
Using a Task Manager to Improve User Productivity
Barry Polhemus

ETC Corp.
284 Raritan Center Pkwy.

Edison, NJ 08818-7808

Introduction.

The HP3000 is reasonably 'programmer friendly' when it comes to
application development. Particularly if using TRANSACT/FASRTAN,
it is easy in a prototyping shop such as ours for many
applications to be developed rapidly as company needs arise. Most
of our applications are transaction based and the user
environment is highly interactive. The problem is, however, that
as the company grows, the number of transactions also grows. As
the needs grow, so do the number of applications. Soon, not
having CPU horsepower to burn, the HP3000 could not keep up with
our system needs. It became necessary to make some adjustments in
the way work was being done on the system. There were many steps
in our ongoing solution including spreading applications across
mUltiple Series 70 machines. What I will present here is one of
the steps taken to make our system (and users) more productive by
decreasing interactive user time.

Many of the functions performed in applications can be separated
into foreground and background tasks. By background task, I don't
mean a batch process which could be handled by a periodic job
stream, but rather a function which must be performed in a short
time frame. These functions or tasks obviously require user
initiation but do not require a user to sit in front of a
terminal until the task completes. If the user can put together
necessary information to perform a given task in the form of a
work request, and simply submit that request to a background
process to have the work carried out, the user becomes more
productive. The time spent waiting for a CPU intensive task to
complete can now be spent doing other work.

Drawbacks of a Simple Solution.

The design of a system to function in this manner could be built
around MPE message files, but there are distinct disadvantages to
relying exclusively on message files. First, let's look at this
simple approach. There will be a submit process which puts
together a work request and writes it to a message file. There
will also be a background process to read the message file and
carry out the requested task. The work request will be lost if
the background process reads the request from the message file
but is aborted before completing its task. If you have a means of
determining what request was lost, you can requeue it, but there
may be problems if the application requires the order of requests
in the queue to be maintained. To avoid losing requests, we could
first do a non-destructive read followed by a destructive read
after the request has been processed. This technique will work

Using a Task Manager 0094-1

for a single background process, but not if you want mul tiple
background processes to distribute the load for the same type of
work request. There is no way to coordinate which process is
working on which request.

Another diffculty will arise when you want to see what requests
are pending for the background process. You can't just read the
message file (eg. FCOPY) since that will wipe out your work
requests. We can use COpy access to look at the message file
which does non-destructive reads, but this requires exclusive
access to the file. This means the background task which reads
the file can't be running at the same time. Then there's the
problem of starting and stopping the background process. If it's
running in job mode, how do you let it know that you want it to
stop without simply aborting it? If you write a request
indicating self termination, how do you get it past the other
pending requests in the message file? Reordering the requests in
the message file would be difficult at best while the process is
running. Actually, in addition to a termination request, the
ability to reorder requests might be might come in handy if we
needed to move a priority request to the front of the queue.

For a single application there could be a single background job
to process requests, but when our number of applications
increases to ten or twelve, we would get twelve separate jobs
being fed by twelve separate message files each with their own
set of maintenance difficulties as described above. As you can
see, the number of messy details in our simple solution is
increasing rapidly. Let's consider an alternate, more practical
approach.

The Real Solution.

Even though message files have their drawbacks, they can be
useful if used with discretion. Let's say there will be a submit
process which will format a work request and write it to a
message file. There will also be a background process to perform
the intended task, but now it will be a son process running under
a father/monitor process in a single job. The monitor process
will act as a work request buffer between the sUbmitting process
and the process which does the work. It will pick up the incoming
requests from the message file and store them internally. Even
though there can be many sUbmitting processes, there will be only
one receiving process. The delay between writing a request and
having it read is now minimal. We don't need to rely on the
message file to hold requests until they are processed and we
don't have to do any tricks to get the request from the message
file while worrying about whether or not the work request will
complete successfully.

