for a single dictionary
• places the statements in an automatically created UNIX or Windows file named pdlsrc.pdl.

To start an ETOP session
1. Enter

$etop

On Windows, ETOP can also be run from the Start menu.
2. You are prompted for a dictionary title. Enter one.
3. You are prompted with "Do you want to include Application Security?".

If you enter N, you will skip to step 7. This is equivalent to entering <carriage return> in
response to the first "USER NAME" prompt in ITOP.
Windows: Entering Y results in a prompt to enter an application security class name.
UNIX: Entering Y results in the prompt, "ASC ID METHOD? L=LOGONID, U=UIC". Enter
L or U, resulting in a prompt to enter an application security class name.

4. Enter the first application security class name.
5. Enter one or more logon IDs (Windows, UNIX) or UICs (UNIX) of the users belonging to the

application security class, one per line. Enter a blank line to end the list. UICs are entered with
no surrounding square brackets, as two integers of 5 or fewer digits, separated by a comma
and with no embedded blanks.
Note: You can enter the same logon ID or UIC in more than one application security class.
Note: While PDL accepts WEBLOGONID as a valid ASC ID METHOD, this is not supported
by ETOP.

6. Repeat steps 4 and 5 for each application security class. Enter a blank line to end the list.
7. You are prompted for the open name of the first Eloquence database. Enter this, using the

format [[server][:service]/][Database].

180 PowerHouse(R) 4GL Version 8.4E

Chapter 7: ETOP Utility

8. You are prompted for the database password. This password must grant read/write access to
all data sets in the database. The format of your response depends on the IMAGE emulator
being used. For Eloquence, this must be a valid Eloquence [password]/user combination.
Enter this.

9. If the database open name in step 7 is not a valid PowerHouse name (for example,
"remote/REMOTEDB"), you are prompted for a PowerHouse name to use. Enter one.
If you responded with N in step 3 to "Do you want to include Application Security?", skip to
step 14. Otherwise, go to step 10.

10. You are prompted with "Do you want application security for this data base?".
If you enter N, you skip to step 14. Otherwise, you go to step 11.

11. You are prompted with "Include element level security?". Enter Y or N as desired.
Eloquence does not support element level security. A negative response will prevent the
generation of PERMIT statements that will be ignored. The prompt is made in case another
IMAGE emulator does support element level security.

12. You are prompted next with "Include security for the UNKNOWN ASC?". Enter Y or N as
desired.
This prompt works around a difference between IMAGE and Eloquence. For IMAGE, ITOP
opens the database as "user class 0" by passing zero in the password parameter to DBOPEN
and generating PERMIT statements granting our UNKNOWN ASC any access that is
available to user class 0. Eloquence does not have anything that directly corresponds to
IMAGE's user class 0. The closest it comes is a predefined Eloquence user called "public",
which may or may not be password protected. If this public user has no access to anything in
the database, an attempt to open the database as the public user fails. If this is the case,
attempts to generate security related to our UNKNOWN class fails, so the user will want to
respond negatively to this prompt.

13. You are prompted next for the database password corresponding to each ASC (including
UNKNOWN, if you responded with Y in step 12). Enter these.
These are passed to DBOPEN to open the database; the access granted to the associated ASC
in the PDL source is that which is granted through this open of the database.
Note: If DBSCHEMA source was used to create the Eloquence database, there may not be a
one-to-one correlation between the PASSWORDs in the DBSCHEMA source and the
Eloquence users. Each entry in the DBSCHEMA PASSWORDS section results in the creation
of an Eloquence "group", and the "group" capabilities can then be granted to one or more
Eloquence users. If more than one "group" is granted to a particular Eloquence user, that user
will have access to everything that was granted though each of these groups.

14. Repeat steps 7 through 13 for each database.

Issues for Consideration
When using ETOP to generate PDL from an Eloquence database, you need to consider the
following:
• Eloquence security
• duplicate names
• date elements

Eloquence Security
ETOP attempts to duplicate existing Eloquence security in the PDL statements that it creates.
ETOP relies on a one-to-one correspondence between PDL application security class names and
Eloquence passwords. ETOP generates the appropriate PERMIT statement to reflect the access
specified in the Eloquence metadata.

ETOP prompts for the information that is necessary for a dictionary design that can’t be found in
the Eloquence metadata. To duplicate the existing Eloquence security for any of the databases,
you must enter information at the application security class and password prompts. If you do not
want to duplicate existing Eloquence security, you can ignore those prompts.

Chapter 7: ETOP Utility

PDL and Utilities Reference 181

Duplicate Names
While creating PDL statements, ETOP indicates design errors. The most common errors are
duplicate names, which can result when more than one database is used to create a single
dictionary design. At the end of the ETOP session, you will receive a message indicating duplicate
file names.

Although ETOP can only flag duplicate file names, it does attempt to resolve duplicate element
names. If two elements have the same name and identical attributes, including security, only one is
included in the dictionary design. Because any element can be found in any number of files, this
built-in mechanism for eliminating duplicate element definitions doesn’t make any difference to
the resulting dictionary design. If, however, two elements have the same name but their attributes
aren’t identical, ETOP adds both elements to the dictionary design and flags the second
occurrence.

All errors must be corrected before PDL can create the dictionary. The pdlsrc.pdl file can be used
as input to the PDL program.

Date Elements
ETOP does not use PowerHouse DATE datatypes in its generated PDL. To use DATE datatypes,
you will have to modify the definition for Eloquence datatypes used as dates.

Refine Your Dictionary Design
You created the basic dictionary design with ETOP but you can enhance this skeletal design. The
following list contains a sample of the types of changes you might want to make to the generated
PDL:
• add indexed or flat files
• add item redefinitions
• add or change implied decimal positions in element types
• add element descriptions, headings, and labels
• add new logon IDs or UICs
• restrict access of application security class to files and elements

The ETOP Environment
At execution time, the run time environment has to be set up the same way as it is for all
PowerHouse components (using, for example, the setpow.csh script on UNIX).

The PH_IMAGE_LIB environment variable must be set and must specify the name of the library
containing the IMAGE emulator's version of the IMAGE intrinsics.

Because ETOP is built using the same standard environment as the other PowerHouse
components, including our messaging system, it is possible to specify an alternative message file.
The designated name for the ETOP message file is etopmsg.

If interrupted at any point by a user break action (<CTRL-C>), ETOP will issue the message
"<User Break>" and will terminate.

182 PowerHouse(R) 4GL Version 8.4E

Chapter 7: ETOP Utility

PDL and Utilities Reference 183

Chapter 8: QCOBLIB Utility

Overview
This chapter documents how to use the utility QCOBLIB to generate COBOL definitions from a
PDL dictionary.

Generating COBOL Definitions
QSHOW can be used to generate COBOL copy library definitions for the entities in your PDL
dictionaries. To generate COBOL definitions, use the GENERATE statement. For example, to
generate COBOL definitions for all the files in your dictionary, enter
> SET LANGUAGE COBOL
> GENERATE FILE ALL

To be more selective, you can use the following name-options:
• namelist
• PATTERN string
• SOUNDEX (string)

For information on these name-options, see (p. 134).

When you use the GENERATE FILE statement, a banner message for QCOBLIB appears.
QCOBLIB is the PowerHouse utility that generates COBOL definitions. It can be run directly
from the operating system by entering:
:QCOBLIB

However, when QCOBLIB is run from the operating system, it runs without prompting and
creates COBOL definitions for all the files in your dictionary. If you don’t want definitions for all
your files, use the GENERATE statement.

The parm=88 program parameter enables the creation of COBOL level-88 definitions from
element values specifications in the dictionary. By default, level 88 definitions are not created.

The definitions created by the GENERATE statement are written to a file named QCOBTEXT. If
QCOBTEXT already exists, a prompt is displayed asking you if it is okay to delete the existing
QCOBTEXT. Enter Y (Yes) to proceed. If you reply N (No), the definitions are written to the
temporary file, $OLDPASS. When COBOL definitions are successfully written to QCOBTEXT, a
message is displayed:
The file QCOBTEXT has been created.

Two error messages may appear when you use the GENERATE statement.
Errors have occurred. Check QCOBLIST report.
Duplicate keys have occurred. Check QCOBLIST report.

The QCOBLIST report details all errors, as well as changes that have been made to the dictionary
specifications. Changes to the dictionary specifications are made only when attempting to resolve
incompatibilities between PowerHouse and COBOL.

By default, the QCOBLIST report is routed to the system printer. Any other printer can be
specified by entering a file equation before running QCOBLIB, as in
:FILE QCOBLIST;DEV=LP2

184 PowerHouse(R) 4GL Version 8.4E

Chapter 8: QCOBLIB Utility

Resolving Incompatibilities
When the GENERATE statement is used, an attempt is made to resolve the following
incompatibilities between the dictionary and COBOL conventions.

File names

The dictionary file name, not the open name, is always used in the copy library.

Reserved words

If an entity name conflicts with any COBOL reserved word, the prefix "Q-" is added. For
example, an element DIVISION becomes Q-DIVISION.

Illegal characters

Special characters not allowed in COBOL entity names are converted to hyphens. For example,
P/O NUMBER becomes P-O-NUMBER.

Copy library key names

The first eight characters of the dictionary name are used to form the copy library key. Duplicate
keys often result when long file names are truncated to eight characters. For example, the file
names EMPLOYEEINDEX and EMPLOYEES produce the same copy library key, EMPLOYEE.
The QCOBLIST report flags duplicate keys. All duplicate keys must be resolved before COBEDIT
can be successfully run. Special characters found in the dictionary file name are changed to zeros
in the copy library definition.

Signed items

An "S" is added to the copy library picture for a ZONED or PACKED item that is SIGNED, and
for an INTEGER of SIZE 2, 4, or 8, regardless of whether they have a leading sign or trailing sign.

Incompatible datatypes

PowerHouse datatypes that are not compatible with HP COBOL types are converted as follows:

* n is determined by the item size

PowerHouse COBOL Type

FREEFORM X(n)*

FLOAT SIZE 4 X(4)

FLOAT SIZE 4 X(8)

PHDATE X(2)

JDATE X(2)

INTEGER SIZE 6 X(6)

PDL and Utilities Reference 185

Chapter 9: PH Integrator Utility

Overview
Note: PowerHouse Integrator can be used with PHD dictionaries only.

This chapter describes the PowerHouse Integrator utility. PowerHouse Integrator assists in the
translation of CDD/Repository and PowerHouse dictionary.

This chapter is divided into the following parts:
• an overview of PowerHouse Integrator
• translating PowerHouse dictionaries to CDD/Repository
• translating CDD/Repository dictionaries to PowerHouse Dictionary Language (PDL)
• running PowerHouse Integrator
• designated files in PowerHouse Integrator
• PowerHouse Integrator program parameters
• a summary of PowerHouse Integrator statements
• the details of each PowerHouse Integrator statement

PowerHouse Integrator uses the syntax and language rules that are discussed in Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

What is PowerHouse Integrator?
CDD/Repository is an ORACLE data dictionary system that provides the ability to create,
analyze, and administer metadata. CDD/Repository dictionaries created in CDD/Repository
Dictionary Operator statements (CDO) can store not only definitions, but also information about
how the definitions are related. You can create and manipulate definitions in CDO dictionaries
through the CDO utility.

PowerHouse Integrator is a utility that translates CDD/Repository and PowerHouse data
dictionaries to PDL and CDD dictionary languages. PowerHouse Integrator provides the basic
framework from which you can begin coding the final dictionary. Your input may be necessary
because of the different capabilities that exist between source and target dictionaries.

Familiarity with basic conversion concepts, advanced PowerHouse experience, and an in-depth
knowledge of the applications being converted are necessary for successful translations.

What Does PowerHouse Integrator Translate?
PowerHouse Integrator translates CDD/Repository fields, records, RMS databases, and databases
to equivalent PowerHouse Definition Language (PDL) statements. PowerHouse Integrator also
translates PowerHouse dictionary elements, records, and files to equivalent CDO statements.

PowerHouse Integrator cannot translate certain information effectively. In some cases where a
best try to translate is attempted, comments are issued in the generated code to show how the
resulting syntax was obtained.

Note: A comment in CDO beings with an exclamation mark (!). In PDL, a comment begins with a
semicolon (;).

186 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

The following table shows syntax that PowerHouse Integrator will attempt to translate with a
best try:

PowerHouse Integrator does not translate entities that it doesn’t understand.

Also, SELECT values on items are not translated into CDD/Repository from PowerHouse.

Note: Database statements for PowerHouse are translated into CDD/Repository comments in the
same manner as the "FILE <filename> ORGANIZATION relational" syntax would be translated.

PowerHouse Integrator does not supply default attributes when translating from PowerHouse
dictionary to PDL, or from a CDD/Repository dictionary to CDO. However, if the interface to the
dictionary automatically supplies defaults for the missing attributes, the utility generates this
information.

Security
PowerHouse Integrator only has access to dictionaries that you have access to. When PowerHouse
Integrator accesses a PowerHouse dictionary, no security is enforced that limits access to entities
or attributes. The security that the CDD/Repository access routines enforce is in effect when
PowerHouse Integrator accesses a CDD/Repository dictionary.

Resulting CDD/Repository from PowerHouse

EDIT_STRING

VALID IF <conditional-expression>

DATA TYPE determination

Resulting PDL from CDD/Repository

PICTURE/FORMAT/FLOAT,CHAR/LEADING SIGN, etc.(from
EDIT_STRING)

DATA TYPE determination

Syntax not Translated from CDD/Repository to PDL

computed-by-clause

FILLER

INPUT_VALUE

JUSTIFIED

NAME FOR

VALID IF <expressions>

Terminology Comparison Table

Term PowerHouse Description Term CDD/Repository Description

Element A logical data definition
that specifies, for all
like-named items, what
data values are allowed
and how they are to be
reported or displayed; also
specifies default storage
attributes.

Field A physical data definition that
specifies exact storage attributes
such as programming language and
machine-specific datatype
representation, storage size, and
location within a record. Also
specifies allowed values, reporting
attributes and display attributes.
Fields may be part of definitions of
indexes and keys.

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 187

Item A physical data definition
that specifies storage
attributes, such as
programming language
and machine-specific
datatype representation,
storage size, and location
within a record. Items may
be part of an index
definition. An item inherits
the editing and display
characteristics of its
like-named element.

Record An ordered list of related
items which constitutes the
basic unit of input/output.
It includes related index
and segment information.

Record An ordered list of related fields or
records which constitutes the basic
unit of input/output.

File/Database A physical "container" of
records and items. Relates
to a specific disk file, as
specified by the Open
name attribute. Specifies
the method used to access
the file (SYBASE for
PowerHouse 4GL 8.30
only; ORACLE and
ORACLE Rdb for all
versions of PowerHouse
4GL) along with
associated attributes (such
as record format).

Database

RMS_
DATABASE

A physical "container" of records
and fields. It relates to a specific
disk file.

Specifies the RMS attributes for a
file (such as record format, scope,
indexes, etc.) and relates to one or
more CDD/Repository databases.

Item Structure An item which is
subdivided into other
items.

Structure A field which is subdivided into
other fields.

Coded Record A non-relational file may
contain several different
record types, distinguished
from one another by the
value of a common item.
These record types are
known as "coded
records".

Record
Variant

A record may consist of a fixed
portion and one or more variant
portions. Each portion contains a
set of fields, but the variant
portions share the same part of the
record; therefore, only one variant
can be active at any given time, as
determined by the value of a field
in the fixed portion.

