
The Spectrum Instruction Set, A 3000 Hacker's View

By Robert M. Green
(c) 1988, Robelle Consulting Ltd.
8648 Armstrong Road, R.R. #6
Langley, B.C. V3A 4P9 Canada

(604) 888-3666

I have been writing and debugging code for the Classic 3000 instruction set for over 15
years. Like most of you, I have been impatiently awaiting Hewlett-Packard's new line
of computers, code-named "Spectrum". Now that actual SpectruQl machines are spewing
forth from Hewlett-Packard factories in ever-increasing numbers and going into
production in my customers' computer rooms, it is time to start learning about these
CPUs.

By the way, Hewlett-Packard prefers us to refer to their new computer family as the
HPPA (HP Precision Architecture), not as the Spectrum.

I called HP's Dire.ct Marketing group at (800) 538-8787 and used my VISA card to order
a manual on the HPPA instruction set:

Precision Architecture and Instruction Reference Manual,
HP part number 09749-90014.

Like everyone else, I had read numerous articles from Hewlett-Packard about the
objectives of the Precision Architecture, but I found clean, solid facts about the MPE
XL machines hard to pin down. I needed some basic information to build on and the
hardware instructions themselves seemed like a good base. Whatever software we
eventually run on the HPPA machines will all be coded in the HPPA machine
instructions.

Starting from the HP manual, I set out to compare the HPPA instructions with the
Classic 3000 instructions and see what interesting differences I could uncover. Whether
you ever personally write machine code for the HPPA or not, it can't hurt you to know
something about these basic building blocks.

Goals of the Spectrum Project

A computer is a tool to execute programs built from sequences of simple "instructions".
A typical instruction is something like "Add these two numbers together". The Classic
HP 3000, designed in 1970, has a "complex instruction set", meaning that the instructions
which programmers use are not the real hardware instructions. Each complex instruction
is implemented by a hidden microprogram written in the real instructions.

The HPPA is a RISC machine, a "Reduced Instruction Set Computer", meaning that the
microprogrammed instructions were removed. The programmers use the machine's real
hardware instructions. Any task too complex for the RISC hardware is done by
executing a series of the basic machine instructions, either as in-line code or by calling a
subroutine.

0052-1 Spectrum Instruction Set

The HP manual describes the observations that led to the idea of RISC computers:

"Extensive research into patterns of computer usage reveals that general-purpose
computers spend up to 80% of their time executing simple instructions such as
load, store, and branch. The more complex instructions are used infrequently.
On architectures with large, complex instruction sets, the simple,
often-executed instructions incur a performance penalty caused by the overhead
of additional instruction decoding, the use of microcode, and longer cycle time
resulting from increased functionality..."

liThe RISC features implemented with the HP Precision Architecture include:

Direct hardware implementation; no microcode.
Fixed instruction size, one word in length.
Small number of instruction types.
Small number of addressing modes.
Reduced memory access -- only load and store."

A primary goal of the HPPA is to complete the execution of one instruction in each
machine cycle, and to keep that cycle time as short as possible.

General Structure of Spectrum Machines

According to the Hp· manual, the HPPA machines have 32 general registers available to
the programmer, each with 32 bits. They are referred to as GR 0 to GR 31. Only GR
0, GR 1, and GR 31 have a hardware-defined special purpose, although other registers
may be reserved by software convention. GR 0 is the bit bucket; when used as a source
of data, it always provides zeroes. When used as a target, it throws away the result. GR
1 is used as the target in the Add Immediate Left instruction and GR 31 is used in the
Branch and Link External instruction.

This general-register organization contrasts strongly with the stack organization of the
older 3000. In the Classic 3000, the programmer has access to a push-down stack and to
16-bit registers whose hardware function is highly specialized (i.e., Q points to local
variables, DB to global variables, etc.). The closest thing to a general register is the
Index Register, and it is used for special functions in many instructions.

All HPPA instructions are 32 bits long, with the first 6 bits reserved for the Major
Opcode. This allows 64 major opcodes, allocated as follows:

23 opcodes are currently illegal (allowing HP lots of room for expansion),
27 opcodes are single instructions (e.g., 1 is Load Byte, LOB),
12 opcodes are instruction groups (e.g., 0 is the System Operation group),
I opcode for up to 4 tightly-coupled Special Function Assist processors,
1 opcode for Co-processors, including 15 floating-point instructions.

The 27 major opcodes that invoke a single instruction provide load, store, branch, and
other functions (e.g., LDB, STB, LDW, STW, etc.).

The 12 instruction groups expand into 108 unique instructions, as shown below. I show
the opcodes for the 12 groups as Hexadecimal (base 16) values with a $ prefix. You

Spectrum Instruction Set 0052-2

should brush up on your Hex arithmetic, because the Spectrums are definitely Hex
machines.

