

Whisper Programmer Studio 3
User Guide

The powerful integrated visual development environment for
 server based programming.

Copyright

 1997-2000 by Whisper Technology Limited. All rights reserved. No part of this
manual may be copied, photocopied, reproduced, translated or converted to any
electronic form in whole or in part without prior written approval of Whisper
Technology Limited.

Trademarks

All trademarks are the property of their respective companies.

Third Edition, June 2000

Whisper Technology Limited
25-29 High Street
Leatherhead
Surrey KT22 8AB
United Kingdom

Contents i

Contents
Installing the Software .. 1

Installing Programmer Studio...1
Installing the server software ...2

Introducing Programmer Studio .. 3

Programmer Studio Concept ..3
Integrated Visual Development Environment ..3

Project Workspace ...4
Code Editor ..4
Output Window..4
Command Line...5
Project Settings ..5
Visual File Compare ..5

Information for Experienced Windows Users ..5

Getting Started... 7

Using the Project Wizard..7

Code Editor Templates ... 9

Introducing Code Editor Templates..9
Supported Programming Languages ..9
Code Navigator ..10

Template Manager..10
Custom Editor Settings...13

Substituting Tabs with Spaces ...13
Defining Tab Stop Positions ..13

Files Containing Line Numbers..14
Automatic Renumbering ..14
Intelligent Renumbering...14
Line Number Position ..15

COBOL Line Tagging ..15
Defining a Standard Tag String..15
Defining a Project File Tag String ...16
Using Date Variables in Tag Strings..16

Creating New Code Editor Templates ..17
Using Code Editor Templates...18

Working with Files... 19

Opening Files..19
Rules Wizard..20

ii Contents

Creating New Files... 23
Saving Files .. 24

Using the Code Editor... 27

Scrolling the Editable Area and Moving the Insertion Point.................................... 27
Moving the Insertion Point to a Specific Line ... 28

Editing Code... 28
Selecting Text .. 28
Undoing Mistakes .. 29
Moving, Copying and Pasting Text ... 29
Drag-and-Drop Editing .. 30

Visual Elements ... 31
Text Ruler .. 31
Virtual Line Numbers .. 31
Selection Margin.. 32
Bracket and Brace Matching.. 32
Selected Range Tool-Tips.. 33

Finding and Replacing Text ... 34
Finding Text... 34
Replacing Text... 35
Search Options... 36
Advanced Search Criteria .. 37
Using Regular Expressions .. 38
Predefined Compound Expressions ... 41

Formatting Text.. 41
Change Case .. 41
Change Columns.. 43
Convert Tabs to Spaces.. 44
Comment and Uncomment .. 45

Advanced Features ... 46
Bookmarks... 46
Named Bookmarks .. 47
Moving to Specific Position in the Code Editor .. 48
Open File Under Cursor... 49

File Properties .. 49
Changing Tab Size... 50
Changing the Format of a File ... 50
Changing the Code Editor Template.. 51
MPE/iX and Robelle Qedit Files ... 51

Printing... 52
Additional Print Options .. 52

The Code Navigator... 55

Introducing the Code Navigator ... 55
Visual Components .. 55

Contents iii

Structure View ...56
Navigator Toolbar ..57
Navigator Tips..58

Developing Projects .. 59

Understanding Projects...59
Project Folders ...59
The Project Window ..59

Project Settings ...59
Adding, Moving and Removing Files and Folders...61

Adding Files and Folders to the Project ...61
Moving and Removing Folders and Files ..62

Structuring Your Project...63
Project Hierarchy ...63
Relative vs. Absolute File Locations..64
Using Project Folders...66

Compiling Your Files... 69

Compile and Build Commands...69
Compiling a File...69
Command Variables...71
Folder Compile Commands ...71
Build Commands..73

Compiler Results ..73
Compiler Output Masks ...73
Using Compiler Output Masks...75
Examining Resulting Errors...76

Integrated Debugging ... 77

Requirements and Supported Debuggers..77
How it Works ...78

Working Model ..78
Using TELNET..78

Getting Started..79
Selecting your Debug Settings ...79

Project Debug Settings ...80
General ...80
Session ...82
Advanced ...83

TELNET Session Wizard ...85
Debugging a Program...88

Setting Breakpoints ..88
Starting a Debug Session ...90
Controlling the Debug Target ..90
Ending a Debug Session...93

iv Contents

Accessing the Remote Debugger.. 94
Terminal Emulation ... 94

TRAX COBOL .. 95

Visual File Compare .. 97

Comparing Files ... 98
Comparison Results.. 100

Synchronizing Files ... 100
Advanced Options .. 100

Using Find In Files... 103

Remote Command Line .. 105

Regular Expression Characters ... 107

7-bit ASCII Character Set .. 109

Installing the Software 1

1
Installing the Software

Programmer Studio presents a brand new way to develop enterprise-wide applications
from a single workstation. It combines the ease of use and speed of a standard
Windows based visual development environment with the power and flexibility of
native server operating systems.

Using Programmer Studio you can construct a model of your development
environment using a project hierarchy, edit source files and compile within a single
environment.

Installing Programmer Studio

Programmer Studio is essentially a client/server development environment, requiring
server-based software to provide access to files and a command line.

The installation program is largely self-explanatory. Simply follow the instructions
presented by the installation program.

The Programmer Studio CD-ROM is AutoPlay enabled. If your system supports
AutoPlay, simply insert the CD-ROM and the set-up browser will be launched
automatically.

If your system does not have AutoPlay, follow these instructions:

To install Programmer Studio

1 Insert the Programmer Studio CD-ROM

2 Open the My Computer folder from the desktop

3 Click on the CD-ROM icon and select Open from the File menu

4 Launch SETUP.EXE to start the installation program

Note To install Programmer Studio from diskette, follow the instructions above,
selecting the floppy drive icon instead of the CD-ROM icon in step 3.

2 Chapter One

Installing the server software

Full instructions on installing the server software can be found in the online help
documentation that is installed with Programmer Studio.

Introducing Programmer Studio 3

2
Introducing Programmer Studio

Welcome to Programmer Studio – the powerful integrated visual development
environment for server based programming. Using Programmer Studio, you can
structure, edit, and compile your programs without leaving Windows.

Programmer Studio Concept

Programmer Studio introduces a new concept in developing server-based applications.
Using the popular Windows environment, Programmer Studio provides the ability to
edit files and compile programs from a familiar integrated development environment.

Programmer Studio uses the familiar two-tier client/server paradigm, a Windows
based development environment (IDE) and server based file transfer and command
execution; together providing an powerful integrated visual development environment
for server based programming.

Integrated Visual Development Environment

Programmer Studio has been designed to include many of the familiar features found
in common windows based development tools. The user interface uses the standard
controls found in windows applications to reduce the learning curve for those
programmers new to Windows based development.

This section describes the different elements of the programming environment. While
not all immediately visible, these components are the basis for Programmer Studio.

4 Chapter Two

The Programmer Studio visual development environment

Project Workspace

The project workspace window provides the focal point for development using
Programmer Studio. You can structure the project to reflect the organization of your
existing files and directories, to identify specific components, or a combination of the
two.

Code Editor

The Code Editor is a fully featured editor where you will be spending most of your
development time. The Code Editor provides many powerful features such as color
syntax highlighting, auto-indenting, virtually unlimited undo/redo and numbered line
support for languages such as COBOL.

Output Window

The output window provides real-time output from server based compilers offering the
ability to cancel at any time. Using Compiler Output Masks, the output can then be
parsed allowing the user to examine the location of any errors following the compile.

Introducing Programmer Studio 5

Command Line

The Command Line provides limited access to the server command line. It is not a
terminal emulator and is intended solely for starting programs that do not require
further input and only generate simple output.

Project Settings

The Project Settings dialog is used to set the properties of each component of your
project. This includes the connection details, file names, locations and compiler
commands.

Visual File Compare

Visual File Compare provides a conduit to external command line comparison utilities
displaying the results as a split-screen view of both files.

Information for Experienced Windows Users

If you are an experienced user of Microsoft Windows, you will find that Programmer
Studio conforms to many of the text editor standards found in other Windows based
development environments.

♦ Project oriented development model and environment

♦ Color syntax highlighting and ToolTips

♦ “What’s This?” context sensitive help in all dialog boxes

♦ Context menu for most visual items.

♦ Standard Properties command for most visual items.

Getting Started 7

3
Getting Started

The concept of project based program development is central to Programmer Studio's
visual development environment. Each project determines how to connect to the
remote server, the files, and commands to compile the program.

To help you get started, Programmer Studio has a project wizard that will create a new
project from the answers to a few simple questions. The wizard is intended for use by
new and experienced users alike.

Using the Project Wizard

Before creating a new project, check that the server software is running and that you
have details of the server address (DNS name or IP address), port number, and login.
Your system administrator will be able to confirm this information for you.

This chapter will describe in detail each step in the project wizard, from selecting a
programming language through connecting to the server and finally adding some files
to your new project.

The project wizard is simply the first step in creating a project. All the options
selected using the wizard can be easily changed within the project settings.

To create a new project using the wizard

1 From the File menu, select New Project.

2 Determine the programming language(s) of the files that will be included
in the project.

3 From the list, check each compiler that will be used with the project.

4 Enter the DNS name or IP address and port number or the server, and
then click Next.

5 Enter your user name and password, and then click Next.

6 Enter the project root folder. This is the location in which the majority of
your project files are located, and then click Next.

8 Chapter Three

7 Click Add and Remove to determine which files to initially add to the
project.

8 Click Finish to create the new project.

Note
MPE/iX

When connecting to MPE/iX servers, the project wizard will prompt for
UDC and HPFS support. If you are unfamiliar with either of these terms
please contact your system administrator.

Code Editor Templates 9

4
Code Editor Templates

Programmer Studio supports many of the popular programming languages including
Basic, C, C++, COBOL, Fortran, Pascal, etc, etc. Each language has its own specific
requirements for content editing, syntax highlighting, line numbers and formatting.

To support these many variations, Programmer Studio uses Code Editor Templates to
identify the options that are required on a language-by-language basis.

Introducing Code Editor Templates

Using Code Editor Templates, it is possible to define the settings to be used when
editing files for each specific programming language or task. The settings provided by
the templates are: -

♦ Custom editor settings, smart indenting, tab size, tabs to spaces, etc

♦ Support for languages using line numbers

♦ Language syntax definition and keyword lists

♦ Code Navigator support and context sensitive help

♦ File format options, removing trailing spaces, line lengths, COBOL Tokens, etc

♦ Specific support for MPE/iX files

As you can see from the number of different options, it is very important to determine
which Code Editor Template you wish to use BEFORE you begin to edit your files.

Supported Programming Languages

Programmer Studio comes with a number of standard templates for C, COBOL, Java,
Pascal, Basic, etc, etc. These templates are intended to provide the most common
options for each language allowing you to get started without having to create your
own personal templates.

10 Chapter Four

In many cases the standard templates are configured to work with the most common
compilers given the platform and language. For example, the ANSI – COBOL
template has the option to “Insert tabs as spaces” turned on, because many of the
COBOL compilers in use today do not support the use of the tab character for
formatting.

Code Navigator

Code Templates also determine which Code Navigator to use to provide a virtual
‘map’ of the file being edited. The Code Navigator is discussed in greater detail in
Chapter 7.

Template Manager

Programmer Studio provides a Template Manager to allow viewing and editing of the
many different templates that are currently installed. It is recommended that you
examine the settings for each Code Editor Template you intend to use before you
begin editing.

To view the Code Editor settings for a specific template

1 From the Tools menu, select Code Editor Templates

2 From the Available Templates list, select the specific template

Code Editor Templates 11

The Template Manager displaying the Keyword properties for the ANSI C template

The Template Manager is divided into two parts, a list of available templates to the
left, and the settings for the currently selected template to the right. As the selection in
the Available Templates list changes, the contents of the tabs to the right will be
updated.

The template settings are grouped into 6 sections: -

General

The Editor tab provides options to override the standard Code Editor options found in
the Options dialog box. These include tab size and formatting, smart indenting etc.

Line Numbers

The Line Numbers tab provides support for files containing line numbers. These
features include automatic and intelligent renumbering, sequence, alignment, etc.

Syntax

The Syntax tab defines the syntax of the programming language, non-keyword
characters, quoted string support, and comment styles.

12 Chapter Four

Keywords

The Keywords tab lists the programming language keywords. The list is divided into
four styles, which, using the Display options, are painted in different colors. Also
included, is the option to determine if the language is case sensitive or not.

Compiler

The Compiler tab defines how third-party language compilers are supported within the
Programmer Studio development environment. Options include compiler error
detection and pre-compile headings.

Advanced

The Advanced tab defines Code Navigator support, case sensitive help, and advanced
file content formatting options.

MPE/iX

The MPE/iX tab provides details for the format of new MPE/iX files, including
Robelle Qedit files.

Note
MPE/iX

When opening files using the ‘(use rules wizard)’ Code Editor Template, the
MPE/iX properties can be used to identify a template when no file extension
is present.

Code Editor Templates 13

The Template Manager will only allow one template to be modified at a time. If a
change has been made to the properties of the selected template, you will be prompted
to save any changes made when selecting another template, or on clicking the Close
button.

If any changes have been made to the standard templates, (those installed with
Programmer Studio), the user will be prompted to save the changes as a new template.

The remainder of this chapter discusses the areas of consideration when choosing the
right template. It does not offer instructions on how to modify the many options
available, as these are evident when using the Template Manager.

