MPE/XL PROGRAMMING
by Eugene Volokh
VESOFT, Inc.

1135 S. Beverly Dr.
Los Angeles, CA 90035

ABSTRACT

In 1983, I wrote a paper called "“MPE PROGRAMMING"
(presented at the INTEREX Montreal conference), which showed
how you could do some remarkable things with MPE alone,
without the aid of a custom-written program. MPE Programming
was the art of writing system programs entirely in the
“language" of CI commands (possibly with some help from
standard, HP-supplied utilities).

The main advantages of MPE Programming were ease of
writing and ease of maintenance. The idea was that a couple
of dozen MPE commands in a job stream were easier to deal
with than a custom-made SPL or COBOL program, especially
since when you write a program, you'll have to always keep
track not just of the job stream, but also the program's
source and object files. UNIX, incidentally, has a very
powerful "“Command Interpreter Programming" facility (such
programs are called "shell scripts"); UNIX users often write
very many shell scripts to do things that would otherwise
require some rather cumbersome C or PASCAL system programs.

Unfortunately, MPE/V (and earlier MPE versions) were not
really designed for any sort of sophisticated MPE
programming. Many of the tricks I showed in my original
paper bordered, I must admit, on the perverse. For instance,
to find out if you're in job mode or session mode (without
writing a program that calls WHO), I suggested that you
execute the :RESUME command.

Why the :RESUME command, of all things? Well (almost by
accident), the :RESUME command returns one error condition
if done in a job and another if done in a session (but not
in break). We could then completely ignore the actual
function of the :RESUME command, and look only at its "side
effect" -- the value of the CIERROR JCW, which told us
whether we were in a job or sesion.

Similarly, to see if a file existed, we'd do a :LISTF

3SNULL of 1it. This was not because we wanted to see
information about this file (if we did, we wouldn't put on

0096-1

MPE/XL PROGRAMMING

the ;$NULL) -- rather, we wanted to see if the :LISTF
succeeded or failed. If it failed with a CIERROR 907, this
meant that the file didn't exist -- {f it succeeded, the

file did exist.

MPE/XL was intended to make many of these things a lot
simpler to do -- instead of weird, indirect techniques,
mechanisms would be provided for easily getting environment
information (your logon mode, etc.), file information (does
a file exist?), and so on. Seemingly using UNIX as a
prototype (in spirit if not always in detail), MPE/XL sought
to make MPE Programming a straightforward proposition.

To a large extent, HP succeeded -- MPE/XL has a number of
new commands and features that let you do much more powerful
things from the Command Interpreter. In some ways, though,
some of the features seem at first glance to be more
powerful than they really are, and quite a few things that
you'd like to do remain tantalizingly out of your reach.

In the process of converting my MPEX/3000 and
SECURITY/3000 products to MPE/XL -- and in the process of
implementing most of the MPE/XL user interface features in
the MPE/V version of MPEX (and in SECURITY/3000's STREAMX
module), usable by "classic HP 3000" users -- I learned a
good deal about the new MPE/XL features, their strengths and
their weaknesses. This paper will try to objectively discuss
both; to show you how to use the strengths to their utmost
and how to work around some of the weaknesses.

0096-2

MPE/XL PROGRAMMING

THE HNEW FEATURES OF MPE.-XL

What exactly are the new MPE programming-related features
of MPE/XL? There are several:

*

First of all, MPE/XL supports VARIABLES. Think of them
as JCWs that can have string values as well as integer
values. (Actually, they can have boolean and 32-bit
integer values, too.) E.gq.

:SETUAR FNAME "F00.DATA.PROD"

MPE/XL PREDEFINES some variables to values such as your
user name, your account name, your capabilities, etc.
For instance,

:SHOWUAR @
HPACCOUNT = UESOFT

HPDATEF = TUE, FEB 9, 1388
HPGROUP = DEV

HPINPRI = 8

HPINTERACTIVE = TRUE
HPJOBCOUNT = 2

HPJOBLIMIT = 2

HPJOBFENCE = 7

HPJOENAME = EUGENE
HPJOBNUM = 268

HPJOBTYPE = §

HPLDEVIN = 20

(Don't you wish you'd had this all along???)

MPE/XL lets you SUBSTITUTE the values of variables (and
even EXPRESSIONS involving the variables) into MPE
commands -- just as you could always substitute the
values of UDC parameters. For example,

:SETURR FNAME "FO0O.DATA.PROD"
:PURGE !FNAME

is equivalent to
:PURGE FOO.DATA.PROD

Then you could also say

0096-3

MPE/XL PROGRAMMING

:BUILD !FNAME;DISC=![100+#NUMUSERS+251;REC=-64,,F,ASCII

it will build a new FOO.DATA.PROD file with room for
100*NUMUSERS+25 records (presumably NUMUSERS is an
integer variable previously set with a :SETVAR).

As shown in the above example, MPE/XL lets you use
EXPRESSIONS in variable substitution, in the :SETVAR
command, in the :IF command, and in the new :WHILE and

:CALC commands:

iSETUAR EXPECTEDFLIMIT 100*NUMUSERS+25
:SETUAR FNAME "S" +MODULENAME+" .PUB.SYS"

:SETUAR MODULENAME STR(FNAME,2,POS("." FNAME)-2)

:IF HPACCOUNT<>"SYS" THEN
:IF POS("SM" ,HPUSERCAPF)=0 THEN

As you can see,
numbers or strings, and a
have been defined, such as:

+ to concatenate strings;
STR to extract substrings;
POS to find the position of
UPS to upshift a string;

and many others.

Perhaps the most useful of
FINFO, which takes a filename
returns a piece of information

file's
file's

FINFO(filename,0) =

FINFO(filename,1) = string
FINFO(filename,4) = string
FINFO(filename,8) = file's
FINFO(filename,-8) = file's

FINFO(fi'ename,9)
FINFO(filename,-9)
and much more.

the expressions

<< user doesn't have SM >>

can involve either

number of useful operators

one string in another;

the defined operators is
and an option number and
about that file:

TRUE if file exists, FALSE if it does:

with fully-qualified filename
containing file's creator
creation date, formatted strin
creation date, integer format
string filecode (e.g. "EDTCT")
integer filecode (e.g. 1052)

For example, to check if a file exists, you can say

:IF FINFO('MYFILE',0) THEN

To check if a file's EOF
you might enter

is within 10% of its FLIMIT,

:IF FINFOC'MYFILE',19)>=FINFO('MYFILE',12)*3/10 THEN

0096-4

MPE/XL PROGRAMMING

FINFO mode 19 gets you the EOF; FINFO mode 12 gets you
the FLIMIT. (The mode numbers are taken from the
FLABELINFO intrinsic -- one of the weaknesses of FINFO
is that you have to remember these silly item numbers.)

Commands have been added to OUTPUT and INPUT data:

tECHO NOW WE'LL ASK YOU FOR A FILENAME.
:INPUT FNAME; PROMPT="Please enter the filename: "
:ECHO FNAME = !FNAME, FLIMIT = ![FINFO(FNAME,12)]

The :INPUT command can even have a timeout (wait for no
more than X seconds) option.

In addition to MPE/V control structures 1like :IF,
¢tELSE, and :ENDIF, MPE/XL implements the :WHILE /
:ENDWHILE construct, e.gq.

'SETJCW I = 285
(WHILE I < 314
ABORTJOB #J!'1I
¢ SETJCW I = I+1
{ENDWHILE

Instead of setting up UDCs, you can set up COMMAND
FILES. If you want to define a command called S that
does a :SHOWJOB, you can build a file called S.PUB.SYS
that contains the lines:

PARM WHAT=" "
SHOWJOB JOB=@!WHAT

Now, whenever you type
'S J

(for example), MPE/XL will execute the file S.PUB.SYS
passing "J" to it as a parameter. Same as a UDC, but no
need to :SETCATALOG.

Actually, whenever you type a command (like S in the
example above) that isn't a normal MPE command, MPE/XL
doesn't just check for it in PUB.SYS. It instead looks
at the variable (remember those?) called HPPATH, and
tries to find the file in the groups listed in the
variable.

0096-5

MPE/XL PROGRAMMING

By default, HPPATH is set to
'HPGROUP, PUB, PUB.SYS

This means "first look in !HPGROUP (i.e. your group),
then in the PUB group (of your own account), and then
in PUB.SYS". You can change HPPATH to tell MPE/XL to
look in UTIL.SYS, PUB.VESOFT, PUB.TELESUP, or what have
you.

* In addition to letting you execute command files by
just entering their names, you can also run a program
just by entering its name (IMPLIED RUN). If you say

:SPOOKS

MPE/XL will search the groups specified in HPPATH -- if
the first file it finds 1is SPOOKS.PUB.SYS (a program
file), it'll run it just as if you'd said

‘RUN SPOOKS.PUB.SYS

Similarly, to run a program in your own group, you can
just say

:MYPROG

and MPE/XL will automatically supply the :RUN
(remember, MPE/XL will 1look in HPPATH to determine
which groups it should search -- by default, your group
is one of them). If you say

:MYPROG "BANANA" ,5

it'll run MYPROG with INFO="BANANA" and PARM=5 (other
:RUN command parameters are not available).

