
Programming for MPE XL Performance

Dave Trout
Hewlett- Packard Company

2 Choke Cherry Road
Rockville, MD 20850 USA

Introduction

Application performance issues are fairly well understood these days for the existing MPE VIE
systems environment. With the change in architecture presented by HP's new 900 Series
HP3000 systems and MPE XL, it is helpful to re-examine application design philosophies and
techniques to insure optimum performance in the new environment.

Rather than attempt to present an exhaustive list of do's and don't's, a specific set of MPE XL
features and techniques will be reviewed within the framework of improving application
performance. Use of Native Mode (NM) versus Compatibility Mode (CM), extended addressing
capabilities, and user mapped files will be examined. Coding examples and methods will be
presented where appropriate to provide a background for discussion and elaboration.

With the understanding that application performance will generally improve as MPE XL
tuning continues, relative performance comparisons will be presented to help quantify coding
effort versus the resulting performance benefits.

Performance Opportunities

Because the 900 Series HP3000s are part of the overall commercial family of HP3000 systems,
a great deal of attention was given to designing MPE XL for compatibility. The very high
level of compatibility achieved has been well documented and has contributed to a constant
stream of successful customer migrations.

At the same time, UP Precision Architecture (HPPA) offers a number of new opportunities for
improved performance and productivity which go beyond the older HP3000 system
capabilities. Since a number of these new features are used in the programming environment,
it seems best to illustrate their power and benefits by actually going through a programming
problem and the solutions available in MPE XL. This discussion will therefore follow the
development of a program which will illustrate the benefits of NM versus eM, extended
addressing capabilities, and user mapped file techniques.

The two essential goals are: 1) show how these new techniques are used, and 2) demonstrate
that they provide improved performance over tP,chniques used in the past.

Programming for MPE Xl. P~rformance

20-.7.3-1

The Problem

To facilitate comparisons of the various techniques) a single programming problem is desired
which can be easily "modularized" in the solution. This allows leverage of common program
procedures and makes it easy to "drop in" different techniques by simply changing specific
program procedures.

A Table Lookup Simulation was chosen as a good problem to work on. Table lookup
techniques are widely used in computer operating systems and applications and the design
center is usually fast and efficient data retrieval) or in other words) high performance. In
many applications) the requests for retrieval of entries are spaced randomly within the table
and the table itself may be fairly large. These attributes tend to work against the requirement
for high performance (as far as the typical operating system is concerned)) so a table lookup
simulation seems particularly good for determining the real power of MPE XL and the specific
features to be examined.

Figure I shows a graphical look at the programming problem being posed.

THE PROBLEM
TABLE LOOKUP SIMULATION

DATA

APPUCATION

DESIGN CENTER:
FASTEST POSSIBLE DATA RETRIEVAL

LARGE TABLE

PFMPEXLP.dt HEWLETT-PACKARD

Figure I

Programming for MPE XL Performance
20.7.3-2

PFP2PRB

The design parameters for the Table Lookup Simulation program can be summarized as
follows:

• The table itself will be very large and must be at least several times larger than can be
represented in a single data segment on MPE VIE.

• Table entry retrieval must be extremely fast and efficient. It is desirable that the table
be accessed as a memory resident structure.

• During the simulation, random entries in the table will be accessed.

• The program and associated files will be designed so that identical simulations can be
run, each showing a different programming technique to do the actual table lookup.

• To gain a good performance comparison of the various techniques, a large number of
table entries will be accessed during the simulation.

The Solutions

For this programming problem, there is really only one solution in the MPE VIE
environment--use Extra Data Segments (XDS) to represent the table. (Note: Throughout this
paper, it is assumed that a basic understanding of the Extra Data Segments capability of MPE
VIE and MPE XL already exists. Our purpose here is not to show how to use the XDS
intrinsics but how to use the new MPE XL features which essentially replace those intrinsics in
functionality.)

In the MPE XL environment, we have four solutions to choose from:

• Table is multiple XDSs (program in eM).

• Table is multiple XDSs (program in NM).

• Table is a large array (program in NM).

• Table is a user mapped file (program in NM).

To duplicate the progression that a current MPE VIE programmer might take in migrating an
existing application, we will first examine an implementation of the solution program using
Extra Data Segments, then change the necessary procedures to use a large array (extended
addressing), then finally change the program once again to define the table as a user mapPed
tile. Performance improvement at each step will be noted and summarized at the conclusion.

