
Title: In Search Of The Software Transistor

Authors: David Boskey and Tim Chase

Address: Corporate Computer Systems, Inc.
33 West Main street
Holmdel, New Jersey 07733
U.S.A.

Telephone: (201)946-3800

Telex: 642672 CCSHOLM

"In the beginning the computer was invented to
solve the problem. What seems to have happened is
that the computer has become the problem. So now
the question is, what can we invent to ... "

- Robert M. Baer
The Digital Villain

In Search Of The Software Transistor

In this paper we will take a brief look at attempts to solve
the problems which have been associated with software
development. The reason we call it the search for "The
Software Transistor" is that it was the development of the
transistor which catapulted computer hardware into the ad
vanced position which it holds today. In order for software
to join those same lofty ranks, someone must develop the
software equivalent of the transistor. We will, unfor
tunately, conclude that although some work is promising,
there is still a long way left to go.

About Predicting

The theme of this conference is "Migration to 2001." with
such a theme, it would appear appropriate to take a chance
and make some predictions about what will be happening to
software development at the turn of the century. This is a
dangerous game, especially when the predictions are made
about a year which will (hopefully) be reached by the
authors. If we were to predict for the year 3000 our
reputations for soothsayers would remain unsullied for the
remainder of our lives. Undaunted, we will attempt to

495

is around the im
in general and

496

sketch a brief picture of what we think
mediate corner for software development
programming languages in particular.

By their vary 'nature, programmers tend to be optimistic
creatures. This was noted by Frederick Brooks in his, by
now classic, book The Mythical Man-month. Brooks explains
programmer optimism by saying that perhaps there is a
natural selection process by which the frustrations of the
job drive away all but the most optimistic. Whatever the
reason, the trade is populated with optimists who survive
mentally by believing that the project is really 95%
finished or that this bug is the last one in the system.
Predictions by optimists (especially those trying to get
research grants) are bound to be tainted.

Marvin Minsky, a popular M.I.T researcher, in Artificial In
telligence was quoted in the November 20th, 1970 issue of
Life Magazine (one of the US' better technical journals) as
saying:

"In from three to eight years we will have a
machine with the general intelligence of an
average human being. I mean a machine that will
be able to read Shakespeare, grease a car, play
office politics, tell a joke, have a fight. At
that point the machine will begin to educate it
self with fantastic speed. In a few months it
will be at genius level and a few months after
that its powers will be incalculable."

Poor Marvin, he committed the double error of being an op
timistic programmer (a-hem, researcher) and predicting
within his own life span. The point of this all is that
programmers are often the ones who are making predictions
about programming and computer science. This usually means
that things are predicted to be much rosier than they really
are.

What we will offer here is a slightly pessimistic prediction
of the near future, but since we, ourselves, are
programmers, the prediction will actually be somewhat op
timistic. We hope that the two forces will cancel out and
the result will be realistic.

History teaches •••

Before looking into the future, it is often helpful to look
into the past if only to discover that looking into the past
is not all that helpful. Fortunately, for computer
historians, computer science is quite young. We don't have
to find fossilized printouts in order to get insight into
the dark ages of data processing. Most people refer to
"generations" of computer hardware. Although this is often
just a marketing technique (any given vendor is always
working on the "next generation") it is useful to contem
plate the generations of computer hardware:

1. Electromechanical/vacuum tube computers. These were the
first. They were large, unreliable, slow and often
doubled as space heaters.

2. Transistorized computers. IBM's 7090 was one of the
first, and some wistfully think one of the best tran
sistorized computers.

Smaller parts made for3. Integrated circuit computers.
logically larger computers.

4. VLSI (Very Large Scale Integrated) computers.
(less) of the same.

More

5. Computers from Japan.

The fifth generation computers haven't been born yet regard
less of what vendors are saying. Most American universities
writing grant proposals feel as if the Japanese are on the
brink of the fifth generation and that the US will lose its
dominance in computer science unless more money is spent for
research.

As luck would have it, there also appears to be 5 genera
tions of·computer software. This is especially obvious to
all those folks selling forth generation languages. There
is little connection between the generations of hardware and
the generations of software other than faster computers can
do more computing. It appears to be a fact that advances in
software always require more computing.