The monitor will automatically maintain the order of the incoming
requests as well as keep track, since there can be mUltiple son
processes, of which requests belong to which son processes. Son
processes can each perform a different function and/or they can

Using a Task Manager 0094-2

be duplicate sons used to distribute processing of a given
function. There will be a separate queue for each son process
and now that we no longer have the message file restrictions,
managing the queues is now a much simpler task. We can now list
the individual queues, reorder requests within a given queue, and
move requests between queues. Of course, the latter may not make
sense unless the source and destination queues handle the same
type of request.

Queue management also involves starting and stopping individual
queues. We need to selectively change a given queue's status
without bringing down the whole monitor system. To accomplish
these queue management functions, we need to send commands to the
monitor from the outside world. outside here refers to the
inter-session environment. MAIL intrinsics suffice for father/son
(intra-session) communication, but we need to send commands from
an interactive session to a background process running in job
mode. So we must go back to our trusty message file only now we
don't have to wait for all preceding requests to be processed
before our command gets through.

since input to the monitor process may be an incoming request or
some sort of command, we need some minimal structure to the
incoming message. Each must contain a command identifier
followed by data such as process number, request number, or
whatever might be pertinent to that command. Incoming requests
will be regarded as commands meaning pick up the request buffer
and store it. As for requests, however, a little more flexibility
incorporated into request routing will go a long way later. The
need is simply to associate an incoming request with a particular
son process. Good style suggests that we avoid things like
hard-coding destination son process names into our submit
programs since if we change our son process name, we also have to
change our submit program. Also, in cases where there are
multiple son programs to distribute load, we need a mechanism to
submit requests such that our submit process doesn't care how
many son processes might be available to perform the requested
work. Even more important, we don't want to require our users to
follow the load and explicitly submit to a given son process in
the group.

The 'Chain' Mechanism.

We can achieve the flexibility we desire by using a method which
I will call chaining. The mechanism will work as follows. Submit
processes will put an identifier called a chain id in the
request. There will be an external reference (chain file) which
will relate a given chain id (request) to a specific son process
number. The monitor will deal with its son processes by number.
There is another external reference (configuration file) used by
the monitor which contains program file names and provides an
association between program file and process number. This way,
the chain file as well as submit program are independent of
physical file names. As the monitor receives a request, it will

Using a Task Manager 0094-3

look up its chain id and queue it to the appropriate son process.
The chain file may indicate a single son process number or a
list. In the latter case, the monitor can chose among the list of
potential recipient sons based on which are active and how many
requests are pending for each that is active. Thus load balancing
among active duplicate son processes is automatic. since we can
start/stop specific son processes, we can regulate the throughput
for a given request function. For example, if we have three son
processes to handle a given request type and all are active, we
can have requests distributed automatically between all three. At
times when the load is lower, we can shut down (stop) one of the
three so that requests will be distributed only among the two
active sons. Also, since we can move requests between sons, any
pending requests for the process we shut down can be moved to one
of the remaining active processes.

Perhaps the most significant feature of the chain mechanism is
also the reason for the name 'chain'. In the chain file, along
with each chain id there can be a second chain id called the
'next chain id'. When a request is completed, the next chain id,
if there is one, will become a chain id on the same request as it
goes back to the monitor. This means that requests can be
'chained' from one son process to another automatically using the
same physical requests. Thus it is possible for a son process to
insert additional data into the request before it gets passed on
to the next son. We now have the freedom to modularize background
processing in any way we chose. Requests may follow different
paths through the same group of son processes. For example, say
we have three son processes through which a given request will
follow through in sequence. We also have a similar request type
which needs only the first and third sons. By simply supplying
the appropriate chain id on the original request, we can direct
it through either path via the chain file. Suppose we want to
insert a new module in a given chain. All we need do is modify
the chain sequence in the chain file and set up the new process
in the monitor. We don't need to change any of the submit or
associated son processes.

Communicating with the outside World.