Custom Editor Settings

When switching between programming languages, or more correctly language
compilers, specific limitations can be imposed on the content of files and how they are
edited.

Code Editor templates provide the option to override the standard Editor preferences
found in the options dialog. This is particularly useful for many of the legacy
compilers, which do not support Tab characters or languages imposing a fixed form to
code structure, such as COBOL.

Substituting Tabs with Spaces

An alternative to standard tab stops is to insert a variable number of spaces in order to
simulate tab position formatting. This has a number of disadvantages, including
increased file size. However it is necessary in certain applications, notably when using
compilers that do not support the tab character.

Defining Tab Stop Positions

Once the option to replace tabs with spaces has been selected, the option to define
specific tab positions becomes available. Specific tab positions are very useful in
fixed form programming languages like COBOL, imposing rules on the position of
specific elements of a program.

The tab positions are specified in order from left to right, in actual character positions
separated by a comma. The character positions are relative to the Code Editor ruler, so
they are always in ascending order. Once the last defined tab position is reached, the
standard tab size comes into effect.

14 Chapter Four

For example, to define a series of tab stops every 4 characters and at 20 and 30, the tab
stop positions would be 4,8,12,16,20,30. The Code Editor ruler displays set tab
positions as inverted arrows, providing a guide to the current settings.

The Code Editor ruler displaying tab stop positions

Files Containing Line Numbers

For those programming languages that include a number on each line, Programmer
Studio provides increased productivity. Using Code Editor Templates, you can
remove line numbers while editing, restoring them when the file is saved.

Code Editor Templates provide two options for line number support; automatic
renumbering for instances where the existing line numbers are unimportant, and
intelligent numbering for instances where the existing line numbers have to be
preserved.

Automatic Renumbering

Automatic renumbering examines the first few lines of a file when it is opened. The
line numbers appearing on these lines are then used to determine the starting line
number and the sequence for the remaining lines. When the file is saved, the existing
line numbers are replaced with the automatic line number sequence.

Using the Hide Line Numbers option in the Code Editor Template, it is possible to
remove any indication that a file has line numbers, perfect for programmers new to
line numbers and those wanting to forget the limitations line numbers impose.

Intelligent Renumbering

Intelligent renumbering saves the numbers assigned to each line as the file is loaded.
When a new line is inserted, the Code Editor will assign a number to the new line as
long as there is sufficient space in the existing sequence of lines. When no more lines
can be added, the user is prompted to renumber the current section or entire file to
allow new lines to be inserted.

This option is intended for those users familiar with the line numbers appearing in a
given file, and who wish to maintain the line numbers while editing.

Code Editor Templates 15

Line Number Position

Programmer Studio supports line numbering to both the left and right. For files with
line numbers appearing to the right of each line, the character position of the line
number is required. For files with line numbers to the left, the position should be set
to 1.

Note Remember when specifying a line number position greater than 1, that the
file will have trailing spaces when the line numbers have been removed.
Remember to set the ‘Remove Trailing Spaces’ option.

COBOL Line Tagging

In addition to lines numbers, the COBOL’85 language specification includes a tag
field at character positions 73-80 (8 characters). The tag field is free format text,
commonly used to store modification dates, programmer initials, version numbers, etc.

Each Code Editor Template has an option to remove these ‘tags’ while editing, and
like intelligent line renumbering, to restore them when saving. If the tokens are
removed during editing, you can specify your own token that will be applied to
modified lines. These are added to the file when saving.

Programmer Studio provides two options for defining the tag used in COBOL files,
either as a standard tag string applied to all files, or, using an advanced property found
in project settings for individual files.

Defining a Standard Tag String

For files using a Code Editor Template that has line tagging enabled, the standard tag
string is used. This can be overridden using a project files property. Remember the
tag string is limited to a maximum of 8 characters. If the tag string is longer than 8
characters it will be truncated.

To define the default tag string

1 From the Tools menu, select Options.

2 In the Line Tag Format box, enter the default tag string.

3 Click OK.

Note Changing the default tag string will replace unsaved tags in all open files.

16 Chapter Four

Defining a Project File Tag String

Using the tag string property in the Project settings allows more control over the line
tags that are applied to the files being edited. When using line tags to record version
numbers, being able to specify tags on a file-by-file basis can be very useful.

To define a tag string for a project file

1 Select a file from the project in the tree view.

2 From the View menu, select Properties.

3 Select the Advanced tab.

4 Select the Override standard COBOL line tag button.

5 In the COBOL tag format box enter the desired tag string.

6 Click OK.

Tip Using the Shift and Ctrl keys you can extend the selection in the tree to
include more than one file. Any Tag Format will then be applied to all those
files highlighted.

Using Date Variables in Tag Strings

A common use for the line tag is to store the date a line was added or last modified. In
order to make maintenance of these types of tags as painless as possible, Programmer
Studio provides special variables which can be used in tag strings to represent day,
month, year and century.

Code Editor Templates 17

The following variables can be used to represent the date 4th July 1999.

For Variable Result

Day %d 4

Day (two digits space padded) %+d <space>4

Day (two digits zero padded) %dd 04

Month (two digits zero padded) %mm 07

Short month text (sentence case) %mmm Jul

Short month text (upper case) %MMM JUL

Year excluding century %yy 99

Year including century %yyyy 1999

Robelle Qedit™ formatted date %qedit_date 4 JUL99

Filename %filename sample

Note The length of the tokens cannot exceed 8 characters. Any characters in the
token past this point are truncated.

Creating New Code Editor Templates

As you become more familiar with Code Editor templates you will no doubt wish to
make changes to the standard templates to, for example, include new keywords, alter
compiler output masks, or simply tweak the editor settings.

It is strongly advised that no changes are made to the standard templates, as later
releases of Programmer Studio are likely to replace many of these files with more up-
to-date versions.

For those users wishing to create or alter the standard templates, Programmer Studio
provides User Code Editor Templates. These are identical to the standard template,
with the exception that they are stored in an alternative location so there is no chance
of losing the files.

Note All Code Editor Template names must be unique. Programmer Studio will
generate an error when attempting to use the same template name more than
once.

18 Chapter Four

To create a new template

1 From the Tools menu, select Templates

2 Click New

 Or

From the Available Templates list, select the existing template that most
closely resembles the new template, click Copy

3 In the Name box, enter the name of the new template

4 Click OK

Note By default, the filename of the new template will be created using the
existing template’s name. This can be overridden by editing the contents of
the filename box.

Using Code Editor Templates

It is important to remember that Code Editor Templates provide options for
formatting, in addition to the editor settings like color syntax highlighting. These
formatting options, like intelligent line numbering and strip trailing spaces, are used
when the file is loaded. This makes it important to select the correct template before
loading a file.

The chapters “Working with Files” and “Developing Projects” discuss how to specify
the Code Editor Templates used to edit particular files.

Working with Files 19

5
Working with Files

Programmer Studio attempts to hide many of the complexities of remote, server based
development by presenting a familiar interface to remote, server based file systems.
By providing dialog boxes that appear and operate in the same way as those found in
all Windows applications, any learning curve should be reduced to a minimum.

This chapter describes how to open existing files and create new files. It is assumed
that a project has been created and is currently connected to the server.

Opening Files

Using the File Open dialog box you can either open one, or many files from a single
directory. Once selected, the files are then transferred in order from the server. The
transfer of files can be cancelled at any time by selecting Stop from the View menu,
pressing Ctrl+Break, or pressing the Stop button on the toolbar.

Once you have successfully opened a file, the file name will appear at the top of the
most recently used (MRU) file list. Using the MRU, you can quickly open the file
again by simply selecting the file name from an item in the File menu.

To open a file

1 From the File menu, select Open (CTRL+O).

2 Navigate to and open the folder in which the file is located.

3 In the File name box, enter the name of the file you want to open.

 Or

From the file list, select the file you want to open.

4 Click Open as read only to stop any changes being made to the file.

5 Click Open to load the file.

20 Chapter Five

Using the file name box, you can quickly change the open folder or limit the files
listed by entering and path or wildcard in the File name box and clicking Open
(RETURN).

To Enter

Change the open folder to ‘/usr/dev’ /usr/dev

List only those files beginning ‘de’ de*

List all the files in the open folder *

Change the open folder and list a subset of files /usr/dev/de*

Note
MPE/iX

MPE/iX users can also use FILENAME.GROUP.ACCOUNT to identify file
names, and use the @ symbol for wildcard matches.

Tip When displaying the open file dialog box, Programmer Studio uses the
directory property of the currently selected project folder as the starting
location. This can provide a quick way to open files from a directory
represented by a project folder.

To open a file with a specific Code Editor template

1 From the File menu, select Open (CTRL+O)

2 In the File name box, enter the name of the file you want to open.

3 From the Open As dropdown, select the Code Editor Template to use

4 Click OK

Note The template selected in the file open dialog box will always override the
normal template if the file is included in the current project.

Rules Wizard

Obviously selecting the correct Code Editor Template in the Open dialog box is an
awkward addition to the steps required to open a file. Not only is it easy to select the
wrong template, (unless you know before hand the content of the file), it can easily be
forgotten altogether in the rush to quickly edit a file.

Working with Files 21

The Rules Wizard is intended to make the process of opening files with the correct
Code Editor Template far simpler. By allowing the user to determine which Code
Editor Template should be used, based on specific file properties such as filename,
server type, file location and line numbers, selecting the right template becomes much
easier.

The Rules Wizard displaying the description of a selected rule

The Rules Wizard is invoked after a file has been successfully opened but before the
file has been displayed to the user, this allows the rules to match properties based on
the content of the file as well as the filename.

Rules can be easily added and modified using the Rule Wizard which takes you
through the process of creating a new rule, determining the conditions that must be
met in order to open a specific Code Editor Template.

22 Chapter Five

To add a rule to the Rules Wizard

1 In the Rules Wizard dialog, click New.

2 Determine the Code Editor Template that should be used if every
condition of the new rule is satisfied.

3 Click the check box next to each condition the rule must satisfy.

4 For each condition, enter/select the appropriate values.

5 Finally enter a name for the new rule and click Finish.

The following conditions can be matched by the Rule Wizard. It is important to
remember that every condition specified must be matched for the rule to be satisfied.

Filename

Specify a filename specification to match. The wildcard tokens '*' and '?' can be used
to match sub strings and individual characters respectively. Multiple filename
specifications may be entered using a semi-colon as a delimiter.

File Location/Directory

Enter a file specification to match a file's directory. Wildcard tokens and multiple
specifications may be entered.

Server Name

Specify the domain name or IP address of the server.

Operating System

Select the operating system of the server from a predefined list.

Line Numbers

Specify the line number position and number of digits in the file.

Qedit File Type

Select the Qedit file type of the file.

MPE File Type

Determine the specific MPE file properties that should be matched.

Working with Files 23

The new rule will be added to the end of the list of rules in the Rules Wizard. As each
rule is evaluated in order, it is important to check that the conditions of a previous rule
will not be satisfied before the new rule is checked. Use the rule description to check
the preceding rules in the list.

Note The rules wizard can also be used as the Code Editor Template for project
files and folders. See Chapter 8, Developing Projects, for more information.

Once a new rule has been added, it is important to check that it will work. This can be
easily checked by opening a file that should match the conditions of the new rule. If
the Code Editor Template used is not correct, use the file properties to determine
which rule was used, return to the Rules Wizard and fix the problem.

To determine which rule was satisfied for an open file

1 With the focus in the code editor, select Properties from the View menu.

2 In the Properties dialog box, select the Advanced tab.

Creating New Files

When creating new files, you first have to determine the Code Editor Template. This
determines the format of the new file, whether the file contains line numbers, specific
editing characteristics, and how special characters are interpreted.

In this example, a new file is created using the Normal Code Editor Template. This
has no special format and will use the standard editor settings.

To create a new file

1 From the File menu, select New (CTRL+N).

2 From the list, select Normal, and then click OK.

24 Chapter Five

Note
MPE/iX

Templates also specify specific properties for MPE/iX file types including
record length, Qedit compatibility, file code, type and mode.

Saving Files

Programmer Studio provides all the standard save options found in other Windows
applications, including Save, Save As and Save All.

Once you have successfully saved a file, the file name will appear at the top of the
most recently used (MRU) file list. Using the MRU, you can quickly open the file
again by simply selecting the file name from an item in the File menu.

Working with Files 25

To save a new file

1 From the File menu, select Save (CTRL+S). The Save As dialog opens.

2 Navigate to and open the folder the file is to be saved into.

3 In the File name box, enter the name for the new file.

4 Click Save to save the file and close the dialog box.

When you make changes to a file, an asterisk appears in the title bar after the file’s
name to indicate the file has been modified. This modified tag disappears each time
you save the file, appearing again if the file is modified.

To save a file using its original file name

1 From the File menu, select Save (CTRL+S).

Before replacing the existing file, Programmer Studio first checks to ensure the file
has not been changed since it was last loaded or saved. If a change has been detected,
the user is prompted to overwrite the newer version of the file with details of the
differences in size and last modified times.

The file changed warning when saving a file when a newer version exists.

26 Chapter Five

To save a file using a different file name

1 From the File menu, select Save As. The Save As dialog opens.

2 Navigate to and open the folder the file is to be saved into.

3 In the File name box, enter the name for the new file.

4 Click Save to save the file and close the dialog box.

Note If a file already exists with the file name used, you will be prompted to
replace the file before saving.

Using the Code Editor 27

6
Using the Code Editor

Using Programmer Studio you edit code in the same way that you edit text in most
Windows based word-processing or development programs.