Terminology Comparison Table

Term PowerHouse Description Term CDD/Repository Description

188 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

Valid Entity Types

The following tables show what entity types are valid for translation and the results of translating
them. Note that output depends on the source dictionary, which is either PowerHouse or
CDD/Repository:

Redefined Item A record may contain
several different item
structures which overlay
the same area of the
record, where a
subsequent item redefines
a previous item. For
example, when two
different items overlay the
same area, the second item
redefines the first one.

Terminology Comparison Table

Term PowerHouse Description Term CDD/Repository Description

Valid Entities in the PowerHouse Source Dictionary

PowerHouse
translatable
entity type

PDL corresponding
entity

CDD/Repository
corresponding entity

element referenced usage element field(s)

record all referenced usages
all referenced elements
record
items
indexes
no file statement
generated

all referenced fields

record
fields, structures and
variants in the record

file file with open name

all records

RMS_DATABASE with
record definition1

all records defined
index definitions

1In the case where more than one record is defined for a file, the record
definition that PowerHouse Integrator creates during translation is the
one described to the RMS database. PowerHouse Integrator generates
the other record definitions, but they are not associated with the RMS
database. Where multiple definitions exist for the same physical file
and none is marked "CREATE" (for example, coded records), the
definition that PHDFM creates is the first one translated.

Valid Entities in the CDD/Repository SOURCE DICTIONARY

CDD/Repository
translatable
entity type

CDD/Repository
corresponding entity

PDL
corresponding entity

field field(s) element

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 189

 Translating PowerHouse Dictionary to CDD/Repository
Prior to starting the translation process, ensure that the source dictionary is accessible to
PowerHouse Integrator. PowerHouse dictionary and application security is ignored when
PowerHouse Integrator accesses it.

You can specify what entities you want to generate code for with the TRANSLATE statement. For
more information, see the TRANSLATE statement (p. 218).

Element, Record, and Index Definitions
All element and RMS record definitions in a PowerHouse data dictionary can be translated into
the appropriate CDD/Repository definitions. Index definitions are translated with the record.
Where multiple definitions exist for the same physical file (for example, coded records), and one is
marked for creating, the definition that PHDFM creates is the first one translated. You can choose
the definition you want to use from those generated, or you can merge several of them into an
appropriate variant structure.

In a PowerHouse dictionary, when an element has the same name as a record, PowerHouse
Integrator will translate both entities. However, CDD/Repository will fail when the CDO utility is
executed because record names are not allowed to have the same names as fields in CDO. In this
situation, you can either change the names in PowerHouse dictionary before translation or edit
the PowerHouse Integrator CDO output to avoid the naming conflict.

Missing and Default Information
PowerHouse dictionary provides default attributes for some elements and usages if you do not
specify them. When you are translating a PowerHouse dictionary to CDO, PowerHouse
Integrator supplies this default information to CDO.

record all referenced fields

record
fields, structures and
variants in the record

all referenced usages
all referenced elements
record
items

no file statement
generated
no indexes generated

RMS_DATABASE RMS-DATABASE
one record is defined
index definitions

file with no open name
record
indexes

database same as
RMS_DATABASE

same as
RMS_DATABASE
open name now
available for file

Valid Entities in the CDD/Repository SOURCE DICTIONARY

CDD/Repository
translatable
entity type

CDD/Repository
corresponding entity

PDL
corresponding entity

190 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

Translating Elements and Items
The following table displays how PowerHouse dictionary elements and attributes are translated
into CDD/Repository definitions:

(*) no translation (may be included in the edit string).
1The BASED ON option in CDD/Repository does not operate in the same fashion as the USAGE
option in PowerHouse dictionary. In CDD/Repository, one field is based on another field but any
attribute of the BASED ON field may be overridden by specifying the option on the new FIELD
statement. In PowerHouse, attributes set by the USAGE option can’t be changed in the element
definition.
2For a comparison of PHD and CDD/Repository datatypes, refer to the Datatypes table later in
this section.
3An edit string is produced based on the element class and the information provided for such
things as picture/format. You can change the edit string to take advantage of field clauses available
in CDD/Repository.
4The initial value is a constant in PowerHouse dictionary and is translated directly to INITIAL for
CDD/REPOSITORY.
5In CDD/Repository, the query_header may consist of more than one line. PowerHouse Integrator
separates the lines by scanning the string from PowerHouse dictionary for the multi-line heading
character. Each line of heading produces a query header string.

PowerHouse Element/Item to CDD/Repository Field Translations

PowerHouse dictionary
ELEMENT attribute

CDD/Repository
FIELD statement

ELEMENT field-name DEFINE FIELD field-name

DESCRIPTION "text" DESCRIPTION [IS] /*text*/

USAGE IS name1 BASED ON name

DATATYPE type2 DATATYPE [IS] type

OUTPUT SCALE n DISPLAY_SCALE [IS] n

PICTURE/FORMAT/SEPARATOR [language] EDIT_STRING [IS]
edit-string3

HELP string HELP-TEXT IS string

INITIAL VALUE value4 INITIAL_VALUE [IS] value-expr

OCCURS n OCCURS n [ITEMS]

HEADING string5 QUERY_HEADER [IS] string

VALUES n1 TO n2 [,n3 to
n4]...

VALID IF conditional-expr

LABEL string QUERY_NAME

BWZ *

DECIMAL n *

FILL char *

FLOAT char *

LEADING SIGN char *

PATTERN pattern *

SIGNIFICANCE n *

TRAILING SIGN string *

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 191

The following table shows PowerHouse element and item types and the corresponding
CDD/Repository field types:

Item Attributes
The item datatype, size, and occurrence specifications are declared on the ITEM statement in
PDL. However, CDD/Repository does not allow you to change the item datatype, size, or number
of occurrences at the item level. To ensure the designer will find the problem, PowerHouse
Integrator intentionally generates invalid CDO. In this case, create a new CDO field statement
with the equivalent of the item attributes from the PowerHouse dictionary.

Resolving Conflict Syntax
When you translate the PowerHouse Dictionary to CDD/Repository, PowerHouse generates
comments on invalid syntax in the following form:
!additional info: <name>TYPE<type>.

You can resolve conflicts of this nature by defining different fields for each distinct field type, and
using them in the record definition.

Translating the SELECT Option
The SELECT option of the ITEM statement has no counterpart in CDD/Repository. As a result,
when it encounters SELECT, PowerHouse Integrator generates a comment in the following form:
!additional info: SELECT VALUE <value>

To resolve this difference, you can either manually combine the source into multiple variants, or
put the select value as a condition on the corresponding variant statement, or ignore the selection
value.

Corresponding Datatypes

PDL
Element Type

PDL
Item Type

CDD/Repository
FieldType

character character
varying character

text
varying string

numeric float size 4
float size 8
G_FLOAT
integer size n
signed
zoned
signed
unsigned
numeric
packed
freeform
interval

F_FLOATING
D_FLOATING
G_FLOATING
byte/word/longword, quadword,
octaword
signed as appropriate
zoned
right overpunched
unsigned numeric
zoned numeric
packed decimal
leading separate
signed quadword

date PHDATE
JDATE
DATE (century included)
VMSDATE
DATETIME
ZDATE

word
word
signed longword
date
signed quadword1

zoned numeric

1DATETIME is functionally two longwords, the first being the DATE, and the second
being the TIME.

192 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

Translating Record-structures
The following table lists the record-structure translation equivalents when translating
record-structures from PowerHouse dictionary to CDD/Repository. Explanations of exceptions
follow the table.

1Items may also be redefinitions of other items. Variants are the CDD/Repository equivalent of
redefinition. For more information, see "Translating PowerHouse Dictionary Redefinitions", on
(p. 192).

Translating BEGIN...END Structures
In PDL, BEGIN STRUCTURE and END STRUCTURE delineate an overlaid portion of the record
buffer; however, in CDD/Repository variants are used to completely translate that area.

The following example shows PDL statements for an item structure translated into
CDD/Repository statements.

Translating PowerHouse Dictionary Redefinitions
In PDL, item redefinitions are another way to delineate an overlaid portion of a record buffer. The
CDD/Repository equivalent is variants.

PowerHouse Dictionary to CDD/Repository Record
Translation

PowerHouse Dictionary CDD/Repository

RECORD record-name DEFINE RECORD record-name

DESCRIPTION "text" [DESCRIPTION [IS]/*TEXT*/

ITEM name1 name

STRUCTURE [structure-name-clause]

CREATE/NOCREATE no translation
END [record-name-clause]

RECORD

PDL
Redefinition

CDD/Repository Variant Statement

VARIANTS.
VARIANT.

generated_structure_0 STRUCTURE.

ITEM name1 name1.
END generated _structure_0

STRUCTURE.
END VARIANT.

BEGIN STRUCTURE VARIANT.
generated_structure_1 STRUCTURE.

ITEM name2 name2.
END generated _structure_1

STRUCTURE.

END STRUCTURE END VARIANT.
END VARIANTS.

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 193

To ensure compatibility with programs such as DATATRIEVE and COBOL, PowerHouse
Integrator generates code with VARIANT and STRUCTURE clauses when translating
PowerHouse dictionary redefinitions, as shown in the following table:

Note that PowerHouse Integrator does not generate a CDD/Repository variant conditional
expression which would be used to determine the proper variant structure to be referenced.

Translating Files
When you translate a file from PowerHouse dictionary to CDD/Repository, an RMS database
definition is created. All of the associated record definitions are translated into CDD/Repository
record definitions. The RMS database definition includes the record and its associated index
definitions. Since the file open name is not part of the RMS database, this information is retained
only in a comment line in the translated source.

CDD/Repository uses the DEFINE DATABASE statement to create the file. PowerHouse
Integrator places the statement in a comment line to ensure that it is not executed.

When a single PowerHouse dictionary file that is to be translated into CDD/Repository has many
record definitions using the coded record concept, PowerHouse Integrator does the following:
• It generates an RMS database definition based on the PowerHouse file information.
• It generates all the record definitions for the file in CDO.
• It associates the record marked with the CREATE option in PowerHouse with the RMS

database definition in CDO.

To create the equivalent of a PowerHouse dictionary coded record-structure, conditions must be
placed on the CDO variant clauses. PowerHouse Integrator does not generate the
CDD/Repository record definition with all the variant clauses in place because PowerHouse
Integrator cannot determine the correct record definition (what fields belong in the variants,
which belong outside of the variants, and so on). In addition, CDD/Repository cannot accept a
segment reference to a field in a variant portion in an index definition.

Translating Indexes
In PowerHouse dictionary, indexes are associated with the record, not with the file. In
CDD/Repository, indexes (called keys) are associated with the RMS database, which
CDD$DATABASE associates with a physical file. An RMS database may be used by more than
one database. An RMS database can only contain one record definition, but a record may be used
by more than one RMS database.

Note that indexes that belong to an RMS database can only reference items that are not part of a
variant structure. This means that some index segments in a PowerHouse dictionary may not
translate because they are substructures of another item.

PDL
Redefinition

CDD/Repository Variant Statement

VARIANTS.
VARIANT.

generated_structure_0 STRUCTURE.

ITEM name1 name1.
END generated _structure_0

STRUCTURE.
END VARIANT.
VARIANT.

generated_structure_1 STRUCTURE.

ITEM name2
REDEFINES ITEM
name1

name2.

END generated _structure_1
STRUCTURE.

END VARIANT.
END VARIANTS.

194 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

The following table shows index to key translation:

Output
The output of a PowerHouse dictionary to CDD/Repository translation is CDD/Repository
source that can be used by CDO. PowerHouse Integrator supplies the extension .CDO to the
output file.

The output file begins with comments stating the source dictionary name, the user ID of the
translator, and the date and time that translation began.

The first source line in the file is SET VERIFY - the CDD/Repository statement that echoes the
statements and comments before they are executed. If no errors are encountered, PowerHouse
Integrator displays the PowerHouse prompt.

Additional status messages are sent to the terminal in interactive session and to the job listing file
in batch session (SYS$OUTPUT).

Translating CDD/Repository to PDL
Prior to starting the translation process, ensure that the source dictionary is accessible to
PowerHouse Integrator. CDD/Repository dictionary security is enforced as PowerHouse
Integrator reads the entities in the CDD/Repository dictionary.

You can specify what entities you want to generate code for with the TRANSLATE statement. For
more information, see the TRANSLATE statement (p. 218).

Field, RMS Record, and Index Definitions
All field and RMS record definitions can be translated into the appropriate PDL structures. Index
definitions can also be translated.

Missing and Default Information
PowerHouse Integrator translates the available entities and attributes in the source dictionary.
Information about dictionary attributes is not supplied by the utility because CDD/Repository
doesn’t supply default or missing information.

PDL Statements CDD/Repository Statements

INDEX index_name_1
[REPEATING]
[NULL]
[NULL_VALUE null

value]
SEGMENT field-name1
SEGMENT field-name2

KEYS
KEY 0

[DUPLICATES]
[NULL_KEY]
[NULL_VALUE null value]
field-name1 IN

record-name
field-name2 IN

record-name

INDEX index_name_2
[REPEATING]
[NULL]
[NULL_VALUE null

value]
SEGMENT field-name1
SEGMENT field-name2

KEY 1
[DUPLICATES]
[NULL_KEY]
[NULL_VALUE null value]
field-name1 IN

record-name
field-name2 IN

record-name
 ...
.
END.

END record-name RMS_DATABASE.

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 195

Translating Fields
The following table shows how CDD/Repository fields are translated into ELEMENT statements:

1It’s possible to define a multi-dimensional array with specified bounds in CDD/Repository.
However, PowerHouse only supports a one-dimensional array with implicit bounds of 1 and n.
For the simple case of a one-dimensional array with bounds of 1 and n, the proper occurs clause is
generated. For additional dimensions or bounds, a character element or item of the proper size is
generated. This precaution is taken to prohibit subscript references that are no longer in the
bounds of the array or that reference the incorrect occurrence.
2The BASED ON option is not the same as the USAGE option in the PowerHouse dictionary. In
CDD/Repository, one field is based on another field, but any attribute of the based on field can be
overridden by specifying the option on the new FIELD statement. In a PowerHouse dictionary,
certain attributes set by a usage can’t be changed in the element definition.
When PowerHouse Integrator encounters a field that is based on a previous field, it will generate
both a USAGE and an ELEMENT statement for the previous field. The designer should verify that
these statements are appropriate for his dictionary.
3For a comparison of CDD/Repository and PHD datatypes, see the next table.
4For numeric fields, a picture is created. For date fields, a format and separator are created.
5The INITIAL_VALUE can be an initial expression, but PowerHouse Integrator only translates
constant values.
6In PDL, the heading can be up to 60 characters long. Multiple lines are indicated by the multi-line
heading character, which is a caret (^). In CDD/Repository, the query_heading may consist of
more than one line. When translating the CDD/Repository into PDL, each line is concatenated
together, separated by a caret (^). There is no check to verify that the total size is less than or equal
to 60 characters. PDL issues an error message if the lines in the header exceed 60 characters.

CDD/Repository Field Statement PDL Element Statement

DEFINE FIELD field-name ELEMENT element-name

DESCRIPTION [IS]/*text*/ DESCRIPTION "text"

AUDIT [IS]/*text* no translation

array-type1 limited translation

BASED ON field-name2

computed-by-clause no translation

DATATYPE [IS] data-type3

EDIT_STRING [IS] edit-string4 limited translation

FILLER no translation

HELP_TEXT IS quoted-string HELP quoted_string

INITIAL_VALUE [IS]
value_expression5

INITIAL VALUE value
expression

INPUT-VALUE {REQUIRED OPTIONAL} no translation

JUSTIFIED justified-optional no translation

NAME [FOR] language [IS] name no translation

OCCURS n [TIMES] OCCURS n

QUERY_HEADER [IS] quoted-string
[,quoted-string]...6

HEADING quoted-string

QUERY_NAME [IS]
{quoted-string/query-

name}

LABEL

VALID IF conditional-expression no translation

196 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

The following table shows CDD/Repository Datatypes and the corresponding PDL element and
item types.