Opcode
$00
$01
$02
$03
$3A

Instruction Count / Type
II system control instructions
19 memory management instructions
31 arithmetic/logical instructions
15 indexed and memory instructions
4 unconditional branch instructions

$25
$2C
$2D

$34
$35

$09
SOB

Floating Point

6

4

8

immediate arithmetic instructions

extract/deposit instructions
"

co-processor load and store instructions

The floating-point co-processor follows the IEEE standard. It provides 15 functions,
including square root, on three sizes of number: 32-bit, 64-bit, and 128-bit. Please
note, however, that MPE XL versions of HPPA also support the Classic 3000 format for
floating-point, via software emulation. The two formats are not compatible. For
maximum performance I assume that you must convert your data files to the IEEE
standard and also convert all of your application programs and third-party or
contributed tools.

Another source of HPPA information, the book Beyond RISC! published by SRN,
describes the floating-point problem this way:

"The HP 3000 uses 9 bits for the exponent and 22 bits for the mantissa... The
IEEE format defines a single precision number to contain 8 bits for the
exponent and 23 bits for the mantissa. While the difference is small, it affects
the size of the numbers that can be stored... The floating point format can be a
problem in migration if the format is used extensively in disc files and
databases."

The Fortran/XL and Pascal/XL compilers have options to force use of the old Classic
3000 floating point, but remember: this uses software instead of hardware for arithmetic.
There is no good way that I am aware of to tell which format is being used for the
floating point numbers in a particular database or file.

Total Instruction Count

If my arithmetic is correct, that makes a total of 155 instructions for the HPPA. Many
of these are minor variations or are of interest only to low-level systems programmers.

0052-3 Spectrum Instruction Set

How Does the Spectrum Multiply?

When comparing the Classic 3000 architecture with the HPPA, two of the most obvious
deletions are the Integer Multiply and Integer Divide instructions. Since these
instructions are used less than 1% of the time, neither the HPPA nor the Classic 3000
has the expensive hardware needed to do fast Integer Multiply and Divide. On the
Classic 3000, the designers use a complex microprogram that is hidden from the
customer and may vary from model to model. The HPPA designers wanted to multiply
with reasonable performance without the microprogram or special hardware.

There is an interesting article about this problem in the Proceedings of the Second
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS II)," October 1987, published by The Computer Society of
the IEEE. Whew! The paper is:

Integer Multiplication and Division on the HP Precision Architecture
Daniel J. Magenheimer, Liz Peters, Karl Pettis, Dan Zuras.

In their search for a fast method to multiply and divide, the HPPA team started out with
general algorithms for subroutines to multiply and divide two integers. The usual
algorithm for integer multiply, called "Booth encoding", involves looping through the
multiplier two bits at a time replacing strings of zeroes or ones with a constant.

The HPPA stores numbers as 32-bit words, each bit or binary digit being capable of
storing a one or a zero. If two bits are processed per loop, the Booth algorithm requires
16 such loops. To support this clever and tricky algorithm, machine designers often
include a Multiply Step (and Divide Step) instruction to perform the two-bit processing.
However, the HPPA designers found that the special Multiply Step and Divide Step
instructions would have made their CPU more complex and increased the basic cycle
time. This was not acceptable because it conflicted with the goals of a RISC
architecture.

The HPPA designers attacked this problem in the same way that we often attack
performance problems with database systems. They did a frequency analysis of actual
multiplications in real user programs (and divisions -- the strategies in the IEEE article
apply to divide as well as to multiply). They found that 91% of multiply tasks include a
constant operand known at compile time, that the constant operands tend to be small,
that non-constant operands also tend to be small, and that standard results occur more
frequently than extended results (Le., 32-bit answer versus 64-bit).

"In the spirit of the philosophy espoused by RISC architects we should atttempt
to optimize the most frequent cases, even at the cost of decreasing performance
of the less frequent cases... By recognizing the inherent non-uniformity and
special cases of operands (and results), we may be able to increase the overall
performance."

Rather than implement a costly Multiply Step instruction that would slow down the basic
cycle time for ill instructions, they decided to take advantage of some hardware that the
HPPA needed for another purpose. Remember, the HPPA is a byte machine, meaning
that the byte (8 bits) is the basic unit that it can manipulate. All of memory is
referenced via consecutive byte addresses, such as byte I, byte 23, byte 4,567,890.
However, most numbers are stored as words (4 bytes, 32 bits), half-words (2 bytes, 16

Spectrum Instruction Set 0052-4

bits), or double words (8 bytes, 64 bits).

If you have a table of words starting at byte address 4000 and you want the 30th word
in the table, you must compute the byte address of that word. The calculation is simple:
4 times 30 + 4000 = 4120. The position of the 30th word after byte 4000 is "4 times 30"
because there are 4 bytes per word.

The HPPA has basic instructions to access elements in tables of words, half-words, and
double-words. To ensure that these instructions execute in one CPU cycle, the HPPA
includes hardware called a "pre-shifter"; it can multiply any register by 2, 4, or 8 prior
to adding it with another register. It is called a shifter because it shifts bits to the left;
in binary arithmetic, shifting one bit to the left is the same as multiplying by 2, shifting
two bits is multiplying by 4, and shifting 3 bits is the same as multiplying by 8.
(Computers like powers of 2, such as 4, 8, 16, 32...)