Scrolling the Editable Area and Moving the Insertion Point

To scroll the editable area to part of the code that does not appear in the Code Editor
you use the scroll bars to the right and bottom of the window. The vertical scroll bar
indicates the position of the first visible line in relation to the total number of lines in
the file.

To position the insertion point, you can use either the mouse or the keyboard. Using
the mouse, scroll the editable area using the scroll bars, position the pointer and click
the left mouse button. Using the keyboard to position the insertion point will
automatically scroll the editable area ensuring the new insertion point is always
visible.

To move the insertion point Press

One character to the right RIGHT ARROW

One character to the left LEFT ARROW

To the next line DOWN ARROW

To the previous line UP ARROW

To the next non-visible line PAGE DOWN

To the previous non-visible line PAGE UP

To the start of the file CTRL+HOME

To the end of the file CTRL+END

To the start of the current line HOME

To the end of the current line END

One word to the right CTRL+RIGHT ARROW

One word to the left CTRL+LEFT ARROW

28 Chapter Six

When using the mouse to determine the insertion point, you may find that the actual
point of insertion does not appear where expected. This is because the insertion point
can only appear before existing characters, or at the end of a line. For example,
clicking the mouse to the right of the last character on a line will position the insertion
point after the last character. Clicking the mouse inside a tab character will position
the insertion point before or after the tab character, whichever is nearest.

Note The editable area is always scrolled into view when moving the insertion
point or editing the file.

Tip You can use CTRL+↑ and CTRL+ ↓ to scroll the editable area by one line up
and down respectively without moving the insertion point.

Moving the Insertion Point to a Specific Line

As the insertion point is moved within the editable area, the position of the insertion
point will appear on the status bar. The status bar displays the insertion point relative
to the first line in the file. To scroll a specific line into view, you can use the scroll bar
to the right of the editable area, the keyboard, or the Go to command from the Edit
menu.

Editing Code

Once you have identified the point at which you want to begin editing and have set the
insertion point, you will see a flashing cursor. This is your visual indication of the
actual insertion point. The cursor will move as you insert or delete text, continually
reflecting the insertion point.

The appearance of the cursor represents the current editing mode. A single vertical
line cursor indicates that new text will be inserted at the current insertion point. A
block cursor indicates that new text will overwrite text following the insertion point.

Selecting Text

When editing more than one character, you will need to identify a selection. For
example, to delete a sentence, create a selection, and then delete it. You can create a
selection using either the mouse or the keyboard.

Using the Code Editor 29

Creating a selection

♦ Place the insertion point at the start of the selection, hold the mouse button down,

and drag the insertion point to the end of the selection.

♦ Place the insertion point at the start of the selection, hold down the SHIFT key, and
click the insertion point to the end of the selection.

♦ Place the insertion point at the start of the selection, hold down the SHIFT key, and
use the cursor keys to move the insertion point to the end of the selection.

Tip You can quickly select an entire word by simply double-clicking on the
word. To select all text on the current line press CTRL+L, or click in the left
hand margin.

To remove an existing selection, click anywhere in the editable area, or press one of
the arrow keys.

To extended or restrict an existing selection, move the insertion point using either the
mouse or keyboard while keeping the SHIFT key pressed.

Undoing Mistakes

If you make a mistake in the Code Editor, you can “undo” the last action or command.
For example, if you delete a selection, you can restore it. If you then decide you
wanted to delete the selection after all you can “redo” it.

As you make changes in the Code Editor, your actions are recorded so that you can
“undo” them if required. The number or previous actions that you can “undo”, and
subsequently “redo”, is virtually unlimited based on the amount of available memory.

Moving, Copying and Pasting Text

The following steps show you how to move, copy, and paste text in Programmer
Studio using the clipboard. The clipboard is a shared resource that all Windows
applications can use to provide a temporary location for storing data to be moved or
copied. This allows text to be copied from one window to another, either between
Code Editor windows or between Programmer Studio and Notepad.

The instructions below also include the short-cut key combination for the appropriate
commands. These appear in brackets after the menu item reference.

30 Chapter Six

To move or copy text using the Clipboard

1 Select the text you want to move or copy.

2 To move the text, select Cut from the Edit menu (CTRL+X)

 Or

To copy the text, select Copy from the Edit menu (CTRL+C)

3 Position the insertion point where you wish to insert the text.

4 From the Edit menu, select Paste (CTRL+V).

Note The Paste operation will automatically delete any existing selection before
adding the contents of the clipboard.

Note Programmer Studio also supports legacy Windows editor keystrokes
SHIFT+DELETE, CTRL+INSERT, SHIFT+INSERT for cut, copy and paste
respectively.

Drag-and-Drop Editing

Drag-and-drop editing is the easiest way to move or copy a limited selection a short
distance. However, when moving or copying a large amount of text, Cut, Copy, and
Paste, are often more convenient.

To move or copy text using the mouse

1 Select the text you want to move or copy.

2 Point to the selected text, and then hold down the left mouse button.

3 Keeping the mouse button down, drag the insertion point to the new
location.

4 To move the text, release the mouse button.

 Or

To copy the text, hold down CTRL while releasing the mouse button.

Using the Code Editor 31

Visual Elements

Programmer Studio provides a number of visual interface elements to increase
programmer productivity, from the text ruler to selected range tool tips.

Text Ruler

The text ruler provides a visual indication of the position of characters relative to the
first character of each line. It is important to remember that the toolbar presents only
an indication of character position; it does not reflect tab stops.

To display the text ruler

From the View menu, select Ruler

Virtual Line Numbers

As the insertion point is moved in the Code Editor, the status bar displays the number
of current line and character position. In some cases however, it can be useful to have
the number of each line displayed in the Code Editor.

Virtual line numbers can be displayed to the left of each line displayed in the Code
Editor. These start at one and incremented to the end of the file and are identical to the
line number appearing in the status bar.

To display virtual line numbers

From the View menu, select Line Numbers, Virtual.

Note Remember not to confuse virtual line numbers with the physical line
numbers appearing in a file, especially if the selected Code Editor Template
supports files with line numbers such as COBOL.

32 Chapter Six

Selection Margin

The selection margin is displayed to the left of the editable area in the Code Editor
providing an easy way to highlight complete lines and view the modified state of each
line. The selection margin markers display the modified state of each line, modified,
new or newly modified line.

Margin Marker Indicates

 An existing line has been modified

 A new line has been added

 A new line has added and modified

The selection margin can be used to highlight a complete line of text by simply
clicking in the margin using the left mouse button. To select multiple lines, click in the
selection margin and drag the mouse pointer up or down while keeping the left mouse
button down. Release the left mouse button to finish the selection.

To hide or show the selection margin

1 From the Tools menu, select Options

2 Select the Editor tab

3 Click Selection margin

Bracket and Brace Matching

Bracket and brace matching is especially useful for programming languages that use
either brackets ' (' and ') ' or curly braces ' { ' and ' } ' to organize code blocks and
expressions. Often typing compound expressions and code blocks can leave the
programmer in doubt as to which end bracket or brace corresponds with which starting
bracket or brace. Consider the following situation:

if ((a = 1) and (((b = a) or (b > 1)) and (c = 2))

Bracket and brace matching allows the programmer to quickly determine if the
expression is complete, by highlighting the corresponding open bracket for each close
bracket typed. For example, typing a closing bracket at the end of the example
expression;

Using the Code Editor 33

highlights the corresponding opening bracket. See the example below.

To enable or disable the bracket and brace matching

1 From the Tools menu, select Options

2 Select the Editor tab

3 Click Enable bracket and brace highlight

Selected Range Tool-Tips

For those situations when it is important to determine the range of characters in the
current selection, selected range tool-tips can be displayed. The range tool-tips display
the actual character position of the first, last and number of inclusive characters in the
current selection.

Selected range tool-tips displayed for a single line selection

Note Selected range tool-tips are only displayed for single line selections. Also,
tab characters included in a selected range are only counted as single
characters.

34 Chapter Six

To enable or disable selected range tool-tips

1 From the Tools menu, select Options

2 Select the Editor tab

3 Click Selected range ToolTips

Finding and Replacing Text

To find and change the text in your code, use the Find and Replace commands on the
Edit menu. For example, to change the name of a variable referenced in your code,
use Find to locate the text you specify and Replace to change instances of the text.

The find and replace dialog boxes are both modeless, this allows the user to switch
back to the code editor without closing the find window. Selecting Find or Replace
when the dialog box is visible will simply active the window placing the input focus in
the relevant field.

Finding Text

From the Edit menu, select Find (CTRL+F). In the Find what box type the text you wish
to find. Then choose Find Next to begin the search.

When Programmer Studio finds the text, you have the following options: -

♦ Choose Find Next to highlight the next occurrence of the find text.

♦ Choose Find All to list every occurrence of the find text in Find output window.

♦ Choose Mark All to add a bookmark to each line that contains the find text.

Using the Code Editor 35

Using the Find dialog box to find the text "long".

To cancel the search and return the input focus to the code editor, press Cancel. To
continue the search after having closed the Find dialog, press F3. This will use the
previous find text criteria, search options and direction specified.

Tip The find and replace dialog boxes use the currently selected text in the code
editor as the initial criteria in the Find what box. If there is no selection, the
word at the current insertion point is used. Clicking the down arrow to the
right of the Find what box displays the previous criteria used.

Replacing Text

From the Edit menu, select Replace (CTRL+H). In the Find what box, type the text you
wish to find and the replacement text in the Replace with box. Then choose Find Next
to begin the search.

When Programmer Studio finds the text, you have the following options: -

♦ Choose Find Next to highlight the next occurrence of the find text.

♦ Choose Replace to replace the text and find the next occurrence.

♦ Choose Replace All to find and replace every occurrence of the text without
prompting the user.

36 Chapter Six

Using the Replace dialog box to replace the test "long" with "unsigned long".

The replace dialog box provides the additional option to replace the text specified
within the confines of the current selection, this option is only available if a selection
has been created in the code editor.

To undo the effects of the last replacement, select Undo from the Edit menu. This will
reverse the last change made. If you confirmed each replacement individually, you
will need to undo each change separately.

Search Options

By default, Programmer Studio searches the entire file in the code editor for text
matching the criteria specified. The search options can be used to alter how text is
matched

To Select

Find whole words and not sub-strings inside
words. For example, help and not helping.

Match whole word only

Find words matching the case of the text in the
Find what box. For example help and not HELP.

Match case

Continue the search after reaching the start or
end of the file (depending upon the direction) to
search the entire file.

Wrap search direction

Using the Code Editor 37

Advanced Search Criteria

Programmer Studio provides a more flexible approach to matching text using regular
expressions. Regular expressions can be very simple, such as f?r, which finds any
three letter word beginning with f and ending in r. Or it can be very complex, with
several parts described in parentheses that are individually evaluated.

By combining small expressions to form larger complex (compound) expressions, you
can create very specific search criteria. For example, you can find any word beginning
with "pre" which ends with "ed", such as "pretended" or "presented".

Regular expressions can be used to search for text that can vary between occurrences.
For example, searching for a particular assignment operation which has been typed
with varying amounts of white space, is now possible using regular expressions.

To find text using regular expressions

1 From the Edit menu, select Find (CTRL+F)

2 Select the Regular Expression check box

3 In the Find what box, type the search criteria

You can use the right arrow to the right of the Find what box to select
from a list of standard regular expressions and predefined compound
regular expressions

4 Choose the Find Next button

Using the find dialog to find any legal variable names in C

38 Chapter Six

Using Regular Expressions

The following section describes the different regular expressions which can be used in
the Find what box for the find and replace dialog box.

Simple Expressions

In its most simple form, a simple expression consists of one or more characters. For
example,

a
if
move
while

A sequence of characters is called a character string. This matches the sequence of
characters specified to complete the pattern.

Character Classes

A character class is a number of characters enclosed in square brackets. For example,

[0123456789]

matches any one of the characters inside the brackets. This character class matches any
single digit. This digit character class can be written more simply as:

[0-9]

The '-' indicates a range of characters between the '0' and '9'. The order in which a
range of characters is specified is related to the order in which characters appear in the
ASCII character set. A complete list of the 7-bit ASCII characters can be found in
Appendix B.

Another example of a range within a character class is,

[a-z]

this would match any lower case character, while

[a-zA-Z]

would match any uppercase or lowercase character.

If the first character after the '[' is a circumflex (^), the character class matches all
characters which are not listed in the brackets. For example,

Using the Code Editor 39

[^0-9]

would match all characters that are not digits.

Note A '-' or ']' as the first character after the '[' is interpreted literally to allow the
user to include dashes and square brackets in character classes.

Special Character Classes

The period (.) character class matches any single character except a new line. For
example,

f.r

would match any three character string starting with an 'f' and ending with a 'r'.

Repeating Patterns

Any regular expression, either simple or compound, followed by an asterisk, indicates
that zero or more repetitions of the regular expression will be matched. For example,

[0-9][0-9]*

matches a pattern of characters starting with a digit, followed by zero or more
additional digits. This is a typical example of a regular expression used to match a
pattern of characters representing a typical number.

[A-Z][a-z]*

The regular expression above matches an uppercase letter followed by zero or more
lowercase letters.

The '+' character can be used in a similar manner to '*' to match one or more
repetitions of the preceding regular expression. For example,

[0-9]+

matches a sequence of one or more digits.

