
Distributed Application Processing and How to use it.
or

Stop Wasting those PC Mips!

Patrick Fioravanti
Infocentre Corporation

7420 Airport Road
Suite 201

Mississauga, Ontario
Canada L4T 4E5

As Fourth Generation software and data communications technology becomes
more prevalent throughout the HP3000 community, the number of opportunities
available for networking the mini with our PC's grows significantly.

With many organizations reaching and exceeding the computing capacity of their
HP3000, the concept of redistributing the load, moving some of the application
processing to the micro computer becomes very attractive. Distributed processing
is a reality today, but for many shops it represents a new frontier that should be
approached with caution, in a premeditated way.

This paper will take a close look at distributed application processing, involving
the networking of the HP3000 with personal computers. We will first introduce
some of the concepts at work, then describe the various data communication
topologies that can be implemented. Having set the foundation for the discussion
we can move on to application design possibilities - investigating how new
applications might be designed in order to capitalize on the system resources
made available through the networked configuration. Along the way, we will be
providing some guidelines for effective use of this distributed processing concept
based on the capabilities, strengths, and weaknesses of the various system
components (both hardware and software) within the network.

Distributed Application Processing
0099-1



Introduction

Historically, within the HP3000 environment we have seen the flow of corporate
information managed almost exclusively by the central computing facility.
Serious business applications have been developed and implemented on our
HP3000s. With many organizations reaching and exceeding the computing
capacity of their HP3000, the concept of redistributing the load, moving some of
the application processing to the microcomputer becomes an attractive alternative.
Pursuing this avenue has led a number of UP installations into the realm of
distributed processing, where applications are developed that utilize PC hardware
and software resources in addition to HP3000 based resources.

What are the perceived benefits of distributed processing?

The benefits associated with the integration of PCs with the current computing
environment can be discussed under these headings:

• Offloading the central machine,
• Red ucing costs,
• Reducing application downtime.

Offloading the central machine

Today the HP3000 is used typically by data processing professionals and end
users alike. Programmers, analysts, database administrators define, develop,
implement, and maintain production application systems. End users access these
implemented systems, undertaking the application processing. In a lot of cases,
the combination of system development and production activities strain the
system resources, sometimes yielding unacceptable levels of performance during
the peak processing hours of each business day. Something has to give.

Consider that each of the PCs sitting on desks in the user community as well as
the DP department, has its own CPU coupled with significant storage and
memory capacity. Aggregated, there is a lot of computing power in our PCs
waiting to be harnessed effectively. Using PCs that are already cost justified, to
potentially double the available computing power represents a significant
opportunity to shift some of the current load away from the HP3000.

Reduced costs

A number of computing costs can be reduced by migrating some of the processing
from the HP3000 to the PC. Hardware acquisition is one of these costs. It is not
difficult to acquire a PC with a generous configuration for about the same price
as a good quality display terminal. The same applies to software, as PC software
is available for a fraction of the price of minicomputer software possessing
similar functionality. Once the PC is established as an extension of the central
facility, the incremental cost of hardware or software additions is substantially
lower than on an HP3000.

Distributed Application Processing
0099-2



Thirdly, we can look for decreases in communication costs. In cases where
remote terminal workstations are replaced with PCs, the PC can execute the
application locally. While doing so it may be possible to sever the link to the
HP3000, thereby reducing data communication costs significantly.

Reduced application downtime.

With the PC comes the ability to collect local transactions on an attached disk
system that can later be used to update the minicomputer. The PC then acts as a
spare machine that can be pressed into service should the HP3000 be unavailable.
Furthermore, a termporarily defective PC can be replaced far more easily than
can an HP3000. With PCs, hardware redundancy becomes affordable.

Distributed processing - How?

If you accept that there are real benefits associated with PC integration, then we
should examine the necessary tools, as well as some of the concepts behind them.

Ensuring success in distributed processing hinges largely on the compatiblity
between the various machine environments. Application developers and users
must be able to move easily between PC and HP3000 based processing. We can
accomplish this by adopting an application development environment that
operates on both machines. Specifically we require the same programming
language, and the same database management system. A common application
development environment provides two very important benefits:

•

•

The application development staff can build PC applications with minimal
retraining. All existing skills relative to the programming language and
database design, creation, manipulation are transferable.

Application development activities can be undertaken either on the PC or the
HP3000 regardless of where the finished product will ultimately run.