1 See the following section, "BIT".
2 See "Decimal String" on (p. 196).
3 See "Fixed Point" on (p. 197).
4 See "Floating Point" on (p. 197).

BIT
PowerHouse Integrator assumes that BIT fields have extra bits inserted so that any subsequent
fields are byte-aligned. This means that BIT SIZE 3 and BIT SIZE 6 would each occupy one byte;
a BIT SIZE 2 followed by a BIT SIZE 5 would occupy two bytes (one byte for each field).

The following options, available only on the CDD/Repository alphabetic, text, and varying string
datatypes, map to the following element options in the PowerHouse dictionary:

Decimal String
The translations of decimal string types are straightforward. The size becomes the element size
and the storage size is calculated appropriately. Scale becomes the input scale for the element.

CDD/Repository Datatypes PDL Element Types PDL Item Types

ALPHABETIC [SIZE IS] n
[CHARACTERS]

CHARACTER SIZE n CHARACTER

BIT [SIZE IS] n1 CHARACTER SIZE
(n+7)/8

CHARACTER

DATE DATE VMSDATE

decimal string types2

fixed point types3

floating point types4

POINTER [TO name [IN name]...] NUMERIC INTEGER SIZE 4

REAL NUMERIC FLOAT SIZE 4

SEGMENTED STRING
 [SEGMENTED_LENGTH [IS] n
BYTES]
 [SEGMENTED_TYPE [IS] m]

not supported not supported

TEXT [SIZE IS] n [CHARACTERS] CHARACTER SIZE n CHARACTER SIZE
n

UNSPECIFIED [SIZE IS] n BYTES CHARACTER SIZE n CHARACTER SIZE
n

VARYING_STRING [SIZE IS] n
[CHARACTERS]

CHARACTER SIZE n VARCHAR SIZE n

LOWERCASE maps to DOWNSHIFT

UPPERCASE maps to UPSHIFT

CASE_INSENSITIVE maps to nothing_specified

Decimal String Types

CDD/Repository PDL

LEFT OVERPUNCHED NUMERIC not supported

LEFT SEPARATE NUMERIC not supported

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 197

All of the above CDD/Repository decimal string types can be followed by:
[[SIZE IS] m [DIGITS]] [SCALE n]]

where n is between -128 and 127 for CDD/Repository, between -16 and 16 for PDL, and m is
between 0 and 32 for both CDD/Repository and PDL.

Fixed Point
The CDD/Repository syntax for declaring fixed point datatypes is
[SIGNED|UNSIGNED]
 {BYTE|WORD|LONGWORD|QUADWORD|OCTAWORD}

[[SIZE IS] m [DIGITS] [SCALE n]]

where n is between -128 and 127 for CDD/Repository, between -16 and 16 for PDL, and m is
between 0 and 32 for both CDD/Repository and PDL.

PowerHouse does not support the OCTAWORD datatype. Size, if specified, is the element size.
The storage size for the integer item is determined by the original datatype. Scale becomes the
input scale for the element.

Floating Point
The CDD/Repository syntax for declaring floating point datatypes is:
{D_FLOATING|F_FLOATING|G_FLOATING|

H_FLOATING}[COMPLEX]SCALE n]

where n is between -128 and 127 for CDD/Repository and -16 and 16 for PDL.

In PowerHouse, H_FLOAT and complex values are not supported. In all other cases, the item
becomes a float of the proper size.

RIGHT SEPARATE NUMERIC not supported

RIGHT OVERPUNCHED NUMERIC ZONED SIGNED

PACKED DECIMAL PACKED

ZONED NUMERIC ZONED NUMERIC

UNSIGNED NUMERIC UNSIGNED ZONED

Fixed Point Item Sizes

SIZE (Bytes) CDD/Repository PDL

1 BYTE INTEGER SIZE 1

2 WORD INTEGER SIZE 2

4 LONGWORD INTEGER SIZE 4

8 QUADWORD INTEGER SIZE 8

16 OCTAWORD not supported

CDD/Repository PDL

D_FLOAT FLOAT SIZE 8

F_FLOAT FLOAT SIZE 4

Decimal String Types

CDD/Repository PDL

198 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

Translating Record-structures
The following table shows how CDD/Repository record-structures are translated into PDL
statements:

include-name-clause

In CDD/Repository, the name can be a field or record definition. CDD/Repository names are
translated to PDL item names, while CDD/Repository record definitions are expanded to show
their contents when they are translated to PDL.

As a result of translation from CDD/Repository to PDL, the looping of record-structures can
occur. For example, record A can be included in record B and record B can be included in record
A. While this is possible in CDD/Repository, PDL will give error messages if you attempt to
compile the statements that PowerHouse Integrator generates in this situation.

structure-name-clause

A PowerHouse substructure, like a CDD/Repository variant, provides a convenient method of
grouping a collection of related items into a single meaningful unit. An item that has a
substructure can itself be part of a larger substructure.

The following table shows what PDL statements the CDD/REPOSITORYSTRUCTURE clause is
translated to:

G_FLOAT G_FLOAT

CDD/Repository PDL

Corresponding Record Attributes

CDD/Repository statement PDL statement

DEFINE RECORD record-name RECORD record-name

 [DESCRIPTION [IS]/*text*/] DESCRIPTION " text
"

 [AUDIT [IS]/*text*/] no translation

[array-type] no translation

[NAME FOR language [IS] name] no translation

[occurs-depending-clause] no translation

include-name-clause refer to
description

 [aligned-clause] no translation

 [structure-name-clause] refer to
description

[variant-clause] refer to
description

END [record-name] RECORD no translation

CDD/Repository Statement PDL Statement

structure-name STRUCTURE ITEM structure-name1

BEGIN STRUCTURE

[DESCRIPTION [IS]/*text*/] comments are
generated

[record-attributes] no translation

[OCCURS] PUT OCCURS on ITEM
statement above

[aligned clause] no translation

[include-name-clause] refer to description

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 199

1A new item is created to correspond to the CDD/Repository structure clause because there are a
few cases where PDL does not allow a structure but CDD/Repository does.

In CDD/Repository, you can define a structure that repeats based on the content of a numeric field
in the same record by using the OCCURS DEPENDING ON clause. The PDL item that is
generated for the structure is generated so that it repeats the maximum number of times.

When a structure is encountered as the first item in a CDD/Repository record, an item definition is
generated in PDL. What follows is an example of substructures:

The PDL ITEM statements for A and B correspond to the CDD/Repository STRUCTURE
statements for A and B. The size of each of these items is equal to the size of the item’s
substructure. PDL requires the second item B since it does not allow a structure to be the first item
of another structure.

variant-clause

In CDD/Repository, a record may consist of both fixed and variant sets of fields. The variant
portions overlay each other; therefore, only one variant can be active at a time. This is determined
by the value of the field in the fixed portion of the record.

The following is the general form of the VARIANT clause mapped against PDL syntax.

[structure-name-clause] refer to description

[variant-clause] refer to description

END [structure-name]
STRUCTURE.

END STRUCTURE

Structure as the First Part of a Previous Structure

CDD/Repository syntax PDL syntax

A STRUCTURE. ITEM A CHARACTER SIZE n
BEGIN STRUCTURE

B STRUCTURE. ITEM B CHARACTER SIZE m
BEGIN STRUCTURE

B1.
B2.

ITEM B1
ITEM B2

END B STRUCTURE. END STRUCTURE

A1.
A2.

ITEM A1
ITEM A2

END STRUCTURE. END STRUCTURE

CDD/Repository Statement PDL Statement

CDD/Repository statements PDL statements

VARIANTS. ITEM generated_element_n0

VARIANT. ITEM generate_element_n1 &
 REDEFINES generated_element_n0
BEGIN STRUCTURE

[EXPRESSION [IS]
conditional

expression].

[included-name-clause]...

[structure-name-clause]...
[variant-clause]...

no translation

END VARIANT. END STRUCTURE

200 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

The table above shows that with variant structures, PowerHouse Integrator generates an element
whose size is the size of the longest variant structure.

This item serves as the base for all the subsequent translations of the variant structures. For each
variant, it generates an item whose size is the size of the variant. These items redefine the base
item. For each of these items an item structure is generated that contains each of the fields,
structures, and variants in the corresponding variant.

In the following examples of variants and substructure combinations, PowerHouse Integrator
generates pseudo-elements since PDL does not allow a structure to be the first item of another
structure.

In the table following, a variant containing the fields B1 and B2 is the first part of structure A, and
shares the same space within the structure as the variant containing field C. Fields A1 and A2
comprise the last part of structure A.

PowerHouse Integrator generates an item A, corresponding to the CDD/Repository structure A.
The items GENERATED_ELEMENT_0, GENERATED_ELEMENT_1, and
GENERATED_ELEMENT_2 are created as part of the translation of the variant clauses. Item A
is substructured by items GENERATED_ELEMENT_0, A1, and A2.

VARIANT. ITEM generated_eleemnt_n2 &
REDEFINES ITEMS

generated_element_n0
BEGIN STRUCTURE

[EXPRESSION [IS]

conditional-expression].

[included-name-clause]...

[structure-clause]...
[variant-clause]...

no translation

END VARIANT.
.
.
.

END STRUCTURE

END VARIANTS. no translation

A Variant as the First Part of a Previous Structure

CDD/Repository syntax PDL syntax

A STRUCTURE. ITEM A
BEGIN STRUCTURE

VARIANTS. ITEM generated_element_0
ITEM generated_element_1 &

REDEFINES generated_element_0

VARIANT. BEGIN STRUCTURE

 B1.
 B2.

ITEM B1
ITEM B2

END VARIANT. END STRUCTURE

VARIANT. ITEM generated_element_2 &
REDEFINES generated_element_0

BEGIN STRUCTURE

 C. ITEM C

END VARIANTS. END STRUCTURE

A1
A2.

ITEM A1
ITEM A2

END A STRUCTURE. END STRUCTURE

CDD/Repository statements PDL statements

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 201

Item GENERATED_ELEMENT_1 redefines GENERATED_ELEMENT_0 and is substructured
by items B1 and B2, which correspond to the first variant. GENERATED_ELEMENT_0 is also
redefined by item GENERATED_ELEMENT_2, which is substructured by item C, corresponding
to the second variant. The last part of item A is comprised of items A1 and A2.

In PDL, the equivalent of a structure as the first part of a variant is not allowed, so PowerHouse
Integrator makes the following conversion:

GENERATED_ELEMENT_1 and GENERATED_ELEMENT_2 are created to form the
equivalent of the two variant structures. GENERATED_ELEMENT_1 contains the structure A,
which corresponds to the CDD/Repository structure A, and the fields A1, A2, B1, and B2. An
element statement is created for item A. GENERATED_ELEMENT_2 contains the field C and
redefines the first structure. The item GENERATED_ELEMENT_2 is required because PDL does
not allow a substructure to be the first part of another structure.

In the following example, the first large variant is comprised of two other smaller variants and
two fields, B1 and B2; the first small variant is composed of the fields Z1 and Z2, and is overlaid
by the second small variant, which is composed of field X. The entire large variant is overlaid by
another variant, containing field C.

A Structure as the First Part of a Variant

CDD/Repository statements PDL statements

VARIANTS. ITEM generated_element_0

 VARIANT. ITEM generated_element_1 &
REDEFINES generated_element_0

BEGIN STRUCTURE

A STRUCTURE. ITEM A
BEGIN STRUCTURE

 A1.
 A2.

ITEM A1
ITEM A2

END A STRUCTURE. END STRUCTURE

B1.
B2.

ITEM B1
ITEM B2

END VARIANT. END STRUCTURE

VARIANT. ITEM generated_element_2 &
REDEFINES generated_element_0

BEGIN STRUCTURE

 C. ITEM C

END VARIANT. END STRUCTURE

END VARIANTS.

A Variant as the First Part of a Variant

CDD/Repository syntax PDL syntax

VARIANTS. ITEM generated_element_0

 VARIANT. ITEM generated_element_1 &
REDEFINES generated_element_0

BEGIN STRUCTURE

VARIANTS. ITEM generated_element_2 &

VARIANT. ITEM generated_element_3 &
REDEFINES generated_element_2

BEGIN STRUCTURE

Z1.
Z2.

ITEM Z1
ITEM Z2

END VARIANT. END STRUCTURE

202 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

PowerHouse Integrator generates an item, GENERATED_ELEMENT_1, corresponding to the
first large variant. A second generated item, GENERATED_ELEMENT_3, which corresponds to
the first small variant, begins the initial structure, and is itself substructured by items Z1 and Z2.
A third generated item, GENERATED_ELEMENT_4 redefines GENERATED_ELEMENT_2,
and contains the item X, corresponding to the second small variant. Items B1 and B2 complete the
initial structure, which is redefined by GENERATED_ELEMENT_5, (which corresponds to the
final variant), which contains a structure that includes item C.

Translating RMS Databases
The RMS database defines a physical file description (but does not define an actual physical file).
It may only have one record description associated with it. Therefore, translating an RMS
database results in a PDL FILE statement (without a supplied open name), the associated PDL file
description, and the associated PDL indexes described in "Translating Indexes" on (p. 203).

File Statement Required in PDL

When translating from CDD/Repository to PDL, a file statement must be created. The RMS
database name is used as the file name. The file open name can’t be retrieved from information
specified on the DEFINE DATABASE statement because the RMS database could be used for
more than one DEFINE DATABASE. As a result, the open name is not supplied.

VARIANT. ITEM generated_element_4 &
REDEFINES generated_element_2

BEGIN STRUCTURE

X. ITEM X

END VARIANT. END STRUCTURE

END VARIANTS.

B1.
B2.

ITEM B1
ITEM B2

 END VARIANT. END STRUCTURE

 VARIANT. ITEM generated_element_5 &
REDEFINES generated_element_0

BEGIN STRUCTURE

C. ITEM C

 END VARIANT.
END VARIANTS.

END STRUCTURE

A Variant as the First Part of a Variant

CDD/Repository syntax PDL syntax

CDD/Repository syntax PDL syntax

DEFINE RMS_DATABASE <db-name> FILE <db-name>

DESCRIPTION DESCRIPTION

AUDIT no translation

RECORD <name> RECORD <name>

file-definition defines ORGANIZATION for file

area-definition no translation

keys-definition see "Translating Indexes" on
(p. 203)

END <db-name> no translation

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 203

Translating Databases

Translating the entity that is created by the "define database" statement is essentially the same as
translating an RMS database (since the defined database is a disk file with the specified attributes
on an RMS database), except that the file open name is now available for use. Descriptions
associated with the database become associated with the file in PDL.

Translating Indexes

In CDD/Repository, indexes are associated with the RMS database which can only contain one
record definition. However, in PowerHouse, a file can be associated with several records, each of
which may have different indexes. The following table shows how the index information in the
CDD/Repository RMS database definition translates into PDL INDEX and SEGMENT
statements that would follow the associated RECORD statements.

Output

The output of CDD/Repository to PDL translation is PDL statements that can be used to load a
PowerHouse dictionary. PowerHouse Integrator supplies the extension .PDL to the output file.

The output file begins with comments stating the source dictionary name, the user ID of the
translator, and the date and time that translation began.

Additional status messages are sent to the terminal in interactive session and to the job listing file
in batch session (SYS$OUTPUT).