* Finally, a few odds and ends:

- The :CALC command works as a general-purpose integer
and string calculator.

- Users can now redefine their own prompt by setting
the HPPROMPT variable.

- :SETCATALOG lets you add a new UDC file (or remove
one) without retyping the names of all the other UDC
files (which 1is cumbersome and risks accidentally
unsetting an important file).

0096-6

MPE/XL PROGRAMMING

- You can :REDO not just the last command, but one of
the last 20 commands (or even more than 20 if you so
choose). This is actually a very powerful tool -- I'm
only including it in "odds and ends" because it's not
directly relevant to MPE/XL programming.

These are the features -- what are the benefits?

THINGS THAT ARE NOW EASY TO DO

1 . ENUIROMNMENT UARIABLES

One example in my original “MPE Programming" paper
involved a UDC finding out whether it's being executed in a
session or in a job. This might, for instance, be a logon
UDC that you use to set your function keys -- it outputs a
whole bunch of escape sequences, which you want to see when
you'r2 online, but which will only garble your printout if
printed in a job.

In MPE/V, if you recall, checking job/session mode was
done this way:

SOFTKEYSINIT << the logon UDC name 3>
OPTION LOGON
SETJCW CIERROR=0
CONTINUE
RESUME
IF CIERROR<:978 THEN
<< initialize the softkeys >>
ENDIF

Very straightforward, 1isn't it? The :RESUME command, of
course, 1is not used for :RESUMEing at all; rather, we count
on it to generate an error condition -- error 978 if in
batch, but a different error (warning 1686) if online.

MPE/XL makes this larghably simple:

SOFTKEYSINIT
OPTION LOGON
IF HPINTERARCTIVE=1 THEN
<< 1nitialize the softkeys »>
ENDIF

0096-7

MPE/XL PROGRAMMING

Essentially, MPE/XL automatically presets some JCWs to
interesting values -- HPINTERACTIVE, HPLDEVIN (your terminal
number), HPUSER (your logon user id), etc. This process
actually started in MPE/V with the HPYEAR, HPMONTH, HPDATE,
HPDAY, HPHOUR, and HPMINUTE JCWs, but MPE/XL has added a lot
of new and useful ones.

Some more practical applications are readily apparent and
others (the best kind) aren't. For instance, a really nice
typing-saver is:

‘NEWUSER JACK ; CAP= |HPUSERCAPF

"HPUSERCAPF" stands for “USER CAPabilities, Formatted".
It's a STRING variable that indicates which capabilities you
currently have, e.g. “AM,AL,GL,ND,SF,PH,DS,IA,BA". The "!"
before the "HPUSERCAPF" works much as it would before a UDC
parameter -- it tells MPE to substitute in the VALUE of the
HPUSERCAPF variable in place of its name.

Thus, the command might end up being:
tNEWUSER JACK;CAP=AM,AL,GL,ND,SF,PH,DS,IA,BA

You didn't have to type in all of those capabilities -~ the
HPUSERCAPF automatically put in all the ones you have.

You might even say

:NEWUSER JACK;CAP=! [HPUSERCAPF-"AM,"]

Saying ![xxx) tells MPE: "Evaluate the expression xxx and
substitute in its result". Subtracting two strings in MPE/XL
removes the first occurence of the second string from the
first —- thus, the :NEWUSER command will become

:NEWUSER JACK ; CAP=AL,GL,ND,SF,PH,DS, IAR,BA

(since “AM,AL,GL,ND,SF,PH,DS,IA,BA"-"“AM," is
“AL,GL,...,BA"). .

Another nice example is:

‘FILE SYSLIST=BK!|HPYERR!HPMONTH |HPDATE ,NEW;DEV=DISC ; SAVE
:STORE @.@.@; *T

This will do a system backup and send the listing to a disc file
IDENTIFIED BY THE BACKUP DATE.

0096-8

MPE/XL PROGRAMMING

Thus, you can keep many of your backup listings online (so you
could easily tell which tape set and reel number a file was on};
each one will be stored in its own file.

For instance, on 20 November 1988, the above commands will be
executed as:

‘FILE SYSLIST=BK881120,NEW;DEU=DISC;SAVE
:STORE @.Q.@; *T

Unfortunately, it's not quite this simple. (Almost, but
not quite.) What if we do the :FILE SYSLIST= on the 9th of
April? Then, we'd get

‘FILE SYSLIST=BK8849;...

-- not quite what we want. We'd like the month and day to be
zero-padded, so that the file names will be more
comprehensible and a :LISTF will show them in the right
order (i.e. not show BK8849 after BK88410 and BK881231). How
can we do this? Well, how about

:FILE SYSLIST=BK![10000+HPYEAR+100+HPMONTH+HPDATE];. ..

Instead of substituting the month and the day in directly,
we calculate the value 10000*HPYEAR+100*HPMONTH+HPDATE.
Since this is arithmetic, not textual substitution,
“zero-padding" will occur -- the 9th of April of 1988 will
yield 880409. Then, we textually substitute the resulting
value into the :FILE equation:

{FILE SYSLIST=BK880409;...

Even the additional power of MPE/XL doesn't remove the
need for a little ingenuity.

Finally, one more useful little UDC:

HIPRI !JOBNUM

ALTJOB #J!JOBNUM; INPRI=14
SETUAR OLDJOBLIMIT HPJOBLIMIT
LIMIT ! [{HPJOBCOUNT+1]

LIMIT !OLDJOBLIMIT

DELETEVRR OLDJOBLIMIT

Three guesses as to what this does? Give up? Well, you
:STREAM a job and find it at the bottom of the WAIT queue;
you want it to execute, but you don't want to let any of the
other WAITing jobs through.

0096-9

MPE/XL PROGRAMMING

This UDC:

* Alters the job to input priority 14 (the highest
priority possible).

* Saves the old job limit (indicated by the built-in

variable HPJOBLIMIT) in an MPE/XL variable
(OLDJOBLIMIT).

* Sets the job 1limit to HPJOBCOUNT -- the number of
currently executing Jjobs -- plus 1, thus letting the
topmost WAITing job (the one you just :ALTJOBd)
through.

* Sets the job limit back to what it was before.

* Just for cleanliness, deletes the OLDJOBLIMIT variable.

Voila! The one problem I can see is that the UDC expects
only a job NUMBER, not the leading "#J" -- if a user types

HIPRI #J123
then the very first line will be
ALTJOB #J4J123;INPRI=14

-— MPE won't like this much. We'd like to let the user type
either

HIPRI 123
or
HIPRI #J123

whichever he prefers.

The solution is again fairly simple, taking advantage of
MPE/XL's provisions for strings and for string operators:

HIPRI !JOBNUM

IF UPS(LFT(" !JOBNUM" ,2))="4J" THEN
ALTJOB !JOBNUM; INPRI=14

ELSE
ALTJOB #J!{JOBNUM;INPRI=14

ENDIF

SETVUAR OLDJOBLIMIT HPJOBLIMIT

LIMIT !CHPJOBCOUNT+11]

LIMIT !OLDJOBLIMIT

DELETEVAR OLDJOBLIMIT

0096-10

MPE/XL PROGRAMMING

The key here 1is the :IF expression -- it extracts the
leftmost 2 characters of the string containing JOBNUM
(LFT("!JOBNUM",2)), upshifts them (UPS(LFT("!JOBNUM",2))),
and then compares them against "#J". If the characters are
equal to "#J", then we just do an :ALTJOB !JOBNUM; if the
characters are something else (presumably the start of the
job number), then we insert a #J in front of them.

#22 . FILE INFORMATIOMN

One of the most valuable new features of the MPE/XL CI
is the ability to obtain FILE INFORMATION. Remember the old
MPE trick of finding out if a file exists or not?

SETJCW CIERROR=0
CONTINUE
LISTF MYFILE;$NULL
IF CIERROR=907 THEN
<< file doesn't exist »>
ELSE
<< file exists »>
ENDIF

Again, what we're doing here is executing a command (:LISTF)
not for its main purpose, but rather for a side effect —- if
we give :LISTF a file that doesn't exist, it'll set the
CIERROR JCW to 907; if the file exists, CIERROR will remain
0.

MPE/XL is much more straightforward:

IF FINFOC'MYFILE',0) THEN
<< file exists >
ELSE
<< file doesn't exist >>
ENDIF

The FINFO function returns information about the file whose
name is passed as the first parameter. The second parameter
tells FINFO which information is to be gotten; 0 means a
TRUE/FALSE flag indicating whether or not the file exists.
Other values ask for other things, such as file code, EOF,
FLIMIT, etc.

Applications for this abound. For instance, your job
stream might check to see if a file has 100 or more free
records:

0096-11

MPE/XL PROGRAMMING

+IF FINFOC'DATAFILE',19) > FINFO('DATAFILE',12)-100 THEN
¢ TELLOP File DATAFILE is &

: '[FINFO('DATAFILE',19)*100/FINFO('DATAFILE',12)1% full!
:ELSE

FINFO(xxx,19) returns xxx's EOF; FINFO(xxx,12) returns Xxx's
FLIMIT; if EOF > FLIMIT-100, we send a message to the
operator indicating how full the file is (again, the wonders
of expression substitution).

