Table of Contents

INtroductionttt e e e e e 1
Report Writer Functionality i e e e 2
Page Layout and Summary Controls. e e 2
Additional FEatures v vt v v it it e e et e 6
Format CONLIOIS ittt it ittt ittt et ettt ettt e i e e e e e 7
Line FOormatting oot v ittt et ittt e e e e e 7
Dataltem Formatting. ot v ittt ittt ittt e e e e 7

Data Retrieval i i e e e e e i e s 7
Third Generation Language ACCESS. v o v v v v vt vt v vee et ittt ettt e e 8
Fourth Generation Language ACCesS. v vt v vttt i ittt ittt ettt e eonnnans 8
Non-Data-Base Data ACCESS. v v vt v vttt ittt ittt et e e 9
Performance Considerations.o it i e e e e e e 9
Report Writer CONtrols. oot it ittt ittt ettt e e e e e 9
FOrmMatting.ttt i e e e e e e 10
Data Retrieval e e e e e 10
Third Generation vs. Fourth Generation Languagec.o.uuiuieeeenn. 11
Matching Reports, Users,and Report Writers.ot ii it nnnnn 11
Types Of RePOILE. . . . o ottt ittt it et it et e e e e e 12
SImpPle REPOTES v ottt et e e e e e e 12
Complicated RePOIES. . . . o v vttt it ettt e e e e 12
Typesof User Interfaces ittt ittt ittt it e e 13
The Occasional USEr.ottt et it ettt ettt ittt et et 13
The Semi-technical User. ittt i i it i ittt e e 14
The Technical USer o vttt ittt ittt et ittt et et e e 14
Isone report writer enough?. i e e e e 15

The ENd USEr. ottt ittt it ittt it it e e et e e it e 16

2053

A Report on Report Writers

Stewart Hill
Hewlett-Packard Co.
Computer Language Lab
19447 Pruneridge Ave.
Cupertino, CA, 95014

INTRODUCTION

Reports have long been an integral part of business computing. For many years, report programs could
only be written by trained programmers; such programs can be difficult to write and tedious to verify.
But in recent years a growing number of languages and products have made report writing much easier.
Many more people can now create and produce reports, even without training in standard programming
languages.

Report Writers come in many different forms and with vastly different user interfaces. They range from
statements imbedded in a programming language to forms-driven stand-alone report products. With the
advent of friendly report writers, several questions must also be raised: 1) What kind of performance is
achievable with a report writer? 2) What features should be expected from a report writer, and how might
these vary from product to product? 3) Which users should reasonably have access to a report writer, and
what users do not need such access?

This paper addresses the last two questions what report writers do, and who should use them.
Performance is addressed only in a general manner, as it is not within the scope of this paper to compare
actual performance data. Such data has been obtained previously[1], and it is subject to change.

Several different report writers were examined in preparation for this paper, though these are by no
means all that are available. The intent of this examination is not a product comparison, but an attempt
to present the various implementation styles. This type of investigation brings out both the similarities
and the differences which can be found in report writing systems. Additionally, these products are
intended for different types of users, and looking at them side by side helps delineate the intended
audience.

Each of these products stands on its own merits, and no judgements on them will be made. Figure lisa
list of the products examined. These were chosen because reference documentation was readily available
and because they represent the current range of user interfaces to report writers. The “style" listed is very
general. The fourth generation languages do not all use the same style of interface.

[1] A Performance Comparison of HP3000 Report Writers, Roger W. Lawson, September 1987
INTEREX (Business Users) Proceedings

A Report on Report Writers 2053-1

PRODUCT COMPANY Style

HP Business BASIC HP Imbedded 3GL

Powerhouse(r) QUIZ COGNOS 4GL

HP Visor HP Forms-driven/SQL (HP-UX)
The WRITE STUFF PROTOS 4GL

Business Report Writer HP 4GL Report Specific
ASKPLUS COGELOG QUERY -based

COBOL Report Module ANSI Imbedded 3GL

Figure 1: Sample Report Writer Products

REPORT WRITER FUNCTIONALITY

What is a Report Writer?

To answer this question, one must first determine what is meant by a “report.” In general, all output can
be considered a report, no matter how unstructured it may be. However, such output is uncontrolled and
far too general a definition to use. Instead, let us define a report to be the structured, formatted output
of repetitive data, plus the ability to summarize that data. This definition certainly does not cover all
reports, but it does describe the concepts behind most reports.

