Symbolic Debugging: An Introduction

Timothy D. Chase
Corporate Computer Systems, Inc.
33 West Main Street Holmdel, New Jersey

Xt to a trusty compiler it’s a good symbolic debugger that tops my list of important software
Nedevelopment tools. I would fear facing a day in my chosen programming profession without
symbolic debug. It never fails to amaze me, though, how few people use symbolic debuggers let
alone know what they are. In this article I will introduce you to symbolic debuggers, their technol-
ogy and how they can be used to help programmers do their work. In addition, I will give you a
list of basic features which should be looked for when selecting a symbolic debugger. No one debug-
ger has all of the features I’ll mention, but some do have an impressive subset.

There are as many different symbolic debuggers as there are compilers on different computers. For
this reason, it is virtually impossible to talk specifically about any one debugger or language in
detail. Instead, I will try to discuss symbolic debugging in general terms and leave you to find out
the details of the symbolic debuggers available to you. I have tried to select a cross section of ac-
tual debuggers to use for examples. Those mentioned include Codeview for the IBM PC by
Microsoft, HP’s Toolset and CCS’ TRAX both for the HP3000 and HP’s DEBUG/1000 for the
HP1000 RTE-A system.

Finally, if you do any serious programming or if you have to maintain the work of other program-
mers and you don’t have access to some form of symbolic debugger, you should complain to some-

one. Loudly.
What is a symbolic debugger?

Before answering that, we need to briefly review the program development process. If you recall
the dark times in computer programming then you remember assembly language. Assembly, or
machine language, was the original way to program computers. Only one level removed from the
1I’s and 0’s computers really understand, assembly language is very difficult for biological systems
(people) to understand. So to save our sanity high level programming languages were designed.
The idea behind high level languages is that the computer, itself, can be used to translate the high
level language into the more basic machine language. This method of programming quickly became
successful but its success brought about another problem — debugging.

The problem with debugging high level languages stems from two basic sources. First, operating
systems are designed to support applications written in many different languages. In fact, on most

Symbolic Debugging 0002-1



computers, every language finally compiles (is translated) into a relocatable or binary module which
is the same regardless of the original source language. This is called an object module. Object
modules are then linked together by a system utility to form a finished application. The problem is
that after the linking, the operating system has lost track of the original form of the language. When
problems show up, the operating system only has information about the object form of the applica-
tion and very little information about the original source.

The second problem comes from a mismatch in computational models. You, as a high level lan-
guage programmer, think of the computer in an artificial way. If you program in COBOL, then you
think of your computer as a COBOL machine regardless of the underlying hardware. This is one of
the basic features of high level languages: you don’t have to understand the real computer in order
to do your work. The real computer, however, is usually quite different from the conceptual model
created by the high level language. The problem is that the operating system relates bugs to you in
terms of the real computer rather than the high level programming model. Faced with the error mes-
sage like SYSTEM STACK UNDERFLOW the COBOL programmer is at a total loss. The COBOL
model of programming does not contain system stacks or underflows. In order to deal with bugs
of this sort, the high level programmer is forced to go to low levels in the system.

In a nutshell then, symbolic debugging is a method by which the programmer can receive informa-
tion about bugs as well as look for bugs at the same level as the program was originally written.
The successful symbolic debugger maintains the illusion of the computational model created by the
high level language. By keeping the programmer at the source level during debugging, the sym-
bolic debugger makes the same impact on the debugging process as the compiler made on the coding
process.

How are bugs found without symbolic debug?

Without symbolic debugging there are three basic ways in which programmers debug their
programs. They can analyze system output, they can put special debugging code in the source or
they can resort to assembly language debuggers. Although widely used, each of these techniques
has some serious problems.