So far, I have only discussed the communication of information
from the outside world to the monitor system (monitor process and
associated sons). We also need a means of getting messages back
to the outside world as to what's going on inside. There are two
types of information we want to see. First, general information
regarding the status of the system such as which son processes
are active, how many requests are pending. for each, the
processing order and content of the pending requests, which
requests are currently being processed, etc. Since all of this
information can be kept in files dynamically updated by the
monitor, all we need is a utility program which understands the
structure of these files and can then display status information
about the monitor system. We don't want any synchronization
problems, so we won't allow the utility program to make changes

Using a Task Manager 0094-4

to these files. Should we want to effect some change to the
system, such as shut down a particular son process, the utility
program will send a command to the father process and the father
will actually make the change. The utility program can then be
used to verify that the did actually took place. The change won't
necessarily be instantaneous since we're dealing with
communication between two separate processes (actually, three in
the example of shutting down a son).

The second type of information the monitor must provide are
messages from the various son proceses regarding errors
encountered while performing intended functions. That is, if the
request didn't complete successfully, we want to know that it
failed and probably why it failed. If son processes simply write
error messages to $STDLIST the entire monitor process would have
to be shut to check for errors. A more practical method is to log
error messages to a file. This file could then be reviewed
without disturbing the monitor process. Since there is usually no
need to keep the error messages indefinitely, a circular file is
a suitable choice. The simplest way to handle error logging is
to have the father process do the actual writing to the logging
file. The son processes can send a command containing the error
message to the monitor which will then log it to the error file
including a time and date stamp and process ide There can be a
separate program to read the error log file and display error
messages without affecting the monitor system.

Implementation.

Now that I have laid the groundwork for the monitor system, I
will give some details of our implementation and describe more of
the features of such a system. Though we are basically a TRANSACT
shop, the monitor program (named Monitor/JOOO) was written in SPL
for practical reasons. The son processes, as well as the submit
processes can be written in any language. I will discuss these
later. The monitor functions to link the submit process to the
son process (es) which eventually carry out the given task by
passing the work'request from one to the other. Only the submit
and son processes need understand the content of the request.
The actual request does include some header information, however,
on the request as received by the monitor such as a request
indicator to identify it as a request as well as the chain ide
The rest of the request is blindly passed along to the
appropriate son.

There are several files used by the father process for storing
requests, maintaining queuing information, maintaining status
information, as well as the chain and configuration files
mentioned earlier. The configuration file contains not only the
list of program files that represent the various son processes
but also contains the file names of the other internal files used
by the monitor system. This way, all of this configuration
information can be obtained by the monitor program via a generic
file equation without hard-coding any file names into the monitor

Using a Task Manager 0094-5

program. We can now set up mUltiple monitor systems on a given
HP3000 by simply setting different file equations. The associated
utility program previously mentioned works in the same manner.
There is only one physical utility program which gains access to
the various monitor systems via a different file equation before
running the program.

Mission Control - the utility Program.

The control of the monitor system really lies in the utility
program. It, too, is coded in SPL for practical purposes. By
practical, I am referring mainly relative to TRANSACT, given what
the program needs to do. The utility program gains access to all
of the monitor system files via the configuration file
back-referenced through a file equation. The utility program can
display the overall state of a given monitor system including
number of son processes, the current status of each, and the
number of pending requests for each. The requests' content can be
explicitly listed in octal and/or ascii formats. A given request
can be prioritized by moving it to the front of the queue for its
destination son process. As mentioned before, requests can be
moved from one son to another (provided they can service the same
type of request as per the configuration file). Requests can also
simply be purged.

The utility program functions not only to manage requests but
also the state of individual son processes. There are three main
states in which a son process can be. First, there is Down, which
means that son has no associated physical process (no PIN). There
is Inactive, which means that son process has been created, but
it is not activated. A son cannot process requests in either of
these states. Finally, there is Wait which means the son has been
activated and is waiting for a request to process. Once there is
a pending request, the status will be Active, implying that a
request is currently being processed. The contents of that
request can be listed even while it is active. There is also a
special case when that occurs when a son is started up with
requests pending. This Busy status means that the monitor process
has sent a request to the son but the son has not yet received it
because it is busy going through its start up procedure.

utility program commands exist to change a given son between the
three states. There is CR (create) to go from down to inactive,
and SU (start up) to go from inactive to active. These correspond
to MPE Intrinsics CREATE and ACTIVATE. There is SO (shut down)
which moves a son from wait/active to inactive. The currently
processed request, if any, is allowed to complete. During this
time while the request is completing, the status will appear as
Shut Pending for that son. As it completes, the son is suspended.
There is also KI (kill) which removes the son immediately from
the system. If there is a request being processed it is left in
the queue.

