
Unorthodox IMAGE Accessing for Power

Joseph Berry
Kiryat Telz Stone 116A

D.N. Harei Yehuda, Israel

Noel Magee
Telephone Employees Credit Union

123 S. Marengo Avenue
Pasadena, CA 91101

Introduction

Traditionally, large databases are difficult to manage and
manipulate. Datasets with millions of records cannot be
unloaded and loaded whenever desired. Broken chains cannot,
therefore, be easily repaired. Large numbers of records
cannot easily be deleted.

For databases meeting certain logical and physical criteria,
a technique is presented here for performing the almost
instantaneous removal of millions of historical records from
a detail dataset and moving them to an archive. This
technique additionally allows access to as many of those
archived records as the user wishes, subject only to the
constraint of disc space. Modifications to application
software is minimal. As many detail records as are present
will be accessed by the application software.

Additional advantages to this technique include never having
a fragmented detail data set and being able to produce
historical reports in a very timely manner, even when
millions of records need to be scanned.

Description of the Problem

At the Telephone Employees Credit Union we provide credit
union services to communication industry employees in the
Southern California area. We are, at present, the eleventh
largest credit union in the United States. In addition to
standard savings and withdrawal accounts, we provide access
to over 10,000 Automated Teller Machines, lines of credit
(both personal and equity based), Automated Voice Response,
interbank/automatic funds transfer and other standard
financial services. In order to provide these services in a
timely fashion we use "two Series 70s at a central site
running Silhouette/3000 and Filepro trom Carolian, MTS, RJE,
NS/3000, 08/3000, and a variety of other third party
packages. Our ten branches (located over the Southern

Unorthodox IMAGE Accessing for Power 0058-1

California area) communicate with the' central site using 3270
protocol and remote 3274 look-alike controllers.

During the past seven years TECU has experienced a growth
rate of 10-20~ per year in transaction volume. In 1988 we
averaged 40,000 online and 30,000 to 40,000 batch
transactions per day. Analysis showed that the growth rate
would problably not change in the near future. Additionally
several new services needed to be implemented in the 1988
time-frame. These increases were reflected in two primary
history data sets, HSTRY-SHARE-FILE and HSTRY-LOAN-FILE.
From a base or 400,000 entries in 1979 the HSTRY-SHARE-FILE
grew to over 4 million by September of 1987 and occupied some
1.5 million sectors or disc. This, of course, presented us
with a .file on the verge or all MPE and IMAGE limitations.

The principle difficulties with which TECU was attempting to
deal were, first, the deletion time for inactive records and,
secondly, the disc space required for so large a file. In
the fo~er case we had a deletion program which ran some 56
hours simply to delete the oldest thirty days of history.
This amount of time was required due' to the fact that the
structure was a single large IMAGE detail. In fact, prior to
Turbo-IMAGE, we could not do daily reporting from this due to
the fact that a chain, keyed by date, would have been too
long .for IMAGE. Secondarily, the file was so large that,
while one might have sufficient disc space in total, the
extent sizes sometimes prevented a simple restore ot the
tile. Often we ended up condensing volumes simply to acquire
large enough blocks of free space to accomidate the extents;
more often, we ran out of space. Also, since we updated the
tile on a daily basis, it was being stored on a nightly
basis. This resulted in trom one to three additional tapes
(at 6250bpi) being generated per night and .from 9 to 27
additional minutes of down time. Both of these problems
became critical when, in 1985, we moved to 18 hours/day
operation with the addition of proprietary and networked
ATMs. In 1986/1987, the problems were compounded. when we
moved to a new headquarters building and started to look at
full 24 hour, non-stop availability. Fumdamentally, we could
no longer afford either the maintenance nor the disc space
problems in our coming environment.

Proposed Solutions

Prior to the changes to be described, share history data was
kept in the database, TECUDB, in the HSTRY-SHARE-FlLE detail
data set. This data set was chained otf the manual master,
SUB-SHARE-FlLE.

Unorthodox IMAGE Accessing .for Power 0058-2

\ / SUB-SHARE-FILE

I
v

HSTRY-SHARE-FlLE

The decision was made to solve the problems associated with
the large HSTRY-SHARE-FILE detail data set and a number of
alternative solutions were considered. These included
multiple KSAM files and multiple IMAGE data sets.

