
A Beginner's Guide to UDe's and JCW's:
How to Use Them to Your Benefit

David L. Largent
The N.G. Gilbert Corporation

P.o. Box 1032
700 South Council

Muncie, IN 47308-1032

1.0 Introduction - WIs this for me?W

How many times have you forgotten to issue a FILE command before
running a program? How often have you typed a FILE command wrong?
Do you ever get tired of typing the DELETESPOOLFlLE command? Have
you been looking for a way to make your job streams a little
"smarter"? Would a way to automate some of your procedures be
helpful? If you have any of these problems and have never
considered using UDC's and/or JCW's, now is the time to do so.

Over the course of the following pages will be found answers to
questions related to User Defined Commands (UDC's) and Job Control
Words (JCW's) such as:

- What are they?
- How can they help me?
- How are they created?
- How are they used?
- What are some common problems that arise?
- Are they worth the effort of learning something new?

To find these answers, a number of example UDC's, job streams, and
programs will be examined to see how and where UDC's and JCW's can
be used and how they work.

This paper is directed at new users of an HP3000 who have not yet
explored the world of UDC's and/or JCW's. However, any user may
find some tidbits to put in their "toolbox" that will prove useful
either now or in the future. This paper assumes the reader has a
general knowledge of the HP3000; specifically, the following are
"prerequisites" for this paper:

- Knowledge of the HP3000 accounting structure
(i.e., Fi1e/Group/AccountjUser).

- Knowledge of how to use an ASCII text EDITOR
(e.g., EDITOR/3000).

- Knowledge of many MPE commands and how to use them.
- Knowledge of job streams and how to use them.

A Beginner's Guide to UDC's and JCW's:

Copyright @) 1988 David L. Largent

0039 - 1

One further note. The information provided in this paper is
correct and up-to-date (to the best of my knowledge) and reflects
the way UDC's and JCW's are used and work as of the G.02.04 version
of MPE VIE (UB Delta 4). I am aware that changes have been made in
MPE XL, but have not made any attempt to include that information
in this paper.

For those of you who have chosen to stay with me, here is what you
can expect. First we will examine User Defined Commands (UDC's);
second, Job Control Words (JCW's) will be examined; third, we will
take a look at how UDC's and JCW's can be used together; and
finally, we will take a look at what we have learned and decide if
it is worth the effort to put these powerful new tools to work.
So. .

2.0 aWhat are User Defined Commands (UDC's)?-

UDC is one of many acronyms used in the HP3000 world. This one
comes from the phrase User Defined Command. A UDC is a command
that is designed for some user's convenience. It is made up of
standard MPE commands and/or other UDC's. A UDC can replace a
single, long command or may replace a long sequence of many
commands. They provide a short cut (a more precise way!?!) to
accomplish some particular task. By entering the UDC name, the
predefined commands are automatically executed. Think of them as
just another MPE command.

2.1 DHow can UDC's help me?D

A UDC may be used in most any situation where a standard MPE
command may be used, even within another UDC. They can be used in
both sessions and job streams. They cannot, however, be executed
by using the COMMAND intrinsic or from within subsystems unless you
are in BREAK. With that as background information, how can they
help you?

UDC's are perfect solutions for many "problem" situations. A long
sequence of MPE commands can be replaced by a single UDC name, thus
decreasing the time it takes to accomplish the task (less typing),
and also eliminating typing errors. A lengthy command like
DELETESPOOLFILE can be replaced by a UDC name such as RPUR. A
complicated sequence of commands, such as a long list of FILE
commands before running a program, can be reduced to one UDC name
such as PAY. Many of your boring, repetitive tasks can be
automated by using UDC's. UDC's can also be used to protect your
system from both the naive user and the too-knowledgeable user.
They can also cause something to automatically happen at log on
time. These all serve as examples of ways to make the HP3000 more
nuser-friendlyn.

By this point in time, you probably have half a dozen UDC ideas in
your head just waiting to get out. So. . .

A Beginner's Guide to UDC's and JCW's: 0039 - 2

2.2 -How do I create a UDC?-

First of all. slow down! UDC's. as with most everything in life,
are best created with PPP -- proper prior planning. If thought is
given to each UDC you create, a lot of changes can be avoided
later and you will likely end up with a more functional set of
unc's that are easier to use. For some people. creating a good UDC
is an art. rather than a science -- they may put as much thought
and care into a UDC as they put into developing a program.

Now that you have slowed down a bit (you have haven't you?!!). give
some thought to what MPE commands get used often on your system.
Are there particular tasks that always require the same sequence of
commands? Are there commands or tasks that may not be difficult
for us programmers to master. but may be intimidating for the user?
Now take your list (you did write them down didn't you?) and
evaluate each command or task. Some of them may be used so seldom
that it is not worthwhile to create a UDC. (That can also be a
reason to create a UDC for a task. so that the sequence of steps
need not be remembered!) Some of the commands may be so short that
creating a UDC for them would only save two or three key strokes.
You must make a judgement call for each command or task as to
whether the convenience of having the UDC available for use is
worth the time and effort of creating it.

2.21 Defining the UDC.

Let us assume that you have chosen to create a UDC for the SHOWJOB
command in its simplest form. You would like to be able to type
the letter "J". and have the system behave as if you had typed
"SHOWJOB". A UDC to do this could look like:

J
OPTION LIST. HELP
SHOWJOB

**

Header section
Execution options section
Body section
UDC separator section

As shown above. every UDC consists of four main sections: a header
section. an optional execution options section. a body section. and
a UDC separator section. The first line in this example is the
header section. containing the actual command the user will type.
The second line provides some execution options to the system. The
third line makes up the body section. containing the actual command
to be executed. The fourth line serves as a separator between UDC
definitions in a UDC file.

2.211 The Header Section.

The Header Section of a UDC consists of the command name,
parameters. and their optional default values. A UDC header may
extend over more than one physical line or up to a maximum of 320
characters. Each line to be continued must have as its last
nonblank character an ampersand (&).

A Beginner's Guide to UDC's and J~'s: 0039 - 3

The command name is what the user will actually type (along with
any needed parameter values) to cause the UDC to be executed. It is
composed of a maximum of sixteen alphabetic or numeric characters
and must begin with an alphabetic character. The characters "RFA"
may not be a unc name nor may they be the first three characters of
a UDC name, as this has been reserved by HP for internal use only.
Use common sense when naming your UDC's. Use a derivative of the
actual MPE command(s), or if naming a UDC for a particular task,
give it a name that is descriptive of the task. It is a good idea
to avoid single letter UDC names to reduce the chance of executing
the command by mistake (at least for any that may be
"destructive").

Parameters are variables that are assigned either a default value
or a value provided by the user along with the command name. These
variables are specified on the same line as the command name and
may be used in the body of the unc to make the UDC more flexible
and less specific. You may have a maximum of sixteen parameters in
one UDC.

Each parameter must have a name. A parameter name must begin with
an alphabetic character; the remainder may be alphabetic or numeric
characters. The maximum length for a parameter name is seventy
characters. However, the actual maximum may be less -- a parameter
name may not be split between physical lines. The same is true for
default values for parameters. Further constraints on the length
of the parameter name may apply because of the position where the
parameter is used in the body section.

If a UDC parameter does not have a default value specified, then it
is considered a required parameter and one must be provided when
the user executes the UDC. If a value for a required parameter is
not provided by the user, an appropriate error message is displayed
and the unc is not executed.

Let us change the requirements for our J UDC. We now want it to do
one of three things:

SHOWJOB JOB=@
SHOWJOB JOB-@S
SHOWJOB JOB-@]

(show all jobs)
(show sessions only)
(show batch jobs only)

This can be accomplished with one UDC if we use a parameter. The
header section will now look like:

J WHAT2SHOW .. " "

The command name is still J. The character string "WHAT2SHOW" is
the parameter name. A default value of "" has been specified.
This means that if a user just types "J", a list of all jobs will
be displayed. Alternatively, if the user types "J S" the l~s.t will
show sessions only.

A Beginner's Guide to UDC's and JCW's: 0039 - 4

As can be seen in the example above, a default value for a
parameter is specified by placing an equal sign (-) after the
parameter name, and then following that with the default value. If
the default value contains spaces or special characters, then it
will need to be enclosed in quotation marks (n). If no spaces or
special characters are needed in the default value, the quotation
marks are optional. When a default value is not provided for a
parameter, the only thing that appears in the header section is the
parameter name.

If more than one parameter is used in a UDC, default values may be
specified for all, some, or none of them. That is, some of the
parameters can be required while others are optional. A comma (,)
is used to separate a parameter name from the previous parameter
name (or default value if one is specified).

From the user's point of view, there are two ways UDC parameters
can be thought of: keyword and positional. When a user is
executing a UDC, either approach may be used, but not both at the
same time. A keyword parameter is one in which the parameter name
is typed, followed by an equal sign (~), followed by the parameter
value. In this way, values for parameters may be provided in any
order. For example:

J WHAT2SHOW- It S"

is the way the user would execute the J UDC using a keyword
parameter. A positional parameter is one in which the value is
specified for each parameter in the order they were defined in the
UDC. If a new value is not provided for an optional parameter, its
position must still be "held" by a comma (,). The J UDC executed
with a positional parameter would look like:

J S

The concept of keyword and positional parameters is the same as for
the standard MPE commands, except that only one approach may be
used on a given execution of a UDC.

When providing numeric values for parameters (either the default
values or the user's actual values), both decimal and octal
numbers may be used. Octal numbers are indicated by preceding them
with a percent sign (%). As you would expect, if the user provides
a value for a parameter that has a default value, the user's value
is the one that will be used. If the parameter value a user needs
to provide contains spaces or special characters, that value will
need to be enclosed in quotation marks (").

2.212 The Execution Options Section.

The
each

execution options section of a UDC
of four pairs of options. Each

consists of choices from
of these four pairs has a

A Beginner's Guide to UDC's and JCW's: 0039 - 5

default and, therefore, if the defaults are what is desired, this
entire section can be left out. These options control the
operation and use of the UDC. If the execution options section is
provided, it must appear as the next line following the header
section and will consist of a single line. The line must start
with the word OPTION. The rest of the line contains the option or
options you have chosen with a comma (,) between each one if you
list more than one. The four option pairs are discussed in the
following paragraphs.

LIST/NOLIST. The default is NOLIST. The LIST option will cause
the text of the body section to be listed on the standard list
device with the parameter values substituted as each line is
executed. The NOLIST option will not list any of the text of the
body section. It is a good idea to use the LIST option on unc's
that are replacements for standard MPE commands. This way the
actual command is before you and you will be less likely to forget
what the MPE command is when you need to use it on another system
that doesn't have your UDC! The NOLIST option is generally a good
choice for unc's that are implementing user tasks.

BREAK/NOBREAK. The default is BREAK. If the NOBREAK option is
chosen, the commands that make up the body of the unc will be
nonBREAKable. That is, pressing the BREAK key will not cause the
command or program to stop. If the BREAK option is chosen, the
commands that make up the body of the UDC will be BREAKable (if
they are normally BREAKable as MPE commands). It is a good idea to
use the NOBREAK option on any UDC that runs a VPLUS application.
This eliminates the problems that occur when BREAK is pressed while
in block mode. The use of the NOBREAK option will prohibit certain
users from using any MPE commands and can serve as a way to
discourage simple security breaches.

If the BREAK key is pressed during the execution of a unc that is
using the BREAK option, the following happens:

- If it was executing a nonprogram command, the
UDC terminates.

- If it was executing a program, and the RESUME command
is used, the UDC will also resume execution. An
exception to this occurs if a SETCATALOG command is
executed while in BREAK. In this case, the program
is resumed but the remainder of the UDC will not
be executed.

For you programmers, the NOBREAK option overrides the CAUSEBREAK
intrinsic. A program containing CAUSEBREAK will not BREAK if it is
executed from a UDC that has the NOBREAK option specified.

LOGON/NOLOGON. The default is NOLOGON.
chosen, the commands specified in the

If the
body

LOGON option is
of the UDC will

A Beginner's Guide to UDC's and JCY's: 0039 - 6

automatically be executed when the user logs on. Only one LOGON
UDC at the user level will be executed. If more than one LOGON UDC
exists for the user level, only the first one will execute. The
LOGON option can be put to good use on user task unc's. By using
this option, the user can logon and automatically be put into a
menu or application program. If the NOBREAK option is also used,
you can keep a user from gaining direct access to MPE commands. An
example of this will be shown later.

HELP/NOHELP. The default is HELP. If the HELP option is chosen,
you may type HELP followed by the UDC name and see the definition
of the UDC. If the NOHELP option is chosen, this possibility does
not exist. More will be said later about the use of the MPE HELP
subsystem. It is good to choose the HELP option unless you have a
security sensitive situation. If you specify both the NOLIST and
NOHELP options and an error occurs during execution of the UDC, the
error will be reported but the line containing the error will not
be listed.

