Presentation #: 5060
An introduction to System Maintenance Functions
for HP9000 Servers
F. John Kluth
Kluth Company
1060 DeLeone Dir.
Kent OH 44240-2026

UNIX began its long and glorious history as an
operating system that was designed for technically
literate users. Though documentation is plentiful, and
comparatively well organized; still, it lacks convenient
entry points for beginning users. This paper attempts to
fill in some gaps, especially for those persons who become
system administrators, perhaps unintentionally. These
persons will want some basic rules to help organize an
HP9000 server for convenient and efficient use.

UNIX has a fairly daunting scripting language which
IS surprisingly complex and cryptic. The tendency seems
to be for users to try to avoid this and set up a
windowing interface to give the user something more
familiar and easy to use. The SAM system administrator
interface is an example of this. SAM is often a
convenience, but it is not perfect. And it helps to know
how SAM works and verify what it has done. An example of
this in HPUX 9.0 that | have found is that SAM manages the
group file, but not perfecty. When a new user is
created, the appropriate group file entry is created, but
when that user is deleted, the entry in the group file is
not deleted. These entries can be verified and corrected
with standard shell tools. Typically one must apply one
of the UNIX editors, vi, ex, ed, or even emax to the
etc/group file to check the data and correct any errors.

The simplest approach to assisting the user is to
provide a log in with a menu that allows choice amongst
the various programs that can be run. There are even
windowing shells that can be provided to help satisfy this

An Intro to System Maintenance Functions for HP9000
Servers
5060-

craving for a windowing interface. But from another point

of view this attempt to ease computer anxiety, may, in the

long run, lead to a dependence on mechanisms that are
cumbersome and inefficient. Menus are convenient the
first time round, but after the thousandth use, they just

get in the way. The Bourne shell case command seems
ideally constructed to develop menus, and it is often so

used. But a straightforward use of the case statement
locks the user in a closed loop and isolates the user from

the power of the shell.

A study of the Bourne shell will reveal a number of
insights that will be helpful here. Of the various
available shells it is the most cryptic. What you get for
being cryptic is speed. An alert programmer will be able
to write powerful programs that run faster on the system.
This is of value to the systems administrator because the
user needs routines at log in that will produce quick and
effective results. Time lost at log in is always a
problem because it is repeated thousands of times as the
user continues to log in. This problem is aggravated by
vended programs which charge by number of concurrent
users. If the log in process is cumbersome then users
will log in and not log out during lapses in activity.

The concurrent licenses will then keep track of users that
are doing nothing.

The basic command structure seems to be the fastest
for getting applications up and running and this is the
method that should be preferred. For each program to be
run the user is provided with a short command that
executes the desired program. For example to run Lotus
123 on the HP9000 the user is provided with the command
123. This is done by providing the following file with
execute permission for the user:

1 #!/bin/sh
2 lusr/lotus/123.v12/hp700/bin/123

This file can be placed in the users directory if it needs
to be personalized for the user, or it can be placed in a

An Intro to System Maintenance Functions for HP9000
Servers
5060-

directory such as /usr/contrib/bin which is available to

all users. The first line of the file indicates to the

system that the file is indeed a Bourne shell executable
file. The second line causes the Lotus 123 program to
execute. The convenience is that the user now types many
fewer keystrokes. The next consideration has to do with
what lotus uses as the default path. If the user logs in

and executes 123 then Lotus 123 will assume the default
path is the home path of the user. If the user also uses
other programs, such as WordPerfect, then it might be
better not to mix the file types of the applications. In

this case a line can be added before line 2 in the
previous file to set the default path to a user
subdirectory such as lotus.d:

1 #!/bin/sh
2 cd $HOME/lotus.d
3 /usr/lotus/123.v12/hp700/bin/123

This file assumes that the directory lotus.d exists. The
system administrator may have to create the file for the
appropriate users, or include additional programming that
does this automatically.

A number of such applications may be available to the

user. It would be helpful to remind the user what options
are available. A menu would be useful here. Menus can
be provided that can also be executed by simple commands.