NOTE

To illustrate the various coding techniques being discussed,
Pascal code fragments will be shown and referenced. These
fragments are taken from a fully tested and executable program,
however code which is not germane to the discussion has been
left out to improve clarity. At the end of this paper is a
complete listing of the actual Pascal program used for the
IImapped file ll version of the Table Lookup Simulation.

Programlning for MPE XL Performance
20.7.3.-3

The Test Environment

All tests were run on a Series 930 configured with 64MB of memory and 4-7937 disc drives.
The MPE XL version was A. 01. 10. To provide consistency in the performance comparisons,
each test was run in a dedicated batch job environment which included the actual simulation
itself and performance data collection programs. Each run used exactly the same data and
script files (described below). Performance data was collected with XLDCP and AMT for a 15
minute period for each test. The essential performance indicators for the simulation were
defined as follows:

• Elapsed time for the simulation.

• CPU time used during the simulation.

• Switch rate during the simulation (from/to NM/CM).

• %'of CPU time in NM.

The elapsed time and CPU time measurements were built into the simulation itself using the
TIMER and PROCTIME intrinsics. Switch rate and % of CPU time in NM were taken from
XLDCP and AMT logfiles. All graphs shown here were generated from the XLDCP logfiles.

Data Structures

Before we can begin discussing the first programming, example, the essential data structures
need to be defined.

The table itself is defined as having 65536 entries, each entry 16 bytes in length. (Eachentry
could also be described as 4 MPE XL words, 8 MPE XL halfwords, or 8 MPE VIE words. The
term halfword is used occasionally in MPE XL reference manuals to describe a 16 bit entity, as
opposed to word which describes a 32 bit entity.)

The table entries will be accessed by index range 0.. 65535. With 65536 entries, each 16 bytes
in size, we therefore have a table which is 1,048,576 bytes (or 1MB) in size. This is obviously
quite a bit larger than can be represented in any single data structure in MPE VIE.

For the purposes of this simulation, each entry in the table is very simply defined (a real
application would of course include useful data in the table). Each entry consists of two
subfields: 1) A 32 bit integer value in the first word which is defined as the index number for
that entry, and 2) The IDASCn" version of subfield 1 in the remaining 3 words (left justified).
It will become apparent later in this discussion why this data format was chosen. Figure 2
below shows the table structure.

Programming for MPE XL Performance
20,73~4

TABLE LOOKUP SIMULATION
TABLE STRUCTURE

I
I I.---------1
I I
I I.---------i
I I

entry 0 .. ~

entry 1

o 31

o--------
$30202020--------
$20202020--------
$20202020

1

$31202020 --
--------$20202020

$20202020

ENTRY =

16 bytes
4 MPE XL words
8 MPE XL halfwords
8 MPE VIE words

65,536 ENTRIES

TOTAL SIZE = 1,048,576 bytes
(1 MB)

PFMPEXLP.dt HEWLElT-PACKARD

Figure 2

PFPT8LS

In our Pascal program we can define the table data structure as follows:

TYPE
table entry type = record

f1 - integer;
f2 : packed array [1 •. 12] of char;

end;

Since one objective of the simulation is to access the table in memory, in the first two program
examples (XDS and large array) it will be necessary to load the table from a flat data file on
disc before the actual simulation of table lookups can begin. This is of course done only once
during the program at the very beginning. A separate program was written to load the flat
data file with the table data as described above. Our Pascal program would define the table
entry and the source data file as follows:

Progra.mming for MPE XL Perfocolance
2073-5

VAR
table entry : table entry type;
table=file : file of table_entry_type;

To simulate accessing the table, a large script file was created. Each record in this script file is
an integer which has a randomly distributed value in the range 0.. 65535. As this file is read
sequentially, each record's value will be used as the index for finding and processing the
indicated entry in the table. (It should be noted that this scheme does not provide for any
locality in the random table lookup. Most computer applications would exhibit at least
minimal locality in this kind of data retrieval.)

The script file (hereafter called the request file) was created with 300,000 records to insure a
good steady state simulation run that would last at least several minutes. Figure 3 illustrates
the structure of the request file.