2.213 The Body Section.

The body section of a UDC consists of one or more MPE commands
and/or UDC's which will be executed when the user types the unc
name. Other noncommand text such as data for subsystems or
application programs may not be included. A logical line of the
body may extend over more than one physical line for up to a
maximum of 320 characters. Each line to be continued must have as
its last nonblank character an ampersand (&). The body section
follows the execution options section, if any options have been
listed. If the execution options section is not present, then the
body section will follow the header section.

There are a few restrictions of which to be aware. The REDO
command may not be used in a UDC. The DATA, JOB, and HELLO
commands may be used, however, they will cause the current job or
session to logoff and effectively terminate execution of the UDC;
no new job or session will be initiated.

Let us go back to our last version of the J unc. We wanted it to
do one of three things:

SHOWJOB JOB-@
SHOWJOB JOB=@S
SHOWJOB JOB=@J

We last defined the header section as:

J WHAT2SHOW C3 " n

The body section needed to satisfy our requirements will consist of
a single MPE command:

SHOWJOB JOB=@IWHAT2SHOW

A Beginner's Guide to unc's and JCW's: 0039 - 7

In this example, all the characters preceding the exclamation point
(t) will be left as shown. The character string" IWHAT2SHOW" will
be replaced by either the default value of" ", or whatever the
user types as a parameter value following "J". This revised
command image is then what is sent to the MPE command interpreter
for execution. Thus, if the user types:

J S

the command image that will be executed will be:

SHOWJOB JOB-@S

Alternatively, if the user just types:

J

and uses the default parameter value, the command image that will
be executed will be:

SHOWJOB JOB=@

As is shown above, placing an exclamation point (I) immediately
before a parameter name in the body section of a UDC will cause MPE
to substitute the value of that parameter into that position of the
command. If a parameter name does not follow an exclamation point,
then an error will be reported to the user. If an exclamation point
does not precede a parameter name, no substitution will be
attempted, and the parameter name will be left in the command.

Normally, an exclamation point signifies a parameter name. If you
want to use the exclamation point but not have MPE try to
substitute a value, use an even number of exclamation points. An
odd number causes MPE to attempt a substitution. Each pair of
exclamation points will be translated into a single exclamation
point. For example, consider the following UDC:

EXAMPLE PARK
OPTION LIST
COMMENT! IPARM
COMMENT II!! 1PARK

**
If the user was to execute it by typing

EXAMPLE TEST

the two comments would be displayed as:

COMMENT IPARM
COMMENT 11TEST

A Beginner's Guide to UDC's and JCW's: 0039 - 8

Sometimes you will need to insert a parameter into the middle of a
character string in the UDC body section. As an example, the
following UDC is presented:

PREPS PROGNAME, MAXDATASIZE-l5000
OPTION LIST
PURGE ! "PROGNAME"X
PREP !"PROGNAME"U,I"PROGNAME"X;MAXDATA-lMAXDATASIZE;RL=PRRL
SAVE I"PROGNAME"X

**
In this UDC, two parameters are used: PROGNAME and MAXDATASIZE.
MAXDATASIZE has a default value of 15000. When the UDC is
executed, it will purge a file, prepare a file, and then save the
program file just created. The parameter name PROGNAME is enclosed
in quotation marks (") to separate it from the letters "X" and "U"
that follow. Without the quotation marks, there would appear to be
invalid parameter names following the exclamation points. This is
only a concern if the character immediately following a parameter
name is a letter or number.

If the UDC was to be executed by typing:

PREPS PAY

the actual command images executed would be:

PURGE PAYX
PREP PAYU, PAYX; MAXDATA-l5000 ;RIFPRRL
SAVE PAYX

The parameter value "PAY" corresponds to parameter PROGNAME because
they are both the first item provided in the list. Since a second
parameter value was not provided when the UDC was executed, the
default value for MAXDATASIZE was used.

If an error is encountered as the commands of a UDC are executed,
an error message will be displayed and the UDC will terminate. If
the UDC is being executed in a job stream, the job stream will also
terminate. Sometimes it is desirable for the UDC to continue with
the next command regardless of whether the previous command
resulted in an error. To accomplish this, a CONTINUE command must
be inserted immediately preceding the command that may result in an
error. Consider the following UDC:

REPORTS
OPTION LIST
CONTINUE
RUN PROG1X
RUN PROG2X
SHOWTIME

**

A Beginner's Guide to UDC's and JCW's: 0039 - 9

In this example, two programs are run and then the time of day is
displayed. If program PROG2X results in an error (i.e., it
aborts) when it is run, the remainder of the UDC will not be
executed. That is, if program PROG2X aborts, nothing else will be
done. Program PROG2X will always be run regardless of whether
program PROGlX results in an error. The CONTINUE command tells MPE
to continue with the next command, even if the current command
fails. This "override" capability only applies to the command
immediately following the CONTINUE command.

UDC's can perform tasks much more complex than those already
covered by using sophisticated command sequences and/or referencing
other UDC's from within the body section of the UDC. By using
control characters and escape sequences, you can control the
appearance and location of information as it is displayed by a UDC.
The terminal's function keys can be "loaded" by a UDC, thus making
your terminal a little more "user-friendly". Examples of these
will be provided later.

As mentioned earlier, a UDC may reference or execute another UDC.
This process is referred to as nesting. There is a limitation
however: a UDC may only reference another UDC that is defined
later in the UDC file (we will discuss UDC files in a few more
paragraphs). As long as the reference occurs before the
definition, UDC's can be written in a structured way.

Consider the following UDC's:

INFO
OPTION LIST
ME
J
T

**
J
OPTION LIST
SHOWJOB

**ME
OPTION LIST
SHOWME

**T
OPTION LIST
SHOWTIME

**
In this example, we have defined four UDC's: INFO, J, ME, and T.
The INFO UDC will cause the J, ME, and T UDC's to be executed one
after the other in the order listed in the INFO UDC. When the J
UDC is executed, it will execute the SHOWJOB command; the ME UDC
will execute the SHOWME command; and the T UDC will execute the

A Beginner's Guide to UDC's and JCW's: 0039 - 10

SHOWTIME command. So, by simply
provided information from all
automatically.

typing "INFO", the user
three of the MPE

will be
commands

2.214 The UDe Separator Section.

The last section of a UDC definition is the unc separator. This
consists of a single line that must start with an asterisk (*) in
column one. The rest of the line is yours to do with as you wish.
The purpose of this section is to separate one unc from the next
one in the UDC file and must be the last line of the unc
definition.

So, there you have it in ten words or less (give or take a few
thousand) . You now know how to define a UDC. But once you have a
number of UDC's defined, what do you do with them? The answer to
that question is...

2.22 Put Your UDC Definitions in a UDe File.

A UDC file is simply an ASCII text file that contains one or more
UDC definitions. Any ASCII text editor may be used to create a UDC
file. The record length of the UDC file may be any length;
however, 72 character records is what MPE is expecting. If you set
your record length less than 72, your UDC's likely will not execute
properly. Using a record length larger than 72 characters will
work; however, only the first 72 characters of each line will be
read by MPE. A UDC file may contain any number of unc
definitions.

The unc's should be entered in some logical sequence to make
maintenance easier -- my suggestion is alphabetically by the UDC
name. An exception: remember that if you are using nested unc's,
the definition of a UDC must be after its reference(s). So, either
name them appropriately or include them in the file out of
sequence. If you are using the escape character in your unc's, an
easy way to key it in is to type in some otherwise unused character
(e.g., the A character) in place of the escape character. Then
when you are finished entering the UDC definitions, globally change
all occurrences of that character to the escape character. The
reverse sequence can be used if you need to modify an existing unc
file. Just remember to change them back before you keep the file.

Once you have entered all of the UDC definitions using your text
editor, save the file with some meaningful name. My preference is
to use the letters "UDC" as the last three characters of the file
name. Doing so makes it easy to locate UDC files with the LISTF
command. You may keep your file with or without line numbers -
MPE does not care. You may create multiple UDC files; however, for
performance reasons (which we will discuss later), it is best to
limit the number of UDC files that exist for one user. If you
wish, a lockword may be assigned to the UDC file.

A Beginner's Guide to UDC's and JOW's: 0039 - 11

Simply creating a unc file with a text editor does not yet make the
UDC's available for use. The next step is to tell MPE that you
have a UDC file you wish to use. However, before we discuss that,
let us take a look at account and system level unc's.

2.23 Account and System Level UDC's.

Up to this point, we have been discussing unc's in general. There
are actually three different levels of unc's: user, account, and
system. A unc file may be set up by a user for hisfher own use.
An account manager may create a set of UDC's for use by all users
of that account. The system manager may create a set of unc's for
use by all users on the system. So now you have one more item to
consider when you are creating a UDC: Who should have access to
it?

When the MPE command interpreter is given a command (either an MPE
command or a UDC), it follows a predefined hierarchy to decide what
to do with the command in question. Shown below is that
hierarchy:

First User Level UDC File

N'th User Level UDC File

I
First Account Level UDC File

N'th Account Level UDC File

I
First System Level UDC File

N'th System Level UDC File

I
MPE Commands

This hierarchy is followed regardless of whether it is trying to
locate a command provided at a colon (:) prompt or a command that
is coming from a unc. This is the reason that when using nested

A Beginner's Guide to UDC's and JCW's: 0039 - 12

UDC's, the UDC definition must follow the reference(s) to that
UDC.

There is an exception to this hierarchy: UDC's with LOGON listed
as an option. When a user logs on, one logon UDC, at most, will be
performed at each UDC level. The system level logon UDC (if
present) will execute first, then the account level logon UDC (if
present), and finally, the user level logon UDC (if present) will
be executed. If more than one logon UDC exists at a level, only
the first logon UDC at that level will be executed but will not
affect the execution of other levels' logon UDC's.

Another implication of this hierarchy is that when a UDC
level has an identical name to a UDC or command at another
the following rules apply:

at one
level,

1. A UDC in user level UDC file 1 takes precedence over user
level UDC file n.

2. A UDC in user level UDC file n takes precedence over
account level UDC file 1.

3. A UDC in account level UDC file 1 takes precedence over
account level UDC file n.

4. A UDC in account level UDC file n takes precedence over
system level UDC file 1.

5. A UDC in system level UDC file 1 takes precedence over
system level UDC file n.

6. A UDC in system level UDC file n takes precedence over the
MPE commands.

What all of this means is that you can set up a UDC with exactly
the same name as an MPE command (or UDC) and effectively redefine
that command. For instance, if you wanted to keep a user from
using the PURGE command, the following UDC could be established:

PURGE FILENAME - "$NULL"
OPTION LIST
COMMENT YOU HAVE NOT BEEN GIVEN ACCESS TO THIS COMMAND.

**
Unless you are specifically taking advantage of this capability, it
is best to give all of your UDC's unique names. Here is another
example of these rules and the hierarchy: if both a system level
and a user level UDC have the same name and an account level UDC
references a UDC by that name, then the system level UDC will be
executed rather than the user level UDC because the system level
UDC is "after" the account level UDC that referenced it, where as
the user level UDC would be "before" that reference.

A Beginner's Guide to UDC's and JCW's: 0039 - 13

A user must have special capabilities to establish account or
system level UDC's. To establish account level UDC's, the user
must have the AM capability; to establish system level UDC's, the
user must have the SM capability. Additionally, if system level
UDC's are established, the system level UDC files must either have
their access security released or have the access security such
that all users will have READ and LOCK access to the file(s). (For
security reasons, the latter is preferred.)

2.24 Telling the System About Your UDC File(s).

As stated earlier, simply creating a UDC file with a text editor
does not yet make the unC'a available for use. The next step is to
tell MPE that you have a UDC file you wish to use. The MPE command
to do this is SETCATALOG. The simplest syntax of the SETCATALOG
command is:

SETCATALOG udcfilename[/lockword]

where "udcfilename" is your UDC file name and "lockword" is an
optional lockword assigned to the UDC file. This version will
enable a UDC file for the user level only. The user executing the
SETCATALOG command must have READ and LOCK access to the UDC file.
Unless you have account or system manager capabilities, you must
logon as the user that you want to enable the UDC file for. The
SETCATALOG command may be issued from a session, job, or in BREAK.
It may not be issued from a program, nor is it BREAKable.

When SETCATALOG is executed with a file name provided, three things
occur. The command interpreter searches the UDC file for errors:
problems like specifying an option that is not a valid option are
caught; problems like syntax errors in the body section of the UDC
are not caught. If no errors are found in a UDC, then an entry is
established in a directory that will eventually contain entries for
all UDC's in the UDC file. The UDC file name and optional lockword
is stored in a system catalog of all UDC users. This system
catalog is file COMMAND.PUB.SYS. The directory is stored in an
extra data segment for that session or job. Since the lockword (if
one is provided) is stored in COMMAND.PUB.SYS, a user does not need
to know the lockword to logon or to access the UDC. In addition to
the UDC file name (and lockword), the user name and account and the
UDC level (user, account, system) are also stored in
COMMAND.PUB.SYS.