40 Chapter Six

Which is the same as the previous example,

[0-9][0-9]*

Using the brace brackets you can specify a specific number or repetitions for a regular
expression. For example,

[0-9]{3}

matches a sequence of three digits. A range of repetitions can be defined within the
brace brackets. For example,

[0-9]{1,10}

matches a sequence of 1 to 10 digits.

Optional Expressions

A regular expression immediately followed by a question mark (?) makes the
expression optional. For example

A?

matches 0 or 1 occurrence of the letter 'A'.

Alternatives

Two regular expressions, simple or compound, may be separated by a vertical bar (|)
to produce an expression that matches either one of the expressions. For example,

[a-z]|[A-Z]

matches either a single lowercase or uppercase letter.

Grouping

Using parentheses, expressions may be grouped together. For example,

(top|middle|bottom)

matches any of the strings top, middle or bottom. Grouping is especially useful when
constructing compound regular expressions which use one or more of the expressions
described above. For example,

([A-Za-z_][A-Za-z0-9_]*)|(-?+?[0-9])

matches any C style identifier or any integer constant.

Using the Code Editor 41

Predefined Compound Expressions

Programmer Studio provides a number of predefined compound regular expressions
for matching common string patterns. These greatly simplify the task of building a
compound regular expression.

To Match Use

An alphanumeric character \:a

An alphabetic character \:c

A control character \:n

A numeric character \:d

A graphical character \:g

A lowercase character \:l

An uppercase character \:u

A printable character \:p

White-space character \:b

Hexadecimal character \:h

Any string enclosed in quotes, such as ‘sample’ or “sample” \:q

Any string enclosed in single quotes, such as ‘sample’ \:QS

Any string enclosed in double quotes, such as "sample" \:QD

Formatting Text

Programming Studio version 2.0 introduced new formatting capabilities for the Code
Editor, included sorting, changing case and inserting text. The following sections
describe how each of these new features can be used to greatly improve programmer
productivity.

Change Case

A popular requirement among programmers is the need to change the case of text
without re-typing. The Change Case dialog box provides 5 different options for
changing the case of the currently selected text;

42 Chapter Six

Sentence Case

Converts all characters to lowercase, capitalizing the first character succeeding a
period. When the selection does not include a period, the first character in the selection
is capitalized.

Lowercase

Converts all characters to lowercase.

Uppercase

Converts all characters to uppercase.

Title Case

Converts all characters to lowercase, capitalizing the first character of each word.

Toggle Case

Reverses the case of the existing characters, converting all lowercase characters to
uppercase, and all uppercase characters to lowercase.

To change the case of text in the Code Editor

1 Select the text you wish to change the case of

2 From the Format menu, select Change Case

3 Select the case style to use

4 Click OK

Changing the case of select text to Sentence case

Using the Code Editor 43

Change Columns

Change columns provides the functionality to insert into or delete from a selection on
a column-by-column basis. Using change columns, inserting characters at a specified
position, or deleting a range of columns from a fixed format file, can be achieved very
quickly.

Change columns is especially useful when working with programming languages
which enforce very strict rules on the formatting of source code. In COBOL for
example, change columns can be used to quickly modify column 7 (indicator field) to
insert a special character for comments or debugging.

To change columns in each line

1 If you want to change a subset of lines, first select these lines.

2 From the Format menu, select Change Columns

3 Click Selection or Whole file to determine the range of line effected

4 In the "Starting at" field, enter the starting column

5 In the "Range" field, enter the number of columns to be changed. To
insert text, enter 0.

6 In the "Insert text" field, specify the contents of the columns being
changed. To delete the range of columns, leave this field empty.

7 Click OK

44 Chapter Six

Changing column 7 in the selected range of lines to an asterisk

Tip The Starting at field uses the current cursor position as it's initial value.

Note If a line within the specified range is shorter than the starting column, the
line will be padded with the spaces up to the specified column.

Deleting a range of text will shift the text in each line to the left. To clear the columns
specified, enter the correct number of spaces in the Insert text field. Using change
columns, a longer line of text than the size of the range of columns being changed can
be specified, so care must be taken when making sweeping changes to a file.

Convert Tabs to Spaces

Although the Code Editor Template provide options to insert tabs as spaces while
typing, Programmer Studio also provides the option to convert the tabs in the entire
file or a selected range into spaces.

To convert tabs to spaces

1 To convert a block of text, first select the text to convert

2 From the Format menu, select Convert Tabs to Spaces

Using the Code Editor 45

Comment and Uncomment

Comment and uncomment use the comment styles defined by the current Code Editor
Template to allow the user to quickly comment or uncomment a selected block of text.

Commenting a block of text involves adding the comment identifiers into the selected
text. If the Code Editor Template defines both single and multi-line comments the user
is prompted to choose which style should be used.

To comment text in the Code Editor

1 Select the text into which you wish to insert comments

2 From the Format menu, select Comment

Selecting the comment style when commenting a block of text

Note A space is inserted after each single-line comment to ensure that an
unrecognized keyword is not created from concatenated words. For
example, inserting the keyword COMMENT at the start of the line BEGIN
PROGRAM would create an unknown keyword COMMENTBEGIN unless
an additional space is inserted after COMMENT.

Uncomment will delete either multi-line or single-line comments from the currently
selected string based on the first comment type encountered from the beginning of the
selection. If a space is encountered immediately after the comment keyword, this will
also be deleted. Please see the note above for more information.

To uncomment text in the Code Editor

1 Select the text from which you wish to remove comments

2 From the Format menu, select Uncomment

46 Chapter Six

Advanced Features

In addition to the standard editing features described above, Programmer Studio
includes a number of more advanced features designed to increase productivity and
reduce development time.

Bookmarks

Bookmarks provide the ideal way to mark specific lines in a file when moving around,
providing the ability to jump to the next or previous bookmark, or cycle through the
bookmarks.

Bookmarks have a toggle state. This means they can be added and removed in exactly
the same way. For example, if a line has an existing bookmark toggling the bookmark
will remove it, otherwise one will be added.

The following commands are available using the Edit, Bookmarks menu: -

To Select

Toggle (add or remove) a bookmark Toggle Bookmark (CTRL+F2)

Move to the next bookmark Next Bookmark (F2)

Move to the previous bookmark Previous Bookmark (SHIFT+F2)

Clear all bookmarks in the file Clear All Bookmarks (CTRL+SHIFT+F2)

Note The direction in which the insertion point is moved when selecting the next
or previous bookmark is reversed when reaching the beginning or end of the
file.

In addition to manually setting bookmarks, Programmer Studio allows bookmarks to
be set on the results of a find. This can be particularly useful when determining what
to include in partial find and replace operations. Please refer to Finding and Replacing
Text in the previous section for more information.

Using the Code Editor 47

Named Bookmarks

In addition to normal bookmarks, named bookmarks can be used to mark specific lines
in any number of files. When selected, these bookmarks select the appropriate line in
the file activating the Code Editor for the file if necessary. If the file in which a named
bookmark is located is not currently loaded, Programmer Studio will automatically
load the file and select the appropriate line.

Selecting a named bookmark to highlight in the Code Editor

Unlike standard bookmarks, lines with named bookmarks are not highlighted in the
Code Editor.

To create a named bookmark

1 Highlight the line to be bookmarked in the Code Editor

2 From the Edit menu, select Bookmarks, Named Bookmarks (ALT+F2)

3 Enter the name of the new bookmark

4 Click Add to save the named bookmark

Named bookmarks exist only as long as the current project is open. Closing the current
project by exiting Programmer Studio, using the Close Project menu item or opening a
new project, will delete all named bookmarks.

48 Chapter Six

To move to or delete a named bookmark

1 From the Edit menu, select Bookmarks, Named Bookmarks (ALT+F2)

2 Select the named bookmark from the list

3 Click Go To to move to the highlighted bookmark

- Or -

Click Delete to remove the highlighted bookmark

Note The commands to move to the next and previous bookmarks, toggle
bookmark and clear all bookmarks do not affect Named Bookmarks.

Moving to Specific Position in the Code Editor

An alternative to using bookmarks or scrolling the editable area to find a line, is to use
the “Go to” command. Go to provides a number of options for jumping to a particular
line in the file. This line can be identified by virtual or physical line number,
bookmark or Code Navigator item.

To go to a specific line

From the View menu, select Go To, Line (CTRL+G)

Using the Go To dialog box with the default criteria

Depending upon the selection in the criteria list to the left, the drop down list to right
will change to reflect the options available. Clicking Go To will place the insertion
point on the desired line, highlight the line, and move the editable area to ensure the
line is visible.

Using the Code Editor 49

Normally the Go To dialog box would close after clicking the Go To button. If you
wish to keep the dialog box open after returning the input focus to the Code Editor,
click the pin button in the top left-hand corner.

Tip
MPE/iX

MPE/iX style line numbers can also be entered in the line number field. For
example, 3.2 would go to line 32000.

Open File Under Cursor

It is not uncommon to find that the files loaded into the Code Editor include references
to other files, either in the form of comments, quoted strings, or compiler specific
inclusion statements.

Programmer Studio makes it possible to quickly open these files simply by creating a
selection and clicking the right mouse button.

To open a file from text string

1 Create a selection that includes all the available components of the
filename.

2 Right-click inside the selection

3 From the context menu, select Open File…

Programmer Studio uses the current file’s location, the login directory, and any server
specific dependencies to create a fully qualified file name. If a fully qualified file
name can be determined, Programmer Studio will then attempt to open the file.

Note Programmer Studio will use the same case used in the Code Editor to
identify the file name.

File Properties

Once you have opened your file in the Code Editor, Programmer Studio can provide
more information on the properties of the specific file, including file size, tab stop size,
Code Editor Templates, file format, etc..

50 Chapter Six

Viewing the properties of a standard ANSI C source file

Changing Tab Size

Tab stops provide the ideal way to format code to visibly illustrate structure and form.
The size of tab stops is set in the Programmer Studio options, however once a file has
been opened this can be changed.

To open change the tab stop size in the current file

1 Make sure the insertion point is visible in the current file

2 From the View menu, select Properties (ALT+ENTER)

3 In the Tab Size box enter the new tab stop size

4 Press return

Changing the Format of a File

The format of a file describes the line delimiter used in the current file. When
transferring files between the server and PC, it is important to check the format of the
file, otherwise other editors may have problems displaying the file.

The following formats are supported

Format Line Delimiter Hex

Unix Line Feed 0A

DOS Carriage Return + Line Feed 0D + 0A

Mac Carriage Return 0D

Using the Code Editor 51

Changing the Code Editor Template

Code Editor Templates are beyond the scope of this chapter. However for those users
familiar with using Templates, the properties dialog provides an option to change the
template for the current file.

To change the Code Editor Template in the current file

1 Make sure the insertion point is visible in the current file

2 From the View menu, select Properties (ALT+ENTER)

3 From the Template box drop down list, select the Code Editor Template
to use

4 Press return

Note Changing the Code Editor Template will only change the editor settings,
color syntax highlighting and Code Navigator support. It will not affect the
existing file’s format or any line numbering support.

MPE/iX and Robelle Qedit Files

When editing files on MPE/iX or native Robelle Qedit files, the properties dialog will
add new tabs to allow format specific properties to be set.

Viewing the properties of a Robelle Qedit file

52 Chapter Six

Printing

This section describes the printing options available from the Code Editor.

Note Programmer Studio does not print any color syntax highlighting, or print any
bookmarks or jump locations displayed in the Code Editor.

To print the current file

1 Make sure the insertion point is visible in the current file and there is no
selection

2 From the File menu, select Print

3 Determine the number of copies to be printed

4 Click OK

In addition to printing the entire file, Programmer Studio allows a smaller range of text
to be printed. This can be especially useful for very large files containing thousands of
lines.

To print a range of text

1 Select the text you want to print

2 From the File menu, select Print

3 Determine the number of copies to be printed

4 Click OK

Additional Print Options

Programmer Studio provides a number of formatting options when printing from the
Code Editor, providing control over the printer font, header, footer etc.

To display the additional print options

From the File menu, select Page Set-up

Using the Code Editor 53

Page set-up dialog box displaying default settings

The Code Navigator 55

7
The Code Navigator

The Code Navigator is the key to much of the enhanced productivity enjoyed by
Programmer Studio users. By taking a source file and compiling a virtual ‘map’ of the
contents, Programmer Studio can offer many new options for navigating your code.

This chapter makes references to the procedural elements of a program as functions.
Whilst this terminology may not be correct for many other programming languages, it
is assumed the reader will make the necessary assumptions.

Introducing the Code Navigator

The Code Navigator is effectively an enhancement to the Code Editor. Once a file is
loaded, the selected Code Navigator parses the content of the file creating the virtual
‘map’ and updating the specific visual components. This virtual ‘map’ is subsequently
updated every time the file is saved.

Code Navigator support is provided on a per-programming language basis by external
plug-in modules called Programmer Studio Extensions (PSX’s). These PSX’s are
designed and written specifically for each language to create the ‘map’ of the
components of a source file. The various Code Navigator tools use this ‘map’.

Currently Programmer Studio supports 12 languages. This will grow with later
releases dependant upon user request. Any requests for Code Navigator support for
additional programming languages should be made to Whisper Technology Technical
Support.

Visual Components

The Code Navigator consists of three Programmer Studio components; the Structure
view provides a collapsible tree view of the elements of your program; the Navigator
Toolbar displays the function currently being edited and easy access to other functions,
and finally, Navigator Tips can provide definitions of known functions while editing.

56 Chapter Seven

Structure View

Within the Code Editor, the structure view provides the complete ‘map’ created by the
Code Navigator in the form of a collapsible tree view. This tree view can have up to
four root level entries, from which the components of a file are organized in
alphabetically sorted order.

