
Distributed Performance With Persistence 07/08/97 - 1

Building Better Performance: Distributed Applications
Development With Persistence

by Christopher Keene, Founder & CEO
Persistence Software, Inc.

www.persistence.com

This white paper describes how to use the Persistence Live Object Cache to build high performance
distributed systems. It discusses the issues involved in caching object data in an application server, provides
benchmark data on live object caching, and includes an application example using a Persistence Live
Object Cache with an Object Request Broker (ORB).

Persistence Software provides object-to-relational middleware for building mission critical applications
based on the concept of a “live object cache.” A live object cache maps information from relational tables
into business objects. Applications built to access business objects in the live object cache can deliver a 10
times performance improvement over traditional client/server solutions.

The findings in this document reflect five years of experience helping customers deploy a variety of high
performance distributed systems. AT&T built a system with Persistence for end-to-end network
provisioning which achieves 150 transactions per second against a 600 GB Oracle database by storing
network configuration information in a live object cache. Federal Express uses Persistence for their
Memphis command and control system, storing flight schedule information in a live object cache. The
traffic systems built by TRW for the Olympics depend on Persistence. Even the systems to manage the
video feeds for the Olympics were built using Persistence.

Need For Live Object Caching

When building a distributed system, performance is often the highest risk area. Live object caching
provides better scalability by enabling multiple clients to share critical business data instead of constantly
querying the database for the same information. Applications for which each client request triggers a
database query are not scaleable past a few clients. In contrast, applications which use a live object cache to
pre-fetch and share commonly used information among many clients can provide 10 times better
performance.

Distributed Performance With Persistence 07/08/97 - 2

RDBMS

Connection per client = SLOW

Live object cache = 10 x FASTER

Client

Client

Client

Persistence

Live
Object
Cache

Web Server/
App Server

Client

Client

Client

RDBMS

Every client request causes database query

Most client requests answered by live object cache

Without live object caching, a web server or application server can easily become a performance
bottleneck. For example, in an Internet catalog application, product information might include text,
pictures, diagrams and pricing from several different relational tables. With direct database access, every
client wanting product information must connect to the database and perform complex query for each
product they are interested in seeing.

Live object caching is a critical requirement for achieving performance in distributed systems. Using a live
object cache, “high activity” product information is pre-fetched, from the database, mapped into business
objects, and shared among many clients. This has been demonstrated to provide over ten times performance
improvement over direct database access for the applications listed in the following table:

Industry Sample Application Live object cache data

Telecom Network management, billing Network configuration, billing structure

Financial Trading system, risk management Security portfolios, risk positions

Transportation Flight scheduling, package routing Flight legs, truck routes

Alternatives To Live Object Caching

The page level caching provided by relational databases is complementary to live object caching, which can
combine information from several different databases. While the relational page cache resides on the
database server, the live object cache is maintained on an application server and can combine information
from several databases. Accessing data in the live object cache is done through a simple object query or
navigation. Accessing data cached by the relational database still requires significant database processing to
return information.

In addition, many object databases provide caching capabilities for distributed systems. This means that
their performance may in some cases be comparable to a live object cache. Object databases, however,
require that transactions and data storage are managed by their own proprietary engine, a requirement
which is typically not feasible for a distributed business application.

Elements Of The Persistence Solution

Building a distributed application with Persistence is a three step process. First, specify the mapping from
relational data to business objects. This mapping can be imported from existing relational tables, read from

Distributed Performance With Persistence 07/08/97 - 3

a CASE tool or entered directly into Persistence. Second, generate object-to-relational mapping objects
using the Persistence Object Builder (POB). The Persistence Object Builder can also generate language
independent Interface Definition Language (IDL) class definitions for each data mapping class, along with
a default IDL stubs implementation. Third, link these objects to the Persistence Object Server (POS) and
the appropriate ORB or transaction monitor libraries to create a high performance distributed object server.

Oracle
Sybase

C++
Objects

Persistence Object Server

Object-to-
Relational
MappingInternet

C++
Client

Java
Client

ORB

Persistence
Object
Builder

Persistence 3-Step process
1. Define o-to-r mapping
2. Generate objects with POB
3. Link to POS object cache

Live
Object
Cache Informix

ODBC

Evaluating the Live Object Cache

Maintaining objects in a live object cache can greatly enhance performance for distributed applications, yet
it introduces a number of technical considerations as well. These include enforcing object constraints,
managing underlying database locks, mapping object changes into relational transactions and optimizing
object flushing.