Since help is a UNIX command, it should not be used to
name a help menu. A command like ahelp could be used. In
the case of primary help screens a single letter or number
might be desirable such as h or H or 1. The following is
an example of file h that when executed generates a simple
help screen:

1 #!/bin/sh

2 echo To run a program type the command at the prompt
and press enter.

3 echo

4 echo Command | Program

5 echo |

An Intro to System Maintenance Functions for HP9000
Servers
5060-

6 echo 123 | Lotus 123

7 echowp | Wordperfect 5.0

8 echosym | SYMIX 4.0

9 echo

10 echo To log out type the command quit at the prompt and
press enter.

After the file executes the prompt appears and the user
can enter one of the commands that appears on the screen.
More complex help screens can be developed which refer to
other screens for more advanced help. Typically UNIX
users now desire help that is more basic than the man
command. They appreciate having lists of basic commands
that they can use. Once the suitable command is
identified, then the man command would be useful for most
situations.

Setting of the terminal variable is quite basic to
the log in and is sometimes relegated to a menu.
Unfortunately, the method just described cannot be used to
set the TERM variable because a subshell cannot change the
parameters of the parent shell. The menu would have to be
a part of the .profile file that sets the parameters for
the particular user. Bourne shell code for such a menu
follows:

1 #!/bin/sh

2 # Set up terminal

3 clear

4 nd=n

5 untiltest $nd =y

6 do

7 echo "Indicate which terminal you are using:"
8 echo

9 echo"l-hp 700/96"

10 echo "2 - reflections™
11 echo "3 - kermit"

12 echo "4 - wyse 60"
13 echo"5 - vt100"

14 echo

15 echo "menu > \c"

An Intro to System Maintenance Functions for HP9000
Servers
5060-

16 read input
17 case $input in

18 1) nd=y;TERM=2392;export TERM

19 stty erase " kill "*U" intr "*C" eof ""D"
20 2) nd=y;TERM=2392;export TERM

21 stty erase " kill "*U" intr "*C" eof ""D"
22 3) nd=y;TERM=vt320;export TERM

23 stty erase " kill "*U" intr "C" eof ""D"
24 4) nd=y;TERM=wy60;export TERM

25 stty erase " kill "*U" intr "C" eof ""D"
26 5) nd=y;TERM=vt100;export TERM

27 stty erase " kill "*U" intr "*C" eof ""D"
28 *) clear;echo Bad entry! ;;

29 esac

30 done

The erase control character in the case of 1, 2, and 3 is
"H while the erase control character in the case of 3 and
5is ~?. This code is appended to the .profile code.

While this menu approach works better than the method of
entering the TERM variable manually, there are still
problems. If the users hits the wrong choice, then the

user locks the terminal in a way that is quite
confounding. Typically the user's processes must be
killed before another log in can be attempted. A better
approach is to use the ttytype command in the .profile
file so the TERM variable can be set automatically. The
default HP-UX profile contains an example of this. Care
must be exercised with this approach because the ttytype
command often returns terminal names which are
abbreviated. Vended applications sometimes come with
their own terminfo file that must be edited so the
abbreviation is recognized.

In addition to help files, data bases can be set up

An Intro to System Maintenance Functions for HP9000
Servers
5060-

to manage various types of information that are useful to
the user. Shell script data bases are surprisingly
versatile. Flat file data bases can be set up with a
dozen fields and 50,000 records that can be quickly
accessed with the grep command. In a shell script data
base field lengths are variable with a total maximum
record length of about 1500 characters. Since the data is
searched serially by grep, data bases that are too large
will simply take too long to search. Though hashing
techniques are not strictly available to shell scripts,
larger data bases can be accommodated with techniques
involving string sorting, file division, and path
searching. Shell scripts are quite convenient and
powerful for small data bases, especially where data
structures are indeterminant. Shell scripting is a good
prototyping tool. As the data structure becomes more
fixed, and as the data base gets larger, more formal data
base engines should be considered.

Typical UNIX shell script data bases involve variable
length fields with character delimiters which are by
default either a space character or a tab character.
Within fields an underscore character can be used to
separate words. Shell scripts which manipulate data base
information must be carefully constructed so that string
variables are appropriately quoted. Shell control
characters such as backslash, apostrophe, and quote can
cause difficulty if included in fields. In spite of these
limitations the search features of the Bourne shell are
quite powerful and useful, even if cryptic. Even using
the grep command relational data base constructs can be
achieved. The relational constructs are easiest if the
fields related are first or last, but there are other
techniques for intermediate fields. The awk command can
be used, as well as reading all fields into variables.