An Example of Substructuring

This example shows sample PDL and CDO code for a record that contains a redefinition of an
item. The redefinition contains a substructure. The QSHOW output following the sample code
shows the actual offsets of each item within the record-structure.

PDL Code
> RECORD INVOICE_MASTER
> ITEM INVOICE_DATE DATATYPE ZONED SIZE 8

Key to Index Translation

CDD/Repository statements PDL statements

KEYS.
KEY 0

[DUPLICATES]
[NULL_KEY]
[NULL_VALUE null-value]
field-name1 IN record-name
field-name2 IN record-name

INDEX rms_database_name_0 &
[REPEATING]
[NULL]
[NULL_VALUE null-value]
SEGMENT field-name1
SEGMENT field-name2

KEY 1
[DUPLICATES]
[NULL_KEY]
[NULL_VALUE null-value]
field-name1 IN record-name
field-name2 IN record-name
...
.

END.
END <record-name> RMS_DATABASE.

INDEX rms_database_name_1 &
[REPEATING]
[NULL]
[NULL_VALUE null-value]
SEGMENT field-name1
SEGMENT field-name2
...

204 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

> ITEM INV_DT_PARTS DATATYPE ZONED SIZE 8 &
> REDEFINES INVOICE_DATE
> BEGIN STRUCTURE
> ITEM INV_DT_YEARDATATYPE ZONED SIZE 4
> ITEM INV_DT_MONDATATYPE ZONED SIZE 2
> ITEM INV_DT_DAYDATATYPE ZONED SIZE 2
> END STRUCTURE
.
.
.

Note: Item INV_DT_PARTS redefines item INVOICE_DATE, and is substructured by
INV_DT_YEAR, INV_DT_MON, and INV_DT_DAY.

CDO Code
CDO> DEFINE RECORD INVOICE_MASTER.
CDO> VARIANTS.
CDO> VARIANT.
CDO> INV_DT STRUCTURE.
CDO> INVOICE_DATE TYPE UNSIGNED NUMERIC SIZE IS 8.
CDO> END INV_DT STRUCTURE.
CDO> END VARIANT.
CDO> VARIANT.
CDO> INV_DT_PARTS_1 STRUCTURE.
CDO> VARIANTS.
CDO> VARIANT.
CDO> INVDT_PARTS_2 STRUCTURE.
CDO> INV_DT_PARTS.
CDO> END INV_DT_PARTS_2 STRUCTURE.
CDO> END VARIANT.
CDO> VARIANT
CDO> INV_DT_PARTS_3 STRUCTURE.
CDO> INV_DT_YR TYPE UNSIGNED NUMERIC SIZE IS 4.
CDO> INV_DT_MON TYPE UNSIGNED NUMERIC SIZE IS 2.
CDO> INV_DT_MON TYPE UNSIGNED NUMERIC SIZE IS 2.
CDO> END INV_DT_PARTS_3 STRUCTURE.
CDO> END VARIANT.
CDO> END VARIANTS.
CDO> END INV_DT_PARTS_1 STRUCTURE.
CDO> END VARIANT.
CDO> END VARIANTS.
.
.
.

QSHOW Output Showing Items Offsets Within the Record-structure

The QSHOW output shows the actual offsets of each item within the record-structure. Since
INV_DT_PARTS redefines INVOICE_DATE, they both have the same offset within the record.
Similarly, since INV_DT_YR, INV_DT_MON and INV_DT_DAY are part of a substructure, they
overlay INV_DT_PARTS within the record.

1991/09/12 SALES Page 1

R E C O R D R E P O R
T

 For DICTIONARY:
Record:
of File:
Organization:
Type:
Open:
Record Format:
Supersede:
Record Size:

PATH$FINANCE: [FINANCE]SALES.PHD;
INVOICE_MASTER
INVOICE_MASTER
INDEXED
RMS
INVOMAS
Fixed
No
64 Bytes

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 205

Running PowerHouse Integrator

There are two ways to run PowerHouse Integrator:
• enter

$ PHINTEGRATOR

at the operating system prompt (set up the PowerHouse environment first).
• enter

> $ PHINTEGRATOR

and the program parameters from within another PowerHouse component.

Exiting PowerHouse Integrator

To return to the invoking program when you finish a PowerHouse Integrator session, enter the
EXIT statement.

Designated Files in PowerHouse Integrator
The designated files used by PowerHouse Integrator for its internal use are listed below:

PowerHouse and CDD/Repository Datatypes
For information regarding the relationship between PowerHouse datatypes and CDD/Repository
datatypes, please see the section, "Relational PowerHouse Datatypes", in Chapter 5,
"PowerHouse Language Rules", in the PowerHouse Rules book.

-- Record Contents --

 Item
 INVOICE DATE
_INV_DT_PARTS
 .INV_DT_YR
 .INV_DT_MON
 .INV_DT_Day
 .
 .
 .

Type
ZONED UNSIGNED
ZONED UNSIGNED
ZONED UNSIGNED
ZONED UNSIGNED
ZONED UNSIGNED

Size
Occ
 8
 8
 4
 2
 2

Offset
 0
 0
 0
 4
 6

File Extension Purpose

PHINTMSG .TXT Optional message file that, if present,
contains messages to be used by
PowerHouse Integrator.

PHINTSAVE .DTU Temporary save file to which entered
PowerHouse Integrator statements are
written.

PHINTUSE .DTU Optional use file processed automatically
by PowerHouse Integrator before
opening the system input file (unless the
auto program parameter has been
specified).

206 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility

PowerHouse Integrator Program Parameters
The PowerHouse Integrator program parameters are as follows:

Summary of PowerHouse Integrator Statements
The following table summarizes the purpose of each PowerHouse Integrator statement:

Program Parameter Description

auto Establishes the file, screen, or report that is
processed when the component is initiated.

dcl/nodcl Stipulates whether or not operating system
commands can be entered or executed when
PowerHouse encounters an operating system
prompt.

list|nolist Establishes whether or not the PowerHouse
component displays the source statement file.

osaccess/noosaccess Stipulates whether or not operating system
commands can be entered or executed when
PowerHouse encounters an operating system
prompt.

procloc Causes PowerHouse to search for process
files in a location other than the current
directory.

prompt Specifies the prompt for the PowerHouse
component.

trusted/notrusted Activates or deactivates C2-level security for
the execution of RUN commands and DCL
commands within components.

version Provides the build number of the
PowerHouse version.

Statement Purpose

EXIT Ends a PowerHouse Integrator session.

GENERATE Specifies what type of dictionary the information is
targeted for.

GO Begins execution of the request that has been entered.

QSHOW Runs QSHOW.

REVISE Edits the current temporary save file or specified file.

SAVE Saves the PowerHouse Integrator source statements in a
file.

SOURCE Specifies the dictionary name and type being used.

TRANSLATE Specifies the entities to be translated.

Chapter 9: PH Integrator Utility

PDL and Utilities Reference 207

USE Processes PowerHouse Integrator source statements
that are contained in a file.

Statement Purpose

208 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
EXIT

EXIT
Ends a PowerHouse Integrator session.

Syntax
EXIT

Discussion
The EXIT statement ends the PowerHouse Integrator session and returns control to the operating
system or to the invoking program.

Chapter 9: PH Integrator Utility
GENERATE

PDL and Utilities Reference 209

GENERATE
Specifies the type of dictionary the information is targeted for.

Syntax
GENERATE [PDL|CDO] TO filespec

PDL|CDO

Generates PDL or CDO definitions for all the entities in the data dictionary.

PDL
Specifies that the target language for the translation is the PowerHouse Data Definition Language.

CDO
Specifies that the target language for the translation is Oracle’s OpenVMS CDD/Plus Dictionary
Operator statements.

Default: CDO

TO filespec
Specifies the file to which the output of the translation is sent.

A filespec is a name of an OpenVMS file (which may consist of the node, device, directory,
filename, type, and version) or a logical name. The maximum length for a filespec in PowerHouse
for OpenVMS is 255 characters. Filespecs are restricted to alphanumeric and punctuation
characters. The characters ; $ and leading question mark (?) have special meanings in PowerHouse
and are prohibited. A file specification takes the general form:
[NODE::][DEVICE:][[DIRECTORY]]FILENAME.EXT;1

The square brackets are required when you enter a directory name.

Discussion
The GENERATE statement defines the target language and the file specification for the output
text file. This file can be specified with a logical name.

A default extension of .CDO or .PDL is applied to the file if no file extension is specified by the
user.

At least one GENERATE statement is required, and although multiple GENERATE statements are
allowed, the latest one specified prior to the GO statements is the option that is used. Multiple
GENERATE statements do not alter the restrictions defined in the TRANSLATE statement.

The output file is opened when all information has been successfully loaded. CDD/Plus will be
generated by default.

If a file with the specified name already exists, you are warned and given the option of replacing it
or creating a new file. Subsequent GENERATE statements cause PowerHouse Integrator to
append statements to the file.

Examples

The following example specifies that CDO code is to be generated.
> GENERATE TO CDO_OUTPUT_FILE

Generating CDD Definitions
To create a source file named CDO_OUTPUT_FILE.CDO, enter
> GENERATE CDO TO CDO_OUTPUT_FILE

The file CDO_OUTPUT_FILE.CDO will contain the CDD definitions.

210 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
GENERATE

Loading a New PowerHouse Dictionary with Generated Definitions
The GENERATE statement can be used to load a new PowerHouse dictionary with definitions
from a CDD/Plus or PowerHouse dictionary. This eliminates the need to re-enter definitions.
System options will always be generated. The following example shows the statements entered,
using PowerHouse Integrator and PHDPDL, to load a new dictionary with generated definitions:

In PowerHouse Integrator,
> SOURCE DICTIONARY OLD TYPE PHD
> TRANSLATE ALL
> GENERATE PDL TO PDL_OUTPUT_FILE
> GO

creates a source file named PDL_OUTPUT_FILE.PDL.

In the following example in PHDPDL, the dictionary NEW is created using the CREATE
DICTIONARY statement. The USE statement processes the definitions in the file
PDL_OUTPUT_FILE.PDL. The LOAD statement enters the definitions into the NEW dictionary.
> CREATE DICTIONARY NEW NOT PRELOADED
> USE PDL_OUTPUT_FILE
> LOAD
> EXIT

Use the NOT PRELOADED option of the CREATE DICTIONARY statement when loading
definitions from an old dictionary that does not contain the standard usages. If source code is
generated for the entire dictionary, the usages from the old dictionary are loaded into the new one.

Chapter 9: PH Integrator Utility
GO

PDL and Utilities Reference 211

GO
Begins execution of the request that has been entered.

Syntax
GO

Discussion
The GO statement starts the translation process. You may repeat it as often as desired. If a GO
statement is followed by a GENERATE statement and another GO statement, the second GO
statement will simply generate the same set of entities and attributes as the previous GO
statement, except for the new output field and target language.

If you press [Ctrl-C], the system will ask you if you want to continue. If you enter Yes, processing
will continue. If you enter No, processing will stop and the output file will close if it was open.

If there is a file with the same name as the output file you are trying to create, a message is
displayed and you are asked whether a new version of the file is to be created or not. When the
translation is complete, the output file is closed and the prompt character (>) is displayed.

212 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
QSHOW

QSHOW
Runs QSHOW.

Syntax
QSHOW

Discussion
The QSHOW statement initiates a QSHOW session. QSHOW enables you to make quick on-line
inquiries about entities (such as elements, files, and record-structures) in the data dictionary.

QSHOW is ready when its prompt string (QSHOW>) appears.

When you exit from QSHOW, your session resumes at the point at which it was interrupted.

For more information about QSHOW, see Chapter 4, "QSHOW Statements", in the PDL and
Utilities Reference book.

Chapter 9: PH Integrator Utility
REVISE

PDL and Utilities Reference 213

REVISE
Edits the current temporary save file or a specified file.

Syntax
REVISE {* |filespec} [option]

*

Indicates that the current PHINTSAVE file is to be revised. If you specify options without
specifying the name of a screen, you must use the asterisk.

filespec

Specifies the name of a file. This is the option to use when you want to revise a file other than the
PHINTSAVE file.

A filespec is a name of an OpenVMS file (which may consist of the node, device, directory,
filename, type, and version) or a logical name. The maximum length for a filespec in PowerHouse
for OpenVMS is 255 characters. Filespecs are restricted to alphanumeric and punctuation
characters. The characters ; $ and leading question mark (?) have special meanings in PowerHouse
and are prohibited. A file specification takes the general form:
[NODE::][DEVICE:][[DIRECTORY]]FILENAME.EXT;1

The square brackets are required when you enter a directory name.

Options
The options are DETAIL, NODETAIL, LIST, NOLIST, USE, and NOUSE.

DETAIL|NODETAIL
DETAIL copies the contents of the revised file into the PHINTSAVE file after the revision is
completed; NODETAIL doesn’t.

If a file other than PHINTSAVE is being revised with both USE and NODETAIL in effect, then
USE filespec NODETAIL is written to the current PHINTSAVE file.

Default: DETAIL

LIST|NOLIST
LIST displays each statement from the revised file as it is processed; NOLIST doesn’t.

Default: LIST

USE|NOUSE
USE processes the revised statements when you exit from the system editor. NOUSE returns you to
PowerHouse Integrator at the point from which you left it without processing the revised
statements.

Default: USE

Discussion
The REVISE statement allows you to edit a file or statements entered during a PowerHouse
Integrator session. By default, REVISE chooses EDT as the system editor. You can change this by
changing the global PHEDIT symbol (usually used to designate an editor).

When you enter the REVISE statement without a file name, Integrator automatically performs a
CANCEL CLEAR statement prior to processing the statements. When you enter the REVISE
statement with a file name, the automatic CANCEL CLEAR statement isn’t performed.

214 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
REVISE

The procloc program parameter affects how PowerHouse searches for process files in the REVISE
statement. For more information about the procloc program parameter, see Chaper 2, "Program
Parameters", in the PowerHouse Rules book.

Choosing an Editor for the REVISE Statement

The REVISE statement invokes the DCL command assigned to the global symbol PHEDIT. By
default, the SET POWERHOUSE command sets PHEDIT to
$ PHEDIT :== EDIT/EDT

causing the REVISE statement to invoke the EDT editor.

You can change the default editor by changing the value of the PHEDIT symbol. For example, to
use the special interface to EDT called UTILITIES:EDT.COM, change the setting to
$ PHEDIT :== @UTILITIES:EDT.COM

We recommend that you use either EDIT/EDT or EDIT/TPU as the setting for PHEDIT. In either
of these cases, the editor can be called directly; otherwise, a subprocess is spawned.

If you intend to use the nodcl program parameter to restrict user access to the operating system,
we further recommend that you do not select editors (such as TPU) which provide operating
system access. When nodcl is in effect, users will continue to be able to access the system editor
through the REVISE statement.

Chapter 9: PH Integrator Utility
SAVE

PDL and Utilities Reference 215

SAVE
Saves PowerHouse Integrator source statements in a file.

Syntax
SAVE filespec [CLEAR]

filespec

Names a file that will contain the PowerHouse Integrator statements.

A filespec is a name of an OpenVMS file (which may consist of the node, device, directory,
filename, type, and version) or a logical name. The maximum length for a filespec in PowerHouse
for OpenVMS is 255 characters. Filespecs are restricted to alphanumeric and punctuation
characters. The characters ; $ and leading question mark (?) have special meanings in PowerHouse
and are prohibited. A file specification takes the general form:
[NODE::][DEVICE:][[DIRECTORY]]FILENAME.EXT;1

The square brackets are required when you enter a directory name.

If PowerHouse Integrator finds an existing file with the same name, it prompts for confirmation
before creating a new version (unless SET NOVERIFY DELETE is in effect).

