
DataReplication for HP-UX and Oracle DBMS

4105-1

Paper 4105

DataReplication for HP-UX and Oracle DBMS

How does it work, what are the problems, and what are the alternatives?

Karl Kacerek
Eyal Aronoff

Quest Software, Inc.
610 Newport Center Drive

Suite 1400
Newport Beach, California 92660

(800) 306-9329

Introduction

In 1996 for the first time there were more Oracle-based applications in production than in
development. Once an application is deployed to production, the organization becomes
dependent on it. That causes Oracle-based production application to become more “mission
critical” than ever before. Production applications have the unwieldy profile of rapid growth -
more than double in database size between 1996 and 1997. Data Warehouses, Executive
Information Systems (EIS) and other data consolidation projects require data integration from
multiple sources. Similarly data produced by one part of the organization may be used
throughout.

Oracle replication features address some of data replication challenges. However many users of
Oracle replication are expressing concerns mainly with issues of performance and manageability.
This paper explains the main issues with data replication, how Oracle addresses them, and
proposes an alternative way for data replication.

The Environment

Where in the ‘60s and ‘70s, you might find 20 people in an organization responsible for one or
two IBM mainframes, today there are one or two people responsible for 20 (or more) machines.
The administrator in one of the approximately 1,500 IBM mainframe shops had an average of 5
years of experience. In the rapidly expanding open systems market, the local administrator in
one of the approximately 100,000 open systems shops might have an average of 1-2 years of
experience. The result is that data and applications are stored on many machines and often
maintained by people with a lower level of experience. Whatever talent the organization might
have is consolidated to a few pockets of expertise. These experts are responsible for the
production viability of a number of diverse systems located throughout the organization.

The Problem

As the organization becomes more dependent on data and applications, the importance of data
distribution increases. The two most common purposes for data distribution are data sharing
and off-site backup/standby. One of the most important aspects of data distribution is data
replication. With the speed of database growth and the event of hundreds of users hitting the
database, the workload on existing hardware is already close to peak capacity. To combat this
effect, the investment in increased capacity often leads to shops with large machines that perform
hundreds of database modifications per second. In environments like this, the intrinsic overhead
of replication pushes the already overworked machines over the top increasing response time to
unacceptable levels The speed of replication is generally not sufficient to support the volume of
changes required. For these reasons organizations could not fully deploy the required replication
scheme.

DataReplication for HP-UX and Oracle DBMS

4105-2

The Solution

When considering data replication scheme in the ORACLE environment the following issues
must be taken into consideration and addressed to insure a successful replication scheme is
implemented:

� Minimize the overhead on the source machine.
� Minimize the impact to the processes that generate database modification.
� Minimize the exposure to network failure
� Shorten the time delay between modifications on the source and their application on the

destination machine (especially important for standby machines).
� Enforce read consistency across both source and destinations.
� Easily scale to a large number of replicas, some of which many not be accessible at all times.

Most if not all of these issues are not handled effectively using the replication scheme provided
within Oracle. Only a replication scheme based on the data stored in the Oracle log files can
address each of these issues effectively.

The Oracle replication scheme contains many configuration options. For simplicity, I use in my
examples only the two most frequently used configurations: incremental snapshots and
updateable masters. Many of the points, though, apply for most configurations.

Performance Is Everything

Lets look at an example. A job that manipulated data in three tables took five hours to run. Once
one of the tables was turned into a replicated master, that same job took 12 hours to complete -
blowing through the nightly batch window. Although results vary significantly between different
production examples, there is always a significant overhead to transactions on the master table.
The reason is that trigger-based replication causes insert, update and delete operations (DML) to
be added to your own transactions. These operations are executed as part of the user (or batch
job) session. So where initially the job had only 100,000 operations to complete, with trigger
based replication, it might have the equivalent of 200,000 operations. Thus, transactions that
manipulate replicated tables will take longer (and some times MUCH longer) to complete.

One of the goals of effective data distribution is to create a replication scheme that has minimal
impact on the source system (or what we call the “master” system). Log replication is done
independent of the Oracle transaction. Hence, it does not make a difference from the user
perspective whether a table is replicated or not. The response time of both online and batch
transactions is minimally impacted by the replication.

