
syslog: The UNIX System Logger
2150-1

2150

syslog: The UNIX System Logger

John Fenwick
Development Engineer

Enterprise Systems Division
Hewlett-Packard Company
Cupertino, California USA

fenwick@cup.hp.com
Tel. 408-447-4976

1. Introduction

syslog is a powerful and easily configurable UNIX system resource. Available since the earliest releases
of BSD UNIX, it is now supported on most UNIX versions. Designed to be the UNIX system logging
facility, syslog has always offered not just local logging to files but also remote logging over the net-
work. Network communication via standard protocols permits syslog to operate across platforms.

This paper discusses the elements making up syslog - the daemons, libraries, commands, data struc-
tures, and communication paths. Each communication path available to syslog is reviewed. We describe
the appropriate use of sockets, pipes, and files. syslog message syntax and format is covered. Lastly, the
rules to configure and operate the syslogd daemon are reviewed.

Several examples illustrating syslog usage are reviewed. HP-UX kernel message recovery through sys-
log using the /dev/klog interface is described. Program interfaces for C-code and shell scripts are illus-
trated. Examples using remote logging and cross-platform operation are shown.

We close with a discussion of syslog limitations, and a comparison of syslog to related UNIX facilities.

1.1 System Logging in UNIX

Logging and error reporting within UNIX has been unnecessarily complex. The following examples
illustrate typical approaches for logging messages and reporting errors to the system console.

in a shell script:
% ./mydaemon 2> /dev/console & # stderr sent to console

in C-code:
fp_console = fopen(“/dev/console”,”w”)
...
if (! stat(”filename”,&stat_buf))

printf(“file stat call successful”);
else /* error output to console */

fprintf(fp_console,”Error: cannot open file”);

While this may be acceptable for output written directly to your process window, these approaches have
potential drawbacks for console I/O:

• the message will be lost on a console-less system

syslog: The UNIX System Logger
2150-2

• the message may scroll off the console and be lost

• the operator may not be at console for immediate action

• a user logged in at the console may receive a message that is confusing or inappropriate

• the message will not be logged for future review

• console output may become garbled by competing processes

• console screen appearance and formatting may be overwritten

In general, system log and error messages should not be written directly to the system console, except
under the most urgent of circumstances. For example, a kernel crash and the display of system state
information may still be directed to the system console.

To remedy non-uniform message reporting and address problems noted above, early releases of the
BSD-UNIX operating system introduced the syslog message reporting system. syslog was then ported
to major UNIX system implementations as features of BSD-UNIX were adopted. syslog has been
implemented in HP-UX since the early releases of the operating system. Recent work has been done to
syslog in the 10.X releases for performance and standards issues.

2. Architecture of syslog

 The syslog system consists of the following components:

• a message format specification <syslog.h>

syslog messages are encoded as ASCII strings. Message strings are created throughout the
UNIX system. Messages are created at one of a set of possible levels; by setting a threshold
one can direct all messages at this or a higher level to given locations. Definitions for syslog
messages are in the include file <syslog.h>.

• a set of calls for creating those messages syslog(3c), logger(1)

Most users create syslog messages though one of the standard interfaces to syslog. The library
call syslog(3c) (contained within libc) is a C-code interface to creating message strings. sys-
log(3c) behaves somewhat like the standard printf() interface. From the command line or
within a shell script one can invoke the command logger(1) to create syslog messages.

• a set of locations from which messages can be read /dev/log, /dev/klog, UDP port 514

Messages come into syslog from various paths. Every syslog message must be directed to one
of a number of communication paths that are read by the syslogd daemon. These communica-
tion channels can include:

a UNIX pipe /dev/log
a special kernel interface /dev/klog (character special file)
an Internet domain socket UDP port 514

• a daemon that reads from these locations syslogd

The syslogd daemon is a user-space process. syslogd waits for incoming messages and directs
the message to possible output locations. A message that is logged (to a file, a logged-on user,
or the console) is also formatted and tagged with the system name. The syslogd daemon may
also do some filtering of messages; this might be done to prevent repeated messages from
flooding the system.

syslog: The UNIX System Logger
2150-3

• a set of locations to which messages can be directed files, users, etc.