Analyzing system output usually means pawing through miles of printer dump output. The applica-
tion was running fine for a while and then it blew up. The dump comes out and then you try to
reconstruct what happened. The problem, of course, is that it’s difficult to find something wrong
in the maze of maze of registers and memory locations. When you finally do find something you
might actually be looking at second or third order effects. In other words the real bug caused some-
thing to happen which caused something else to happen which you saw (second order effect). In
addition, you need to learn how to read dumps and, usually, you also have to learn a bit about as-
sembly language in order to navigate the output. This type of debugging was the primary debug
weapon in the arsenal of the batch programmer of the 60’s

The next approach is to add special debug code. It’s surprising how many programmers still use the
"put in DISPLAY statements” method to finding bugs. This technique requires the programmer to
insert little "hi, you got this far" messages in the program source code. The program is run and the
output is then analyzed. This technique has several problems. First, you have to know where the

0002-2 Symbolic Debugging



bug is (roughly) in order to know where to insert the print statements. Second, inserting debugging
statements alters the program and may even make the bug go away. Finally, the debugging state-
ments are, by definition, never in the program when you need them. This means you have to put
them back in, recompile, re-link and they try the program again. Also, unless the debug statements
have testing associated with them, they can generate reams of output which must be carefully
analyzed (shades of the output dump).

The final nonsymbolic approach is to use an assembly language debugger. These debuggers were
developed by the assembly language programmers and are, in fact, pretty close to symbolic debug-
gers if you program in assembly language. The problem here, however, is that you must descend
to the depths of assembly language in order to use them thus defeating the major reason for using
high level programming languages. If, as many other programmers, you program in a portable lan-
guage you may regularly work on several different computers. This means that you’ll have to be
adept at the assembler on several machines. Still, even with its problems, the assembly language
debugger is usually the best alternative if full symbolic debugging is not be available on your sys-
tem.

How is symbolic debugging different?

The approach used in symbolic debugging is different from the first two alternatives given above.
It is also much simpler than the assembly language approach. The fundamental difference is that
it is an interactive action. The programmer is dynamically interacting with the program being
debugged. Other nonsymbolic approaches are static. You are analyzing a print out of what hap-
pened or you are watching the output generated by special debug code. With symbolic debugging
you are encouraged to try experiments to prove or disprove theories about what might be causing
abug. If unexpected results are seen, you can quickly try a new course of action. In a large system
without symbolic debugging it is often difficult even to discover which module the problem is in.
With the right set of symbolic debug features this can border on simple.

As a maintenance tool for supporting a software system symbolic debugging is invaluable. Usual-
ly during this part of an application’s life cycle it is supported by people who did not do the original
development work on the project. Symbolic debugging techniques enable these people to watch
the program execute. Its logic flow and operation become very real to the support people and their
job is made simpler so their throughput is increased and the support costs are reduced.

How does symbolic debugging work?

The symbolic debugger is actually only one part of a series of cooperating programs. The symbolic
debugger (depending on implementation techniques) requires information from both the compiler
and the linker. Remember, during normal compiling, most of the source information is lost when
the object modules are produced. In order to have symbolic debugging, the information usually
discarded by the compiler must be passed through into the object modules. In addition, because
object modules may be relocated in memory as a result of the linking process, the linker (or loader
or segmenter) must output information to a special file called a debug information file or a debug

map file. The result of the compile-link operation then is a completed application program along
with a debug information file.

Symbolic Debugging 0002-3



The basic idea behind a symbolic debugger is to be able to execute the application normally by is-
suing the appropriate start up commands to the host operating system. If, however, the program
displays some aberrant behavior, the symbolic debugger may be invoked which then runs the
program in a different mode making it available for debugging. During debugging there are two
program executing: the application program and the debugging package itself. The programmer
interacts with the debugging package while the debugging package interacts with the application
program being tested.

There are, essentially, two classes of symbolic debuggers. These are intrusive and nonintrusive.
An intrusive debugger is one in which the application is compiled in a special way which causes
some amount of debug code to be placed in it. A program compiled with debug code inserted in it
is said to be instrumented. A noninstusive debugger does not require any special debug code to be
inserted into the application. Totally nonintrusive debuggers are rare and need a great deal of help
from the host operating system. More than likely the symbolic debugger you will be using is an in-
trusive debugger.

Itis important to determine the amount of intrusion which is required for debugging. Normally the
compile process is altered in some way when the symbolic debugger is to be used. For example,
in Microsoft’s QuickC compiler, the user selects if the compile will result in a debuggable object
module or not. Likewise in HP’s TOOLSET COBOL debugger all source modules to be debugged
must have the SCONTROL SYMDEBUG option. If the intrusion is small in terms of consumed
program resources (memory space and execution time), then applications can be routinely compiled
with the debug option. By doing this, especially on new applications, the debugger is always avail-
able when a problem is discovered. This removes the need to recompile and re-link the application
when a bug shows up. In fact it is quite common for an address sensitive bug to vanish when a
program is compiled in the debug mode. By always compiling in debug mode this can’t happen.