Because objects may be composed of information from multiple tables, it is critical that certain integrity
constraints be managed at the object level. Persistence ensures that any relational data retrieved or stored
follows the object constraints expressed in the object model. Another critical constraint for all objects is
that each object be unique. It is easy to build applications which through multiple queries return several
copies of the same object. Persistence avoids this problem by registering each object returned from the
database in the live object cache.

For high-transaction systems, Persistence supports either pessimistic or optimistic locking models. In the
pessimistic model, data is automatically locked in the database as it is accessed or updated by the
application. In the optimistic model, Persistence manages a version stamp stored in the database to ensure
no other user has changed an object since it was last accessed.

The developer may also specify on a class or object level which information should stay in the cache after a
commit. Typically this is information which will only change under controlled circumstances, such as
pricing information or a network configuration. Persistence also employs “smart flushing” to ensure that
relationships between instances in the live object cache are preserved or flushed appropriately when the
transaction commits.

Performance Of The Live Object Cache

A live object cache restructures data from a relational database into in memory business objects. These
objects may include information from several different tables, which can impose significant performance
overhead to retrieve from a relational database. Querying an in-memory object structure is approximately
500 times faster than querying a relational database. For example, retrieving a Stock and all of its Trades
requires a database join. Retrieving the Stock object and its related Trades from the live object cache is an
in-memory operation.

The following benchmark illustrates the performance offered by live object caching. The benchmark
consists of two programs: the Persistence-generated interface and the hand-coded interface. The

Distributed Performance With Persistence 07/08/97 - 4

Persistence-generated interface implements the read and update tests using Persistence generated classes
and the Live Object Cache. The hand-coded interface program implements these tests by programming
directly to the native database interface (using dblib for Sybase).

The benchmark tests were performed using a simple object class, containing five attributes. For the
benchmark, each operation was performed 1,000 times within a single database transaction. The following
table presents a summary of the results.

Performance Benchmark

Operation Persistence Hand-coded
Percent
Difference (%)

Read from database 22.81 21.32 (7.0)
Read from live object cache 0.04 21.32 533 x faster
Update to database 27.75 25.30 (9.7)
Update to live object cache 0.06 25.30 422 x faster

Persistence consultants have built applications which demonstrate the performance benefits of the live
object cache. One such application, the flight leg server, shows the value of live object caching for
transportation logistics. The application manages a network of airports, flights, flight legs and aircraft in a
live object cache. For update-oriented transactions which make moderate use of the cache - such as making
flight reservations - the live object cache provides a performance benefit of 5 to 10 times over straight
relational access. For decision support operations which can make extensive use of the cache - such as load
balancing an aircraft - the live object cache can provide over 100 times performance improvement.

Using Persistence In Distributed Application

The performance benefits of live object caching are magnified in a distributed environment. For these
applications, many clients can share a common set of critical information in a live object cache, greatly
reducing database traffic and eliminating the need to have a database connection for each client.

The Persistence Live Object Cache may be integrated with leading ORBs and Transaction Monitors,
including Iona’s Orbix, SunSoft’s Neo, Expersoft’s Powerbroker, BEA’s Tuxedo and Transarc’s Encina.
For example, Persistence for Orbix is an example of a tight coupling between Persistence and Orbix from
Iona.

RDBMS

RDBMS

Persistence Object Server

Live
Object
Cache

Object-to-
Relational
Mapping

Persistence
Object
Builder

Client
application

Stubs Stubs

Orbix Communication Layer

Automatically generated:
- C++ data mapping objects
- IDL class definitions
- IDL stubs implementations

Distributed Performance With Persistence 07/08/97 - 5

ORB Application Example

One of the most valuable features of ORBs is that client applications need not concern themselves with the
physical location of servers. A server object may reside on the same network as the client, or it may reside
on a remote host on the Internet or Intranet. Another ORB feature is language and platform independence:
the client and server programs need not be developed in the same programming language, so the client can
be written in Java while the server is written in C++.