The primary advantage o~ KSAM as the file mechanism for
storing the data was that since it was not inside an IMAGE
structure, maintenance would be easier. It's disadvantage was
that it did not have the nice item lists of IMAGE; thus
entailing more II up front II work (i.e., more severe
modifications to existing programs). This difficulty could be
overcome by making the KSAM file self-describing and the
appropiate user SL routines cognizant of that fact. The
dynamic allocation of storage space which KSAM uses would
save disc usage. The greatest disadvantage of using KSAM was
the time required to build the key file whenever the data
were moved from the TECUDB database.

Two IMAGE designs were also investigated. One design
consisted of a number of data set pairs as shown here:

\ /

I
v

\ /

I
v

\ /

I
v

This technique required that a separate database be built
containing pairs of data sets for each month (or t~e period)
in the past that is desired. Each master/detail would have
the same format as the current master/detail.

A number of advantages were presented by this design. Each
period's history data is defined as an data set pair. If
there was not enough room on the system tor all the
historical data, then as many data sets as would fit would be
maintained. To delete a month's worth of history data, the

Unorthodox IMAGE Accessing for Power 0058-3

data set linkage ~or that month wouldn't really have to be
erased. It is possible to physically purge the two data sets
and rebuild them. This procedure would take a minimum amount
of time. There is no reason to limit the number of time
periods. Depending on disc space availability, many more
months' worth of data can be stored. In all cases, the
II active" number of data sets and which pair of data sets
represents which time period would be determinable by
inspecting a stand-alone control master data.

A major disadvantage of this technique is that the large
master data set must be duplicated for each month. This
would be a large waste of disc space. Furthe~ore, in order
to profit from the purging and rebuilding ot individual data
sets, privileged mode (PM) access will probably have to be
used.

An alternative variation to the above IMAGE design was to
link all the detail data sets to one master data set. This
solution eliminates all the excess disc space. However,
similar to KSAM, an inordinate amount of time would be spent
building (or updating) the pointer in~ormation in the master
data set as historical data is added to it.

\ /

I I I
I I I
v v v

Proposed Solution

Given the problems associated with the database TECUDB, we
will describe an efficient and e~fective solution for
IIsplitting up" the HSTRY-SHARE-FlLE data set of the TECUDB
database, making it considerably more manageable.

Our minimum requirements were to continue maintaining more
than three months' worth of history data in order to process
statements and quarterly postings. An important point here
is that except tor the current month, no information is added
or updated (the only exception being by the TECU Information
Services staft when repairing bad data).

Unorthodox IMAGE Accessing tor Power 0058-4

The proposed enhancement required a change in the
relationship between these two data sets. We changed the
data set structure to the following new structure:

\ / \ / SUB-SHARE-F1LE-A (AUTOMATIC)

SUB-SHARE-FILE I
(MANUAL) v

HSTRY-SHARE-FILE

We took the SUB-SKARE-FILE data set and removed the
connection to the detail data set (how this was accomplished
is explained further). In addition, we added a new automatic
master that essentially replac~d one of the functions of the
previous SUB-SRARE-FILE, i.e., chained access to the detail.
The effect of this change on existing programs that access
either of these data sets is interesting: no program changes
were required! Note that if a chained read into
HSTRY-SHARE-PILE is needed, the DBPIND references the name ot
the detail data set and not the master (therefore, no
change). It a by-key access is required into the master to
retrieve stored information, the DBGET references the master
data set name, SUB-SHARE-FILE, which is now the name of our
standalone master.

Obviously, data sets SUB-SHARE-FILE and SUB-SHARE-FILE-A have
the same key, ACCOUNT-SUFFIX. Due to changes in the blocking
factor of the SUB-SHARE-FILE, the resulting structure with
three data sets actually consumes less disc space than the
old structure consisting of two data sets.

With respect to performance degradation (i. e., increasing
numbers ot l/Os due to the additional data set), there is a
very slight increase in the number of total l/Os .
Specifically, adding a record to the HSTRY-SHARE-FlLE data
set with the existing schema took approxtmately seven
physical l/Os (not including logging). With the three data
set structure, the number of l/Os increases to eight.