Since this "pre-shifter" was already needed, the HPPA designers could inexpensively
include nine instructions to make the shifter accessible to the programmer. Each
instruction shifts any of the 32 registers, adds it to any register, and stores the result in
any register. The shift count can be one, two, or three bits and the add can be
INTEGER, LOGICAL, or INTEGER with TRAP on OVERFLOW.

SH1ADD Shift One and Add
SH1ADDL Shift One and Add Logical
SH1ADDO Shift One, Add and Trap on Overflow
SH2ADD Shift Two and Add
SH2ADDL Shift Two and Add Logical
SH2ADDO Shift TWO, Add and Trap on Overflow
SH3ADD Shift Three and Add
SH3ADDL Shift Three and Add Logical
SH3ADDO Shift Three, Add and Trap on Overflow

Overflow - An Aside.
When the result of a multiplication won't fit in the 32-bit word that the HPPA uses
to hold numbers, an "overflow" occurs. Some programming languages insist that
overflow errors be detected and handled in a special way. Other languages, such as
C, have no special requirements. Most computation instructions on the HPPA have
a form that traps for overflow and another form that does not trap.

Now they have very fast instructions that allow both a shift (i.e., a multiply by two,
four or eight) and an add. This is a powerful building block for fast multiplication.

Multiplying By Constants

Let's look at multiplying by a constant first, since that happens so often in practice.
Multiplying a number by 10 is the same as adding the number together 10 times, or
multiplying by 5 twice. The key to implementing constant multiplication is that any
multiply operation can be converted to a series of additions and smaller multiplies:

120 10 times 12
120 (5 times 12) + (5 times 12)
120 .(4 times 12 + 12) + (4 times 12 + 12)

0052-5 Spectrum Instruction Set

The only tricky step above is the last one. We converted to this format because
computers like to multiply by powers of 2 (e.g., 2, 4, 8). Remember, our Shift-and-Add
instructions give us the abihty to multiply any register by 2, 4 or 8 in a single
instruction. The compiler can convert any multiplication by a constant into a series of
specific Add and Shift-and-Add instructions. Generally, the HPPA can do such a
multiply in four or fewer instructions, often in only one or two.

To multiply register R by 10, we would use the following two instructions:

SH2ADD R, R, R ; shift R two (multiply by 4), add to original R, store in R.
ADD R, R, R ; add R to R (double R) and store back in R.

The first instruction leaves us with (5 times R) in register R and the second instruction
doubles R, leaving us the (10 times R) in register R.

In our example, R would have the value 12:

SH2ADD
ADD

12 * 4 =48 (shift two), 48 + 12 =60 (add to original).
60 + 60 = 120

Multiplication by small constants occurs often in programs because of the need to index
into tables. In order to compute the byte address of the table element, the program must
multiply the element number by the element size in bytes (usually small!).

Multiplying By Variables

Examine the following statement from a Pascal program:

ExtendedPrice := Quantity * unitPricei

It multiplies "quantity" by Itprice" to give the extended price. Neither the quantity nor
the price is known when the program is written, since this statement will be executed
for many different parts on many different orders. In this case, the HPPA needs a
multiply method that can handle any possible values for the operands.

When neither of the operands is known at compile-time, we have "multiply-by-variablelt
•

You can construct a very simple, but slow, method of multiplying by an arbitrary
variable using just three basic computer functions: addition, divide by two (arithmetic
right shift), and bit test. This "naive" algorithm loops 32 times, processing one of the 32
bits each time. A simple optimization is to exit the loop as soon as the shifted multiplier
is zero. Since most operands have many leading zero bits, this improves the "average"
multiply by at least 40 percent. For example, the number 40 is represented in the
computer as 26 leading zero digits, followed by 101000.

Here is the algorithm to multiply A times B giving Result, represented in a high-level
language:

Result := 0
while A not zero do

if A odd then Result:=Result+B (add if last bit = 1)
B : = B + B (double B; multiply by 2; shift left 1 bit)
A : = A / 2 (shift right I bit, get next bit to test)

Spectrum Instruction Set 0052-6

Each time through the loop, we add the current value of B to the Result if A has a one
in the last bit (i.e., is odd), then we double the value of B and shift A right one bit to
bring up the next bit to be examined. Although this may seem obscure, it is actually the
same process you apply when you do decimal multiplication by hand. The only
difference is that we are using Base 2 instead of Base 10.

The Spectrum's Shift-and-Add instructions allow us to examine several bits at a time
from both the multiplier and multiplicand, reducing the worst case and the average case.
But this is just the start of optimizing based on frequency analysis:

"It is rarely the case that both operands are large, say larger than 16 bits,
because the result will be an overflow... If the multiplication does not result in
an overflow, at least one of the operands must be representable in less than 16
bits. With a simple test and possible swap, we have reduced the maximum
number of times through the loop to four and the average to two."

