
Documentation: The Necessary Evil
Robert M. Gignac

Motorola Information Systems
9445 Airport Road

Brampton, Ontario (Canada)
L6S 4J3

Abstract

The systems we are developing today will ·become our
'foundations for the future'. The cornerstone of our
foundations should be an array of clear, concise, and well
written documentation. Do not misinterpret the title,
documentation is far from 'evil', the keyword is 'necessary'.
The ' evil' designation is in the eyes of the analysts and
programmers in charge of developing our systems. Of the many
steps involved in a project, documentation is the one we all
agree is required, but is the one nobody wants the
responsibility of -writing, let alone maintaining. To further
undermine our foundation, documentation is the area most
likely cut from a proj ect as costs rise and deadlines draw
near.

1.0 Introduction

A tremendous amount of time, resources and knowledge must
be expended in the development, programming and testing of
computer based systems. The results of these efforts must be
carefully organized so the myriad of details related to the
programs within these systems can be recorded in a clear and
orderly fashion. This means significant information about the
programs and the systems must (not should!) be written and
stored in a clear and concise fashion. The creation and
maintenance of this information is called DOCUMENTATION.
Documentation is a vital part of every system, and in order
to build 'foundations for the future', documentation must be
one of the cornerstones of that foundation.

Unfortunately, as vital as documentation is, it remains
possibly the weakest link in the computer systems field. If
you need confirmation of why this is so, perform the
following informal survey of your programmers and analysts:
ask them to list their 15 favorite tasks on a sheet of paper
and when they are done, sit down and review them. More often
than not, the words 'documenting systems/programs' will fail
to appear on the paper. Why? Documentation isn't trendy,
machine oriented, technically stimulating, and most
programmers and analysts consider it beneath them to
document. When your staff approaches the task of
documentation with this attitude it is easy to see why

Documentation: The Necessary Evil 0077- 1

documentation has been neglected, completely ignored, or
written in a haphazard manner in many DP shops.

There are two hazards encountered when writing about the
subject of documentation. The first hazard is the fact the
term encompasses a variety of different forms, all having
different meanings to different people. G. Prentice Hastings
and Kathryn King in their book Creating Effective
Documentation for Computer Programs make reference to the
following levels of documentation: Reference Charts,
Operator's Guide, User's Training Document, Student
Workbooks, Reference Manuals, Management Guide, System
Administrators Guide, Logic Diagrams, Microcode List,
Technical Manuals, User's Manual, and Installation Guide. I
am not about to cast judgement on how much of this
documentation is really required or even practical to create.
A decision on this matter would depend on the size of the
system you are creating and the needs of your individual
company. The second hazard arises from the subjective nature
of documentation. Like anything subjective, changes in
documenting procedures may make things better, worse, or
leave them much the same - and often there are no easy
answers about what to do. Every change or implementation of
new ideas involves trade-offs - What type of documentation?
Structure? Amount? Who will write it? - which are significant
in determining what needs to be done. This paper is,
therefore, by no- means an attempt to provide definitive
'yes/no' answers. However, if this paper proceeds to equip
you with the knowledge required to reach your own conclusions
about ~hy documentation is not evil, it will have done its
job. The scope of this paper will be two areas of the
documentation field that I feel are key, yet are often left
incomplete, incorrect or nonexistent: Program Documentation
and Application Software Documentation.

2.0 Program Documentation

It remains a fact that even today many programs are
delivered for which there is little or no documentation to
accompany them, or the documentation that does exist bears no
resemblance to the source code. On the surface you could ask
"So what?", because the program/systems will run whether or
not the documentation exists. As long as the program runs,
this remains true. Unfortunately, I have seen very few
programs that ran forever without 1) going crash in the
night, or 2) requiring some form of maintenance. Addressing
the first issue, we all know that it will be late one Friday
night that the XYZ analysis program which has run flawlessly
for 27 months will abort with some cryptic Image error,
requiring someone to dig out the program documentation. If we

Documentation: The Necessary Evil 0077- 2

can find it, we are a step ahead of the game. If it really
matches what the program is doing, your maintenance staff
will love you. More likely, you will have documentation that
is either: a) incomplete, or b) lacking the revisions Peter
Programmer made last June before he left the company.
Addressing the second issue, I have yet to see in my
relatively short experience in the field (6 years) any
program that has run for 2 years or more without ever
requiring some form of modification. Fixes to old bugs, fixes
to new bugs caused by fixes to old bugs, report format
changes, company policy changes, "etc. The reasons why you
might change code are endless, but you can be sure that if
your program is important it will need to be changed at some
point. There is also a third possibility, which I have seen
only once, that may be valid in your shop -- extremely
accurate documentation of very poorly written programs. While
not as severe a problem as the first two, it deserves some
recognition as well.