Code Navigator structure view of an ANSI C file

Double-clicking on an entry in the tree view will automatically switch to the Code
Editor, highlighting the line on which the entry appears.

Tip Press CTRL+W to quickly switch between the Code Editor and Structure
views.

For those programming languages supporting function parameters, Programmer Studio
provides an option to display the parameter lists in addition to the function names
within the structure view. This is illustrated in the screen shot above.

The Code Navigator 57

To view function parameter lists in the structure view

1 From the Tools menu, select Options

2 Select the Workspace tab

3 Click Display function parameter lists in Code Navigator tree

4 Click OK

5 From the View menu, select Refresh (F5)

Navigator Toolbar

The Code Navigator toolbar uses the contents of the virtual ‘map’ to create a drop-
down list of all the functions and sections identified in the file, which are presented in
a structured and alphabetical order.

On selecting an item from the drop-down list, the Code Editor will highlight the line
on which the function exists and ensure the line is visible. Scrolling through the list,
either using the keyboard or mouse, will highlight each function as it is selected. To
cancel the selection, press escape to return to the original insertion point.

Code Navigator Toolbar view of an ANSI C file

As the insertion point in the Code Editor moves, the Navigator toolbar is updated to
reflect the name of the function or section appearing in the virtual ‘map’ at or before
the current line. It is important to remember that the name appearing in the toolbar is
based on the last time the Code Navigator parsed the file, either on a save or refresh.
Any functions added or removed are not immediately updated.

In addition to the drop-down list, the navigator toolbar also includes buttons to refresh
the Code Navigator’s virtual ‘map’ without saving the file, and to jump to the next or
previous function in the file.

Tip Press CTRL+Q to quickly activate and drop-down the Code Navigator
function list.

58 Chapter Seven

Navigator Tips

In the majority of programming languages, functions definitions can include parameter
lists, a series of variables passed into the function when it is called. If the parameter
definition is included as part of the function declaration, the Code Navigator can
display this information when the Code Editor detects the user is entering a call to the
function.

Code Navigator Tips view of an ANSI C function

To view function parameter lists in Navigator Tips

1 From the Tools menu, select Options

2 Select the Workspace tab

3 Click Enable Code Navigator tips when editing

4 Click OK

5 From the View menu, select Refresh (F5)

Note Support for function parameter lists is currently provided for Basic, C, C++,
Java and Pascal.

Developing Projects 59

8
Developing Projects

The concept of project based program development is central to Programmer Studio's
visual development environment. Each project determines how to connect to the
remote server, the files, and commands to compile the program.

Understanding Projects

Projects are more than simply a collection of filenames. The project also stores
associated file information, read-only attributes and editing preferences in addition to
the commands you will use to compile these files.

Project Folders

Project folders allow the files included in a project to be organized into a hierarchy.
This hierarchy can have an unlimited number of levels allowing the user to determine
exactly how a project should be organized.

The structure of a project can be easily adapted to illustrate an existing file system
structure or simply to logically organize files. When used together, these two
organizational approaches provide the most powerful way to structure your project.

The Project Window

The hierarchy of the current project is presented in the project window as a collapsible
tree view. This view can be expanded easily to view all the files in a project, or left
partially collapsed to identify a specific group of files.

Project Settings

The project settings dialog provides access to the individual properties of the project,
files, and folders in your project. Within the project settings you can set properties on
each item or as a group.

60 Chapter Eight

To view the settings for a project item

1 From the project window, select the file, folder or root item

2 From the Project menu, select Settings (ALT+F7)

 Or

Right click on the selected tree item and select Properties

The Project Settings dialog displaying the properties of the file cdemo2.c

The settings dialog is divided into two parts. A structured view of your project
appears on the left and the properties for the selected item on the right. Depending
upon the selection, the tabs to the right will change.

Note
Unlike the structure displayed in the main project window, files and folders
cannot be deleted or moved in the Settings dialog.

A project can consist of three types of components; the project itself, project folders,
and files. Each component has its own selection of properties and in some cases these
are shared between items of different types.

Developing Projects 61

Tip Using the Shift and Ctrl keys you can extend a selection to include a number
of components. When this selection includes components of different types
only those shared by the selection are displayed.

Use the Select drop down menu to extend the current tree view selection.

Adding, Moving and Removing Files and Folders

When adding files to a project it is important to remember that you are simply adding
a reference to the file, a not a copy of the file itself. Therefore any changes made to
the file will be reflected in any other projects that include the file.

It is important to understand the structure of a Programmer Studio project before you
begin adding files, or indeed creating new project folders. Each level in the project,
including the project root, has a Directory or location property. This property is used
to determine the location of subordinate files, and the working directory for compiling
your files.

Adding Files and Folders to the Project

Programmer Studio allows files and folders to be added at any level in the project
hierarchy, from the root upwards. The only limitation is that new items must be added
either to the project root or a project folder. Items cannot be added to the project’s
hierarchy below an existing file.

To add a file to the project

1 From the project window, select the item from the tree to which the new
file is to be added

2 From the Project menu, select Add Files to Folder

 Or

Right click on the selected tree item and select Add Files to Folder

3 Using the file dialog box, select the file to add to the project

4 Click OK

Tip To add multiple files to the project, use the SHIFT and CTRL keys to extend
the selection in the file dialog box.

62 Chapter Eight

To add a folder to the project

1 From the project window, select the folder or project root to which the
new folder is to be created

2 From the Project menu, select New Folder

 Or

Right click on the selected tree item and select New Folder

3 In the name box, enter the name of the new folder

4 If the new folder represents a directory/location, enter a relative
directory path in the directory box.

5 Click OK

The relative directory property for new folders is discussed in greater detail in the
section titled Structuring your Project.

Moving and Removing Folders and Files

As each program grows, so will the requirements placed on the project. New files may
be added and old ones deleted. New project folders may be added and the existing
structure altered to fit. To make these changes as simple as possible, Programmer
Studio provides the ability to delete items from the project and move existing files and
folders within the hierarchy.

It is not possible to use Undo to reverse any changes made by moving or deleting
items from the project.

To move a file or folder

1 From the project window, point to the file or folder to move, and then
hold down the left mouse button.

2 Keeping the mouse button down, drag the pointer to the new location.

3 To move the file or folder, release the mouse button.

Developing Projects 63

While moving the mouse, the pointer is updated to reflect the suitability of the item
under the cursor as a destination for the move. Positioning the mouse pointer at the
top and bottom of the tree view will scroll the contents of the window in the required
direction.

Note
When moving files and folders, it is important to remember that the
properties of the items selected are not affected. If a file or folder uses
relative file locations, these may have been altered.

To delete an existing file or folder

1 From the project window, select the file or folder to delete

2 Press DELETE

 Or

Right click on the selected tree item and select Remove

Note Deleting a project folder will delete all files and folders below this entry.

Structuring Your Project

A well organized project is the key to productive development using Programmer
Studio. The initial set-up of compile and build options and the easy identification of
the many components of a complex program save many hours development time.

Project Hierarchy

A Programmer Studio project consists of a collection of folders and files that exist in a
simple hierarchy. A key advantage of a hierarchical project model is the ability to set
properties for a folder which will then be inherited by the folders and files which
appear as descendants in the hierarchy.

The following example illustrates how a Code Editor Template may be specified at a
project level, inherited by the files and folders in the project, and then overridden at
either level.

64 Chapter Eight

 Code Editor Template Resolves As

 Project Ansi – C

 test.c Ansi – C

 source

 main.c Ansi – C

 client Microsoft C/C++

 win.c Microsoft C/C++

 include

 oradb.h Oracle ProC Oracle ProC

Although the property inheritance model requires some careful planning, the resulting
project should require little modification when adding subsequent files and folders.

Relative vs. Absolute File Locations

Programmer Studio can identify files using either relative or absolute file names. An
absolute filename takes the format of a fully qualified location, starting with a ‘/’ to
indicate a location from the root directory. Relative file names do not have a fully
qualified location. Instead Programmer Studio uses the location property of project
folders appearing above the file in the project hierarchy to determine an absolute
location.

Take for example, a project containing these two files:

♦ /usr/dev/a
♦ /usr/dev/b

These files can be identified in a simple project in one of two ways, either as their
absolute file name or relative to the project’s directory. The two examples are
illustrated below:

Developing Projects 65

 Location Resolves As

 Project

 a /usr/dev/a /usr/dev/a

 b /usr/dev/b /usr/dev/b

 Location Resolves As

 Project /usr/dev

 a a /usr/dev/a

 b b /usr/dev/b

From this simple example, the advantages of using relative file names and folder
directories to identify file locations is obvious. Not simply in reducing project
maintenance, but also providing an easy way to point the project at an alternative set
of files in a different location as below.

 Location Resolves As

 Project /usr/copy

 a a /usr/copy/a

 b b /usr/copy/b

Note When adding files to the project or a project folder, Programmer Studio will
attempt to resolve the location of the files added so that they are relative to
the folder to which they are added.

66 Chapter Eight

Using Project Folders

To best illustrate the benefits of structuring a project we will start with a simple
example; a project that contains 3 files and no project folders. In this example, the
project was created with the Directory property of the project set to /dev, into which
the following files were added:-

♦ /dev/test.c
♦ /dev/src/main.c
♦ /include/test.h

When adding files to a project, whether to the root or project folder, Programmer
Studio attempts to store the files as relative whenever possible. In this example files
added to the project which include /dev (project Directory) as the start of their location
have this removed.

 Location Resolves As

 Project /dev /dev

 test.c test.c /dev/test.c

 main.c src/main.c /dev/src/main.c

 test.h /include/test.h /include/test.h

By storing the names of the project files as relative, Programmer Studio allows the
user to change the location of the files. As long as the structure is moved intact, the
project will only require the Directory property of the project to be changed.

Note The Resolved Location field in project settings dialog displays how
Programmer Studio will interpret relative file and directory names.

In order to reflect the structure of the file existing system, a new folder source is added
to the project. The Directory property of the new folder is set to src and the file
/dev/src/main.c is then moved into the new folder as main.c. Using the name
resolution rules, the location of main.c is now determined by traversing the tree and
building a path, for example:

Developing Projects 67

 Location Resolves As

 Project /dev /dev

 source src /dev/src

 main.c main.c /dev/src/main.c

The resulting project looks like this:

 Location Resolves As

 Project /dev /dev

 test.c test.c /dev/test.c

 source src /dev/src

 main.c main.c /dev/src/main.c

 test.h /include/test.h /include/test.h

To complete this example we will create a folder for test.h. As this is the only project
file from an alternate location this is really not necessary, however it will result it a
much tidier project. The Directory property of the new folder will be absolute, as the
location starts with a slash, and the parent project Directory will be ignored.

 Location Resolves As

 Project /dev /dev

 test.c test.c /dev/test.c

 source src /dev/src

 main.c main.c /dev/src/main.c

 external /include /include

 test.h test.h /include/test.h

68 Chapter Eight

Note In these examples we have purposely limited the project folder Directory to
a single server directory for simplification. It is possible to use any
directory that complies with standard Unix path resolution rules.

The examples given here illustrate how to structure a project to represent the structure
of the existing file system. This results in a well-organized project that is both simple
and portable.

Compiling Your Files 69

9
Compiling Your Files

Programmer Studio provides no specific compiler support for software developers.
Instead it offers access to server-based compilers by executing a command on the
remote server. This imposes the limitation that the command must not require further
user input to reach completion.

Once executed, Programmer Studio traps the output from the specified command,
displaying the results in the output window in real-time. You can cancel the command
at any time by selecting Stop from the View menu.

Compile and Build Commands

Programmer Studio provides a two-step model for compiling project files into the
finished program; compiling individual files and then building a program file from the
compiled files.

This model is provided purely as a guide for developers. It can be readily applied to
programming languages that compile, and then link a number of individual source files
into a single executable program file, like C and C++. For other languages however,
this can be easily ignored.

Compile and build commands are specified as project properties. For a file to be
compiled or built, it must be included in the current project. Each file in a project can
have its own compile command and each project folder its own build command.

Compiling a File

Before a file can be compiled, the project settings for the file need to specify the
command to be executed on the server. Programmer Studio imposes no restriction on
what command is executed, as it is the responsibility of the developer to ensure the
command is valid and can run without further user intervention.

70 Chapter Nine

To set the compile command for a project file

1 From the project tree view, select the file

2 From the Project menu, select Settings (ALT+F7)

3 Select the Compile tab

4 Click Override folder compile command

5 In the Compile command box, enter the complete command that is to be
executed on the remote server to compile this file.

6 Click OK

Note Remember to include the filename and location in the compile command.

Once a compile command has been assigned to a project file there are two ways to
compile the file; either using the file in the project tree or, more simply, choosing
compile if the file is open and the insertion point is visible in the Code Editor.

To compile a project file

1 From the project tree view, select the file

2 From the Project menu, select Compile (CTRL+F7)

 Or

Right click on the selected tree item and select Compile

To compile the currently open file

1 Make sure the insertion point is visible in the Code Editor

2 From the Project menu, select Compile (CTRL+F7)

By default, Programmer Studio will automatically save all the files that have been
changed before compiling. This is done to ensure any errors or warnings generated by
the compiler can be correctly identified in the Code Editor.

Compiling Your Files 71

Command Variables

To prevent typing mistakes and save time entering repetitive compile commands,
variables can be used in the command text that is evaluated prior to execution.
Variables can be used to identify the name of a file, a fully qualified filename, Code
Editor Template, etc.