What are symbolic debugger features?

Although source languages differ widely when it comes to features, symbolic debuggers are fairly
similar in terms of the basic offering. Different debuggers are differentiated by how the features are
implemented and the ease of their use.

The debugger model the programmer deals with is the original source file and the currently execut-
ing statement. Usually the source statements around the current statement are displayed on the
screen along with a command area. The program under test is placed in a suspended state so that
it is not executing and the debugger, itself, is waiting for commands from the programmer. Note
that because of the required programmer think time a symbolic debugger is not normally useful for
real time applications which must execute without interruption. If a program must read a sensor
every 2 seconds and it takes you 4 seconds to type a command to begin execution, you’re in trouble!

Most symbolic debuggers are command driven. This means that you type in commands to bring
the debugger into action. DEBUG on the HP/1000 RTE-A is fairly typical. DEBUG’s commands
are one or two characters followed by one or more arguments delimited by various characters
depending on the selected options. The arguments, however, reference objects normally found in
the source language using at least some of the syntax of the original source language. These objects

00024 Symbolic Debugging



might be statement numbers or user identifiers (as opposed to octal memory addresses). PC’s, having
powerful screen management technology, can support debuggers which use a mouse.

The Microsoft Codeview debugger is a good example of a debugger which is both command and
mouse driven. The mouse is a natural tool for the symbolic debugger. If you want to execute your
program up to a given line, you just point at the line with the mouse and click a button. This high-
ly tactile way of manipulating your program is both natural and easy to learn.

A good symbolic debugger should have as many of the following features as is possible:
Breakpoints

The basic operation of the symbolic debugger is to insert breakpoints into the program under test
and then execute the program until it hits a breakpoint. When a breakpoint is hit, the program
suspends execution and you can look around. For example, if you suspect that a problem is at line
100 (the program aborts from that location), you can set a breakpoint at that line and execute the
program. When the program attempts to execute line 100, the breakpoint is hit and you can check
the values of various data locations to make sure everything is as it should be.

The simple "stop when you hit it" breakpoint may be augmented by several other different break-
point types. This may include iterative and conditional breakpoints. Iterative breakpoints usual-
ly have a count associated with them. The program is allowed to pass thought the breakpoint for a
specified number of times (the count) and then the program stops. This is especially useful when
you know that a problem occurs on a given line after a certain number of "events" happen. For ex-
ample, your program blows up after reading 125 input records. You could place an iterative break-
point with a count of 124 on the input read statement. The program will stop just before reading the
125th record.

The conditional breakpoint actually allows you to specify some type of test condition. When the
breakpoint is struck, if the condition is met, the program will suspend. If the condition is not met,
the program continues execution. For example, your program aborts when a value gets greater than
6742. You could set a conditional breakpoint with the condition "value greater than 6742". Each
time the breakpoint is hit the debugger checks to see if the value is greater than 6742. If yes, the
program under test is suspended for you. This is especially useful when a bug displays itself only
when certain data values are being processed.

Single step

In addition to breakpoints another vital feature is the ability to single step source statements. This
is usually accompanied with a representation of the current statement on the screen. This might be
a marker to one side of the statement (CCS TRAX) or, more spectacularly, by changing the color
of the current statement (Microsoft QuickC). Whatever the display technique, the single step opera-
tion should have these important features:

Symbolic Debugging 0002-5



Simple command to repeat single stepping. When you are single stepping, you normally want to
execute several lines one after the other. This should not require long command sequences. A
softkey or a carriage return is all that should be required to execute the "next" statement.

Single step should come in two different "flavors". You should be able to step info subroutines or
to step over subroutines. Stepping into subroutines means that you continue to single step when
executing the subroutine. This gives you a look at the operation of the subroutine if you think the
bug might be there. Stepping over a subroutine causes the subroutine to execute at full speed with
the next single step operation at the source statement which immediately follows the source level
call to the subroutine. This is important when you know that the subroutine is bug free, but you
wish to trace the flow of the calling program.