Given all these potential problems, don't despair, you
won't be the first to encounter them (or the last). However,
to ensure that they don't happen more than once, we should
discuss some solutions. The most obvious (and since it is
obvious, it is probably the least effective) is to write
standards and directives for what you expect to find in your
shops program documentation and make compliance with these
directives a requirement for continuing employment. We will
assume you are doing this already, and if it is working, fine
-- but if it isn't, we require some additional tactics. More
humane and perhaps more sensible might be to seek out
programming methodologies with built-in documenting
enhancements. But don't be mislead here: structured
programming by itself (regardless of language) won't solve
the documentation problem (despite what your programmers
say ...). Choose whatever documentation method you feel is
best for your shop, then it is up to management to insist
that the guidelines are followed. It still appears that after
all this time there is no mechanical substitute for old­
fashioned management control.

2.1 Program Documentation - Implementing Change

In order to get your DP staff to follow the new
management guidelines, you will have to get them to change
the standard and widely held view of documentation: "Those
who can, do, those who can't , document". Do not expect this
change to happen easily, as people resist change in any
number of ways, and for many different reasons. Key among
them are lethargy and fear. Phillip Metzger in his book

Documentation: The Necessary Evil 0077- 3

Managing Programming People outlines the following options as
possibilities:

1) Serious Threat: "Do it or I'll kill you"

2) Appeal to Self-esteem: "You don't want the people in
Linda's department to make us look bad, do you"

3) Opportunity: "We finally have a chance to look into this
new opportunity to improve ourselves"

4) More Opportunity: "Here's a chance to blaze a trail for
the rest of the department"

5) Bribery: "Do this and I'll remember it when salary review
time rolls around"

On the surface, these options appear quite humorous, but
they are some of the methods you may have to use if you are
to change the opinions of your staff towards documentation.
Believe it or not, people will actually resist the
opportunity to increase their skill levels or improve their
credentials in this area (ask my former supervisor). In part,
this may be due to the mistaken belief that good
documentation skills are not seen as a marketable asset, as
are courses in structured design, database methodology, 'c'
programming, etc. As an analyst or manager, you may face an
additional problem. You may have programmers reporting to
you (whom you can convert), but you in turn report to someone
who may hold the same beliefs as your programmers. It will
probably be easier to get your technical people to try new
things than it will to get management to join. Management's
reasons may be as follows:

1) If the group spends too much time on this, other projects
may fall behind (yet time for this should have been
planned in advance ...)

2) How do we know it will do any good?

The best way to answer managements concerns would be by
analogy. You have to look at program documentation as
insurance. If not~ing ever goes wrong at your site then the
effort may appear to be wasted. On the other hand, when
things do go wrong (and they will ...) your first line of
problem solving will be a referral to the program code and
the accompanying documentation in order to: a) find the cause
of the problem, b) fix it, and c) get the system rolling
again. It is because of this fact that documentation is often
viewed in nebulous terms, you can't tell management how much

Documentation: The Necessary Evil 0077- 4

value documentation has until a cr1S1S arises, and by then it
is too late to start documenting.

2.2 Program Documentation - Assembling the Material

Hopefully, we have determined that program documentation
is actually required. We will assume it doesn' t exist, and
that attitudes on the part of programmers and management can
be changed. Just what kind of information should we create?
The following chart sununarizes one of many possible
alternatives for creating a program dOGumentation manual.

1) Title Page

2) Revision Page

3) Abstract

4) System
Flowchart

The title page should contain the program
name, system of which the program is a
part, original programmers name, and the
date released to production.

The revision page is required to document
the history of the program. Contents
should include the name of the original
programmer, date released to production,
estimated time to complete progranuning.
On this page in chart form, provisions
should be made to document all subsequent
revisions, descriptions of them, names of
the parties responsible for them, and the
date the revised program was released to
production. In order to ensure this page
is always up to date, do not allow
programs to be moved into the production
environment until it has been verified
that the revision has been documented.