There are a number of strategies for distributing application development and
processing. A very simple strategy results in standalone applications being
developed for processing on one or more PCs. This strategy is useful, but
generally finds itself restricted to simple applications processing non critical data.
More sophisticated strategies are required for applications that must be
distributed across a number of machines. That is, the processing may be split
between the HP3000 and PCs as well as the data. Implementing distributed
applications in this fashion requires a communication facility - a means to
transfer data between the two machine environments.

We need to set in place appropriate data security and access control procedures.
In the past, with all application processing taking place on the HP3000, we have
not felt the need to be concerned with these issues. MPE provides reasonable
facilities for access control and data security. Operational procedures are already
in place to ensure proper backup copies of data are taken on a regular basis.
None of this security environment is automatically available on a PC. Rules need

Distributed Application Processing
0099-3



to be implemented that ensure PC resident data will be adequately protected.
Furthermore PC application security is needed to control, as much as possible,
access to the processing capabilities provided by the workstation.

With these tools and controls in place, we can turn our attention to developing
and delivering distributed applications. These applications must be designed
wisely, distributing the data, the processing, and fine tuning the various
connections such that the application satisfies the users requirements and makes
optimal use of all available computing resources.

The communication facility.

A communication facility is a central requirement for implementing distributed
applications. The inter-machine communication enables the activities on the
machines to remain coordinated. There are several ways to design the PC to
HP3000 communication, lets examine first a batch approach.

Using standard PC - HP3000 file transfer utilities it is quite straightforward to
implement a batched, bidirectional communication facility. This can be used
during system development to transfer text source files between machines, and
equally during system processing to transfer text or binary data files back and
forth. With this approach we can design distributed applications that are batch
integrated. This can be useful with applications that are based on processing
cycles. During a processing cycle, transactions can be entered and captured on a
PC. At the end of the cycle (nightly, weekly, monthly, etc.) the detailed
transactions can be extracted from the PC database and uploaded to the HP3000
where they are posted to the central database. At the same time, updated versions
of the reference or master files can be extracted from the HP3000 and
downloaded to the PC(s). Software products are available that will work in
conjunction with the file transfer utility to automate a scheduled transfer of
files.

On the surface, it may not be immediately obvious how it is that this distributed
processing approach provides benefits. Consider however that the processing
involved with data editing and general transaction processing is offloaded from
the HP3000. The PC earns its keep. For remote workstations, there can be
savings realized in data communications costs. The workstation need not be
connected all day, and when the connection is made, a concentrated stream of
pre-edited transactions is efficiently transferred.

The batch integrated approach, although simple to implement, may not be suitable
to all applications. It carries several disadvantages:

• The master files may be so large as to make their downloading impractical, if
not impossible.

Distributed Application Processing
0099-4



•

•

The downloaded files are duplicated on multiple PCs. Duplication of
corporate data profoundly complicates data and information management.

Often the data entry workstation needs real time access to HP3000 data.
Batch updates may not be sufficient.

Distributed applications requiring more timely access to large, sensitive corporate
data files are better served by an interactive networking strategy. This more
sophisticated form of communication results in a tighter, more cohesive
integration strategy. Interactive networking enables an application running on a
PC to instantly access information (read, write, or update) regardless of where
that information resides, in a fashion that is transparent to the application and
the user.

Interactive networking is accomplished using data communication software
resident at each end of the connection. The PC resident component sends
requests to the HP3000 whenever access is required to centralised data. The
HP3000 resident component acts as a server to the PC. It waits for data access
requests emanating from the PC, and responds to them. Typically the response
involves formulating an Image access call, then sending the result of the call back
to the PC. In general the type of service provided by the host resident software
need not be restricted to accessing Image databases, however this seems to be a
very useful service to offer a PC.

This arrangement is conceptually similar to accessing remote Image databases
within a OS network of HP3000s. It would be simple enough to implement fDS'
type intrinsic calls within the PC resident software. These intrinsics could be
invoked by the application whenever access is required to HP3000 resident
datasets. Another approach involves defining the remote datasets within the
schema of the PC database. A mechanism is required permitting the database
designer to designate one or more datasets as being 'logical' datasets. They are
part of the application, but physically reside on another machine. This approach
carries three advantages over the 'OS' approach:

1) Accessing remote files is transparent to the application programs. The
programs issue a read, write, or update request against a specific record or
file. The Database Management System determines where the file physically
resides, and hence what is required to satisfy the application request.

2) The local database knows the structure of the remote files since they are
defined in the schema. Accordingly any interrogations of the remote dataset
structure can be responded to locally, there is no need for remote
communications to satisfy the request. This is tremendously beneficial for
applications that make extensive use of the DBINFO intrinsic.