Another application is that we can now :BUILD files that
are the right size (rather than choose some number and hope
that the file won't overflow) --

‘BUILD NEWFILE;DISC=![FINFO('DFILE1',19)+FINFO('DFILE2',19)+100]

This builds NEWFILE to be large enough to fit all of DFILE1,
all of DFILE2, and 100 more records on top of that.
Unfortunately, note that we still can't figure out, say, the
number of entries in an IMAGE database (which you might very
well want to use in calculating a file limit) -- we're still
restricted to the rather limited set of features that HP in
its wisdom chose to provide to us.

There are, 1in fact, two pretty serious problems with
FINFO:

* For one, there are still a number of things that FINFO
just doesn't provide. To name a few:

- The NUMBER OF SECTORS in a file. I found myself
wanting to write a command file that compared the
number of sectors a file occupied before and after
a certain operation, but there was no way of
getting this information.

- The file's LAST ACCESS DATE/TIME and LAST RESTORE
DATE/TIME (FINFO gives us the creation date and
the last modify date, but not the last access date
or the last restore date).

- The file's security information -
‘RELEASEd/:SECUREA flag, security matrix, etc. It
would be quite nice, for instance, to check the
access you're allowed to a file before running a
program that might abort quite bizzarely if it
isn‘t given the access it wants.

0096-12

MPE/XL PROGRAMMING

- Whether or not the file 1is currently IN USE (and
if it is, in what mode).

- The NUMBER OF EXTENTS in a file, the number of
user labels, and others.

In fact, if you 1look at the FINFO option numbers,
you'll find that they're pretty much a subset of the
option numbers of the FLABELINFO intrinsic, which also
lets you obtain file information. Why a subset? Why not
just implement all the FLABELINFO options (though even
that would still leave some options out).

All the file attributes -- certainly all those listable

with :LISTF ,2 and MPE/XL's new :LISTF ,3 -- should be
easily obtainable from the CI.

Perhaps more important than the omitted functions is
the fact that

ALL THE FINFO OPTIONS ARE “MAGIC NUMBERS".
When you saw the command
:IF FINFOC'DATAFILE',138) > FINFOC'DATAFILE',12)-100 THEN
was it clear to you what FINFO(xxx,19) and
FINFO(xxx,12) did? If HP is going to implement file
access functions, why not have an FFLIMIT('DATAFILE'),
an FEOF('DATAFILE'), an FFILECODE('DATAFILE') and so
on? Or, if you want a single function, why not let the
user say
FINFO('DATAFILE', 'FLIMIT')
or

FINFO('DATAFILE', 'EOF')

Sure, it would take a little bit of extra time to
parse, but think of the advantages in clarity.

Of course, you can remedy this problem yourself by
setting up (probably in a logon UDC) variables or JCWs
that are set to the the appropriate FINFO values, e.g.

SETVUAR FIFILECODE 9

SETUAR FIFLIMIT 12
SETUAR FIEOF 19

0096-13

MPE/XL PROGRAMMING

You'd probably have to set either 14 or 18 of these
variables, and then you could say

{IF FINFO('DARTAFILE',FIEOF)>FINFO('DATAFILE' ,FIFLIMIT)-100 THEN

Unfortunately, you and I both know most people won't do
this -- they'll use the "magic numbers" and let you try
to figure out what's going on.

Even if you set up all the variables and use them
consistently, you'll lose one of the greatest
advantages of command files: their stand-alone nature.
Your "MPE programs" will now rely on your logon UDC and
its SETVARs -- if it gets deleted, they'll stop
working. If you want to copy your job stream or other
MPE program onto some other machine, you'll have to be
sure that the other machine has the same logon UDCs.
The point 1is that HP shouldn't have made you (or let
you) use "magic numbers" in the first place.

This might seem like looking a gift horse in the mouth --
for fifteen years, we had nothing, and now, when they give
us something, we want more. However, it seems almost a shame
that HP, having made the CI so much more powerful, didn't
implement such reasonable and useful features.

#3 . INPUT fAND OUOTPUIOT

A major shortcoming of MPE/V was the absence of any
general output command. Why, to output a simple message, you
had to have a UDC like

DISPLAY !STUFF

OPTION LIST

COMMENT !STUFF

The OPTION LIST would cause the UDC body -- in this case
COMMENT followed by the DISPLAY parameters -- to be output;
to output any message, you'd say

DISPLAY “HI THERE!"

Unfortunately, this would display not HI THERE!, but rather

COMMENT HI THERE!

To avoid the output of the "COMMENT “, you had to output
special escape sequences to backspace the cursor and clear

0096-14

MPE/XL PROGRAMMING

the 1line -- of course, this wouldn't work on a printing
terminal. All this bother just to display some text!

MPE/XL does things the right way -- it simply has an MPE
command to do the job. Just say

ECHO HI THERE!

and that's it. The only thing I can complain about is the
command name -- ECHO's pretty unintuitive. UNIX, of course,
calls its command ECHO (along with calling its PURGE command
RM and its text search command GREP), and MPE/XL borrowed
the name. I'd rather HP called it DISPLAY or TYPE or OUTPUT
or something like that, but it's hardly a big deal.

Of course, outputting variables and expressions can be
easily done with the ECHO command -- just use the !xxx and
! [xxx] syntaxes:

ECHO YOU'RE SIGNED ON AS 'HPUSER.'!HPACCOUNT, X = !{UPS(X)]

The only trick you need to know here is this: how do you
output a string with leading blanks? Like all MPE commands,
all blanks between the command name and the first parameter
are skipped, so

ECHO HI THERE!

and

ECHO HI THERE!

produce exactly the same output -- "HI THERE!" with no

leading blanks. Stumped? Just say
CALC " HI THERE!"

The CALC command takes an expression parameter (in this
case, just a string constant), evaluates it, and outputs the
result. Since the parameters start at the quote, all the
blanks between the quote and the HI are NOT ignored, and are
output. (Be careful, though, of using the CALC command for
general output purposes -- it works quite well for strings
and booleans, but for integers it outputs more than just the
integer's value.)

In addition to the :ECHO command for output, MPE/XL also
has an input command, fortunately called :INPUT. For
instance, you might have a UDC that says:

0096-15

MPE/XL PROGRAMMING

MOUVE !FROMFILE, !TOFILE
SETJCW CIERROR=0
IF FINFO("!TOFILE",0) THEN
COMMENT Target file already exists!
INPUT PROMPT="0K to purge !TOFILE? "; NAME=PURGEFLAG
IF UPS(STR(PURGEFLAG,1,1))="Y" THEN
PURGE !TOFILE
ENDIF
ENDIF
RENAME !FROMFILE, |TOFILE

If TOFILE already exists, the UDC will ask the user if it's
OK to purge it. UPS(STR(PURGEFLAG,1,1)) merely means "the
upshifted first character of PURGEFLAG" -- this way, Y, YES,
and YOYO will all be accepted as a YES answer.

Actually, there's one pretty big temptation with the
:INPUT command that should be resisted. You should think
twice (or more) before using the :INPUT command to prompt
for UDC (or command file) PARAMETERS. For instance, a UDC
such as

MOVEP
INPUT PROMPT="From file? "; NAME=FROMFILE
INPUT PROMPT="To file? "; NAME=TOFILE
SETJCW CIERROR=0
IF FINFO("!TOFILE",0) THEN
COMMENT Target file already exists!
INPUT PROMPT="CK to purge !TOFILE? "; NAME=PURGEFLAG
IF UPS(STR(PURGEFLAG,1,1))="Y" THEN
PURGE !TOFILE
ENDIF
ENDIF
RENAME !FROMFILE, !TOFILE

may not be a very good idea at all. Unlike the parameterized
UDC we showed above, this one can only be conveniently used
directly from the CI. Say that you want to write another UDC
that runs a program and renames one of its output files
(LISTFILE) into LISTFILE.ARCHIVE. With the parameterized
MOVE UDC, we could say:

RUN MYPROG
MOUE LISTFILE, LISTFILE.ARCHIVE

and then have the MOVE uDcC prompt the wuser if
LISTFILE.ARCHIVE already exists. The unparameterized MOVEP
UDC can't be used here at all, since it always prompts the
user for the input and output files, which in this case are
fixed and should not be prompted for.

0096-16

MPE/XL PROGRAMMING

In other words, this is the same reason why the best
third-generation language procedures take their input values
as parameters rather than prompt for them -- a parameterized
procedure is much more reusable than a prompting one.