The program abstract should contain a
general purpose and description of the
program, frequency of use, input and
output files, subprograms called, and a
list of programs that are prerequisite
for this one to run.

The system flowchart documents the flow
of data through the system, providing a
visual means of identifying input and
output files used in the required steps
of the total processing cycle. (There
will be those who feel this process is
becoming obsolete.)

Documentation: The Necessary Evil 0077- 5

5) Logic
Description

6) Test Data

This section should provide a detailed
description of the program including
special editing performed, sequence
checking, reasonableness checks, tables
used in the program, special forms
required, and operator instructions. The
detailed program logic must be
illustrated using program flowcharts,
decision tables, or pseudo code.

A listing of the test data used in
testing the program, and a sample of the
program output should be provided in the
documentation manual. Test data should be
sufficient to test all routines within
the program.

At Motorola Information Systems we are using a
combination of the items mentioned in the above list as
shown in Fig. #1, #2 and #3 (see appendix). These documents
must be completed for every program released to production,
and no program will be run in the production environment
before these pages are verified to be complete. These pages,
as good as they may be, are only half of the battle. The
remaining program documentation must be carried out in the
program code itself.

2.3 Program Documentation - Using your code

. As mentioned earlier, some programming languages lend
themselves to documenting. COBOL for example can be somewhat
self documenting if certain standards for documentation are
enforced. Require COBOL programs to contain a purpose,
description and brief history in the REMARKS section .of the
code. Require that sections or paragraphs be commented if the
paragraph performs complex routines or calculations that
would not be obvious to someone unfamiliar with the code.
Require that all COPYLIBS and SUBPROGRAMS be identified as in
Fig. #4 (see appendix).

In case you feel that I am the only person 'crazy' enough
to feel this way, I offer the following quote: "In my
opinion, there is nothing in the programming field more
despicable than an uncommented program. A programmer can be
forgiven many sins and flights of fancy; however, no
programmer, no matter how pressed for time, no matter how
well intentioned, should be forgiven for an uncommented and
undocumented program". This quote comes directly from Edward
Yourdon, author of Techniques of Program Structure and

Documentation: The Necessary Evil 0077- 6

Design. Do keep in mind however, that commented code is not
an end to itself, as good comments are not a substitute for
bad code, nor is good code a substitute for lack of
comments. Program code obviously tells us what the program is
doing, but it cannot tell us why it was done in a certain
fashion. Before you decide that code documentation will be
the key to solving your problems, be prepared to hear the
following excuses from your staff:

- I don't have enough time

- My program is self-documenting

- Any competent programmer can understand my code

- This is a one shot program, its not worth it

- The program will change dramatically during the testing
and debug phase, so any documentation will be useless
by the time the program is finished (if this is the
case, perhaps you should question their design skills
before they start to code?)

- I understand the code, I'll be here to fix it

- ~y programs will take too long to compile

- Who will read the stuff anyway?

We have all heard these arguments before, and perhaps we
have even used one or two of them on occasion. In order to
combat them we may choose any of the techniques for change
outlined earlier by Metzger, or we may choose to implement
documentation as a philosophy across a department. Actually
putting program documentation methods into practise is not
that difficult if it is kept in mind at all times (perhaps a
system welcome message that reads 'Have you documented your
code today?'). Good documentation habits are generally best
exemplified by personnel who work for consulting firms.
Reassignment to another task is a common occurrence, and for
the success of the project (and perhaps the firm), it is
imperative that the next person be able to pick up the system
where the last one left it. Arguments will be raised here as
well, because people feel they work in a relatively stable
environment, so this precaution is not necessary. One only
has to look at DP turnover rates to see why it is necessary.
The average length of employment with one firm is less than
three years, and the easiest way to turn programs or systems
over to new people is with decent accompanying documentation.

Documentation: The Necessary Evil 0077- 7

2.4 Program Documentation - Reducing Maintenance Costs

Programs spend most of their life being maintained.
Often, considerably more time and money is put into extending
and changing programs than was spent at the initial
development. If this surprises you, it shouldn't. New systems
and their associated programs change the environments in
which they are used. In turn this changes the way they work,
and when work habits change, changes in the system are a
natural result. Barry Boehm in his book Software Engineering
Economics reports that DP shops are currently spending over
50% of their budgets on maintaining their existing systems
(see Fig. #5 in appendix). Over the past 10 years this figure
has increased by about 25%,· and will probably continue to
increase in the future. If you wish to reduce your costs (and
who doesn't?), you'can use reducing your.maintenance costs as
a selling point for program documentation. Below is a list of
why maintenance costs are so high, and it is easy to see how
program documentation may reduce these costs.