3) Within the PC database schema, the remote dataset definition can be a logical
view of the actual dataset definition. The PC schema need only define the
items of the remote dataset required by the application. Only the items
defined in the PC schema will be transferred, thereby optimizing the data
communications.

Distributed Application Processing
0099-5



To visualize how this works, take as an example, a manufacturing application
involving a large Parts master file. We can undertake transaction entry and
processing on the PC, designating the Parts file as a logical dataset, physically
resident on the HP3000. At run time, any "DBGETs" directed against the parts
file will be trapped by the PC Database software, and sent via the communication
link to the HP3000. The request is accepted by the network server, and
formulated into a "DBGET" directed at the appropriate Image database. The
result of the call (the record buffer if successful, otherwise the status array with
the appropriate error information) is then transferred back to the PC where it is
accepted by the Database software and returned to the application program. The
same concept applies to other database access calls (writes, deletes, updates, locks).

Although simple in concept, the actual implementation of this communication
facility can be quite complex, allowing for all of the possible data communication
configurations, data compression techniques (for faster data transfer rates), and
data encryption (for securing data as it is passing through the communication
link).

The interactive networking facility permits the definition of physical (local) and
logical (remote) datasets when defining the application database. A third type of
dataset can be considered; a blend of local and remote. The implementation of
this type of dataset provides a form of Caching. For example, if a request is
received to read a record from our parts file, the DBMS looks for the record in
the local dataset. If it does not exist there, it is retrieved from the HP3000 and
written to the local dataset. The next time we wish to access the same record we
may retrieve it without a remote access. Over time, the local dataset will be
populated, on an 'as needed' basis, until it holds all of the master records
required by this PC workstation. Although this implies data duplication, it means
that at some point in time the communication link can be severed without service
disruption. This concept is well suited to applications that operate according to
Paretos' Law, where eighty percent of the processing is directed against twenty
percent of the data records.

Regardless of the options chosen, the principle remains the same. By defining the
structure and the location of application data within the database, the run time
component of the DBMS is able to handle the data communication. Access to the
remote files happens automatically in a fashion that is transparent to the
programmer and the user. Distributed processing is made possible.

Connections

PCs using the communication facility are connected to the HP3000 in a standard
fashion. Once connected, there are several means we can consider to optimize the
connection.

At its simplest, the connection takes the form of a serial communication line from
the PC to a terminal port on the HP3000. In reality, this connection might be
direct, or pass through a very complex data communication network, including
modems, multiplexors, and packet switching networks. Generally speaking, if we

Distributed Application Processing
0099-6



can connect the PC such that it can initiate a terminal session, then we can
acomplish batch or interactive networking through the connection.

When using interactive networking, the PC can initiate a terminal session, and
within the session activate the HP3000 resident portion of the communication
software. This process might be activated automatically from the PC as part of
the "DBOPEN" and similarity terminated automatically as part of the nDBCLOSEn.

It may be considered wasteful (or perhaps excessive) to allocate a terminal port,
MPE session, and network communication process to each PC in the application
network. We can optimize this somewhat by dedicating resources to the
application.

If it is known that a specific port or ports will be used only for interactive PC
networking, then it becomes possible to launch a single communication server
process that treats the ports as files, and waits to service requests emanating from
the attached PCs. This strategy reduces the number of HP3000 processes (one per
network instead of one per port), and the number of MPE sessions (the PCs don't
initiate a terminal session), at the expense of dedicating the port(s) and
scheduling the systematic initiation and termination of the network server.

Depending on the design of the application, there may not be sufficient volume
of data traffic to warrant the allocation of one port per PC. In many HP3000
shops ports are expensive and scarce resources. In situations whel'e specific ports
are dedicated to interactive networking we can attach several PCs to one port and
enhance the communication facility to channel the data messages separately for
each PC sharing the port. This serves to optimize port utilization.

We can extend this concept further. If it is known that all of the pes in a given
network will be processing the same application, then the HP3000 based server
can be customized for the application. By always having files and databases
open, and other initialization type processing completed, the PC will never have
the servicing of its request delayed unnecessarily.

These options pose a tradeoff: optimizing resource utilization versus flexibility.

Application Design - Resources

Having covered the concepts and some of the possibilities, let's concentrate on
putting them into practice. By evaluating the various software and hardware
components that we have at our disposal, we can develop application design
guidelines that result in optimal use of the resources.