One very interesting use of the :INPUT command, though,
might be in cases such as this:

MOVE !FROMFILE=" ", !TOFILE=" "
IF "!FROMFILE"=" " THEN
INPUT PROMPT="From file? "; NAME=URRFROMFILE
ELSE
SETVUAR UARFROMFILE " !FROMFILE"
ENDIF
IF "!TOFILE"=" " THEN
INPUT PROMPT="To file? "; NAME=URRTOFILE
ELSE
SETUAR VUARTOFILE " !TOFILE"
ENDIF
SETJCW CIERROR=0
IF FINFO(" !UARTOFILE",0) THEN
COMMENT Target file already exists!
INPUT PROMPT="0K to purge !UARTOFILE? "; NAME=PURGEFLAG
IF UPS(STR(PURGEFLAG,1,1))="Y" THEN
PURGE !UARTOFILE
ENDIF
ENDIF
RENAME !UARFROMFILE, !'UARTOFILE

This UDC can accept its input either from its parameters or
from the terminal. If it's used from within another UDC or
by a knowledgeable user, it can be passed parameters -- if a
novice user is using it, he can just type

:MOVE

and be prompted for all the input (for instance, if he's
unfamiliar with what parameters the UDC takes). Actually,
this may not be so useful for a simple UDC like this, but a
really complicated UDC with many parameters can be made much
more convenient with "dual-mode" processing like this.

There are plenty of other uses for the :INPUT command --
menus, error processing (“Abort UDC or continue? "), etc.
There are also a lot of rather devious, non-obvious uses for
it, too (more about those later). The only thing that bears
keeping in mind is that :INPUTs should not entirely take the
place of parameter passing.

0096-17

MPE/XL PROGRAMMING

L tUHILE LOOPS

No programming language is really complete without some
sort of 1looping capability. In MPE/V, you could sometimes
make do with the pseudo-looping capabilities of EDITOR/3000
(for things 1like taking the output of one program and
translating it into input for another) and the ability of
:STREAMs to stream other jobs. For instance, one thing that
we at VESOFT used to make multiple production tapes was a
tape-making job stream that at the end streamed itself, thus
forming a sort of "infinite 1loop". (This was before we
implemented :WHILE and other MPE/XL functions in our STREAMX
Version 2.0, which makes things much easier.)

In one respect, MPE/XL's :WHILE command gives you all the
looping that you need (any loop, including the FOR x:=y TO 2z
and the REPEAT ... UNTIL constructs, can be emulated with a
WHILE) ; however, as we'll discuss later, it falls
tantalizingly short in some areas.

First the good news:

SETUAR JOBNUM 138

WHILE JOBNUM<=174 DO
ABORTJOB #J!JOBNUM
SETUAR JOBNUM JOBNUM+1

ENDWHILE

This is an example of how the :WHILE 1loop can iterate
through a set of integers. This simply aborts a whole range
of jobs, from #J138 to #J174. (Seems useless? Try submitting
fifty Jjobs in one shot -- all of them with the same silly
error! I did this the day before I wrote the paper; the
!WHILE 1loop sure came in handy.) Similar things can be done
in some other cases -- for instance, you can use this to
purge LOG####.PUB.SYS system log files IF you know the
starting and ending log file numbers (unless you're willing
to start at LOG0001 and work your way up).

Another example, taken roughly from Jeff Vance and John
Korondy's excellent paper “DESIGN FEATURES OF THE MPE XL
USER INTERFACE" (INTEREX Las Vegas 1987 Proceedings):

PRT Fl, F2,uu’ F3="", F4""", Fsguu) Fe=""

COMMENT Prints F1, F2, F3, F4, FS, and F6 to the line printer
FILE OUT;DEV=LP

SETUAR I 1

SETUAR F? "* ¢ to terminate the loop >>

WHILE ‘!"F!I"*' <> *!

0096-18

MPE/XL PROGRAMMING

IF FINFOC'!"F!I"',0) THEN
ECHO PRINTING !"F!I"
PRINT !"F!I" ,*QUT
ELSE
ECHO ERROR: !F"!{I" NOT FOUND, SKIPPED.
ENDIF
SETUAR I I+1
ENDWHILE

The WHILE loop here iterates through the 6 UDC parameters,
making it unnecessary to repeat its contents once for each
one. The construct !"“F!I" is actually rather interesting. If
I is 3, it gets translated into !“F3", which in turn gets
replaced by the value of the F3 parameter.

Another example might be checking a parameter to make
sure that it's, say, entirely alphabetic (in preparation for
passing it to some program that will abort strangely and
unpleasantly if there are any non-alphabetic characters in
it):

SETUAR I 1
WHILE I<=LEN(PARM) AND UPS(STR(PARM,I,1))>="A" AND &
UPS(STR(PARM,I,1))<="2" DO
SETUAR I I+1
ENDWHILE
IF I>LEN(PARM) THEN
COMMENT Hit the end of the string without finding a non-alpha
RUN MYPROG; INFO="!PARM"
ELSE
ECHO Error! Non-alphabetic character found:
CALC " !PARM"
SETUAR BLANKS ""
SETUAR J 1
WHILE J<I
SETUAR BLANKS BLANKS+" "
SETURR J J+1

ENDWHILE
CALC BLANKS+"~"
ENDIF
Note the little “bell-and-whistle" -- if there's a

non-alphabetic character, we use a :WHILE 1loop to
concatenate together several blanks and an """, so the
output looks like:

Error! Non-alphabetic character found:
FOOBAR. XY2ZY
A

Many parsing operations can actually be done more simply
with the POS function (which finds the first occurence of

0096-19

MPE/XL PROGRAMMING

one string in another); however, some complicated operations
(such as the ones we just showed) may require :WHILE loops.

Finally, one other place where :WHILE should find a lot
of use is the :INPUT command:

INPUT PROMPT="OK to proceed (Y/N)? *; NAME=ANSWER
WHILE UPS(ANSWER)<>"Y" AND UPS(ANSWER)<>"YES" AND &
UPS(ANSWER) <>"N" AND UPS(ANSWER)<>"NO" DO
ECHO Error: Expected YES or NO.
INPUT PROMPT="0K to proceed (Y/N)? "; NAME=ANSWER
ENDWHILE

Most good UDCs and command files that use :INPUT should have
some sort of input error checking, and this kind of :WHILE
loop is a convenient way of doing it.

With all this power, what's there to complain about?
After all, with an :IF and a :WHILE any language is
theoretically complete -- any algorithm can be implemented.

Well, not quite. Control structures can get you only as
far as the data access primitives are able to take you. Take
some of the iterative operations that you'd REALLY want to
implement:

* WHILE there are files in a fileset, DO something to
them.

* WHILE there are jobs 1left, ABORT them (in preparation
for a backup).

* WHILE there are records in a fileset, DO some

processing on them -- perhaps write some of the records
into another file, or pass them as input to some other
program.

You can't do any of this (straightforwardly) because MPE/XL
doesn't provide you any functions to read files, to handle
filesets, to find all jobs, etc. You'd 1like to be able to
say:

:WHILE FRECORD('MYFILE',RECNUM)¢>'!

;ENDUHILE
where FRECORD would return you a particular record of the
specified file; unfortunately, no FRECORD primitive exists.
The :WHILE command is only as powerful as the conditions you

can specify; unfortunately, at the moment, this seems mostly
limited to numeric iteration and to checking command

0096-20

MPE/XL PROGRAMMING

success/failure.

Another thing you'd like to be able to do with :WHILE is
to repeat a particular command every given number of seconds
or minutes -- for instance, to have a job stream wait until
a particular file 1is built or becomes accessible. Unless
you're willing to spend lots of CPU time in the loop, you
need to have some way of pausing for a given amount of time,
e.g.

‘WHILE NOT FINFO('MYFILE',0) DO
PAUSE 600 << 600 seconds »>>
‘ENDWHILE

Unfortunately, there is no :PAUSE command or PAUSE function
provided by MPE/XL (although as we'll see shortly, there are
some tricks you could do...).

#5S . COoOHMMAND FILES

Command files were implemented more for convenience than
for additional power; however, they can be convenient
indeed.

Simply put, a command file is a replacement for a UDC. If
you want to implement a new command called DBSC to run
DBSCHEMA, you used to have to write a UDC:

DBSC !TEXT="¢STDIN", !LIST="¢STDLIST"
FILE DBSTEXT=!TEXT

FILE DBLIST=!LIST

RUN DBSCHEMRA.PUB.SYS;PARM=3

You'd add this UDC to your system UDC file, :SETCATALOG the
file, and presto! you have a new command.

In MPE/XL, you could use a command file to do the same
thing. You could build a file called DBSC.PUB.SYS that
contains the text:

PARM ! TEXT="¢STDIN", !LIST="$STDLIST"
FILE DBSTEXT=!TEXT

FILE DBLIST=!LIST

RUN DBSCHEMA.PUB.SYS;PARM=3

Then, the very presence of the DBSC.PUB.SYS file will

implement the new command -- no need to :SETCATALOG it. You
can just say

0096-21

MPE/XL PROGRAMMING

DBSC MYSCHEMA, #*LP

and MPE will check to see if DBSC.PUB.SYS exists, find that
it does, and execute it much 1like it would have a
:SETCATALOGed UDC.

Why 1is this so nice? Well, remember all the nonsense you
had to go through to change a :SETCATALOGed UDC file? You
had to build a new file with a different name, :SETCATALOG
it in the old one's place, and even then it wouldn't take
effect for another session until it 1logged off and logged
back on! Most people ended up having several versions of the
system UDC file, since you couldn't purge the old file until
everybody who had been using it was logged off.