CLEAR

Removes an source statements in the temporary save file, PHINTSAVE, once the contents are
copied to a permanent file.

Discussion
PowerHouse Integrator uses a temporary source statement save file, PHINTSAVE. Statements are
written to this file as you enter them. The SAVE statement itself is not included in the file.

The SAVE statement creates a permanent copy of PHINTSAVE. You can use the saved contents as
a source file for documentation and future changes, or as a working file for modification using the
system editor. The saved statements can also be processed by PowerHouse Integrator with the USE
statement.

The CLEAR option clears the temporary save file after its contents have been saved so that you
can enter and then save a new set of PowerHouse Integrator statements in the same session.

The procloc program parameter affects how PowerHouse searches for process files in the SAVE
statement. For more information about the procloc program parameter, see Chapter 2, "Program
Parameters", in the PowerHouse Rules book.

216 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
SOURCE

SOURCE
Specifies the dictionary name and type being used.

Syntax
SOURCE [DICTIONARY] filespec TYPE option

[DICTIONARY] filespec

For PHD, this is the name of the PowerHouse dictionary. For CDD/Plus, this is the RMS directory
specification. Logical names may be used, but file extensions may not be.

A filespec is a name of an OpenVMS file (which may consist of the node, device, directory,
filename, type, and version) or a logical name. The maximum length for a filespec in PowerHouse
for OpenVMS is 255 characters. Filespecs are restricted to alphanumeric and punctuation
characters. The characters ; $ and leading question mark (?) have special meanings in PowerHouse
and are prohibited. A file specification takes the general form:
[NODE::][DEVICE:[[DIRECTORY]]FILENAME.EXT;1

The square brackets are required when you enter a directory name.

TYPE option

Specifies whether the source dictionary is CDD/Plus or PowerHouse.

CDDPLUS [DIRECTORY directory-spec]
Specifies that the source dictionary is CDD/Plus. DIRECTORY directory-spec determines the
CDD/Plus subdirectory in CDD/Plus that contains the required descriptions. Subdirectories will
not be traversed as part of a translation. The directory name and the file name will supply the
anchor for access to the CDD/Plus system.

PHD
Specifies that the source dictionary is the PowerHouse dictionary in PHD format. PowerHouse
Integrator does not support PDC format dictionaries.

Discussion
The SOURCE statement is a required statement which defines the RMS file specification for the
source dictionary.

When this statement is repeated, it clears all other options. The dictionary is opened immediately
and left open until another SOURCE statement is used, or until PowerHouse Integrator is exited.

Subdictionaries of a PowerHouse dictionary are not processed. This means that relational
databases referenced in the PowerHouse dictionary are not part of the translation process.

Examples

The following example generates CDD/Plus for a record in the PowerHouse dictionary.
> SOURCE DICTIONARY empdict TYPE PHD
> TRANSLATE RECORD salaries
> GENERATE CDD
> GO

The PowerHouse Integrator SOURCE statement above corresponds to the statement used by
PowerHouse components:
> SET DICTIONARY empdict

The following example contains a SOURCE statement to specify what dictionary and type is being
used:

Chapter 9: PH Integrator Utility
SOURCE

PDL and Utilities Reference 217

> SOURCE path$:[cdd_ddictionary.dict] &
> TYPE CDDPLUS &
> DIRECTORY "cddplus.sub.directories"
> TRANSLATE ALL
> GENERATE PDL
> GO

The PowerHouse Integrator SOURCE statement above corresponds to the statement used in
CDO:
SET DEFAULT path$:[cdd_dictionary.dict]cddplus.sub.directories

218 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
TRANSLATE

TRANSLATE
Specifies the entities to be translated.

Syntax
TRANSLATE option name-options

Options

ALL

Translates the entire CDD/Plus or PowerHouse dictionary. Unreferenced usages and elements or
fields are also translated.

DATABASE name-option

Translates one or more CDD/Plus databases. The name-option is a set of options that governs the
entities to be processed by PowerHouse Integrator which has the general form:
[namelist]|PATTERN string|SOUNDEX (string[,n])]

ELEMENT name-option

Translates one or more elements. ELEMENT is equivalent to FIELD.

FIELD name-option

Translates one or more fields. FIELD is equivalent to ELEMENT.

FILE name-option

Translates one or more files.

RECORD name-option

Translates one or more records. When a record definition is translated, all associated elements
(and possibly usages) will be translated.

RMS_DATABASE name-option

Translates one or more RMS databases.

Name Options
The name-options are name and PATTERN.

name-option
The following are valid for the name-options:
• a list of names
• a range of names
• patterns
• a combination of patterns with a list of names

The name-option may either reference records or elements, but not both.

Translate Options

ALL DATABASE ELEMENT

FIELD FILE RECORD

RMS_DATABASE

Chapter 9: PH Integrator Utility
TRANSLATE

PDL and Utilities Reference 219

name[TO name][,name[TO name]]...
Identifies databases, fields, files, elements or records by a combination of single names, lists of
names, and ranges of names.

A name is a unique name identifying a PowerHouse entity and is used in conjunction with the
keyword that appears immediately prior to it. All PowerHouse names must start with a letter, and
can contain letters, digits, and any of the special characters specified in the PDL SYSTEM
OPTIONS statement, or in the PHD System Screen. You can specify a name up to 64 characters
long. All names should be meaningful to system users, designers, and programmers.

PATTERN string
Identifies databases, fields, files, elements, or records whose names match the pattern specified by
the string. This option can be combined with the name [TO name] option.

A string is a series of displayable characters (letters, numbers, or special characters) in double or
single quotation marks.

For more information about pattern matching, see Chapter 5, "PowerHouse Language Rules", in
the PowerHouse Rules book.

Discussion
The TRANSLATE statement is an optional statement that specifies which entities are to be
translated. There are no restrictions by default. This means the whole PHD dictionary or current
anchor directory in a CDD/Plus dictionary is translated.

The choice of the entities to be translated is determined by the dictionary source being translated.
It is presumed that if you are translating a PowerHouse dictionary, then you want to use
PowerHouse terminology. If you are translating a CDD/Plus dictionary, it is presumed that you
want to use CDD/Plus terminology.

Any syntax error in the command will result in the whole statement being ignored.

Examples

The following statements translate one field in a CDD/Plus dictionary:
> SOURCE DICTIONARY OLD TYPE CDDLUS
> TRANSLATE FIELD FIELD_1
> GENERATE PDL TO PDL_OUTPUT_FILE
> GO

The SYSTEM OPTIONS, USAGE statement (if required), and ELEMENT PDL statements will be
generated.

The following statements translate a range of elements in a PowerHouse dictionary:
> SOURCE DICTIONARY OLD TYPE PHD
> TRANSLATE ELEMENT ELEM_4 TO ELEM_8

.

.

.
> GO

If you are generating PDL, the SYSTEM OPTIONS statement will be created, as well as the
required USAGE and ELEMENT statements for each element. If you are generating CDO, a
DEFINE FIELD definition will be created for each element translation. Each usage will be
translated as a field, and the element using the usage will be translated as a field based on that
field.

The following statements translate all records in a PowerHouse dictionary that start with the
letters "NAM":
> SOURCE DICTIONARY OLD TYPE PHD"
> TRANSLATE RECORD PATTERN "NAM@"

.

.

.
> GO

220 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
TRANSLATE

If you are generating PDL, the SYSTEM OPTIONS statement, a RECORD statement, and the
required USAGE, ELEMENT, ITEM, INDEX, and SEGMENT statements will be created for each
record translation. If you are generating CDO, the required DEFINE FIELD definitions and a
DEFINE RECORD definition will be created for each record translation.

The following statement translates the specified files in a PowerHouse dictionary:
> SOURCE DICTIONARY OLD TYPE PHD
> TRANSLATE FILE FILE_1, FILE_3, &

FILE_7, TO FILE_10
.
.
.

> GO

If generating PDL, a SYSTEM OPTIONS FILE, and RECORD statement, and the required
USAGE, ELEMENT, ITEM, INDEX, and SEGMENT statements will be created for each file
translation. If generating CDO, the necessary DEFINE FIELD definitions and a DEFINE
RECORD definition will be created for each file translation.

The following statements translate the specified RMS databases in the CDD/Plus dictionary:
> SOURCE DICTIONARY OLD TYPE CDDPLUS
> TRANSLATE RMS_DATABASE PATTERN "RM@", &
> DB_1 TO DB_9
> GENERATE PDL TO PDL_OUTPUT_FILE
> GO

The SYSTEM OPTIONS, FILE, and RECORD statement, and necessary USAGE, ELEMENT,
ITEM, INDEX, and SEGMENT PDL statements will be created for each RMS_DATABASE
translated.

Using the ALL option
The following statement translates every entity in the specified CDD/Plus or PowerHouse
dictionary:
> TRANSLATE ALL

The result of multiple TRANSLATE statements (other than TRANSLATE ALL) is the union of the
statements. This means that the statements
> TRANSLATE RECORD X
> TRANSLATE RECORD Y

will result in both record X and record Y being translated.

When the ALL option is used, the resulting translation is dependent on the order in which the
statements are entered. The statements
> TRANSLATE RECORD X
> TRANSLATE RECORD Y
> TRANSLATE ALL

result in just TRANSLATE ALL being executed. However the statements
> TRANSLATE ALL
> TRANSLATE RECORD X
> TRANSLATE RECORD Y

result in only record X and record Y being translated.

For more information, see (p. 185).

Chapter 9: PH Integrator Utility
USE

PDL and Utilities Reference 221

USE
Processes PowerHouse Integrator source statements that are contained in a file.

Syntax
USE filespec [option]

filespec

Names the file that contains the PowerHouse Integrator source statements you want to use.

A filespec is a name of an OpenVMS file (which may consist of the node, device, directory,
filename, type, and version) or a logical name. The maximum length for a filespec in PowerHouse
for OpenVMS is 255 characters. Filespecs are restricted to alphanumeric and punctuation
characters. The characters ; $ and leading question mark (?) have special meanings in PowerHouse
and are prohibited. A file specification takes the general form:
[NODE::][DEVICE:][[DIRECTORY]]FILENAME.EXT;1

The square brackets are required when you enter a directory name.

If the file doesn’t exist, PowerHouse Integrator issues an error message.

Options
The options are DETAIL, NODETAIL, LIST, and NOLIST.

DETAIL|NODETAIL
DETAIL writes the contents of the file, rather than just the USE statement itself, to PowerHouse
Integrator’s source statement file, PHINTSAVE. NODETAIL writes just the USE statement, rather
than the contents of the file, to the temporary save file.

Default: DETAIL

LIST|NOLIST
LIST displays the statements as they are processed; NOLIST doesn’t.

Default: LIST

Discussion
The USE statement reads the named file for statement input. PowerHouse Integrator reads and
interprets each statement as if it had been entered from the terminal.

The procloc program parameter affects how PowerHouse searches for process files in the USE
statement. For more information about the procloc program parameter, see Chapter 2, "Program
Parameters", in the PowerHouse Rules book.

Nesting USE Statements

A file referenced in a USE statement can itself contain other USE statements. USE files can be
nested to a maximum of 20 levels. Permanent files containing valid source code can be included at
any time they are consistent with PowerHouse Integrator syntax and structure.

222 PowerHouse(R) 4GL Version 8.4E

Chapter 9: PH Integrator Utility
USE

PDL and Utilities Reference 223

A
access

determining rights, 41
UNKNOWN level, 79

accessing
dictionaries, 144
elements, 79
permission from PowerHouse, 79
record-structure, 79

administering metadata with CDD/Repository, 185
ALL option

CREATE statement, 158, 162
DELETE statement, 164, 165
GENERATE statement, 133
SET statement, 173
SHOW statement, 149, 152
TRANSLATE statement, 218

ALLBASE file type
DATABASE statement, 33

ALLOW CENTURY option
ELEMENT statement, 44
SYSTEM OPTIONS statement, 100
USAGE statement, 118

alpha (^) metacharacter, 105
ALTERNATE option

INDEX statement, 69
analyzing metadata with CDD/Repository, 185
application security class (ASC)

description, 39
APPLICATION SECURITY CLASS statement, 23, 25
APPLICATION SECURITY ID METHOD option

SYSTEM OPTIONS statement, 101
ASC ID METHOD option

SYSTEM OPTIONS statement, 101
ASC option

PERMIT statement, 79
ASC UNKNOWN

APPLICATION SECURITY CLASS statement, 23
ASCENDING option

INDEX statement, 69, 70
SEGMENT statement, 95

ASCII option
FILE statement, 61
SYSTEM OPTIONS statement, 101

ASCII7 option
SYSTEM OPTIONS statement, 100

ASCII8 option
SYSTEM OPTIONS statement, 100

ASCS option
SHOW statement, 150

assigning
passwords, 23
portids, 24

assigning (cont'd)
user names, 23

asterisk (*)
fill character, 46
metacharacter, 105
special character, REVISE statement, 92, 138, 169

at-sign (@) metacharacter, 105
attributes

defining in files, 60
FACTOR usage, 125
FILLER usage, 125
FILLER-NUMERIC usage, 125
FLAG usage, 126
ID usage, 126
INTERVAL usage, 126
MONEY usage, 126
MONEY-CR usage, 126
MONEY-DR usage, 126
MONEY-PR usage, 127
NAME usage, 127
NUMERIC-ID usage, 127
PERCENT usage, 128
PHONE usage, 128
POSTAL-CD usage, 128
QUANTITY usage, 129
TIME usage, 129
TIME-STAMP usage, 129
ZIP-CODE usage, 129

Axiant 4GL
description, 15

B
backslash (\) metacharacter, 105
BASE option

CREATE statement, 158
base options

CREATE statement, 158
BASED ON option, CDD/Repository, 190, 195
basic statements

defining dictionaries with PDL, 17
BEGIN STRUCTURE statement, 28
BEGIN structures

translating, 192
BINARY option

FILE statement, 61
BIT fields, 196
BLOCKING FACTOR option

CREATE statement, 159
FILE statement, 61

BLOCKMAX option
CREATE statement, 158

Index

224 PowerHouse(R) 4GL Version 8.4E

Index

B-Tree indexes
PowerHouse support, 71

BWZ
elements, 125-129

BWZ option
ELEMENT statement, 45
USAGE statement, 118

C
CANCEL statement, 29

CREATE DICTIONARY statement, 31
canceling

dictionary design specifications, 29
capability option

PERMIT statement, 79
CAPACITY (MPE/iX) option

FILE statement, 61
CAPACITY (OpenVMS) option

FILE statement, 62
CAPACITY option

CREATE statement, 158, 159
RECORD statement, 86

CAPTION option
ELEMENT statement, 52

caret (^) metacharacter, 105
CDD definitions

generating, 209
CDD/Repository, 185, 190

BASED ON option, 190, 195
CDD/Repository Dictionary Operator (CDO), 185
datatypes and corresponding PDL element and item types,

196
DEFINE DATABASE statement, 193
dictionary security, 194
element, record, and index definitions, 189
field types, 191
item attributes, 191
missing and default information, 194
output to PDL translation, 203
resolving conflict syntax, 191
source used by CDO, 194
terminology, 186
translating Field statements to PDL Element statements,

195
translating from PowerHouse Dictionary, 189-194
translating indexes, 193
translating record-structures into PDL statements, 198
translating to PDL, 194-221
valid entity types, 188
variants, 192