Although not provided by all symbolic debuggers (multiple breakpoints accomplish the same thing)
single step execution is a real time saver when trying to follow complex logic flow. For example,

. the outcome of a "go to depending on" statement is simple to figure out with single step, but quite
a bit harder to figure out using breakpoints.

Variable display and modification

There are several different ways to implement this important feature. Some debuggers (HP
DEBUG/1000, CCS CView, HP TOOLSET) have commands to display the current contents of
program variables whenever you want. The display command uses the source level name for the
data object as well as the source level syntax to access the object. This can be quite complex. For
example, the C debugger CView from CCS allows you to enter a complete C expression which is
then interpreted with the computed results printed out. A more common approach is to enable the
programmer to print out simple data identifiers, perhaps indexed with constants.

A different approach is the one used by Microsoft’s Codeview and to a lesser extent HP’s TOOL-
SET. These debuggers allow you to define watch expressions which automatically display the con-
tents of user identifiers whenever the identifier changes during the execution of the program. This
feature coupled with single step can be very useful for determining when a data value gets incor-
rectly changed. The Microsoft implementation of this feature allows the programmer to open up a
special watch window which contains the current values of specified variables.

The automatic display of variable changes as opposed to upon user request can take its toll in extra
added code unless there is some assist from the hardware. The compiler must add special subroutine
calls on every assignment statement in order to trap variable changes. The overhead may become
prohibitive.

Another, less costly way of achieving much the same effect is to be able to attach commands to
breakpoints. The commands are usually display commands. The idea is that the commands will be
held in ready waiting for the breakpoint to be hit. When the breakpoint is hit, the attached com-
mands are executed. Doing this, for example, would allow a programmer to attach a number of dis-
play commands to a breakpoint followed a continue execution command. Whenever the breakpoint
is hit, the display commands execute followed by the continue command. The net effect is that the
data objects are printed will little overhead.

0002-6 Symbolic Debugging



A final aspect of data display is the format of the output. It is a useful feature if the debugger is
capable of outputting data in several different user selectable ways. Sometimes, for example, you
may wish to view a decimal number as a decimal number, but other times you may want to see the
same value in octal or hex. Most symbolic debuggers accommodate this.

The flip side of variable display is variable alteration. Most symbolic debuggers enable the program-
mer to change the contents of variables. Again, the original source names for the variables are used
along with the source syntax. All debuggers support changing the values of simple scaler variables
(non array type). Some allow you to change the values of an array variable with a single command.

Being able to change the value of a variable is a surprisingly useful feature. It often allows you to
change a good value to a bad value just to see how the program will react. Or it allows you to patch
an incorrect value in order to continue looking for a different bug without re-linking. On the
HP/3000, for large COBOL programs, the time required to re-segment can be large. Being able to
find another bug without recompiling and segmenting is an important feature.

Flow control

Most debuggers offer several commands which effect the execution flow of the program under test.
There are usually two different types of flow control. The first is the proceed command. Using a
proceed will cause the program you are debugging to begin execution under the control of the sym-
bolic debugger. The program will continue execution until it either terminates, is terminated by the
host operating system or hits a breakpoint. There are several variations on this theme which are
available.

For example, the DEBUG/1000 package gives the programmer the option of keeping the program
under test alive after a system termination. This means that if the program under test executed an
illegal instruction or violated the memory protection scheme, rather than terminating the program,
control is passed back to the debugger so that the programmer can examine the program after the
crash. DEBUG/1000 even allows you to re-execute the program after the halt (presumably after
changing data values).

The proceed commands found in symbolic debuggers usually have several different options as-
sociated with them. The CCS TRAX debugger, for example, provides for a temporary breakpoint
which may be set with the proceed command. The proceed command can optionally indicate that
the program under test should execute up to a given point and then stop. Although the same effect
may be achieved with a breakpoint, combining the breakpoint with the proceed makes life a little
easier.