With command files, simply build the file, and there you
have it. No need to worry about whether the UDC file is in
use (unless the command is actually being executed at that
very moment, it won't be in use); no need to choose a new
name for the file; no need to remember to re-specify all the
other UDC files on the :SETCATALOG.

In fact, the MPE/XL compiler commands are actually
implemented this way -- :PASXL, for instance, is just a
command file (PASXL.PUB.SYS) that sets up several file
equations and runs PASCALXL.PUB.SYS (the actual compiler
program file -- you still need programs for something!).

Whenever I give an example in this paper that involves
UDCs, chances are very good that it will work with command
files, too (in fact, you'd probably want to do it with
command files). I only use UDCs in the examples to keep
things as familiar as possible.

You <could also implement account-wide commands by just
putting the command files into your PUB group, and
group-wide commands by putting them into your own groups. In
fact, MPE/XL has a special variable called HPPATH that
indicates where it 1is to search for command files; by
default, HPPATH 1is set to "!HPGROUP,PUB,PUB.SYS", 1i.e.
“search your group (!HPGROUP) first, then the PUB group,
then the PUB.SYS group". You could actually change it to
something else, e.g.

:SETURR HPPATH " !HPGROUP,PUB,PUB.VESOFT,CMD.UTIL,PUB.SYS"

In fact, it's probably a good idea to keep your own command
files not in PUB.SYS (where they'll just get lost among all
the other files) but in a special group, say CMD.UTIL. This
way, a simple

:LISTF @.CMD.UTIL

0096-22

MPE/XL PROGRAMMING

will show you all the system-wide command files that you've
set up. Of course, you'll have to have a system-wide logon
UDC that sets up the HPPATH variable to include CMD.UTIL.

A similar feature of MPE/XL is “implied run". Just
entering a program file name will AUTOMATICALLY cause that
program to be run; e.g.

:DBUTIL
will automatically do a
:RUN DBUTIL.PUB.SYS

WITHOUT your having to have a UDC or a command file for this
purpose. You can also specify a parameter, which gets passed
as the ;INFO= string to the program being run:

{MYPROG FOO
:PROG2 "TESTING ONE TWO THREE"

and also a second parameter, which gets passed as the
;PARM=:

:MYPROG ,10
:MYPROG FOOBAR,S

(Other parameters -- ;LIB=, ;STDIN=, ;STDLIST=, etc. can not
be passed; you have to do a real :RUN for that.) Also note
that MPE/XL looks for the program file in exactly the same
places in which it 1looks for a command file: all those
groups listed in the HPPATH variable.

These features are all very convenient, and can save you
a good deal of effort and some typing. There is, however,
one problem with both command files and implied :RUNs (and
also UDCs) that limits their usefulness:

* THERE'S NO WAY FOR PASSING THE *ENTIRE REMAINDER OF THE
COMMAND LINEx TO EITHER A COMMAND FILE, AN IMPLIED
tRUN, OR A UDC.

For example, say that I want to implement a new command
called :CHGUSER that executes my own CHGUSER.PUB.SYS command
file. I want it to 1look much 1like MPE's :NEWUSER and
{ALTUSER -- I'd like to let people say

:CHGUSER XY2ZZY;CAP=-BA, +DS, +PM; PASS=$RANDOM

0096-23

MPE/XL PROGRAMMING

The CHGUSER.PUB.SYS command file could then take the entire
remainder of the 1line as a single parameter, and then
perhaps pass it to some program that would process it.

Unfortunately, this simply can't be done! Since the
parameter list includes “";"s, ","s, and “"="s, MPE/XL views
them as delimiters (it would view blanks as delimiters,
too); there's no way of specifying in the command file that
delimiter checking is to be turned OFF, and that the entire
remainder of the command is to be passed as one parameter.
Of course, you could require the user to enclose the
parameter in quotes, but you'd rather not do that. (If
you're thinking that declaring CAP=, PASS=, etc. as keywords
to the command file will work, it won't -- look at the ",'s
in the CAP= parameter.)

In fact, MPE's own :FCOPY command couldn't be implemented
as an auto-RUN or as a command file for this very reason --
each :FCOPY command always includes delimiters, and that
won't work. I can see why HP doesn't like delimiters in an
implied :RUN (so that the ;PARM= value can be specified as
well as the ;INFO=), but why not have some sort of option
for command files? Personally, I'd rather be able to pass
the entire remainder of the command as one parameter than be
able to specify a ;PARM= value.

In fact, UNIX does have a way of treating the parameter
list (of either a program or a command file) as either a
sequence of individual parameters or as one single string;
UNIX programmers frequently use this feature. Again, this
may be looking a gift horse in the mouth, but it would have
been so easy for HP to implement something like this.

TRICKS

We've pretty much covered all the things you can do
straightforwardly with MPE/XL. Of course, if this was all I
had to say, I'd never have written this paper. People who
know me know that I NEVER do things straightforwardly...

MPE/V had the (small) set of things you can do easily and
the far 1larger set of things you could do if you really
stood the system on its head. Similarly, MPE/XL has the
larger set of things you can do easily, and the bigger still
number of things you can do with a little bit of trickery.
This is where the fun begins.

0096-24

MPE/XL PROGRAMMING

#1 . PAUSING FOR >xX SECONDS

At a certain point in your job stream, a particular file
may be in use. You don't want this to abort the job —-
rather, you want the job to suspend until the file is no
longer in use.

A first attempt at this might be:

WHILE FINFO('MYFILE',fileisinuseflag) DO
PAUSE one minute
ENDUHILE

While the file is in use (surely there must be an FINFO
option for this!), pause for a minute, and then check again.
This shouldn't be too much of a load on the system (though
without the :PAUSE this would be a heavy CPU hog indeed!).

Of course, you face two problems. First of all, there is
no FINFO option to check to see if the file is in use or
not. (OK, everybody, submit those SRs!) 0ld MPE programming
hands, however, shouldn't despair:

FILE CHECKER=MYFILE ;ACC=OUTKEEP;SAUVE
SETJCW CIERROR=0
CONTINUE
PURGE *CHECKER
WHILE CIERROR<:>0 DO
PAUSE one minute
SETJCW CIERROR=0
CONTINUE
PURGE *CHECKER
ENDWHILE

See what we're doing? The :FILE equation tells the file
system to open the file with ;ACC=OUTKEEP (so the data won't
get deleted) and close it with disposition ;SAVE (so the
file itself won't get purged) -- the :PURGE command will
thus not purge the file at all, but just try to open it with
exclusive option. As long as the :PURGE is failing, we know
that the file is in use (unless, of course, it doesn't exist
or we're getting a security violation).

We do this check once before the :WHILE loop; then, if
CIERROR<>0, we pause for a minute, do the check again, and
keep going until the check succeeds.

The only problem that remains is, of course, that MPE/XL

has no :PAUSE command -- without it, the entire exercise is
academic.

0096-25

MPE/XL PROGRAMMING

What can we do? Well, one solution is to write a program.

Call

it PAUSE.PUB.SYS -- it'll take a ;PARM= value, convert

it to a real number, and call the PAUSE intrinsic. Then, any
of your command files could say

:RUN PAUSE.PUB.SYS;PARM=60

or just use the implied :RUN, as in

:PAUSE ,60

I

*

don't like this. I don't like it for several reasons:

The program, though not by any means difficult, is not

trivial to write. If you know SPL, it's only a few
lines; what if you only know COBOL? You can't even call
the PAUSE intrinsic from COBOL (at 1least from COBOL
'74), since COBOL can't handle real numbers (which the
PAUSE intrinsic expects).

From FORTRAN, you could call PAUSE, but you also need
to <call the GETINFO intrinsic (quick! do you know it's
parameter sequence?). What if you had to write a
program that checked to see if the file was in use?
You'd have to call FOPEN, figure out the right foptions
and aoptions bits (%1 and %100, if you're curious), and
then use an intrinsic to set a JCW appropriately.

Once you write it, you have to keep track of it. You
put its object code into PAUSE.PUB.SYS -- where do you
keep the source code? What if you 1lose it? Will you
write documentation for it, or add a HELP option?

Finally, the more external programs you use, the less
self-contained the job stream will be. What if you move
the job to one of your machines? You'll have to move
the PAUSE program, too, and probably its source code
and documentation, just to be safe.

For vendors 1like VESOFT, the problem becomes even
greater -- our installation job stream has to be able
to run on a system where NONE of our software currently
exists. We can't rely on your PAUSE.PUB.SYS or what
have you.

You might agree with me or you might not. It's quite
possible that the only problem with an external program file
is that it somehow affects some silly esthetic sense of mine

0096-26

MPE/XL PROGRAMMING

-- that my mind is too twisted to appreciate a simple,
straightforward solution. In any event, here's my answer to
the problem:

:BUILD MSGFILE;TEMP;MSG
‘FILE MSGFILE,OLDTEMP
:RUN FCOPY.PUB.SYS;STDIN=*MSGFILE; INFO=": INPUT DUMMY;WAIT=60"

Nice, eh? I build a temporary message file called MSGFILE,
and then I run FCOPY with ;STDIN= redirected to it. Then, I
tell FCOPY to execute an :INPUT command, telling it to WAIT
for 60 seconds for input! (Of course, the only reason I use
FCOPY here is to have it execute the MPE/XL command ":INPUT
DUMMY ;WAIT=60" -- FCOPY's convenient for this because we can
pass the command to it as an INFO= string.)