The HPPA team then noticed that each time through the loop multiplies the multiplicand
by a number between 0 and 15. Because the HPPA can do any small constant multiply
in three instructions or less as described above, they introduced a CASE statement to
include in the loop the explicit code for each possible constant multiply. They also
observed that one of the operands is less than 16 over half the time, so they optimized
for single loop multiply. Finally, they added a quick exit for values of zero and one,
and special checks for positive operands (which occur 90% of the time).

Here is how they describe their optimization results:

"Multiplication by compile-time constants can generally be performed in four
or fewer (single-cycle) instructions; multiplications by variables, including full
overflow checking, can be obtained in an average of 20 (single-cycle)
instructions... on the Precision Architecture the average multiply requires about
six cycles."

The HPPA designers chose to concentrate on speeding up the most-often requested
multiplication tasks at the expense of the least-often used tasks. They used a
shift-and-add algorithm to accomplish this, because the hardware for this algorithm was
ufree". When the desired multiply operation includes large values, loops similar to those
on a Classic 3000 are executed. When the operands include a constant or a small
variable value, the multiply is executed in a very few of the HPPA's fast instructions.
The result is better overall performance, with the proviso that the operations will be
harder to spot during program debugging. The corollary is that frequency analysis is the
first step in optimization.

What does this mean to you? If the compiler writers use these ideas fully, the code
generated should give excellent performance. However, when you are debugging
programs with the System Debugger, don't expect to see a simple MPY instruction, nor
even an obvious subroutine call. You may see one of many methods of doing an integer
multiply, depending on the operand values, on the compiler's intelligence, and perhaps
on the level of optimization you requestedI

0052-7 Spectrum Instruction Set

Spectrum Instruction Format

The basic HPPA instruction format is 6 bits for the major opcode and 10 bits to specify
the source registers (if any).

Opcode

6 bits

Source2

5 bits

Source1

5 bits

Rest of Instruction I
16 bits

Source2 and Sourcel select input registers for the instruction. The position of the target
register (if any) can vary, but is often at the end of the instruction.

The only memory reference instructions are Load and Store; there are no instructions to
add memory, as in the Classic 3000. Let's look at a typical memory reference
instruction, Store Word (STW):

STW - store Word

$lA . 1 Base-Reg I Data-Reg I S I Offset

6 bits 5 bits 5 bits 2 bits 14 bits

The function of STW is to store 32 bits from a specified General Register (Le.,
Data-Reg) into memory. The effective byte address is computed by adding the 14-bit
Offset value in the instruction to the 32-bit Base address in another General Register
(i.e., Base-Reg). The computed address for a Word load or store must be at a multiple
of 4 bytes, just as the address for a Half-word load or store must be at a multiple of 2
bytes.

Storage Boundaries on the Spectrum

The HPPA is a byte-address machine, but as the manual says...

"All addressable units must be stored on their naturally aligned boundaries. A
byte may appear at any address, halfwords must begin at even addresses, and
words begin at addresses that are multiples of 4."

The Classic 3000 usually stores 16-bit values at even-byte addresses, like the HPPA, but
does not force 32-bit values to be on 32-bit boundaries. In this matter, the two
machines are incompatible. If you restore a Classic-3000 file or database onto the
HPPA, the machine will not be able to use the Load and Store Word instructions to
reference mis-aligned fields. Instead, it will have to use pairs of Load Halfword and
Store Halfword instructions. You will use fewer instructions if you convert your files to
be HPPA-aligned and re-compile your programs, but we can't say whether this
improvement will even be measurable until we can run some performance tests.

If you have an MPE V file (i.e., aligned on 16-bit words) and you access it via a
native-mode MPE XL program, you must be certain that your compiler is aligning fields
in data buffers on 16-bit boundaries. Otherwise, your program will read and update the
wrong fields. The Native-Mode compilers have options to cope with alignment issues
and the details vary from compiler to compiler. This issue is well explained in the
Beyond RISe! book from SRN.

Spectrum Instruction Set 0052-8

Delayed Branches

We have seen that one of the primary goals of the HPPA is to complete the execution of
a useful instruction in each machine cycle: 80 ns on the 950. Note: the "official"
machine cycle of the 950 is subdivided into four sub-cycles, in order to implement the
different phases of an instruction. This allows HPPA to work on several instructions at
once. Thus it actually takes a minimum of three machine cycles to execute an
instruction, but the effective throughput is one instruction completed every cycle. We
will tend to ignore these details, except where necessary.

The branch operation is a serious stumbling block to these HPPA goals. Branch
instructions are difficult to implement in one cycle because they must first compute the
branch location, then actually retrieve the new instruction at that location.

The HPPA is a pipelined computer, meaning that it has a pipeline of instructions that it
is preparing to execute while it is actually executing the current instruction. As long as
the instructions execute in sequence, the hardware to pre-retrieve the following
instruction is fairly straightforward. When we branch, we cannot have the instruction at
the branch destination in our pipeline, because we don't know in advance which
instruction it is.

The choice seems to be between using two cycles to execute the branch or stretching the
length of the basic cycle time to allow for retrieving the branch location from memory.
Neither choice seems attractive.