As you could probably guess, the file COMMAND.PUB.SYS must exist
before any SETCATALOG is attempted. If the file does not exist,
the system manager or supervisor must build it. The file should be
built with a record size of twenty words. The maximum number of
records for the file can be determined by calculating the sum of:

1 for each user.account that will have user level UDC's; plus
1 for each user level UDC file to be used; plus

A Beginner's Guide to UDC's and JCW's: 0039 - 14

1 for each account that will have account level UDC's; plus
1 for each account level UDC file to be used; plus
1 if system level UDC's are to be used; plus
1 for each system level UDC file to be used.

So, the BUILD command used by the system manager might look like:

BUILD COMMAND.PUB;REC-20,32;DISC-500

To secure this file so that all users may utilize UDC's, but only
the system manager may read or modify it (since there could be
sensitive information stored there), the system manager should
enter:

ALTSEC COMMAND. PUB; (X:ANY;R,L,W,A:CR)

Taking this last step will provide execute access to all users
(which is all they need), and restrict all other access to the
creator of the file (in this instance, the system manager).

If you have more than one UDC file that you wish to enable at the
user level, the syntax of the SETCATALOG command becomes:

SETCATALOG udcfilenamel[/10ckword],udcfilename2[/10ckword] ...

The UDC file names are listed (with the optional lockwords) with a
comma (,) inserted between each one. The position of a UDC in the
directory determines which other UDC's it may reference (remember
the hierarchy discussed a few paragraphs back?). The UDC files are
opened and scanned in the order they appeared in the last
SETCATALOG command for that UDC level. All user level UDC's are
entered into the directory first, followed by all account level
UDC's, and finally, all system level UDC's.

So, now you know how to "turn on" or enable user level UDC's. What
if you want to disable or "turn off" user level UDC's? To
accomplish this, you again use the SETCATALOG command, except this
time do not provide a UDC file name:

SETCATALOG

When a UDC file name is not provided with the SETCATALOG command,
all entries and references to any user level UDC files in the UDC
directory and COMMAND.PUB.SYS that are currently enabled for the
user issuing the command are eliminated. The UDC files themselves,
however, are not purged. To re-enable your UDC files, you would
simply type the SETCATALOG command, followed by your UDC file
name(s) again. Disabling user level UDC's does not have an
immediate affect on other job or sessions that are still logged on
with the same user name. They may continue to use the disabled
UDC's until they logoff. Conversely, if you enable some UDC's,
other users will not have access to them until they logon again.

A Beginner's Guide to UDC's and JCW's: 0039 - 15

Now, suppose som~time previously you have typed:

SETCATALOG UDCl,unC2,unC3

You, therefore, have the UDC's from three UDC files enabled (plus
any account or system level unC'sl). For whatever reason, you no
longer need the unc's in file unC2. To eliminate them, but still
keep the others, you need to type:

SETCATALOG UDC1,unC3

Anytime the SETCATALOG command is executed, it has the effect of
removing all user level UDC's for the user entering the command.
Additionally, if a UDC file name(s) is provided, those UDC's are
re-cata1oged and available for use.

At some point in time (probably very soon after you start using
UDC's) , you will need to modify or add to an existing UDC file.
There is not much more involved than simply using a text editor to
make the changes or additions; however, you do need to know about a
"gotcha". Because of the way unc's are enabled, whenever a user is
logged on to the system, any UDC file(s) associated with that user
(including account and system level UDC files) are considered
"open" . What this means is that you may not alter that UDC file in
any way as long as the user is logged on and has the UDC file
enabled. You may not PURGE, RENAME, or (in EDITOR) modify and KEEP
that UDC file. Any attempt to alter the file will result in the
error message "EXCLUSIVE VIOlATION".

So, how do you ever make changes or additions?l? You have five
options (take your pick -- they all work well under different
situations):

1. Have all users (and jobs) that are using the UDC file
log off (except you of course). You use the SETCATALOG
command to disable the UDC file in question. Make
your changes to the file, and keep it. Re-enab1e
the UDC file by using the SETCATALOG command. Notify
the users they may log back on.

2. Have all affected users (including yourself) disable the
UDC file by using the SETCATALOG command. Make your
changes to the file, and keep it. Have all users
re-enable the UDC file by using the SETCATALOG command
- or - you use the SETCATALOG command and have the
other affected users logon again. Watch out for
batch jobs when using this option.

3. Have all affected users (and jobs) logoff the system.
You logon so that you can modify and keep the UDC file,
but as a user that does not have this UDC file enabled.
Make your changes to the file, and keep it. Notify the
users they may log back on.

A Beginner's Guide to UDC's and JCY's: 0039 - 16

4. Logon so that you can modify and keep the UDC file.
Make your changes to the file and keep it under a new
file name. Later, after all affected users and jobs
have logged off, disable the UDC file, PURGE the old
UDC file, RENAME the new file to the old file, and
re-enable the UDC file with the SETCATALOG command.

5. Any combination or variation of the above four options
that you can get to work.

It is important to understand that all affected users must take
some action (logoff/on or SETCATALOG) because the SETCATALOG
command only takes effect for the session or job that issues it and
for future logons. It does not affect other jobs or sessions
currently logged on.

You now know everything (well almost everything) I know about using
the SETCATALOG command with user level UDC files. But what about
account and system level UDC files? How do they get enabled and
disabled for use? The answer again is the SETCATALOG command! We
add one more parameter to the previous syntax:

SETCA!ALOG udcfilenamel[j1ockword][,udcfilename2/[lockword]] ;ACCOUNT
SETCATALOG udcfilenamel[j1ockword][,udcfilename2/[lockword]] ;SYSTEM

The ACCOUNT parameter specifies that the UDC file(s) being enabled
should be available for all users in the account. This parameter
requires the account manager capability. Reading between the lines,
you have probably realized that you must logon to the account that
the UDC file is to be enabled for. For example, if you want to
enable UDC file ACCTUDC for account XYZ, first logon as the account
manager of account XYZ, then enter:

SETCATALOG ACCTUDC;ACCOUNT

If you wish to disable the account level UDC files, you would
enter:

SETCATALOG;ACCOUNT

Again, you must have the account manager capability to use the
ACCOUNT parameter. Taking this new information into account, all
previous information pertaining to the SETCATALOG command and user
level UDC files also applies to account level UDC files.

The SYSTEM parameter specifies that the UDC file(s) being enabled
should be available for all users of the system. This parameter
requires the system manager capability. For example, if you want to
enable UDC file SYSUDC for all users of the system, just logon as
the system manager, then enter:

SETCATALOG SYSUDC;SYSTEM

A Beginner's Guide to UDC's and JCW's: 0039 - 17

If you wish to disable the system level UDC files, you would enter:

SETCATALOG;SYSTEM

Again, you must have the system manager capability to use the SYSTEM
parameter. Taking this new information into account, all previous
information pertaining to the SETCATALOG command and user level UDC
files also applies to system level UDC files.

If you have the account manager or system manager capability, you
may use another parameter of the SETCATALOG command:

SETCATALOG udcfilenamel[/10ckword][,udcfilename2[/10ckword]] ...
;USER-user[.account]

where "user" is a user name and "account" is an account name. This
allows you to enable a UDC file for a user other than the one you
are logged on as. Account managers may enable UDC files for any
user in their account. The system manager may enable UDC files for
any user on the system. They will not take effect, however, until
the next time the user logs on.

This parameter may also be used to disable UDC files for other
users:

SETCATALOG;USER-user.[account]

The same restrictions and capabilities apply for account managers
and the system manager, as were just discussed above.

One last parameter that you may wish to know about:

SETCATALOG ... any other parameters ... ; SHOW

This will list the UDC file names and UDC definitions in each of
those files as they are scanned. This is helpful for locating where
an error is occurring when you use the SETCATALOG command, but I
don't suggest it for general use. It can take a while to list all
of the UDC definitions in a large UDC file. Additionally, any
account or system level UDC's are listed after the user level unc's
are scanned (remember -- they go into the user's directory too!).

2.25 What happens when I logon and have some UDe' s enabled?

At logon time, any user that has one or more UDC file(s) enabled for
his/her use (user, account, or system!) will cause a fair amount of
CPU and disc utilization to occur. As a result of previous
SETCATALOG's, the file COMMAND.PUB.SYS contains the UDC file names
enabled for every user, as well as those enabled for each account
and the system. At logon time, this file is searched to identify
what UDC files are enabled for the user in question. As each one is
identified, that UDC file is opened and the contents of it are read.
As the UDC file is scanned, entries are created and placed in a

A Beginner's Guide to UDC's and JCW's: 0039 - 18

directory of UDC's for the user. That directory is created in an
extra data segment for the session or job.

When you enter a command or UDC name, the command interpreter
searches the UDC directory (the extra data segment) for that which
you typed in, starting at the beginning of the directory. Remember
that entries are placed in the UDC directory in user level, account
level, system level sequence. If the command is found in the UDC
directory, the UDC body for that command is read one line at a time
and parameters are substituted into the line where appropriate. The
command interpreter is then re-entered at a special internal entry
point to interpret the new expanded command string and goes through
the same steps just mentioned, except that this time, the UDC
directory scan begins with the directory entry that follows the UDC
currently being executed. (Now do you understand why the definition
of a unc must be after its reference?) If the command interpreter
fails to find a match for a command string in the UDC directory, it
then checks to see if it is a valid MPE command. This cycle is
repeated until the end of the UDC definition that is being
executed.

2.26 Looking at what UDC's are available.

There is a handy MPE command which will list all of the UDC names
enabled for your session or job:

SHOWCATALOG [listfile]

where "listfi1e" is the name of the file (disc or printer) you wish
the list to be sent to. Unless directed elsewhere with a prior FILE
command, if you specify "listfi1e", the listing is sent to device
class LP. If ttlistfile" is not provided, the list of UDC names will
be displayed on $STDLIST (your terminal for a session). This
command may be issued from a session, job, or in BREAK. It may not
be issued from a program. The SHOWCATALOG command is BREAKable (it
aborts execution of the command).

The output from the SHOWCATALOG command lists the unc's currently
enabled for your use, the level at which they are defined (user,
account, system), and the file name in which they reside. A sample
execution follows:

:SHOWCATALOG
UDC1.GROUP.ACCT

AA
BB

UDC2.GROUP.ACCT
CC

ACCTUDC.PUB.ACCT
DD

USER
USER

USER

ACCOUNT

A Beginner's Guide to unc's and JCW's: 0039 - 19

SYSUDC.PUB.SYS
EE
FF
GG

SYSTEM
SYSTEM
SYSTEM

This example shows seven UDC's enabled from four different UDC
files: three at the user level, one at the account level, and three
more at the system level.

The SHOWCATALOG command has another parameter that can be useful,
especially for account and system managers:

SHOWCATALOG [listfile];USER-user[.account]

where "user" is the name of a user, and "account" is an account
name. This parameter permits you to specify a user other than
yourself for which you want the SHOWCATALOG done. The output when
this parameter is used will consist of only enabled UDC file names
and which level they were defined at. No UDC names will be listed.

For example if you want to know what UDC file(s) are enabled for a
user, you could type:

SHOWCATALOG;USERs=DAVE

and the system would respond with:

USER UDC CATALOG FILE NAMES:
UDCl.GROUP.ACCT
UDC2.GROUP.ACCT

ACCOUNT UDC CATALOG FILE NAMES:
ACCTUDC.PUB.ACCT

SYSTEM UDC CATALOG FILE NAMES:
SYSUDC.PUB.SYS

There are a few limitations when using the "USER-" parameter:

1. A user with neither account nor system manager
capabilities may only specify hisfher own user name.
A user may not obtain information for any other user.

2. A user with account manager capability may specify any
user in hisfher account. Additionally, if "@" is used for
the user name, only the account level UDC file name(s)
will be displayed.

3. A user with system manager capability may specify any
user on the system. Additionally, if "@" is used for
the user name and an account name is specified, the
account level UDC file name(s) will be displayed. Also,

A Beginner's Guide to UDC's and JCW's: 0039 - 20

if "@" is specified for both the user and account, only
the system level UDC file name(s) will be displayed.

A way of getting more information about a particular UDC is to use
the MPE HELP command. Unless the NOHELP execution option was
specified when the UDC was created, if you type

HELP udcname

where "udcname" is the name of a UDC, you will receive a listing of
the UDC definition. For example, if you typed:

HELP J

(and the UDC we discussed sometime back was enabled), the system
would respond with:

USER DEFINED COMMAND

J WHAT2SHOW-" "
OPTION LIST
SHOWJOB JOB-@IWAT2SHOW

If the NOHELP execution option is specified when a UDC is
and the HELP command is used for that UDC, the system will
with:

created,
respond

Can't find an;ything under this command or in the table of contents.

unless the UDC name is the same as an MPE command, in which case you
will receive information about the MPE command. It should be noted
that you may not enter the HELP subsystem itself and get information
about your UDC's. Only by using the HELP command as described
earlier will you receive this information.

