
MPE/XL Variables and Command Files

Brett Clemons
Softwarewizardry, Inc.

Tampa, FL. 33615

Abstract. With the introduction of Hewlett-Packard's
Precision Architecture came a new command interpreter - MPE/XL.
One of the most powerful new enhancements to the basic MPE
command interpreter is a new type of file - the command file.
Command files can be used in place of. or in conjunction
with, UDC's to produce a versatile tool at the disposal of
the veteran or novice programmer alike. The most exciting
aspect is the introduction of variables, or 'vars' to allow
you the ability to customize your command interpreter to perform
very sophisticated tasks with a single keystroke. Examples
include compiles of wildcard filesets, file purges or
compressions, as well as analysis of files in a wildcard
fileset. Variables, as well as a few new MPE/XL commands,
allow the programmer to place control of the command interpreter
where it belongs - with the user.

1. Introduction.

The evolution of the MPE command interpreter has been slow and
gradual. Existing commands were enhanced, but no major change
occurred in the basic 'core ' of the command interpreter until
recently. With the advent of MPE/XL Precision Architecture
command interpreter, something new has evolved from the old
command interpreter. For the purposes of this paper, MPE/XL
shall be termed a command interpreter, which more technically
expresses what it is.

Hewlett-Packard's new approach to command interpreters has
breathed new life into the old MPE command interpreter. bringing
with it something which allows for the command interpreter
itself to be used as an extension the programming
languages, or as a programming language itself. 11any of the
elements found in fundamental programming languages are
present in the new MPE/XL command interpreter. For example.
variables allow you to store temporary information in any of
the formats that may be found in a programming language. In
addition, testing of variables in Boolean expressions allow
for a much expanded analysis of conditions that may occur
external to the programs. Also, several commands have been
added to allow recursive performance of a block of commands.
Previously, a set of commands that you wanted to execute
could only be stored in a file, and :5ETCATALOGed. This file
contained User Defined Commands oc UDCs. Command files,
which are meant to expand upon UDC's, and not replace them,
allow the execution of a block of commands - and command files

MPE/XL Variables and Command Files 0036 -1-

are easy to set up and maintain.

This paper shall also investigate more advanced topics using
command files and variables, as well as some new MPE/XL
commands that add flavor to command files.

II. Variables - the new JCWs

Under the MPE command interpreter, the only way of storing
temporary information external to a program was in a file, or
with Job Control Words (JCWs). JCWs are not eliminated with
MPE/XL, but are enhanced with a new form of storage called
variables.

Variables names identify the variable referenced in the
commands. Variable names start with an alphabetic character
or underscore () character. and contain from one to 255
characters. Of course, variable names must be unique.

There are three several different types of variables.
Variable types are defined with the use of the new MPE/XL
command SETVAR. SETVAR allows the definition of a variable
name explicitly with the SETVAR command; the variable type is
implicit with the initial value assigned to the variable.
SETVAR is also used to redefine the value of an existing
variable. The basic type of variables are Boolean. Integer
and Strings. The type of a variable is set at time of
definition, depending upon the information to be stored in
the variable. For example, to define a boolean variable, use
the following command construct :

TRUE
:SETVAR varname,{

FALSE

The second type of variable, integer variables. allow you to
define variables containing numeric values, and are defined
at definition time with a

:SETVAR varname,integer-value.

The third type of variable, string variables, are defined
with a

:SETVAR varname, 'string-value '.

String variables may contain any valid string, from none to
256 valid alphanumeric characters.

Variables are removed with the DELETEVAR command. When a
variable is defined it retains its characteristics initially
defined with the SETVAR command until theDELETEVAR command

MPE/XL Variables and Command Files 0036 -2-

is used to remove the variable from the user's job or
session. Its form is

:DELETEVAR varset

and as shown in the syntax, may contain wildcards (@. ~,etc)

to specify a set of variables to be deleted.