A report writer is a powerful controller. Its primary purpose is to control the structure of the output and
the formatting of data within that structure. In addition, a report writer provides summary data for use
within the report itself. The actual workings of a report writer are complicated and can be difficult to
understand. Nevertheless, these controls relieve the programmer of an enormous amount of bookkeeping,
which leads to better programs in less time.

To accomplish its goals, a report writer requires three distinct parts: a page layout controller, a data
formatter, and a data retriever. In some products, these pieces are closely linked and are intended to be
used only with one another. Other report writers provide these parts as independent controls which may
be used with or without one another. Whatever the implementation, these controls are able to produce
reports ranging from the very simple to the very complex.

Page Layout and Summary Controls

Report writers have two sets of controls for structuring report output. One set defines the layout of a
page, which usually corresponds to a printed piece of paper. The other set controls the overall report,
including the grouping and summarizing of data. All of the examined report writers provide these
controls.

A Report on Report Writers 2053-2

Top Margin

Detailed Lines with
Actual Report Data

Page Length
Left Margin

YIPIM / ulBIe YOI

Bottom Margin

Figure 2: Page Layout

Figure 2 shows a typical report page, including some blocks associated with groups of data. All of the
examined report writers define these parts of a page in some way. They also provide controls for
customizing each area of the page. The terms used to describe the page layout are:

PAGE LENGTH: The total number of lines on a page.

LEFT MARGIN: The number of spaces printed before each line of output. Most report
writers include this in the format of each line, rather than providing a specific control
statement.

RIGHT MARGIN (or WIDTH): Indicates the last column in which data can be written. This
is usually based on the output device.

TOP and BOTTOM MARGIN: The number of blank lines which occur at the top and bottom
of every page. Many report writers combine these with the PAGE HEADING and PAGE
FOOTING controls, rather than having separate controls.

PAGE HEADING: Defines data to be printed at the top of each page.

PAGE FOOTING: Defines data to be printed at the bottom of each page.

A Report on Report Writers 2053- 3

= HEADING: Defines data to be printed before each summary grouping. (Described below)

s FOOTING: Defines data to be printed after each summary grouping. This area is often used
to display totals or counts of the preceding detailed data.

Some additional controls for the layout are:
» PAGENUM: The current page number.
» SET PAGENUM: A means of modifying the current page number.

= NEED: A means of specifying that a certain number of lines must be on the page before the
next output takes place. A new page is started if fewer lines are left on the current page.

NOTE

The terms above do not represent syntax from any one report writer. These
terms are commonly used and tend to convey their intent directly.

Among the report structure controls, the most important feature is the ability to define groups of data,
called summary groups. These groups are usually based on a change in the value of a data base field or a
variable. Such a value change causes a break, at which time the report writer may take some action.
These breaks constitute the heart of report writer control, allowing great volumes of data to be printed
and summarized in meaningful (and readable) reports.

Reports may use several breaks at the same time; these breaks are nested to provide different levels of
detail with the report. The key to understanding report writers is understanding how these nested breaks
work. This is relatively simple, but not necessarily straightforward. A careful reading of a m.nual, along
with some hands-on experience, should be enough for most people to learn about a report writer.

The number of break levels (also called summary levels) available in the report writers varies, but nine
levels appears to be the minimum number. Report writer controls allow a HEADING and a FOOTING to
be defined at each break level, and summary data and automatic totalling can be kept for each level.
These controls provide the programmer with great flexibility for designing the look of a report, and the
ability to put out meaningful data.

The typical report structure controls are:

= REPORT HEADING: Defines data to be displayed only at the beginning of the report. Cover
pages and introductions may be defined here. Not all report writers provide this facility.

* REPORT FOOTING: Defines data to be displayed only at the very end of the report. Often
used to display grand totals for a report. All examined report writers provide this.

= BREAK. Defines the data base field, variable, or expression to use for grouping data.
Multiple BREAK levels are allowed in order to define different levels of detail.

A Report on Report Writers 2053-4

s TOTAL: Defines fields, variables, or expressions to be totalled automatically. This can be
done at each break level. Usually a function is defined for printing this total, although some
report writers do this automatically.

s COUNT: Provides an automatic count of the number of detailed items printed in a group.
This value can be accessed at each break level.

s AVERAGE: Just returns TOTAL/COUNT. Almost all report writers provide this function.

REPORT: Tells the report writer to process detailed data. This activates checks for BREAK
controls, page boundary checks, and totalling. Some report writers provide this control
automatically.