In addition to the changes in the structure ot the TECUDB
database, a new, additional database, called HISTDB, was
added to the system having the following structure:

Unorthodox IMAGE Accessing for Power 0058-5

CNTL-MSTR

\ /

A-MSTR

\ /

I
v

A-DETL

B-MSTR

\ /

I
v

B-DETL

C-MSTR

\ /

I
v

C-DETL

In an operational mode, the automatic master and detail data
set from the TECUDB database will be moved into this new
database when the data in the original detail data set fills
beyond a certain limit. Each pair of master/detail data sets
will represent one arbitrary length of history data. The
master data set- is a duplicate of SUB-SHARE-FlLE-A (which is
now much smaller as an automatic master data set) while the
detail is a duplicate or HSTRY-SHARE-FlLE. Database TECUDB
will only contain data for the current period. The CNTL-MSTR
data set, pictured above, contains various kinds of
identification information.

A number of advantages result from this solution:

1. When deleting the history data, the data in
HSTRY-SHARE-FlLE doesn't really have to be erased. The two
data sets are simply purged and rebuilt. This procedure
takes almost no time. In reality, instead or purging this
pair of data sets, we rename them into the database that
stores the historical information. We then create a new pair
of empty data sets for TECUDB. Therefore, there is never any
deleting of the records in HSTRY-SHARE-FlLE (more on this bit
of magic later).

2. There is no reason to limit the number of time periods.
Depending on disc space availability, many periods' worth of
data can be stored. In all cases, the "active" number of
data sets and which pair of data sets represents which period
is determined by inspecting the stand-alone control master
data data set.

3. If a broken chain is found in the master/detail data set
pair of the active TECUDB database, the repair can be
accomplished as soon as there is a period turnover. This
data set pair is moved to our new database and is only read
accessed. A duplicate of the data set pair can be repaired on
one of the backup computers and when corrected, these two
files would replace the original ones.

Unorthodox IMAGE Accessing for Power 0058-6.

An interface procedure, HDBGET, was written to allow all the
applications to access either the normal data set pair or one
of the data set pairs from the new HISTDB database in a
transparent manner. The interrace procedure accepts almost
the same calling sequence as DBGET. It is responsible for
calling the real HSTRY-SHARE-FILE data set in the TECUDB
database. If, during a backwards chained read we arrive at
the beginning of the chain in this data set, we must then
access the most recent data set pair in the new database and
return its information to the user. We must then store
information reminding us of where we were and in which
database in order to continue our chained read. This
information must also be stored for serial access reads.

All programs that perform DBGETs on the HSTRY-SHARE-FILE
needed to be modified. Instead ot calling DBGET directly,
these programs called HDBGET. The size of the status array
was slightly enlarged and two parameters were added.

Structure of the HISTDB Data Base

The HISTDB database, when in normal operation, consists of
zero or more (up to 24) physical pairs ot SUB-SHARE-FlLE-A
masters and HSTRY-SHARE-FlLE details. These data set pairs
are moved into HISTDB via ItRENAMElts of the data sets (see the
HISTUTIL program below). In addition, there may be zero to
24 pairs of data sets associated with loan information (this
is not currently implemented except in HISTDB and procedure
HDBGET) .

In order to fool IMAGE into believing that this database
actually has so many data sets (48 pairs x 2), the schema
file was actually configured with the 96 data sets.

In addition, there is a stand-alone master data set that
controls access to the various data set pairs. This data set
marks which data set pairs actually exist and what their date
ranges consist of.

Below we see the layout of the CNTL-MSTR manual master data
set. This data set contains two records: one for transaction
history information (the detail data set being
HSTRY-SHARE-PlLE) and the second being for loan inro~ation

(the detail being HSTRY-LOAN-FILE). Within each record, the
remaining fields are replicated (indexed) 2~ times. This
represents the 24 possible data set pairs that can be present
in the HISTDB database.

Each index represents one data set pair. The indices are
maintained in backwards chronological sequence (i. e., the
most recent date is in index 1, the first index). Since the

Unorthodox IMAGE Accessing for Power 0058-7

data in the detail data set (as it came from th4? TECUDB
database) was never modified, the data is always in physical
chronological order. Therefore, by examining the first and
last records of the data set, the date/time range can be
quickly determined.

There is really no connection between the data set pairs and
where they are located. The data sets of HISTDB were
arbitrarily given the logical names HISTDB02, HISTDB03, ... ,

. HISTDB97 (the master data set was HISTDB01). Thus, the
logical and physical names of the data sets are identical.
When a data set pair are moved from database TECUDB to
HISTDB, in1'ormation is inserted into the control data set
according to the BEGIN-DATE date. The name of the detail data
set that is assigned to this pair_ is inserted into variable
OS-NAME. In this way, the assignment of the data set pairs
can be managed, controlled, and accessed by the data
contained in the CNTL-MSTR data set.