Of course, the input will never come, since MSGFILE is
empty; and, I must admit that the :INPUT ;WAIT= parameter
was almost certainly intended to wait for TERMINAL input.
However, it also works perfectly well when the input is
coming from a $STDIN file that was redirected to a message
file. When the 60 seconds are up, the :INPUT command will
terminate and return control to FCOPY, which will then
return back to the CI.

Now, our job stream is complete:

:BUILD MSGFILE; TEMP;MSG
:FILE MSGFILE,OLDTEMP
:FILE CHECKER=MYFILE;RCC=0OUTKEEP ;SAVE
:SETJCW CIERROR=0
:CONTINUE
: PURGE #*CHECKER
‘WHILE CIERROR<>Q DO
RUN FCOPY.PUB.SYS;STDIN=*MSGFILE; INFO=":INPUT DUMMY;WRIT=60"
¢ SETJCW CIERRUR=0
¢ CONTINUE
¢ PURGE *CHECKER
‘ENDWHILE

Complete, of course, except for the many :COMMENTs that I'm

sure that you, as a conscientious programmer, will certainly
include...

Some may say that only a computer freak can think that
the above solution is simpler than just running a program
that loops doing FOPENs and PAUSEs.

They may be right.

0096-27

MPE/XL PROGRAMMING

#2 . READING A FILE

The :REPORT command nicely shows you all the disc space
used by each account on the system (actually, on MPE/XL 1.0
the disc space :REPORTed is sometimes erroneous, but I'm
sure that'll be fixed soon). Unfortunately, it doesn't show
you the total disc space used in the entire system, which is
a useful piece of information. For instance, you might want
to subtract the free and the used disc space counts from the
total space on your discs, thus finding out how much lost
space there is.

The :REPORT command can send its output to a file, which
is good. But what can you do to read the file?

Well, 1let's start at the beginning. First, let's do a
:REPORT into a disc file:

'FILE REPOUT;REC=-80,16,F,ASCII;NOCCTL ; TEMP
: CONTINUE
:REPORT XXXXXXXX.@,*REPOUT

What's the XXXXXXXX.@ for? The :REPORT command usually
outputs information on accounts and on groups; in our case,
we don't want to have any group information at all. By
specifying a group that we know doesn't exist in any account
(I hope that you don't have a group called XXXXXXXX) we can
make MPE output only the account information and no group
information. 1It'll also print an error (NONEXISTENT GROUP),
but that's OK.

Now, we have a temporary file called REPOUT, which
contains two header 1lines and one 1line for each account.
We'd 1like to extract the number of sectors used from each
account 1line and add everything up. This is where the real
trickery comes in.

One thing we might do is use EDITOR. The principle here
is that we'll take the :REPORT listing, which looks like

ADMIN 15502 ** 1046 ** 8372 *k
CUST 3062 ** 0 ** 0 *%
DEV 7080 ** 18 *% 8 %

and "massage" it into a sequence of MPE/XL commands:

0096-28

MPE/XL PROGRAMMING

{SETUAR TOTALSPACE TOTALSPACE+ 15502
:SETUAR TOTALSPACE TOTALSPACE+ 3062
{SETUAR TOTALSPACE TOTALSPACE+ 7080

We can then execute all these commands, and TOTALSPACE will
be the total used disc space count.

Doing this is simple (?):

:PURGE REPOUT, TEMP

:FILE REPOUT;REC=-80,16,F,ASCII;NOCCTL;TEMP
:CONTINUE

:REPORT XXXXXXXX.@,*REPOUT

:SETUAR TOTALSPACE 0

:EDITOR

/TEXT REPOUT

/DELETE 1,2 << delete the header lines >>

/CHANGE 23,72,"",ALL <« delete everything right of the count >>

/CHANGE 1-8,":SETUAR TOTALSPACE TOTALSPACE+" << delete the left >>
<< now, each line looks like: >>

<< :SETVUAR TOTALSPACE TOTALSPACE+ 15502 »>>

/KEEP REPUSE,UNN

/USE REPUSE << execute the :SETUARs >>

/EXIT

Now, the TOTALSPACE variable is set to the total disc space!

This is very much like what we did in pre-MPE/XL "MPE
PROGRAMMING" -- we used EDITOR as a means of taking a
program's or a command's output and making it another
program's (in this case, also EDITOR's) input. In fact,
UNIX's "sed" editor is very frequently used for this purpose
by UNIX programmers (although it‘'s much more adapted to this
than EDITOR/3000 is).

The trouble with this solution 1is that it's inherently
limited to plain textual substitution. What if we wanted to
sum the disc space of all accounts that used more than
20,000 sectors? EDITOR has no command that can easily check
the value of a particular field in a line. What we'd really
like to do is use all the power of MPE/XL's :WHILE loop and
expressions to process the :REPORT listing one line at a
time.

As I mentioned before, MPE/XL unfortunately has no "“get a
record from a file" function. However, not all is lost.

0096-29

MPE/XL PROGRAMMING

Let's set up two command files. One (TOTSPACE) will look
like this:

FILE REPOUT;REC=-80,16,F,ASCII;NOCCTL ; TEMP
SETUAR OLDMSGFENCE HPMSGFENCE

SETUAR HPMSGFENCE 2

PURGE REPOUT,TEMP

CONTINUE

REPORT XXXXXXXX.@,*REPOUT

SETUAR HPMSGFENCE OLDMSGFENCE

FILE REPOUT,OLDTEMP

CONTINUE

RUN CI.PUB.SYS;PARM=3; INFO="TOTSPAC2" ; STDIN=+REPOUT ; STDLIST=$NULL
ECHO TOTAL USED DISC SPACE = !TOTALSPACE

There are two new things here. One is

SETUAR OLDMSGFENCE HPMSGFENCE
SETUAR HPMSGFENCE 2

CONTINUE

REPORT XXXXXXXX.@,*REPGUT
SETUAR HPMSGFENCE OLDMSGFENCE

What's all this HPMSGFENCE stuff? Well, remember that the
REPORT XXXXXXXX.@,*REPOUT command will almost certainly
output an error message (NONEXISTENT GROUP). This is to be
expected, and we don't want the user to have to see this.

So, we set the HPMSGFENCE variable to 2, indicating that
error message are not to be displayed (setting it to 1 would
inhibit display of warnings, but still print errors).
However, since we want to reset HPMSGFENCE to its old value
later, we save the old value of HPMSGFENCE, set the value to
1, do the command, and then reset the o0ld value.

Personally, I think that this is a bit more effort than
required. In MPEX, I simply added a new command called
$NOMSG; saying

$NOMSG REPORT XXXXXXXX.@,*REPOUT

makes MPEX execute the :REPORT command without printing any
messages. Similarly, HP could have had a :NOMSG command (for
suppressing errors and warnings) and a :NOWARN command (for
suppressing only warnings). This would have saved all the
bother of the saving of the old HPMSGFENCE, setting it, and
resetting it. In fact, to be really clean, I should even do
a

:DELETEURR OLDMSGFENCE

after doing the :SETVAR HPMSGFENCE OLDMSGFENCE.

0096-30

MPE/XL PROGRAMMING

In any case, the HPMSGFENCE solution is better than no
solution at all -- in MPE/V, the warning message would
always be displayed, and users might get quite confused by
it.

The only other little trick (in this command file) is
RUN CI.PUB.SYS;PARM=3;INFO="TOTSPAC2" ;STDIN=#REPOUT ;STDLIST=$NULL

What on earth does this mean?

In MPE/XL, the CI is not some special piece of code kept
in the system SL. Rather, it's a normal program file called
CI.PUB.SYS -- when a job or a session starts up, the system
creates a new CI.PUB.SYS process on the job/session's
behalf. However, CI.PUB.SYS is also :RUNable just like any
other program; you can run it interactively by saying

{RUN CI.PUB.SYS
or just
:CI

Alternatively, you can run it and tell it to execute exactly
one command:

:RUN CI.PUB.SYS;PARM=3;INFO="command to be executed"

(;PARM=3 tells the CI not to display the :WELCOME message
and to only process the ;INFO= command, rather than prompt
for more commands -- other j;PARM= values do different
things.)

In our case, we're running CI.PUB.SYS with
;INFO="TOTSPAC2" (telling it to execute our TOTSPAC2 command
file), and with ;STDIN= redirected to our :REPORT command
output file. We redirect ;STDLIST= to $NULL, since the CI
will otherwise echo its ;INFO= command -- ":TOTSPAC2" --
before executing it.