What the HPPA does is ingenious and profoundly disturbing: the HPPA delays the
execution of the branch for one cycle. This strategy is frequently used in microcode
(see the HP 3000 6x and 7x machines, for example), but this is the first time I have seen
it in an official instruction set.

Here is how the Precision Architecture manual describes the concept of Delayed
Branching:

"All branch instructions exhibit the delayed branch feature. This implies that
the major effect of the branch instruction, the actual transfer of control, occurs
one instruction after the execution of the branch. As a result, the instruction
following the branch (located in the 'delay slot' of the branch instruction) is
executed before control passes to the branch destination."

When you look at assembler listings of MPE XL native-mode programs, you will
sometimes see instruction sequences like this:

BL opencarton
NOP

;branch and link
;delay slot

The compilers and/or optimizers could not find anything useful to do in the cycle after
the branch (lithe delay slot"), so they inserted a NOP (no operation). Effectively, this
sequence is a two-instruction branch.

Or, you may see an instruction sequence like this:

BL closecarton ; branch

0052-9 Spectrum Instruction Set

LDW 26 •.• ; load word in the delay slot

The BL branch instruction is executed before the LOW instruction, but does not take
effect until one cycle later. The LOW instruction that comes after the BL instruction is
actually executed while the BL completes. The LOW in this case is probably loading one
of the parameters needed by the 'closecarton' subroutine.

Let me see if I can make this a little more clear with an analogy. If you are taking an
airplane trip to Minneapolis, you follow a program with instructions like these:

1. book flight
2. reserve hotel
3. pay for ticket
4. reserve rental car
5. pack bags
6. fly to Minneapolis
7. (wasted time, read a book perhaps)
8. collect baggage
9. get rental car
10. check into hotel

Everything takes about the same time ("one machine cycle"), except for the actual flight.
This takes more than one machine cycle, leaving a wasted time period when you catch
up on reading or napping.

Now, imagine that you are a HPPA computer, determined not to waste a single machine
cycle. How would your trip be programmed?

1. book flight
2. reserve hotel
3. pay for ticket
4. reserve rental car
5. fly to Minneapolis
6. (pack baggage during the delay slot)
7. collect baggage
8. get rental car
9. check into hotel

Using the HPPA airplane, our trip took only 9 cycles instead of 10. How did we
shorten the time? By packing our bags while we are flying to Minneapolis. If this
sounds like "being in two places at the same time" to you, you're right! The HPPA can
work on several tasks at the same time due to the power of pipelining. The HPPA
compilers try to take the last step in your program before the branch and move it to
after the branch. In this_way, it can be executed during the time that the branch is
delayed.

Of course, there are a few catches.

If the branch is a conditional one, such as "branch if register two equals zero", then we
couldn't move any instruction that might change the value of register two. We would
have to find an instruction that could not have any impact on whether the branch would
be taken.

Spectrum Instruction Set 0052-10

Another wild and unbelievable implication of the delayed branch is spelled out very
dryly in the instruction set manual, as follows:

"Consider the situation in Figure 4-2.

Figure 4-2. Branch instruction in the delay slot

Loc.
100
104
108
10C

Instruction Reference#
STW
BV rO(r7) branch vectored to location 200 11
BL r4 rO lA relative branch to location 400 12
ADD r2,r6,r9 next instruction in linear code sequence

200
204

400
404

LDW
ADD

LOW
STW

0(r3),r11 target of BV instruction 11
next instruction, never executed!

target of BL instruction 12

13

14
15

"A taken branch instruction, 12, is executed in the delay slot of a preceding
taken branch, 1I. When this occurs, the first branch 1I schedules its target
instruction, 13, to execute after 12, and the second branch, 12, schedules its
target instruction, 14, to execute after 13. The net effect is the out-of-line
execution of 13, followed by the execution of 14. Also, if 13 were to be a taken
branch, its target, 15, would execute after 14, and 14 would also have been
executed out of its spatial context."

How can we translate this strange computer situtation into a real life analogy? It would
be as if, on our flight to Minneapolis, we were high-jacked to New York, but the
high-jackers were unable to keep us from stopping in Minneapolis just long enough to
lose our bags (i.e., one cycle).

When I first saw this example in the manual, 1 was at a loss to think of any practical use
for it. But it is never wise to assume that anything in the HPPA is by accident. On
further reflection, I thought I could see a way to use two branch instructions in a row to
good advantage. Classic 3000 hackers are aware of the XEQ instruction, which allows
you to execute another instruction, one that is not known until execution time. The
HPPA does not have an XEQ instruction. But, by combining the above example with
the fact that the HPPA does not distinguish between code and data as strongly as the
Classic 3000 does, you might be able to produce a reasonable facsimile of the XEQ
instruction.

The HPPA delayed branch is not just an intellectual curiosity that you can ignore. It
has may practical implicatons. When you are using the system debugger to set a
breakpoint near a branch instruction, it is very difficult to remember that the instruction
after the branch will be executed before the target of the branch. Deciding where to set
the breakpoint can sometimes seriously strain your imagination.