This set of locations may include sockets, files, the system console, and logged-on users. Mes-
sages may be directed to one or more of these locations.

• rules for how messages are directed. /etc/syslog.conf

This set of configuration rules determines how messages are logged and the locations to which
they are logged. The rules are set by the System Administrator in the file /etc/syslog.conf.

The flow of messages through the parts of the syslog system is pictured in the following diagram.

Software developers who are creating their own syslog messages will be interested in the path for
user-created syslog messages. User messages are typically created through either the syslog(3c) C-code
interface or the logger(1) command. These messages are written to the pipe /dev/log, from which they
are then read by the syslogd daemon, which directs them to configured output locations. This flow of
messages, and sample code fragments for creating these messages, are shown in the following diagram.

syslogd
daemon

INET socket

/dev/log

/dev/klog

consolesyslog.conf
 config file

syslog message log filelog file

logged-in user

socket

logged message

syslog message

User Space
Process

(login,uucp,...)

UNIX Kernel

Remote Host

syslog(“...”) logger “...”

Remote Host

shell script/command line

#!/sbin/sh
my utility script
if [<test>]
 then

<normal action>
else

logger "Error in script"

C-code interface

{
if (<test>)
 <normal action>

else
syslog(LOG_ERR,"Error in C");

/usr/bin/logger

{

syslog(...)

}

/dev/log

syslogd daemonlibc - syslog(3c)

{

send(socket)

{
recv(socket)

/* C-code routine */
/* my utility program */

send(socket)

}

write(file)
write(user)
}

...

report/log
message

forward
message

syslog()

syslog: The UNIX System Logger
2150-4

3. Message format

One of the unique characteristics of syslog is that every message is created and logged in the form of a
plaintext ASCII string. Messages are then directed through pipes and sockets, written to log (ordinary)
files, and displayed to users using only standard string handling operations. This presents an easy to use
and well understood interface, but has a few performance implications that will be discussed later.

Through this discussion we will maintain a distinction between what we will refer to as asyslog mes-
sage and alogged message. A syslog message is the actual ASCII string that is sent to or read from the
pipes and sockets that make up the syslog system. It is useful to review this message format to under-
stand some of the capabilities and limitations of syslog.The logged message is the plaintext ASCII
string that is actually written to a log file, or to a user at her terminal. This is the string the system
administrator or an ordinary user will actually see.

syslog message format is defined in the include file <syslog.h>. In this file are the definitions for mes-
sage priority (level and facility) and the flags used to configure the syslog interfaces. Function proto-
types for the syslog library calls were added to <syslog.h> for the HP-UX 10.X releases.

3.1 Components of syslog messages

A syslog message is an ASCII string that consists of

• a message priority

• a timestamp

• the message string

A diagram of a syslog message is shown below.

syslog messages

ASCII string

" <pri> timestamp message string
"

priority: an ASCII integer that is a combination of:
level ordered levels 0-7
facility the subsystem originating the message

timestamp: an ASCII string for time of day
Format: Mth DD HH:MM:SS
Note: this is the time of day on the originating system

message string: text of the message to log

syslog: The UNIX System Logger
2150-5

Priority is encoded as an ASCII string enclosed by the angle brackets < and > at the beginning of the
string. Message priority is the ASCII integer encoding of an 8-bit quantity. This quantity is a combina-
tion of a 3-bit field (bits 0 through 2) used for message level and a 5-bit field (bits 3 through 7) used for
the message facility. Thus message priority level can have 8 possible values, and message facility up to
32 possible values.

Message levels are defined as an ordered list. If one has set a threshold at a given level one will receive
all messages at this or any higher level. Thus, if you have configured your syslog to log all messages
tagged LOG_WARNING, you will also log all messages of higher levels, such as LOG_ERR,
LOG_CRIT, and so on. The defined message levels, from highest level to lowest, are as follows:

LOG_EMERG 0 Kernel panic

LOG ALERT 1 Condition needing immediate attention

LOG_CRIT 2 Critical conditions

LOG_ERR 3 Errors

LOG_WARNING 4 Warning messages

LOG_NOTICE 5 Not an error, but may need attention

LOG_INFO 6 Informational messages

LOG_DEBUG 7 When debugging a system

The message facility is a tag to identify the originating subsystem of the message. Facility tags are
defined in <syslog.h>, some are reserved for the OS, and others are available for users and application
developers. The following message facility tags are defined:

LOG_KERN (0<<3) kernel messages

LOG_USER (1<<3) random user-level messages

LOG_MAIL (2<<3) mail system

LOG_DAEMON (3<<3) system daemons

LOG_AUTH (4<<3) security/authorization messages

LOG_SYSLOG (5<<3) messages generated internally by syslogd

LOG_LPR (6<<3) line printer subsystem

LOG_NEWS (7<<3) messages generated by the news system

LOG_UUCP (8<<3) messages generated by the UUCP system

LOG_CRON (9<<3) messages generated by the cron daemon

other codes through 15 are reserved for system use

LOG_LOCAL0 (16<<3) reserved for local use

LOG_LOCAL1 (17<<3) reserved for local use

LOG_LOCAL2 (18<<3) reserved for local use

LOG_LOCAL3 (19<<3) reserved for local use

LOG_LOCAL4 (20<<3) reserved for local use

LOG_LOCAL5 (21<<3) reserved for local use

LOG_LOCAL6 (22<<3) reserved for local use

LOG_LOCAL7 (23<<3) reserved for local use

syslog: The UNIX System Logger
2150-6

3.2 Logged Messages

The logged message is the ASCII string that will be written by the syslogd daemon to a user, to the con-
sole, or to a log file. The logged message is also a plaintext ASCII string, but of somewhat different for-
mat. A diagram of the logged message is given in the following figure.

The message priority field is removed; the information in this field was used by syslogd to direct the
syslog message according to the configuration rules set in /etc/syslog.conf. The timestamp is the same
ASCII-encoded date/time string as before. A new “system” field is next in the string: this is the system
name (equivalent to “uname -n”) that has sent the message. This is the local system if the message was
locally generated, or may be the name of a remote system communicating over an Internet socket. The
message string is the actual text of the message; useful fields such as process id and a message prefix
may be inserted in this message by using the openlog() function.

4. Using syslog

4.1 Creating syslog messages syslog(3c), logger(1)

Most users and software developers will create syslog messages through the standard interfaces sys-
log(3c) and logger(1). The syslog library functions openlog(), closelog(), and setlogmask() are con-
tained in the libc library; function prototypes are defined in <syslog.h>. The logger command
(/usr/bin/logger) provides similar functionality from the command line or in a shell script.

The syslog call provides an interface with printf()-like string handling to syslog. The syslog call is used
as follows:

syslog(priority,”message_string”)

Message priority is a combination of a syslog level and facility tag. The message string has a printf-like
interface: one can log ASCII strings using standard %-semantics. In addition, the %m entry will print
the global errno for the originating process. syslog() will return an error if /dev/log cannot be opened.
For the 10.X releases syslog() was modified to retry the write to /dev/log if it is busy, with a 1/10 second
delay for up to 20 attempts.

logged message

ASCII string

" timestamp message string
"

system
timestamp: the ASCII string for time of day
Format: Mth DD HH:MM:SS
Note: this is the time of day on the originating system
system: system name of the computer that sent the syslog message
Note: this may or may not be the originating system

message string: text of the message to log

syslog: The UNIX System Logger
2150-7

The function openlog() provides a useful method to control the logging process and set default fields in
the message strings. The function is called as follows:

openlog(“<identifying_string>”,log_options,default_facility)

where the following parameters can be set:

 “identifying_string” is a string that is prepended to each syslog message

 log_options can be one or more of the following:
LOG_PID log process ID with each message (very useful)
LOG_CONS write to console if unable to send to syslogd
LOG_NDELAY open connection to syslogd immediately
LOG_NOWAIT no wait for children logging messages to console

 default_facility assigns a facility tag to identify the originating subsystem (very useful)

The following calls are also part of the syslog library interface:

setlogmask(maskpri)

sets the process log priority mask to maskpri and returns the previous priority mask value
closelog()

closes the log file

From the command line or a shell script the command logger(1) can be used. logger parses the com-
mand line arguments and calls syslog(3c).

logger [-t tag] [-p priority] [-i] [-f file | message]

-t tag mark entry with this tag (default is getlogin())
-p priority facility.level pair
-i log the process ID with each message
-f log from the contents of the file
message message to log

(log from stdin (message) or file (-f))

4.2 Example code

An example of configuring and using syslog is given in the following diagram. A developer first config-
ures default settings for message strings using openlog(), and then logs messages to syslog() as needed.