Sales Report by REGION and STATE : Page Heading

Region: Pacific Coast : Heading 1
State: California Heading 2
Name Orders Sales eading
Quincy Sellsall 7 3200
Joe Salesman 3 1200

Totals for CA: 10 $4400 : Footing 2

State: Oregon
Name Orders Sales
Amy Wunderkid 8 5700 wm Detail Line
Totals for OR: 8 $5700
State: Washington
Name Orders Sales
Lee Slowsales 1 200
Totals for WA: 1 $200

Totals for Pacific Coast Region
Sts. People Orders Gross Sales

3 4 19 $t0300 | Footing !
Average Sale/Order: $542.11
Page 6 == Page FootlnA

Figure 3; Report showing nested BREAK levels.

The example page shown in figure 3 is from a simple report which uses most of the report writer control
features. In particular, two different break levels are shown, one for regions and one for states. The most
detailed level is that for states; the employees and sales figures are shown at this level. The region level
provides less detail: the only real information at this level is in Heading 1 and Footing 1. There may be
other break levels defined in this report as well. An example of this would be an even less detailed break,
such as by country.

A Report on Report Writers 2053-5

The program in figure 4 shows the control features that would be used to produce the example report
page in Figure 3. Most of the actual printing has been left out, except to show the use of some control
features. (The syntax used has been made up; however, the clarity of the syntax is typical of report
writers which do not use visual interfaces.)

PAGE HEADING USES 2 LINES

PRINT “Sales Report by REGION and STATE"

BLANK ! prints a blank line
PAGE FOOTING USES 1 LINE

PRINT “Page " PAGENUM, CENTERED
HEADING 1 USES 2 LINES: BREAK IF Region CHANGES

TOTAL FOR: Sales

AVERAGE FOR: Sales

COUNT OF: State, Orders, Employee

FOOTING 1 USES S LINES
PRINT COUNT(State) COUNT(Employee) COUNT(Orders) Total(Sales)
PRINT AVERAGE (Sales)
HEADING 2 USES 5 LINES: BREAK IF State CHANGES
TOTAL FOR: Sales
COUNT OF: Orders
FOOTING 2 USES 2 LINES
PRINT “Totals for" State ":" COUNT(Orders) TOTAL (Sales)
! Now select the data from datasets and print the report
CHOOSE Region
CHOOSE Employee, State, Orders, Sales
SORT BY Region, State
REPORT

Figure 4: Report Program
Additional Features

The controls listed above only define the minimal set needed for a good report writer. Most report writers
provide some additional capabilities. Each new function only enhances the ability of a report writer to
produce the desired output. One should always consider these features when attempting to choose a
report writer. Fortunately, most capabilities beyond those listed can be found in several report writer
products.

Typical examples of new capabilities are the addition of HIGH and LOW functions. These functions trace
the highest and lowest value of break expressions. Such a function is not provided in all report writers
directly, but the functions can be very useful. Another example is the addition of statements to suppress
output. Such statements can be used to produce summary reports without defining a new report. Again,
not all report writers have or need such statements.

A Report on Report Writers 2053-6

Format Controls

Format controls provide the mechanisms for defining both line formats and item formats. Line formats
control what each unique line of a report should look like, including the positions of data items in the
line. Item formats control the display of each data item in a line, such as the format for numeric output.
Since report requirements vary considerably, the formatting portion of report writers must be flexible and
powerful.

Line Formatting

Line formats usually fall into one of two categories: “guide line" specifications and “columnar description”
specifications. The type of specification depends upon the user interface for a particular report writer
product. One could argue all day about which interface is better, but in reality both provide sufficient
power for defining very complex reports. In any case, every unique line must be defined and then
referenced by the report.

Guide Lines use a visual definition for each report. The user enters the line exactly the way it should be
printed, using special markers for printing data in the line. Depending upon the product, this may occur
directly in a file or report, or this may be done on a terminal. The report writer is then told when each
line should be printed.

Columnar Descriptions combine data item formats with special functions to control the line format. The
data item formats specify the field length for each item. Typical special functions are TAB, which skips
to a particular column, and SPACE, which prints a specified number of blanks. The line format is built
by indicating in what order data should be printed, with the output functions specifying the columns in
which output should begin.

Some report writers provide a default output format. In these cases, the size and type of the data control
the line format. In addition, the headings and footings may be given default formats as well. This isa
convenient feature for accessing data quickly, but most reports will override these defaults to produce a
better looking report.