TABLE LOOKUP SIMULATION
REQUEST FILE

o 31

43569

913

10332

58777

27369

RECORD =1WORD
random integer in the range 0..65535

300,000 RECORDS

PFMPEXLP.dt HEWLElT-PACKARD

Figure 3

Programmtng for MPE XL Performance

2073-6

PFPREQF

Table Lookup Simulation Using XDS

The data flow for this version of our program is shown in figure 4 below. Step 1 will be to
create the Extra Data Segments required to hold the table. To represent a 1MB table in
memory) 32 XDSs will be created) each 32768 bytes in size. Since each table entry is 16 bytes,
each XDS will therefore hold 2048 entries.

In Step 2, we load the table with the data as defined above from an already existing flat file on
disc (the table tile), Once this is done, we are then ready to begin the simulation by starting a
loop of reading the request file to get the table index requested, looking up the requested entry
in the table) and then processing the entry (Step 3).

TABLE LOOKUP SIMULATION
XDS DATA FLOW

REQUEST
FILE

1MB
MEMORY RESIDENT

TABLE

300000
RECORDS

TABLE FILE

65536
16 BYTE
ENTRIES

,/

65636 2
16 BYTE

RECORDS

PFMPEXLP.dt HEWLETT-PACKARD

Figure 4

32><05
32768 BYTES EACH
2048 ENTRIES EACH

PFP3DFX

The commands and simulation output for the XDS test are shown below. User input is
highlighted. The TLSXDSN program was compiled in native mode with the Pascal/XL
compiler.

Programming for !vfFF XL Performance

20.73-7

Extra Data Segments created.
Loading the Extra Data Segments ...
Table loaded. Number of entries = 65536.
Request script file REQ1.PROJECTS.TROUT opened.
Starting Table Lookup Simulation ..•

Table Lookup Simulation completed on 300000 requests.
CPU time used = 597252 milliseconds.
Elapsed time of simulation = 610966 milliseconds.

END OF PROGRAM

As mentioned above, the design of the simulation program is structured so that each technique
can be tested by simply replacing specific program procedures. The main body code for the
XDS version of the Table Lookup Simulation program is as follows:

BEGIN {main body }
initialize;
{ start measurements
load table;
setup loop;
repeat

get entry request;
look it up; { required only in the XDS version
process entry;

until no more requests;
{ end measurements }
close down;

END. -

For the "large array" and "mapped file" versions of the simulation program, the only difference
in the main body code is that there is no look_it_up procedure. The look_it_up procedure
is required in the XDS example because we are managing a 1MB memory table in 32 Extra
Data Segments. For each entry request, it is necessary to first determine which XDS the
requested entry is in, and then calculate the offset within that XDS for the beginning of the
actual entry.

Programming for MPE XL Performance
2073-8

This extra overhead is compounded by the fact that once we locate the entry, we must then
move the data from the XDS to our user stack so that it can be processed. Already we can see
that, aside from performance issues, use of XDSs is not vety productive for the programmer
when compared to using a simple large array or a user mapped file.

The code for load_table in our XDS program would look like this:

BEGIN {load table }
xds size :=-16384;
for-dire ptr := 1 to 32 do

getdseg (xds dirc[dirc ptr], xds_size, xds_id);
reset (table f1le); -
load counter-:= 0;
for dire ptr := 1 to 32 do

for xds entry := 1 to 2048 do
beg in-

read (table file, table_entry);
disp := xds~entry • 8 - 8;
dmovout (xds dirc[dirc ptr], disp, 8, table_entry);
load counter-:= load counter + 1;

end; - -
close (table file);

END; -

The look_it_up procedure would be coded as follows:

{ table_index has just been read from the request file }

BEGIN {look it up }
dire ptr :=-trunc (table index / 2048) + 1;
disp-:= (table index mod-2048) • 8;
dmovin (xds dirc[dirc ptr], disp, 8, table entry);

END; - - -

In this simulation, we are mainly concerned with the performance of retrieving a large
number of table entries. What we do with the entry once retrieved is not really of interest.
Of course, the bulk of a typical application would be in the processing of table data, not in
retrieving it.

Programming for MPE XL Performance

2073-9

For the purposes of this simulation testing, our process_entry procedure is very simple. To
verify that we have the correct entry, a simple comparison is made between the table index
used to find the entry (from the request file) and the first subfield in the entry itself. From
our description above of the table data, we know that the first subfield is nothing more than
the index of the entry. This means that our comparison should always show equal values. If
not, we have somehow retrieved the wrong entryg

So, the process_entry procedure will look something like this:

{ table_index has just been read from the request file }

BEGIN {process entry }
if table index <> table entry.f1 then

{ error }; -
req counter := req_counter + 1;

END; -

The other routines in the Table Lookup Simulation program need not be examined in detail
since they essentially do housekeeping, initializations, etc. Refer to the complete program
listing at the end of this paper.