Distributed Application Processing
0099-7



II Available pool of software:

MPE
Image / File System
Development Language

III Hardware:

Disk (lots, shared)
Memory (limited, expensive)
CPU (powerful, shared)
Peripherals (high speed)

IIII Data Communication Link:

- Data transfer rate
- Expense
- Reliability

lC.

MS-DOS
Image Clone
Same Language
Personal Applications

Disk (less, dedicated)
Memory (limi ted, cheap)
CPU (powerful, dedicated)
Peripherals (few, low capacity)

(slow)
(varies with configuration)
(varies with configuration)

An evaluation of the respective strengths and weaknesses of the available
resource pool shapes our application design guidelines.

On the software side, MPE provides more sophisticated file system and security
facilities. Included with the MPE file system is automatic multi user capability.
By equipping ourselves with the same application development environment on
both machines, we make Image and our chosen development lanaguage generally
available. The PCs have an edge with readily available, powerful and friendly
personal application software that can be used for data analysis (spreadsheets),
graphics, and text processing.

Of the available hardware resources, the PC complement is dedicated to a single
user, while the HP3000 hardware is shared among several (many) competing users.
Generally speaking, the hardware devices connected to the HP3000 are higher
capacity and boast Caster access speeds, although in reality they may service an
individual user in a more sluggish Cashion when heavily subscribed.

The data communication network is arguably the weakest link in the chain. Even
the Castest of serial data transfer rates pale in comparison to the rate at which
data is transferred Crom disk to memory inside an HP3000. Furthermore, the
network is susceptible to unavailability due to a software or hardware failure of
the host (HP3000), or failure of any component of the communication network.

Application Design - Guidelines

The remaining challenge is to design distributed applications wisely. In our

Distributed Application Processing
0099-8



wisdom we must distribute the processing as well as the data storage in a manner
that most effectively utilizes the available resources. Based on our evaluation of
resources we should:

•
•
•
•

fully exploit the availability of PC hardware,

offload personal data analysis tasks to the PC

reduce dependence on overtaxed HP3000 resources.

economize on interactive data transfers

• use the MPE file system when data must be shared, or data
security/protection is critical.

This translates into:

1) Utilize the computing capability of the PC for things like data entry tasks.
Data edits, validations, calculations, error handling, screen compilations and
screen I/O are then offloaded from the HP3000. The data entry operator will
appreciate the consistently crisp response that can be provided by the PC.

2) Distribute data such that files requiring shared access remain on the HP3000.
These files can of course be accessed through the interactive communication
network. For most applications, this guideline results in reference files
(frequently the "Master" datasets) residing on the HP3000, while the
transactions ("Detail" da tasets) can be captured on the PC. Regular
validations (lookups) to the reference files during data entry can be handled
by the communication facility, the output of the data entry (the transactions)
in many cases need not be communicated to the host. This strategy offloads
a significant amount of disk I/O from the host and also minimizes traffic on
the data communication network. Should the PC resident transactions be
required on the HP3000, for batch reconciliation or reporting purposes, we
can consider a batch transfer at off hours to accomodate this.

Although on the surface it may seem advantageous to leave all the files on
the HP3000, this strategy heavily taxes the communication network (the weak
link), and in some cases floods the HP3000 with file access requests.

3) Design the application to be fault tolerant. Local processing should still be
possible during temporary periods of host unavailability. This can be
accomplished by making some data edits or validations optional (flag the
transactions as requiring some sort of batch validation later on). When host
unavailablity is predictable, an optional downloading of the master files (or
some subset of them) can be done ahead of time, and the data entry programs
instructed to access the local files. This is similar to the application caching
concept that automatically downloads remote records as they are accessed,
and permits disconnection from the HP3000 without service disruption.

Distributed Application Processing
0099-9



4) Leave large volume batch oriented tasks on the HP3000. The host has the
speed, power, and large volume peripheral devices to handle these tasks
efficiently.

These points offer general application design guidelines that may prove useful as
a starting position when conceptualizing the design of distributed applications.

Summary

The technology exists today making distributed processing a reality. For many
HP3000 shops this constitutes a new frontier, presenting new opportunities to
address traditional problems of computing resource allocation and utilization. It
also adds a new dimension to application design considerations.

It is through a solid understanding of the underlying concepts, and available
options that we can adopt and implement an effective distributed processing
strategy that will help to achieve the stated goals of PC integration.

Distributed Application Processing
0099-10


	Distributed Application Processing and How to Use it, or Stop Wasting those PC Mips!