2.3 How about some examples?

Good Ideal I'll present some here; also see section four for
examples of using JCW's and UDC's together. NOTE: Anytime you see
the characters "<esc>" in this paper, read it as an escape
character. That is, for purposes of this paper, I have used the
characters "<esc>" in place of the escape character. However, if
you were to type in the UDC, you would need to use the escape
character instead. Additionally, the control character will be
represented by the characters "<ctrl>".

We have been at this for a while, so let's take a look at some games
I mean UDC's for a games user. I have a variation of the

following UDC file set up on my system:

A Beginner's Guide to UDC's and JCW's: 0039 - 21

If you just want the schedule to print on the
screen, press the RETURN key instead of doing all II

of the above. "

If you want the loan schedule printed on paper,
wait for this phrase to appear...

ENTER THE USnNG DEVICE (RETURN FUR $STDUST)?tt
then press the BRFAK key. You will get a co1on(:) II

Type AMORTPRINT, and press the RETURN key. The II

screen will now say...
READ pending

Now type LP, press the RETURN key, and go on to ..
answer the other questions.

BIOSIN
FIVEROW
C1I'HEU.O

ANIMAL
CHESS
IANDERP

StartGames
Option LogOn
Display " <es~.'•••"."""""A"."'AAA••••AA'••••••' "
Display " <esc>&dA* * "
Display" <esc>&dA* WELCOME TO '!HE lIP 3000 GAME ROOM *"
Display" <esc>&dA* * "
Display It <es~"".'."''''''''''A'''''''''Jn'''''''''''''.'' •••''''''''''''••''''''••• '''''''''. "
Display" "
Display" Type UST to get a listing of the available games "
Display" "

**Games
Display" ADVENT•••• (Adventure) A game of exploration.
Display 11 AMORT..... Creates amortization (loan) tables .
. . .continued for other games available ...

**Advent
Continue
R1m ADVENT

**Amort
Display "<esc>&dBNOTE:
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display It<esc>&dB
Display "<esc>&dB
Display "<esc>&dB
Display It<esc>&dB
Display l1<esc>&dB
Continue
R1m AMORT
Reset list
list

**
AmortPrint
File UST-AMOR'lRPr;Forms-B 1/2 by 11 INCH PAPER REQUIRED <ctr1>G.
Resume

**
...continued for other games available ...
Stop
Abort

**List
Display" Available Games ...
Display" ADVENT AMORT
Display " BIOSINPl BJ
Display" FOOTBALL GRIC

A Beginner's Guide to unc's and JCW's: 0039 - 22

UBOATSTARTREC TREK2640SAHARA
ULTIMA

Display "
Display "
Display
Display" If you would like a one line description of each of"
Display" the games, type GAMES, and press the return key.
Display " "

**
Items of interest in the example ODC file above:

1. The LOGON execution option is used so the welcome message
appears automatically.

2. No, there is not an MPE command DISPlAY I Display is
a system level ODC I have set up to cause the
parameter value provided to be displayed by using
the COMMENT command. (We will take a look at the
ODC definition for DISPlAY later.

3. Escape sequences are used to control the appearance
of text on the screen. In the case of STARTGAMES, it
will blink, and in AMORT, the text will be shown
in inverse video.

4. The CONTINUE command is used in all of the individual
game unc's to guarantee that the LIST UDC will always be
executed, even if the program aborts.

5. The RESUME command is used in AMORTPRINT to automatically
put them back in the program after they press the BREAK
key.

6. Notice that no options were provided in most UDC's.
Since the default is NOLIST, the command(s) will not be
displayed on the screen. However, in UDC DISPlAY, OPTION
LIST is used so that the messages passed to it will be
displayed.

7. The LIST UDC must be at the end after all of the
individual game UDC's because each one of them ends with a
reference to LIST.

8. The STOP UDC exists to provide the user a "graceful" way
to end a game they do not wish to continue. The users
know to press the BREAK key and type STOP if they find
themselves in this situation.

O.K. We have had our fun with the games. Time to get back to some
serious work. The next series of examples come from some of my
application systems. These ODC's are generally user level ODC's.

First, a few unc's from the accounts payable system. In UDC file
APINUDC, I have the following ODC:

A Beginner's Guide to UDC's and JCW's: 0039 - 23

Payable
Option LogOn,NoBreak
Continue
Payable
Bye

**
In UDC file APUDC, the following UDC's exist (among others):

Payable
Option NoBreak
File TODAT-TODAT.GLXEQ;Shr
File AP830WRK-VENNAMES;Rec--80,16,F,ASCII;Disc-32,1,Save
Run PAYABLEX;Lib-G

**VendorMaint
Option NoBreak
Display "Use this program with extreme care.<ctrl>G"
Run AP429X;Lib-G

**
Items of interest in the accounts payable examples:

1. There are two classes of users for most of the
application systems: A "data entry" user who only needs
access to one main menu-driven program (for example,
PAYABLEX) and a user who needs access to that same
program, as well as other utility programs (for example,
AP429X) for the application system. I have implemented
this by creating two UDC files. The "data entry" user
has both UDC files enabled in the order listed above.
However, the other user only has the second UDC file
enabled. In this way, the UDC to actually run the program
PAYABLEX only needs to be entered in the second UDC file
(in this example that UDC is relatively short; however,
some others have numerous FILE commands), with a reference
made to it in the first, rather than needing to define it
twice.

2. Even though the "data entry" user has both UDC files
enabled for them, they effectively only have one thing
they can do: RUN the PAYABLEX program. This is because of
the LOGON execution option which automatically starts up
the program at logon time, and logs them off (because of
the BYE command) when the program stops running. Two more
items are required to guarantee that this will work,
however. The NOBREAK execution option must be specified
to keep the user from pressing the BREAK key and gaining
access to MPE. The CONTINUE command is also needed, so
that if the PAYABLEX program should abort for some reason
(I know - you write perfect programs that never abort - I
have problems sometimes thoughl), the next command (in
this case, BYE) will still execute.

A Beginner's Guide to UDC's and JCW's: 0039 - 24

Here is a neat idea for use with the SORT program (it works well
with many others too!):

EquipmentSort
Purge EQPSORTD
Run SORT.PUB.SYS;StdIn-SDEQPSRT;StdList-$NULL

**
Most any program can have its standard input and output files
redirected (i.e., provided from, or sent to, some place other than
normal). See the RUN command for more details on this. In this
UDC, the interactive input is coming from a disc file named
SDEQPSRT, and the interactive output is discarded. File SDEQPSRT
contains the commands that would normally have been provided to the
SORT program (i.e., the names of the input and output files, and
the key information).

Now, we will look at some UDC's from our job costing system. It
has not been converted to an interactive system yet, and is still
using the ENTRY.PUB.SYS program to create batch files which are
then processed. The UDC's do provide some good examples of nesting
UDC's, however.

EditJobList BFName
Option NoBreak
Reformat !BFName
Sort IBFName, SDEDTLST
File JCWRK,New;Temp
File CARD-SORTFlLE,OldTemp
Run JCOlOX
File JCWRK,OldTemp
File JCMSTR,Old
File LIST-JC020LST;Cctl;Dev-LP
Run JC020X

**EditYeeklyCost BFNAME
Option NoBreak
Reformat !BFName
Sort IBFName,SDEDTCST
File CARD-SORTFlLE,OldTemp
Run JCllOX

**Reformat BFName
Purge !BFName ,Temp
File REFFlLE-JCREF.REFFILE,Old
File BATCH~!BFName.FCDATA,Old

File OUTFILE-IBFName,New;Temp
File REFLIST-$NULL
Run REFORMAT.PUB.SYS

**

A Beginner's Guide to UDC's and JCW's: 0039 - 25

SORT BFName, SDName
Purge SORTFILE,Temp
File INPUT-IBFName,OldTemp
File OUTPUT-SORTFILE,New;Temp
Run SORT.PUB.SYS;StdIn-ISDName;StdList-$NULL

**
Items of interest in these job costing UDC's:

1. UDC's EDITJOBLIST and EDITWEEKLYCOST both reference UDC's
REFORMAT and SORT; however, different information is
provided for the parameter values, so they process the
files differently.

2. UDC REFORMAT only needs to know what the name of the
batch file is that was created with ENTRY.PUB.SYS. The
output from the REFORMAT program is stored in a temporary
file with the original batch file name.

3. UDC SORT needs to know the batch file name and the name of
the "sort data" file. The input data file for the sort is
actually the temporary file created while reformatting.
The output data file is always named SORTFILE, and is a
temporary file. Temporary files are used for two reasons:
first, they are automatically PURGEd when the session or
job logs off; and secondly, they permit two sessions or
jobs to do the same thing at the same time and eliminate
the need to worry about permanent file usage conflicts.
The "sort data" file contains information about how to
sort the input file, and is specified by using the STDIN
parameter of the RUN command (see the previous example for
further discussion of this).

Here are some examples from the financial system that show
execute the same program, but provide for different input
output.

how to
and/or

Ba1anceSheet
BalShRun 11,";Forms-BIANK8 1/2 by 11 INCH PAPER REQ <ctrl>G."
**
BalanceSheetGB
BalShRun 2
**
BalShRun Copies,Forms-" "
File BALSHLST;Dev=LP"ICopies; IForms
Run BALSHX
**
CorporatePL
PrintPL C,12
**
DivisionPL
PrintPL 1,13
**

A Beginner's Guide to UDC's and JCW's: 0039 - 26

C1ientPL
PrintPL 2,9
**
PrintPL Fi1eCode,Copies-l
File PLFLA-PLFLIFi1eCode,Old
File PRPALLST-PRPLI"FileCode"LST;Dev-LP,9,ICopies;&

Forms-BLANK 8 1/2 by 11 PAPER REQ <ctrl>G.
Run PRPALX
**

Here is what to look for in these examples:

1. There are seven UDC's, but only two actually RUN a
program; the other five just reference those two.

2. In the case of the balance sheet program (BALSHX), we need
to print the report on both blank paper and regular "green
bar" paper. The program takes very little time to run, so
we run it twice, once with each UDC, to create two
different spool files with a different number of copies
for each. In one case, the FORMS parameter and value is
provided, and in the other case, the default value is
used.

3. In the case of the profit and loss program (PRPALX) , we
need to print a different number of copies of each type
of statement. Additionally, because of the way the
program is set up, there is a different input file for
each type of statement. There is actually only one
character different in each file name, so the FILECODE
parameter is used to provide that.

4. In UDC PRINTPL, notice the use of quotation marks (")
around the FILECODE parameter. This is because it needs
to be substituted in the middle of a "word".

5. In that same UDC, also notice the use of the ampersand
character (&) to continue the logical line onto the next
physical line of the UDC. Were all of that to have been
typed on the same line, it would have gone beyond the
seventy-two character limit for a line.

What if you have two different users that need to use the same
program, but do not use the same "terminology"? Create two unc's
that RUN the same program. Our invoicing/accounts receivable
system provides a good example. We have one set of users that work
with the invoicing part of the system and a second set that works
with the accounts receivable part of the system. It is really all
one application system, but the two user groups tend to think of
them as (related, but) separate entities. So...

A Beginner's Guide to unc's and JCW's: 0039 - 27

Invoices
InvRecRun

**ARec
InvRecRun
**
I nvRecRun
Option NoBreak
File ENAME.PUB;Shr
File TODAT-TODAT.GLXEQ;Shr
Run INVRECX; Lib-G
**

In this example, each user group has a UDC that makes sense to them
but both end up at exactly the same place!

Since most of you are probably programmers, let us take a look at
some UDC's that you may find useful in your day-to-day existence.
This list is not meant to be exhaustive, but rather meant to get
you started:

DBLoad
Option List
Run DBLOAD.PUB.SYS

**DBSchema SchemaFile
Option List
File DBSTEXT-!SchemaFile
File DBSLIST;Dev-LP
Run DBSCHEMA.PUB.SYS;Parm-3
Reset DBSTEXT
Reset DBSLIST
**
DBUnLoad
Option List
Run DBUNLOAD.PUB.SYS
**
DBUtil
Option List
Run DBUTIL.PUB.SYS
**
FormSpec
Option List
Run FORMSPEC.PUB.SYS
**
Preps ProgName,MaxDataSize-15000
Option List
Purge !"ProgName"X
Prep !"ProgName"U,"ProgName"X;MaxData-IMaxDataSize
Save I"ProgName"X
**

A Beginner's Guide to UDC's and JCW's: 0039 - 28

Query
Option List
Run QUERY.PUB.SYS
**
RunLG Program
Option List
Run I"Program"X;Lib-G
**

There is not a whole lot to explain here -- nothing fancy just
some examples of commands and tasks that you probably do most every
day. The only item I will mention is the use of OPTION LIST which
displays the command as it is executed. This helps remind me that
I am using a UDC and that some day, some where, I may need to type
this longer command.