Data Item Formatting

Virtually all report writers provide advanced formatting capabilities for individual fields. This allows the
programmer to shape the report so that numeric and alphabetic data are placed properly in the report
output. There are many ways to provide the formatting power needed, and each report writer provides its
own specification technique.

Many report writer products use the COBOL PIC descriptor, or something very similar, to format data.
This lends some familiarity to the report writer for many programmers and still provides a very flexible
formatting system. Other report writers may mix COBOL formatting with their own formatting, or even
provide a new type of format. Not much time is required to learn data format controls, so this should be
of little concern to new users.

Data Retrieval

Reports are generally used to display large volumes of data, or to display small pieces of data from a large
set. This implies that most reports will use data from a data base, rather than from files or from keyboard
entry. Given this, it is understandable that most report writers are geared toward making data base access
fast and simple.

A Report on Report Writers 2053~ 17

All but one of the report writers examined run on MPE, and therefore use IMAGE or TurboIMAGE for
data base retrieval. HP Visor runs on HP-UX, and it uses a relational data base. Syntactically, access to
the data base differs greatly among these products. For example, COBOL and HP Business BASIC use
intrinsics and built-in statements; HP Visor uses SQL or a form-driven access; the fourth generation
languages all define their own statements for selecting data.

What became clear during this investigation is that the language type of the report writer is very
important. That is, fourth generation languages (including HP Visor) provide easier access to the data base
than third generation languages. Report programs in third generation languages are required to know
much more about the data base definition than programs using the fourth generation languages. This
generally means that 4GL report programs can be written faster and (arguably) more clearly than
equivalent 3GL programs.

One fact is crystal clear. No one should have to write reports without the aid of a report writer. The
bookkeeping combined with accessing the correct data makes for a very complicated task. Such programs
are much harder to maintain and change than any program that uses a report writer.

Third Generation Language Access

There are two parts to data base structure: the definitions of and relationships between datasets (tables in
a relational system), and the format of the data in each set. In a database like TurboIMAGE, the “format"
includes the location of the data in a record as well as its size and type. This information must be made
available to any programs which access the data base.

Standard languages usually access data bases through intrinsic or library calls. Some languages contain an
interface to hide the details of these calls, but the net result is still a system call. The task of making
these calls correct is left to the programmer. This implies that report programs assume or are told a great
deal about the data base structure.

A report program may determine data base structure in many ways. Normally, the program source code
tells which datasets to use, and how to link them together. Few programs verify the linking information
at run-time. The data format may be obtained from a dictionary interface, or the programmer may code
this directly. In any case, the programming language itself knows nothing about the data base, and the
report program knows no more than the programmer gives it.

Third generation report programs are implicitly dependent upon the data base structure. The data base
and the programs may change independently, and these changes are not automatically reflected in both.
This may lead to errors when reports are finally produced. On the other hand, data base structures do not
undergo radical changes often; such changes usually include time to update associated programs.

Fourth Generation Language Access

Fourth generation languages access data bases in a variety of ways. While most of the features turn out
to be the same, syntax and performance vary greatly. Yet even more striking are the differences from
third generation language programs.

As one should expect, fourth generation programs must specify what datasets (tables) to use, and which
fields are needed by the report program. Unlike their third generation counterparts, however, these
programs often attempt to define an automatic link between the datasets. In addition, these languages
determine where the fields occur in the dataset, along with the size and type of each field. This field
information is obtained without user intervention or specification.

The programmer’s job becomes much easier once the report writer itself has access to the data base
structure. Data fields may be used without regard to exactly how the data is retrieved. The process of

A Report on Report Writers 2053- 8

linking multiple datasets becomes much simpler, even to the point of not being needed. The report
program no longer needs explicit calls to retrieve data, as this is done automatically by the language
statements. This allows the programmer to concentrate on the data required and the report format itself.

Most fourth generation languages provide easy data base access through the use of a dictionary or a
schema definition. This interface may use a standard dictionary product or may require a separate
definition file. Regardless, the languages can use this definition at run-time (or compile time) to provide
the dataset linkage and the data formats. If minor (or even major) changes in the data base structure take
place, the report programs take this into account automatically (or require a simple recompilation).
Program source changes are required far less often.

Non-Data-Base Data Access

Data bases are certainly not the only source for report data, especially when the data is transmitted from
an outside source. Data may reside on tape, in files, or be sent to the report program directly. In such
cases, the data might be structured, but may also occur as "free-form" input.