- Often programs are released to production that still
have a significant number of bugs. Due to this, what is
often called maintenance is really. just an extension of
the testing phase.

- When maintenance is required, the original programmer
has often left the company, or has been reassigned to
a different project.

- Programmers do not often view maintenance as
glamourous work.

- Most people have difficulty understanding other
peoples code.

Documentation that accompanies most programs is just
short of awful. Some testing in university settings has
indicated that maintenance programmers would be better
off removing all of the comments accompanying a program
and then trying to find bugs or implement improvements.
Because of this, many firms are now paying the price
for poor documentation standards of the past, as their
maintenance times and costs increase.

2.5 Program Documentation - A Dissenting Opinion

As with most concepts in the systems field, there are
people who are 'for' the concept and those who are 'against'
the concept. I feel I would be remiss if I didn't at least
address the viewpoint of the 'against' delegation. John

Documentation: The Necessary Evil 0077- 8

Boddie in his book Crunch Mode, approaches program
documentation as follows, "On some projects there is a rush
at the end to produce 'program documentation' -descriptions
of the code in the system. This is done in the name of
maintenance. What it is, really, is stupidity.". On this
issue I must disagree. If the proj ect was properly planned
and the documentation completed at each step in that plan,
they wouldn't be running around at the end of the project
trying to complete program documentation. Mr. Boddie goes on
to state that the original programmers design documents, plus
the comments that were put in the code should be adequate
enough for the maintenance staff to pick up the system and
maintain it. "These comments are the 'program
documentation' ", and project leaders will insist on it as
good programing practice. Unfortunately, in the past, project
leaders have not insisted on this, and many do not to this
day. As for the design documents and program comments being
adequate program documentation, could you imagine trying to
piece together the relationship of a complex system from the
program design documents and the source code?

Don't let your staff, or your management try to avoid the
issue of program documentation by using any of the excuses
mentioned in this section. Any program or system that is of
any value (and why would we bother to create them if they
weren't?) will remain active for some period of time,
increasing the odds of some other individuals coming into
contact with it. Perhaps one of the best ways to impress the
importance of this on a young programmer is to give them a
'rats nest' program to maintain, debug and modify (you know,
the kind we all used to write). If this is done to them early
in their career it can have a strong and beneficial impact on
their programming habits. This in turn will only make things
that much easier for you to convince them of the benefits of
program documentation, and they in turn may help you to
convince the rest of your staff.

3.0 Application Software Documentation

Application software documentation (often referred to as
the 'users manual') serves as the primary interface between
the end user and the application software. Despite the
importance of this documentation as a factor in both program
and system success, software maintainability, proper system
use and user satisfaction, application software is often paid
little more than lip service by DP departments. Application
documents have long been considered evils of doubtful
necessity, and because of this, the manuals that are produced
often try the users patience. It would appear that when
programmers are good, they are very good; but when they

Documentation: The Necessary Evil 0077- 9

write, they are terrible. The reason for bad writing getting
out is the same as for bad programs getting out: tasks aren't
planned well enough, plans aren't executed well enough, and
the results aren't tested well enough. For these problems to
exist, the finger must point at management for letting poor
writing and documentation get by them.

3.1 Application Software Documentation - Inherent Problems

The AUdience:
It is generally well known that most occupational reading

is 'reading-to-do' rather than 'required reading'. Many
people only use application documentation to improve
performance of seldom performed tasks. Due to this, if the
documentation is difficult to understand, users may abandon
the written material in favor of alternative methods: trial
and error, consulting more experienced users, or forgetting
about the whole thing if possible. Users view the application
documentation the same way we view documentation from
companies whose software we use. If the documentation is
poorly written or contains errors and inconsistencies, we
attribute the same negative quality to their software. If we
feel this way about the documentation we use, why shouldn't
the end users feel the same about the documentation we
provide for them?