The final variable command is the SHOWVAR command. SHOWVAR
lists variables to $STDLIST, and uses wildcards in the same
way as the LISTF command does. fhis command has the format

:SHOWVAR [varset]

If the varset parameter is omitted, only user-defined
variables are displayed; if @ is used for varset, then all
variables will be shown. Other wildcards may be used to list
any subset of variables. For example,

SAVE @
HP@ -
SAVE_VAR_~@

are all valid subsets that may be used to represent a one or
more variables that are defined.

Variables can be used in a variety of ways, most usefully in
command files, but they are not excluded from use in UDCs or
jobs.

Ill. Using Variables

When MPE/XL parses a command line, the Expression Evaluator
(a part of MPE/XL J first looks for variables in the command
line. The process of substituting a variable's value in a
command line is called dereferencing; dereferencing takes
precedence over all other operations in an MPE/XL command
line, including the recognition of the command name itself!
There are two methods of dereferencing variables. The first,
implicit dereferencing, is where the variable name is placed
in the command line and MPE/XL substitutes the value of the
variable before parsing the command line. For example, when
the following commands are entered

:SETVAR INDEX1 17
:IF INDEXI (a 20 THEN

the expression evaluator responds with the familiar

••• EXPRESSION TRUE

and will continue executing commands until a matching ENDIF
is encountered, because the value of INDEXl is 17, which is
less than 20.

MPE/XL Variables and Command Files 0036 -3-

In the second case of dereferencing, explicit dereferencing,
the variable name is preceded by one or more exclamation
points (!) which directs MPE/XL to substitute the value of
the variables represented at that place in the command line.
The most important thing about explicit dereferencing is that
MPE/XL substitutes a pair of exclamation points with a single
exclamation point, and a single exclamation point forces
MPE/XL to perform value substitution. For example

:SETVAR varl, 'stringvalue'
:SETVAR var2, 'I !varl'
:SHOWVAR var2
VAR2 D !VARl

:ECHO Ivar2
stringvalue

This example also shows how variables can be set to any valid
expression, including other variables. However, expression
types may not be mixed as in

:SETVAR VAR_VALUE 17 + 'foo'

The Expression Evaluator would flag this command as an
error.

functions allow the manipulation of text in command line.
Again, the part of MPE/XL responsible for evaluation of the
results of functions is the Expression Evaluator. There are
several functions, Just a few of which are

len - string length function
str - string extraction
ups - upshift string

These powerful functions allow complicated variables to be
built and examined in command files.

IV. Global Variables

Variables may be defined by the user, but MPE/XL maintains
its own set of variables. All global variables start with HP
(what else?), except CIERROR and JCW, which, under the old
command interpreters, were JCW names. Global variables may be
read only or read/write, and may not be deleted.

Jobs and sessions begin with the Global variables defined
with initial values. Global variables allow for lots of
things in the user environment to be tested or displayed:

HPJOBLIMIT - is the system's Job limit
HPMONTH - is the month according to MPE/XL
HPCIERRMSG - is the error message that corresponds
to another variable. CIERROR

11PE/XL Variables and Command Files 0036 -~-

HPMSGFENCE - allows MPE/XL error messages to
be suppressed.

One global variable of particular interest is HPPATH. This
variable defines the 'path' that MPE/XL will search for
command files (and program files, too). Initially, it has the
value !hpgroup,pub,pub.sys. This means that MPE/XL will first
look for command files or programs in your current group
(!hpgroup), the the public group of your logon account ~pub)

and last in pub.sys.