Now for some UDC's that the system operator would likely find
useful:

AfterChecks
OptionList
Download 6,VFCSTD6.PUB.SYS
Download 6,Margin-l
StartSpool 6
**
BackUp
Option List
Limit 2,1
File BCKUPCNF.BACKUP-BCKUPCNF.PUB.SYS
Run BACKUP.HPUNSUP.SUPPORT;Info-" n

AbortJob HPTREND,MGR.TELESUP
Limit 1,1
**
BeforeChecks
Option List
Continue
StartSpool LP
StopSpool 6
HeadOff 6
**
JobF Priority-O
Option List
JobFence !Priority
**
LoadVFC VFCFileName-VFCSTD6
Option List
Download 6,IVFCFileName.PUB.SYS
**
Margin LeftCo1umn-1
Option List
Download 6,Margin-ILeftCo1umn
**

A Beginner's Guide to UDC's and JCW's: 0039 - 29

Reply " 6 "Reply "
Redo II 4 "Redo"
Show "" Cache II 9 "ShowCache u

System Up" S "SysUp"
Show ""Reports" 17 "ShowOut Job=@; Sp"
Run "" SpookS" 18 "Run SpookS.Pub.Sys"

SpookS " " Detail " 8 us @.@;@O"
System Down" 7 "SysDown"

OffSites
Option List
Limit 2,1
Stream OFFSITEJ.PUB.SYS
AbortJob HPTREND,MGR.TELESUP
Limit 1,1
**
OutF Priority-1
Option List
OutFence IPriority
**
RCop Fi1eNumber,Copies-1
Option List
AltSpoo1Fi1e #0 !Fi1eNumber; Copies-I Copies
**
RDef FileNumber
Option List
AltSpoolFile #O!FileNumber;Pri-O
**
RPri Fi1eNumber,Priority-8
Option List
AltSpoolFile #O!FileNumber;Pri-IPriority
**
RPur Fi1eNumber
Option List
De1eteSpoolFile #O!FileNumber
**
StopSp Device-6
Option List
StopSpoo1 !Device;OpenQ
**
StrtSp Device-6
Option List
StartSpool !Device
**
Sysr=>wn
Option List
ShowJob
ShowOut Job=@;Sp
Console
ShowTime
**
SetOpKeys
SFK 1 0 "
SFK 2 0 "
SFK 3 0 II

SFK 4 0 "
SFK SO"
SFK 6 0 "
SFK 7 0 "
SF!{ 8 0 "
UserKeys
**

A Beginner's Guide to UDC's and JCW's: 0039 - 30

0039 - 31

Just the same as the last examples, this is by no means an
exhaustive list, but rather a starting point for you as you
consider what makes sense on your system. Now for some items of
interest:

1. We print our checks "hot" to the printer. That is, we stop
the spooler process for the printer itself. Two UDC's make'
life easier in this situation: BEFORECHECKS and AFTERCHECKS.
Nothing fancy; just some steps that have to be done over
and over -- and done CORRECTLY every time.

2. BACKUP and OFFSITES are two UDC's that assist with performing
SYSDUMPs. The BACKUP program referenced is a program that
used to exist in the HPUNSUP group of the SUPPORT account
before the days of the TELESUP account. Its sole purpose in
life is to create and stream a batch job that either performs
a full or a partial backup based on the day of the week and
the information stored in the file BCKUPCNF. In recent years,
HP has provided us with the FULLBACKUP and PARTBACKUP commands
which nearly eliminated my need for the BACKUP program. My
problem is that we perform two full backups every week: one
stays on site; the other goes off site. The PARTBACKUP
command performs a partial SYSDUMP since the last full
backup. However, since my second full backup is off site, I
really want the partial backups done after it to still go
back to the last on site full backup. The BACKUP program
permits me to handle this, the HP commands do not. At any
rate, each of the UDC's set the job and session limits low,
stream an appropriate job stream, and then abort the HPTREND
job stream so that it is not running during the backup.

3. In the SETOPKEYS UDC, the SFK UDC is referenced. This will
be discussed later. For the time being, just understand
that the SETOPKEYS UDC will cause the terminal function
keys to be loaded with this information.

If you are getting tired of examples, feel free to go on to the next
section. For those of you who want more examples, we will next look at
some of the UDC's from my system level UDC file, and then finish up with
some unique "goodies" that may prove useful to some of you:

AboJ JSNumber
Option List
AbortJob #!JSNumber

**AltJ JobNumber,InPriority-8
Option List
AltJob #J!JobNumber;InPri-!InPriority

**Con LDev-" "
Option List
Console !LDev

**
A Beginner's Guide to UDC's and JCW's:

Ed
Option List
Editor
**
Entry
Option List,NoBreak
ListF BF@,O
Run ENTRY.PUB.SYS
**
Files
Option LogOn, List
File LP; Dev-LP
File T;Dev-TAPE
Display "The above File commands are in effect."
Display "The system unc's are enabled."
**
J WHAT2SHOW-" "
Option List
ShowJob Job-@!WHAT2SHOW
**
L FileSet-"@",Detail-2,ListFile-$STDLIST
Option List
ListF !FileSet, !Detail; IListFile

**LEq
Option List
ListEq
**
List FileName,ListFile-$STDLIST
Option List
FCopy From-!FileName;To-IListFile
**
LT FileSet-"@",Detail-2,ListFile-$STDLIST
Option List
ListFTemp IFileSet,IDetail;IListFile

**LUDC
Option List
ShowCatalog

**Me
Option List
ShowMe

**Out Items-"Spn
Option List
ShowOut Job=@;IItems

**Print FileName,Copies-I,Priority-8
Option List
File LISTING;DEV-LP, IPriority, ICopies
FCopy From-!FileName;To~*LISTING

Reset LISTING
**

A Beginner's Guide to unc's and JCW's: 0039 - 32

PScreen
Option List
Run PSCREEN.PUB.TELESUP

**Purges FLl,FL2-$NULL,FL3-$NULL,FL4-$NULL,FLS-$NULL,FL6-$NULL
Option List
Purge !FLl
Purge !FL2
Purge !FL3
Purge !FL4
Purge !FLS
Purge !FL6

**Res
Option List
Resume

**RunPS Program
Option List
Run !Program.PUB.SYS

**SetUDC Filel-$NULL,File2-$NULL,File3-$NULL,File4-$NULL,FileS-$NULL
Option List
SetCatalog !Filel, IFile2, !File3, !File4, IFileS

**ShC
Option List
ShowCache

**ShD LDev-" "
Option List
ShowDev !LDev

**Sort Input,Output
Option List
File INPUT-!Input
File OUTPUT-!Output
Reset LIST
Run SORT. PUB . SYS

**SpookS
Option List
Run SPOOKS.PUB.SYS

**Str JobName, Char-"!"
Option List
Stream !JobName, !Char

**StrAt JobName,Time,Char-"!"
Option List
Stream IJobName , IChar;At-ITime

**

A Beginner's Guide to UDC's and JCW's: 0039 - 33

StrDay JobName,Day,Time-"O:O",Char-"I"
Option List
Stream IJobName,IChar;Day-IDay;At-ITime

**StrIn JobName,Days-O,Hours-O,Minutes-O,Char-" I"
Option List
Stream IJobName,IChar;In~IDays,IHours,IMinutes

**
T
Option List
ShowTime

**Display Message-" "
Option List
Comment <esc>MIMessage

**
A few notes and points of interest:

1. In the few situations where we still use the ENTRY program to
create batch files, we use the naming convention of always
starting the batch file name with the letters "BF". In
the ENTRY ODC, the purpose of the LISTF command is just to
provide a list of existing batch files to the user before the
program starts running.

2. Yhen I want a quick listing of a file on my screen or on
paper, I use the LIST or PRINT ODC's. Both use the FCOPY
command to produce the listing. One slight inconvenience
(besides the "extra garbage" displayed): unless the file
record length is eighty (for LIST) or 132 (for PRINT)
characters, FCOPY gives you a warning message that you must
respond to.

3. The DISPLAY UDC is used to display the character string
provided in the MESSAGE parameter. The escape M sequence
causes the cursor to delete the line that the cursor is on,
then display the message. The end result is that only the
message is left on the screen. Note that this UDC is at
the end of the UDC file so that all other UDC's may use it
to display messages.

O.K. Now for those unique "goodies" I promised you. Have you been
looking for a way to load information into your terminal's function keys
automatically? If you have, keep reading. If you have not, perhaps you
want to know why you would want to. Using the function keys to execute
commands is a good alternative to UDC's because the overall overhead is
usually less. Function keys also provide a one or two keystroke
execution of commands. Why am I telling you about an alternative to
UDC's?l? Because the solution is accomplished with UDC's.

My original source for this information was from the November 1987 issue
of the Interact magazine. In that issue, Michael J. Parker and Lynn

A Beginner's Guide to UDC's and JCW's: 0039 - 34

Wilson of State Farm Insurance in Bloomington, Illinois, had a short
article in the Users' Forum section of the magazine. I have taken their
ideas and expanded them to work on all of the types of terminals I have
(HP 2645A, HP 2392A, and HP 700/92), and, I believe, on any HP terminal.
There are three parts to the solution: two unc's that need to be
defined once probably in a system level UDC, and one or more
additional unc's defined that use the first two. The two system level
UDC's should be defined as:

SFK Key-l;Attr-O;Headl-" ";Head2-" ";&
Length-40;Function-"

Option List
Comment <esc>&fl"Attr"alnKey"kl"Length"LIFunction<esc>M<esc>A
Comment <esc>&fl"Key"k16dOLIHeadlIHead2<esc>M<esc>A

**UserKeys
Option List
Comment <esc>&jB<esc>M<esc>A

**
The SFK UDC accepts the information for one function key and "loads"
that information by causing it to be displayed on the terminal with the
COMMENT command. Be careful when you type this one in: upper and lower
case makes a difference in how it will execute! The KEY parameter
signifies which function key (1 through 8). The ATTR parameter
indicates what should happen when the function key is pressed:

0 (Normal) The defined string is displayed. To execute it,
the user must press the RETURN key.

1 (Local Only) The defined string is displayed; however,
it may not be executed.

2 (Transmit) The defined string is displayed and immediately
executed.

The HEADI and HEAD2 parameters provide values to be placed in the labels
on the screen (only for terminals that can "label" the function keys).
LENGTH indicates how many characters are in the function string. And
finally, the FUNCTION parameter provides the actual character string to
be "loaded" into the function key.

I have used the COMMENT command twice in this UDC because we have a
mixture of terminals and not all of them have the capability of
labelling the function keys. The first (longer) COMMENT command will
work on all of the terminals and will cause all of the information to be
loaded except for the function key labels on the screen. The second
COMMENT command provides the additional label information to those
terminals that can accept it (the older model terminals just ignore it).
It must be split in two steps; if combined into one, the older model
terminals will not have any of the information loaded into the function
keys. If all of your terminals have the function key labelling
capability, you may combine them into one COMMENT. On the other hand,
if none of your terminals have this capability, the second COMMENT could
be left out and the HEADI and HEAD2 parameters could be eliminated.

A Beginner's Guide to UDC's and JCW's: 0039 - 35

The USERKEYS UDC simply causes the function key labels to be
displayed on the terminal screen (if they are not already). Again,
this is ignored by the older model terminals, but is needed for the
newer ones. The "<esc>M<esc>A" sequence in both UDC's effectively
"erases" the comments from the screen as the UDC executes. If you
would like them left on the screen, that sequence could be left off
the end of the line.

What might the UDC's that use these look like?
example:

Here is an

SetMainKeys
SFK 1,0," "," QUERY", ,"Run QUERY.PUB.SYS"
SFK 2,0," "," DBUTIL ",,"Run DBUTIL.PUB.SYS"
SFK 3, 2 , It II , "SHOWJOB "" It ShowJob It

SFK 4,0," It, " FORMSPEC" ,,"Run FORMSPEC.PUB.SYS"
SKF 5,0," "," EDITOR ",,"EDITOR"
SFK 6,0," "," SPOOK ",,"Run SPOOK5.PUB.SYS"
SFK 7, 0 , .. " , II SEGMENTR" , , "Run SEGMENTER. PUB. SYS"
SFK 8,0, "PrepSave", "Program", , "Preps"
UserKeys

**
If you want to take this a step further (although you do get back
your saved UDC overhead), instead of RUNning each of the above
programs, execute a UDC to do so. In the UDC for each program,
execute a UDC before and after the RUN command to load the keys for
the program about to be run and then reset them afterward. For
example:

Query
SetQueryKeys
Run QUERY. PUB. SYS
SetMainKeys

**DBUti1
SetDBUti1Keys
Run DBUTIL.PUB.SYS
SetMainKeys

**
Do remember to place these in the UDC file prior to the SETMAINKEYS
and each of the SETxKEYS UDC's. By using this nesting technique,
you can set up a "menu" system with only UDC's and terminal
function keys. Neat, huh?l?

Now for "goodie" number two. Have you ever wanted to get rid of a
set of files but did not really want to type PURGE over and over
and did not have access to MPEX? Now you can (maybe) I This idea
came from the March 1988 issue of The Chronicle newspaper.
Victoria Shoemaker (of Taurus Software) in her :NEWUSER column,
presented this novel solution to the problem:

A Beginner's Guide to unc's and JCW's: 0039 - 36

PurgeFS FileSet
Option List
Store !FileSet;$Null;Show;Purge

**
This UDC STOREs the file set you specify to $NULL (which does
nothing you do not even need to REPLY to a request!) and then
PURGEs the files afterwards. This format of the STORE command is
normally used to archive information and then remove it from the
system -- we just happen to be archiving to the "bit bucket". Any
file set that the STORE program will accept (including the "-"
option) can be provided to this UDC. Be careful with this one
it can be very powerful. Make sure you have a good backup before
you type PURGEFS "@.@.@"!