Shell script data bases have the advantage of having
the availability of many tools to work with them. Data
can be entered or patched with vi or sed. Data can be
reorganized with cut, paste, and sort. Commands such as
tr and sed are also useful. In addition there are other

An Intro to System Maintenance Functions for HP9000
Servers
5060-

structures which can be used for data that fails to fit

the standard mold. For example text data can be stored in
a file with a keyword filename. The Is command can then
search a directory for a keyword such as "bottle" with a
structure such as "Is b*'. Once the keyword is found it
can be listed with the more or pg command. In this same
directory the command structure "grep bottle *" will
search every file for and instance of the word "bottle"
and will list all files that contain it. UNIX contains
powerful data base features which are often overlooked.

Shell script data bases should be used by system
administrators to construct data bases of data that
assists users. Phone numbers for company employees,
vendor and customer names, equipment catalogs, and LAN
addresses are all examples of suitable data. Maintenance
information for company computer equipment is especially
relevant. Service calls can be minimized if a record is
made of these calls that can be searched by problem topic.
Artificial intelligence is the name applied to such a
data base constructed of frequently asked help desk
guestions.

In fact one of the most important of such data bases
Is a list of maintenance procedures for the system. This
data base is the concern of the system administrator and
not the user. This file should include daily, weekly, and
monthly routines, as well as system descriptive
information, and who to call in case of various types of
emergencies. This data is then available to any remote
user, as well as in a position to be saved to tape, so
that a disaster that destroys the hard drive will not
destroy the data. Maintenance routines can often be
automated, so this data will describe how to start the
automatic routines at a regular interval.

Monthly routines involve administrative information
relating to disk usage, user information, data size. The
purpose of this information is to provide information
relating to system usage to other managers. Application
of the bdf command provides disk usage. A user count can

An Intro to System Maintenance Functions for HP9000
Servers
5060-

provided by applying wc -l to the file /etc/passwd. The
number of administrative log ins must be subtracted from
the count to give a true user estimate. Important data
bases need to be identified and treated separately. Shell
script data bases can be monitored with wc - command.
Data bases maintained by data base engines require the use
of the du command. A shell script can be written which
automatically executes the command and prints a report to
send to the other managers.

Weekly routines involve information relating to
disaster recovery, backup, and security. An example
script file follows:

1 #!/bin/sh

2 # file monmor created 19940516 by F. John Kluth.

3 # Checks system parameters.

4 echo Printing files changed since Friday morning.

5 find / -depth -mtime 3 -type f | pr -05 -h "Files
Changed since Friday" > monmor.tmm

6 cat monmor.tmm |lp -0 -nb -0 -10

7 echo Printing computer usage report.

8 who /etc/wtmp | sort | pr -w1l40 -3 -05 -h "Weekly
Computer Usage Report” > monmor.tmn

9 cat monmor.tmn |Ilp-0-nb -0 -c

10 rm /etc/wtmp

11 touch /etc/wtmp

12 chmod o-rw /etc/wtmp

13 echo Working on bad login report

14 strings /etc/btmp | sort | pr -w140 -5 -05 -h "Bad
Login Report" > monmor.tmo

15 cat monmor.tmo | Ip -0 -nb -0 -Cc

16 rm /etc/btmp

17 touch /etc/btmp

18 chmod o-rw /etc/btmp

19 echo "Setuid Programs-programs that do not match
programs from last week” > monmor.tmp