The following table lists the available compile command variables and gives the
output for the file /usr/dev/sample.pas.

For Enter Sample

File path $(FilePath) /usr/dev/sample.pas

File name $(FileName) sample.pas

File directory $(FileDir) /usr/dev

File extension $(FileExt) pas

File base name $(FileBase) sample

Code Editor Template $(Template) Ansi – Pascal

Project name $(ProjectName) Sample Project

In addition to the standard compile command variables, MPE/iX compatible file
names and locations are also supported. The following table gives the output for
/SYS/PUB/SAMPLE.

For Enter Sample

MPE/iX file path $(MpeFilePath) SAMPLE.PUB.SYS

MPE/iX file location $(MpeFileDir) PUB.SYS

Tip Clicking the arrow to the right of the Compile command box in the project
settings dialog displays a popup menu containing command variables to
choose from.

Folder Compile Commands

Even using compile command variables, entering a compile command for every file in
a large project is not only likely to be very time consuming, but will probably
introduce problems. To simplify this process each project folder also has a compile
command that is used for all subordinate files without specific compile commands.

72 Chapter Nine

To set the compile command for a project folder

1 From the project tree view, select a folder

2 From the Project menu, select Settings (ALT+F7)

3 Select the Compile tab

4 Click Override folder compile command

5 In the Compile command box, enter the compile command

Tip Clicking the arrow to the right of the Compile command box displays a
menu containing command variables

The following two examples illustrate how compiler commands at different levels of
the project hierarchy are evaluated.

 Compile Command Resolves As

 Project

 source cc $(FilePath)

 main.c cc /dev/src/main.c

 test.c cc /dev/src/test.c

 client.c compile $(FileName) compile client.c

 Compile Command Resolves As

 Project cc $(FilePath)

 source

 main.c cc /dev/src/main.c

 source compile $(FileName)

 test.c compile test.c

Compiling Your Files 73

Note The variables used in these examples are purely an indication of sample
compiler commands. There are no limits on which variables or how many
variables can be used for a compile.

At this stage, new users may find it useful to review the Project Structure section in
Chapter 3, as the considerations for project structure and identifying file locations can
be combined with folder compile commands.

Build Commands

Build Commands exist at the project folder level, to provide a command which is used
in conjunction with compile commands, for those developers needing to implement a
two-stage process to create a program file.

Build Commands offer the option to initiate a compile of all the files contained in the
folder that can then be followed by the build command.

Compiler Results

The resulting output from a compile command can produce many hundreds of lines,
even when successful. Examining every line of output, checking for warnings and
errors is not only time consuming, but missing a vital error can lead to many lost hours
of precious development time.

The solution to this problem is to allow Programmer Studio to identify possible
warnings and errors in the compiler output, highlighting each offending line for closer
examination. As Programmer Studio provides no specific compiler support, this
detection of errors is achieved using Compiler Output Masks.

Compiler Output Masks

Compiler Output Masks provide Programmer Studio with instructions on how to
detect warnings and errors in the compiler output in order to highlight these lines. If
the Compiler Output Mask indicates the location of a filename within the output, this
file is then opened and the offending line highlighted.

A Compiler Output Mask is constructed from a series of text identifiers, which are
matched verbatim, and special variables indicating known compiler components such
as line numbers, numeric identifiers and filenames.

74 Chapter Nine

The mask can contain any number of literal fields or variables from the following list:-

To match Use

Any number of consecutive spaces Space

A single character not including spaces $(Char)

Any number of consecutive characters not broken by a
tab, space or literal character.

$(String)

A numeric value $(Number)

Text on the next output line $(LineBreak)

Continue scanning on the current output line in order to
complete the mask

$(ScanFor)

Scanning upwards from the current output line in order
to complete the mask

$(ScanUp)

The line on which the error can be found $(Line) *

The number appearing on the line on which the error
can be found

$(LineNumber) *

The filename containing the error $(FileName) *

MPE/iX style filenames – FILE.GROUP.ACCOUNT $(MpeFile) *

MPE/iX style line numbers including a period $(MpeLine) *

DOS style filenames – C:\NETLOG.TXT $(DosFile) *

* Indicates variables that may only be used once within the Compiler Output Mask.

If the Compiler Output Mask identifies a filename that is not absolute, Programmer
Studio will attempt to match the filename against the files included in the current
project. Where two files are included with identical names, the first file found will be
used.

Compiling Your Files 75

The following examples illustrate how to create a Compiler Output Mask to detect
possible errors within the sample compiler output. To help in identification, Compiler
Output Mask variables appear in bold.

Example: cc: "hello.c", line 3: error 1507: Function...

Mask: $(String): $(FileName), line $(Line): $(String)

Example: /usr/examples/hello.c(3) : error...

Mask: $(FileName)($(Line)) : $(String)

Example: File: /usr/examples/hello.c
Line 3

Mask: File: $(FileName)$(LineBreak)Line $(Line)

Example: Error 523, unknown item at /usr/examples/hello.c line 3

Mask: $(ScanFor)at $(FileName) line $(Line)

Example: File: /usr/examples/hello.c
Error...
Line 3

Mask: Line $(Line)$(ScanUp)File: $(FileName)

Using Compiler Output Masks

Programmer Studio comes with a number of compiler output masks for many of the
popular compilers on different servers. Code Editor Templates provide the ideal way
to organize these compiler output masks by programming language type, allowing the
user to simply select from a familiar list of programming language names.

To select the compiler output masks for the project

1 From the project tree view, select the project icon

2 From the Project menu, select Settings (ALT+F7)

3 Select the Output tab

4 From the Compiler Error Detection list, select the programming
languages used by the project

5 Click OK

76 Chapter Nine

As the output from compilers can differ greatly between platforms, compilers and even
compiler versions, Programmer Studio also allows new compiler output masks to be
added to a project as required without the need to edit the Code Editor Templates.

To add a custom compiler output mask to the project

1 From the project tree view, select the project icon

2 From the Project menu, select Settings (ALT+F7)

3 Select the Output tab

4 Click the Custom button

5 In the Output mask box, enter the new compiler output mask

6 Click OK

Examining Resulting Errors

Using the Compiler Output Masks, Programmer Studio allows the user to quickly
move forward and backward through the resulting output to the next and previous line
matching the mask criteria.

As each warning and error is highlighted, Programmer Studio will attempt to load the
file containing the error, (if it is not already loaded), and highlight the line on which
the error is determined to have occurred.

To highlight the next error matching the Compiler Output Mask

1 Ensure the Output tab is activated in the Output Window

2 From the Edit menu, select Go To, then Next Error/Tag (F4)

In addition, by highlighting the first warning or error in the output window,
Programmer Studio provides the option to determine at the end of a compile or build,
the total number of lines matching the Compiler Output Mask, and also the option to
automatically highlight the first error.

To automatically highlight the first error in the output window

1 From the Tools menu, select Options

2 Select the Build tab

3 Click Highlight the first error found

4 Click OK

Integrated Debugging 77

10
Integrated Debugging

With version 3.0, Programmer Studio has evolved to include support for server based
symbolic debuggers presented to the programmer within the standard development
environment.

This evolution brings the prospect of remote program development even closer to the
Windows-based IDE's that have become the standard for PC development.

Requirements and Supported Debuggers

Programmer Studio is essentially a client/server development environment, requiring
server-based software to provide access to files and a command line. With version 3.0,
this approach has been expanded to include a TELNET client within the development
environment to allow server based software to be remotely controlled.

Obviously this places an immediate requirement on the user, - that the target server
supports connection via TELNET clients. For the majority of Unix users this is not an
issue as TELNET is the standard for establishing remote sessions. For HP3000 users,
from MPE/iX 5.5 onwards TELNET is also available, although this may need to be set
up before using the new features in Programmer Studio.

In addition, it is a requirement that the debugger used can be started from the directory
containing the debug target (usually the program).

Programmer Studio supports the following symbolic debuggers. This list will
continue to be expanded based upon user request.

♦ GDB (GNU Free Software Foundation) and compatibles (WDB HP-UX).

♦ XDB / Symbolic Debugger/iX (Hewlett-Packard).

♦ TRAX COBOL (Corporate Computer Systems)

78 Chapter Ten

How it Works

Programmer Studio is able to provide integrated debugging by assuming the role of a
user controlling a debugger via the command line interface.

Each debug feature, step into, quickwatch, break, etc. is converted into the correct
command line instruction and then sent to the debugger. The resulting response is
then parsed and displayed to the user in the appropriate format. Programmer Studio
provides this support through external modules, which are specific to each debugger
used. These modules can then be enhanced and support provided for new debuggers
without requiring the user to upgrade the software.

Working Model

Programmer Studio begins the process of debugging by establishing a TELNET
session to the remote server. Following a successful connection, a number of
challenge response sequences, (typically user name followed by password), are
automatically completed before the session command line is detected.

The next step is to start the debugger on the server, set any user-defined breakpoints,
and then begin executing the debug target (program).

Programmer Studio will then assume the debugger is running and will wait for the
debugger to reach the first available statement (if this was the start option), a user-
defined breakpoint, or a message to indicate the program has terminated.

Using TELNET

Unlike many of the protocols used in today's applications, such as the web and email,
TELNET does not provide a programmatic interface for logging on. Instead text
prompts are displayed to the user to which responses specific to the prompt are
expected. After an undefined number of prompts have successfully been completed,
the user is "logged-on" and able to use the TELNET session.

Typically these prompts and responses are simply for a username and then a password.
These are easily configured, however some systems employ additional levels of
security.

As a solution to this, Programmer Studio allows the user to determine a series of
prompts to wait for, the correct responses, and finally the prompt that signifies the
connection has been successful. These settings may either be specified by hand or the
New Session Wizard can take the user through a successful connection step-by-step
and complete the required fields.

Integrated Debugging 79

Getting Started

Programmer Studio provides integrated debugging as part of a Programmer Studio
project, so you will need to have a project set-up and ready to use before you can
begin debugging. Please refer to Chapter 8, Developing Projects, in the Programmer
Studio User Guide.

It is recommended that all source/list files included within the debug target (program)
that may need to be opened within Programmer Studio should be included in the
current project.

Before continuing, please also ensure that the target has indeed been compiled to
include the information required by the debugger, or you have access to the relevant
symbol or list files. For GDB this will usually involve using a compiler command line
option. For XDB and TRAX this may involve creating a listfile during the compile.

Selecting your Debug Settings

Before you can begin debugging a program you will need to select which symbolic
debugger you use and provide details of the debug target and other information. The
following section describes each of the debug settings in detail.

80 Chapter Ten

Project Debug Settings

To specify integrated debug settings within Programmer Studio, open an existing
project. After a successful connection, select Settings from the Debug menu. The
debug tab of the project properties will now be displayed.

The debug tab is subdivided into three categories, each is described below in detail:-

General

The general category specifies the debugger interface to be used, the debug target,
(typically the program name), the command line parameters for the debug target, and
the directory the debugger should be executed within.

Viewing the General category in the project debug settings

Integrated Debugging 81

Symbolic Debugger

This drop-down determines the symbolic debugger that will be used. Depending upon
the selection, the remaining fields in this tab will be active and the status of items in
the Debug menu will change.

Note Changing the specified symbolic debugger will delete all existing
breakpoints.

Program/Debug Target

This field specifies the target to be debugged. This is typically a program name
although this may depend upon the selected debugger used.

Note In Unix, commands are case-sensitive so be sure to ether the target name
correctly.

Program Arguments

This field determines the additional arguments that should be passed to the target
program within the debugger. This should not be confused with arguments passed to
the debugger itself.

Working Directory

This field determines the directory in which the debugger is executed. This is typically
the location of the debug target but may be any valid directory location. The working
directory is selected immediately after the session login has been completed, using the
cd command.

Note MPE/iX users debugging within the native file system should leave this field
empty, instead using the session login to determine the active group.

82 Chapter Ten

Prompt to Redirect Program Input/Output

This option prompts the user for a terminal identifier to which all debug target input
and output is then subsequently redirected. This can be particularly useful when the
program has complex I/O that may become confused with the debugger command line
when allowed to run within the debug session tab in the output window.

Note This is currently only supported on Unix platforms.

Session

The session category specifies the process of a TELNET login, described as a series of
challenges and responses. Two fields specify the command prompt to be expected and
then the correct response. A Wait for field without a response indicates a successful
login. The Wizard button starts the TELNET session wizard that will take you step-by-
step though a login process.

Viewing the Session category in the project debug settings

The TELNET session wizard is described in detail in the next section.

Integrated Debugging 83

Advanced

The advanced category specifies additional options for debugger execution. Only users
familiar with the functionality of the target debugger should modify these settings.

Viewing the Advanced category in the project debug settings

Debugger Command Line

This field allows an advanced user to override the command that would normally be
executed to start the host based debugger. This may be useful in circumstances where
the debug command line requires a fully qualified location or requiring special options
to be included.

The button to the right of the field provides a popup menu containing variables which
may be used within the debugger command line, substituted for actual settings at run-
time. For example, if the debug target was wttgid,

gdb $(DebugTarget)

would be converted to,

gdb wttgid

84 Chapter Ten

A more complex example is that required by the TRAX COBOL debugger. In this
example the debug command line includes a fully qualified program and both the
target and target arguments.

RUN TRAX.RUN;INFO="$(DebugTarget) F $(DebugTargetArgs)"

In most cases the average user will probably not need to specify an alternate debugger
command line. However for those users who wish to, the option is there.