Now we can see what TOTSPAC2 contains:

:INPUT DUMMY : << to skip the first header line >>
:INPUT DUMMY ¢< to skip the second header line >>
:SETURR TOTALSPACE 0

:SETUAR HPMSGFENCE 2 <¢ to ignore any error messages >’

{WHILE TRUE DO <¢ loop until we get an error >>
¢ INPUT REPORTLINE << get a :REPORT detail line >>
<< extract the disc space -- 15 columns starting with >>

0096-31

MPE/XL PROGRAMMING

<< column 9 -- and add it to TOTALSPACE >>
SETUAR TOTALSPACE TOTALSPACE + ![STR(REPORTLINE,9,15)]
{ENDWHILE

See the trick? CI.PUB.SYS's ;STDIN= is redirected to a disc
file, so all :INPUT commands will read from that disc file.
For each line we read in, we extract the account disc space
(STR(REPORTLINE,9,15)), and do a

:SETUAR TOTALSPACE TOTALSPACE + extracted_account_disc_space

When we run out of input lines, the :INPUT command will get
an EOF condition, and the command file will stop executing.
TOTALSPACE is now set to the total disc space.

Both the EDITOR and the two-command-files solution can be
used online, though both require two files (the first
approach would require a disc file that contains all the
required EDITOR commands). In a job, the EDITOR approach can
be completely self-contained, since the EDITOR commands can
just be put into the job stream; the second approach can
also be self-contained if you create the TOTSPAC2 command
file within the job (by using EDITOR or FCOPY).

Finally, one more variation on the same theme:

FILE REPOUT;REC=-248,,U,ASCII ;NOCCTL ;MSG; TEMP
SETUAR OLDMSGFENCE HPMSGFENCE
SETUAR HPMSGFENCE 2
CONTINUE
PURGE REPOUT, TEMP
REPORT XXXXXXXX.Q,*REPOUT
SETUAR HPMSGFENCE OLDMSGFENCE
FILE REPOUT,OLDTEMP
CONTINUE
RUN CI.PUB.SYS;PARM=3;INFO="INPUT DUMMY" ;STDIN=*REPOUT;STDLIST=$NULL
RUN CI.PUB.SYS;PARM=3;INFO="INPUT DUMMY" ;STDIN=#REPOUT;STDLIST=$NULL
SETUAR TOTALSPACE 0
WHILE FINFOC('*REPOUT',18)>0 DO
RUN CI.PUB.SYS;PARM=3;INFO="INPUT REPORTLINE";STDIN=+REPOUT;&
STDLIST=$NULL
SETUAR TOTALSPACE TOTALSPACE + !(STR(REPORTLINE,S,15)]
ENDWHILE
ECHO TOTAL USED DISC SPACE = !TOTALSPACE

Intuitively obvious, eh?
* The :REPORT command output is sent to a MESSAGE FILE.

0096-32

MPE/XL PROGRAMMING

* To read a line from the file, we say

RUN CI.PUB.SYS;PARM=3;INFO="INPUT REPORTLINE";STDIN=*REPOUT;&
STDLIST=$NULL

This essentially tells the CI to read into REPORTLINE
the first record from *REPOUT -- since it's a message
file, the record will be read and deleted; the next
read will read the next record.

* We loop while FINFO('*REPOUT',19) -- REPOUT's end of
file -- 1is greater than 0. When the file is emptied
out, we stop.

This is entirely self-contained, and in some respects
more versatile (we can, for instance, prompt the user for
input in the middle of the :WHILE loop, since our $STDIN is
not redirected). The output-to-a-message-file and
run—-the-CI-to-get-each-record constructs are essentially a
poor man's FREAD function. On the other hand, this approach
runs CI.PUB.SYS once for each file -- even on a Spectrum
this'll take some time!

One other glitch: each one of those :RUNs prints out one
of those pesky "END OF PROGRAM" messages. In MPE/XL, you can
actually avoid them -- as long as you use an implied :RUN
rather than an explicit :RUN command. We can't wuse an
implied :RUN because we need to redirect the STDIN and
STDLIST. This 1is another good argument for using the
two-command-file solution, which does only one :RUN and thus
prints out only one END OF PROGRAM message.

#3 . A PSCREEN COMMAND FILE

One of the most useful contributed programs for the HP
3000 is PSCREEN. (If you've been living in Katmandu for the
past ten vyears, you might not know that it prints the
contents of your screen to the 1line printer.) It works by
outputting an ESCAPE-"d" sequence to the terminal, which
causes almost any HP terminal to send back (as input) the
contents of the current line on the screen. PSCREEN sends
one ESCAPE-"4d" for each line, picks up the output
transmitted by the terminal, and prints it to the line
printer.

0096-33

MPE/XL PROGRAMMING

Now, PSCREEN is already up and running, so there's really
no reason to implement it as a command file; however, it's
quite interesting to try it, both as an example of the power
of MPE/XL and of the trickery you need to resort to in order
to work around some restrictions on that power.

The process of reading the data from the terminal is
actually quite straightforward:

CALC CHR(27)+'H!'
WHILE there are more lines on the screen DO
INPUT CURRENTLINE;PROMPT=![CHR(27)+"d"]

ENDWHILE
CHR(27) means a character with the ascii value 27 -- the
escape character. "![CHR(27)+'d']" is the string ESCAPE-d,

which when sent to the terminal (by the ;PROMPT=) will cause
the terminal to input (into CURRENTLINE) the current line on
the screen. The CALC command outputs ESCAPE-H (home up) to
send the cursor to the top of the screen.

(Actually, it turns out that we can't just display the
home up sequence in the :CALC since :CALC will then output a
carriage return and line feed, and we'll skip the first line
on the screen; instead, we have to incorporate the ESCAPE-H
into the first :INPUT command prompt.)

The only twist here (one that the "real" PSCREEN has to
deal with, too) is finding out how many lines there are on
the screen. If we send an ESCAPE-d after we've already read
the last data line, the terminal will just send us a blank
line, and will be happy to do this forever.

There are two ways of solving this problem. One is to
output (at the very beginning) some sort of "marker" to the
terminal, e.g. "**x PSCREEN END OF MEMORY ***x"; then, we can
keep INPUTing until we get this marker line, at which point
we know we're done. (We should also then erase the tag line
so that subsequent PSCREENs won't run into it.)

Another solution is to ask the terminal itself. If we say

INPUT PROMPT="![CHR(27)+'F'+CHR(27)+'a"']";NAME=CURSORPOS

then the terminal will be sent an ESCAPE-F (HOME DOWN, i.e.
go to the end of memory) and an ESCAPE-a. The ESCAPE-a will
ask it to transmit information on the current cursor
position, in the format "!&a888c999R", where the "!" is an
escape character, the "888" is the column number, and the
"999" is the row number. This string will be input into the

0096-34

MPE/XL PROGRAMMING

variable CURSORPOS. Then, the value of the expression
{ [STR(CURSORPOS,8,3)]
will be the row number of the bottom of the screen.

The old PSCREEN uses the first approach (write a marker),
probably because it's more resilient; I suspect that some
old terminal over some strange datacomm connection can't
handle the ESCAPE-a sequence right.

In any event, reading the data from the screen isn't that
hard. The question is: how can we output it to the printer?

As we showed in our previous discussion, it's quite hard
to read data from a file into a variable. It's harder still
to output the data from a variable to a file.

The solution 1lies in running CI.PUB.SYS with ;STDLIST=
redirected, thus letting the :ECHO command output to a file
rather than to the terminal. (This 1is much like doing file
input by running CI.PUB.SYS with ;STDIN= redirected.) Here's
what the full PSCREEN script actually looks like:

SETURR PSCREENTERM "#** PSCREEN MARKER ##%"
ECHO !PSCREENTERM
SETUARR PSCREENLINE 0
INPUT PSCREEN!PSCREENLINE ;PROMPT="![CHR(27)+'H'+CHR(27)+'d"'1"
WHILE PSCREEN!PSCREENLINE <> PSCREENTERM DO
SETUAR PSCREENLINE PSCREENLINE+1
INPUT PSCREEN!PSCREENLINE;PROMPT="![CHR(27)+'d"'1"
ENDWHILE
CALC CHR(27)+"A"+CHR(27)+"K" << clear the PSCREEN MARKER line >>
FILE PSCROUT ;DEU=LP
RUN CI.PUB.SYS;PARM=3;INFO="PSCREENX" ;STDLIST=*PSCROUT
RESET PSCROUT
DELETEVAR PSCREEN@

Note that we're reading all the lines into variables called
PSCREENO, PSCREEN1, PSCREEN2, PSCREEN3, etc. These variables
will then be read by the PSCREENX command file, which looks
like this:

SETUAR PSCKEENI 0

WHILE PSCREENI<PSCREENLINE DO
ECHO ! [PSCREEN!PSCREENI)
SETUAR PSCREENI PSCREENI+1

ENDWHILE

0096-35

MPE/XL PROGRAMMING

There it 1is, in all its glory! Again, the PSCREEN program
works just fine -- probably even better than these command
files -- but this is just an example of the kind of things
you can do.

One 1little glitch you'll run into with these command
files is that the first line of every printout will read
":PSCREENX". That's because CI.PUB.SYS will echo its ;INFO=
command to the ;STDLIST= file. For PSCREEN, this should be
fairly harmless; however, what if you simply want to write
the contents of a variable to a disc file without the
echoing getting in the way?