From the simulation output given above, we know that the XDS version of our program ran
for about 10 minutes (610966 milliseconds to be exact). A graphical look at what happened
on the system during the test is seen in figure 5. This graph shows CPU utilization during the
simulation. (Note: In all test runs, the performance data collections were started two minutes
before the simulation program was started so that the effects of the simulation could be
clearly seen.) As expected, the dedicated batch job environment produced 100% CPU
utilization during the aimulation.

Programming for MPE XL Performance
2073-10

User
~by

c:=J

Detail CPU Busy Over TIme

nSxdsn tis HP3OOOIS930
Mltmary lllpateher

Nanqement

r?LZ2J ~

Slmpl• .-.mbIr
... 6tand1rd '-1ew THU 0M)5IB8 8:24 PM TO 8:39 PM

Figure 5

The really significant performance factor for the XDS example, however, is shown in the
following chart. Because the XDS intrinsics reside in the compatibility mode SL (SL.PUB.SYS),
a program running in native mode (as this one was) must access these intrinsics through the
Switch Subsystem in MPE XL. Using the intrinsics is transparent to the native mode program
because the necessary switch stubs already exist.

Figure 6 shows that during the simulation, the switch rate was sustained at about 600 switches
per second. This is an extremely high switch rate and definitely contributes to degraded
performance in the XDS version of the simulation.

Prog1 a.nming for MPE XL Perforlnance
2073-11

NM and CM SWItches

llSxden tis HP3QOO/S930
SWltda SWItcMt
ToHM ToCM

700

400

300

200

100

O..O-..I._....._-_....._-..-4---.....---...10---~_-=-;;;;; ...Iiiiiiii........

Figure 6

NM vs eM

To compare NM versus CM, the XDS version of the simulation was compiled using the CM
Pascal/3000 compiler on the Series 930 and rerun in CM. In this case, elapsed time was even
longer: 893342 milliseconds, or almost 15 minutes. The longer run time can be attributed to
the overhead of CM versus NM for this kind of CPU intensive program and the fact that the
number of switches was even higher in CM (see the summary table in Figure 12 at the end of
the paper). Remember that the simulation issues 300000 sequential reads to the request file;
the file system code for doing these reads is in NM, so the CM program must switch to NM for
all the request file I/O.

As this test illustrates, NM performance is better than CM performance, even when part of the
application is calling system routines which are in eM. This will generally be true for most
applications being migrated to MPE XL, although there may be certain corner cases where it
may be desirable to leave an application in CM (at least for now).

Programming for MPE XL Performance

2073-12

Table Lookup Simulation Using A Large Array

Now that a "past technology" solution for the Table Lookup Simulation problem has been
established, the newer techniques which provide easier design and better performance can be
examined.

With the extremely large addressing capability of MPE XL, it should be obvious that the table
can simply be represented as a large memory resident array. Instead of having to create and
manage multiple Extra Data Segments, a single block of memory space can be created which
will contain the entire table. Indexing to a given entry in the table will be greatly simplified
from a programming point of view and the XDS overhead is totally eliminated.

However, once the table array is created) there is still a need to load it from a disc file as in the
XDS example. Figure 7 shows the data flow in the "large arrayU version of the simulation.

TABLE LOOKUP SIMULATION
LARGE ARRAY DATA FLOW

REQUEST
FILE

1MB
MEMORY RESIDENT

TABLE

TABU: RLE ./

./
65536 2

16 BYTE
RECORDS

300000
RECORDS ~r-:-I" ·

~---~
65536

16 BYTE
ENTRIES

LARGE ARRAY

PFMPEXLP.dt HEWLETT-PACKARD

Figure 7

PFP30FA

Although the data flow is essentially identical to the XDS example (refer to the earlier
discussion of the steps involved), several procedures in the program will need to change. The
main body code (refer to the listing given earlier) is the same except that there is no
look_it_up procedure. The simulation test for the large array example resulted in the
following output. Program TLSARRN was compiled in native mode with the Pascal/XL
compiler.