497

This is where

498

As we see it, the five language generations are:

1. Ones and zeroes. Really the old days.
Grace Hopper got her start.

2. Assembly language. This includes macro languages,
linkers and the like. It is amazing how many
programmers still feel that there is something noble
about assembly language.

3. So called high level languages. These include FORTRAN,
BASIC, C, PASCAL, PL/1, LISP, COBOL and your favorite.

4. Programming environments. These are integrated
facilities which combine languages, data bases, screen
facilities which attempt to enable programmers to
develop prototype and final applications quickly.

5. What ever Japan, Inc. picks for the fifth generation.
More seriously, the fifth generation appears to be ex
pert systems with a side order of nonprocedural
programming. This is different than programming
languages in the classical sense, as we shall see.

By looking at this brief history and by observing where we
stand right now we may conclude some interesting things.
The single most interesting conclusion we can make is that
that hardware is far and away outpacing software in terms of
progress. In the world of hardware, significant advances
have been made just about every 10 years. These advances
have led us from computers which filled rooms to computers
which fill thimbles yet perform faster, cheaper, better,
etc. The important thing to note is that there have been
orders of magnitude improvements made in hardware develop
ment which come at regular intervals and are related to im
provements in basic technology.

Software, unfortunately, is another story. If you include
FORTRAN in the third generation of software language
development then you find that we entered that generation on
November loth, 19541 On that date a document titled
PRELIMINARY REPORT, Specifications for the IBM Mathematical
FORmula TRANslating System, FORTRAN was pUblished by the
Programming Research Group, Applied Science Division of IBM.
This is amazing because the first computers had only come
into being around 1948. This means that about six to eight
years after the first generation of compu~ers we were al-

ready into what we now consider the third generation of
programming languages! Couple this with the fact that we
think we are currently in the fourth generation and you have
the basis for a depressing hint of what is to come.

Granted, FORTRAN does not embody all that is true and
beautiful in current modern programming langua9~s. The
point we are making here is not that language development
stopped in 1954, but rather that the changes which have come
to programming have been small and have not even come close
to having the impact on throughput that corresponding
changes in hardware have had. We realize that some readers
will respond violently to these charges; that there is a
favorite feature of a favorite language which is being
maligned here. To this we ask that you stop and consider
the difference between a computer constructed from relays
and a Motorola 68000. No programming language improvement
comes anywhere near that level of change.

Why is there such a difference between hardware and
software?

This is an important question. In order to answer it we
must first begin to insult hardware developers. If you look
at the changes in hardware development you notice one sig
nificant thing. The software model of computers has not
changed much since the Beginning Of Time. By software model
we mean how the "inside" of the computer is organized; the
part the programmer sees. Again, we expect that there are
some who will argue, but when you get right down to it com
puters have remained much the same since the beginning.
What has changed with the computer generations is the tech
nical implementation. Take the venerable IBM 370 as an ex
ample. It would be possible to implement a 370 in vacuum
tubes. Clearly you might need Niagara Falls to cool it, and
the G.N.P of a medium sized Latin American "country to pay
for it, but it could be done. Likewise, a 370 could be
built using transistors and other discrete components.
Finally, a 370 could be built from VLSI parts. In fact, it
probably would only take one VLSI part. What we would see
across the different implementations would be a vast range
of performance with the vacuum tube 370 hopefully at the low
end of the scale and the VLSI at the high end.

These so~called "technology remaps" have been used by com
puter vendors throughout the years to offer faster computers
which still run the same software. The important point" to
remember, then, is that the "stUff" that computers are made

- 5 -

499

500

from has been changing but the design has remained stead
fastly the same. When a new computer is announced, we all
ask the same questions (how many registers, how many CPU's,
etc). We are never surprised with the answers because the
architecture is always pretty much as we expected. (It is
interesting to speculate how well a really different com
puter would sell. Imagine you get the first look at a new
computer design and find it resembles a fish tank filled
with a rose colored jelly with wires sticking out from it
and no one you have working for you has the slightest idea
how to get accounts receivable running on it. How many
would you bUy? With economics as the master, perhaps we are
getting exactly what we are asking for.)

So, hardware has the benefit of physics behind it. The
hardware boys are innovative, sure, but they don't have to
find vastly different organizational approaches to improve
their product. A pipe line here, a parallel processor there
and a heavy dose of solid state physics accounts for the
orders of magnitude in hardware improvements.