Report writers provide a wide variety of access to alternate data sources. This ranges from accepting
input from any source to restricting input to a data base. Third generation languages tend to be more
adept at accepting any type of input; their I/0O is normally disjoint from the report writer itself. Some
fourth generation languages also do well, while others require a fixed format for each record processed.
Still other products are based solely on access to a data base; in these cases, the data must be merged into a
data base before the report can be generated.

Access to file and other source data is of little concern to most operations. The vast majority of reports
are generated from data bases. This explains why most report writer products provide generous and easy
access to data bases instead of concentrating on general input.

Performance Considerations

As with any program or language, performance is an important issue. Unfortunately, report writers are
not always well understood, and consequently take the blame for poor performance. Report performance
can be measured and in many cases improved. To be realistic, one must examine the three major pieces of
report writers to determine where performance may suffer.

Report Writer Controls

The cost of the automatic report writer controls can be measured, albeit with some difficulty. To truly
define their cost, however, a report program must be compared to an equivalent program which does not
use a report writer. As stated earlier, writing such a program can be quite difficult.

Report writers pay a small penalty for providing generalized control statements. These statements can
produce virtually any report, but this fact precludes many optimizations for specific reports. When a
report writer is not used, a program may take advantage of knowledge about the incoming data or about
the report layout. This allows a specific report program to minimize the data value checks and page
checks which must take place during report output. On the other hand, very complicated reports may
require just as many checks, and optimization may not be possible.

In general, report writer controls do not significantly decrease performance. Most of the work performed

by these statements must be duplicated in hand-written report programs. The increased development and
maintenance time for such programs outweigh the overhead costs for report writer controls.

A Report on Report Writers 2053-9

Formatting

Performance improvements are indeed possible during data formatting, although the amount of
improvement is very language dependent. Many report writer products give the user great latitude in
controlling the output. More importantly, the improvements which might be made in a hand-written
program are generally available in the report writers as well. In other words, the non-report-writer
programs will not fare much better than a typical report writer program when it comes to data output.

The most likely way to improve report output speed is to change the report format itself. This allows
faster data output specifications, thereby significantly reducing report output time. A typical situation
occurs with currency signs in reports. The currency symbol can usually be “floated” so that it prints
adjacent to a number; printing the symbol in a fixed location is much easier for the report writer. If
currency symbols are printed on every line of a report, changing the format to use a fixed column (or even
remove the currency symbol) will allow the report to be produced faster.

Data Retrieval

Data base access is by far the most critical performance aspect of any report writer. A report program
may spend anywhere from fifty to ninety percent of its time in the data base! Obviously, any changes
which can reduce this time will impact performance significantly.

Report writers do not generally prevent better data base access. Indeed, they should give the programmer
more time to think about data base performance. Unfortunately, report writers sometimes make data
retrieval too easy. The very powerful data base statements allow such easy retrieval that performance is
overlooked. This fact becomes obvious when a report writer program replaces an old hand-written report
program; the old program probably considers every aspect of performance, while the new program simply
produces the same output without regard to performance.

There are some typical situations which occur during data base retrieval. One of the most common occurs
when a program is based upon a request for a report, but the programmer does not closely consider the
amount of data being retrieved. For example, suppose the f ollowing request is made:

Produce a report listing all orders over $10,000
which are 90 days or more past due.

This report is quite simple to produce, especially if the report writer has date arithmetic (many do). For
example, the selection might be:

CHOOSE Order__amount >= 10000 AND DATE - Payment__due__date >= 90

There is nothing wrong with the selection criteria above. But suppose that the average order for this
company is more than $10,000, and most of their customers pay on time. What performance can be
expected in this case? The report writer will first find every order of more than $10,000, which will be
most orders; then the check will be made for the number of days the bill is overdue. If this information
resides in separate datasets, performance will be poor.

A Report on Report Writers 2053-10

NOTE

Report writers often implement partial evaluation for selecting data. This
means that the evaluation of a second selection criteria depends upon the
results of the first criteria. In the case above, the payment due date will
not be checked unless the order amount is $10,000 or more.

In order to improve on this, the programmer must consider the likelihood of satisfying each condition; the
report writer itself cannot do this. Performance can be increased greatly by changing the selection
criteria:

CHOOSE DATE - Payment__due__date >= 90 AND Order__amount >= 106000

Now the order amount will only be retrieved if the payment is overdue. Since this does not apply to most
orders, fewer data base records will be read.