0052-11 Spectrum Instruction Set

Memory Addressing

One of the goals of the HPPA project was to allow programs to address enormous
amounts of memory, many times more than the current hardware technology can deliver.
The memory Load and Store functions compute an effective byte address by adding an
Offset value to a 32-bit Base address held in one of the 32 registers.

The effective address, however, is not a real memory address, nor is it an address in the
stack Data Segment (as in the Classic 3000). It is an address within a Space. The HPPA
can have thousands of spaces active and the program can access eight of them at any
instant using eight hardware Space Registers. Within the memory reference instructions,
the S field tells how to select the Space Register. If S is I, 2, or 3, the instruction uses
the space defined by Space Register I, 2, or 3. If S is 0, it 'uses the space defined by 4
plus the upper two bits of the address in the Base-Reg value (i.e., 4, 5, 6, or 7).

Spaces are similar to Segments in the Classic 3000 architecture, but can be much larger.
Only SR 0 has a hardware-defined purpose; it is used for the return address of
interspace calls. Software conventions define SR 4 as the code space, SR 5 as the stack
space, SR 6 as a space for shared data, and SR 7 for public operating system code,
literals, and data. SR I, SR 2, and SR 3 are available to the programmer as temporaries
for the construction of 64-bit long pointers (Le., pointers into any space).

Quadrants

When the Space field in the instruction is 0, the target Space Register is selected by
adding 4 to the upper two bits of the 32-bit address. Two bits allows four possible
values: 0 selects SR 4, I selects SR 5, 2 selects SR 6 and 3 selects SR 7. However, to
keep the hardware simple, the entire 32-bit word is the byte address within that space,
not just the 30 bits after the space selector. This is called short pointer addressing' since
only 32 bits are used to select both the space and the offset within the space. With long
pointers, a full 32-bit word is used for the space number and another 32 bits for the
offset within the space.

Because the upper two bits that select the Space Register are included as part of the
address, you can only address a quarter of the potential addresses in a space using a
short pointer. HP describes the restriction as follows:

"Only one fourth of the space is directly addressable by the base register with
short pointers and the region corresponds to the quadrant selected by the upper
two bits. For example, if a base register contains the hex value $40020000,
space register 5 is used as the space identifier and the second quadrant of the
space is directly addressable."

In 32 bits, we can address the first quadrant of the space pointed to by SR4, the second
quadrant of SR5, the third quadrant of SR6 and the fourth quadrant of SR7. This
makes for some very large memory addresses, and can be quite surprising to an old-time
3000 programmer. To get at the other 3 quadrants of those spaces we must use a long
pointer where the desired space register is not encoded in the 32-bit offset value.

Bounds checking of subroutine parameter addresses is a more complex issue on the
HPPA than on the Classic 3000. On the Classic, you check a parameter address to see if
it is between the DL and S registers. On the HPPA, a legitimate parameter address may
not even point to the user's data space, and read/write security within a space can

Spectrum Instruction Set 0052-12

theoretically vary from page to page (a page is 4096 bytes). Anyone who understands
this issue is invited to correspond with the author.

Pipelining and Register Interlock

In order for the HPPA to complete the execution of an instruction in each machine cycle
and to have that cycle be as fast as possible, it has pipelining. It has a pipeline of
instructions that it is preparing to execute while, at the same time, it is actually
executing the current instruction. A major obstacle to completing an instruction in
every cycle is the Memory Load operation.

What happens with memory loads on the HPPA is similar to what can happen with your
checking account. You deposit a check to your 'account on Monday, but if you try to
withdraw that amount on Tuesday, you may be blocked by the bank. They claim it
takes two cycles for the check to clear.

The same thing happens with memory load instructions. It takes one cycle just to
compute where in memory you want to load data from. Then it takes another cycle to
retrieve that data and put it in the desired register.

The machine designers faced a choice: they could either make the basic cycle time
longer to allow for both the computation of the effective address and the load from
main memory. Or, they could go on to the next instruction before they had finished
with the load instruction.

This second choice is what the HPPA does. When you load from memory, the pipeline
has already prepared the next instruction for execution. The HPPA goes ahead and
starts executing that instruction, even though it has not completed the preceding load
operation.

Question: What happens if the next instruction requires the data that is being loaded?

Answer: Register Interlock.

You should not refer to the target of a Load instruction in the instruction that follows a
Load instruction. If you do, you get a Register Interlock. This pauses the program for
one cycle, allowing the load from memory into the register to complete.

The compilers and optimizers on the HPPA attempt to re-order the machine instructions
to avoid Register Interlock. For example, a sequence that does Load-Store, Load-Store
and causes two Register Interlocks, can be converted to Load-Load, Store-Store with no
interlock delays.

A := B; LOW 31 load B LOW 31 load B
C := 0; STW 31 store A LOW 30 load D

LDW 30 load D STW 31 store A
STW 30 store C STW 30 store C

six cycles four cycles

The first code sequence with alternating LDW and STW instructions takes two cycles
longer than the second code sequence, which does both LDWs first, then both STWs.

0052-13 Spectrum Instruction Set

The ability of the compilers to reorder instruction sequences to avoid register interlocks
is important to attaining the theoretical speed of the HPPA.