Structure Differences:
The problem that arises here is due to the way

documentation is created, especially in smaller DP shops. In
many DP shops, the programmers or analysts are responsible
for creating the application documentation. Unfortunately,
when there are multiple systems being developed by different
people, there will be different styles of documentation
produced. Differences will appear in terms of layout, scope,
wording, technical orientation, etc. Ideally, having access
to a technical writer would help simplify the problem. In
reality, since most shops cannot afford this luxury,
documentation standards should be communicated to all
responsible parties so consistent documentation will be
produced.

Inadequate Current Documentation:
One of the most prevalent problems with the current state

of documentation is the amount of it that is missing
(whereabouts unknown), incomplete (lacking relevant
information) , inaccurate (missing latest revision), or
obsolete (program. no longer in production). Existing user
manuals often lack a sufficient number of relevant examples
to accommodate the needs of users. Error codes may go

Documentation: The Necessary Evil 0077- 10

unexplained, and recovery procedures in case of error may be
inadequately described.

Resistance to Document:
This topic has been discussed so many times that we

should be able to abandon it by now (see section 2. 1 ,on
implementing change). DP personnel involved in the software
development process are often those responsible for
documenting the systems due to their higher understanding of
the end product. The problem is that writing is one of the
least interesting' software related activities and little
linkage is perceived between improved documentation and the
organizational reward structure. Another part of this
resistance to document may come from the basic educational
system our programmers are now corning from. In a College or
University setting there is no incentive to document your
programs as you are the only person-who ever has to deal with
them. Users manuals are not required, and the whole issue of
how educators view documentation can be summed up in a
discussion I had with one of my college professors during a
3rd year systems design course. Being naive as I was at the
time, I asked Ivan Chapman just what we would do with
ourselves once we had been hired by a firm and had completed
computerizing every possible activity known to mankind. His
response: "Then you document". This attitude clearly makes
documentation look like an unnecessary task, something to do
once everything else has been completed. It is only in the
newer systems texts that the concept of complete system
documentation is being covered, and in fact, there is now an
entire body of texts dedicated to the topic of creating
documentation for computer systems. Eventually, this trend
will filter its way into the educational system, and when it
does, we should finally be able to hire programmers who do
not view documentation as undesirable.

Inadequate Managerial Planning:
Often there is a perceived lack of managerial guidance,

policy, support or review of documentation efforts. Efforts
to minimize the software development time and cost may occur
at the expense of perceived minimum benefits from
documentation activities.

Lack of Testing:
You must schedule writing, editing and rewriting of

documentation as carefully as you schedule design,
programming and testing for the code. Documentation should
not be left to the last two days before system delivery. If
possible have your documentation written by people who like
to write and are proficient at it rather than by the
programmers who wrote the code (and who probably don't want

Documentation: The Necessary Evil 0077- 11

to anyway). As well, you must test your documents. No, you
didn • t misread that last sentence -- you must test your
documents. This can be done through the use of structured
walkthroughs and review sessions. The user manual is really
the only tangible item that you deliver to your users, and
how they view it will often be how they view your system.
Test your document by giving copies of it to your systems
people who had nothing to do with the design or 'programming
of the system and see if they can follow the logic. If
everything makes sense, turn them loose on the test system,
as systems people love to try to crash software and they may
try things the users wouldn' t think of. As well, use key
personnel from the user areas if possible, as their
understanding of what their system is supposed to do may
expose flaws in the design, or highlight areas that need to
be more clearly defined in the manual.

3.2 Application Software Documentation - Putting it Together

In order to create good user documentation, we must begin
by asking questions. Who will be reading this? How much to
they know already? What do they need to know to do their job?
What aspects will be confusing to them? Given the task we
have to complete, what information should we provide the user
with? The following chart summarizes one of many possible
alternatives for creating application software documentation.

1) Introduction

2) Equipment

3) Operation

4) Using the
Terminal

The introduction should contain the
purpose of the system, objectives it
accomplishes, and relationships with
other systems.

If possible, provide pictures of the work
environment the user will be in. There
are still many cases where we install
systems in areas where terminals,
printers and modems are foreign objects.

Provide the user with brief descriptions
of the following items: Terminals,
keyboards, printers and modems.
Descriptions should include how to turn
all equipment on/off and operating
features of each device.

This section will cover the basic
operations required before the system is
active. It should cover basic user
questions such as: How do I sign-on the

Documentation: The Necessary Evil 0077- 12

5) System Features

6) Error Recovery

7) Hardware
Maintenance

system? What are function keys? Who do I
call if it doesn't work? How do I sign
off the system?