Configure the log file
openlog(“Reactor control subsystem”,LOG_PID|LOG_CONS,LOG_LOCAL0);

Send a message:
syslog(LOG_ALERT,”meltdown imminent!”);

Format of the syslog message:

prepended string from openlog() PID message string from syslog()Priority Timestamp

<130> Mar 9 15:40:44 Reactor control subsystem meltdown imminent![1179]:

syslog: The UNIX System Logger
2150-8

Format of the logged message:

4.3 Configuring syslog

When the operating system is booted, syslog is brought up as a user space process. syslog is started
early in the start sequence so that subsequent services can use syslog logging if needed. When the sys-
logd daemon is started, it reads the configuration file /etc/syslog.conf for its initial configuration. One
can reconfigure syslogd and cause it to re-read its configuration file by sending it the SIGHUP signal
(“kill -1 <syslogd_pid> ”). The rules in /etc/syslog.conf are set by the system administrator.

Each non-comment line of syslog.conf is read as a configuration directive. The format of the directives
is given in the following diagram.

Priority tags can be one of the following ASCII strings: ”emerg” | ”panic”, “alert”, “crit”, “error” | ”err”,
“warning” | ”warn”, “notice”, “info”, “debug” ; these correspond to the priority tags used in syslog(3c).
Similarly, facility tags can be one of the following strings: ”kern”, “user”, “mail”, “daemon”, “auth” |
”security”, “mark”, “syslog”, “lp” | ”lpr”, “local[0-7]”.

 Examples of possible selectors include:

user.error <tab> /var/adm/syslog/syslog.log # non-critical

*.emerg <tab> /dev/console # emergencies to console

The action field specifies where the message is to be directed. Possible locations include:

file name can be regular file, for example a log file

device file for example. the console at /dev/console

list of users write to a user if logged in

* write to all users currently logged in

@remote-host forward to syslogd on remote system

Here is an examples of selectors one might use:

*.emerg <tab> /dev/console #might be crashing!

*.emerg <tab> * # let users know too

hpcupjf1
Sending

system

Timestamp

Mar 9 15:40:44
prepended string from openlog() PID message string from syslog()

meltdown imminent!Reactor control subsystem [1179]:

selector <tab> action

Selector: List of priority (Facility.Level) specifiers, semicolon separated
Facility is the subsystem originating the message
wildcard * selects all facilities
Level sets a threshold for which messages are logged
HP-UX: must select a level, no wildcard allowedl
Examples:
user.error <tab> /var/adm/syslog/syslog.log # log non-critical errors
*.emerg <tab> /dev/console # emergencies to console!

syslog: The UNIX System Logger
2150-9

*.alert <tab> root,fenwick #let root know ALERTS

*.info <tab> /var/adm/syslog/syslog.log#standard log file

In HP-UX 10.X, the standard location for logging syslog messages is the file /var/adm/syslog/sys-
log.log. The log file from the prior bootup or invocation of syslog is preserved as the file /var/adm/sys-
log/OLDsyslog.log.

4.3.1 Logging to Remote Hosts

One of the most useful features of syslog is that syslogd can write to an Internet-domain socket con-
nected to a socket on a remote host. The local syslogd daemon opens a socket and writes messages to it.
A remote syslogd daemon receives the message. This socket is bound to Port 514/udp, which is reserved
for syslog in /etc/services. Multiple hosts can be specified, and remote hosts can be chained together. If
one is chaining remote hosts together, one should be aware that the logged message will list the system
name of thesending (which may or may not be theoriginating) system.