The 930 Register Interlock is not as smart, nor as expensive, as the 950. Rather than
check the type of the next instruction to see if it could contain a reference to a register,
the 930 just looks for the 5-bit pattern of the register number in the position in the
instruction where register numbers usually appear. Of course, if you are executing an
instruction like LDIL (load immediate left), with its 21-bit constant operand, the 5-bit
pattern of the register may occur in the constant operand by chance. Unfortunately, you
get a register interlock anyway. The 950 avoids this trap with extra AND and OR logic.

The only reference to Register Interlock in the HP manual is on page 5-16:

"Execution is faster if software avoids dependence on register interlocks.
Instruction scheduling to avoid the need for interlocking is recommended. This
does not restrict the delay a load instruction may incur in a particular system to
a single execution cycle; in fact, the delay will be much longer for a cache
miss, a TLB miss, or a page fault."

Register Arithmetic Vs. Stack Arithmetic

The Classic 3000 has 19 arithmetic instructions that operate on the top of stack values.
The functions provided are Add, Subtract, Compare, Zero, Multiply, Divide, And, Not,
Or and Xor.

The Classic 3000 provides Add, Subtract and Compare for 16-bit and 32-bit integers and
for 16-bit unsigned integers. Zero pushes a 16-bit or 32-bit zero value onto the stack.
And, Not, Or and Xor (exclusive OR) are provided for 16-bit values only. In all cases,
the operands are -taken off the top of the stack and the result, if any, is pushed onto the
stack. All instructions compute and set Overflow, Carry and Condition Code fields in
the status register, whether you need them or not.

The HPPA has similar arithmetic functions, but the operands are always 32-bit values.
If you want to Add two 16-bit values together, you actually do a 32-bit Add and then
manually check the result for overflow of 16 bits using another instruction. The
arithmetic functions take two of the 32 general-purpose registers as input and one of the
registers as output. The Multiply and Divide functions are not included in the HPPA
instructions set and were discussed in detail earlier in this article.

Addition

There are numerous variations on each of the basic arithmetic functions. For example,
here are the ways you can Add two registers and put the result in a third:

ADD Add (32-bit signed addition)
ADDO Add and Trap On Overflow
ADDC Add with Carry
ADDCO Add with Carry and Trap on Overflow

ADDL Add Logical (32-bit unsigned addition)

The regular ADD instruction does not trap on integer overflow; there are variations on

Spectrum Instruction Set 0052-14

the instruction for trapping. Languages differ in their treatment of overflow conditions.
Pascal has very precise requirements for overflow traps, while the C language explicitly
says that it does not trap on overflow - the result is undefined. "With Carry" means that
the carry bit from a previous add function is included in computing the answer. ADDL
is an unsigned 32-bit addition, where all numbers are treated as positive values.

Nullification

On the Classic 3000, arithmetic functions adjust bits in the status register which you can
then test in a branch instruction. For example, you might subtract one number from
another and branch if the result is zero. On the HPPA, arithmetic instructions allow you
to "nullify" the next instruction if a certain condition, such as zero result, occurs or does
not occur. Rather than have numerous conditional branch instructions, the HPPA puts
the conditional logic in the arithmetic instructions. This is similar to many other
machines that have "skip" conditions in instructions (if something happens, skip the next
instruction). Experienced programmers who have worked with the HPPA at the
machine-language level report that having Nullify in so many instructions is a big aid to
writing tight code.

Subtract

There are even more variations on Subtract than there are on Add:

SUB
SUBO
SUBB
SUBBO
SUBT
SUBTO

Subtract (32-bit signed SUbtraction)
Subtract and Trap On Overflow
Subtract with Borrow
Subtract with Borrow and Trap On Overflow
Subtract and Trap on Condition
Subtract and Trap on Condition or Overflow

Subtract "with Borrow" is similar to Add "with Carry": it means that the borrow bit from
a previous subtract operation is to be included in computing the answer. As with Add,
there are versions of Subtract to trap or not on overflow. The "trap on condition"
instructions give you the ability to trap to an error routine if a certain condition results
after doing the subtraction. Having a trap instead of a skip on the condition means that
you can test the condition in one instruction instead of two, but the usefulness of this is
limited to tests that will likely abort the program when the condition occurs. These are
probably included for doing efficient bounds checking of array indices.

Compare Function

COMCLR is the Compare and Clear function. The two input registers are compared and
the next instruction can be conditionally skipped, based on the result. In addition, you
have the ability to clear another register in the same cycle. Some day you may
appreciate being able to compare and clear in the a single instruction. For example,
using the Nullify field in the COMCLR instruction with a following Add Immediate
Instruction, you could compare two registers and leave a zero or one in another register
that reflects the'result of the compare.

0052-15 Spectrum Instruction Set

Logical Functions: And, Not, Or, Xor

The HPPA has basically the same logical functions as the Classic 3000, except that the
operands are any of the 32-bit registers rather than the 16-bit values currently at the top
of the stack. There is one unusual instruction:

ANDCM And with Complement

ANDCM complements the value of one register, then ANDs it with another register,
leaving the result in a third register. The ANDCM instruction can produce the same
result as the Classic 3000's NOT instruction; ANDCM r, r , r flips the bits in register r,
ANDs them with the register r and stores the result back in register r, effectively a NOT
of register r.