Layout of CNTL-MSTR file:

key

ISETIBEGIN-DATE I END-DATE I BEGIN-HOUR I END-HOUR I DS-NAMEI
lID I x24 I x24 I x24 I x24 I x24 I

Elements in CNTL-MSTR:

Element Type Size Remarks

SET-ID I 1 Data set number of the data set from
the TECUDB database (i.e., there
will be one for the HSTRY-SHARE-FILE
and one for the HSTRY-LOAN-FILE).

BEGIN-DATE I 2 YYMMDD of beginning date of dat set
pair. 24 subitems.

END-DATE I 2 YYMMDD of ending date of data set
pair. 2~ subitems.

BEGIN-HOUR I 2 HHMMSS of beginning t~e of data set
pair. 24 subitems.

END-HOUR I 2 HHMMSS of ending time of data set
pair. 2~ subitems.

DS-NAME X 16 Name of the detail data set that
contains the records for this
date/ttme range. 24 subitems.

Unorthodox IMAGE Accessing tor Power 0058-8

HISTUTIL Utility

HISTUTIL was designed to perfo~ two basic functions: (1) To
take HSTRY-SBARE-FILE data set pairs from the TECUDB database
and move them to the HISTDB database, updating its CNTL-MSTR
data set. (2) To store/restore portions of data from the
HISTDB database to and· from tape. We designed the syntax ot
HISTUTIL to always relate to the HISTDB database. This was
necessary because we needed a consistent point of reference
for all commands.

This program, written in PASCAL, performs privileged mode
functions without actually going into privileged mode (PM).
The main reason for requiring PM was to be able to rename the
data set pairs from the TECUDB database into the HISTDB.
TECU already owns a program that can perfo~ this function:
MPEX from VESOFT, Inc. A phone call to VESOPT gave us the
technique for communicating program-to-program with MPEX.
This is accomplished with the MPEMAIL intrinsics: SENDMAIL
and RECElVEMAIL. HISTUTIL, therefore, created the MPEX
process as a son and transferred commands to it via SENDMAIL.
The following two procedures demonstrate this (error branches
have been removed and procedure calls simplified).

procedure create_mpex (var pin:smallint);
var

progname : string[30];

procedure createprocess; intrinsic;

(beginning of procedure
begin
progname := 'MPEX.PUB.VESOPT ';

createprocess(progname, pin);
end;

procedure talk_to_mpex(pin:smallint;var message:string);
var

status, messlen : smallint;

procedure activate; intrinsic;
function sendmail: smallint; intrinsic;

{ beginning of procedure }
begin
message := '1' + message + ' ';
messlen := strlen(message) div 2;
status := sendmail(pin, messlen, message, 1);

Unorthodox IMAGE Accessing for Power 0058-9

activate(pin, 3);
end;

Since all the PM code was isolated into a known program,
MPEX, it was easier and certainly less "dangerous" to debug.
The other function that MPEX performs is a copy function.
When HISTUTIL renames the data set pair trom being a part of
TECUDB to HISTDB, an empty data set pair must be copied into
that location. For this purpose, we created a special group
called HOLD that held an empty version of those two data sets
(i.e., two IMAGE data set files). The MPEX "peOpy" command
with the ",PASTil option was used to copy these two privileged
mode files into the proper group. The copy is usually done
automatically atter the rename unless overridden with a
HISTUTIL NOREPLACE control word. .

The standard command for adding data to the HISTDB data base
is as follows:

ADD HSTRY-SHARE-PlLE PROM TECUDB

The second major function of HISTUTIL is to store (or
archive) data trom HISTDB to tape (particularly data that is
older than a certain date). The user runs HISTUTIL and enters
the command STORE. The program presents the user with a list
ot the current data set pairs (with their date ranges) which
he/she then chooses. The program generates a job stream for
storing the appropriate files. These files are first moved
into a holding area (group HOLD) with a copy of CNTL-MSTR
data set to be able to quickly identify the contents of the
data set pairs being stored.

The data set pairs are then· archived to tape. In a similar
manner, HISTUTIL contains a control verb option that allows
data set pairs to be reloaded into HISTDB from the archives.
This is accomplished by restoring an archive tape into group
HOLD and executing HISTUTIL with the following command:

ADD HSTRY-SHARE-FlLE FROM HOLD

Two options that were added to HISTUTIL include displaying
the contents of the current HISTDB database and initializing
the CNTL-MSTR data set.