This section will compriRe the maj ority
of the user manual. Explanations of the
system menus, types of operations
available, explanations of how each
transaction works, limitations and
security in the system, processing flow,
numerous relevant examples, where to turn
for help, descriptions of all
forms/screens/reports used, and what the
user responsibilities are.

Even though it is difficult and time
consuming, all possible errors should be
described in tabular fashion, listing
symptoms and cures. Problems indicitive
of hardware should be separated from
those associated with system problems and
application problems.

It is surprising that many people feel
computer equipment needs no care. This
section might include basic maintenance
the user can carry out (cleaning screens
and keyboards, adding paper to the
printer, changing printer ribbons, etc).
As well include a list of items to be
referred to the service department and
appropriate contacts when things go
wrong.

As I stated earlier, the above list is only one possible
setup for a user manual, your own needs will dictate your end
result. Once the design has been chosen, there are still
various hurdles to overcome in this process that will
directly affect the creation of your manual, and they are
listed below:

1) The orientation of user manuals should be to work
functions where the terminal is just a tool, instead of
a manual solely about terminal procedures.

2) Some familiarity with the subject matter should be
presumed. This allows entire sections to be devoted to
specific tasks, such as, "How to perform a Query", "How
to perform a Delete", etc.

Documentation: The Necessary Evil 0077- 13

3) For ease of training, pictures of screens, keyboards,
printers, and other equipment should be included near the
beginning.

4) References to other manuals are confusing; any situation
that is not 'normal' to a user usually results in a
request for assistance.

5) Jargon, mnemonics and excessive abbreviations should be
avoided.

6) If the same physical screen layout is used to perform
more than one procedure it is better to repeat it than
refer to another section; this ensures that a single
section can cover an entire procedure.

7) Any reference to function keys should be emphasized by
bold type or preferably, a drawing of a key top. Rather
than, "When a field has been entered - press ' SEND' " ,
it may be more effective to have:

"When a field has been entered - press ISEND;

3.3 Application Software Documentation - Perceived Benefits

In the abstract for this paper, I mentioned there are
benefits to be gained by maintaining accurate documentation.
While one may not be able to assign a dollar value to all of
them, the list below covers some of the key benefits.

Cost Savings:
While good documentation will in fact save you money, it

is not always obvious how much. As mentioned earlier in the
analogy regarding· insurance, the cos t savings may only be
realized once things start to go wrong. In the case of a
software firm which produces documentation to accompany its
products, the cost savings may be viewed as money not lost
through sales. If you had purchased a piece of software and
the documentation was so poor it made the program unusable,
would you recommend it to someone else? Software with good
documentation gets reconunended, therefore, if you produce
software for the marketplace, it is worthwhile to spend the
time and effort to produce quality documentation.

I would like to be able to tell you that every hour you
spend in documenting programs/systems would yield you a cost
savings of $15.00-20.00 but I cannot. Well designed
documentation will help facilitate efficient and effective
software development and will decrease training, operation
and maintenance costs. In addition, having current

Documentation: The Necessary Evil 0077- 14

documentation of software under development can reduce the
risk of duplication of effort by your staff.

Managerial Benefits:
Documentation will increase the flexibility of managers

in dealing with turnover or reassignment problems with
respect to both end users and system staff. Given the
traditional rates of turnover, the benefits should be
obvious.

Software Marketing Tool:
Presence of comprehensive, understandable documentation

attests to the quality of the related software, and can lead
to favorable user beliefs concerning system integrity and
reliability. The best conceived, written and implemented
system will fail if the accompanying documentation renders it
useless. On the other hand, excellent documentation can make
a somewhat limited system appear to be far better than it is.
Although some would feel this applies only to companies
producing software for the marketplace, it impacts on systems
developed for internal use as well.

Improved Communication:
Documentation can serve as an important tool for

communicating within and between phases of a software project
that is spli t among different groups. Documentation can be
used as a quick refresher of both user and DP staff memories,
and serve to lessen the potential for conflict and
misunderstanding between users and DP staff, as well as
between different groups on a software project.

Vehicle for User Participation:
Documentation provides a common baseline for discussion

within and between groups. In fact, many DP shops (Motorola
included) are currently riding a trend to allow the end users
to participate in writing the users manuals for systems they
will be using. Participation such as this can stimulate user
feedback, morale, commitment and confidence in the software
the end user will eventually receive.