Programoling for MPE Xl l\:rformance
2073-13

Memory array created.
Loading the memory array ••.
Table loaded. Number of entries 65536.
Request script file REQ1.PROJECTS.TROUT opened.
Starting Table Lookup Simulation .••

Table Lookup Simulation completed on 300000 requests.
CPU time used = 143231 milliseconds.
Elapsed time of simulation = 145824 milliseconds.

END Of PROGRAM

The code fragment below shows how the array is defined and also the declaration for the
pointer which will be used to index the table.

TYPE
table entry type = record

f1 - integer;
f2 : packed array [1 .• 12] of char;

end;
table_type = array [0 •• 65535] of table_entry_type;

VAR
table : Atable_type; { table pointer }

It would also be possible to index the table with a simple integer variable "pointer" which
would be calculated each time an entry is desired. There is really no need to do this, however,
since Pascal offers the pointer data type which can be conveniently used in the program
syntax. This will be illustrated below.

Programming for MPE XL Performance

2073-14

allocates the array on the heap }
open the table data file on disc}

One procedure which will obviously need to change is load_table. Instead of creating and
loading 32 Extra Data Segments) the array can be created on the Pascal heap with the new
function and then loaded by dereferencing the table pointer:

BEGIN {load table }
new (table);-
reset (table file);
table index := 0;
repeat

read (table file, tableA[table index]);
table index -: = table index + 1-;

until eof (table file);
close (table file);

END; -

Notice how convenient it is to dereference the pointer table and specify an array element
(table index) in the read statement above. In one Pascal statement) we have read the table
file and-loaded data into the appropriate table entry in the memory array.

The only other procedure which needs to change is process_entry. Only one statement
change is required:

{ table_index has just been read from the request file }

BEGIN {process entry }
if table index-<> tableA[table index].f1 then

{ error }; -
req counter := req_counter + 1;

END; -

Again) the power of Pascal syntax is evident in the if statement above. The pointer table is
dereferenced by table index and then the subfield variable f1 which "retrieves" the correct
table entry and subfield~ In one statement) the table lookup is accomplished.

This version of the Table Lookup Simulation exhibited much improved performance over the
XDS version; the elapsed time of this run (145824 milliseconds) or about 2.5 minutes) is a
significant 4.2 times improvement over the XDS test run! (Refer to the summary table at the
end of this paper.) The major factor contributing to the improved performance is the almost
non-existent switch rate since the XDS intrinsics are no longer being used. In addition) the
path length of the table lookup is greatly shortened since there is no need to calculate XDS
pointers and offsets. Using a large array provides for a much simpler and more efficient
means of accessing the table data.

Programming for MPI. XL Performance
2073-15

Clearly, using the extended addressing capability of MPE XL can result in impressive
improvements in run-time performance in addition to the programmer productivity
enhancement already mentioned. Can these great results be improved even more? Yes, they
can.

Table Lookup Simulation Using A Mapped File

One Part of the simulation that could be eliminated is the table loading. This is essentially
"wastedll time in the simulation and needs to be done each time the program is run (in the XDS
and large array versions). It would be far more desirable in this kind of application to make
the table durable from one run to the next and somehow access it from our program as a
memory array. This l'best of all worldsll solution can be implemented by using a mapped file.

User mapped I/O is a feature of MPE XL which is particularly unique and powerful. The
essential attributes are:

• A method of accessing data from files using a virtual pointer.

• Accessed using HPFOPEN intrinsic specifying a long (64 bit) or short (32 bit) pointer.

• File IIreads" and IIwrites" are accomplished at the level of LOAD and STORE machine
instructions.

• File System buffering and overhead is bypassed; structure of the data is user defined;
access files like memory, memory like files.

• Can be much faster than normal file a~ especially for non-sequentially accessed
files.

User mapped I/O is possible because of the basic design of HP Precision Architecture. All
objects to be accessed in memory (including files) are mapped into a large virtual address
space. When a file is opened, it is assigned a virtual address range which encompasses the first
byte to the last. By opening the file in such a fashion as to return to the user a virtual address
pointer which "pointS-1 to the first byte of the file, all data in the file can then be accessed by
dereferencing the pointer.

Programming for MPE XL Performance

2073-16

As the file is referenced, it is brought into real memory in pages from secondary storage (disc).
The essential components of this virtual demand paging scheme are shown in figure 8.