Here is an example of how one would configure syslog for remote logging to the system “admin” in the
file /etc/syslog.conf:

sample /etc/syslog.conf file

*.error <tab> @admin.cup.hp.com # forward to Admin. station

4.4 System-generated syslog messages

Many UNIX subsystems have been converted to log their messages through syslog. One can now review
most kernel-generated messages through the syslog logfile. Kernel-generated messages are read through
the character-special device file /dev/klog. Most messages generated by the kernel in bootup and opera-
tion are logged to syslog. In fact, most of the information presented on the kernel bootup screens is
logged. One can find the same information in the syslog log file that one can find in the kernel message
buffer - there is no longer any reason to use the dmesg(1) command!

Many of the Internet services (such as the inetd server and sendmail) have also been configured to log
errors to syslog. The nettl logging service used in network drivers and services is a different logging
routine, but it announces its own startup through syslog.

Since syslog operates over TCP/IP networks, networked peripherals can also use syslog services. For
example, HP printers that use the JetDirect network interface card can be configured to report error con-
ditions to syslog. This may be a convenient way to detect and report common printer errors.

5. Considerations when using syslog

Now that we have covered the structure and use of syslog, it is interesting to consider some of the limi-
tations of the syslog system. Many of the features of syslog (small, easy to understand, uses plaintext
strings) also result in some definite performance considerations.

5.1 Internationalization

The syslog system is not internationalized, and has no explicit provisions for internationalization. There
are only a few status or error messages that are generated within the syslog libraries or daemon; each
message is displayed in English.

syslog: The UNIX System Logger
2150-10

Furthermore, since the messages that syslog forwards on behalf of its callers are handled entirely as
plaintext strings, there is no direct way a message could be generated in one language and logged in
another language. To syslog, the message is just an array of characters. One could get around this limi-
tation by first translating an error message and then calling syslog, but after translation the message is
just another string of bytes. Although the forwarding of messages through sockets could easily cross a
country boundary, the message string would still be as composed by the generator.

5.2 Performance

Since the syslogd daemon is a user space process and communicates with other processes via IPC, mes-
sage throughput takes appreciable time and is not suited for rapid logging. It will typically take some
fraction of a second to generate and log a message on the local system. There is overhead due to the use
of ASCII strings throughout syslog. For this reason syslog is not suited for logging events that occur
many times per second. Kernel services often use their own logging facilities that use special instrumen-
tation points within the kernel drivers. For example, the nettl logging facility allows one to log network
events down to the packet level.

The syslog time stamp is recorded to a one-second precision. One may receive multiple messages with
the same time stamp; one is guaranteed that the order in which they are logged is the same as the order
in which they are received. In a UNIX system it is possible to fill a pipe or socket by writing to it more
rapidly than it can be read or drained. When this happens the write() operation will return -1 and one
should retry the write. For the 10.X release the syslog(3c) library call was modified to automatically
attempt to retry a write to busy pipe; syslog will retry the write for 20 times with a 100 msec. timeout
between writes. If the write still fails, syslog() will return -1.

Finally, the UDP protocol chosen for syslog communication does not provide reliable delivery of mes-
sages. On a busy network UDP packets may be dropped, and a syslog message may then be lost. One
instance when this can be seen is when one directs syslog traffic from a high speed subnet across a
slower bridge.

5.3 Functionality changes in recent releases

Logging of kernel messages through the /dev/klog interface was added to HP-UX in the 9.04 release.
Every kernel message that one could retrieve from the kernel message buffer (accessible via the
dmesg(1m) command) is logged in the file /var/adm/syslog/syslog.log. This is a more reliable way to
retrieve these messages, since they will be reliably logged and not overwritten, as is the case in the
finite-sized kernel message buffer.

For the 10.X releases the syslog library interfaces were made thread-safe.

5.4 Chaining remote syslog messages

The ability of syslog to easily direct messages across TCP/IP networks to a remote syslogd is a powerful
capability. However, since syslog logs only limited information in the message string, forwarded mes-
sages can become confusing.

Here is an example of how this might occur. Consider a system where one has directed syslog messages
across two remote hosts (or upwards through a two-level hierarchy). A syslog message is generated on a
low-level system “client1”, is forwarded to a mid-level system “server1”, and is finally directed to the
System Administrator at the central system “admin”. The System Administrator will receive a message
that will state “server1: <error message>”, whereas the error actually occurred on system “client1”. One

syslog: The UNIX System Logger
2150-11

could get around this potentially confusing system be including an explicit system name (as returned
from “uname -n”) in the message that is originally generated.