Using a Task Manager 0094-6

Before continuing, let me digress a bit and discuss queue
integrity. The first concern is in not losing requests. The
monitor system I am describing meets that requirement. Since it
stores the requests internally, the requests remain intact until
they are either completed as determined by the monitor itself via
notification from the son which processed it, or an explicit
purge request is received. Whenever a request is being processed
and does not complete normally due to the son process being
killed, the entire monitor process being shut down or even
aborted, or even a system failure, that request is left in the
queue and will be dealt back to the appropriate son when the
system is restarted. (Of course, this is under 'semi-normal'
circumstances, there isn't much that can be done for disc
crashes, for example.) The other concern with queue integrity is
maintenance of chronological order of requests. In most
applications this is not a necessity but in others it can be
vital that requests be processed in the order submitted even if
not processed right away. Again with queue integrity in mind, our
monitor design includes periodic (whenever a change takes place)
posting of queuing infomation to disc. Thus the individual queues
remain intact even if the entire monitor system is aborted. .

There are a few remaining utility program commands which I will
mention. BR (break) can be used to abort processing of the
current request and have the son continue with the next request.
GO and SH are the commands which start and stop the entire
monitor system. There are also some commands not for use by the
average user such as those to initialize (IN) all the queues
(wiping out all requests for all sons) and a renew (RN) command
which rebuilds all the queues from scratch but destroys
chronological order. VR (verify) causes the monitor process to do
an internal verification of its queuing buffers and lists. These
commands are shielded from the typical user by a security code.
Another protected command allows the priority of individual sons
or the father itself to be changed among CS, OS or linear queues.
There are some realistic checks built in here, however. You can't
put a son in the linear queue at a priority higher than the
father or at a priority higher than the the low end (highest
priority) of the CS queue.

The remaining commands are harmless. There is a pair of commands
which function like OUT=LP and OUT=TERM commands in QUERY. Output
from the listing or status commands can be sent to a file or
printer. The ID command will display version id and some
configuration parameters. There are some semi-arbitrary limits on
the monitor system such as the maximum number of sons that can be
included in a given monitor system as well as the maximum number
of requests that can be stored internally. In our system, we have
set the maximum sons at 15 and the maximum requests at 2000. When
a son process aborts (or is shut down), the pending requests will
continue to accumulate until it is restarted. If enough requests
back up, the monitor will no longer accept requests until room is
made available by either purging requests or processing them. In
the meantime, requests simply accumUlate in the message file.

Using a Task Manager 0094-7

When the internal request limit has been reached, the monitor
periodically displays a message on the console indicating a
request overflow has occurred. Display of this message can be
turned off or on via a utility command. Once you realize that an
overflow has occurred, there is usually no need to continue the
console messages. In some applications, 2000 requests may be much
too many to take advantage of the overflow warning system. The
number of requests that will be accepted by the monitor is
configurable up to the maximum allowed, so if 2000 requests
constitute a month of work, it is probably better to set the
internal limit at more like 200 instead.

The Workers - Son Processes.

Enough said about the utility program. Now I'll discuss some
aspects of developing/converting applications to run under the
moni tor, namely submit programs and son programs. The submit
program has a simple task. It only has to collect any information
necessary to perform the task in question, put it in a format
that will also be understood by the destination son process, and
write it to the request message file. The request has some header
information (such as the chain id) followed by up to 480 bytes of
data. In some of our applications, the request consists of only a
file name but in others it may contain a fairly wide IMAGE record
right in the request. Since both our submit programs and son
programs are written in TRANSACT, it is a common practice to put
the request buffer definition in an include file for use by both
submit and son programs. This insures that no discrepancies exist
in the request contents and tends to make programs more
understandable because the same variable names are used.