VIRTUAL DEMAND PAGING
VIRTUAL

ADDRESS SPACE

CPU

lDWR19.VA/
STW R19.VA~ TRANSlATION

MAIN MEMORY

lOGICAL PAGE =4096 BYTES
t MB =256 PAGES
128MB = 32768 PAGES

SECONDARY
STORAGE

7937 =146176 PAGES

2**16 X4GB

PFMPEXLP.dt HEWlETT-PACKARO

Figure 8

In the "mapped file" version of the simulation program, then, there will be no need to load the
table data as a separate step. The memory table and the table file on disc (previously used to
load from) will be one and the same. This greatly simplifies the data flow of the simulation, as
shown in figure 9:

Programming for MPE XL Performance
2073-17

TABLE LOOKUP SIMULATION
MAPPED FILE DATA FLOW

PFMPEXLP.dt

REQUEST
FILE

300000
RECORDS ~r-:I.
~

HEWLETT-PACKARD

Figure 9

1MB
~EMORY RESIDENn

TABLE

65536
16 BYTE
ENTRIES

(RECORDS)

TABLE FILE

PFP30FM

Only two steps are necessary: 1) Open the table file specifying mapped I/O, and 2) Loop
through the request file. Although the entire table will not be memory resident at first, it will
gradually become memory resident as more and more pages of the file are touched.

The simulation output for the "mapped filell test are shown below. The TLSMION program
was compiled in native mode with the Pascal/XL compiler.

Programming for MPE XI pp.rformance

2073-18

Table file opened for mapped access.
Number of entries in table = 65536.
Request script file REQ1.PROJECTS.TROUT opened.
Starting Table Lookup Simulation .•.

Table Lookup Simulation completed on 300000 requests.
CPU time used = 116992 milliseconds.
Elapsed time of simulation = 124550 milliseconds.

END Of PROGRAM

As with the "large arrayll version, the main body code will be the same as the XDS venion
except that there is no look_it_up procedure (refer to the earlier listing). The load_table
procedure will now become the place that the table file is opened for mapped access. No
loading need be done, so the procedure is essentially just the HPFOPEN:

BEGIN {load table }
hpfopen (filenum, status,

ffd option, table filename,
domain option, permanent,
access-type option, read only,
short_mapped_option, table); {return the pointer}

END;

Notice that the HPFOPEN intrinsic is called using itemnum, item pairs. This greatly improves
coding accuracy and ease compared to the FOPEN intrinsic.

The important part of the HPFOPEN call is in the last line above; the short mapped option is
requested and in the pointer variable table is to be returned the virtual address of the
beginning of the file. Both the table array and the pointer table are declared in exactly the
same way as they were previously for the IIlarge array" version of the simulation (see code
fragment above). As a result, the load_table procedure is the only piece of code that needs to
change in order to convert the "large array" program into a "mapped file" program. Procedure
process_entry is identical for the two versions (see code fragment above).

For a detailed look at the entire simulation and the codIng technique for mapped files, refer to
the complete listing of the program at the end of this paper.

Programming for MPE XL Performancp.
2073-19

From above) the elapsed time of the "mapped file" version of the simulation was 124550
milliseconds, or about 2 minutes. This is even more improvement over the XDS version than
was seen with the large array technique, and results from not having to "load" the table as a
first step in the simulation. To graphically see the benefits of the mapped I/O technique
versus the XDS technique) compare the following graph with the earlier XDS graph showing
CPU utilization:

u­
CAJby

CZJ

Detail CPU Busy Over Time

1lSmion tis HP3000/S930
Memary [JapateW

ManqtmInt

(?Z?2;] ~

SMIp1tttJmblr
tIIIIIt S1InrIIrd VIew 1KJ 0511&88 8:48 PM TO 9:03 PM

Figure 10

As expected, the switch rate dramatically improved over the XDS test. Note that the X-axis
in the following graph is the same as before, however the Y-axis shows a much smaller range:

Programming for MPE XL Performance

2073~20

NM~ CM SwItches

1Umion til HP3000/S930

SIUcNI SwltcNI
TOHN TO Of

,,,,
41' - .. _,

, .-'- .-,, '\, ,, , ,, ' ...
O~O---~-~-""--"'------~------ ----..-~-----~,O~--~t2----14....--~16

Figure 11

Mapped 1/0 Considerations

There are some considerations when using mapped files. Since the File System is being
effectively bypassed, things like EOF and file posting are no longer being automatically
managed. The user must explicitly use the FPOINT and FCONTROL intrinsics to set the EOF
in those cases when records have been written beyond the existing EOF. This only need be
done before the file is closed. (Since we are only reading the file in our example program there
is no need for this.)