CDD/Repository datatypes
comparing to PowerHouse datatypes, 205

CDD/REPOSITORY STRUCTURE clause, 198
CDO, 185

missing and default information, 189
CENTURY EXCLUDED option

SYSTEM OPTIONS statement, 101
CENTURY INCLUDED option

SYSTEM OPTIONS statement, 101
changing

default settings for a session, 97

changing (cont'd)
definitions in existing dictionaries, 135
metacharacters, 105

CHARACTER SET ENGLISH option
SYSTEM OPTIONS statement, 101

CHARACTER SET FRENCH option
SYSTEM OPTIONS statement, 101

CHARACTER SET GERMAN option
SYSTEM OPTIONS statement, 101

CHARACTER SET REPLACED BY option
SYSTEM OPTIONS statement, 101

characters,
substitution, 43

characters, substitution, 50
CHRONOLOGICAL option

FILE statement, 62
CLEAR option

CANCEL statement, 29
PowerHouse Integrator SAVE statement, 215
SAVE statement, 94, 140, 171

clearing
current working space, 29
temporary save file, 98, 144

CLOSE option
SET statement, 141

codes
generating PDL from a compiled dictionary, 133-135

columns
headings in QUIZ reports, 48

COMMIT option
TRANSACTION statement, 113

compilers
PDL, 13
PHDPDL, 13

components
PowerHouse, 13-14

COMPRESSED option
SET statement, 141

CONCURRENCY option
SYSTEM OPTIONS statement, 103

conflicts
WAIT|NOWAIT option, TRANSACTION statement, 115

CONSISTENCY option
SYSTEM OPTIONS statement, 103

CONSTRAINTS option
TRANSACTION statement, 113

conversion
Eloquence to PDL, 179-180
TurboIMAGE to PDL, 175-176

COPIES option
SET statement, 142

Copyright, 2
correcting errors

PDL statements, 29
CREATE DICTIONARY statement, 31
CREATE option

FILE statement, 62
ITEM statement, 74
RECORD statement, 86

CREATE statement, 162
ALL option, 158
BASE option, 158

Index

PDL and Utilities Reference 225

CREATE statement (cont'd)
base options, 158
BLOCKING FACTOR option, 159
BLOCKMAX option, 158
CAPACITY option, 158, 159
FILE option, 158
file options, 159
QUTIL, 158
TEMPORARY option, 159

creating
coded record-structures, 76
databases, 158, 162
definitions in CDO dictionaries, 185
dictionaries, 31
file statement in PDL, 202
files, 158, 162
indexes, 71
metadata with CDD/Repository, 185

CRITICAL ITEM UPDATE option
FILE statement, 62, 160

crosshatch (#) metacharacter, 105
cross-referenced information

reporting, 145
current dictionaries

displaying, 99
customizing transactions

PowerHouse, 116

D
data

storage and display, 54
data dictionaries, loading, 78
data mapping tables

QUTIL, 160
DATABASE, 113
DATABASE option

FILE statement, 60
GENERATE statement, 133
TRANSACTION statement, 113
TRANSLATE statement, 218

DATABASE statement, 33-37
databases

creating, 158, 162
description, 16
providing owner name, 35
providing password, 35
providing password and userid, 65
providing userid, 36, 66
specifying, 34
translating, 203

DATABASES option
SHOW statement, 149

DATATYPE option
ELEMENT statement, 45
ITEM statement, 74
SEGMENT statement, 95
USAGE statement, 119

datatypes, 74
comparing PowerHouse and CDD/Repository, 205
fixed point, 197
floating point, 197

datatypes (cont'd)
OCTAWORD, 197

date elements, 176, 181
DATE FORMAT option

SYSTEM OPTIONS statement, 102
DATE SEPARATOR option

SYSTEM OPTIONS statement, 102
date-formats

specifying, 102
table, 47

dates
format and display, 43
optional separator characters, 51, 102
PDL support, 43
specifying formats, 47

DB2
high and low fill options, 37

DB2 file type
DATABASE statement, 33

deadlock-free transactions, 116
Debugger, 14
decimal

positions, elements, 125-129
DECIMAL option

ELEMENT statement, 45
SYSTEM OPTIONS statement, 102
USAGE statement, 118

decimal string types, 196
declaring

types, 36
DEFAULT CENTURY option

SYSTEM OPTIONS statement, 102
DEFAULT ENTRY option

SYSTEM OPTIONS statement, 103
default information in CDD/Repository, 194
DEFAULT option

EXECUTION TIME PARAMETERS statement, 57
SET statement, 97, 141

default transactions
overriding TRANSACTION statement, 115

defaults
changing settings for a session, 97
overriding transaction attributes, 116
security class, specifying, 25
transaction attributes in PowerHouse, 115
transaction model, 103

DEFINE DATABASE statement, 193, 202
defining

dictionaries, basic statements, 17
files, 60
items in record-structures, 74-76
multi-segment indexes, 71, 72, 96
usages, 53

DELETE option
SET statement, 98, 173

DELETE statement, 164
FILE option, 164
QUTIL, 164, 165

deleting
databases, 164, 165
files, 164, 165

226 PowerHouse(R) 4GL Version 8.4E

Index

DESCENDING option
INDEX statement, 69, 70
SEGMENT statement, 95

DESCRIPTION OF option
SHOW statement, 150

DESCRIPTION option
DATABASE statement, 34
DICTIONARY SECURITY CLASS, 40
ELEMENT statement, 46
FILE statement, 63
RECORD statement, 86
USAGE statement, 119

DESCRIPTION statement, 39
descriptions

application security class (ASC), 39
element, 125-129
ELEMENT option, SHOW statement, 150
record-structures, 150
usages, 150

design specifications
canceling, 29

designated files
QCOBLIB, 183
QCOBTEXT, 183
qshogen.pdl, 135

DETAIL option
REVISE statement, 92, 138, 169, 213
SET statement, 97
SHOW statement, 149, 151, 152
USE statement, 121, 156, 174, 221

determining
lock conflicts, 115
resource conflicts, 115

dictionaries
attaching relational databases, 36
canceling design specifications, 29
contents, reporting, 149-155
creating, 31
customizing design, 177, 181
defining basic statements, 17
definitions, reporting, 150
displaying current, 99
generating PDL code definitions, 133-135
loading current definitions, 78
loading new with generated definitions, 135
maintaining on OpenVMS, 18
modifying, 135
name, specifying, 142
PDC, 172
PHD, 18-20, 172
PowerHouse, 13, 15, 16
See also dictionary security
type, 18
using existing, 17

dictionary logicals
PH_CREATE_SHARED, 18

DICTIONARY option
SET statement, 97, 142, 172

DICTIONARY OWNER option
SYSTEM OPTIONS statement, 103

dictionary security
CDD/Repository, 194

DICTIONARY SECURITY ID METHOD option
SYSTEM OPTIONS statement, 103

dictionary specifications
generating COBOL definitions, 183

digit metacharacter
crosshatch (#), 105

DIRECT option
FILE statement, 60

displaying
current dictionaries, 99
dates, item values, 47
nonsubstitution characters and leading zeros, 51
USE statements, 156

document
version, 2

DOWNSHIFT option
ELEMENT statement, 46
SET statement, 97, 142
SYSTEM OPTIONS statement, 101, 107
USAGE statement, 118

DSC ID METHOD option
SYSTEM OPTIONS statement, 103

DSC. See also DICTIONARY SECURITY CLASS
DUAL option

SYSTEM OPTIONS statement, 103
duplicate names

Eloquence to PDL conversion, 181
ETOP utility, 181

E
editing

source statement files, 92-93
temporary save files, 92-93

EDITOR
environment variable, 138

editor
choosing for the REVISE statement, 214

element definitions
duplicates, 176, 181

element definitions, CDD/Repository, 189
ELEMENT option

GENERATE statement, 134
PERMIT statement, 79
SHOW statement, 150
TRANSLATE statement, 218

ELEMENT statement, 43-55
order, 17

elements
definition, 150
description, 16
sizes, DATE and TIME, 43
standard usages, tables, 125-129

ELEMENTS option
SHOW statement, 150, 152

Eloquence
converting to PDL, 179-180
generating PDL statements, 179
IMAGE emulators, 68

Eloquence indexes
compatibility with IMAGE, 71

Eloquence security, 180

Index

PDL and Utilities Reference 227

Eloquence to PDL conversion
duplicate names, 181
Eloquence security, 180
how to, 179-180

END STRUCTURE statement, 56
END structures

translating, 192
ending

item substructure, 56
PDL session, EXIT statement, 59

entities
attributes set by PDL and QSHOW, 135
PowerHouse, 15-16
reporting, namelist, 154

entity general term
DESCRIPTION statement, 39

entity types, CDD/Repository, 188
environment variables

EDITOR, 138
PHEDIT, 93

error
conditions, WAIT|NOWAIT option, TRANSACTION

statement, 115
ERRORS option

SET statement, 98
escape (!) metacharacter, 105
ETOP

customizing the dictionary design, 181
date elements, 181

ETOP utility, 179-181
duplicate element definitions, 181
Eloquence security, 180
functional description, 179

ETP statement. See EXECUTION TIME PARAMETERS
statement

examples
element, 125-129

exclamation mark (!) metacharacter, 105
exclamation mark and zero (!0) metacharacter, 105
executing QSHOW, 167
EXECUTION TIME PARAMETERS statement, 57
existing dictionaries

using, 17
EXIT statement

PDL, 59
PowerHouse Integrator, 208
QSHOW, 132
See also QUIT statement

EXIT statement, QUTIL, 166
exiting

PDL, 59, 85
QSHOW, 132, 137

exiting PowerHouse Integrator, 205

F
FACTOR usage

attributes, 125
FDL option

SET statement, 172
field definitions

translating, 194

FIELD option
TRANSLATE statement, 218

file names
duplicates, 176, 181

FILE option
CREATE statement, 158, 162
DELETE statement, 164, 165
GENERATE statement, 134
TRANSLATE statement, 218

file options
CREATE statement, 159

FILE statement, 60-68
ASCII option, 61
BINARY option, 61
CAPACITY (MPE/iX) option, 61
CAPACITY (OpenVMS) option, 62
CHRONOLOGICAL option, 62
CRITICAL ITEM UPDATE option, 62, 160
DATABASE option, 60
DIRECT option, 60
KSAM, 61, 160
KSAMXL, 61
NO CRITICAL ITEM UPDATE option, 160
ODBC files, 61
order, 17
OWNER option, 65
TYPE, 60
USERID option, 66

file-organization general term
FILE statement, 60

files
defining, 60
description, 16
KSAM, 61, 160
KSAMXL, 61
ODBC, 61
PowerHouse dictionary to CDD/Repository, 194
PowerHouse Integrator, 205
processing source statements, 121
source statement, editing, 92-93
source statement, saving, 171
temporary save, editing, 92-93
translating from PowerHouse dictionary to

CDD/Repository, 193
FILES option

SHOW statement, 150
filespec

GENERATE statement, 209
REVISE statement, 213
SAVE statement, 215
SOURCE statement, 216
USE statement, 221

FILL option
ELEMENT statement, 46
USAGE statement, 118
using, 68

FILLER
attributes, 125

FILLER-NUMERIC usage
attributes, 125

fixed point datatype, 197
fixed point item sizes, 197

228 PowerHouse(R) 4GL Version 8.4E

Index

FLAG usage
attributes, 126

FLOAT option
ELEMENT statement, 46
SYSTEM OPTIONS statement, 104
USAGE statement, 118

floating point datatype, 197
FORCE CENTURY option

ELEMENT statement, 47
SYSTEM OPTIONS statement, 104
USAGE statement, 118

FORMAT option
ELEMENT statement, 47
USAGE statement, 118

formatting
numeric items, 50

four-digit year
specifying, 48

FREEFORM
items, substructure, 28

G
GENERATE statement

ALL option, 133
DATABASE option, 133
ELEMENT option, 134
FILE option, 134
filespec, 209
in QSHOW, 183
instead of QCOBLIB, 183
PowerHouse Integrator, 209-210
QSHOW, 133-135
SYSTEMS option, 134
TRANSACTION option, 134
USAGE option, 134

generating
CDD definitions, 209
PDL code from compiled dictionary, 133-135

generating a dictionary from Eloquence, 179-181
generating a dictionary from IMAGE, 175-177
generating COBOL definitions, 183
GENERIC RETRIEVAL CHARACTER option

SYSTEM OPTIONS statement, 104
GO statement

PowerHouse Integrator, 211
GO|NOGO option

SET statement, 172
greater than (>) metacharacter, 105
grouping related items, 198
groups

id, 24

H
HEADING option

ELEMENT statement, 48
headings

default for columns, 48
HELP option

ELEMENT statement, 48
HEXADECIMAL option

SYSTEM OPTIONS statement, 101

HIGH FILL option, using, 68
HIGH string option

DATABASE statement, 34, 37
DATABASE statement for DB2, 37
FILE statement, 63

I
id

group, 24
user, 24

ID methods
LOGONID, 23
PASSWORD, 23, 40
PORTID, 24, 41

ID usage
attributes, 126

identifying
relational databases to data dictionaries, 36

IEEE
FLOAT option, SYSTEM OPTIONS statement, 104

IMAGE emulators, 68
IMAGE indexes

compatibility with Eloquence, 71
IMAGE security, 176
include-name-clause, 198
index definitions

CDD/Repository, 189
translating, 194

INDEX statement, 69-71
(MPE/iX), 69
(OpenVMS), 71
(UNIX), 71
LINKS TO option, 69
OMNIDEX option, 70
TPI option, 70

index to key translation, 194
INDEXED option

FILE statement, 60
RECORD statement, 87

indexes
compatibility between IMAGE and Eloquence, 71
creating in PhD, 71
description, 16
multi-segment, 71, 72
translating, 193, 203

INITIAL option
ELEMENT statement, 49
USAGE statement, 118

input
scale, elements, 125-129
scale, establishing, 49
validating against data dictionary, 52

INPUT CENTURY option
SYSTEM OPTIONS statement, 104

input scale, 196, 197
INPUT SCALE option

ELEMENT statement, 49, 54
USAGE statement, 118

INTEGER
items, substructure, 28

Integrator, 185-221

Index

PDL and Utilities Reference 229

INTERVAL
usage, attributes, 126

isolation
levels, defaults, 114
levels, PHANTOM PROTECTION, 114
levels, READ COMMITTED, 114
levels, READ UNCOMMITTED, 114
levels, REPEATABLE READ, 114
levels, SERIALIZABLE, 114
levels, STABLE CURSOR, 114

isolation-level option
TRANSACTION statement, 113

item attributes
in CDD/Repository, 191

ITEM statement, 74-76
order, 17
SIZE option, 75
substructures, 28

items
datatypes, elements, 125-129
defining record-structure, 74-76
description, 16
security, assigning, 79
substructures, beginning, 28
substructures, ending, 56

ITOP
description, 14

ITOP utility, 175-177
duplicate element definitions, 176
functional description, 175
IMAGE security, 176
number of lines, 175
PARM option, 175

K
KEYFILE option

FILE statement, 63
keys

translating, 193
translating from indexes, 194

KSAM, 61
FILE statement, 160

KSAMXL, 61

L
LABEL option

ELEMENT statement, 49
LANGUAGE option

SET statement, 142
leading

sign, elements, 125-129
spaces, filling, 46
zeros, displaying, 51

LEADING SIGN option
ELEMENT statement, 49
USAGE statement, 118

left parenthesis (()metacharacter, 105
less than (<) metacharacter, 105
LINKS TO option

INDEX statement, 69

LIST option
REVISE statement, 92, 138, 169, 213
SET statement, 97
USE statement, 121, 156, 174, 221

LOAD statement, 78
loading

current PDL definitions into dictionaries, 78
new dictionaries with generated definitions, 135
PDC dictionary, 18

loading a PowerHouse dictionary with generated definitions,
210

LOCATION option
EXECUTION TIME PARAMETERS statement, 57

LOGONID option
APPLICATION SECURITY CLASS statement, 23
DICTIONARY SECURITY CLASS statement, 40
USER MODE statement, 122