Not all report writers allow absolutely optimal access to a data base. The more control a report writer
gives to the programmer, the higher the chances of peak performance. But again, this must be traded off
against the increased development and maintenance time for such a program. And the most important
point is that programmers should not overlook performance just to get the report produced.

Third Generation vs. Fourth Generation Language

Historically, third generation languages yield report programs that run faster than fourth generation
programs. While constant improvements are being made to fourth generation languages, one must
consider this factor when deciding which report writer to use for a particular report. (Report generators
which produce third generation programs should not be considered fourth generation products in this
case.) In many cases, the performance gains here are not significant enough to consider changing from
one language for another. These issues should be raised before the report program is started. But when
performance does become critical, one must look at all the alternatives.

The friendliness and power of fourth generation languages comes from their ability to hide many
implementation details from the user. That is, they let the user specify what to do without worrying too
much about how things will be done. Unfortunately, this very aspect of the fourth generation languages
means that they must typically do more work than an equivalent third generation language.
Optimizations are more likely in third generation programs as well, since the programmer has direct access
to the executing code. The net result is that third generation report programs run faster.

Many fourth generation languages interpret their programs, and they do this very quickly. Most third
generation languages are compiled (some fourth generation products supply a compiler also). A compiled
program can significantly outperform an interpreted program. For report programs, the performance
difference depends upon how much time is spent in the data base; the difference is greater if less time is
spent retrieving data. Again, these factors must be examined carefully before embarking upon a
reimplementation of a report; the performance improvement might not be worth the time spent to rewrite
the program.

MATCHING REPORTS, USERS, AND REPORT WRITERS

Clearly, many report writers provide the common functions needed to produce a report. But this does not
mean that all report writers are equally easy to use, or that all types of users can make efficient use of

A Report on Report Writers 2053-11

any report writer. Different products are intended to be used by different users, and performance
considerations may also influence the decision of what kind of report writer to use.

The discussion that follows concerns the use of a report writer to create
reports, not just to run a report. Only performance issues are relevant to
the actual execution of a report.

There are several factors which influence the decision to use a particular type of report writer. Some of
the important aspects of this decision are: the type of report, user background, user interface, and
performance. The influence of each of these factors must be weighed when deciding what report writer
should be used.

Users are not easily categorized, as their experience ranges from systems programmers to completely
non-technical users. Proper report writer usage does depend upon the user’s background; therefore, some
groups must be defined. For this discussion, four types of users are defined: techni 1, semi-technical,
occasional, and end users.

Types of Reports

Reports can be classified into a few fuzzy categories. These groups help determine the amount of work
and the amount of experience needed to produce a report. A report may move from one group to another
as modifications are made to the report, but the categories will still reflect the total amount of effort
required. For descriptive purposes, these categories will be used: simple query-based reports, simple
repetitive reports, complicated infrequent reports, and complicated repetitive reports.

Simple Reports

The query~based report represents the “on-the-fly" report, in which any data may be needed at any time.
These reports are often run one time, or at irregular intervals. In many cases, a permanent report
program cannot be written for such a report. Even when this is possible, this type of report may not be
worth saving as a permanent part of a system. The query-based report is ideally suited to default report
formatting, if the report writer provides this.

The simple repetitive type represents reports with straightforward page layouts and easy data access.
These reports are run frequently. This type of report usually gets saved as a permanent feature to provide
instant access to the report. Repetitive reports consist of known useful reports and query-based reports
identified as being used frequently. Once again, default formats (if available) may be used with this type
of report.

Complicated Reports

A "complicated" report refers to either a sophisticated report format, difficult data access, or, more often,
to both. This report type implies that greater expertise, as well as a clear understanding of the desired
output, are required. Complicated reports rarely use a default format when it is provided.

The frequency of producing a complicated report affects different factors in the report program.
Infrequent reports allow the programmer to concentrate effort on the report format, with less emphasis

A Report on Report Writers 2053- 12

on the performance of the report writer. Repetitive reports are run frequently or regularly. These
reports tend to emphasize performance much more, especially when data base access is inefficient. These
two types of reports require different tuning efforts to make them work well.

Types of User Interfaces

Report writers use three distinct user interfaces, which will be referred to as imbedded, programmatic, and
visual. These interfaces are not mutually exclusive, and in fact several report writers provide facets of
each, yet each interface seems to define its own set of users.