Now, h~w about software? Well, software is a tough one.
This 1S because programming is very much akin to thinking.
Programming is problem solving. In a very real sense,
programming is us. The difficulty is that it is hard to do
a technology remap of our own brains. The implementation of
the programming "machine" has remained constant over the
last 40 years. It still remains "liveware." The problems
associated with programming significant programs are
problems which have faced mankind for ages. They are human
organizational problems. How do you organize people so that
they are all working toward a common goal? This is espe
cially difficult if the goal is getting a computer to do
something.

What is programming and why is it so hard?

One of the problems facing program developers is that
programming is difficult, yet the popular concept of com
puters (from numerous Charlie Chaplin ads) is that they are
easy to use. It may be true that computers are easy to use,
but it is also true that they are difficult to program.
This difficulty stems from the fact that the physical act of
programming represents only a small part of getting a
program out of a customer's head and into a computer.

Programming is much more than writing FORTRAN statements. A
large portion of any job is spent in planning what the

program will do. Frederick Brooks says that at least one
third of a project is spent in planning and only about one
sixth is spent in actually writing code. Our own experience
indicates that this is quite true. Further, as planning
progresses the ultimate customer is often lost by the
result.

The software developer wants to develop functional require
ments which are detailed so that he knows exactly what is
going to be built. The finished documents are often beyond
the understanding of customers who are forced to sign off on
them in order to begin development. Time allocated to
testing is often used up by development which results from
customers finally getting to try the system. The relation
ship between developer and consumer is often ruined by mis
matched anticipation levels. Even with lengthy requirements
documents, the customer often does not get what he wants.

In short, software development is a dirty difficult busi
ness. Regardless what the data sheets say, it is hard to
write good programs which meet the customer's needs and an
ticipations. Our conclusions for the current state of com
p~ter science is that things have not changed all that much
S1nce the early days of programming. The big changes have
come from the hardware side of the house -- no one has, as
of yet, discovered the software transistor.

What does 2001 hold in store?

Hold on. This is where we start predicting. Software
development has not changed significantly since the
beginning. We don't see big changes in the near future.
What we do predict is that programming computers will not
get easier -- using computers for some, however, will get
much easier~

If things continue as they are now, we see a sort of class
structure developing. In H. G. Wells The Time Machine the
world is peopled with two classes: the Eloi and the Mor
locks. The Eloi are forever young and beautiful. They live
lives of complete leisure while the Morlocks toil beneath
the ground tending the machines which make the world work so
ideally for the Eloi. Of course, in the end, the hero
discovers that the Eloi are actually raised like cattle for
the Morlocks to eat.

Except for the cUlinary twist, we see much the same for com
puters. There will be the Eloi who work with increasingly

501

502

sophisticated packages designed to enable them to use the
computer without a great deal of effort. One of the tech
nologies which will make this possible will most likely be
what we now term "expert systems". Expert systems are a
form of "declarative" or "nonprocedural" programming brought
to you by the folks in the artificial intelligence labs.
(Remember Marvin Minsky?)

The basic goal of nonprocedural programming is simple: tell
the computer facts about the problem, toss in a few rules
relevant to the solution and the computer does the rest.
The Japanese in their Fifth-Generation project have (ac
cording to some reports) selected a programming language
called PROLOG as the base for nonprocedural computing.

Nonprocedural programming is a good technique but it is not
without problems. Consider the language PROLOG. Most would
agree that PROLOG is a nonprocedural language and for small
programs it does, in fact, appear to do just what is asked
for. PROLOG allows the programmer to enter facts and rules
and then ask questions about the data PROLOG "understands."
The PROLOG system searches the facts and rules to derive an
answer to the programmer's question. For small problems
PROLOG does not need any procedural input from the
programmer. However, for interestingly large programs,
PROLOG grinds to a crawl. This is not too surprising
because declarative languages spend most of their time
searching the solution spaces defined by the facts and
rules. The only way in which they may be speeded up, short
of faster hardware, is to introduce (you guessed it)
procedural programming to encode heuristics in order to trim
the search space down to size.