4.0 Where do we go from here?

Regardless of' your role, be it the programmer of a
specific software application, programming mangers, DP
director or a technical writer, you must have a good
understanding of the five primary ground rule for
documentation.

1) In order to solve a problem rather than contribute to it,
you must first recognize and acknowledge that it eXists.

Documentation: The Necessary Evil 0077- 15

2) Both technical and user documentation must include
sufficient information to be used as both reference and
instructional material in order to be considered valid.

3) Writers of computer documentation are instructors.
Therefore, they must understand the needs of the people
they are going to write for and the level of detail
required to satisfy them.

4) Every project must be treated as a training assignment in
order to maximize the instructional value of the content
and the context of the documentation.

5) The eventual success of documentation depends on
writer's abilities and the company's willingness
provide end users with sufficient detailed
instructional information.

the
to

and

It would probably come as a major surprise to many
writers, DP managers and programmers that their documentation
often fails to meet the needs of the user. In many cases the
documents were never' tested or subjected to a formal/informal
review process. A study cited by Hastings and King revealed
that over 85% of all supportive documentation offends the
intellect of the end user while failing to do what it is
supposed to -- instruct.

Data processing departments generally sense that
something is wrong when systems start to fail after
implementation, but rarely do they associate this problem
with their documentation. This should not be surpr1s1ng
because these are the same· people who have the attitude,
"Documentation is just a necessary evil and no one is going
to read it anywayl It. Take a minute to think about that, for
if the people who create the documentation have this
attitude, who would want to read the results of their
documentation process?

4.1 A little commitment please ...

It cannot be stressed enough that the documentation
effort must be treated as an integral part of the system
development process if it is to support the product/systems.
DP departments must have a commitment to turning out quality
documentation for every system they produce. Unfortunately,
this commitment must be more than a mental attitude; it is
knowing the tasks to be performed and who will be performing
them when the project is started. True coinmitment requires
taking the time to give everyone involved a complete

Documentation: The Necessary Evil 0077- 16

understanding of what is expected of them and refusing to
accept anything less. As overused as the term "management
control" seems to be, the push for better documentation must
come from the top, it will not happen if left to the
programmers. Once a dedicated effort is begun to improve the
documentation standards, enforce proper and consistent
compliance, improvements will certainly be seen.
Documentation is not 'evil', but a necessity that we can no
longer afford to ignore.

Documentation: The Necessary Evil 0077- 17

DOCUMENTATION:
THE NECESSARY EVIL

(APPENDIX)

Documentation: The Necessary Evil 0077- 18

Fig. #1

Motorola Information Systems
Program Documentation

Program: SMCRP075 (Daily Widget Counting) Eff: 01/01/88
Page: 1 of 3

Input: INTRANS.FLS.PROD (Verified Transactions)
METTRAN.FLS.PROD (Metric Conversion File)

Output: AUDTRAN.FLS.PROD (Audit Transactions)
REPORTiDEV=LASER,10,4iCCTL (Widget Count Report)

Database Files:

SYSDB.DBM.PROD (System Database) Read Add Chg Del
- SYS-CTL-DTL (Control File) X

MTLDB.DBM.PROD (Materials Base)
- MTL-IMF-MST (Item Master File) X X
- MTL-SCF-DTL (Cost File) X X
- MTL-OBS-DTL (Obsolete File) X X

PCSDB.DBM.PROD (Production Base)
- PCS-PIF-MST (Purchased Items) X X

Frequency: Daily

Prerequisite: SMCAN070 (Production Analysis)

Special Forms: N/A

Additional Resources:

SORTFILEiDISC=450000;DEV=14

Written by: Date:

Approved by: Date:

Approved by: Date:

Documentation: The Necessary Evil 0077- 19

Fig. #2

Motorola Information Systems
Program Documentation

Program: SMCRP075 (Daily Widget Counting) Eff: 01/01/88
Page: 2 of 3

Purpose: This program will access the validated
transaction file and access the database to
verify inventory levels in the distributed
stockroom. Items that fall outside control levels
will be reported.