For critical applications, the user may want to use FCONTROL to force physical posting of file
pages when appropriate, although too much of this would negate the benefits of using mapped
files.

As noted above, mapped files may be opened with either a short pointer or a long pointer. For
short pointer access, a file may be up to 4MB in size and a total of 6MB of mapped files may
be opened at once per process. For long pointer access, a file may be up to 2GB in size and
there is no limit to the total of mapped file space being utilized per process.

Short pointers are more efficient than long pointers and should be used wherever possible. If
files are to be opened using a mix of techniques (FOPEN, HPFOPEN, HPFOPEN mapped, etc.)
simultaneously, then use of long pointers will be required.

Programming for MPE XL Performance
20.73-21

Conclusions

The following table shows the pertinent performance data for all of the simulation test runs.
The "relative performancell column has been normalized to the XDS program running in native
mode and is based on elapsed time of the simulation.

TABLE LOOKUP SIMULATION
RELATIVE PERFORMANCE

SERIES 930/64MB
MPE XL A.01.10

CPU ELAPSED
ru-t3ER

~ RELATIVETEST a=ms ms
SWITa-ES

~ PERFORMANCE

XDS. eM 872255 893342 931200 53.4 0.68

XDS, NM 597252 610966 731313 83.6 1

ARRAY, NM 143231 146824 112 99.9 4.2

MAPPED I/O, NM 116992 124550 110 99.9 4.9

PFMPEXLP.dl HEWLETT-PACKARD

Figure 12

PFPAElP

The mapped I/O program shows the best results at 4.9 times the XDS program. The large
array test also showed significant improvement at 4. 2 times the XDS program. Both of these
new MPE XL techniques illustrate the power and performance potential of UP Precision
Architecture. In addition, it has been demonstrated that the programmer's task can be
simplified and productivity improved. Clearly, the benefits of application design changes to
take advantage of HP Precision Architecture are worth the effort.

Programming for MPE XL Performance
2073-22

Appendix A: Additional References

• Programmer's Skills Migration Guide (30367-90005)

• Accessing Files Programmer's Guide (32650-90017)

• MPE XL Intrinsics Reference Manual (32650-90028)

• Hewlett-Packard Journal, December 1987, "MPE XL: The Operating System for UP's
Next Generation of Commercial Computer Systems"

Appendix B: TLSMION Program Listing

$OS 'MPEXL'$
$STANDARD LEVEL 'HP PASCAL'$
$CODE OfFSETS ON$ ­
$TABLES ON$
$VERSION '1.0'$
$TITLE 'Table Lookup Simulation Using Mapped 1/0'$

PROGRAM tlsmio (input,output);

1.0 05/02/88 Dave Trout, HP Rockville

This program does a Table Lookup Simulation. The purpose of this
simulation is to compare the Extra Data Segments (XDS) capability
of MPE for table handling versus Mapped I/O techniques and extended
addressing capabilities in MPE XL.

Data St ructu res:

TABLE - 65536 entries, accessed by index 0.• 65535
TABLE ENTRY - 16 bytes (4 MPE XL wordsl8 halfwordsl8 MPE VIE words)

Total table size is 1,048,516 bytes (1MB).

The table will be accessed as a memory resident table using XDS
intrinsics, a large array, or a mapped file. To simulate accessing the
table, a large script file has been created; each record in this script
file is an integer which has a randomly distributed value in the range
0.. 65535. As this file is read sequentially, each record's value will
be used as the index for finding and processing the indicated entry in
the table.

It should be noted that this scheme does not provide for any locality
in the random table lookup. Most computer applications would exhibit
at least minimal locality in this kind of data retrieval.

Programming for MPE XL Performance

2073-23

Since table lookup applications typically require extremely fast
access, it is desirable to have an efficient access PATH to table
entries which are MEMORY RESIDENT. Performance of this simulation will
be determined in large part on how well these objectives are met. }

CONST
ccg 0;
ccl = 1;
cce = 2;
req ffd = 'REQUEST';
time_adj = 2073600000;

TYPE
xlstatus = record

case integer of
o (all: integer);
1 : (info: shortint;

subsys : shortint);
end;

table ent ry type = record
f1 :- integer;
f2 : packed array [1 .• 12] of char;
end;

request file
timer adjust

error number }
subsystem' number

logical entry number }
DASCII version of above

table_type = array [0 .•65535] of table_entry_type;