20 cp suid.lIst suid.old

21 find / -hidden -perm -4000 -exec Is -ld {} \; >
suid.lIst

22 diff suid.lst suid.old >> monmor.tmp

An Intro to System Maintenance Functions for HP9000
Servers
5060-

23 echo >> monmor.tmp

24 echo "Empty Password Fields:" >> monmor.tmp

25 awk -F: '$2 == "™ || $2 == ".." < /etc/passwd >>
monmor.tmp

26 echo >> monmor.tmp

27 echo Copying files to /users/sysadm/sys.d

28 cp /etc/passwd /users/sysadm/sys.d

29 cp /etc/group /users/sysadm/sys.d

30 cp /etc/lvmtab /users/sysadm/sys.d

31 cp /etc/lvmconf/* Jusers/sysadm/sys.d

32 cp /etc/checklist /users/sysadm/sys.d

33 echo "\nPreparing backup information. \n"

34 echo "\n\n\nBackup Information for use in System
Recovery. “date’\n\n\n" >> monmor.tmp

35 echo "\nOutput of ioscan *** \n" >> monmor.tmp

36 /etc/ioscan -fk >> monmor.tmp

37 echo "\nOutput of vgdisplay *** \n" >> monmor.tmp
38 /etc/vgdisplay >> monmor.tmp

39 echo "\nOutput of Ivinboot *** \n" >> monmor.tmp

40 /etc/lvinboot -v >> monmor.tmp

41 echo "\nOutput of Ivdisplay *** \n" >> monmor.tmp

42 [etc/lvdisplay -v /dev/vg00/Ivoll >> monmor.tmp

43 [etc/lvdisplay -v /dev/vg00/Ivol2 >> monmor.tmp

44 |etc/Ilvdisplay -v /dev/vg00/Ivol3 >> monmor.tmp

45 /etc/Ivdisplay -v /dev/vg00/Ivol4 >> monmor.tmp

46 echo "\nOutput of pvdisplay *** \n" >> monmor.tmp
47 [etc/pvdisplay -v /dev/dsk/c0d0s2 >> monmor.tmp

48 /etc/pvdisplay -v /dev/dsk/c3d0s2 >> monmor.tmp

49 echo "\nOutput of file checklist *** \n" >> monmor.tmp
50 cat /etc/checklist >> monmor.tmp

51 echo "** end of checklist ***" >> monmor.tmp

52 echo "\nBackup the LVM configuration. *** \n"

53 /etc/vgcfgbackup /dev/ivg00

54 echo "\nUpdate the boot structures. *** \n"

55 /etc/lvinboot -R

56 echo "\n *** End of Configuration printout ***' >>
monmor.tmp

57 echo End of monmor program

58 Ip -0 -nb -0 -c monmor.tmp

The find command in line five is useful for finding

An Intro to System Maintenance Functions for HP9000
Servers
5060-

which files are being used and which are not. This
command needs to be modified for the particular system
used. The find -atime could be useful in a system where
only a few files are accessed and the find command itself

IS not often used, since find resets the -atime value. The
-mtime value is more useful for finding files which are
growing without bound. The -ctime value is more useful
for finding which files have had their permissions
changed. Reviews of changes to system files can help
boost security.

Lines 9 through 12 print out a listing of all log ins
during the past week. This report can be used to find out
if users have logged in at unauthorized times. It does
not report the length of time the user logged in. The bad
login report is used to determine if a port receives
unwarranted attention. Excessive log ins suggest
passwords may be being guessed. Ordinarily setuid
programs do not change. Any change in these programs
suggests a security breech. Lines 19 through 23 cause a
display of any changes in these programs. Lines 24 and 25
check for bank password fields that could give the user
extraordinary access. lines 27 through 32 cause system
file information to be saved outside of the file system
reserved for the operating system. This facilitates
recovery in the event of a disaster. The lines following
34 are recommend by HP for the benefit of the CE (computer
engineer) should there be a system disaster.

In addition to running the above script, weekly
maintenance routines include cleaning the tape drive and
recovering a file off the tape. To recover a file off the
tape provide a dummy file with some regular pattern that
can be visually checked for errors. Once the file is
saved to tape in a regular backup, the dummy file is
erased from the hard drive. The recovery routine is
executed and the recovered file is visually inspected for
errors. This procedure does not guarantee that a full
backup will restore the system, but it does indicate that
the tape drive is functioning properly.