"Goodie" number three. Do you need a way to provide different
"welcome" and/or "news" messages for each user? If so, read on.
This one comes from an article M.E. Kabay (of JINBU Corporation)
wrote in the March 1988 issue of The Chronicle. Here's a system
level UDC:

SysMessage
Option LogOn
Run LIST.PUB.TELESUP;INFo-"Y ON;T OFF;L NEWS.PUB.SYS"

**
If an account needs a special message or "news" file, set up an
account level UDC for them:

AcctMessage
Option LogOn
Run LIST.PUB.TELESUP;INFo-"y ON;T OFF;L NEWS.PUB.ACCT"

**
Special needs for a user? Try this user level UDC:

UserMessage
Option LogOn
Run LIST.PUB.TELESUP;INFO-"Y ON;T OFF;L NEWS.GROUP.ACCT"

**
The FCOPY program could be used instead of the LIST program, but I
think you'll find the LIST program a little "nicer". By having all
of these separate files. you can easily provide different
information to different users or accounts by including it in their
own news file. To update a file, simply use your favorite text
editor.

One last "goodie". This one permits you to send a message or list
the contents of an entire file on any terminal screen that is
turned on but not logged on:

A Beginner's Guide to UDC's and JCW's: 0039 - 37

Send LDev,Source
File TERM;Dev-ILDev
Continue
FCopy From-ISource;To-*TERM
Reset TERM
**

This UDC, when executed, uses the FCOPY program to copy the
specified file to the specified terminal. Again, the destination
terminal must be turned on but logged off for the message to be
displayed. If $STDIN is provided for the SOURCE parameter, then
the user may type whatever he/she wishes at the time of the UDC
execution. (This can be a little tricky though -- there is no
prompt and you must type ":EOD" to end your message.)

A situation I find this
completed, and I need to
Consider the following:

SendToA11 Source
Send 22,! Source
Send 23, ISource
Send 24,! Source
Send 25,!Source
Send 26,!Source
Send 27,! Source
Send 28,! Source
Send 29,! Source
Send 30,! Source
Send 31,! Source
Send 32,! Source
Send 33,!Source
Send 34,! Source
Send 35,!Source
**

If I type:

UDC helpful
let users

in is after a backup has
know that they can logon.

SENDTOALL SYSTEMUP.PUB.SYS

then it will attempt to transmit the contents of file
SYSTEMUP.PUB.SYS to each terminal. If a particular terminal is not
turned on, or is already logged on, that FCOPY will fail, but
because of the CONTINUE command, the next one will still be
attempted.

2.4 llhat are some problems I may have while using unc's?

Throughout the paper, I have provided a number of warnings and
"gotchas". Listed here (in somewhat random order) are a few worth
repeating and a few not mentioned previously.

A Beginner's Guide to UDC's and JCW's: 0039 - 38

If a system and a user level UDC have identical names and an
account level UDC references a UDC by this name, then the system
level UDC will be executed because of the UDC hierarchy.

If an error or warning occurs as a UDC executes, MPE will:

1. Print an appropriate error message.

2. Unless NOHELP is specified, print a caret (A) pointing
to the error.

3. Unless NOHELP and NOLIST are specified, print the line
in which the error occurred.

Every time a user logs on, a UDC directory is
session or job. If an error occurs during this
only the UDC level in which the error occurs
initialized. All others will still be enabled.

created for that
initialization,

will fail to be

A UDC name may not be "RFA" or start with the letters "RFA". This
is reserved for HP's internal use. Any UDC that is "RFA" or starts
with "RFA" will not execute and will result in the error message:

UNKNOWN COMMAND NAME (CIERROR 975)

If the SETCATALOG is executed as part of a UDC, it will be the last
command executed in the UDC body. Additionally, if the SETCATALOG
was part of a nested UDC, all levels of UDC execution are
terminated after completion of the SETCATALOG command.

If you execute a UDC that RUNs a program, you press BREAK, and then
execute the SETCATALOG command while in BREAK, you may type RESUME,
and continue with that program; however, any further execution of
the UDC that issued the RUN command will be terminated.

UDC's are not always as secure as you might think. Certain
programs and subsystems (e.g., SPOOK) allow users to enter MPE
commands and RUN programs. So even if you have a UDC with LOGON
and NOBREAK specified, the user can still gain access to MPE.

When you run a program, you no longer have access to your UDC's.
The COMMAND intrinsic only can be used to execute MPE commands.

Consider using the CONTINUE command wherever possible. This will
help prevent a program from aborting and terminating the UDC
execution. Even though it may seem unlikely that a program will
abort, it can be accomplished in many programs by typing :EOD when
prompted for input. This causes an end of file condition on $STDIN
and gives many programs problems.

Even though you have disallowed certain commands to a user (by
redefining them with a UDC) , be careful. If the user has access to

A Beginner's Guide to UDC's and JCW's: 0039 - 39

the COMMAND intrinsic (e.g., through EDITOR), the user can still
execute most MPE commands.

When modifying a ODC file, make sure that all users (sessions and
jobs) accessing that file have either logged off or disabled ODC's
with the SETCATALOG command. If you are working on a system level
ODC file, that means every user on the system is affected I

If you get rid of a user (with the PURGEUSER command) that had
unc's enabled at the time, the entries are NOT removed from
COMMAND.PUB.SYS. Always execute a SETCATALOG command to disable
UDC's for the user before purging the user.

UDC's bring with them system resource overhead at logon time, and
they use up entries in the DST table. The DST table entries are
used because of the extra data segment used to store the unc
directory for each job or session. To reduce overhead and improve
system performance when UDC's are used, do whatever you can to
reduce the number of unc files. This will reduce the number of
DST's used, as well as reduce the number of FOPEN's.

Here is a question you have not asked yet: is there a maximum
number of unc's that may be enabled for a user? The answer is yes.
Every unc enabled for a job or session must have an entry placed in
the unc directory in an extra data segment. When that extra data
segment becomes full, that is the maximum number of unc's.

If you keep these potential problems and limitations in mind as you
start your adventure into the wonderful world of unc's, you should
do well in avoiding most of the problems and pitfalls that may
arise along the way.

2.5 Are we done with UDC's yetl?1

Yes! At least for the time being.
completely different.

3.0 What are Job Control Words (Jell's)?

And now for something

JCW is one of the many other acronyms used in the HP 3000 world.
This one comes from the phrase Job Control Word. A JCW is MPE's
way of permitting programs and commands to communicate with each
other within a given job or session. JCW's are unsigned integer
variables used at the operating system level with values ranging
from zero through 65,535. Each JCW has a name and can be set
and/or interrogated either by MPE commands and/or programs.

3.1 How can JCV's help me?
-or-
Vhy would I want a program to talk to my commands?

A Beginner's Guide to UDC's and JCW's: 0039 - 40

Good questions I A properly used JCW will permit you to create
"smarter" job streams. They can help to automate some of the
decision making process in procedures. They can even help you
catch errors before they become a problem I All of this is to say:
JCW's can help make the system more "user friendly".

By testing JCW's against specific values, the user can program
conditional statements that take action(s) based on the results of
the test. JCW's can be set to predetermined values to indicate
completion of steps within a procedure. JCW's can be checked to
determine if certain events (usually errors) have occurred within
MPE.

3.2 O.K. I think I see how they could help me.
So, how do I create and use a Jal?

First, some background information. Three classes of JCW's exist:
user-defined JCW's; system-defined JCW's; and system-reserved
JCW's. In some ways, they are exactly the same -- in other ways,
they are completely different.

User-defined JCW's are named and assigned values solely by the
user. MPE never changes the value of, or interrogates a user
defined JCW. The user creates and assigns a value to this class of
JCW's with the SETJCW command or the PUTJCW intrinsic. The Jcw
name must begin with an alphabetic character and may consist of a
maximum of 255 alphabetic or numeric characters. You may not begin
a JCW name with the mnemonic names OK, WARN, FATAL, or SYSTEM
except under very specific conditions. (If you want to know what
they are, see the HP "commands" manual.) The value assigned to a
user-defined JCW must be in the range of zero to 65,535 inclusive.
User-defined JCW's may be interrogated by the user with the SHOWJCW
command and the FINDJCW intrinsic. These new commands and
intrinsics will be discussed later, so please be patient.

System defined JCW's are named by the system and assigned values by
the system and/or by the user. Both the system and the user may
interrogate system-defined JCW's. Only two system-defined Jcw's
exist: JCW and CIERROR. Both are created and set to zero at the
beginning of every job or session. They will remain zero unless
the user changes their value or an error occurs. The JCW named JCW
has two special values:

%140000 (System 0) Program aborted per user request.
a value greater than %140000 Program terminated in an error state.

The CIERROR JCW keeps track of the command interpreter (CI) errors.
If a CI error occurs, CIERROR is set to reflect the most recent
error number. Valid commands do not reset CIERROR to zero. Thus,
it always contains the number of the last error that occurred,
unless the user resets its value. Generally, it is best not to
alter the values of the system-defined JCW's. If you need to
control a JCW, it is best to use a user-defined JCW.

A Beginner's Guide to UDC's and JCW's: 0039 - 41

System-reserved Jew's are named and assigned values solely by the
system. Users may not change the value of a system-reserved JCW.
They may, however, interrogate it. There are six system-reserved
JCW's: HPMINUTE, HPHOUR, HPDAY, HPDATE, HPMONTH, and HPYEAR. The
following briefly explains what each is:

HPMINUTE Minute of the hour: values are 0 through 59.
HPHOUR Hour of the day: values are 0 through 23.
HPDAY Day of the week: values are 1 through 7; Sunday - 1.
HPDATE Day of the month: values are 1 through 31.
HPMONTH Month of the year: values are 1 through 12; January ... 1.
HPYEAR Year of the century: values are 0 through 99.

3.21 JCW usage in jobs and/or sessions.

O.K. So now you know what JCW's are. You even know about the
three classes of JCW's and what who can do to what. But, how do
you look at or set their values? For jobs or sessions, the answer
is: with the SHOWJCW and SETJCW commands.

The SHOWJCW command displays the current value of one or more
JCW's. Its syntax is:

SHOWJCW [jcwname]

where "jcwname" is a valid JCW name (any class). If a name is
provided, then only the value for that JCW will be displayed. If a
name is not provided, then all system-defined and user-defined
JCW's and their values are displayed -- system-reserved JCW's are
not displayed. This command may be executed from a session, job,
in BREAK, or from a program. It is BREAKable (it aborts execution
of the command).

If no user-defined JCW's have been created and the user types:

SHOWJCW

the system will respond with

JCW==O
CIERROR-O

unless some error has occurred prior to this command.

If you wish to see the current value of a specific JCW, you might
type:

SHOWJCW HPDAY

and the system would respond with:

HPDAY....3 SYSTEM RESERVED JCW

A Beginner's Guide to UDC's and JCW's: 0039 - 42

Or, if you typed:

SHOWJCY UPDATEERRORS

and UPDATEERRORS was a valid user-defined JCY name, the system
would respond with:

UPDATEERRORS-2

Big deal, so you can look at the value of a JCY. So what?!? O.K.,
let me tell you how you can change or set the value of a JCY
that is a little more productive. We need the SETJCY command to do
this:

[+value]
SETJCY j cwname-va1ue [-value]

where "jcwname" is the name of a new or existing user- or system
defined Jew and "value" represents one of the following:

1. An octal number between zero and %177777, inclusive.
2. A decimal number between zero and 65,535, inclusive.
3. An MPE-defined JCW value mnemonic (OK, WARN, FATAL, or

SYSTEM)
4. The name of an existing JCW.

All values must be in the range of 0 to 65,535, inclusive. That
is, if the "+" or "-" option is used, the result of the arithmetic
must be in the range as well. (The equal sign following the
"jcwname" may actually be one or more punctuation characters or
spaces, except "%" and "-" If you prefer some other notation.
feel free ...) This command may be executed from a session, job.
in BREAK, or from a program. It is not BREAKable.

A word or two about the four JCW value mnemonics. They are:

OK value is zero
WARN value is 16,384
FATAL value is 32.768
SYSTEM value is 49,152

These are strictly mnemonics for specific values -- they cannot be
used as JCW names. You may use a combination of a mnemonic and a
number to indicate a value between two mnemonics. If you specify:

FATAL32

for example, an implied addition takes place (32.768 + 32) and the
value would be 32,800. The "+" and "-" option may also be used
with mnemonics. For example:

FATAL - 768

A Beginner's Guide to UDC's and JCW's: 0039 - 43

would result in a value of 32,000. If the SHOWJCV command is used
to display current JCW values, and a value is greater than one of
the mnemonics, then the value will be displayed as the mnemonic
plus the amount over. For example, a value of 16,386 will be
displayed as:

WARN2

An exception to this is that any value less than 16,384 will be
shown as the actual number.