Procedure Hdbget

In order to minimize converting all the application software
to tne new HISTDB design, it was imperative that the new

Unorthodox IMAGE Accessing tor Power 0058-10

interface procedure would be as transparent as possible in
order to minimize coding changes. We started with the syntax
to DBGET and were, in the end, rorced to add two variables to
the parameter list for reasons discussed below. Our new
HDBGET supports the rollowing syntax and modes:

A A I A A A A
hdbget(pribase, dset, mode, status, list, buffer, argument,

I A
secbase, secstatus);

mode 1: re-read; like normal IMAGE

mode 2: serial read, with data-set switch capability

mode 3: backward serial read, with data set switch capab
ility

mode 5: chained read, based on secbase and secstatus rela
tive record numbers. With data set switch capab
ility

·mode 6: backward chained read, based on secbase and sec
status relative record numbers. Actual directed
dbget with data-set switch capability

Since this procedure was to reside in an SL, all variables
used by the procedure were locally defined (Q-relative).
That is, it is not possible to save info~ation on previous
calls within the procedure itself. It was seen that two
variables had to be added to the procedure call. Variable
SECBASE performs the same function as PRIBASE, i. e., to
identiry the previously opened secondary database (HISTDB).

Variable SECSTATUS is a 15 word array. The first ten words
are used as the status array for the IMAGE calls made within
HDBGET. The last five words contain the following
information:

word 11:
12:
13:

14-15:

database id of current database
data set number of current data set
unused
record number of current record

Let's .take a look at how HDBGET processes some of the
specific modes: Mode 2, or forward serial mode, assumes we
start from the oldest records (the beginning of the data

Unorthodox IMAGE Accessing tor Power 0058-11

base) to the newer records. Therefore this mode starts by
accessing the HISTDB database. If the database doesn't exist,
it immediately goes on to database TECUDB. HDBGET starts
with the oldest data set pair in HISTDB (as determined by
CNTL-MSTR). It is accessed in forward serial sequence and the
data is returned to the user. If HDBGET reaches the end of
data set, the next oldest detail data set is accessed. When
no more data sets are to be found in HISTDB, HDBGET continues
with the appropriate detail data set in TECUDB until the end
of data set is reached. At this time, the user is given an
"end of file ll error message.

The more difficult transaction types to emulate were mode 6
and mode 5. Mode 6 , for example, is the backward chained
read. Here we start with the latest information in the chain
and go backwards in time. Processing begins with the TECUDB
database. A DBFIND is performed to the detail data set,
HSTRY-SHARE-FlLE. The status array returned contains the
address of the last entry in the chain. DBGET, mode 4 is
executed using this address, retrieving the information for
the user. SECSTATUS words 11-14, are updated to contain the
next address to "be retrieved. Each subsequent call to HDBGET
uses the information in SECSTATUS to do the DBGET, mode 4,
read. When an end of chain error is encountered, HDBGET
dete~ines which data set pair in HISTDB is to be used next
(the next most current). A DBFINO followed by a DBGET is
executed (as above) and the information is updated in the
SECSTATUS array. When all data is exhausted, an "end of
chain" error is returned to the user.

To initialize the item list (for successive accesses via
.. *; ..), HDBGET is called when the HISTDB database is still
closed (i.e., when SECBASE is still zero). This will force
HDBGET to open the HISTDB database and properly initialize
all of its data set lists. If the user wants/needs to change
the default item list in mid-program, then the HISTDB
database must first be completely closed (DBCLOSE, mode=1)
and SECBASE set to zero.

The return condition codes have been slightly altered to
logically reflect the functionality of the HDBGET call. For
example, it is assumed that a call to HDBGET will succeed and
return data (more correctly, it is assumed that the key
exists). Therefore, an invalid key will return a condition
code of 14 (on a mode=3 access), which is a beginning of
chain. It is as if we had gotten to the beginning of the
chain and had not found any data. In such a case, portions of
the DBEXPLAIN message may not be accurate. Specifically, the
data set name and the mode may display erroneous results.
This is due to the various other database accesses that
HDBGET performs on the HISTDB database. The only item that is
really examined is the condition code. Further information

Unorthodox IMAGE Accessing for Power 0058-12

can be gleaned (if one really wants to) by examining the
SECSTATUS array.