To give an example of how a developer would build an application using Persistence with an ORB,
consider the following application, CorpApp. The CorpApp application contains two classes, Employee and
Department, with two attributes each; there is a one-to-many relationship between the classes, with the
foreign key attribute residing in the Employee class.

name: char (key)
salary: ulong

Employee Department

name: char (key)
budget: ulong

The ORB client and server programs manipulate instances of these two classes. The client program is given
operations for creating, reading, updating, and deleting instances of these classes. There are operations for
creating / destroying database connections and beginning / committing / aborting transactions. Finally,
relationship traversal operations are also available. The server program supplies the implementations for all
of these operations, using objects stored in the live object cache.

When working with an ORB, the Persistence Object Builder generates everything needed to create a live
object cache server which can be accessed by any client on the network or over the Internet. This includes
generating the IDL required by the ORB and all the skeleton implementations needed to link Persistence
object mapping classes to their corresponding IDL classes. Finally, Persistence generates a server main
program and makefile, effectively automating the development of ORB-ready object-to-relational servers.

Building Distributed Web Applications

The performance benefits of live object caching are particularly important for Internet and Intranet
applications. A web server which constantly queries a relational database to support browser requests will
have very low performance and little scalability. For these applications, it is critical to pre-fetch reference
information into the live object cache, then make this information available to browsers on a real-time basis
through the web server.

Using the Persistence for Iona ORB Server product, developers can link Java clients to a live object cache
across the Internet. Today, a number of Persistence customers, including Healtheon for benefits
administration and NET for network management, are implementing web applications which incorporate
Persistence and ORBs.

Summary

Persistence enables the development of distributed applications which achieve high performance from live
object caching. Both Sun and Sybase have endorsed the Persistence live object cache technology, and
deliver Persistence as part of their distributed product solutions.

For development teams building distributed or multi-tier applications, architecting an application server that

Distributed Performance With Persistence 07/08/97 - 6

combines performance with flexibility is a major design consideration. If implemented correctly, the middle
tier application server can provide performance, integrity, consistent interfaces and the flexibility of open
standards, making the promise of distributed computing a reality.

For more information on the Persistence, contact Persistence at (415) 372 3600, info@persistence.com, or
www.persistence.com.

Distributed Performance With Persistence 07/08/97 - 7

Appendix: Persistence For Orbix Source Code Listing

Here is an example of the client code the developer would write to connect to a database through Orbix and
work with the Persistence data mapping objects:

//bind to ORB interfaces
Persistence::ObjectServer_var gObjectServer;
gObjectServer =Persistence::ObjectServer::_bind(“:orb”,hostName);
gDepartmentIF = CorpAppServer::DepartmentFactory::_bind(“:orb”,hostName);

//login to database
Persistence::LoginParams login(dbname, dbpassword);
Persistence::Connection_var gConnection;
gConnection = gObjectServer->connect(login);
gConnection->beginTransaction();

// Create Department
CorpAppServer::Department_var department;
department = gDepartmentIF->create(CORBA::string_cupl(dept));
department->budget(100);

//Show all Employees in the Engineering Department
CorpAppServer::Department_var dept;
dept = gDepartmentIF->queryKey(“Engineering”);
CorpAppServer::EmployeeCollection* emps;
emps = dept->employs();
CORBA::Long index;
CORBA::Ulong len = emps->length();
for (index=0; index<len;index++)
{
 CorpAppServer::Employee_var emp = (*emps)[index];
 cout << “Employee name = “ << emp->name() << endl;
}

// Logoff from database
gConnection->commitTransaction();
gConnection->disconnect();

Notice that this listing introduces a few interfaces. The Persistence module contains interfaces for object
server, connection and error handling classes. The CorpAppServer module contains interfaces for each
class. The EmployeeFactory and DepartmentFactory interfaces declare the instance-independent (static)
methods of Employee and Department, respectively. For example, the DepartmentFactory::create() method
constructs a new Department instance, and the DepartmentFactory::queryKey() method returns an object
from the database which matches the specified primary key. EmployeeCollection and DepartmentCollection
are just type aliases for sequences of Employees and Departments.