The solution is this:

PURGE TEMPOUT, TEMP

BUILD TEMPOUT;NOCCTL ;REC=-508,,U,ASCII;TEMP

FILE TEMPOUT,OLDTEMP ;SHR;GMULTI ;ACC=APPEND

RUN CI.PUB.SYS;INFO="ECHO !MYUAR";STDLIST=*TEMPOUT
FILE TEMPOUT,OLDTEMP

FILE DISCFILE;RCC=APPEND

PRINT *TEMPOUT ;OUT=#*DISCFILE;START=3

We run the CI and tell it to echo the variable MYVAR to a
temporary file called TEMPOUT. Then we do a :PRINT command
(a new feature of MPE/XL) that appends to DISCFILE the
contents of TEMPOUT starting with record #3. Record #1 is
CI.PUB.SYS's echo of the ":" prompt; record #2 is its echo
of the "ECHO !MYVAR" command; record #3 is the actual
contents MYVAR variable.

What a bother, and relatively slow, too (that's why we
ran the CI only once in the PSCREEN script). A built-in
MPE/XL FWRITE function would have been so much simpler...

#a . EXPRESSIONS AND PROGRAMS

One of the most interesting possibilities of the MPE/XL
command interface has nothing to do with command files (or
UDCs or job streams) at all. I've never seen it implemented
before, so it might have a good deal of practical problems;
however, I think that it has a lot of potential for power.

Consider a program that prints the contents of one of
your specially-formatted data files. If it were a database,
you could use QUERY, with its fairly sophisticated selection

0096-36

MPE/XL PROGRAMMING

conditions -- you could specify exactly what records you
want to select.

However, if you're writing a special custom-made program,
how can you let the user specify the records to be selected?
There are 1,000 records in the file (17 pages at 60 lines
per page), and the user only wants a few of them. If you
don't put in some sort of selection condition, the user
won't be happy; if you put in the ability to select on one
particular field, 1I'll bet you that the user will start
asking for selection on another field. What about ANDs? ORs?
Arithmetic expressions (SALARY<>BASERATE+BONUSRATE)? Soon
they'll be asking for you to write your own expression
parser!

What you really want is a GENERALIZED EXPRESSION PARSER,
usable by any subsystem that wants to have user-specified
selection conditions (and user-specified output formats).
You could tell it about the variables that you have defined
-- e.g., define one variable for each field in the file,
plus some other variables for some calculated values that
the user may find handy. Then, you tell it to evaluate a
user-supplied expression.

Think of all the various programs that could use this!

* V/3000 could have used this for the input field
validity checks (rather than having its own parser);

* QUERY could have used this for the »>FIND command
(rather than. having its own parser, which,
incidentally, can't handle parenthesized expressions);

* MPE/V could have used it for the :IF command logical
expressions;

* LISTLOG could have used it to let you select log
records;

* QUERY could have used it to output expression values in
>REPORTs (rather than have that silly
assembly-language-style register mechanism);

* EDITOR or FCOPY could have implemented a smart string
search mechanism (find all line that contain “ABC" OR
“"DEF").

HP could have saved itself man-years of extra effort,
while at the same time standardizing those expression
evaluators that exist AND implementing expression evaluation
in a 1lot of places that need it! Not to mention the uses

0096-37

MPE/XL PROGRAMMING

that you and I could put it to!

The point here is that with MPE/XL you can -- in a way --
do this yourself. Take that file-reader-and-printer program
of yours and prompt the user for a selection condition.
Then, for each file record, use the HPCIPUTVAR intrinsic (or
pass the COMMAND intrinsic a :SETVAR command) to set AN
MPE/XL VARIABLE FOR EACH FIELD IN THE RECORD. Now, do a

:SETUAR SELECTIONRESULT expression_input_by_the_user

Finally, do an HPCIGETVAR to get the value of the
SELECTICNRESULT variable; if it's TRUE, the record should be
selected -- if it‘'s FALSE, rejected.

In other words, you're using the :SETVAR commands
expression handling to do the work for you. You set MPE/XL
variables for all the fields in your record, and the user
can then use those variables inside the selection condition.
The condition can use all the MPE/XL functions -- =, <>, «,
>, 4+, -, STR, POS, UPS, etc.; it can reference integer,
string, or boolean variables. A sample run of the program
might be: :

:RUN SELFILE

SELFILE Version 1.5 -- this program prints selected records from
the PS010 KSAM file;, please enter your selection condition:

>UPS(STATUS) <> "XX" AND WORK_HOURS*HOURLY_SALARY»>=10000
Meantime, the program is doing:

FOR each record from PS010 DO
BEGIN
:SETUAR STATUS value_of_status_field_file
:SETURR NAME value_of_name_field
:SETUAR WORK_HOURS value_of_work_hours_field
:SETUARR HOURLY_SALARY wvalue_of_hourly_salary_field
:SETUAR DEPARTMENT value_of_department_field

'SETUAR SELECTIONRESULT &
UPS(STATUS)<>"XX" AND WORK_HOURS*HOURLY_SALARY>=10000
IF value of SELECTIONRESULT variable = TRUE THEN
output the record;
END;

(The :SETVAR commands in the pseudo-code should probably be
calls to the HPCIPUTVAR intrinsic.)

0096-38

MPE/XL PROGRAMMING

There are several non-trivial problems with this
approach:

* You're restricted to INTEGER, STRING, and BOOLEAN
variables -- no dates, reals, etc.

* You're restricted to those functions that MPE/XL
provides, which are rather 1limited (though fairly
powerful).

* Most importantly, all those intrinsic calls will take
some time! If you're reading through a 100,000 record
file, you might encounter some serious performance
problems.

As I said, to the best of my knowledge nobody's ever
implemented this sort of facility -- for all I know, it may
just not be practically feasible. However, I suspect that
for quick-and-dirty query programs (and also input checking,
output formatting, etc.) where performance 1is not a major
consideration, it can be very powerful. You can use it to
give a 1lot of control to the user, with very little
programming effort on your own part.

CONCLUSIOMN

The MPE/XL user interface is much more powerful and much
more convenient than the “classic MPE" interface. (I didn't
even mention some features, like multi-line :REDO, which are
convenient indeed.) It lets you easily do many things that
used to require a lot of effort; however, some key features
are unfortunately missing.

Fortunately, with a 1little bit of ingenuity, even the
apparently “impossible" can be achieved -- I'd be happy if
all this paper did was 1let you know that there are
possibilities to MPE/XL beyond those that are apparent at
first glance. We HP programmers did some pretty amazing
things with the 1limited capabilities that classic MPE
offered us -- with MPE/XL, we should be able to write some
very powerful stuff.

0096-39

MPE/XL PROGRAMMING

One thing that the new MPE/XL features should do is whet
the appetites of all the poor people who still have to stick
with MPE/V (or, heaven forbid, MPE/IV!) for some time in the
future. After seeing all those wonderful things on the new
machines, how can we bear to live with the old stuff?

There is actually a product out now (called Chameleon,
from Taurus Software, Inc.) that implements MPE/XL
functionality on MPE/V; VESOFT's own MPEX/3000 Version 2.0
release, tentatively scheduled for a June 1988 release,
should do the same (in addition, of course, to all the other
stuff that MPEX has always done -- fileset handling,
SALTFILE, new %LISTF modes, hook, etc.). MPEX Version 1.6
has, for the past year, already implemented the multi-line
:REDO feature, both in MPEX, and in other programs, such as
‘EDITOR, QUERY, TDP, QEDIT, etc.

VESOFT's STREAMX also implements many MPE/XL-like
features (including variables, :WHILE 1loops, expressions,
etc.) for job stream submission, an area unfortunately
neglected by HP. Personally, I think that variable input,
expression evaluation, input checking, etc. are even more
useful at job stream SUBMISSION time than they are in
session mode and at job stream execution time.

Finally, there are several other papers available about
MPE/XL, all of which I can recommend highly. Jeff Vance &
John Korondy of HP had the *“Design Features of the MPE/XL
User Interface" paper in the 1987 INTEREX Las Vegas
proceedings; David T. Elward published the "Winning with
MPE/XL" paper in the October and November 1988 HP
Chronicles. Also, the MPE/XL Commands Manual actually has a
lot of useful documentation on command files (including some
very interesting MPE/XL Programming examples!) -- I've seen
several versions, and it seems that the most recent ones
have the most information. And, of course, the recently
released "Beyond RISC!" book is an indispensable tool for
anybody who deals or will be dealing with Precision
Architecture machines.

Thanks to Rob Apgood of Strategic Systems, Inc. and Gavin
Scott of American Data Industries for their input on this
paper; thanks especially to Gavin for 1letting me test out
all the examples on the computer in the two hours between
the time I finished writing it and the time I had to Federal
Express it up to BARUG.

0096-40

MPE/XL PROGRAMMING

Finally, any errors in this paper are NOT the fault of
the author, but were rather caused by cosmic rays hitting
the disc drives and modifying the data...

0096-41

	MPE/XL Programming