An Intro to System Maintenance Functions for HP9000
Servers
5060-

The following is an example of a shell script that
can be run daily:
1 #!'/bin/sh
2 # File sysck created 19940518 by F. John Kluth.
3 echo Machine info: > syscka$$
4 uname -a >> syscka$$
5 echo >> syscka$$
6 echo Capacity should not exceed 90% >> syscka$$
7 bdf >> syscka$$
8 echo >> syscka$$
9 echo System messages collected by dmsg since last run:
>> syscka$$
10 dmesg - >> syscka$$
11 echo >> syscka$$
12 echo boot time: >> syscka$$
13 who -b >> syscka$$
14 echo >> syscka$$
15 echo printer state: >> syscka$$
16 Ipstat -t >> syscka$$
17 echo >> syscka$$
18 echo Location of core files: >> syscka$$
19 echo >> syscka$$
20 find / -name core -print > sysckb$$
21 if test -r sysckb$$

22 then

23 while read flnm

24 do

25 echo "For file $flnm:" >> syscka$$

26 I $flnm >> syscka$$

27 strings $flnm | grep tty[01d][0p] >> syscka$$
28 echo >> syscka$$

29 done < sysckb$$

30 rm sysckb$$

31 fi

32 echo >> syscka$$

33 echo Network configuration >> syscka$$

34 ifconfig lan0 >> syscka$$

35 echo Note: PROMISC should not be evident >> syscka$$
36 echo Log file sizes >> syscka$$

37 wc /usr/adm/sulog >> syscka$$

38 wc /usr/sam/log/samlog >> syscka$$

An Intro to System Maintenance Functions for HP9000
Servers
5060-

39 wec /usr/sam/log/br_log >> syscka$$

40 wc /usr/sam/log/br_index.full >> syscka$$

41 wec /usr/lotus_log/lotus/log/123usagel2.log >> syscka$$
42 wec /usr/spool/lp/log >> syscka$$

43 wc /usr/lib/cron/log >> syscka$$

44 wc /ustr/lib/cron/OLDlog >> syscka$$

45 wc /tmp/index >> syscka$$

46 echo "Note: /tmp/index is used by tape to hold tape
index." >> syscka$$

47 wc /usr/adm/msgbuf >> syscka$$

48 echo >> syscka$$

49 echo Who is on the system: >> syscka$$

50 who >> syscka$$

51 echo >> syscka$$

52 echo Security on following files should be -r--r--r--
>> 53 syscka$$

54 |l /etc/passwd >> syscka$$

55 Il /etc/group >> syscka$$

56 Il /etc/hosts >> syscka$$

57 Il /etc/inetd.conf >> syscka$$

58 Il /usr/adm/inetd.sec >> syscka$$

59 Il /etc/ftpusers >> syscka$$

60 Il /etc/securetty >> syscka$$

61 echo Files modified since yesterday >> syscka$$

62 find / -depth -mtime 1 -type f >> syscka$$

63 cat syscka$$ | pr|Ip -0 -nb -0 -10

64 rm syscka$$

The uname command in line 4 merely identifies the
system you are using. This serves as a header for what
follows. The bdf command in line 7 repeats information
that is printed weekly. Daily monitoring of this
information is more appropriate. Rapid changes in the
results of this command are symptoms of many serious
problems. Since the system will not run with a full disk,
it is desirable to constantly monitor this situation. The
dmesg command in line 10 is not as useful as it sounds.
Certain system error messages are monitored by dmesg.
These error messages always appear in another form, such
as on the system monitor. Running the command prints what
is in the error buffer and then empties it. Running dmesg

An Intro to System Maintenance Functions for HP9000
Servers
5060-

keeps the buffer from being too large. The error messages
saved are not usually very interesting. If the system is
rebooted from the console then dmesg contains an image of
the boot messages. If the system is booted remotely, no
error messages are saved by dmesg.

In line 13 the command "who -b" gives the time of the
last reboot. Rebooting is a security issue and should be
controlled carefully. An HP-UX machine can be rebooted
remotely so care should be taken that each reboot be
accounted for. The output of the who -b command should be
matched with a verifiable boot time. The command "lpstat
-t" in line 16 is useful for identifying hung printers or
print jobs. If the command is run early in the morning,
then printers having problems from the day before will be
revealed. Printers with many files in the spool can be
investigated. Most problems will be more quickly revealed
by the pained cries of the users, but this is not always
the case.