Debug Source Location

The field provides Programmer Studio with the location of files identified by the
debugger when stepping into a debug target or when a break is reached in program
execution (as a result of step over, step into or reaching a breakpoint). Most debuggers
identify files using a fully qualified filename. For those just displaying a filename,
Programmer Studio requires a source directory to look in.

A good example of this requirement is when using the TRAX debugger, in which
filenames are identified by module name only and do not include the actual source (list
file) location.

Execute Initial Debugger Commands

This field allows the user to enter any number of commands which should be executed
prior to the setting of the initial breakpoints and before the program is started within
the debugger.

This can be very useful for setting debugger options which affect the execution of the
program being debugged. However, these commands are not expected to require
further input and will return the debugger to its normal input prompt after completion.

Integrated Debugging 85

TELNET Session Wizard

The New Session Wizard uses the server name specified in the current project and
attempts to establish a TELNET connection. If successful, the prompt immediately
received is displayed to the user, who has to then determine if this is indeed a valid
prompt or if additional text is expected.

Selecting a response for the displayed prompt in the TELNET session wizard

As text is received from the TELNET server, this is displayed in the Wait for field
with the very last line displayed in the editable field. Wait for the expected prompt to
appear in the Wait for field and then enter your selected response.

As each response is received the New Session Wizard will attempt to help the user by
providing responses to "login" and "password" prompts using the current project
settings.

86 Chapter Ten

Selecting the login completion response in the TELNET session wizard

This process should be repeated until the login process has been completed, at which
point the Suggested response field should be left blank and the Next button clicked.

The New Session wizard will now check the format of the prompt indicating the
connection is successful. As no session prompt is the same, some include date or time,
the user may be prompted to select a more general prompt to wait for (typically the
last character in the original wait for text).

Integrated Debugging 87

Confirming the login completion response in the TELNET session wizard

Following the successful completion of the New Session Wizard, the session settings
will be entered in the project settings. This lists the prompts and responses selected
during the wizard. If you wish to use the New Session Wizard again, click on the
Wizard button.

88 Chapter Ten

Debugging a Program

Once the Debug settings have been specified within the project settings, the user may
set breakpoints and begin debugging the specified target. It should be remembered
that all debuggers are different, and although Programmer Studio attempts to duplicate
functionality across various platforms, no two debuggers behave exactly the same
way.

Before you begin debugging, it is recommended that you familiarize yourself with the
debugger you are intending to use. This document is not intended to be an in-depth
guide to interactive debugging, simply to provide an introduction to the interface that
Programmer Studio provides.

Setting Breakpoints

Before debugging the specified target, most users wish to set breakpoints, - identified
points within the target which, when reached, cause the debugger to suspend target
execution offering options to the user.

Breakpoints may either be set by location, filename and line number, or by
function/procedure entry point. Once the debugger has loaded the target, Programmer
Studio will attempt to set these breakpoints, displaying an error message if this
location is invalid.

Setting a breakpoint within the Code Editor

A breakpoint can be easily set within the Code Editor by selecting Toggle Breakpoint
from the Debug menu (F9). If the current line is already set as a breakpoint, this will
remove the breakpoint. It is important to ensure the line highlighted is valid, as
Programmer Studio will not be able to determine this for you. Your symbolic
debugger documentation will provide details of what constitutes a valid Breakpoint
line.

Setting a breakpoint within the Breakpoints Window

An alternative way to set a breakpoint is through the Breakpoints window. This lists
all breakpoints currently set, by either filename and line number or by
function/procedure name.

To display the Breakpoints window, from the Debug menu, select Breakpoints.

Integrated Debugging 89

Adding a named symbol breakpoint, "error_ex"

In this example screen shot, two breakpoints have been added to the current debug
target. The first breakpoint identifies a particular line in a source file, in this case line
293 in a file called main.c. The second breakpoint is set at the entry point for a
function/procedure named error_ex.

Note The case sensitivity of both filenames and function/procedure names is very
important. Although specific operating systems and programmer languages
may be case insensitive, please check before adding each breakpoint.

Pressing the OK button will update the breakpoints for the current debug target. All
breakpoints set by filename and line number will be updated within the Code Editor to
reflect their status. Breakpoints set by function/procedure name are not highlighted in
the Code Editor, as these are evaluated at debug time by the symbolic debugger.

90 Chapter Ten

Starting a Debug Session

Programmer Studio provides a number of entry points from which to debug the
specified target:

♦ To start the debug target and to stop only at specified breakpoints, from the

Debug menu, select Start Debugging, then select Go.

♦ To start the debug target suspended at the first accessible statement, from the
Debug menu, select Start Debugging, then select Step Into.

♦ To attach the debugger to a existing process running on the server (UNIX only),
from the Debug menu, select Start Debugging, then select Attach to Process.

After selecting one of these options, Programmer Studio will establish a new TELNET
session to the server and invoke the chosen debugger with the relevant instructions.
Programmer Studio will then wait for the remote debugger to display a specific prompt
to indicate the debug target is suspended or the program has terminated.

Controlling the Debug Target

Programmer Studio will suspend all further debug options until it is detected that the
debugger has suspended execution of the debug target (this may have happened as
result of a breakpoint being reached or selecting to start the program suspended).

Once the debugger prompt has been identified, the main window's caption will be
modified to include the text [break] and many of the remaining options on the debug
menu will become enabled. Certain items will be dependant on the line and text
highlighted in the Code Editor.

This section will describe the functionality of each debug menu item and how it should
function. It is very important at this stage to remember that Programmer Studio is
merely controlling the debugger on the server, and that you may enter your own
commands in the debug session window.

References to current statement indicate the current position of execution of the debug
target and not the current/selected line in the Code Editor.

Continue

This will continue the execution of the debug target.

Integrated Debugging 91

Restart

This will restart the debug target keeping existing breakpoints.

Stop Debugging

This will terminate the debug target and exit the debugger, closing the TELNET
session.

Break

This will attempt to suspend the execution of the debug target, locating the current
statement and highlighting this within the Code Editor. In the event the current
statement does not identify a filename and line number, the Call Stack is displayed.

Kill Debug Session

This will simply close the current TELNET session, which in turn should terminate the
debugger and target on the server. This option should be used with caution and only in
cases where Stop Debugging fails.

Step Into

This will attempt to step into the sub-procedure/function located on the current
statement. If the current statement does not identify a sub-procedure/function this may
fail or Step Over (depending upon the debugger).

Step Over

This will attempt to execute the code represented by the current statement and break
execution at the next statement in the current file. If there isn't a next statement in the
current file, this may fail or highlight the next executable statement (depending upon
the debugger).

Run to Cursor

This will attempt to set a temporary breakpoint at the statement on which the cursor
entry point is located in the Code Editor and then continue program execution.

Set Next Statement

This will attempt to move the current statement to the statement on which the cursor
entry point is located in the Code Editor without executing code in between. This
should be used with caution as it may leave the debug target in an unusable state.

92 Chapter Ten

View Call Stack

This will display the current call hierarchy for the current statement.

Viewing the current callstack

View Locals

This will display the contents of all local variables (if applicable to the programming
language) in their native format.

Viewing the current list of local variables

Warning In COBOL this typically displays all variables defined within the
WORKING-STORAGE section of the program, and as such should be
avoided.

Show Next Statement

This will highlight the debug target's current statement in the Code Editor, opening
any necessary files.

Integrated Debugging 93

Quick Watch

This will display the Quick Watch dialog box. This evaluates the currently selected
text or the keyword at the insertion point in the Code Editor. The results of the
evaluation will then be displayed in the native format.

Displaying the value of the expression lpDomains[iDomains].fields[0]

Within the Quick Watch window a watch may be placed on the specified expression.
This will then be evaluated in the Watch output window every time the debug target
enters a suspended state.

Ending a Debug Session

The current debug session may be terminated either normally, by the program being
debugged terminating, by instructing the debugger to end the debug session, or by
terminating the debug session itself.

A debug session should only be 'killed' in the event Programmer Studio becomes
confused as to the state the debugger is currently in. For example, in the event the
debugger is terminated on the server.

94 Chapter Ten

Accessing the Remote Debugger

The TELNET session is accessible as a tab within the output window. Displayed to the
right of Find in Files, the Debug Session tab contains the TELNET client in use by the
current debug session.

This client may be used while the debugger is suspended (this can be determined by
the presence of [break] in the Programmer Studio window caption) to access
information not provided by the standard development environment command items.
For example, the debug session window can be used to change local/active variables
or display debugger specific information such as registers.

Care should be taken when accessing the remote debugger from the session window as
this may leave Programmer Studio unable to determine the current state of the remote
debug session. In the event that a command is used which changes the current
statement, select Show Current Statement from the Debug menu.

Terminal Emulation

The debug session window, displayed in the output window, is itself a mini-terminal
emulator. The terminal window is limited in functionality to a subset of VT100 (Unix)
or HP2392 (HP3000) depending on the server connected to. The debug session
window is not intended to replace your existing terminal emulator, instead simply to
facilitate access to the host based debugger.

If you identify any shortcomings in the emulation for VT100 or HP2392 please email
support@whispertech.com providing details of the problem and preferably programs
which exhibit the problem.

Integrated Debugging 95

TRAX COBOL

This section will take you through the process of setting up Programmer Studio to
debug a COBOL program using the TRAX COBOL debugger. For the purposes of
illustrating the interface between TRAX and Programmer Studio the examples used
here are based on the Introductory Tutorial installed with TRAX.

Start by creating a project and connecting to the HP3000, use the manager user and
login to the TRAX COBOL installation account (TXCBXL). The two files that will be
used in this section are located in the LST group and are named HTLST and LURQ.
Add these to the project specifying Hewlett-Packard COBOL as the Code Editor
Template.

From the Debug menu, select Settings. The project settings dialog box will now appear
with the Debug tab automatically selected. As previously described, the debug settings
are subdivided into three categories, General, Session and Advanced.

1 From the Symbolic debugger combo-box, select TRAX…

2 In the Program/debug target field, enter TSTPRG

3 From the Category combo-box, select Session

4 Click on the Wizard button

5 Complete the session wizard as described in the Getting Started section

6 From the Category combo-box, select Advanced

7 In the Debugger command line field, enter RUN
TRAX.RUN;INFO="$(DebugTarget) F $(DebugTargetArgs)"

8 In the Debug source location field, enter /TXCBXL/LST

9 Click OK to save the settings

You should be able to debug the sample program from within Programmer Studio.
Remember, Programmer Studio is only remotely controlling TRAX, so you can select
the debug session tab in the output window at any time to enter your own commands.

Visual File Compare 97

11
Visual File Compare

A common task among programmers, especially those working in a team, is to
determine differences between various versions of the same code. This can be a very
time consuming task which, when done by hand, is far from accurate.

Programmer Studio does not include file comparison tools; instead it provides a
conduit to external utilities which output results in one of two recognized formats.
Using an external utility has the distinct advantage of allowing the user to determine
which of the many tools available to use, while still providing a standard visual
interface to the results generated.

Visual File Compare highlighting a difference between two files

Programmer Studio supports file comparison result formats of DIFF compatible
utilities and Microsoft FC.

98 Chapter Eleven

Comparing Files

Programmer Studio compares files by first loading each file, (if not already open), as
they would be when edited normally. Once loaded, each file is subsequently saved on
the PC removing any non-editable text, (line numbers and line tags), identified by the
Code Editor template or file compare options. Finally, the file compare utility is
invoked to compare the two files based on the compare options.

The Compare Files dialog box provides a number of options which determine how the
file is formatted when passed to the comparison utility, and which options are used.

Comparing two files, ignoring spaces and line numbers

Note When using file compare for the first time, Programmer Studio will prompt
the user to select which compare utility to use, FC or DIFF. To change this
at any time, use the File Compare tab in the Options dialog box.

Visual File Compare 99

To compare two files

1 From the Tools menu, select Compare Files

2 In the File 1 field, enter the name of the first file to compare

3 In the File 2 field, enter the name of the second file to compare

4 From the options, select additional compare settings

5 Click Compare to start the file comparison

Tip Use the arrow button to the right of the File fields to browse for local or
remote filenames or select from a list of currently open files.

The file comparison can be cancelled at any time by pressing the Stop button, or select
Stop from the View menu. Programmer Studio provides the following options for the
file comparison:

Match case

This setting is passed to the comparison utility as an optional parameter. When
selected, characters differing in case will be highlighted. By default this option is not
enabled.

Ignore tabs and spaces

This setting is passed to the comparison utility as an optional parameter. When
selected, compound tabs and spaces are treated as a single space when comparing
lines. By default this option is enabled.

Ignore line numbers

This setting instructs Programmer Studio to remove any detected line numbers from
the contents of a file prior to invoking the comparison utility. If the Code Editor
Template used by the file already removes line numbering while editing, this option
has no effect.

Specify code editor template

This setting overrides the Code Editor Template that would normally be assigned to
the file, (either by project settings or the rules wizard). This is especially useful when
comparing files which would not normally be opened with the correct Code Editor
Template, ensuring that differences in non-editable code are not highlighted.

100 Chapter Eleven

Comparison Results

Following a successful comparison, the differences tool window will be displayed and
the first difference highlighted in the Code Editors of the two files. The key provides a
visual indication of the difference highlighted, the starting line position and the
number of lines highlighted.

Difference tool window following a file compare

The toolbar buttons allow the user to move forwards and backwards through the
differences highlighted, and also change the orientation of the windows between
portrait and landscape.