Input: INTRANS.FLS.PROD (Validated Transactions)
METTRAN.FLS.PROD (Metric Conversion File)

Output: AUDTRAN.FLS.PROD (Audit Tran~actions)

REPORT:DEV=LASER,10,4:CCTL (Widget Count Report)

Reports: Daily Widget count Report - 4 copies

Langauage: Informix-4GL

Estimate: 2-3 days

Frequency: Daily

Process Flow:

Access validated transaction file, search item master for
matching key, if exists, update quantity counts, check
for cost changes, see if item exists as suspected
obsolete. If below safety stock levels access purchased
item file and issue order message. The printed report will
contain the Item-nbr, Qty Used, Qty on hand, Qty on
order, Value of stock in-house and on order, and a
warning message if the item is suspected obsolete.

Written by: Date:

Approved by: Date:

Approved by: Date:

Documentation: The Necessary Evil 0077- 20

Fig. #3

Motorola Information Systems
Program Modification Tracking

Program: SMCRP075 (Daily Widget Counting) Eff: 01/01/88
Page: 3 of 3

System Applied To: Codex Canada

Module:

MCS INT'L

Modified Program/Form/Menu/Job: _

Screen (If applicable)

Program (If applicable)

MSR Reference Number

Effective at Release

Discontinued as of

Due to (KPR,MSR,Release): _

Production Release: Codex Canada MCS INT'L

Release App·lied
Y!N Date

Responsible Which Accounts?

Documentation: The Necessary Evil 0077- 21

Pig. #4

$CONTROL DYNAMIC, BOUNDS
IDENTIFICATION DIVISION.
PROGRAM-ID. SMFDR225.
DATE-WRITTEN. MON. SEP 17, 1987, 2:12 AM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.

CONDITION-CODE IS CC.
DATA DIVISION.
WORKING-STORAGE SECTION.

$PAGE
**
* INVENTORY CONTROL SUBSYSTEM *
* *

01 PROGRAM-IDENTIFICATION.
05 PROGRAM-NAME PIC X(8) VALUE "SMFDR225".
05 PROGRAM-VUF PIC X(8) VALUE "A.12.01".

* *
* PROGRAM NAME - SUPPLY/DEMAND INQUIRY *
* MODULE - MCS *
* VIEW FORM - CUSO *
* FUNCTIONS - ADD,CHG,DEL,INQ *
* SUBCOMMANDS - NONE *
* SUBPROGRAMS - SMFMI200, SMFMI210 *
* *
* THIS PROGRAM MAINTAINS INVENTORY COUNT RECORDS *
* *
* FILES TYPE GET PUT DEL UPD SRT I 0 I/O *
* --------------- -------- *
* MTL-DMF-DTL IMAGE X X X *
* MTL-IMF-MST IMAGE X X *
* MTL-OIF-MST IMAGE X X X X *
* SYS-MSF-DTL IMAGE X *
* SYS-TGF-MST IMAGE X X X *
* COUNTERK KSAM X *
* AUDITFLE MPE X *
**

Documentation: The Necessary Evil 0077- 22

Fig. #5

Hardware/Software Cost Trends

100 I
I
I
I
I
I

80 I Hardware..l.-
I
I

% of I
I

Total I
I

Costs 60 I
..l.-
I
I
I
I
I
I

40 I
..l.-
I
I
I
I
I SoftwareI

20 I Maintenance..l.-
I

0
1955 1970 1985

(Year)

Source: Barry Boehm, Software Engineering Economics
Prentice-Hall, 1981

Documentation: The Necessary Evil 0077- 23

Boddie, John

Gore, Marvin
Stubbe, Jim

References

Cruch Mode
Yourdon Press
Englewood Cliffs, New Jersey
1987

Elements of Systems Analysis
Wm. C. Brown Company
Debudue, Iowa
1975

Hastings, C. Prentice
King, Kathryn J. Creating Effective Documentation for

Computer Programs
Prentice-Hall Inc.
Englewood Cliffs, New Jersey
1986

Hedin, Anne

Metzger, Phillip

Shelly, Gary B.
Cashman, Thomas J.

Yourdon, Edward

Unburden the User
Data Processing Digest
Vol. 31 No. 3 (March 1985)
Los Angeles, California

Managing Programming People
Prentice-Hall Inc.
Englewood Cliffs, New Jersey
1987

Business Systems Analysis and Design
Aneheim Publishing Company
Fullerton, California
1978

Techniques of Program Structure
and Design
Prentice-Hall Inc.
Englewood Cliffs, New Jersey
1975

Documentation: The Necessary Evil 0077- 24

	Documentation: The Necessary Evil