5.5 Security considerations

Since syslogd runs as a root daemon, special care must be taken in the daemon to prevent an unscrupu-
lous user from breaking into the daemon and getting unauthorized root access. Early versions of syslog
were susceptible to the “stack bombing” attack. In this attack one gets the syslogd daemon to log an
overly long message that, when copied into the syslogd process stack, causes stack overrun and can
result in unauthorized root access. The underlying weakness exploited in this sort of attack (and other
“stack bombing” attacks against other root process daemons) is faulty code that does not do bounded
writes when copying arguments onto the stack.

Details of this type of attack are described in the CERT Advisory CERT CA-95:13 and in HP Security
Bulletin HPSBUX96092-029, dated Feb. 7, 1996. HP-UX has issued a series of patches to close this
security loophole, and these are listed below. Please make sure that the appropriate patches are installed
on your HP-UX installations.

PHCO_6595 (series 700/800, HP-UX 10.0, 10.01)

PHCO_6598 (series 800, HP-UX 9.X)

PHCO_6597 (series 700, HP-UX 9.0X)

PHCO_6224 (series 300/400, HP-UX 9.X)

PHCO_6595 (series 700/800, HP-UX 10.0, 10.01)

PHCO_6598 (series 800, HP-UX 9.X)

PHCO_6597 (series 700, HP-UX 9.0X)

PHCO_6224 (series 300/400, HP-UX 9.X)

6. Example: Cross-platform Operation

Here is an illustrative example of how syslog can be easily used to monitor system resources in a dis-
tributed, heterogeneous environment. The system consists of several types of computers (HP-UX and
other variants of UNIX, PCs running Windows 95 and Windows NT, and Macintosh PCs. System
peripherals, in this case the shared printers, are distributed on the network. The local subnet, and com-
munication to the JetDirect printers in particular, is supporting several type of protocols including

client1 server1 admin

syslog message syslog message

problem
occurs
here!

message
forwarded

here

problem
reported

here

 Write to
System Admin

syslog: The UNIX System Logger
2150-12

TCP/IP, Novell services, and Appletalk. The local subnet is connected via a bridge (potentially an ISDN
or SLIP connection) to the central administrative system.

Since the JetDirect printers support syslog reporting, one can easily configure the printers to report all
error conditions to the central reporting system. The System Administrator will be notified when each
printer does something as obvious as running out of paper, and will probably know and diagnose the
error before the local users have become aware of it!

7. Conclusions

We have reviewed the structure of the syslog system and seen how the simple architecture of syslog
offers both advantages and limitations. Some features of syslog to be aware of include the following.

syslog is a standard system logging tool across UNIX systems. Every major UNIX implementation sup-
ports syslog, and all syslogs talk to one another without difficulty.

Because of this easy interoperability, syslog works well in a distributed or client-server environment.
One can easily forward and collect syslog messages to central reporting nodes.

syslog is easy to configure and does not consume a lot of system resources. The code for both the sys-
logd daemon and syslog() library interfaces is small, and the daemon consumes small resources when it
is running.

Since the timestamp precision of syslog is only to one second, and since time is required for process
swaps and inter-process communication, syslog is acceptable for user process logging and some forms
of kernel logging. It is not suited for the rapid logging one may need when instrumenting kernel drivers.

Finally, syslog has some limitations that one should remain aware of. System name logging is poten-
tially confusing. The logging service is not internationalized, and has no provisions for handling inter-
nationalized messages.

Local subnet

HP-UX Server
9000/S712
HP-UX 10.20

hpcupjf1

"Slave" syslog

BSD UNIX client

hpcupjf2

"Remote" syslog

Windows PCs

Networked Printer
Laserjet 4MP
JetDirect interface

hpcupjf5

Macintosh PCs

hpcupjf6

Novell services

hpcupjf3

Appletalk/Ethertalk

Bridge

"Remote" syslog

Site
Backbone

TCP/IP

TCP/IP

lpd service

Novell service

Appletalk service

syslogd messages

syslogd messages
HP-UX Server
9000/S715
HP-UX 10.20

hpwsjwf

"Master" syslog

syslogd messages

