
How to Compute Master Data Set Capacities

by

Kurt Sager

SWS SoftWare Systems AG
Schonauweg 8
CH-3007 Bern

Switzerland

Summary

Defining optimal capacities for 'IMAGE master data sets is not just a matter of getting a
number from a prime number table. Many other factors influence the access performance
of master data sets. A high percentage of synonyms not always means long DBPUT
transaction times, 0.1 % synonyms however may indicate severe performance degradation if
other conditions are met. A method is presented which allows to compute master set
capacities such that perfeet hashing (no synonyms at all) is achieved in many practical cases.

References:

[1] IMAGE Data Base Management System Reference Manual HP-32215-90003

[2] The IMAGE/3000 Handbook / R.M. Green, F.A. Rego, F. White, D.J. Greer,
D.L. Heidner. - Seattle: WORDWARE, 1984. - ISBN 0-914243-00-4

[3] IMAGE: An Empirical Study / B.D. Cathwell. - Proceedings HP3000
lUG 1984 Anaheim Conference. - p. 4-1 to 4-5

465

466

How to Compute Master Data Set Capacities

Introduction

In appendix C of HP's IMAGE Reference ~anual [1], the following statement is written:

"A master data set capacity equal to a prime number or the product 0/ two
or three primes generally yields fewer synonyms than a master data set
capacity of many prime factors."

The appendix in the same manual shows a table of selected prime numbers from 101 to
over 8 million.

Participants of IMAGE training classes are told to use prime numbers where possible to
reduce the number of synonyms in master data sets.

ADAGER, the well-known data base utility package, refuses any number but a prime
number as a master data set capacity to be changed. And other IMAGE utilities make
similar propositions.

These statements and practices may raise the questions below:

Where is the mathematical proof which demonstrates the superiority of
prime numbers for master data set capacities?

What is the real impact of synonyms on system performance?

If system throughput and response times suffer from synonyms, how
should the capacity be changed to cure the problem?

Are prime capacities really the solution?

Findings from practical experience

Ten years of practical experiences with many IMAGE data bases prove that best
performance is not guaranteed by just using prime numbers as master data set capacities.

Other factors have much more influence on the number of synonyms and possible
performance degradation. It is generally known, that the load factor (the ratio of the actual
number of entries over the capacity) of master sets should not exceed 70 to 80 percent.
Although IMAGE allows master sets to be filled up to 100% severe performance
degradation can be observed if entries are added to a master set already more than 80 to
900/0 full.

But in many cases adding entries to a nearly full master set shows no performance
degradation. Sometimes however terminal response times become inacceptable due to
synonym problems with master sets less than 50% loaded. Why?

How to Compute Master Data Set Capacities

It seems that the key item value distribution, or perhaps some specific value patterns, are
much more important whether or not a significant amount of synonyms is generated, rather
than choosing a prime or non-prime as capacity.

How Hashing Works

A very common task in today's data processing applications is to store an information entity
on a secondary mass storage device (disc) for later retrieval. Each information block shall
be identified by a unique key item value.

In computer science several methods are known to store an entity of information to a file
and retrieve it at a later time, based on the value of the chosen key item.

On the HP3000 two techniques have been implemented and are available to programmers as
part of the fundamental operating software package (FOS):

- the B+ Tree technique, used in KSAM files

- the Hashing method, used in IMAGE

The B+ tree technique implements an ordered sequence of the key item values as a tree in
natural order (numerical or alphabetical order). The main advantage of this technique:
processing in key order sequence is easy. The time to insert or to locate a given entity
grows with file size.

With hashing, a defined algorithm computes a relative file address using the search item
value as argument. Insert and retrieval times are independent of the file size. Ordered
sequential processing is not possible, however.

IMAGE uses two different hashing algorithms to compute a file address, depending on the
search item type.

Binary Type Search Items

If the the search item is of type I, J, K, or R (binary type), then a quite simple method is
used:

a := (v - 1) modulo c + 1

where
v is the search item value
c is the capacity of the data set
a is the computed data set address

and modulo means: "remainder of the division of (v - 1) by c"

467

468

How to Compute Master Data Set Capacities

The few examples below show how this formula works:
computed

search item value capacity address
v c a

----------------- -------- --------
10 1000 10

100 1000 100
777 1000 777

1001 1000 1
1010 1000 10

1234567 1000 567

10 500 10
100 500 100
777 500 277

1001 500 1
1010 500 10

1234567 500 67

The mechanism of this technique can be visualized by mapping the domain of the key item
values to a circle representing the address space of the master data set. Of course, the
circle has a circumference of lenght c, the capacity.

ASCII Type Search Items

If the search item is of type X, U, Z, or P, then a much more complicated algorithm is
used (see the IMAGE Handbook [2] for detail information and example calculation).

Synonyms

Starting from a key item value the hashing algorithm calculates an address between 1 and
capacity c. The entry is then stored at this address if it is not yet occupied by an earlier
added entry.

Only for a few special cases hashing algorithms perform so well that every (different) key
item value maps to a different address, however. Thus sometimes a key item value
generates the same address as an entry added earlier. This is called a collision. IMAGE
then has to find the next free space to store the new entry. This new entry is called a
synonym to the previous one, and is linked to it by forward and backward pointers. All
different key items values hashing to the same address build-up a so-called synonym chain.

Hashing is said to perform well if few synonyms are found in a master data set relative to
the number of entries. A good hashing algorithm spreads the entries as uniformly as
possible into the available address space. As the master data set is filled up, the number of
free locations diminishes, and therefor the probability of collisions will increase.

