
Migrating Applications From Windows NT to UNIX Fast

Page 1

Chane Cullens (ChaneC@Bristol.com)
VP Engineering
http://www.bristol.com/Papers/NTtoUNIXFast

Overview
This document is a quick look that the major issues and technology that can be used to quickly move
Windows NT applications to Unix. For detailed information see http://www.bristol.com/Papers.

Terminology
�� Win32 - Windows 95 and NT application programming interface (API)
�� MFC - Microsoft Foundation Class library, C++ application framework
�� OLE - Object linking and embedding - a complete object orientation system
�� COM - Component object model - foundation for OLE
�� DCOM - Distributed component model
�� ActiveX - OLE’s new name, ActiveX extended for the Internet and more!

Wind/U for HP-UX
�� Windows NT programming interfaces (Win32) for HP-UX
�� Implemented using CLib, X, Motif and other Digital UNIX system interfaces
�� Started shipping in 1993 on HP-UX
�� Source level port - not binary emulation

Bristol Technology Partners
�� Microsoft - "WISE" Partnership for Windows Source
�� Digital - Affinity Program Packaging Partner. Wind/U runtime kit packaged on OpenVMS

OS CDROMs
�� IBM - Windows NT on OS/390 Partnership

The Single-Source Code Solution
Wind/U enables you to maintain a single version of application source code for a variety of computing
environments. Using a single source code base across platforms sharply reduces development and
maintenance costs. It also greatly shortens development time—according to Bristol's customers, using
Wind/U offers an average 80% time savings, compared with other development solutions. You can use
this time and cost savings to focus on providing new solutions, rather than on reinventing existing
solutions across multiple computer systems.

WindowsWindows
9595

WindowsWindows
NTNT

SunSun HPHP IBMIBM DECDEC SGISGI OthersOthers

Applicati onApplicati on
Source CodeSource Code

Win32Win32 Wind/U (Win32)Wind/U (Win32)

Acti veX & M FCActi veX & M FC

Migrating Applications From Windows NT to UNIX Fast

Page 2

Cross-Platform Process
Porting applications from Windows to Unix consists of the following steps:

Compile/linkCompile/link

Visual C++Visual C++

Source to UNIXSource to UNIX

ShipShip

Test/debugTest/debug

Preparing Win32 Code for Porting
The first step when porting Win32 code to other platforms is to make sure it compiles cleanly with
Windows 95 or Windows NT compilers. Use the Windows compiler’s highest warning level and
enable strict ANSI C/C++ compatibility checking. Ensuring strict ANSI compliance in the original
source code makes the compiling and debugging phases of the project much easier.
Next, copy the Win32 code to the target platform. Before compiling and linking, however, some minor
portability changes need to be made. Wind/U provides a utility that processes all the source files,
replacing Windows conventions with the target platform equivalents.

Compiling and Linking on Target Platforms
The next step is to create a makefile and build the application. Wind/U provides a utility that either
converts a Visual C++ makefile to a UNIX, OpenVMS, or OS/390 makefile, or creates a new makefile
for the application.
Building an application with the Wind/U makefile compiles the source files, compiles resource files
with a UNIX version of the Windows resource compiler, and links the application to the Wind/U
libraries. By default, the Wind/U generated makefile causes all objects and executables to be placed in
an architecture specific directory.

Testing and Debugging
The most complex aspect of porting an application is testing and debugging on target platforms.
Differences between compilers and architectures may expose problems in the application that were not
important in the Windows environment. Similarly, differences between the graphics subsystems on
different platforms may expose redundant API calls, unnecessary computations, and other wasteful
practices that drastically impact performance on UNIX platforms, although the impact is hardly
noticeable on Windows platforms. Therefore, it is critical that you thoroughly test all aspects of the
application on all target platforms.
To assist with testing and debugging, Wind/U ships with a set of debug Wind/U libraries that help
identify and resolve problems in your application. When an application is linked with the Wind/U
debug libraries, Wind/U watches for any potential errors, such as incorrect handles, bad filenames, and
invalid pointers.

Case Study Source Code Changes (>1,000,000 lines)
To see how portable Win32/MFC applications are to other platforms, let’s examine a recent Wind/U
porting project. This project is a large application with 2,400,000 lines of code, using the Windows API
and MFC. This application use the latest Windows technology, including OLE, ActiveX, threads, shell
APIs, and WinInet. Because this application was originally designed for Windows only, the original
code was not written to maximize portability. Even so, only 0.38% of the lines required changes to run
on other platforms.
What Changes Were Needed and Why?