Another important (but dangerous) flow control command is the go fo command. This allow the
programmer to redirect control to another part of the source program. This is often used to re-ex-
ecute statements after a variable has been changed to check the new outcome. The problem with
this command is that its power often lets you abuse the source language by going where the com-
piler never intended you to. In COBOL, for example, you might circumvent a proper exit from a
PERFORM statement by using a debugger go command. This might ultimately introduce a (non-

Symbolic Debugging 0002-7



repeatable) bug which isn’treally abugatall. Asin programming using a go to in debugging should
be done with care.

Some miscellaneous features...

'We have discussed most of the mainstream symbolic debug features and their typical usage. What
remains is a brief collection of features which have appeared in various debuggers and are interest-
ing enough to comment on. Unfortunately, no one debugger has all of these features — too bad.

Dual displays

This is a nice feature found in the Microsoft Codeview debugger. It enables you to have access to
the source code as the program executes, yet still see the output generated. You can switch back
and forth between the source display and the output display by pressing a function key on the PC.
This feature is vital to anyone designing interactive applications.

A similar feature is available in the CCS TRAX debugger. Designed to aid in the debugging of
COBOL based V/PLUS programs, TRAX provides a feature similar to Codeview with HP charac-
ter oriented terminals. Again, you can switch between the output (V/PLUS) display and the source
code debugger display.

Low level machine

Some symbolic debuggers (in a seeming contradiction to their major claim to fame) enable you to
gain access to the underlying machine. These features are used infrequently, but when you need
them they are nice. For example both Codeview will explode the source code into assembly lan-
guage with intermixed source code statements. You can then extend the commands to include as-
sembly language versions. In other words single step becomes single instruction step instead of
single source statement step. DEBUG/1000 provides the ability to view assembly language, but
not to interact with it. TRAX gives assembly language in a separate window of the output display
which overlays the source.

These features are useful if you just can’t figure out what went wrong at the source code level. All
symbolic debuggers that I've seen also include an optional register display if you are working in
assembly language mode so that you can see the effect of the machine state as instructions execute.

Another (not quite so low level) feature is the ability to map addresses back into source line num-
bers. All symbolic debuggers have the ability to map statement numbers into the absolute addres-
ses of the executable program, but some have the ability to reverse this process. This becomes
useful when you have to interpret system error messages. The operating system usually gives you
an error message which references an octal address. The ability to map this address back into a
source file and a line within the source file can be a real time saver.

There is another class of features which give you a history of your executing program. This is done

in a variety of ways with differing degrees of usefulness. Toolset provides a paragraph trace fea-
ture which prints out the last several paragraphs which have been executed in a COBOL program.

0002-8 Symbolic Debugging



TRAX will display the call chain which displays which subroutines were called in order to arrive
at the statement you are currently executing. Codeview has a similar feature, but with the added
ability to actually breakpoint the call chain so that when a subroutine returns the breakpoint is struck.

All of these features provide a way to determine how you got to a given source statement. At first
this might seem silly, but it is quite important. If you have a subroutine which is used in several
different places you may not know where the subroutine was called from. Placing a breakpoint in
the subroutine and then using a history feature will give you a good idea how you got there.

Conclusions...

Symbolic debugging has finally come of age. There are currently a number of excellent debugging
packages out on the market which greatly reduce the time required to find and fix bugs. Although
sometimes looked upon as a frill, the symbolic debugger is as important a tool for serious software
development as the compiler itself.

Although debuggers differ substantially in detailed implementation many have the same features.
This paper has discussed the basic features required of any symbolic debugger in order to be use-
ful. Briefly they are:

« Source based. This means that debugger commands and displays should be oriented around
the original source program. Commands should reference source statement numbers and source
user identifiers rather than machine addresses.

« Breakpoints. This are markers which may be set in the program being debugged. They may
include simple, conditional and iterative.

« Single step. This feature lets you execute a source statement at a time. It should offer the ability
to step into subroutines and to step over subroutines.

« Variable access. You should be able to display user variables and alter their values. Variables
are accessed by their source names using the source language syntax.

+ Flow control. You should have the ability to navigate your source program; to proceed to
specified statements and to skip statements by using a go to type of command.

For most programming applications symbolic debugging is by far the best way to debug programs.

Because it is highly interactive it enables the programmer to easily develop hypotheses about what
is wrong and then try experiments on the executing program to uncover the bug.

Symbolic Debugging 0002-9






	Symbolic Debugging: An Introduction