VAR
status : xlstatus;
no more requests : boolean;
req file : file of integer;
table index integer;
req counter : integer;
timer start : integer;
timer-stop : integer;
time :- intege r;
table : Atable type;
filenum : integer;
cpu_time : integer;

fUNCTION timer : integer; intrinsic;
fUNCTION proctime : integer; intrinsic;
PROCEDURE hpfopen; intrinsic;
PROCEDURE fclose; intrinsic;
PROCEDURE ffileinfo; intrinsic;
PROCEDURE terminate; intrinsic;

PROCEDURE stop (parm : integer);

{ table pointer }

BEGIN
writeln ('*** fatal error; parm
terminate;

END;

, ,parm:5);

Programming for MPE XL Performance

2073-24

PROCEDURE initialize;

BEGIN
no more requests := false;
req counter := 0;

END; -

PROCEDURE load_table;

Since the table already exists as a permanent file on disc which
will be opened and accessed using mapped 1/0. there is no "loading"
to do. The table will become memory resident automatically as the
simulation touches pages of the file. This routine will HPFOPEN
the file specifying the short mapped option. The short pointer
returned by HPFOPEN will then be used in later routines to access
entries in the table. }

CONST
ffd option = 2;
domain option = 3;
short mapped option = 18;
access type option = 11;
file_ecf =To;

{ setup for HPFOPEN }

VAR
table filename: packed array [1 •. 10] of char;
permanent : integer;
read only : integer;
entry_count : integer;

BEGIN
table filename := '%TABLE~';

permanent : = 1;
read_only := 0;

hpfopen (filenum. status.
ffd option. table filename.
domain option, permanent,
access-type option. read only,
short_mapped_option, table);

setup ffd }
permanent file domain
read only access }

open the table file

{ return the short pointer }

if status.all <> a then
begin

write In ('error on hpfopen; info = "
status.info,', subsys = ',status.subsys);

stop (6);
end;

writeln ('Table file opened for mapped access.');
ffileinfo (filenum, file eof, entry count);
if ccode <> cce then stop (7); -
writeln ('Number of entries in table = ' ,entry count:6,'.');

END; -

Programming for MPE XL Performance

2073-25

PROCEDURE setup_loop;

CONST
afd 1;

VAR
req file afd : packed array [1 •• 28] of char;
afd-string : string[28];
n :-integer;

BEGIN
reset (req file, req ffd); { open the request file }
ffileinfo Tfnum (req file), afd, req_file_afd);
setstrlen (afd string, 0);
strwrite (afd string, 1, n, req file afd);
afd string :=-strrtrim (afd strTng);-
writeln ('Request script fiTe ',afd string,' opened.');

END; -

PROCEDURE get_entry_request;

BEGIN
read (req file,table index);
if eof(req file) then no more requests := true;

END; - --

PROCEDURE process_entry;

Since we are using mapped I/O, we simply reference the entry we
want to retrieve it. For this simulation, Just test to make sure
we do indeed have the right table entry. Since the first word of the
table entry is an integer whose value is the table index, we can
simply compare the index used with the retrieved value. They should
be the same! }

BEGIN
if table index <> tableA[table index].f1 then

begin -
writeln ('we have a problem here •.• index/entry don"t agree.');
stop (4);

end;
req counter := req_counter + 1; { this one is done}

END; -

PROCEDURE close_down;

BEGIN
close (req file);
fclose (fiTenum,O,O);
if ccode <> cce then stop (8);

END;

close the request file
close the table file }

Programming for MPE XL Performance
2073-26

BEGIN {Table Lookup Simulation}

initialize;
cpu time := proctime; { start measurements}
timer start := timer;
load table;
setup loop;
writeTn ('Starting Table Lookup Simulation .•• ');

repeat
get entry request;
process entry;

until no_more_requests;

cpu time := proctime - cpu time; { end measurements}
timer stop := timer; -
time := timer stop - timer start;
if time < 0 then time := tIme + time adj; { fix time if required}
writeln; -
writeln ('Table Lookup Simulation completed on

req counter:6,' requests.');
writeln ('CPU-time used = ' ,cpu time,' milliseconds.');
writeln ('Elapsed time of simulation = ',time,' milliseconds.');

close_down;

END {Table Lookup Simulation}.

Programming for MPE XL Performance
2073-27

	Programming for MPE XL Performance