Implementation of Solution

The implementation of the HISTDB database into an operational
reality required careful and meticulous planning. The
following steps describe the overall process that lead to the
successful implementation the reorganization ot the
HSTRY-SHARE-PILE data set. Rerer to the accompanying chart
below.

[A] Test the process ot converting the current TECUDB
structure to the new TECUDB structure. Use the
procedure described below.

[B] Design and build the HISTDB and place a working copy on
the secondary computer system.

[C] Store a copy of SUB-SHARE-FILE and HSTRY-SHARE-FILE
onto the secondary system. Using a contributed library
program, SELCOPY, begin extracting historical data
(sorted by date) from HSTRY-SHARE-FILE and store into
data base HISTDB as a number of data set pairs.

[0] Identify all source code that accesses the
HSTRY-SHARE-PILE with a view towards identifying the
types of source code changes that need to be made with
the new structure.

[E] Write and debug the procedure that accesses the new
HSTRY-SHARE-FILE and the HISTDB database (procedure
HDBGET). Once debugged: install into production system.
(It should function ill a pass-through mode since the
HISTDB database won't exist yet.)

[F] Make any changes to existing programs (as identified in
[D]) that access HSTRY-SHARE-FILE to also access the
new HISTDB database. Use the procedure(s) written in
[E] .

[G] Define and setup, in detail, the procedure for
switching the HSTRY-SHARE-FILE from TECUDB to the new
database (on a history set interval changeover). This
will result in a utility that will perform or invoke
all the functionality automatically (HISTUTIL).

[8] Perform full system test of the online system and other
programs that access the HSTRY-SHARE-FlLE.

Unorthodox IMAGE Accessing for Power 0058-13

[I] When ready to make the changeover to the new database
structure, store the latest copy of SUB-SHARE-FlLE and
HSTRY-SHARE-FlLE from the primary system onto the
secondary system. If there are space constraints,
store the historical data temporarily to tape.

[J] On the secondary system, use SELCOPY to extract the
remaining data from HSTRY-SHARE~FlLE that have not yet
been extracted, sort the data by date, and write it to
HISTDB. Delete the SUB-SHARE-FlLE and HSTRY-SHARE-FlLE
from the secondary system.

[K] Convert the production TECUDB database to the new
structure

[L] Move HISTDB to the primary system.

-- [J] -------[L]
\ /

\ /
\ /

[K]

[A] ----------\
\

\
\
\

\ \
-------\\

\\
-- [F] --------- [8]--[1]

/
/

/
------------------/

[B] ---------- [C] -----
\
\-------\
\ \

\ [D]---[E]
\

\
\

[G]

Prior to Conversion Day

(I) Build a new database using TECUDB's new structure.

SUB-SHARE-FlLE SUB-SHARE-FlLE-A

\A / \B / \ / \ / \D /
-- 01 02 -- 04 05 07
\ / / / \

\ / / / \
v v v v v

03 06 08 09

Iroot I I C I I E I I F I

Other data sets HSTRY-SHARE-FILE Other data sets

Unorthodox IMAGE Accessing for Power 0058-14

(2) Store the database root file and data sets
SUB-SRARE-FILE (04), SUB-SHARE-FlLE-A (05), and
HSTRY-SHARE-PlLE (06) to tape. Remember, that these data
sets are empty.

Conversion Day

(3) Save the manual master data by performing a data set
unload of SUB-SHARE-FlLE from the live TECUDB database using
program DICTDBU. This takes about 30 minutes on a
stand-alone series 70.

(4) Store SUB-SHARE-FILE and HSTRY-SHARE-FlLE from the live
TECUDB to tape and RESTORE onto the secondary system where
the HISTOB will be updated to the present date.

SUB-SHARE-PlLE
------ --_.-.--

\A / \B / \ / \0 /
-- 01 02 04 06
\ / I / \

\ / I / \
v v v v v

03 05 07 08

Irootl I C I I E I I P I

Other data sets HSTRY-SHARE-FlLE Other data sets

(5) Working with the live TECUDB database, physically rename
data set 08 to 09, 07 to 08, and 06 to 07 (i.e., all the data
sets after HSTRY-SHARE-FlLE). Then delete data set 04 and
05.

------ ------
\A / \B / \D /
-- 01 02 07
\ / / \

\ / / \
v v v v

03 08 09

Irootl I c I I B I I P I

(6) RESTORE the root file and data sets 04, 05, 06 that were
created above in step (2). We now have a database in the new
structure.