Migrating Applications From Windows NT to UNIX Fast

Page 3

Portabi lity
Related
0.02%

Compiler
Related
0.33%

Unchanged
99.65%

Applicati on with >2,000,000
lines:

Of the 8600 lines changed, 8020 (0.33% of the total lines of code) were the result of compiler
differences on the various platforms. Although the Microsoft C++ compiler and the native C++
compilers supported by Wind/U all adhere to the ANSI C++ standard, there are some implementation
differences that you may encounter when porting applications. In this application, changes were
required because of differences in how the compilers handle the following features:

�� C/C++ comments (0.06%)
�� Pragmas (0.01%)
�� Nameless unions (0.04%)
�� #include case sensitivity(0.02%)
�� vtbl padding (0.13%)
�� C/C++ object references (0.08%)

Because some of these compiler issues, such as C/C++ comments, are very common, Wind/U provides
a utility that scans your source code and automatically makes the required changes for you.
In addition to the compiler-related changes, this application also required 580 lines changed due to
other portability issues. These changes (0.02% of the total lines of code) result from the following
types of issues:

�� Byte swapping
�� Operating system differences
�� Drive letter and pathname dependencies
�� Runtime environment settings

Win32 - Windows API and Microsoft Foundation Classes
In cross-platform development, developers choose from a variety of strategies and technologies.
However, the overwhelming popularity of the Microsoft Windows API makes it clear that most
developers consider it the best development environment. Here are the reasons why:

MFC Framework
MFC is a complete framework of ready-to-use, compiler-independent application components that
greatly improves engineering productivity for Windows 95, Windows NT, Macintosh System 7, UNIX,
OS/390, and OpenVMS. Using these pre-built, reusable, and customizable C++ classes allows you to
focus your resources on enhancing you application.
MFC offers over 120 reusable C++ classes, including general-purpose classes that support the non-
graphical portion of an application, classes for the core Windows GUI features, architectural classes to
help organize and structure application programming, and high-level abstractions and canned
functionality that provide major building blocks.

Migrating Applications From Windows NT to UNIX Fast

Page 4

Feature Rich API
Microsoft spends many millions of dollars adding advanced features to the Windows operating system,
including complex graphic mapping modes, DLLs, OLE, sophisticated on-line help, a unified printing
model, and advanced user interface components such as common controls and common dialogs.
Wind/U provides support for all of these advanced features—something that you will not find with
other cross-platform strategies.

Setting the Standard
The Windows API is the de facto standard API for creating Windows applications. Wind/U lets
companies use the Microsoft Windows API for all their software development, regardless of the
computer system. Through Wind/U, the standard API on the world's most popular operating system,
Microsoft Windows, is becoming the standard on UNIX, OpenVMS, and OS/390.

Training and Tools
Using the Windows API significantly reduces the cost of training associated with cross-platform
development. First, there is a large base of available, experienced Windows developers. Second,
Windows developers can access a wide range of readily available documentation and training from
Microsoft and third party providers.
The enormous size of the Windows market has resulted in there being more software tools available for
Windows API development than for any other platform. The intense competition in the Windows-
based developer tools market has resulted in Windows being the most powerful and inexpensive
development platform.

Wind/U® Architecture

C
Run-ti me
Library

Extensi ons

Acti veX
Control s

Kernel

Unix, OpenVM S, OS/390

HyperHel pM icrosof t Foundati on Class library

Windows API appl icati on

User

M oti f

X Toolkit

M akefile
Converte r

Resource
Compiler

Registry
Editor

Common
Dialogs

Common
Control s

WinInet

Winsock

Graphi cs
Device

Interf ace

Acti veX
Core
DCOMXLib Xpri nter

Threads OLE

GDI Layer - Display/Printer Graphics
�� Logical Coordinate Mapping
�� Printer Support
�� Logical Font Mapping
�� Simplified Painting Model
�� Device-Independent Bitmaps
�� GDI Performance

- Attribute cache, color cache, dynamic font cache

Kernel Layer - Non-GUI Functions
�� File I/O

- CreateFile, DeleteFile, OpenFile, ...

Migrating Applications From Windows NT to UNIX Fast

Page 5

�� Memory Management
- HeapCreate, HeapAlloc, LocalAlloc, ...

�� Dynamic Link Libraries
- LoadLibary, GetProcAddress, FreeLibrary

�� Utility functions
- Atoms, System Information, Profile, …

�� Threads

User Layer/Window Management
�� Creating, manipulating and destroying windows
�� Translate Windows classes into equivalent Motif widgets
�� Translate widget callbacks into Windows messages
�� Translate X events into Windows messages

Windows Standard Controls to Motif Widget Mappings
�� List box ==> XmList

- Subclassed for tabs and owner drawn
�� Scrollbar ==> XmScroll ==> XbScroll

- Motif scrollbar enhanced
�� Button (radio, check, etc.)

- XmToggle, XmRadio
�� Edit ==> XmText == > XbText
�� Static ==> XmLabel
�� Group box ==> XmFrame

Custom Wind/U Widgets
�� Multiple Document Interface - MDI

- Child windows, nested and clipped to parent window
- Look and feel derived from Motif windows

�� Combo box
- Composed of 3 widgets, Edit, Button and List
- Consistent look and feel to Motif 2.0 Combo box

�� 3-state button

Common Controls
�� Enhanced IE 3 Common Controls
�� Coolbar, comboex, date, drag list box, header, hot-key, image list, list view, progress bars,

rich edit, status bar, tab, tooltip, trackbars, tree-view, up-down

Win95 Common Dialogs
�� File Open/Save As
�� Find/Replace
�� Printing/Printer Setup
�� Choose Font
�� Choose Color
�� Runtime option to use Motif File Open dialog