V. Defining command files

Ever since MPE III, users have had the ability to define
their own commands. The way this was accomplished in the past
was through the User Defined Commands (UDC'sJ, which are
familiar to most users. However, a new way of storing user
commands was introduced with MPE/XL. This is the command
file. Command files and UDCs are both very similar and very
different. One of the main differences is that multiple UDCs
are defined in a single MPE file and the SETCATALOG command
is used to invoke the UDCs at the appropriate level - system,
account or user. On the other hand, a command file represents
a single user command, and that command is invoked by virtue
of the name of the file itself. In other words, to execute
the commands in the file COMMFILE, merely say

:COMMFILE

Kind of simple, isn't it? Optional parameters may be added
after the command file name, but must follow the rules
outlined in the header portion of the command file. Command
file command lines may contain commands that are valid MPE/XL
commands, or user commands in UDCs or command files. Command
lines may even contain the name of program files. since with
MPE/XL, the :RUN command is implied if the command name IS a
valid program file. In MPE/XL, user commands may even invoke
themselves (unless disallowed with the OPTION NORECURSIONJ.

Command files are much more simple to create than UDCs.
Simply use you favorite brand of text editor, and olace
commands in an MPE file. To execute command files in a
different group or account, you must have the appropriate
access to that file, in the same fashion as UDC's.

VI. Command Filq Structure

The basic structure of command files is simple,and very much
like UDCs. The first line is the optional parameter line. Up
to 63 parameters may be specified. The syntax for this line
is

parm parml[-'defaultvalue'], ... parm63

MPE/XL Variables and Command Files 0036 -5-

The second line is the options line. These lines specify how
the command file will be accessed or the basic environment
the command file will operate in:

option optionl[,option2[, ...]]

Some available options are BREAK/NOBREAK, HELP/NOHELP, etc.
Remaining lines are command lines. All MPE/XL commands except
:00 and :REOO are valid and may be used in user commands.

Parameters for command files are specified in one of two
ways. New MPE/XL users will feel comfortable with the
POSITIONAL parameter sequence, in with the parameters in the
command are specified in the same sequence as in the PARM
line of the command file. The other way is by using the
KEYWORD construct. A user file (named COPYFILE) containing
the lines

parm filein='$stdin', fileoutm'$stdlist'
fcopy from-!filein;to-!fileout;new

may be invoked by any of these valid user commands:

:copyfile oldfile, b
:copyfile oldfile b
:copyfile fileout=b,filein-oldfile

VII. Programmatic Access to Command files

One of the really nice things about command files (and also
UDCs) is that with MPE/XL. all user commands may be invoKed
from programs. Those that cannot are those that have the
OPTION NOPROGRAM specified in the header portion of the
command file. Hewlett-PacKard had the foresight to provide
MPE/XL users with the new HPCICOl1MAND intrinsic, which allOWS
any valid user command to·be invoked from a program. This
powerful new intrinsic allows the distribution of programming
power to the command interpreter, and will be discussed in a
subsequent section. The consequences are that any command,
MPE/XL or user, can be executed from a program.

VIII. New MPE/XL commands to support user commands

Several new commands were introduced in MPE/XL chat allow
maximum utilization of command files. Although command files
can be written without the use of these commands, the power
of MPE/XL really comes through when these are used.

The first of the new commands is the WHILE and the ENDWHILE
commands, which have the the syntax

:WHILE boolean-expression [DO]
< commands executed as long as condition

is true)

MPE/XL Variables and Command Files 0036 -6-

:ENDWHILE

The WHILE and ENWHILE commands allow fo~ multiple ~epetition

of of a block of commands while a condition is t~ue. As long
as the condition is t~ue, the commands will continue to be
executed.

Anothe~ command of g~eat use in commands files is the new
COpy command. The COpy command is the much modified FCOPY
command. with a much mo~e simplistic syntax:

{ ASK)
:COPY [FROM-]f~omfile[;TO=tofile] Cit YES)]

{ NO)

COpy pe~fo~m a multi-reco~d. no-buffe~ed file copy of files
much the same way that FCOPY does. The~e a~e some
~est~ictions: f~omfile and tofile may not be system defined
files o~ spool files. The options dete~mine whethe~ the user
is asked to replace the tofile if it exists - ASK will p~ompt

the user; YES will ~eplace the file and a NO option will
leave the tofile intact if it exists.