Unorthodox IMAGE Accessing tor Power 0058-15

(7) Load the SUB-SHARE-PILE data set with the data that was
previously unloaded above in step (3). Using DICTDBL, this
takes approximately 70 minutes.

(8) Save the new database to tape.

(9) During the testing stage, STORE the database to tape
(define the database with small capacities). This will give
an additional verification that IMAGE accepts this newly
built data base.

Problems Encountered with the Implementation

Our original HSTRY-SHARE-FlLE data set contained
approximately 4 million records. We couldn't delete all this
data when we converted to the new structure since credit
union members inquire on their recent transaction history.
Since this data represented approximately three to four
months' worth of transaction history, we decided to extract
the data on monthly bounderies, creating data set pairs (see
step [C] above). We knew that the data needed to be sorted by
date and time (since we had to do serial reads and extracts
through the detail data set to find the appropriate date
range) and, therefore, used SELCOPY's sort feature to sort
this data (SELCOPY uses HP's SORT intrinsics). Unfortunately,
we had had no idea that many of the transactions that had
been processed by the online system were being completed in
less than 0.1 seconds. This was the time resolution that we
maintained in the data. In other words, it frequently
happened that two transactions for a particular member had
identical time stamps. It wasn't until our first day live
with the new system that this problem was discovered. A look
at the transaction history of a member showed the
transactions to be out of order (imagine shuffling your
checkbook entries the total 1s correct but the
inte~ediate results are wrong). It required some fast
hacking to repair the historical data.

Related to the problem of breaking the detail data set data
into manageable chunks was the problem of disc space. While
we had a second series 70 with six 7933 disc drives, this
system was being used to silhouette the primary, production
system and therefore already had one full copy of the
database on it. Much data set shuffling was done via magnetic
tape and a 7978B tape drive.

The disc space problem was aggravated when we tried to build
the HISTDB database. The schema specified 24 data set pairs
for the HSTRY-SHARE-FlLE information plus an additional 24
data set pairs for the loan information (to be implemented in

Unorthodox IMAGE Accessing for Power 0058-16

the future). These data sets were defined with "reasonable"
capacities. We ran DBSCHEMA and error-terminated with the
infamous file system error 46 (out of disc space). It was
then that our back of the envelope calculations showed that
we needed at least 14 million sectors of disc space to build
HISTDB (we had nothing near that much disc space available).
The real problem was that we didn't really need all those
data sets, just the definitions in the root file so that
IMAGE would recognize them when present. Our solution was
simple: we created the database root file using DBSCHEMA.
Using DISKED5, we changed the flag in the root file from a
"virgin" database to a functional database. IMAGE was
happy.

We encountered one problem that almost spelled the end to the
entire system. After we had created one of the data set
pairs (due to an extraction with SELCOPY), we inserted the
data -into the framework of the new HISTDB database. We then
tested the structure of the new database by trying to access
various data with QUERY and comparing it against the original
-TECUDB database. Much to our shock, QUERY's FIND did not
work! In the original database, FIND retrieved the correct
data. Using HISTDB, FIND did not find anything. What was
wrong? Careful examination of the structures of the two
databases eventually revealed up the difference: the blocking
factors of the respective data sets. While we had known that
the capacities of the master data sets must be identical in
order for the hashing algorithm to work, we had forgotten our
IMAGE internals knowledge that the actual record address is a
function of the block number and record within the block. We
had to build our data sets with the correct blocking factors.
Unfortunately, there is no utility that sets the blocking
factor to that which we wanted. Nevertheless, a technique was
found. We built the data set with a BLOCKMAX specification
slightly larger than necessary and with a capacity of one too
large. The credit union owns ADAGER; this program was then
used to reduce the capacity by one and to reblock the data
set. The new blocking factor then became identical to the
o~iginal one in TECUDB.

We tested the integrity of the data after moving a data set
pair from 'l'ECUDB to HISTDB. While the FIND command within
QUERY worked (after fixing the above problem) the FORM SETS
command did not. The display of the current number of
entries was incorrect, garbage. A little more internals'
knOWledge reminded us that the current number of records is a
calculated value, based on the capacity. Our HISTDB database
detail data set had been built with a capacity of one million
entries. We had transferred HSTRY-SHARE-PILE from TECUDB with
4+ million entries. While the output from QUERY's FORM SETS
was incorrect, no processing was affected by it so long as no
attempt was made to add any data.