When the SETJCV command is executed, it causes the MPE JCV table to
be scanned for the name of the specified JCV. If the name is
found, the JCV is set to the value provided. If the name is not
found, it is added to the JCV table and then set to the value
provided. Once a JCV is created, it exists for the duration of
that session or job. There is no way to delete a JCV, short of
logging off.

You still are not feeling very productive with JCV's yet, right!?!
O.K. Here is the good stuff. JCV's are most often used to control
the flow of batch jobs (they can also be used in unc's and/or in
sessions), taking various actions based on the results of previous
steps. To do this, the IF/THEN, ELSE, and ENDIF commands are used.
For purposes of this paper, I am going to assume you either know
how these MPE commands work or can easily acquire the knowledge as
we look at examples. Some examples will come later that should
clear up some of your questions.

3.22 Jev usage in programs.

Now, for you programmer-type people, we will take a look at how to
interrogate and set JCV's from within a program. My examples will
be based on COBOLII usage; however, I will try to provide
information in a general way.

The programmatic equivalent to the SHOWJCW command is the FINDJCV
intrinsic. Its syntax (in COBOLII format) is:

CALL INTRINSIC "FINDJCV" USING jcwname,jcwvalue,status

where "jcwname" is an alphanumeric variable (byte array) containing
the name of the JCV to be found, "jcwvalue" is an unsigned one-word
integer variable (logical) to which the JCW value is returned and
"status" is a signed one-word integer variable (integer) to which a
value denoting the execution status of the intrinsic is returned.
The "jcwname" parameter may contain up to 255 alphanumeric
characters, starting with a letter and ending with a
nonalphanumeric character, such as a blank. If the requested JCW
is found, its value is returned to the program in the "jcwvalue"
parameter; if not found, no change is made to this parameter. The
"status" parameter will be returned with one of four possible
values:

A Beginner's Guide to unc's and JCW's: 0039 - 44

o Successful execution; the JCV was found.
1 Error: "jcwname" is longer than 255 characters.
2 Error: The value of "jcwname" does not start with a letter.
3 Error: The JCV was not found in the JCV table.

The FINDJCV intrinsic may be used to return the value of any of the
three classes of JCW's.

The SETJCW command's programmatic equivalent
intrinsic. Its syntax (in COBOLII format) is:

is the PUTJCW

CALL INTRINSIC ttpuTJCV" USING jcwname,jcwvalue,status

where "jcwname" is an alphanumeric variable (byte array) containing
the name of the JCW to be created or changed, "jcwvalue" is an
unsigned one-word integer variable (logical) containing the value
for the JCW, and "status" is a signed one-word integer variable
(integer) to which a value denoting the execution status of the
intrinsic is returned. The "jcwname" parameter may contain up to
255 alphanumeric characters, starting with a letter and ending with
a nonalphanumeric character, such as a blank. If "@" is the value
used, all JCW's will be set to the value provided. If the
specified JCW already exists in the JCW table, its value is changed
to the value provided in the "jcwva1ue" parameter; if not there, an
entry is created and then it is assigned the specified value. The
"status" parameter will be returned with one of six possible
values:

o Successful execution; value entered in the JCV table.
1 Error: "jcwname" is longer than 255 characters.
2 Error: The value of "jcwname" does not start with a letter.
3 Error: JCW table overflow; no room to create this new JCW.
4 Error: Attempted to assign a value to a JCW value mnemonic.
5 Error: Attempted to assign a value to a system-reserved JCW.

The PUTJCV intrinsic may only be used to assign a value to a user
defined or system-defined JCV. As mentioned earlier, if the JCV
named JCW is set to exactly %140000, then when the program stops
running, the system will display:

PROGRAM ABORTED PER USER REQUEST (CIERR 989)

If it is set to any value greater than %140000, then the message
displayed will be:

PROGRAM TERMINATED IN AN ERROR STATE (CIERR 976)

If the program is running in a batch job, the job will terminate
unless a CONTINUE command precedes the RUN command.

Another possibility with JCW's is to use them to permit separate
processes within the same job or session to communicate with each

A Beginner's Guide to UDC's and JCW's: 0039 - 45

other. If a process were to set a JCY to a given value when a
certain event occurred, then any other related process could check
that JCW to find out when it occurred or what has occurred.
Remember, however, that only numeric information may be assigned to
JCW's.

Just so you can't say that I didn't tell you about them, two other
intrinsics exist: GETJCW and SETJCY. They only permit you to
interrogate and set, respectively, the value of the system-defined
JCW named Jew. Since they have limited usability and you can use
FINDJCW and PUTJCY to accomplish the same thing, I do not suggest
learning about them.

3.3 How about some examples?

Once again, you have a good idea! First, we will look at some
examples in batch jobs, then we will take a look at a couple
example programs that use JCY's.

3.31 Batch Job Examples.

Since most of us are likely programmers, I will start with an
example job stream I use when working with a program. Virtually
all programs that are created at N.G. Gilbert Corporation are
written in the PROTOS language. For those of you not familiar with
PROTOS, it is a program generator whose output is a complete,
structured, COBOLII program. Once the program has been written in
PROTOR (and keyed into an editor file), the next step is to have
PROTOS create the COBOLII source program. When PROTOS completes
that task, then you need to compile the COBOLII source program.
The final step is to prepare the object program to produce the
program file.

Since I do not want to tie up a terminal (and the system) while all
of this transpires, I use an "intelligent" job stream to handle the
various tasks.

!Job prog,PRGRMR.NGG
!Comment This job stream performs a ProWrite, COBOUI compile,
!Comment PREPare, and SAVE of a program. If any errors
!Comment are encmmtered along the way, a message is sent
!Comment to PRGRMR .NGG, and the job stream stops running.
!SetJCW CIError ~ OK
!Continue
!ProWrite progP,prog,$STDLIST,2000
!If CIERROR < > OK Then
! Tell PRGRMR..NGG; ProWrite of prog aborted<ctrl>G.
!Else
! If PROTOSError < > OK 'lben
! Tell PRGRMR.NGG; Errors in ProWrite of prog<ctr];>G.

A Beginner's Guide to UDC's and JCW's: 0039 - 46

Else
Tell PRGRMR.NGG; ProWrite of prog done. Compile started.
File COPYUPFPROCOPY
Continue
COBOUI prog, progU
If CIError < > OK 'Then

Tell PRGRMR.NGG;Complie of prog aborted <ctrl>G.
Else

Tell PRGRMR..NGG; Compile of prog done. Prepare started.
Purge progX.
Continue
Prep progU,progX;MaxData-20000
If CIError < > OK Then

Tell PRGRMR. NGG; Prepare of prog aborted <ctrl.:>G.
Else

Save progX.
Tell PRGRMR.NGG;Program prog is done <ctrl>G.

EndIf
Endlf

EndIf
!Endlf
!EQJ

This example demonstrates how you can structure a job stream to
check for errors and take different actions based on the occurrence
or non-occurrence of errors. Some points of interest:

1. JCW CIERROR is set to OK (i.e., zero) at the start of the
job to guarantee that it starts at zero.

2. Even if one of the programs (PROWRITE, COBOLII, or PREP
(SEGMENTER) aborts, the job stream will continue because
of the CONTINUE commands. This permits us to check
CIERROR after each one to see if it aborted. If the
CONTINUE commands were not used, the job stream would
ab~rt before we could check the JCW's.

3. PROTOSERROR is a JCW that the PROWRITE program creates
and sets equal to the number of errors found in your
PROTOS program. By checking it, we can determine whether
it is worthwhile to continue on with the compile and
prepare steps.

4. Notice that you may nest the IF statements to create
whatever logic that might be required.

Here is another variation of this same job stream. This version
just tells the programmer that there is an error, but does not
report in detail like the previous version:

A Beginner's Guide to unc's and JCW's: 0039 - 47

!Job prog,PRGRMR.NGG
ISetJCW CIError-oK
tSetJCW False-l
!SetJCW NoProblems-oK
IContinue
IProWrite progP,prog,$STDLIST,2000
!If CIError < > OK Then
I SetJCW NoProblems-False
!Else
! If PROTOSError < > OK Then
I SetJCW NoProblems-False
! Else
! File COPYLIB=PROCOPY
! Continue
! COBOLII prog, progU

If CIError < > OK Then
SetJCW NoProblems-False

Else
Purge progX
Continue
Prep progU,progX;MaxData-20000
If CIError < > OK Then

SetJCW NoProblems=False
Else

Save progX
EndIf

EndIf
I EndIf
IEndIf
IIf NoProblems-False
I Tell PRGRMR.NGG;Errors in program prog <ctrl>G.
!Else
I Tell PRGRMR.NGG;Program prog is done.
!EndIF
IEOJ

In this version, JCW NOPROBLEMS is set to indicate when an error
has occurred and then is checked at the end of the job stream to
determine what to tell the programmer. (Note the creation of JCW
FALSE.)

Here is an example of making use of the system-reserved JCW's.
This is a modified version of the job stream we use to do our daily
backups.

!Job BackUp,Operator,Sys
ISetJCW Monday-2
IShowAllocate
IRun FREE5.PUB.SYS
IShowCache
!Report
!If HPDay=Monday Then
! FullBackUp

A Beginner's Guide to UDC's and JCW's: 0039 - 48

IElse
I PartBackUp
I EndIf
!Stream JHPTREND.HP35l36A.TELESUP
IIf HPDay-Monday or HPDay-Monday+3 Then
! Stream PREDICTJ.HP05093A.TELESUP
IEndIf
IEOJ

Points of interest in the backup job stream:

1. Notice the creation of the JCV MONDAY. This is not
necessary, but it makes the IF command read a little
nicer.

2. If the JCV HPDAY has a value of 2, then it is Monday and
a full backup should be performed. Otherwise, a partial
is done.

3. When the backup has completed, the HP trend job stream is
restarted, and if it is Monday or Thursday (Monday + 3),
then the HP predict job stream is also started.

Here is an example of using the IF command and JCV's to do
something they were not designed for, but it works, so why not?!!
The following could be included at any point in a job stream where
Jell would not be equal to FATAL (which would be virtually
anywhere) :

I If JCW-Fatal Then
From this point on (up to an ELSE or ENDIF command), you
may type whatever you wish. The lines do not even need to
start with an exclamation pointl The reason this works is
that when the condition in an IF command is false (which
it is in this instance), all command lines are ignored
until an ELSE or ENDIF command is read. Thus, this
provides an easy way to include comments without using
the COMMENT command.

!EndIf

Two other sources of example job streams are the PREDICTJ and
JREDUCE job streams from HP. They make extensive use of Jell's to
control the flow of the job stream logic.

3.32 Programmatic Examples.

The following is a COBOLII subroutine (actually it was written in
PROTOS) I created to call in any situation where I want to end a
program and have:

PROGRAM ABORTED PER USER REQUEST (CIERR 989)

A Beginner's Guide to UDC's and Jell's: 0039 - 49

displayed afterwards (granted, this is not very oftenl). The sole _
purpose of this program is to set Jew to a value of %140000.

$CONTROL DYNAMIC, BOUNDS
IDENTIFICATION DIVISION.
PROGRAM-ID. SETABORTJCW.
AUTHOR. DAVID L LARGENT.
DATE-WRITTEN. TOE, OCT 20, 1987,
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

Sets JCW to "Program Abort".

01 JCW-NAME
VALUE "JCW "

01 JCW-STATUS
01 Jew-VALUE

VALUE %140000 .

PROCEDURE DIVISION.

MAIN-LINE-SECTION SECTION.

MAIN-LINE.

3:41 P.M.

PIC X(4)

PIC S9(4) COMP .
PIC 9(4) COMP

MOVE ZERO TO Jew-STATUS.
CALL INTRINSIC "PUTJCW" USING JCW-NAME JCW-VALUE

JCW-STATUS.
IF JCW-STATUS NOT - ZERO

DISPlAY "Program SETABORTJCW: JCW not set. II

GOBACK.

This may not be a very useful program to you, as it is printed;
however, it does show the basics of what needs to be done to create
and/or set a particular JCW to a given value. If your JCW name is
longer than three characters, make sure you increase the length of
field JCW-NAME. Also, make sure you have at least one blank or
some other non-alphanumeric character following your JCW name. The
value for JCW-VALUE can be specified as a decimal number if you
prefer.

Here is a trivial example of the FINDJCW intrinsic, but again it
shows the basics of what needs to be done to retrieve the value of
an existing JCW.

$CONTROL BOUNDS
IDENTIFICATION DIVISION.
PROGRAM-ID. DISPlAYJCW.
AUTHOR. DAVID L LARGENT.

A Beginner's Guide to UDC's and Jew's: 0039 - 50

DATE-WRITTEN. WED, APR 27, 1988, 4:24 A.M.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Displays the Value of JCW *

01 JCW-NAME
VALUE "JCW ..

01 JCW-STATUS
01 JCW-VALUE
PROCEDURE DIVISION.

MAIN-LINE-SECTION SECTION.