Imbedded report writers occur as statements in a standard, third generation language. These statements
provide page controls and automatic totalling; the standard language provides the control over data base
access and general output. The imbedded statements may extend output control or data base access as
needed. The COBOL report module is an excellent example of an imbedded report writer.

The term programmatic refers to products which define their own language for the report writer. This
includes fourth generation languages as well as some products specifically designed to produce reports.
These report writers provide all controls necessary for writing a report, including data base access. Most
programmatic products are reasonably small and friendly to use when compared to imbedded report
writers.

Visual report writers use forms and other screen formats to guide the user. The forms allow a user to
indicate what data to use, how to print the data, and what a page should look like. This type of interface
is extremely easy to use, as no real "programming” is involved. Some report writers provide a visual mode
as an alternative to the programmatic or imbedded interface.

Of course, reports may be generated by programs which do not use a report writer. This alternative is
always open and must be considered when determining how a report program should be written.

The Occasional User

As the title implies, the occasional user does not need a report writer very often. This type of user relies
on others to write report programs and possibly even run them. But every now and then, a report must be
produced quickly, or privately, and the user cannot wait for someone else to write the program. The
occasional user is not an end user; some technical knowledge is required. Managers are probably the best
example of occasional users.

The infrequent and impromptu use of a report writer implies that query-baséd reports will be produced.
Such reports are run in order to get immediate information. As a result, formatting and performance are
not key areas of concern for most of these reports. If a report needs to be run repeatedly, even if only a
few times a year, someone else can be assigned to write the report program.

The best interface for an occasional user is a visual one. This type of interface allows the user to see what
will be produced before the report data is printed. In some cases, the report writer will guide the user
until 2 minimal report can be printed. For simple query reports, this is ideal.

A programmatic interface provides a good environment for infrequent users. Data base access remains
easy, and default formats are common in these products. The page layout and automatic summaries are
still simple to use. However, programmatic interfaces tend to require more work on the user’s part, as
both statements and syntax must be remembered (or looked up). In addition, some knowledge of the data
base is essential with this interface.

A Report on Report Writers 2053~ 13

An imbedded language report writer is not designed for the ional user. Too much knowledge of the
language, the data base, and the report writer is required. Even a former technical user will have to look
up a substantial amount of information. Very quickly the user will realize that the report takes too long
to produce.

Most companies have relatively few occasional users. When choosing a report writer product, these users
should not be a major factor in the decision process. The needs of the technical and semi-technical users
far outweigh the needs of a few people to produce uncommon reports.

The Semi-technical User

Semi-technical users are a growing segment of the programmer population. This has been spurred by the
tremendous growth of fourth generation languages, program generators, and user-friendly, specialized
products. All of these products make programming much easier to understand, which has allowed many
people to write custom programs.

The semi-technical user need not have any formal training or programming experience. Indeed, a user
may not be able to write anything in a third generation language. This may prevent the writing of a
general purpose program, but it does not prevent a great number of useful programs from being written.
The semi-technical user is not a full-time programmer, but may have some programming duties. On the
other hand, this user may use a report writer during spare moments just to improve the work
environment.

This user group will create many more reports than the occasional user. Any simple reports can be
produced, in addition to some complicated reports. The user’s own expertise must be the guide to creating
new reports; advanced users should be able to produce very fancy reports. Rarely used or custom
complicated reports probably require too much time for the semi-technical user to create; repetitive
reports also require time, but often are worth the person’s effort.

Both visual and programmatic report writers are available and used by these users. One could debate for
days about which style is better. The important point is that the report writer provide the capabilities
needed by the semi-technical user. Asa person writes more reports, the sophistication of the reports can
increase. The report writer should not impede this progress.

Imbedded report writers may be used by some semi-technical users, but in general this is not the case.
General purpose languages are more difficult to learn and to use than fourth generation products. Even
the size of a standard language can be daunting for some users. In addition, the relatively unfriendly
environment for writing programs will drive away most semi-technical users.

Unlike reports produced by the occasional user, the performance of a semi-technical user’s report program
can be important. As indicated earlier, a small change in data base access can significantly impact system
performance. Many users are not trained to recognize this situation, and even fewer know how to make
effective changes. One must rely on the more advanced users or a “technical” user to help streamline
these report programs. The choice of a report writer which allows this streamlining is important if many
semi-technical users are writing programs.

The Technical User
The technical user category represents full-time programmers. These people often have formal training

or much experience in the computing field. A background in third generation languages is very common,
but not strictly necessary for report writers. Understanding how a program or system works is much more

A Report on Report Writers 2053-14

important than language knowledge. The technical user employs this knowledge to write efficient report
programs.