The PRINT command is ve~y similar to the COPY command. This
command's syntax is

:PRINT [FILE~]file

[iOUT = outfile]
[;START = sta~trecordJ

[;END = endrecord]
[;PAGE = linesinapage]
[;{UNN]

{NUM)

Although p~ima~ily for printing files to $STDLIST, once you
realize that any file may be specified for the file pa~ameter

(unlike the COPY command) and about any file may speclfied
for the outfile. then the PRINT command is not unlike the
fCOPY command except fo~ real neat feature - it may called
while in BREAK mode! PRINT and COpy are commands. and unliKe
FCOPY which is a p~ogram, may be used in BREAK mode.

The INPUT command allows inte~active acceptance of variable
values. The fo~mat for the INPUT command is

: INPUT [NAME=Jvariable-name
[;PROMPT - promptstring]
[;WAIT - waitseconds]

This command allows the changing or the creation of
variables, and optionally will prompt the use~ with a prompt
string, and wait a given numbe~ of seconds fo~ the user to
respond. If the user does not respond in that time. command
file execution continues, but CIERROR will be set with a

MPE/XL Variables and Command Files 0036 -7-

value of 9003.

Ano~her really useful command, introduced previously, is the
ECHO command which has the format

:ECHO [message]

Echo does not perform implicit dereferencing, but instead
requires explicit dereferencing of variable names. One thing
to remember about the ECHO command is tha~ a carriage return
is always generated after the message is displayed. and ~f

message is null, only a carriage return is generated.

Other MPE/XL commands are the CALC command (used to generate
the result of an expression to $STDLIST and to HPRESULTJ, and
the RETURN command (returns to previous level of Command
file).

IX. Command File Examples

Our first example will be to use three existing variables to
create a fourth. The three pre-existing variables are global
variables and co~tain the year Clast two digits), the month
(digits, not name) and the day of the month, respectively. We
use these to create a new variable. HPYYMMDD:

SETVAR HPYYMMDD, IHPYEAR • 10000
SETVAR HPYYMMDD.IHPYYMMDD + (!HPMONTH • 100)
SETVAR HPYYMMDD, !HPYYMMDD + IHPDATE

The next example uses the PAGE option of the PRINT command to
print a file without pausing:

PARM FILENAME
PRINT !FILENAME;PAGE=O

This example shows the use of the parameter line, and the use
of the parameter in the command file to cause the parameter
value to be replaced with the value lREQUIRED) specified
when the command was executed.

The next example shows the easy way to recover lost
filespace by 'squeezing' the end of file to the file limit.

The following example is the command file SQUEEZE:

PARM FILENAME
COMMENT
COMMENT This specifies that the command file will have ONE
COMMENT required parameter - the filename to be squeezed.
COMMENT
IF NOT FINFOC'!FILENAME'.O) THEN
COMMENT
COMMENT This line tests for the presence of the file

MPE/XL Variables and Command Files 0036 -8-

specified in the parm line. The fINfO is a function
requiring two parameters : the first the filename in
string form, and the second, the function number.
Zero as a parameter queries for the existence of a
file, and returns a Boolean result.

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

ECHO !fILENAME does not exist - cannot squeeze
ELSE
COMMENT
COMMENT If the file does not exist, no need to even try any
COMMENT of this stuff.
COMMENT

SETVAR END_OF_FILE.![FINFO(!FILENAME,l9)
COMMENT ~

COMMENT This command line will set a variable to the number
COMMENT of records in the file (end of file) by using
COMMENT the FINFO function with a parameter of 19.
COMMENT

FILE NEWFILE;DI5C-!END_OF_FILE;SAVE
COMMENT
CO~1ENT This command line will set a variable to the number
COMMENT of records in the file (end of file; by using flNfO
COMMENT with a parameter of 19.
COMMENT

SETVAR CIERROR,O
COpy !FILENAME,·NEWfILE;YES

COMMENT -
COMMENT These lines prime CIERROR to zero and copy the file
COMMENT from the oldfile to the newfile.
COMMENT