In fact, we really have our doubts about the whole concept
of nonprocedural programming. As Jean Sammet pointed out
way back in 1969 in her book Programming languages: History
and Fundamentals, the concept of nonproceduralness is really
a very relative term which changes with the state of the
programming art. To an assembly language programmer a
statement such as

x = A + B * C

is nonprocedural. After all, we did not tell the compiler
how to calculate the expression, only that we wanted to cal
culate it and where we wanted the results to end up. If you
really understand the inner workings of a language like
PROLOG (and you'd better if you're going to write any in-

dustrial-strength applications) then it becomes procedural.
But, of course, it is not a very good procedural language.

If the Eloi use the expert systems who is going to build
them? The Morlocks are the builders and they are faced with
a double whammey. First, they must code the basic core of
the expert system. To mystify the art, the basic core
program is often called the "inference engine." The bad news
is that the inference engines are "old fashioned" procedural
programs with all of their associat~d problems (hard to
write). Worse than that, expert systems introduce a new
kind of programming called Knowledge Engineering (KE for
short). If you think classic programmers have a bad time of
it, wait until you hear what KE's do for a living.

It appears that expert systems are well suited for "consul
tation" programs. This is where the Eloi user sits down and
chats with the computer to get some advice on what to do in
a given situation. The example everyone sites is always the
MYCIN program developed at Stanford University in the
1970's. Until MYCIN, most expert systems spent their days
trying to beat humans at chess or tic-tac-toe. MYCIN was
the first serious expert system. Its job was to act as a
consultant giving advice on the diagnosis and treatment of
bacterial blood infections (we're not talking pawn to king
four here). Now, you might ask how did MYCIN get its smarts
about blood? The answer lies in the KE. The knowledge
engineer's job is to sit down with experts, to pick their
brains and then to encode the expert's problem solving tech
niques into a data structure. The resulting "knowledge
base" is the brains behind the expert system. If writing
good programs is kind of hard, then knowledge engineering is
down right difficult! For certain it is not something that
the Eloi are going to be able to do on their days off.

As knowledge bases grow so does the potential complexity of
the computer's responses. It is currently difficult to
fully test and debug conventional computer programs. In the
future it will be even harder to debug expert systems. In
their most gross form expert systems are collections of
facts and rules. Are the rules right? Are there enough of
them? Do some contradict others? If expert systems are
built which approach the complexity some computer scientists
say we can expect in the near future, we should not be sur
prised at hearing something like the dialog Arthur C. Clark
wrote for 2001: A Space Odyssey. In one scene space man
Dave Bowman is locked out of the spacecraft by HAL the on
board computer (obviously a PROLOG-based expert system):

503

504

Bowman: Open the pod-bay doors, please, HAL. Hello, HAL,
do you read me?

HAL: Affirmative, Dave. I read you -- This mission is too
important for me to allow you to jeopardize it.

HAL has reasoned that the only way in which he (she?) can
complete his mission in space is by killing the crew. It's
perfectly clear to' HAL even if it isn't clear to the crew.
In the end, it is a set of conflicting rules in HAL's
programming which drives the computer into an electronic
psychosis. We predict that large expert systems will be
plagued with the same HAL-like problems well beyond the year
2001.

And what of the Morlocks? They re~p none of the benefits of
the Eloi when it comes to programm~ng ease. This means that
even in 2001 someone will still have to bang the bits. Ex
pert systems may become great at diagnosing blood diseases,
but ask them to write a conventional program and they'll
call for a urinanalysis. Thus we see programming remaining
a job which will have to be done by humans for some time yet
to come.

The final thing to remember about expert systems is that
there is nothing magic about them. The concept of an expert
system is just another programming technique. It makes some
problems easier to solve, but the results gotten by expert
systems may be obtained by conventional programming tech
niques. Often those selling expert systems lose track of
this fact.

Well, how about ADA?

If the expert system isn't the software transistor is there
anything around which might be? Sadly, we don't see it.
There is, of course, work being done on programming
languages with one current result being ADA. ADA brings
smiles to the faces of a good number of people. In fact,
just the mention of ADA during a presentation (with an ap
propriate roll of the eyes to the ceiling) is guaranteed to
get a laugh. Seriously though, ADA does contain some impor
tant features which will be needed~we are to migrate to
the year 2001.

Startinq with the worst, ADA's least attractive feature is
its size. This stems primarily from the fact that members

of committees which design languages have never developed an
effective argument against the statement "put the feature in
-- if programmers don't like it, they don't have to use it."
ADA, and its associated environments, are large enough that
there will be local experts in the language. People will be
skilled in ADA task management, but won't be so hot on ADA
I/O. This will be something we'll just have to live with.