Immediate Functions

The HPPA has 19 machine instructions with .constant or "immediate" operands:

Opcode
LDO
LDIL
ADDIL
ADDI
ADDIT
ADDIO
ADDITO
SUBI
SUBIO
COMICLR
COMIBT
COMIBF
MOVIB
ADDIBT
ADDIBF
DEPI
VDEPI
ZDEPI
ZVDEPI

Operand-Size
14 bits
21 bits
21 bits
11 bits
11 bits
11 bits
11 bits
11 bits
11 'bits
11 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits
5 bits

Function
Load Offset
Load Immediate Left
Add Immediate Left
Add to Immediate
Add to Immediate and Trap On Condition
Add to Immediate and Trap on Overflow
Add to Immediate and T,.ap on CondjOvfl
Subtract from Immediate
Subtract from Immediate and Trap on Overflow
Compare Immediate and Clear
Compare Immediate and Branch if True
Compare Immediate and Branch if False
Move Immediate and Branch
Add Immediate and Branch if True
Add Immediate and Branch if False
Deposit Immediate-
Variable Deposit Immediate
Zero and Deposit Immediate
Zero and Variable Deposit Immediate

The Classic 3000 has only 10 immediate instructions and they all have an 8-bit constant
operand. The Classic 3000 has MPYI and DIVI, but lacks the Deposit Immediate
instructions. The HPPA has more immediate instructions, but they are all· "basic"
one-cycle instructions (i.e., no multiply immediate instruction).

The size of the immediate operand on the HPPA varies: 5 bits (-15 to +15) for branches
and bit deposits, 11 bits (-IK to +IK) for most immediate functions, 14 bits (+8K to
-8K) for Load Offset which can also add, plus Load and Add Immediate Left (they take
a 21-bit operand that is shifted left to have 11 zeroes after it). Using LDIL and LDO
together, you can load any 32-bit constant into any register in two machine cycles. The
LDIL instruction has another interesting use: to embed statement numbers in the object
program. When the compilers want to leave road markers in the code, they use LDIL to

Spectrum Instruction Set 0052-16

register 0, which is a null operation. The constant parameter refers back to the source
code statement number or line number!

The Classic 3000 has one Add Immediate Instruction (ADDI). The HPPA has at least 6.
The HPPA can add an II-bit signed constant to a register and store the result in another
register, with four varations: no trap (ADDI), trap on overflow (ADDIO), trap on one
of 16 conditions such as less than zero (ADDIT), or trap on overflow or a condition
(ADDITO). ADDI and ADDIO can also specify one of 16 conditions for nullifying the
next instruction (Le., never, <, =, odd, etc.). Two other instructions, ADDIBT and
ADDIBF, allow you to add a 5-bit signed constant to a register, test a condition, and
branch if the condition is true or false. The conditions that can be tested in the Add
Immediate instructions (and in most HPPA arithmetic instructions) replace eleven
separate branch instructions on the Classic 3000 (e.g., BRO, BRE, BCC, and so on).

0052-17 Spectrum Instruction Set

Conclusions

The design of the Classic 3000 instruction set was heavily influenced by programmers.
Their desire was to avoid the programming problems they had encountered writing
systems software in Assembler on HP's earlier 2100 computer line. As such, the
instruction set represented their practical feel for what would be nice to program in.

The HPPA instruction set is striking in the degree to which it is based on measurements,
not feelings. Everywhere you look, it shows signs of hard engineering tradeoffs. If
measurements showed that few real programs used a particular function, that function
didn't have much chance of making it into HPPA. Conversely, if you find a particular
function in the instruction set, it probably has a valuable use in some large class of
programs (no matter how obscure it looks to you).

The Classic 3000 code is more compact and easier for people to read and write, but the
HPPA code is mOr:~ powerful. Not only can the HPPA instructions access vastly more
memory, but they are at least a hundred times more flexible than their Classic 3000
equivalent. The HPPA instructions resemble the internal microcode of the Classic 3000
much more than they resemble the official "machine" instructions of the Classic.
Because of the many options available, the HPPA depends on adroit compilers to select
the best instruction for each situation.

When Hewlett-Packard announced their intention to build a RISC machine, the
theoretical papers on RISe led me to expect a machine with 30 to 50 instructions. When
I first looked at the HPPA, I was surprised to find over 150 instructions. As I studied
HPPA, however, I started to get a feel for it. The instructions have incredible
complexity and power, but they also have "reduced complexity" from a computer
engineer's point of view. They are easy to implement in fast, elegant hardware.
Although this strategy has shifted many complex problems from the hardware to the
software, the HPPA designers appear to have provided the programmers with the power
they need to solve their problems.

Spectrum Instruction Set 0052-18

	The Spectrum Instruction Set, A 3000 Hacker's View