IF CIERROR = 0 THEN
PURGE !fILENAME
If CIERROR Q a THEN

RENAME NEWFILE,!FILENAME
ELSE

ECHO !FILENAME was not purged nor renamed
ENDIF

ELSE
ECHO Copy of !FILENAME failed

ENDIF
COMMENT
COMMENT If the COPY command succeeds, purge the oldfile and
COMMENT rename the newly created file to the name of the old
COMMENT file. Otherwise. tell the user the copy and rename
COMMENT has failed.
COMMENT
ENDIF
COMMENT • end of the command file.

Now for a really good example of the power of command files.
First, lets consider the mundane output from the L1Slf
command. Typically, it has the format that we are all
familiar with:

MPE/XL Variables and Command Files 0036 -9-

ACCOUNT"'" TESTACCT GROUP"" TESTGRP

fILENAME CODE ------------LOGICAL RECORD-----------
SIZE TYP EOF LIMIT RIB

DISCFILE 80B FA 597 597 3
CRLFILE NMRL 128W FB 689 689 1
COBTEXT EDTCT 1276B VA 785 785 1
V23AXFRM VFORM 256B FA 27958 50000 1
W23AXWSP TSR 102LJ:B FA 3 39 1
XL NMXL 128W FB LJ:LJ:260 lf096000 1
Y23AXUSL NMPRG 128W FB 2031 2031 1
UOOAAX89 USL 128W FB 266 1023 1

Careful examination of the output will show that if we
redirect this output to a disc file, we could use fileset
wildcards in some command files. PURGESET is such a command
file. It invokes another command file (XEQFILEJ, which itself
invokes other command files. The result is a wildcard file
purge.

The following example is the command file PURGESET.

PARM FILESET
COMMENT ~

COMMENT This command file will purge filesets. The
COMMENT only parameter is the desired fileset.
COMMENT
SETVAR SAVE_HPAUTOCONT,HPAUTOCONT
SETVAR SAVE_HPMSGFENCE,HPMSGFENCE
COMMENT .
COMMENT In these lines, we save off the current value
COMMENT of HPAUTOCONT, the autocontinue var, and
COMMENT HPMSGFENCE, the var that determines if 11PE/XL
COMMENT error messages are displayed.
COMMENT
SETVAR HPAUTOCONT,TRUE
SETVAR HPMSGFENCE,2
COMMENT A

COMMENT Here. we'll set HPAUTOCONT to true, meaning that
COMMENT we won't have to preface every command line with
COMMENT a :CONTINUE; it's implied. HPMSGFENCE "" 2 tells
COMMENT MPE/XL to override printing-of error messages.
COMMENT
SETVAR FILE SET."!FILESET"
ECHO Please-Wait .. Determining value of fileset
COMMENT A

COMMENT Save off our original fileset and tell the user
COMMENT to hang on a sec.
COMMENT
SETVAR CIERROR,O
FILE TEMPFILE;TEMP;REC=-80,l,F.ASCII;NOCCIL
FILE OLDTEMP=TEMPFILE,OLDTEMP

MPE/XL Variables and Command Files 0036 -10-

LISTF !FILE_SET,l;-TEMPFILE
COMMENT -
COMMENT Here is the LISTF of our fileset into a temporary
COMMENT file. The ,1 format will give us lots of good info
COMMENT about each file, as shown above.
COMMENT
IF CIERROR = 0 THEN

RUN EDITOR.PUB.SYS;STDIN=PRGSTDIN;STDLIST=$NULL
ELSE

ECHO fileset !FILE SET Is Invalid
ECHO CIERROR is !CIERROR which means:
ECHO ! HPCIERRI1SG