Better features include the attempt to make a really
portable language. Languages like C have been touted as
being portable, but, in fact, most of the portability found
is C is a result of the cleverness of the programmer. ADA's
portability comes more from within. Portability will be ex
tremely important in 2001. This is because systems built
for the Eloi will be quite expensive and it will be impor
tant to amortize that cost over a large number of installa
tions. To have a package which runs on many machines will
help out.

If language efforts like ADA are making important contribu
tions to program portability, then they are also making
changes in people portability. People portability? People
portability is being able to get your programmers to easily
migrate from one computer to another. UNIX and C have gone
a long way to make portable people a reality. If software
and programming environments move easily from computer to
computer, then computer systems will tend to look more or
less the same. "If it's UNIX I can make it work" is
something we have heard UNIX programmers say. We will be
hearing more of this in 2001.

Portability will be a good thing for programmers and com
puter customers of the future, but perhaps not such a good
thing for computer vendors. If everyone has the same
operating system (UNIX?) then computer customers will no
longer be held to a given vendor. customers will be able to
"shop" for solutions and bUy the most bits for the buck.
Vendors will no longer be able to count on the captive
customer for their computer sales. They will have to com
pete through raw horse power or intangibles like support or
service.

We will be getting a glimpse of this when HP finally starts
selling the Spectrum computer line. The technical computer
version of the Spectrum machine will be a UNIX box. This
will mean that it will compete with all the other UNIX boxes
out there. It will either have to be a barn burner or
potential customers will have to believe in HP service, sup-

505

506

port, etc., etc. This is dangerous for computer manufac-
turers, especially for those who don't make their own chips.

ADA and other la~guage systems, as opposed to compilers,
will also aid 1n some of the organizational facing
programmers. ADA compilers maintain application data bases
which allow routines to be compiled within the context of a
given intended usage. This enables the compiler to make
more checks to insure that subroutines are called correctly
and that parameters are passed as required.

If all of this sounds like Big Brother, you're right. In
the future, we predict that much of the romance of
programming will be gone. Many of today's software gurus
pride themselves in being nonconformists; working odd hours
and sUbsisting on peanut butter cheese cracker sandwiches.
"No neckties for me, no sir!" ADA (or at least the intention
of ADA) is the beginning of the end for the happy hirsuit
hacker. Building for the Eloi will require legions of Mor
locks and legions require order not anarchy. Programming as
a means of self expression will begin to fade as the
programming languages and tools start to insure that you
have to play it by the rules. Hackers may hate this, but
like the Great American Cowboy, they will have to make way
for Big Business. Managers need more control over projects
and completed software will have to be easily maintained.
Remember, portability will mean that software will have an
extended life cycle.

Finally, we are beginning to see techniques and tools emerge
which address the design and support phases of software
development. The cobbler's children often run bare foot.
This is true for programmers. It seems as if they are often
the last to benefit from computerization. Work must be done
in software prototyping in order to avoid lengthy prose
descriptions of what systems will be like. Wouldn't it be
much nicer for developers and customers alike if they could
sit down at a computer and watch a prototype of the applica
tion execute. One terminal session is worth a thousand
pages of typed description.

~oftware change control systems are in use now. We see im
provements in them and the integration of program develop
ment subsystems. Perhaps expert systems will help us stay
on track when managing our time and our work load as
programmers, designers and debuggers. In the past we have
devoted much of our time to the development of the ideal
programming language. Now we are starting to realize that

there may be equally important uses for the computer in
other phases of the program life cycle.

And in conclusion....

Users of computers will have a field day by the year 2001.
They will be freed from the nuts and bolts of programming,
even if they are restricted in what they can use the com
puter for. Well defined applications will be easily per
formed by expert systems in areas which will likely surprise
us.

There will, however, probably be even more need for classic
programming in the future. For those who choose to do this
work, we just don't see the software transistor waiting
around the corner. The problems of program development are
profound and are inexorably intertwined with being human.
Tools are under development which will make life a little
easier for those who will do "real" programming. Software
portability, programmer portability and . Big Brother
programming environments are all steps in the right direc
tion. We think, though, that that's the best we can hope
for: a slow and steady sequence of steps toward Every
Programmer's dream -- to put himself out of work.

507

	VS - Various
	In Search of the Software Transistor