LOW FILL option, using, 68
LOW string option

DATABASE statement, 34, 37
DATABASE statement for DB2, 37
FILE statement, 63

lowercase
shifting characters to uppercase, 46

M
maintaining dictionaries on OpenVMS, 18
manipulating definitions in CDO dictionaries, 185
matching single characters, 105
MESSAGE SUBSTITUTION CHARACTER option

SYSTEM OPTIONS statement, 104
messages

status, 194
metacharacters

alpha (^), 105
any (?), 105
asterisk (*), 105
at-sign (@), 105
backslash (\), 105
caret (^), 105
changing default, 105
crosshatch (#), 105
digits, 105
escape (!), 105
exclamation mark (!), 105
exclamation mark and zero (!0), 105
greater than (>), 105
left parenthesis ()), 105
less than (<), 105
not (\), 105
null (!0), 105
optional (<), 105
or-bar (|), 105
precedence, 105
question mark (?), 105
repeating pattern matches, 105
right parenthesis ()), 105
table, 105
wild (@), 105

metadata, creating with CDD/Repository, 185
Microsoft SQL Server, See ODBC file type

230 PowerHouse(R) 4GL Version 8.4E

Index

missing information in CDD/Repository, 194
MISSING VALUE CHARACTER option

SYSTEM OPTIONS statement, 105
MONEY usage, 126
MONEY-CR usage, 126
MONEY-DR usage, 126
MONEY-PR usage, 127
MULTILINE HEADING CHARACTER option

SYSTEM OPTIONS statement, 104
multi-segment indexes, 71, 72, 96

defining, 96

N
name option

TRANSLATE statement, 218
NAME usage, 127
namelists

reporting entities, 154
name-option

SHOW statement, 150, 151
name-options

GENERATE statement, 134
SHOW statement, 153

names
reporting using SOUNDEX codes, 155
translating, 198

naming
application security classes, 23

negative values
displayed in parentheses, 52
formatting, 50
specifying, leading sign, 49
specifying, trailing sign, 52

nesting
USE statements, 156

nesting USE statements, 221
NO CRITICAL ITEM UPDATE option

FILE statement, 160
NOALLOW CENTURY option

ELEMENT statement, 44
SYSTEM OPTIONS statement, 100
USAGE statement, 118

NOCHRONOLOGICAL option
FILE statement, 62

NOCLOSE option
SET statement, 141

NOCOMMIT option
TRANSACTION statement, 113

NOCOMPRESSED option
SET statement, 141

NOCREATE option
FILE statement, 62
RECORD statement, 86

NODETAIL option
REVISE statement, 92, 138, 169, 213
SET statement, 97
USE statement, 121, 156, 174, 221

NOFDL option
SET statement, 172

NOFORCE CENTURY option
ELEMENT statement, 47

NOFORCE CENTURY option (cont'd)
SYSTEM OPTIONS statement, 104
USAGE statement, 118

NOLIST option
REVISE statement, 92, 138, 169, 213
SET statement, 97
USE statement, 121, 156, 174, 221

NONIEEE
FLOAT option, SYSTEM OPTIONS statement, 104

nonsubstitution characters, displaying, 51
NONULLSEPARATOR option

ELEMENT statement, 49
SYSTEM OPTIONS statement, 105
USAGE statement, 118

NOPRINT option
SET statement, 143

NOSECURITY option
SET statement, 144

NOSHIFT option
SET statement, 97, 142
SYSTEM OPTIONS statement, 107

NOSHOW option
SYSTEM OPTIONS statement, 108

NOSOURCE option
SET statement, 172

NOSTATISTICS option
SET statement, 172

not metacharacter (\), 105
NOT PRELOADED option

CREATE DICTIONARY statement, 31
NOUSE option

REVISE statement, 92, 138, 169, 213
NOVERIFY option

SET statement, 98, 173
NOWAIT option

TRANSACTION statement, 115
NOWARNINGS option

SET statement, 98
NOXREF option

SET statement, 145
null metacharacter (!0), 105
NULL option

INDEX statement, 70
NULL VALUE CHARACTER option

SYSTEM OPTIONS statement, 105
NULL VALUES ALLOWED option

FILE statement, 63
NULL VALUES NOT ALLOWED option

FILE statement, 63
NULL VALUES option

DATABASE statement, 34
NULLSEPARATOR option

ELEMENT statement, 49
SYSTEM OPTIONS statement, 105
USAGE statement, 118

numeric
items, formatting, 50
values, filling leading spaces, 46
values, negative leading sign, 49
values, negative trailing sign, 52

NUMERIC option
ITEM statement, 75

Index

PDL and Utilities Reference 231

numeric values
negative, displayed in parentheses, 52

NUMERIC-ID usage
attributes, 127

O
OCCURS DEPENDING ON clause, 199
OCCURS option

ELEMENT statement, 49
ITEM statement, 76
USAGE statement, 118

OCTAWORD datatype, 197
ODBC file type

DATABASE statement, 33
ODBC files, 61
OMNIDEX option

INDEX statement, 70
one-dimensional array, 195
OPEN option

DATABASE statement, 34
FILE statement, 63
RECORD statement, 87

operating system
returning, PDL, 59, 85
returning, QSHOW, 132, 137
returning, QUTIL, 166, 168

OPTIMISTIC option
SYSTEM OPTIONS statement, 103

OPTIONS option
SHOW statement, 151, 152

Oracle file type
DATABASE statement, 33

ORACLE synonyms
table names, 114

or-bar (|) metacharacter, 105
order

PDL statements, 17
ORDERED option

INDEX statement, 70
ORGANIZATION option

FILE statement, 60
RECORD statement, 87

output
scale, elements, 125-129
scale, establishing, 50
scale, formatting numeric items, 50

OUTPUT SCALE option
ELEMENT statement, 50, 54
USAGE statement, 118

overriding
default transaction attributes, QDESIGN, 116
default transaction attributes, QTP, 116
default transaction attributes, QUIZ, 116
default transactions, 115

OWNER option
DATABASE statement, 35
FILE statement, 65

P
PACKED

items, substructure, 28

PAGE LENGTH option
SET statement, 142

parentheses
indicating negative numbers, 52

PARM option
ITOP utility, 175

PARM=88
program parameter, 183

PASSWORD
ID method, 40

PASSWORD option
APPLICATION SECURITY CLASS statement, 23
DATABASE statement, 35
DICTIONARY SECURITY CLASS statement, 40
FILE statement, 65
USER MODE statement, 122

PASSWORD|NOPASSWORD option
SET statement, 143

pattern matching
alpha (^) metacharacter, 105
any(?) metacharacter, 105
at-sign (@) metacharacter, 105
changing metacharacters, 105
digit (#) metacharacter, 105
escape (!) metacharacter, 105
null (!0) metacharacter, 105
optional (*) metacharacter, 105
optional (<) metacharacter, 105
or-bar (|) metacharacter, 105
precedence metacharacters, 105
repeating (>) metacharacter, 105
reporting entities, 154

PATTERN option
ELEMENT statement, 50
SHOW statement, 153
SYSTEM OPTIONS statement, 105
TRANSLATE statement, 218
USAGE statement, 118

patterns
elements, 125-129

PDC dictionary
differences from PHD dictionary, 18
loading, 18

PDL, 13, 16
differences from PHD screen system, 19
differences from PHDPDL, 19
order of statements, 17
statement order, 17
statements, 23-121
statements from CDD/Repository, 203
translating from CDD/Repository, 194-221

PDL compiler, 13
PDL FILE statements, 202
PDL statements

generating using ETOP, 179
pdl temporary save file, 98
PDL translations

output of CDD/Repository, 203
PERCENT usage, 128
PERMIT statement

PDL, 79-82
specifying default security class, 25

232 PowerHouse(R) 4GL Version 8.4E

Index

PH_CREATE_SHARED logical, 18
PHANTOM PROTECTION isolation level, 114
PHD dictionary, 18-20

differences from PDC dictionary, 18
PHD screen system, 13

differences from PDL, 19
differences from PHDPDL, 19

PHDADMIN, 14
PHDMAINTENANCE, 14
PHDPDL

differences from PDL, 19
differences from PHD screen system, 19

PHDPDL compiler, 13
PHEDIT environment variable, 138
PHEDIT environment variables, 93
PHONE usage, 128
PICTURE option

ELEMENT statement, 50
USAGE statement, 118

PICTURE SUBSTITUTION CHARACTER option
SYSTEM OPTIONS statement, 107

pictures
elements, 125-129

PORT option (MPE/iX)
SYSTEM OPTIONS statement, 107

PORT option (UNIX)
SYSTEM OPTIONS statement, 107

PORTID
ID methods, 41

PORTID option
APPLICATION SECURITY CLASS statement, 24
DICTIONARY SECURITY CLASS statement, 41
USER MODE statement, 122

PORTS option
SHOW statement, 151

POSTAL-CD usage, 128
PowerHouse

components, 13-14
description, 13
dictionaries, 13
dictionary, 15-16
entities, 15, 16
utilities, 14

PowerHouse datatypes
comparing to CDD/Repository datatypes, 205

PowerHouse Definition Language,SeePDL
PowerHouse dictionaries

loading with generated definitions, 210
PowerHouse dictionary

translating files to CDD/Repository, 189-194
PowerHouse elements and items

corresponding CDD/Repository field types, 191
translating to CDD/Repository, 190

PowerHouse Integrator, 185-221
choosing a REVISE statement editor, 214
designated files, 205
exiting, 205
nesting USE statements, 221
program parameters, 206
running, 205
SAVE statement CLEAR option, 215
security, 186

PowerHouse Integrator (cont'd)
terminology comparison table, 186
TRANSLATE statement ALL option, 218
TRANSLATE statement DATABASE option, 218
TRANSLATE statement FILE option, 218
TRANSLATE statement RECORD option, 218
translating syntax, 186
USE statement DETAIL option, 221
USE statement LIST option, 221
USE statement NODETAIL option, 221
USE statement NOLIST option, 221

PowerHouse Integrator SOURCE statement TYPE option,
216

PowerHouse Integrator statements
EXIT, 208
GENERATE, 209-210
GO, 211
QSHOW, 212
REVISE, 213-214
SAVE, 215
SOURCE, 216-217
summary, 206-207
TRANSLATE, 218-220
USE, 221

PowerHouse Integrator TRANSLATE statement ELEMENT
option, 218

PowerHouse Integrator TRANSLATE statement FIELD
option, 218

PowerHouse Integrator TRANSLATE statement PATTERN
option, 218

PowerHouse Integrator TRANSLATE statement
RMS_DATABASE option, 218

PowerHouse Web
description, 15

precedence
metacharacters, left parenthesis, 105
metacharacters, right parenthesis, 105

PRELOADED option
CREATE DICTIONARY statement, 31

PRIMARY option
INDEX statement, 69

PRINT option
SET statement, 143

PRIORITY option
TRANSACTION statement, 114

processing
QUTIL statements, 174
statements in source statement files, 121

procloc program parameter, 214, 215, 221
USE statement, 121

program parameter
PARM=88, 183

program parameters
PowerHouse Integrator, 206
procloc, 214, 215, 221

Q
QCOBLIB

description, 14
designated file, 183

Index

PDL and Utilities Reference 233

QCOBTEXT
designated file, 183

QDESIGN
description, 14

qshogen.pdl, 135
GENERATE statement, 135

qshosave.qss
source statement save file, 138, 140

QSHOW
description, 14
item offsets within a record-structure, 204
statements, 131-156

QSHOW statement
PowerHouse Integrator, 212

QTP
description, 14

QUANTITY usage, 129
question mark (?) metacharacter, 105
QUICK

debugger, 14
description, 14

QUIT statement
PDL, 85
QSHOW, 137
QUTIL, 168

quitting PDL, 59
QUIZ

description, 14
QUTIL, 162

data mapping tables, 160
description, 14
statements, 157-174

QUTIL statements
CREATE, 158

R
RDB file type

DATABASE statement, 33
RDB/VMS file type

DATABASE statement, 33
READ COMMITTED isolation level, 114
READ ONLY option

TRANSACTION statement, 114
READ UNCOMMITTED isolation level, 114
READ WRITE option

TRANSACTION statement, 114
record definitions, CDD/Repository, 189
RECORD FORMAT option

FILE statement, 66
RECORD option

PERMIT statement, 79
SHOW statement, 152
TRANSLATE statement, 218

RECORD statement
CAPACITY option, 86
OPEN option, 87
order, 17
ORGANIZATION option, 87
PDL, 86-88

records
description, 16

RECORDS option
SHOW statement, 150, 151

record-structures
creating coded, 76
defining items, 74-76
description, 16, 150
item offsets in QSHOW, 204
reporting subfiles, 152
specifying selection by QUTIL, 86
translating, 192

REDEFINES option
ITEM statement, 76

related items
grouping, 198

relational databases
identifying to data dictionaries, 36

RELATIONAL option
FILE statement, 60

relational tables
reserving, 116

RELATIVE option
FILE statement, 60

RELEASE option
SYSTEM OPTIONS statement, 107

removing
temporary save file contents, CANCEL CLEAR statement,

29
REPEATABLE READ isolation level, 114
REPEATING option

INDEX statement, 70
REPORT DESTINATION option

SET statement, 143
REPORT DEVICE option

SET statement, 144
reporting

dictionary contents, 149-155
entities, namelist, 154
entities, pattern matches, 154
names, SOUNDEX codes, 155
SHOW statement, entire dictionary contents, 153

reports
controlling level of detail, 154
cross-referenced information, 145
page length, 142
specifying titles, 109

RESERVING option
TRANSACTION statement, 114

resetting
SET options, 141

resolving conflict syntax, 191
returning

operating system, PDL, 59, 85
operating system, QSHOW, 132, 137
operating system, QUTIL, 166, 168

REUSE option
FILE statement, 66

REVISE statement, 92-93
editor, 214
filespec, 213
PowerHouse Integrator, 213-214
PowerHouse Integrator DETAIL option, 213
PowerHouse Integrator LIST option, 213

234 PowerHouse(R) 4GL Version 8.4E

Index

REVISE statement (cont'd)
PowerHouse Integrator NODETAIL option, 213
PowerHouse Integrator NOLIST option, 213
PowerHouse Integrator NOUSE option, 213
PowerHouse Integrator USE option, 213
procloc program parameter, 214
QSHOW, 138

REVISE statement, QUTIL, 169
right parenthesis ()) metacharacter, 105
RMS databases

translating, 202
RMS record definitions

translating, 194
RMS_DATABASE option

TRANSLATE statement, 218
running

PowerHouse Integrator, 205

S
SAFETY-NET security class

APPLICATION SECURITY CLASS statement, 25
SAVE CLEAR option

SET statement, 98, 144
SAVE statement, 94

filespec, 215
PowerHouse Integrator, 215
PowerHouse Integrator CLEAR option, 215
QSHOW, 140
QUTIL, 171
saving temporary save file contents, 29

saving
source statement files, 171
temporary save file contents, SAVE statement, 29

scaling factor
establishing input, 49
establishing output, 50

SCOPE option
FILE statement, 66

screens
PHD, 13

security
and compiled applications, 57
assigning to items, 79
combination, table, 79
dictionary, 194
dictionary access, 144
Eloquence, 180
IMAGE, 176