ENDIF
COMMENT
COMMENT In these lines. if C1ERROR is zero. run EDIT/3000
COMMENT with a redirected $STDIN, else tell the user what
COMMENT went wrong.
COMMENT
RESET TEMPFILE
RESET OLDTEMP
XEQ XEQCOf'lM
COMMENT
COMMENT Reset the tempfile file equations and XEQute the
COMMENT text file that EDIT/3000 created previously.
COMMENT
DELETEVAR FILE @
DELETEVAR GOTFILE
DELETEVAR CUALNAME
DELETEVAR LISTF @
D~LETEVAR YES_@-
COMMENT .
COMMENT Cleanup. Delete vars created in this and other
COMMENT command files.
COMMENT
PURGE XEQCOMM
PURGE TEMPFILE,TEMP
COr-Il'lENT -
COMMENT Purge the XEQ file and the temporary file.
COMMENT
SETVAR HPAUTOCONT,SAVE_HPAUTOCONT
SETVAR HPMSGFENCE,SAVE_HPMSGFENCE
COl1f1ENT -
COMMENT Reset these vars to their previous values.
COMMENT Delete the SAVE vars
DELETEVAR SAVE_@

The following example is the MPE file used as the $STDIN for
EDITOR.PUB.SYS in the command file PURGESET. This file is
PRGSTDIN:

TEXT ·OLDTEMP
CHANGE 50 TO :": IN ALL
CHANGE 1 TO :PURGEfLE ": IN ALL
KEEP XECCOMM,UNN

MPE/XL Variables and Command Files 0036 -11-

EXIT

The following command file is invoked from PURGESET. It has a
single parameter, the line from the LISTF command that was
prefixed with the name of this command file CPURGEFLE):

PARM LISTF LINE IN
COMMENT ~ - -
COMMENT The single parameter 'passed' to this command file
COMMENT file from PURGESET is the line of the LISTF file,
COMMENT TEMPFILE.
COMMENT
COMMENT REMEMBER : HPMSGFENCE - 2 and HPAUTOCONT = TRUE
COMMENT
SETVAR LISTF_LINE,"ILISTF_LINE_IN"
COMMENT "
COMMENT Save off the parameter passed for examination.
COMMENT
SETVAR FILE_NAME,"! (STR(LISTF_LINE,1,8)]"
COMMENT '
COMMENT Examine the LISTF file. There are three types of
COMMENT lines in that file:
COMMENT 1. header Ilnes.
CarniENT 2. blank lines
COMMENT 3. filename lines.
COMMENT Lets save off the first eight character (the SIR
CO~1ENT function, discussed previously, does chat) into
COtH'IENT a variable called 'FILE_NAME I.

COMt'lENT
1F "! FILE NAf1E" = "ACCOUNTc:" THEN
COtlMENT -
COl1MENT This LISTF line is a header line. It will contain
COMMENT the group and account name of those files that
COMMENT will be listed in the succeeding LISTF lines.
COMr1ENT

SETVAR GOTFILE,FALSE
SETVAR LISTF_ACCOUNT, "I CSTR(LISTF_LINE,11,8)]"
SETVAR LISTF_GROUP, "! [STR(LISTF_LINE,31,8)]"

COMI1ENT .
COMMENT Lets set a variable to say let us know that this
COMMENT is not a file. Also, extract the account and
COMMENT group in variables.
ELSE

IF ("I FILE NAME" = "FILENAME") OR &
("! FILE-NAME" - " ") THEN
SETVAR-GOTFILE, FALSE

ELSE
COMf1ENT ~

COMMENT These lines are of no concern to us. We ignore them.
COMtlENT

SETVAR GOTFILE,TRUE
SETVAR QUALNAME, "IF1LE NAME" + " 0 " + "ILISTf GROUP"
SETVAR QUALNAME,II!QUALNAMEII + "." + "!LISTF_ACCOUNT"
STRIP QUALNAME

MPE/XL Variables and Command Files 0036 -12-

If it is not a header line or a blank line, it is
the name of a file. Lets fully qualify the filename
such that QUALNAME contains file.group.account.
If QUALNAME contains imbedded blanks (file,group or
account < 8 chars), STRiP will strip out blanks.