The son programs need to carry out the intended task based only
on information from the request. The physical process of request
handl ing , ie. getting requests from the monitor (father) and
letting the monitor know when the task has been completed, is
provided in the form of a monitor interface. For our TRANSACT
applications, there is a file which is to be included at the
beginning of the program which does all of this dirty work. The
interface code will do a perform to a predesignated label for
each request it receives. It also performs to another label for
initial item listing and one for any initialization code. The son
program then only needs to include the interface file and provide
the appropriate labels and need not be concerned with details of
request passing. Once code is developed to perform a function,
making it run as a son process is quite simple. This same style
has been extended to other languages as well. We have one son
application written in SPL and we have done some testing in
PASCAL. In these cases, the interface is in the form of
procedures placed in an SL or RL such that the main body of the
program does nothing more than call the interface procedure. The
son program will have one main procedure (other than 'main' body)
for processing a request whose calling address is passed to the
interface procedure so that it can be called from there. Three
other procedures can be included, one for initialization upon

Using a Task Manager 0094-8

startup, one for processing upon restart after a shut down, and
one for processing prior to a shut down. The latter of these
procedures is only used in case of a normal shut down command as
described above. For a normal shut down, the father process tells
the son to suspend when it has finished processing its current
request, if any, and the son can perform any shut down functions
prior to suspending. If the son is killed, no shut down
processing can be performed.

The design of a monitor process (submit/son pair) is basically
separating the information needed to perform a task from the task
itself. A typical application will include both an interactive
section to specify what has to be done, and a section to do the
work. In cases where the task is simple, creation of a monitor
process may not be practical. However, a task which is CPU
intensive relative to the interactive front end is a prime
candidate. Another situation might be when the tasks are very
simple but numerous and can be queued sequentially as a batch.
Let me give an example to differentiate. Suppose there is a chain
in an IMAGE data set and we need to perform some action for each
entry in the chain. The submit program can queue just the key
value in the request such that the son reads the chain and
processes accordingly. The alternative is to have the submit
program read the chain and send requests for each entry. The
latter approach involves a lot more request traffic but for some
applications this trade off is necessary. In either case, the
user is supplying only the key.

One more comment about developing son processes concerns error
handling. Different coding styles usually i'~volve different
degrees of error handling. Monitor son processes must be made as
robust as possible so that if anything goes wrong during
processing of a given request, short of major catastrophe such as
a corrupt data base, the error will be handled gracefully and the
son process will continue with subsequent requests. In the above
example where the son process accepts a key value to read in an
IMAGE data set, and the key value is invalid, the son process
should just log an error message and move on to the next
requestrather than abort. Error logging is as simple as putting
pertinent information in a buffer and calling a procedure (or
perform for TRANSACT) supplied as part the monitor interface. The
more son processes abort on their own, the more attention must be
paid to son process status and management. It is certainly more
desirable for the sons stay running without paying attention to
them, especially if there is a high volume of requests being
processed. If a high volume son aborts, the incoming requests
will back up quicj ly and if not discovered soon enough, the
backlog may be difficult to recover from. This is an example of
why one might configure the total requests held internally by the
monitor to less than the maximum so that if a son aborts and the
queue backs up, the console warnings give an earlier indication
that a problem exists.

Using a Task Manager 0094-9

Real-Life Examples.

I will now give an example of some of the ways we use our monitor
system. We have a chemical analytical lab which generates data
on a variety of intruments, predominantly HP1000 based mass
spectrometers. Data files containing analysis results are
transferred from the HP1000 to the HP3000 and subsequently a
request is written to a monitor message file which contains only
a file name. A son process receives this request and will load
the file into a transitory review data base. Once the file is
loaded sucessfully, the file is purged. The loading process looks
up some pertinent information from another data base and stuffs
it back into the request. The request is then chained to a second
son which takes the added information from the request and
performs some other cross referencing functions. This processing
is all automatic.