Unorthodox IMAGE Accessing tor Power 0058-17

During the testing of the HDBGET procedure, we uncovered one
further interesting problem. The online application
software, as part of its start up procedures, automatically
accesses every data set needed in the database in order to
initialize the IMAGE list parameter (for later use via the
It.; II construct). With the addition of the HISTDB database,
this wasn't properly extended. We had to add code to HDBGET
to perform the same functionality within the procedure.

General Conclusions for Future Power Users

We once told one of the analysts here that, "Anyone who says
he doesn't need to know the machine code tor the machine he's
working on is blowing smoke ... somewhere. II Unfortunately
we still believe this. In order to accomplish the
HSTRY-SHARE-FILE split we needed an understanding of the
application, IMAGE, and MPE. One of the most critical
elements was a knowledge of the dependancies between the root
file, the master file, and the detail data sets. The
isolation ot details from root and master files provided us
with the tirst of two bases for the entire project and almost
trashed the project three quarters of the way through. A
late-night discovery of the dependance between the root tile
and the master data set, an unintentional Adager reblock, and
the problems associated with recovering these misfortunes
certainly convinced us that an exact understanding of IMAGE
internals was critical.

The second basis for the HSTRY-SHARE-FILE split is that of
'SL isolation.' By that we simply mean isolating the actual
data structure behind an SL routine. The critical point to
this is that you are able to isolate the data structure and
debug existing code BEFORE the actual structual changes are
ever made. This gives you a staged implementation rather
than simply going for broke; essentially the old CYA
principle. Over the past four years TECU has used SL
isolation in three (now tour) major cases with dramatically
successful results. One such implementation saved 24 hours
of run time per quarter and 10 hours per month, eliminated
the down time caused in both those periods, and was
accomplished with only one minor problem.

The driving idea behind this exercise is that of a 'logical
data structure.' Certainly we have heard much of this with
regard to relational DBMSs but very little has been said in
the non-relational field. Logically speaking, TECU had a
single data structure, HSTRY-SHARE-FILE, which contained
multiple periodic entities. We split the periodic entities
into separate physical parts while retaining the logical
continuity; thus providing physical 'flexibility while
retaining logical support for the extant data structure.

Unorthodox IMAGE Accessing for Power 0058-18

Perhaps we've been living right (dubious, at best) or perhaps
we got lucky (highly probably) but we did obtain some
unexpected advantages from the conversion. Pirst t we are now
able to size'the details arbitrarily (so long as we retain
the auto master and detail blocking ractors) and we may have
an arbitrary number of details. Secondly t because of the
nature ot TECU's applications, the physical sequence of the
data now corresponds to the chronological sequence ot the
records. This allows for such minor items as a chronological
binary search of a detail to find all records inside a given
period. This in turn allows us to quickly find and access
records in a given period where we previouly would have had
to search the entirety of the detail data set. or course,
sometimes one neither lives right nor gets lucky and then
structural damage to one's database may occur. Prior to the
HSTRY-SHARE-FILE split there was no way to recover from
something as simple as a broken chain.. Now we can simply
wait until the pair with the break rolls out of the HISTDB.
This is made even more ~pressive when one considers the fact
that TECU has not done an unload/reload on their primary
database since 1980!

Finally, there is one overriding consideration to each and
every step ot this procedure; we are doing this for
intermediate and end users. Thus we must look at the
external interfaces from the users' perspective; in this
respect we failed in one sense and succeeded in another. In
the first case we failed to realize that operations does not
care about data set pairs but, rather, about HSTRY-SHARE-FILB
date ranges. Theretore we used the pair IDs tor moves into
and out of HSTRY-SHARE-PlLE as well as HISTDB. Additionally,
we overlooked the loss of access to the structure through
Query, Inform, Report, etc. In the latter case we succeeded
rather admirably with our programmers in that they noticed
little or no coding/performance differences between the old
and new calls.

Traditional techniques offered no solution to our problems of
managing a large data set. Due to the particular
characteristics or the TECU database, we were able to design
a technique utilizing safe privileged mode access that
sunnounted these obstacles. While these techniques cannot
always be used in every environment, recognizing the
existence ot such techniques can be helpfUl for other
companies designing sophisticated applications. This design
became reality in August, 1987, when the Telephone Employees
Credit Union went live with the new HISTDB database.

Unorthodox IMAGE Accessing for Power 0058-19

	Unorthodox IMAGE Accessing for Power