The technical user should be called upon to write the most complicated reports. Such reports can get
bogged down in very exacting details which usually frustrate the more casual users. In addition, technical
users should write or review any repetitive report programs, especially when they are run frequently.
This ensures that the report programs attain the best performance.

All styles of report writers are usable by technical users, including languages which do not support report
writer statements. Experience has shown that these users can produce fairly sophisticated reports very
quickly when using either visual or programmatic report writers. Imbedded report writers require more
time to use, but not nearly as much as a language with no report writer. The experienced user will weigh
several factors before choosing what language to use for a report.

It is worth noting that not all report writers are equal for a technical user. There are reports which are
extremely difficult to write in fourth generation languages. There are also reports which require great
control over data base access in order to perform quickly; not all report writers provide the necessary
control. On the other hand, most reports use very straightforward data base access and do not need such
tight controls.

Performance is a key issue for technical users. The programmer must help the semi-technical user
understand why a report runs slowly, and must help that user improve the report program. To do this, a
thorough understanding of the report writer is needed, particularly with respect to data base access. The
technical user’s own report programs can take performance into account immediately.

Is one report writer enough?

Undoubtedly, many people would answer this question with a resounding "YESF' For occasional and
semi-technical users, this answer is certainly correct. But a technical user has many factors to consider,
and it may be that the correct answer to this question is actually “NO." Some of the key factors in this
decision are performance, integration, and responsiveness.

Performance should be obvious by now. [Every report writer creates programs with different
performance. If performance is critical, an imbedded report writer may work best. On the other hand,
many programmatic report writers provide sufficient controls to yield near maximal performance.

Integration is a tricky issue. This area refers to the need to merge the report program into an overall
system. Some report writers are part of a much larger system, and so integration becomes an easy topic.
But there are other report writers which run alone; the report programs from these products may have to
be merged with other pieces to build a system. The technical user must determine the feasibility of this
merger, as well as its affect on the user’s system interface.

Responsiveness refers to the speed with which a new report can be created. If a request for a new report
comes in, the technical user must determine how soon the report has to be available. Fourth generation
products allow much faster response, in general, but this may be outweighed by other factors. This
decision must be based on the business environment and customer needs.

Of course, the technical user may already have a report writer. In this case, the factors above, along with
other possible motivations, may indicate that a second report writer is needed. The second report writer
should not be the same style of program. For example, owning two programmatic report writers is
probably not useful, but owning a programmatic and an imbedded report writer might be. This decision
should not be made lightly, but it is worth considering.

A Report on Report Writers 2053~ 15

THE END USER

Finally we come to the end user. At some point, everyone is an end user; all one has to do is run a
program or an application. But the end user under discussion is the true end user. This person has little
or no computing background and does not have the need to learn. Programming is not within the scope of
this user’s job. The user only wants to get information from the computer.

Given the user’s background, a valid question to ask is "Should the end user be able to create new reports?
The answer should be no. Creating a report requires knowledge in two technical areas: 1) the report
writer language or interface, and 2) the data base description. Some report writers are extremely simple
to use, but one must still understand the terms used. Many users do not or cannot take the time to learn
these details. In many cases, end users have neither the need nor the time to learn about a report writer.

Data bases can be even more confusing. End users with no computing background have no concept of
how data bases are arranged, or why they are defined in a particular manner. Data base field names are
often abbreviated, and there are fields which users know nothing about. In addition, security may dictate
that end users remain unaware of some data base information. This precludes publishing the data base
format for the end user, leaving no way to access the necessary information.

Some end users may have a genuine need to produce query-based reports. These users should be properly
trained to use a report writer. The training itself moves the user into the semi-technical class. This will
not change the user’s job responsibilities; it will give the person the capability to do the job properly. Not
all end users need to be trained; a few people can be trained and all query-based reports can be redirected
to these users.

Assuming that the end user cannot be trained, what would it take to allow end users to produce
query-based reports? Simply put, this requires a much more sophisticated interface than report writers
provide. The interface must be customized to the job at hand, which indicates that several interfaces may
be needed. The reports must be very easy to produce and the data base must be hidden completely. The
capability to write an end user interface does exist today, but the programs can be quite complicated. A
better alternative might be to write small report programs for the most common queries, and pass the less
frequent queries on to someone with more training.

A Report on Report Writers 2053-16

	A Report on Report Writers