In addition to the direct impact on the transactions that are involved with replicated tables, there
is a constant overhead on systems that host a replicated database. As one can imagine, the
overhead of managing the replication process by means of database triggers and
insert/update/delete transactions can be very significant. Oracle uses background processes to
determine what, when and where to replicate. These background processes scan what could
become large tables. If rows are found, they are sent via SQL*Net to the remote sites. Once this is
done, the rows are deleted from the local site. With database snapshots, the overhead is relatively
low since only the ROWID of the modified rows are inserted and deleted. In symmetrical
replication, the entire before and after image of the complete record is manipulated, which many
times ends up causing chaining that further increases the overhead. Log replication does not
manipulate the database for every change. The modification queues are stored in flat files that
are a hundred times faster to scan than database tables. If the workload is moderate, the data
flows in and out of the queue without being flushed to disk.

You may be concerned that your site generates hundreds of megabytes of redo log data every day
- “Surely log replication will cause a huge amount of network traffic.” What we have found is
that only a fraction of the log is user data. The log is written in blocked mode (so if the block is

DataReplication for HP-UX and Oracle DBMS

4105-3

2K and there were only 124 bytes to write before a commit, there will be 1900 bytes of wasted
space). Additionally, Oracle writes index modifications and other “accounting” information to
the log such as changes to the high-water-mark, adding and removing blocks from the free list,
and more. These modifications do not require replication.

Another advantage of log replication that increases its speed is the ability to use array operations
on the remote database. Rather than performing the operation a row at a time, a whole batch of
rows may be applied simultaneously.

Timing Is Everything

Many organizations require fast replication, whether for a standby machine or just because their
business needs make them concerned about a lag between the time a transaction is completed on
the source system and the time it is reflected on the target system. This is specifically important
for long running transactions. The reason is that they both generate a lot of data and they are the
most difficult to recover. With trigger-based replication, the Oracle background process cannot
“see” the data in the snapshot log or the replication queue until the transaction commits.
Consider the previous example of that job that took 12 hours. Suppose that job had only one
commit in the end. Thus, after 12 hours of work, the Oracle replica would by 12 hours behind. It
could take another 5 minutes for the snapshot process to realize that there is data to replicate.
The replication process itself and the network traffic might take another 8 hours (if there would
be a network problems the entire transfer might have to restart). At that point, the replica would
be 20 hours behind. A standby machine that is almost one day behind is not much of a standby
machine!

With log replication, transactions are replicated as soon as they hit the log (which is instantly).
As long as the replica can keep up with the source, it will not be behind. Once a commit arrives
in the log, there is little or no data to send, and the commit just flows through. Additionally, the
unit of retry on a network failure is an individual change (or a small group of changes). So a
network failure causes the resending of few records at the most, unlike the trigger-based
replication that has one commit at the end (which means all or nothing). In our test that same job
took only 5.5 hours to run and the replica reflected the changes 2 minutes after completion on
the source system.

Another aspect of time delay between the source and destination is the dependency of the
replication process on the availability of the network. In Oracle the propagation process makes a
direct SQL*Net connection to the remote database. The entire queue of changes is then applied
as one transaction to the replica site. At the end of this transaction there is a two-phase commit
that ensures all data was replicated to the remote site before deleting it from the queue tables in
the source site. If the number of changes to replicate is large this transaction can take a very long
time. During this entire time, the network connection has to be available. If at any time during
the propagation transaction the network becomes unavailable, the entire propagation is rolled
back and Oracle will have to start all over again. In Oracle8, parallel propagation overcomes
some of the aspects of this problem by providing multiple simultaneous connections to the remote
database. If the transaction is limited by the speed of the network traffic, multiple connections
will not get the data any faster to the remote site than a single connection. Even if the network
traffic is not the bottleneck, multiple connections only limit the window of exposure but does not
solve the base problem. For example: assuming that in Oracle7 the propagation of changes took
four hours to run. In Oracle8, with four processes doing the propagation it could take an hour to
run. However, if after 40 minutes the network connection is lost, the four propagation
transactions will roll back, and the entire data will have to be reapplied to the remote database.