SECURITY option
SET statement, 144
SHOW statement, 149, 152

SEGMENT statement
ASCENDING option, 95
DESCENDING option, 95
order, 17
PDL, 95-96

segments
description, 16

SELECT option
ITEM statement, 76
translating, 191

separator characters
specifying, 102

SEPARATOR option
ELEMENT statement, 51
USAGE statement, 118

sequence
PDL statements, 17

SEQUENTIAL option
FILE statement, 60

SERIALIZABLE isolation level, 114
SET statement, 97-98

QSHOW, 141
SET statement, QUTIL, 172
SET VERIFY statement, 194
settings

datatypes, 74
shift input

element, 125-129
SHOW ALL option

SHOW statement, 153
SHOW DATABASES option

SHOW statement, 153
SHOW DESCRIPTION option

SHOW statement, 153
SHOW DICTIONARY statement, 99
SHOW ELEMENTS option

SHOW statement, 153
SHOW FILES option

SHOW statement, 153
SHOW option

SYSTEM OPTIONS statement, 108
SHOW OPTIONS option

SHOW statement, 153
SHOW RECORDS option

SHOW statement, 153
SHOW SECURITY option

SHOW statement, 153
SHOW statement

ASCS option, 150
QSHOW, 149-155
SECURITY option, 149, 152
TRANSACTION option, 152
USAGES option, 152

SHOW SUBFILES option
SHOW statement, 153

SHOW SYSTEMS option
SHOW statement, 153

SHOW USAGES option
SHOW statement, 153

SHOW USERS option
SHOW statement, 153

SIGNED option
ELEMENT statement, 46
ITEM statement, 75
SEGMENT statement, 95
USAGE statement, 119

significance
elements, 125-129

SIGNIFICANCE option
ELEMENT statement, 51
USAGE statement, 118

Index

PDL and Utilities Reference 235

single
characters, matching, 105

SIZE option
ELEMENT statement, 43, 46
ITEM statement, 75
SEGMENT statement, 95
USAGE statement, 118, 119

sizes
elements, 125-129

SORT|NOSORT option
SET statement, 145

SOUNDEX
reporting names, 155

SOUNDEX option
GENERATE statement, 134
SHOW statement, 153

SOURCE option
SET statement, 172

SOURCE statement
filespec, 216
PowerHouse Integrator, 216-217
PowerHouse IntegratorTYPE option, 216

source statement files
editing, 92-93
processing statements, 121

source statements
save files, qshosave.qss, 138, 140
saving files, 171

special characters
asterisk (*), fill character, 46
asterisk (*), REVISE statement, 92, 138, 169
FLOAT, 46
separator characters, dates, 51, 102

SPECIAL NAME CHARACTERS option
SYSTEM OPTIONS statement, 108

specifying
date-formats, 102
default security class, PERMIT statement, 25
number of times, item repeats, 49

STABLE CURSOR isolation level, 114
standard

element usages, 125-129
statements

APPLICATION SECURITY CLASS, 23, 25
BEGIN STRUCTURE, 28
CANCEL, 29
CREATE DICTIONARY, 31
CREATE QUTIL, 158, 162
DATABASE, 33-37
DEFINE DATABASE, 193, 202
DELETE QUTIL, 164, 165
DESCRIPTION, 39
DICTIONARY SECURITY CLASS (DSC), 40-42
displaying during processing, 156
ELEMENT, 43-55
END STRUCTURE, 56
EXECUTION TIME PARAMETERS, 57
EXIT, 59
EXIT, QSHOW, 132
EXIT, QUTIL, 166
FILE, 60-68
GENERATE QSHOW, 133-135

statements (cont'd)
INDEX, 69-71
ITEM, 74-76
LOAD, 78
order in PDL, 17
PDL FILE, 202
PERMIT, 79-82
PowerHouse Integrator, 185-221
PowerHouse Integrator EXIT, 208
PowerHouse Integrator GENERATE, 209-210
PowerHouse Integrator GO, 211
PowerHouse Integrator QSHOW, 212
PowerHouse Integrator SAVE, 215
PowerHouse Integrator SOURCE, 216-217
PowerHouse Integrator TRANSLATE, 218-220
PowerHouse Integrator USE, 221
PowerHouse Integrator, summary, 206-207
processing, 121
QSHOW, 131-156
QSHOW, QUTIL, 167
QSHOW, table, 131
QUIT, 85
QUIT, QSHOW, 137
QUIT, QUTIL, 168
QUTIL, 157-174
QUTIL CREATE, 158
QUTIL table, 157
RECORD, 86-88
REVISE, 92-93, 213-214
REVISE, QSHOW, 138
REVISE, QUTIL, 169
SAVE, 94
save, QSHOW, 140
SAVE, QUTIL, 171
SEGMENT, 95-96
SET, 97-98
SET VERIFY, 194
SET, QSHOW, 141
SET, QUTIL, 172
SHOW DICTIONARY, 99
SHOW, QSHOW, 149-155
SYSTEM OPTIONS, 100-111
TRANSACTION, 113-116
TRANSLATE, 194
USAGE, 118-120
USE, 121, 174
USE, QSHOW, 156
USER MODE, 122

STATISTICS option
SET statement, 172

status messages, 194, 203
storage size, 197
structure-name-clause, 198
SUBFILE option

SHOW statement, 152
subfiles

reporting record-structures, 152
substitution characters, 43, 50
substructure

example, 203
substructures, 198

grouping, 198

236 PowerHouse(R) 4GL Version 8.4E

Index

substructures (cont'd)
ITEM statement, 28
items, beginning, 28
items, ending, 56

SUMMARY option
SHOW statement, 149, 151, 152

SUPERCEDE option
FILE statement, 66

SYBASE file type
DATABASE statement, 33

syntax
resolving conflict, 191
translating with PowerHouse Integrator, 186

SYSMONTHS option
SYSTEM OPTIONS statement, 109

system editor
REVISE statement, 92-93

SYSTEM OPTIONS statement, 100-111
MISSING VALUE CHARACTER option, 105
NULL VALUE CHARACTER option, 105

SYSTEMS option
GENERATE statement, 134
SHOW statement, 151, 152

system-wide settings
reporting, 151, 152

T
tables

datatype settings, 74
datatypes, ITEM statement, 74
date-formats, 47
metacharacters, 105
PowerHouse security combinations, 79
QSHOW statements, 131
QUTIL statements, 157
reserving relational, 116
standard elements and usages, 125-129

TEMPORARY option
CREATE statement, 159

temporary save file
clearing, 29
editing, 92-93
removing contents, CANCEL CLEAR statement, 29

TERMINAL option (MPE/iX)
SYSTEM OPTIONS statement, 107

TERMINAL option (UNIX)
SYSTEM OPTIONS statement, 107

TIME element
attributes, 129

times
format and display, 43
support, 43

TIME-STAMP element
attributes, 129

TITLE option
SYSTEM OPTIONS statement, 109

titles
specifying in reports, 109

TPI indexes
PowerHouse support, 71

TPI option
INDEX statement, 70

trailing
sign, element, 125-129

TRAILING SIGN option
ELEMENT statement, 52
USAGE statement, 118

TRANSACTION MODEL option
SYSTEM OPTIONS statement, 103

TRANSACTION option
GENERATE statement, 134
SHOW statement, 152

TRANSACTION statement, 113-116
transactions

deadlock-free, 116
default attributes in PowerHouse, 115
description, 16
determining lock conflicts, 115
overriding default attributes, 116

TRANSLATE statement, 194
PowerHouse Integrator, 218-220
PowerHouse Integrator DATABASE option, 218
PowerHouse Integrator ELEMENT option, 218
PowerHouse Integrator FILE option, 218
PowerHouse Integrator name option, 218
PowerHouse Integrator PATTERN option, 218
PowerHouse Integrator RECORD option, 218
PowerHouse Integrator RMS_DATABASE option, 218

TRANSLATE statement, PowerHouse Integrator
FIELD option, 218

translating
BEGIN...END structures, 192
CDD Repository, 185
CDD/Repository Field statements to PDL Element

statements, 195
CDD/Repository record-structures into PDL statements,

198
CDD/Repository to PDL, 194-221
databases, 203
elements and items into CDD/Repository definitions, 190
field definitions, 194
files from PowerHouse dictionary to CDD/Repository,

193
index definitions, 194
indexes, 193, 203
indexes to keys, 194
keys, 193
names, 198
PowerHouse data dictionaries, 185
PowerHouse dictionary redefinitions, 192
PowerHouse Dictionary to CDD/Repository, 189-194
record-structures, 192
RMS databases, 202
RMS record definitions, 194
SELECT option, 191
syntax with PowerHouse Integrator, 186

translating elements and items, 190
TurboIMAGE

convert to PDL, 175-176
TurboIMAGE to PDL conversion

duplicate names, 176
how to, 175-176

Index

PDL and Utilities Reference 237

TurboIMAGE to PDL conversion (cont'd)
IMAGE security, 176

two-digit years
specifying, 48

TYPE option
DATABASE statement, 33
FILE statement, 60
SOURCE statement, 216

TYPE option (MPE/iX)
SYSTEM OPTIONS statement, 107

TYPE option (UNIX)
SYSTEM OPTIONS statement, 107

TYPE suboption
SET statement DICTIONARY option, 172

types
declaring, 36
elements, 125-129

U
UIC option

APPLICATION SECURITY CLASS statement, 24
DICTIONARY SECURITY CLASS statement, 41
USER MODE statement, 122

UNIQUE option
INDEX statement, 70

UNKNOWN
access level, 79
security class, APPLICATION SECURITY CLASS

statement, 25
UNORDERED option

INDEX statement, 70
UNSIGNED option

ELEMENT statement, 46
ITEM statement, 75
SEGMENT statement, 95
USAGE statement, 119

uppercase
shifting characters to lowercase, 46

UPSHIFT option
ELEMENT statement, 46
SET statement, 97, 142
SYSTEM OPTIONS statement, 101, 107
USAGE statement, 118

usage
description, 16

USAGE option
ELEMENT statement, 44
GENERATE statement, 134

USAGE statement, 118-120
usages

declaring, 118
defining, 53
definition, 151
description, 150
elements, standard, 125-129
FACTOR, 125
FILLER, 125
FILLER-NUMERIC, 125
standard, FLAG, 126
standard, ID, 126
standard, INTERVAL, 126

usages (cont'd)
standard, MONEY, 126
standard, MONEY-CR, 126
standard, MONEY-DR, 126
standard, MONEY-PR, 127
standard, NAME, 127
standard, NUMERIC-ID, 127
standard, PERCENT, 128
standard, PHONE, 128
standard, POSTAL-CD, 128
standard, QUANTITY, 129
standard, TIME, 129
standard, TIME-STAMP, 129
standard, ZIP-CODE, 129

USAGES option
SHOW statement, 151, 152

USE option
REVISE statement, 92, 138, 169, 213

USE statement, 121, 174
filespec, 221
PowerHouse Integrator DETAIL option, 221
PowerHouse Integrator LIST option, 221
PowerHouse Integrator NODETAIL option, 221
PowerHouse Integrator NOLIST option, 221
QSHOW, 156

USE statements
PowerHouse Integrator, 221
PowerHouse Integrator nesting, 221

USER MODE statement, 57, 122
LOGONID option, 122
PASSWORD option, 122
PORTID option, 122
UIC option, 122
WEBLOGONID option, 123

USERID option
DATABASE statement, 36
FILE statement, 66

usermode option
EXECUTION TIME PARAMETERS, 57

usernames
assigning, 24

users
id, 24

USERS option
SHOW statement, 152

utilities
CDD/Repository Dictionary Operator (CDO), 185
PowerHouse, 14
PowerHouse Integrator, 185

V
validating

input against data dictionary, 52
values

formatting negative, 50
VALUES option

ELEMENT statement, 52
USAGE statement, 118

VARIANT clause, 199
size, 200

238 PowerHouse(R) 4GL Version 8.4E

Index

variants
CDD/Repository, 192

VERIFY option
SET statement, 98, 173

version
document, 2

VERSION option
SYSTEM OPTIONS statement, 109

VERSION suboption
SYSTEM OPTIONS statement, 107

W
WAIT option

TRANSACTION statement, 115
WARNINGS option

SET statement, 98
WEBLOGONID option

USER MODE statement, 123
wild (@) metacharacter, 105

X
XREF option

SET statement, 145

Z
ZIP-CODE element

attributes, 129
ZONED

datatype, 28
items, substructure, 28

	PDL and Utilities Reference
	Table of Contents
	About this Book
	Overview
	Conventions in this Book
	Getting Help
	Cognos PowerHouse 4GL Documentation Set
	Cognos PowerHouse Web Documentation Set
	Cognos Axiant 4GL Documentation Set

	Chapter 1: Introducing the PowerHouse Dictionary
	About PowerHouse
	PowerHouse Dictionary and Entities
	PDL
	PowerHouse Dictionary on OpenVMS

	Chapter 2: PDL Statements
	Summary of PDL Statements
	APPLICATION SECURITY CLASS
	BEGIN STRUCTURE
	CANCEL
	CREATE DICTIONARY
	DATABASE
	DESCRIPTION
	DICTIONARY SECURITY CLASS (OpenVMS)
	ELEMENT
	END STRUCTURE
	EXECUTION TIME PARAMETERS (OpenVMS)
	EXIT
	FILE
	INDEX
	Discussion

	ITEM
	LOAD
	PERMIT
	QUIT
	RECORD
	REVISE
	SAVE
	SEGMENT
	SET
	SHOW DICTIONARY
	SYSTEM OPTIONS
	TRANSACTION
	USAGE
	USE
	USER MODE (OpenVMS)

	Chapter 3: Standard Elements and Usages
	Chapter 4: QSHOW Statements
	Summary of QSHOW Statements
	EXIT
	GENERATE
	QUIT
	REVISE
	SAVE
	SET
	SHOW
	USE

	Chapter 5: QUTIL Statements
	Summary of QUTIL Statements
	CREATE (MPE/iX, UNIX, Windows)
	CREATE (OpenVMS)
	DELETE (MPE/iX)
	DELETE (OpenVMS, UNIX, Windows)
	EXIT
	QSHOW
	QUIT
	REVISE
	SAVE
	SET
	USE

	Chapter 6: ITOP Utility
	Converting to PDL
	Issues for Consideration
	IMAGE Security
	Duplicate Names
	Date Elements

	Refine Your Dictionary Design

	Chapter 7: ETOP Utility
	Converting to PDL
	Issues for Consideration
	Eloquence Security
	Duplicate Names
	Date Elements

	Refine Your Dictionary Design
	The ETOP Environment

	Chapter 8: QCOBLIB Utility
	Generating COBOL Definitions
	Resolving Incompatibilities

	Chapter 9: PH Integrator Utility
	What is PowerHouse Integrator?
	What Does PowerHouse Integrator Translate?
	Security
	Valid Entity Types

	Translating PowerHouse Dictionary to CDD/Repository
	Element, Record, and Index Definitions
	Missing and Default Information
	Translating Elements and Items
	Item Attributes
	Resolving Conflict Syntax
	Translating the SELECT Option
	Translating Record-structures
	Translating BEGIN...END Structures
	Translating PowerHouse Dictionary Redefinitions
	Translating Files
	Translating Indexes
	Output

	Translating CDD/Repository to PDL
	Field, RMS Record, and Index Definitions
	Missing and Default Information
	Translating Fields
	Translating Record-structures
	Translating RMS Databases

	Running PowerHouse Integrator
	Designated Files in PowerHouse Integrator
	PowerHouse and CDD/Repository Datatypes
	PowerHouse Integrator Program Parameters
	Summary of PowerHouse Integrator Statements
	EXIT
	GENERATE
	GO
	QSHOW
	REVISE
	SAVE
	SOURCE
	TRANSLATE
	USE

	Index