ENDIF
ENDIF
COMMENT
COMMENT
COMMENT
COMI1ENT
COMMENT
COMt'IENT
COMMENT
IF liOTFILE THEN
COMMENT ~

COMMENT If our Boolean var is set. the line just processed
COMMENT contains a filename, which was preceeded by blank and
COMMENT header lines (ALWAYS).
COMMENT

SETVAR YES_NO_PROMPT, 'Purge' + '!QUALNAME' + ' lY.N)?'
SETVAR YES_NO," "

COMMENT ~

COMMENT Setup the variable names to contain the userprompt
COMMENT and the user's response.
COMI1ENT

WHILE ("!YES NO" <> "V") AND l"!YES NOli <> "N") DO
INPUT YES_NO,PROMPT.... "!YES_NO_PROMPT"

ENDWHILE
COMMENT '
COMMENT These lines will ask the user if the file should
COMMENT be purged. User must respond Y or N.
COMMENT

IF ("!YES NO" a "Y") THEN
ECHO - « Purging !QUALNAME »
SETVAR CIERROR,O
PURGE !QUALNAME

COt'lMENT .
COMMENT User responded Y. Attempt to purge the file.
COMMENT

IF CIERROR <> 0 THEN
ECHO Purge of !QUALNAME failed .

ENDIF
COMMENT ~

COMMENT Attempt failed. Tell the user why and continue to
COMMENT next file.
COMMENT

ENDIF
ENDIF
COMMENT • end of command file.

The next command file is STRIP. It will parse a variable
value and remove ALL leading,trailing and imbedded blanks.

PARM VARNAME
SETVAR LITVAR,"!VARNAM~"

SETVAR SAVEVAR,!VARNAME
WHILE pose " ","!SAVEVAR") > 0

SETVAR SAVEVAR,lI!SAVEVAR" -

MPE/XL Variables and Command Files 0036 -13-

ENDWHLLE
SETVAR !LITVAR,"!SAVEVAR"
DELETEVAR LITVAR
DELETEVAR SAVEVAR

Once we have this command file under our belt, we can really
start to get fancy. With a little imagination, we can select
files in our fileset by specific attributes, such as file
code, file size, etc. The mechanics are not difficult, but
are not included because of space considerations. However,
can include a command file to set the attributal variables
related to a file. This command file is FILEATTR:

PARM LISTF LINE
OPTION NOLIST
SETVAR FILE_CODE,STR(LISTF_LINE,ll,6)
COMMENT - file code of file (string)
SETVAR FILE_CODE_I,FINFO('!QUALNAME',-S)
COMMENT ~ file code of file (integer)
SETVAR CREATOR,FINFO('!QUALNAME',~)

COMMENT ~ file creator (st~ing)

SETVAR DATE_CREATED_STR, FINFO('! QUALNAI1E', 6)
COMMENT' date created (string))
SETVAR REC_SIZE,SIR(LISTF_LINE,17,S)
COMtlENT ~ record size (bytes or words, str i ng j

SETVAR ASCIl_BlNARY,STR(LISTF_L1NE,26,lJ
COiltIENT" file format (ascii or binarY,string)
SETVAR FIXED_VARIABLE,STR(LlSTF_LlNE,c5,1)
COMMENT ~ record format (fixed or variable,string)
SETVAR BYTES_WORDS,STRCLISTF_LINE,22.1)
COMMENT ~ record units of measure (bytes or words,stringJ
SETVAR EOF,STR(LISTF_LINE,30,S)
COMMENT ~ number of records in the file (string)
SETVAR FILE_LIMIT,STR(LISIF_LINE,~O,lO)