Clipboard
�� Interchange text data with X/Motif clipboard
�� Interchange any data with other Wind/U apps
�� Supports standard Windows clipboard types

- text, bitmap, metafile
�� Supports user defined clipboard formats

Migrating Applications From Windows NT to UNIX Fast

Page 6

X Resources
�� Allow end user to modify attributes

- Foreground/background colors
- Fonts
- Window placement
- System colors

�� Supplements Microsoft Windows registry and .ini files

Debug Library
�� Modeled after Windows debug libraries

- Link time option, ARCH=xyz-g
�� Runtime type checking

- Invalid arguments, window handles, objects,
- Over 150 detailed messages printed to stdout

�� Built with compiler -g, debug symbols
- Stack traces, break on wuDebugWarning()

�� -SYNC for X-server synchronous mode

Portability Issues

Hardware Issues
�� CPUs
�� Intel, PowerPC, Alpha, HP-PA, SPARC, MIPS
�� Word size, 32 or 64
�� Byte ordering
�� Little-endian (Intel) vs Big-endian
�� Type alignment
�� 1, 2, 4 or 8 bytes
�� Structure packing
�� Saving space vs performance

Operating System Issues
�� Several choices
�� Windows, Windows 95, Windows NT, UNIX, OpenVMS, OS/390
�� File systems
�� Various syntax and length restrictions
�� Feature set
�� Threads, memory mapped files, preemptive multitasking
�� Portability Guidelines

Follow these guidelines when writing your Win32/MFC application to make the porting process as
easy as possible:

1. Use MFC to create the application. Since MFC provides an additional level of abstraction, it is
typically much more portable than writing directly to the Win32 API.

2. Make sure the code is ANSI compliant. In Visual C++, use the /Za compiler option to enable
ANSI compliance checking. Although there may be some differences in the way various
compilers implement the standard, any ANSI compliant source code should theoretically be
completely portable.

3. Make sure that “include” files are the same case as the filename and that functions are defined
and used with exactly the same case, since UNIX is case-sensitive.

4. Always use the fields of a structure or class instead of making assumptions about their
location or size in a structure. Different machine architectures store data in different order and
use different primitive type sizes, so any assumptions about storage order and alignment that
work on one architecture may not work on a different platform.

Migrating Applications From Windows NT to UNIX Fast

Page 7

5. Use the HIBYTE, LOBYTE, HIWORD, and LOWORD macros instead of making
assumptions about byte ordering. Some processors place the least significant byte first, while
others place the most significant byte first.

6. Always use the sizeof operator to obtain the size of data to be read or written. Differing data
type sizes or alignment schemes may alter the size of a given structure.

7. Design the product so that individual subsystems can be isolated for unit testing prior to full
integration testing of the entire application.

8. Verify availability of any third party components across all target platforms prior to
incorporating them in the application.

9. Make sure that the code to be ported compiles cleanly under Windows. With Visual C++, use
the /W4 or /W3 and /WX compiler options to enable the highest warnings and to treat
warnings as errors.

10. Do not use undocumented functions.

Wind/U Customer Applications

PowerSoft
Powersoft's award-winning PowerBuilder 4.0 made its debut as the leading cross-platform client/server
development tool by releasing both UNIX and Macintosh versions based on their original Windows
source base. Wind/U provides Powersoft with rapid application redeployment on various UNIX
platforms, while maintaining the advanced Microsoft Windows functionality that PowerBuilder
exploits.

Powersoft uses Wind/U to provide its customers with benefits such as integrated enterprise-wide
computing and application consistency across multiple operating systems.

Hewlett-Packard
As one of several HP applications ported with Wind/U, Hewlett-Packard’s Router Manager is a strong
addition to its latest line of advanced network configuration and monitoring tools. A quote from HP:
“HP required an increase in productivity; we've ported thousands of lines of Windows code, consisting

Migrating Applications From Windows NT to UNIX Fast

Page 8

of SNMP networking and interprocess communications with minimal source code changes. Rewriting
this code from scratch was unthinkable.”
This Hewlett-Packard group began its relationship with Bristol when they integrated an impressive
HyperHelp system into a native UNIX/Motif application. They cite technical support responsiveness as
a deciding factor in their expanded use of Bristol software products.

Hewlett-Packard uses Wind/U to provide cross-platform versions of networking products from a single
source code base.

Platinum Technology
Platinum Technology’s SQL-Coder is one of many Platinum applications that use Wind/U. It provides
a comprehensive development and management environment for creating, editing, executing,
managing, and deploying server-side SQL code across the open enterprise. Product features include a
robust query facility, graphical catalog browser, reverse engineering of SQL objects, and project
metaphor. Additional features are enhanced control of SQL code with revision control, check in/out
and deployment from a central repository. The intuitive Motif GUI provides a friendly server code
editing and management environment. SQL-Coder is the only feature rich SQL development tool that
supports more than one RDBMS server type.

Migrating Applications From Windows NT to UNIX Fast

Page 9

Platinum Technology uses Wind/U to deliver Windows functionality such as common controls on
UNIX platforms.