Synchronizing Files

Advanced users may wish to use the Visual File Compare to synchronize two files.
This can be particularly useful when consolidating changes made in two versions of
the same file.

To allow synchronization, when comparing files, ensure that either file 1 or 2 (or both)
are compared with the read-only option off. When the files are displayed with their
respective differences, modify either file (or both) and click the refresh button in the
differences tool window.

Refreshing the comparison will then re-compare the two files, updating the differences
tool window and highlighting the first difference in the updated files.

Note Refreshing a file compare does not save any changes made to the file. Use
the Save, Save As or Save Local items in the File menu to save any changes.

Advanced Options

The File Compare tab in the Options dialog box provides options to select the
comparison utility to be used, determine additional options, and even set the default
settings for the File Compare dialog box.

Visual File Compare 101

File Compare options, with an addition command line parameter for DIFF

To view file compare options

1 From the Tools menu, select Options

2 Select the File Compare tab

Depending upon the selection in the Compare using field, additional fields will
become enabled for additional settings. The following sections describe the options
available and their use.

Microsoft Windows FC.EXE

This uses the standard file compare utility installed as part of the Microsoft Windows
operating system. FC is a good utility for comparing files reporting general
differences, but lacks the accuracy of utilities written specifically for comparing line
based files.

There are no additional options.

102 Chapter Eleven

DIFF Compatible Program

DIFF is a popular utility among UNIX users which has been ported to many non-
UNIX platforms, including Windows. DIFF is a far more sophisticated "differencing"
utility then FC, providing a number of additional options to generate a very accurate
list of differences.

The Program field specifies the location of the DIFF utility that will be used. The
Command line field specifies additional command line options for the diff utility.

Note Programmer Studio will automatically add command line options for
matching case and ignoring tabs and spaces based on the options selected in
the File Compare dialog. The command line field is intended for additional
parameters only.

Tip To determine which additional command line options are available using
GNU DIFF (this version is installed with Programmer Studio under the
GNU public license), run the program from the DOS prompt without any
command line parameters.

Windows Application

For those users wishing to use a third-party comparison application such as WINDIFF,
Programmer Studio provides the option to specify which program to launch when
comparing files. This method does not use the file compare conduit, so results will not
be displayed in Programmer Studio. This is the responsibility of the application being
launched.

The Program field specifies the Windows application that will be launched, use the
Command line field to determine the format of the command line parameters using the
following predefined variables:

To match Use

First file being compared $(File1)

Second file being compared $(File2)

Command line option to match case when comparing $(MatchCase)

Command line option to ignore tabs and spaces $(IgnoreSpaces)

When adding command line options, $(MatchCase) and $(IgnoreSpaces), enter in the
options field below the actual text that should be inserted into the command line.

Using Find in Files 103

12
Using Find In Files

With larger programs consisting of a number of relatively small files, searching for
text can be a real problem. Opening each file in turn to search for the specific string
can be time consuming and never 100% accurate.

Find in files provides the ideal solution to this problem, by providing the capability to
search for text in a subset of files. The search is quickly completed, returning a list of
matching files into the output window, allowing the user to examine each occurrence
in turn.

The search can be cancelled at any time by selecting Stop from the View menu.

To find a specific text string in a subset of files

1 From the Edit menu, select Find In Files (CTRL+SHIFT+F)

2 In the Find What box, enter the text string to search for

3 In the In File Types box, enter the UNIX style name pattern match which
is to be used to determine the files to search

4 In the In Directory box, enter the location of the files to be matched
against the criteria

5 To determine how you want the search to proceed, select any of the
options described in the table below.

6 Click Find

Tip To specify a number of different name patterns use semicolon as a delimiter
i.e. (t*;*.c).

104 Chapter Twelve

The following options determine how the search proceeds:-

To Select

Find whole words and not sub-strings inside
words. For example, help and not helping.

Match whole word only

Find words matching the case of the text in the
Find what box. For example help and not HELP.

Match case

Use regular expressions when searching Regular Expression

Search files included in the project only Search project files only

Continue the search in sub-directories Search sub-directories

Display the file currently being searched in the
Output Window

Display progress

Note See Chapter 6, Using the Code Editor, for more information on how to use
regular expressions to find text strings.

As each occurrence of the search criteria is highlighted, Programmer Studio will
attempt to load the file containing the text string, (if it is not already loaded), and
highlight the line on which the criteria is matched

To highlight the line matching the Find in Files criteria

1 Ensure the Find In Files tab is activated in the Output Window

2 From the Edit menu, select Go To, from the secondary menu select
Next Error/Tag (F4)

Remote Command Line 105

13
Remote Command Line

In addition to compile and build commands, Programmer Studio also provides access
to the remote server command line for executing simple commands.

The following example uses the standard Unix command ls to display the contents of
the current server directory. This is intended as an example. Any command can be
used as long as it does not require user input.

To view the contents of the current server directory

1 From the View menu, select Command Line (F12)

2 At the command prompt enter ls and press return

The remote command can be cancelled at any time by selecting Stop from the View
menu.

The remote command line window such should not be confused with a terminal
emulator. It is provided purely as a tool for executing commands and not for running
programs requiring user interaction.

Regular Expression Characters 107

A
Regular Expression Characters

Programmer Studio provides extensive support for searching files using regular
expressions. A regular expression is simply a string of characters which provide a
method for describing a pattern using special characters (operators) and literal
characters.

A regular expression can be either simple or compound. A simple regular expression
describes one character. A compound regular expression describes a sequence of
simple and compound expressions.

To Match Use

Any single character .

a, b or c [abc]

Any lowercase alphabetic character [a-z]

Any character except e [^e]

Any character except lowercase alphabetic characters [^a-z]

Either expression a or expression b a | b

Groups a compound expression into a single expression or
reference by operators such as * or ?

(expression)

The preceding item is optional and matched at most once ?

The preceding item will be matched zero or more times *

The preceding item will be matched one or more times +

The preceding item is matched exactly n times {n}

The preceding item is matched n or more times {n,}

The preceding item is optional and is matched at most m
times

{,m}

The preceding item is matched at least n times, but not
more than m times

{n,m}

108 Appendix A

In addition to the standard expressions, specific compound expressions are predefined:

To Match Use

An alphanumeric character \:a

An alphabetic character \:c

A control character \:n

A numeric character \:d

A graphical character \:g

A lowercase character \:l

An uppercase character \:u

A printable character \:p

White-space character \:b

Hexadecimal character \:h

Any string enclosed in quotes, such as ‘sample’ or “sample” \:q

Any string enclosed in single quotes, such as ‘sample’ \:QS

Any string enclosed in double quotes, such as "sample" \:QD

7-bit ASCII Character Set 109

B
7-bit ASCII Character Set

Decimal Hex Octal Char Description

0 0 000 NUL (null)

1 1 001 SOH (start of heading)

2 2 002 STX (start of text)

3 3 003 ETX (end of text)

4 4 004 EOT (end of transmission)

5 5 005 ENQ (enquiry)

6 6 006 ACK (acknowledge)

7 7 007 BEL (bell)

8 8 010 BS (backspace)

9 9 011 TAB (horizontal tab)

10 A 012 LF (NL line feed, new line)

11 B 013 VT (vertical tab)

12 C 014 FF (NP form feed, new page)

13 D 015 CR (carriage return)

14 E 016 SO (shift out)

15 F 017 SI (shift in)

16 10 020 DLE (data link escape)

17 11 021 DC1 (device control 1)

18 12 022 DC2 (device control 2)

19 13 023 DC3 (device control 3)

20 14 024 DC4 (device control 4)

21 15 025 NAK (negative acknowledge)

22 16 026 SYN (synchronous idle)

23 17 027 ETB (end of trans. block)

110 Appendix B

Decimal Hex Octal Char Description

24 18 030 CAN (cancel)

25 19 031 EM (end of medium)

26 1A 032 SUB (substitute)

27 1B 033 ESC (escape)

28 1C 034 FS (file separator)

29 1D 035 GS (group separator)

30 1E 036 RS (record separator)

31 1F 037 US (unit separator)

32 20 040 SPACE

33 21 041 !

34 22 042 "

35 23 043 #

36 24 044 $

37 25 045 %

38 26 046 &

39 27 047 '

40 28 050 (

41 29 051)

42 2A 052 *

43 2B 053 +

44 2C 054 ,

45 2D 055 -

46 2E 056 .

47 2F 057 /

48 30 060 0

49 31 061 1

50 32 062 2

51 33 063 3

7-bit ASCII Character Set 111

Decimal Hex Octal Char Description

52 34 064 4

53 35 065 5

54 36 066 6

55 37 067 7

56 38 070 8

57 39 071 9

58 3A 072 :

59 3B 073 ;

60 3C 074 <

61 3D 075 =

62 3E 076 >

63 3F 077 ?

64 40 100 @

65 41 101 A

66 42 102 B

67 43 103 C

68 44 104 D

69 45 105 E

70 46 106 F

71 47 107 G

72 48 110 H

73 49 111 I

74 4A 112 J

75 4B 113 K

76 4C 114 L

77 4D 115 M

78 4E 116 N

79 4F 117 O

112 Appendix B

Decimal Hex Octal Char Description

80 50 120 P

81 51 121 Q

82 52 122 R

83 53 123 S

84 54 124 T

85 55 125 U

86 56 126 V

87 57 127 W

88 58 130 X

89 59 131 Y

90 5A 132 Z

91 5B 133 [

92 5C 134 \

93 5D 135]

94 5E 136 ^

95 5F 137 _

96 60 140 `

97 61 141 a

98 62 142 b

99 63 143 c

100 64 144 d

101 65 145 e

102 66 146 f

103 67 147 g

104 68 150 h

105 69 151 i

106 6A 152 j

107 6B 153 k

7-bit ASCII Character Set 113

Decimal Hex Octal Char Description

108 6C 154 l

109 6D 155 m

110 6E 156 n

111 6F 157 o

112 70 160 p

113 71 161 q

114 72 162 r

115 73 163 s

116 74 164 t

117 75 165 u

118 76 166 v

119 77 167 w

120 78 170 x

121 79 171 y

122 7A 172 z

123 7B 173 {

124 7C 174 |

125 7D 175 }

126 7E 176 ~

127 7F 177 DEL

	Installing the Software
	Installing Programmer Studio
	Installing the server software

	Introducing Programmer Studio
	Programmer Studio Concept
	Integrated Visual Development Environment
	Project Workspace
	Code Editor
	Output Window
	Command Line
	Project Settings
	Visual File Compare

	Information for Experienced Windows Users

	Getting Started
	Using the Project Wizard

	Code Editor Templates
	Introducing Code Editor Templates
	Supported Programming Languages
	Code Navigator

	Template Manager
	Custom Editor Settings
	Substituting Tabs with Spaces
	Defining Tab Stop Positions

	Files Containing Line Numbers
	Automatic Renumbering
	Intelligent Renumbering
	Line Number Position

	COBOL Line Tagging
	Defining a Standard Tag String
	Defining a Project File Tag String
	Using Date Variables in Tag Strings

	Creating New Code Editor Templates
	Using Code Editor Templates

	Working with Files
	Opening Files
	Rules Wizard

	Creating New Files
	Saving Files

	Using the Code Editor
	Scrolling the Editable Area and Moving the Insertion Point
	Moving the Insertion Point to a Specific Line

	Editing Code
	Selecting Text
	Undoing Mistakes
	Moving, Copying and Pasting Text
	Drag-and-Drop Editing

	Visual Elements
	Text Ruler
	Virtual Line Numbers
	Selection Margin
	Bracket and Brace Matching
	Selected Range Tool-Tips

	Finding and Replacing Text
	Finding Text
	Replacing Text
	Search Options
	Advanced Search Criteria
	Using Regular Expressions
	Predefined Compound Expressions

	Formatting Text
	Change Case
	Change Columns
	Convert Tabs to Spaces
	Comment and Uncomment

	Advanced Features
	Bookmarks
	Named Bookmarks
	Moving to Specific Position in the Code Editor
	Open File Under Cursor

	File Properties
	Changing Tab Size
	Changing the Format of a File
	Changing the Code Editor Template
	MPE/iX and Robelle Qedit Files

	Printing
	Additional Print Options

	The Code Navigator
	Introducing the Code Navigator
	Visual Components
	Structure View
	Navigator Toolbar
	Navigator Tips

	Developing Projects
	Understanding Projects
	Project Folders
	The Project Window

	Project Settings
	Adding, Moving and Removing Files and Folders
	Adding Files and Folders to the Project
	Moving and Removing Folders and Files

	Structuring Your Project
	Project Hierarchy
	Relative vs. Absolute File Locations
	Using Project Folders

	Compiling Your Files
	Compile and Build Commands
	Compiling a File
	Command Variables
	Folder Compile Commands
	Build Commands

	Compiler Results
	Compiler Output Masks
	Using Compiler Output Masks
	Examining Resulting Errors

	Integrated Debugging
	Requirements and Supported Debuggers
	How it Works
	Working Model
	Using TELNET

	Getting Started
	Selecting your Debug Settings

	Project Debug Settings
	General
	Session
	Advanced

	TELNET Session Wizard
	Debugging a Program
	Setting Breakpoints
	Starting a Debug Session
	Controlling the Debug Target
	Ending a Debug Session

	Accessing the Remote Debugger
	Terminal Emulation

	TRAX COBOL

	Visual File Compare
	Comparing Files
	Comparison Results
	Synchronizing Files

	Advanced Options

	Using Find In Files
	Remote Command Line
	Regular Expression Characters
	7-bit ASCII Character Set