MAIN-LINE.

MOVE ZEROS

PIC X(4)

PIC S9(4) COMPo
PIC 9(4) COMPo

TO JCW-STATUS
JCW-VALUE.

CALL INTRINSIC "FINDJCW" USING JCW-NAME JCW-VALUE
JCW-STATUS.

IF JCW-STATUS NOT - ZERO
DISPlAY "Program DISPlAYJCW: JCW not found."

ELSE
DISPlAY "JCW - " JCW-VALUE

STOP RUN.

Same comments as last time: make sure you set up JCW-NAME large
enough to hold your JCW name and make sure you end it with at least
one blank or other non-alphanumeric character.

3.4 What are some problems I may have while using JClJ's?

Throughout the paper, I
limitations. Listed here
worth repeating.

have provided a number of warnings
(in somewhat random order) are a

and
few

A JCW name must start with a letter and may consist of a maximum of
255 alphabetic or numeric characters.

The value assigned (whether a number or a calculated value) must be
in the range of zero to 65,535, inclusive.

The system-reserved JCW's may not be assigned a value by a program
or the user.

If you want to check for program errors (e.g., program aborts),
make sure to include a CONTINUE command before the RUN command.

A Beginner's Guide to UDC's and JCW's: 0039 - 51

Remember that the only thing that changes the values of CIERROR and
JCW (except the user) is another error. That is, a valid command
does not set them to zero!

Although JCW's can have any value from zero through 65,535, only
values from zero through 16,383 will be displayed as numbers.
Values larger than 16,383 will be displayed as a JCW value mnemonic
and an offset beyond the mnemonic value.

4.0 How can I use unc's and JCV's together?

UDC's and JCW's can be used together very effectively. JCW's can
control the flow of logic within a unC. A UDC (by way of its
parameters) can gather information and use that information to set
JCW's such that a program can then interrogate them and take
appropriate actions. So, let us look at some examples of combining
these two powerful capabilities.

To start off with, we will look at some logon unc's. First, a
simple addition to the system level logon unc to make use of
system-reserved JCW HPDAY easier:

SysLogOn
Option LogOn,NoBreak
SetJCW Sunday-1
SetJCW Monday-2
SetJCW Tuesday-3
SetJCW Wednesday-4
SetJCW Thursday-5
SetJCW Friday-6
SetJCW Saturday-7
**

By including this, these seven JCW's would always be available for
use in IF commands. For example:

If HPDay-Monday Then
Fu11BackUp

Else
PartBackUp

EndIf

is easier to read and understood than "If HPDay=-2 ... ".

Next, a way to have one thing automatically happen if a session
logs on and something else if a job logs on:

UserLogOn
Option Logon,NoBreak
SetJCW CIError-O
Continue
Resume

A Beginner's Guide to UDC's and JCW's: 0039 - 52

If CIError - 978 Then
Run (batch program)

Else
Run (online program)
Bye

EndIf
**

The RESUME command is not allowed in job mode (thus, CI error 978),
so we can use the result of its execution to determine if a session
or a job is logging on. Also, note that a job could be set up to
do other things after the "logon" program runs because there is not
an automatic BYE like there is for the session.

Here is a way to control when people logon and play games:

GamesLogOn
Option LogOn,NoBreak
If HPDay - Sunday or HPDay - Saturday or &

HPHour < 8 or HPHour > 17 or HPHour 12 Then
Display "Welcome to the Game Room"

Else
Display "Sorry, the Game Room is closed."
Display "Hours: Saturday and Sunday: all day"
Display " Monday-Friday: Before SAM, After 5PM"
Display " and Noon to IPM"
Bye

EndIf
**

If it is Saturday or Sunday, or before SAM, after 5PM, or sometime
during the noon hour, this ODC will let the user stay logged on.
Any other time and the user will automatically be logged off. Note
that if the user gets logged on during an "open" time, they may
continue playing "forever" -- there is nothing to force them off
when the game room "closes".

The following ODC is executed every morning by our operator or
anytime the machine is restarted. It provides a quick, easy way of
getting everything set to a known value:

SysUp
Option List
Streams 10
JobFence 0
JobPri CS,DS
JobSecurity Low
Continue
DiscRPS 3,Disab1e
Continue
StartCache 1
Continue

A Beginner's Guide to ODC's and JCW's: 0039 - 53

StartCache 2
SetJCW CIError-O
Continue
StartCache 3
If CIError-O Then

Stream JHPTREND.HP35136A.TELESUP
Else

Display "<esc>&dJ The HPtrend job stream should be"
Display "<esc>&dJ running. If it is not,
Display "<esc>&dJ STREAM JHPTREND.HP35136A.TELESUP"

EndIf
ShowJob JOB-@J
OutFence 1
HeadOff 6
Continue
StartSpoo1 6
Limit 3,16
SetOpKeys

**
A few points of interest:

1. Since we leave disc caching turned on virtually all of
the time, this UDC assumes that if the "StartCache 3"
command succeeds, the system must have just been started
and, therefore, the trend job stream needs to be
initiated.

2. The last thing that is done is to load the function keys
on the system console with the SETOPKEYS ODC that was
discussed earlier.

Here are a couple of UDC's to make things more convenient:

FindRun Program,Parm-O
SetJCW CIError-O
Continue
Run IProgram.Groupl;Parm-IParm
If CIError-622 Then

SetJCW CIError-O
Continue
Run IProgram.Group2;Parm-IParm
If CIError-622 Then

SetJCW CIError-O
Continue
Run IProgram.Group~;Parm-IParm

If CIError-622 Then
Display "This program was not found in"
Display "groupl, group2 or group 3."

EndIf
EndIf

EndIf

**
A Beginner's Guide to UDC's and JCW's: 0039 - 54

List FromFi1e-$StdIn,ToFile-$StdList
SetJCW CIError-O
Continue
File PRINT;Dev-IToFi1e
If CIError-30l or CIError-344 Then

File PRINT-!ToFi1e
EndIf
FCopy From-IFromFi1e;To-*Print
**

The FINDRUN UDC will try RUNning your program from three different
groups before it "gives up". This could be changed to be different
accounts as well, and could have more nesting added to try in more
locations if you wish.

The LIST UDC provides a lot of flexibility. The "to" file can be
specified by providing a device class name, a logical device
number, or a file name! To list a file on your terminal, you would
type:

LIST file

To print a file on the line printer, you could type either one of
these:

LIST file,LP
LIST file,6

To list a file on a terminal with a logical device number of 27
(the terminal would need to be turned on, but logged off), you
would type:

LIST file,27

To copy h file to an existing disc file, you would type:

LIST file,file2

It is not possible to create a new disc file. Another option
available with this UDC is to use the default "FromFi1e ll value of
$STDIN, which will accept input from your terminal keyboard, thus
permitting you to "create" a file as you go.

Now let us take a look at a UDC in which information is passed to a
program by way of JCW's. This example is from the unc's that
PROTOS Software Company provides with their PROTOS system:

PROWRITE F,C-"C",L-$NULL,S-1023,R-ROOTDB,Q-O
SETJCW PROBUILDWRITE-2
SETJCW QEDITOUT-IQ
FILE SEMDOPE-SEMDOPOl.PROTOS.PROTOS;SHR
FILE SEMPASS...SEMPASOl.PROTOS.PROTOS;SHR
FILE SSERR~SSERR.PROTOS.PROTOS;SHR

A Beginner's Guide to UDC's and JCW's: 0039 - 55

FILE SEMTEMP-SEMTMPOl.PROTOS.PROTOS;SHR
FILE ATNINl-!F
FILE ATNOUT2 - !L
PURGE IC
BUILD IC;REC--80,l6,F,ASCII;CODE-EDTCT;DISC-IS
FILE COBOLOUT-!C
FILE ROOTDB=-IR
IF QEDITOUT-l THEN

PURGE QECOBOUT, TEMP
FILE QECOBOUT;REC-256;DISC-IS;TEMP

ENDIF
RUN PROTOS.PROTOS.PROTOS;LIB-G
IF QEDITOUT ~ 1 THEN

PURGE !C
RENAME QECOBOUT,IC,TEMP
SAVE !C

ENDIF
RESET SEMDOPE
RESET SEMPASS
RESET SSERR
RESET SEMTEMP
RESET ATNINl
RESET ATNOUT2
RESET COBOLOUT
RESET ROOTDB
**

In this example, there are two JCW's used to pass information to
the PROTOS program: PROBUILDWRITE and QEDITOUT. The QEDI TOUT JCW
gets its value from the Q parameter of the UDC. Based on the
QEDITOUT JCW, different parts of the UDC are executed.

JCW's may only be assigned numeric values. So how do you make use
of character string information from a UDC parameter? Here is one
way:

CopyW2ToTape CharSet-X
SetJCW A-{)
SetJCW E-O
SetJCW !CharSet:-l
If A-=O and E=O '!ben

Display nAn 'A' or an 'E' must follow the copy command.<ctr1>Gn
Else

File W2~E;Dev=tAPE;Rec--276,25,F,ASCII

If A-l Then
.--FCopy FrOllPPR997TAP; T0-*W2TAPE

Else
FCopy From-PR997TAP;T0-*W2TAPE; EBCDICOur

EndIf
ListF PR997~,l

Display n<esc>d] Check the munber of records copied.<ctrl>Gn
EndIf

**
A Beginner's Guide to UDC's and JCW's: 0039 - 56

The purpose of this UDC is to copy a disc file to magnetic tape.
The catch is that we need the option of copying it in EBCDIC
format; thus, the CHARSET parameter. There are two "correct"
responses: A and E. At the beginning of the UDC, two JCW's (A and
E) are created and set to zero, then the user's choice is set to
one. By having a default value that is not correct, if the user
does not provide a value, the UDC will provide the message to the
user and "remind" them of the correct values.

5.0 Closing Thoughts --
Is it worth the effort of learning something new?

We have looked at User Defined Commands and Job Control Words.
Numerous examples have been explored to see how they work and how
they can be used. They are a very powerful feature of the HP 3000.
There is overhead associated with them (especially UDC's) , yet, my
feeling is that the convenience and "user-friendliness" gained
outweighs that overhead. They must be controlled however -- people
can get carried away when creating UDC's.

So, is it worth the effort? My answer is a (qualified) resounding
YES! The qualification is that UDC's and JCW's must be carefully
planned and monitored to reap the greatest benefit, but, oh, what a
benefit it is: increased operator, programmer, and user
productivity and a computer system that is easier to use overall.

HP is a trademark of Hewlett Packard Company.
PROTOS is a trademark of PROTOS Software Company.

Acknowledgements

A special thanks go to the following people who
creating this paper in some (tremendous) way
efforts (and tolerance!) are greatly appreciated:

Dan Hinds
Jonathan Largent
Lois Largent
Karen Morgan
Dawn Thomas
Martha Walsh

assisted in
all of their

A Beginner's Guide to UDC's and JCW's: 0039 - 57

Fisher, Sharon

Griffin, Brad

Hewlett Packard Company

Hewlett Packard Company

Hewlett Packard Company

Hewlett Packard Company

Hewlett Packard Company
Response Center
(specifically B.A.)

Kabay, M.E.

Largent, David L.

Lund, Robert A.

Parker, Michael J. and
Wilson, Lynn

PROTOS Software Company

Shoemaker, Victoria

Volokh, Eugene

Volokh, Eugene

Bibliography

"Setting up UCDs" , Interact, July, 1984,
page 48ff.

"Another Way to SetJCWs as Part of a Log-on
UDC" , SuperGroup Association Magazine,
June, 1986, page 12.

Hewlett Packard Response Center Questions
& Answers, August 1, 1986, page 1.

MPE V Commands Reference Manual, First
Edition, Update 1, 1986, Chapters 2 and 3.

MPE V Intrinsics Reference Manual, Second
Edition, Update 1, 1986, Chapters 2 and 5.

System Operation and Resource Management
Reference Manual, Second Edition, Update 1,
1986, Chapter 6.

Calls to the Atlanta HP Response Center
during April, 1988.

"Making the Most of Your WELCOME Message",
The Chronicle, March, 1988, page 54.

"Function Key Labelling", Interact,
February, 1988, page 15.

"UDCs: A Primer", Interact, April, 1987,
page 71ff.

"Labelling F-keys" , Interact, November,
1987, page 22££.

PROTOS Documentation, version 861231.

"UDCs: Marvelous and Misunderstood", The
Chronicle, March, 1988, page 34.

"Burn Before Reading - HP3000 Security and
You", Thoughts and Discourses on HP3000
Software, Third Edition, 1987, page 19ff.

"Conditional Execution -:IF, :ELSE, :ENDIF,
ET. AL.", SuperGroup Association Magazine,
February, 1986, page 28ff.

A Beginner's Guide to UDC's and JCW's: 0039 - 58

	A Beginner's Guide to UDC's and JCW's: How to Use Them to Your Benefit