In some situation the reliance on a single transaction to propagate the data to the remote site can
bring replication to a halt. For example, lets assume you have a replication schema that
replicates an application from the US to Hong-Kong. The network connection to Hong-Kong is
not very reliable. You may get one network failure every hour of continuous connection. If the
application generates about four hours of network transmission throughout the day, with normal

DataReplication for HP-UX and Oracle DBMS

4105-4

operation the site in Hong-Kong will be very close behind. The network reliability will not be an
issue because the four hours network workload will be spread on a 24 hours span. However, lets
assume that one weekend, the Oracle instance in Hong-Kong was shutdown. It stayed shutdown
for two days before being restarted on Monday. During this time, the instance in the US kept
collecting changes for the Hong-Kong site. On Monday the connection finally got reestablished.
The US instance had accumulated enough changes for eight hours of transmission. However,
Oracle might never get a strait eight hours span to send the data out without an error that would
cause the transmission to restart. As Oracle retries to send the data more data is accumulated at
the source. The result is that the Hong-Kong site might never catch up to the US source.

With log based replication the unit of retransmission over the network is a few records at most.
This means that if the network is not reliable, the amount of retransmission will be very small.
Additionally, the log based replication queues changes on both the source site and the
destination. This means that as long as Hong-Kong server is “up” (although the database may be
down), it can keep receiving changes and queue them locally. When the database is finally
started, the transactions get applied from the local queue with no additional network traffic.

Size Is Everything

As the number of components in a replication scheme increases, so does their interdependency.
To resolve this problem, Oracle introduced a new term - “quiesce”. This means that while
changes are made to the replication scheme, the entire network of replicated machines is locked
(or “quiesced”) for the duration of the change. However if you have a large number of
computers and large volumes of transactions, it could become impossible to get to a quiesced
situation. This is especially true if some of the computers that participate in the replication
scheme are not connected to the network at all times. It is important to include the configuration
changes as part of the data in the data stream. This eliminates the need for a synchronized
transaction. Each target machine makes the modifications to the replication scheme when it gets
to that ‘point in time’. From that time on only data that represent the new scheme will be present
in the data stream. Another challenge to overcome is the impact that reorganization of tables on
the source system has on the target systems. In snapshots, for example, an import of data will
cause a full refresh. Since using the content of the columns (primary key, unique key or the entire
record) as an update key rather then the original ROWID, full refresh for data re-organization is
not required.

Oracle replication uses SQL*Net and a direct TCP/IP connection between the source and each
target machine participating in the replication. This is known as “two tier architecture”. When
the number of target machines increases, so is the overhead of keeping all these TCP/IP
connections. Each new machine means duplicating the data to that machine directly from the
source. One hundred machines means sending the same data a 100 times through the network.
This strains the network link from the source to the network service provider. Added to that the
cost of “accounting” of what machine got what portion of the data that, as shown, involves quite
a number of database operations. The result is that the high overhead of adding more target
machines limits the size of the replication scheme. An external log based replication paradigm
supports the concept of a “multi-tier architecture” with much less overhead than any solution
within the Oracle environment. You can define that the data will go through one or more
intermediate machines. The data is only duplicated for each directly connected machine. This
means that if you have a 100 target machines, the source could be configured to send the data to
only 10 machines, and from there the data could be propagated to the remaining 90 machines.
The workload on the source and each routing machine would be greatly reduced.

As the replication scheme grows, so increases the need for better control. The current Oracle
replication scheme does not provide centralized information on how the entire network of
replication is performing. Simple questions such as how behind the replicas are can be very
difficult to answer. A central monitoring station should be considered critical in order to provide
constant feedback on the status and the control of the replication process. A GUI based tool to

DataReplication for HP-UX and Oracle DBMS

4105-5

view the performance and status of the entire network of targets is preferred but is not available
with Oracle replication.

It Is the Technique

There are many ways to replicate data throughout the organization. Each of these ways has
advantages and disadvantages depending on the business requirement it fulfills. We believe that
log replication is one of the fastest, most flexible and scaleable way to achieve replication for a
variety of applications. Additionally, a generic SQL implementation of log based replication
enables you to replicate across databases from multiple vendors, translate table names, column
names and even different formats.

About the authors

Karl Kacerek is a Senior Account Executive at Quest Software. Karl has been working in the
HP environment since 1979 and after spending 10 years in charge of software development for a
large HP VAR, Karl joined the Quest team in 1992. Over the last 6 years has helped hundereds
of companies implement local and wide area data replication schemes.

Eyal Aronoff is Vice President of Products at Quest Software. Eyal is the inventor of AdHawk
and SQLab database monitoring, administration and tuning tools. He is a certified Oracle DBA
and a co-author of the Advanced ORACLE Tuning and Administration book published by Oracle
Press.