The code about core files in lines 20 to 32 is more
interesting. Files produced by a system core dump are the
most muystical and cryptic of UNIX. Of course UNIX
computers do not have cores anymore so the base meaning of
the term has changed. In the past, the bigger computers
had a special sort of permanent memory called core. This
memory was intimately connected to the operation of the
machine and central to its function, hence the term core.

Some of the function of core memory has been taken over
by the hard drive, but most has been taken over by RAM.
The core dump is a snapshot of what the computer was doing
at the time of a special incident. The purpose of the
core file is to provide a record of the incident for the
computer engineer. In the past, these dumps were more
significant, in terms of diagnosing difficulties with the

computer system. Now the UNIX system is so well
constructed that they are rarely used. But they can be
used more than they are. The ordinary system

administrator sees these files as an inconvenience,
because they are often large, and need to be erased. To
the alert administrator they contain important

An Intro to System Maintenance Functions for HP9000
Servers
5060-

information. The program in lines 20 to 32 presents that
information in a more readable format. For each core file

the program generates the time it was created, and the
login of the user whose program created it. The label of

the serial line used is also generated. Using this
information, the system administrator can observe trends
that suggest system problems such as persons who do not
log in and log out properly, and programs that are poorly
adjusted to the system. Unfortunately, the difficult
guestion must sometimes be asked, "What were you doing at
11:53 am yesterday?"

The LAN inquiry command at line 34 is intended to
check the LAN configuration. The PROMISC configuration
checked for allows a hacker access to all messages on the
LAN. The size of log files needs to be monitored so the
size does not get too large. Active log file can be found
with the daily application of the find command as used in
lines 60 and 61. Once log files are identified their size
should be monitored as is done in lines 36 to 47 above.
Application of the who command as in line 50 identifies
who is currently logged in. Log ins are dated so it
should be obvious who logged in the day before and who
never logged out. These situations need to be
investigated. The lines 52 to 60 are for checking
security on files important for system security. Finally
the find command is used in lines 62 and 63 to find files
that have been modified. Note that checking for -atime, -
mtime, or -ctime may be more important depending upon the
system.

AS was demonstrated, shell scripts can be used to
increase the convenience of the user. They can also be
used to print reports that monitor the state of the
system. Shell scripts can also verify that the sam
program has worked properly. They can run the backup, but
the system administrator must manually recover a file to
verify the functionality of a tape. An understanding of
shell scripts allows system configuration files to be
modified, but any modified system file must be carefully
documented with a copy stored apart from the operating

An Intro to System Maintenance Functions for HP9000
Servers
5060-

system. Printer and other customized drivers should be
copied and saved separately. In the event of a hard drive
disaster a full backup might be used to restore the
system, but in the event of a disaster where the cpu must
be replaced, the operating system cannot be restored off
the backup tape.

Bibliography:

1. Blinn, Bruce, PORTABLE SHELL PROGRAMMING, Prentice Hall
PTR, 1996, 269 pages, diskette included.

2. Kluth, F. John, "Shell Script Data Base Modeling",
HPWORLD '96 PROCEEDINGS, Interex, August 4-9, 1996, pp
3012-1-9.

3. Kluth, F. John, "System Disaster Recovery", INTERWORKS

'97 PROCEEDINGS, Interex, April 12-17, 1997, pp 735-9.

4. Nemeth, Evi, Garth Snyder, Scott Seebas, Trent R. Hein,

UNIX SYSTEM ADMINISTRATION HANDBOOK, Prentice Hall PTR,
1995, 779 pages, includes CD ROM.

5. Peek, Jerry, Tim O'Reilly, Mike Loukides, UNIX POWER
TOOLS, O'Reilly & Associates/Bantam Book, March 1993, 1119
pages, includes CD ROM.

6. Poniatowski, Marty, "HP-UX Audit Overview", HP-UX/USR,
march/april 1997, pp 28-34.

7. Poniatowski, Marty, HP-UX 10.X SYSTEM ADMINISTRATION,
Prentice Hall PTR, 1996, 382 pages.

An Intro to System Maintenance Functions for HP9000
Servers
5060-