The data is then reviewed in the temporary data base with
interactive processes. There are batch oriented calculations done
by a different son process which are also reviewed sUbsequently
via an interactive process. When review is complete, data
organized into groups which represent the final reports, and sent
to another pair of data bases which will hold the data
indefinitely. The problem is that these data bases are on another
HP3000. The solution lies in a another son process that handles
generic file transfer via a remote I ·1 session as well as
simultaneous (part of the same request) writing of a supplied
buffer to a message file on the remote system. The remote message
file is, as you might guess, an input request file for a monitor
running on the remote system. The request to the transfer son
process contains a local file name, remote file name, remote
message file name, and buffer to write to the remote message file
along with some options such as overwriting the remote file and
purging the local file after transfer. The program is designed to
handle file transfer only, message transfer only, or both.

The user flags a series of groups in a given batch of results
that are ready to be transferred and then queues the batch name
to a son process which will find the flagged groups, put each
group into a file, and queue the files to the transfer process
process described above. That son process transfers the file to
the remote system and writes a record to a remote message file
which effectively queues a son process on the remote system to
pick up the file and put the data away into the appropriate data
base. These remote requests get chained to a second son process
which print reports from the data in the data base. Since there
is a significant volume of these reports queued directly from the
remote system, we have two copies of the son process which
produces the reports to avoid building a backlog. However, due to
some improvements made to our report program, a single copy has
been able to keep up with the load so that the dynamic load
balancing trick mentioned earlier isn't really necessary. A
third son process in the chain can take the data for the report
and put it into our electronic mail system where our clients can

Using a Task Manager 0094-10

dial in and view their data before the hard copy reports are
mailed.

Another of our applications for monitor processing involves data
base synchronization bewteen two HP3000 systems. We have some
master data sets (as in master/slave, not IMAGE master) on one
system with mirror image, read only slave copies on a second
system. Any time a change is made to master side, the changes are
queued to the transfer process described above in the form of a
file or for cases of a single record update, the whole IMAGE
record is put in the request. The request that ultimately reaches
the son process on the slave (remote) system is encoded as to
type of update in terms of file, single record, add, update,
delete, and what else is in the remainder of the request. The
single record updates occur in very high volume but are processed
rapidly including transfer as the transfer process not only
remains logged on to the remote system as long as it's active but
also leaves the remote message file open as long as the message
file writes are to the same message file. We saw to it that this
was the case to avoid a file opens (for the message file) on a
per request basis, let alone remote logins. Since much of the
synchronization involves client order changes, maintaining
chronological order of the changes is critical as well as just
not losing the changes. In other words, queue integrity is
important even across systems.

Conclusion.

We have gotten a lot of mileage out of the monitor concept. We
even have a monitor system on the HPlOOO mass spec data systems
mentioned above for processing raw data from the instruments,
reporting the processed data, and archiving the raw data to tape
automatically. As a matter of fact, our HP3000 monitor concept
grew out of the HPIOOO version. The physical mechanisms are as
different as RTE is from MPE but the basic functionality is the
same. The HP1000 monitor is an integral part of the Aquarius
software package developed by ETC which is now comes standard
with HP's RTE mass spec systems.

Even though the design I've described satisfies our needs,
further extent ions are certainly possible. A simple extention
might involve capturing statistics such as the volume of requests
and even processing time. It might then be possible to build in
some 'smarts' to the monitor program to evaluate request load and
automatically startup/shutdown son processes based on the load.
Another extent ion might be to build in some time delay before the
submitted request can be processed or, in effect, be able to time
schedule certain requests.

We feel the monitor systems have been a tremendous success in
making our computers do what they do best without making the
computer users wait thereby increasing their productively. If the
users had only computer tasks to perform we would probably be in
trouble, but even with our great degree of computer automation, a

Using a Task Manager 0094-11

number of paper tasks still remain, and our users now have more
time to devote to these tasks.

Using a Task Manager 0094-12

	Using a Task Manager to Improve User Productivity