COMMENT' maximum number of records in file (string)
SETVA~ FILE_LIMIT_l,FINFOl'!QUALNAME' ,12)
COMMENT ~ max records in file (integer)
SETVAR FOPTIONS,FINFO('!QUALNAME',13)
COMMENT ~ file options (string)
SETVAR FOPTIONS_I,FINFOC'!QUALNAME',-13)
COMMENT ~ integer foptions
SETVAR LAST_MOD_DATE_YYYYMMDD,FINFO('!QUALNAME'.-8)
COMMENT ~ last modification date (integer)
SETVAR INT_l, LAST_110D_DATE_YYYYMtIDD / 1000000
SETVAR INT_2,INT_l • 1000000
SETVAR LAST_MOD_DATE_YYMMDD, LAST_MOD_DATE_YYYYI111DD - INT_2
COMMENT . last mod date YYMMDD
STRIP FOPTIONS
STRIP FILE CODE
STRIP REC SIZE
STRIP EOF-
SIRl P FILE Ll111 I
COMI-IENT . §"trip the blanks from these vars. Once STRIPped,
COMMENT their variable class will change to integer.

MPE/XL Variables and Command Files 0036 -l~-

X. MPE/XL as a Programming Language

MPE has been thought of by some as being capable of being a
programming language. Previous versions of MPE fell short of
that mark, but probably not by mUCh.

By that same token, lets examine MPE/XL in comparison to both
older versions of MPE and other programming languages.

Although MPE/XL does not have a compiler, it is not
necessarily a prerequisite of a programming language to have
a compiler. Recursive abilities are found in MPE/XL
lWHILE .. ENDWHILE) and other programming languages; storage of
numeric and non-numeric literals (SETVAR) are also present in
MPE/XL and other compilers. Examination of stored literals
(IF statement with explicit variable dereferencingJ and
intermediate literals (IF statement with STR function of
literal constant, for example) are present in tlPE/XL as well
as compiler languages. The ability to call programs written
in other languages (RUN statements) or in the same language
is characteristic of some programming languages. Programs
written in MPE/XL are callable from programs written in other
programming languages CHPCICOMMAND intrinsic is needed). in
addition, MP~/XL lends itself well to structuring and
development with modularity, a trademark of some programming
languages. MPE/XL can also accept input external to the
program (INPUT command), produce output (PRINT, ECHO) and can
perform arithmetic operations (CALC command). Older versions
of MPE had but a few of these features.

Indeed, there may now be little argument that tlPE/XL is a
programming language. However. to make 11PE/XL a REALLY
powerful programming language. 1 offer Hewlett-PacKard a
'wish list'.

XI. Some Things to Make MPE/XL Really Neat

While MPE/XL is a vast improvement over MPE. I would like to
see several things implemented to make MPE/XL a bona fide
programming language.

The first would be the ability to call any intrinsic from a
command file (except those that use procedure labelsJ. All
the new HP intrinsics lHPfOPEN. HPFCLOSE) could be called in
the same manner as calling other command files. For example.
to call HPfOPEN, you might use command syntax like thlS:

HPfOPEN filenum,filename,fileoptions

This seems like a natural extension to 11PE/XL, and something
that should follow all the progress made with MPEiXL.

MPE/XL Variables and Command files 0036 -15-

Several additional functions that would be nice to have might
be a leading/trailing spaces 'trimming' function simllar to
the 'STRiP' command file presented previously. A 'SfUff'
function to place a string within another string would be
great. How about a square root function for the FORTRAN
programmers?

These 'wishes' are not to be taken as a criticism of liPE/XL
because they do not have these 'goodies'. MPE/XL is an
outstanding example of a natural software evolution, and the
absence of these functions or structure in no way detracts
from the total product.

Acknowledgments

Many thanks to the people of Collier-Jackson, Inc in Tampa,
for allowing me the experience of programming on a SPECTRUM
machine. Special thanks to Barry Lemrow at CJI for ideas and
suggestions, as well as his review of this paper before
publication.

Special thanks to Hugh McKee of Hewlett-Packard. who also
reviewed this paper before publication. and urged many months
ago, that it should be written.

MPE/XL Variables and Command Fiies 0036 -16-

	MPE/XL Variables and Command Files