How to Compute Master Data Set Capacities

The programs DBLOADNG from the Contributed Software Library, and HowMessy, a bonus
program for customers of Robelle products, show the percentage of synonyms and the
average/maximum synonym chain length of every master set in a data base. HowMessy
runs about 10 times faster as DBLOADNG. It is well documented in the IMAGE Handbook
[2].

Performance considerations

Does a high percentage of synonyms mean bad performance for data base operations?

Not generally, performance depends on many other factors too!

The processing time to read data from a master set by a keyed DBGET is only marginally
dependent on the synonym percentage (see the column Inefficient pointers in the HowMessy
report).

The case of adding entries to a master set is more critical. If IMAGE can find a free entry
in the near vicinity of the collision point, hopefully in the same disc block, then it's just a
matter of pointer settings.

If there is no free space in the same disc block then the next block must be read from disc,
and so on, until a block with free entries is found.

The maximum number of entries per disc block is equal to the blocking factor, the ratio of
block size over entry length.

For data bases with many online accesses the block size should not be increased over the
default 512-word size. The entry size of masters however should be kept as small as
possible. Bad examples are manual master sets with many or big data items, good examples
are manual or automatic master sets containing the key item only.

Therefor: the smaller the entry size the higher the probability of a free entry in the sam~

disc block.

Many fully occupied blocks side by side, called clusters, are very dangerous if a calculated
hashing address falls in the beginning of this zone. IMAGE then has to read many disc
blocks to find a free entry for this DBPUT. During this sequential reading the whole
computer system is locked for any other processes, including MPE!

In the column Max.Blocks the program HowMessy shows the maximum number of
contiguous completely filled blocks for every master set. If this number is very low, say
zero or one, then even a high percentage of synonyms does no harm, and DBPUT's will
process as fast as ususal.

A large number for Max.Blocks indicates a potential performance problem, which actually
already may occur if there are any synonyms present.

469

470

How to Compute Master Data Set Capacities

Every production data base should be analysed by DBLOADNG or HowMessy at regular
intervals, once per week for example. The resulting output (one line per search item and
per data set) should be checked for possible problem figures, as decribed in the IMAGE
Handbook [2], chapter 23.

Analysing and correcting critical hashing situations

Our experiences show that especially search items of binary type need attention. The
following remarks apply to this type of search items only: the I, J, K and R types.

It is quite frequent that binary serach item values are forming a (nearly) continuous
sequence of integers, such as 101, 102, 103, ...

We can say they belong to a (almost) dense interval {a,bJ, where a is the lower limit, and b
the upper limit.

The corresponding master set capacity is therefor at least c := b - a + 1. Applying the
simple hashing algorithm to this case we easily see, that every search item value maps to a
different master set address. The result is perfect hashing (no synonyms at all), no matter
how full the data set is!

If the search item values belong to two or more intervals, it becomes more complicate4 to
see what happens. In fact this case is usually the reason for very long response times of
DBPUTs if the intervals are very dense and mapping them to the address space causes
overlapping of the intervals.

To overcome this quite frequent problem, the program MASCAP has been written and
contributed to the Madrid SWAP TAPE.

For search items values belonging to several intervals MASCAP cpmputes master data set
capacities such that perfect hashing will be achieved. The program aks for the lower and
upper limits of every interval, the maximum allowed capacity, and then shows ranges of
perfect hashing capacities.

How to Compute Master Data Set Capacities

The examples below show how MASCAP works (user input is written in italics):

:RUN MASCAP

MASCAP / Version 1.0 / (C) 1982 SWS SoftWare Systems AG, Bern

MASCAP computes Perfect Hashing Capacities for IMAGE Master
Sets with binary type search items (In,Kn,Jn).
This algorithm assumes that the search item values belong to
several relatively dense intervals 0

The program will ask you to enter the number of intervals,
then for each interval the lower and upper limits.

Number of intervals: 2
Limits (min,max) of interval 1 ? 8400001,8412000
Limits (min,max) of interval 2 ? 8500001,8502000
Minimum capacity allowed: 14000
Minimum capacity: 14000
Maximum capacity: 25000
Perfect Hashing Capacities from 14572 (96.1 %) to 14666 (95.5 %)
Perfect Hashing Capacities from 17000 (82.3 %) to 17600 (79.5 %)
Perfect Hashing capacities from 20400 (68.6 %) to 22000 (63.6 %)

Number of intervals: 3
Limits (min,max) of interval 1 ? 8400001,8413000
Limits (min,max) of interval 2 ? 8500001,8512000
Limits (min,max) of interval 3 ? 8600001,8602000
Minimum capacity allowed: 27000
Minimum capacity: 27000
Maximum capacity: 50000
Perfect Hashing Capacities from 28858 (93.6 %) to 29000 (93.1 %)
Perfect Hashing Capacities from 37334 (72.3 %) to 37400 (72.2 %)
Perfect Hashing Capacities from 40400 (66.8 %) to 43500 (62.1 %)

Number of intervals: 0

END OF PROGRAM

The figures above show that perfeet hashing can be achieved using even numbers as master
set capacities, for example 17000 from the first case above. When choosing a capacity
outside the reported ranges catastrophical situations may occur.

In a real case observed at a customer site, a capacity of 15013 (a prime number of course!)
and a load factor of about 70% one day produced a sudden jump in response time from 1
second previously to 4S seconds for every DBPUT to this master set. Decreasing the
capacity to 14600 cured the problem!

An other author (see [3]) reports that the benefits of prime capacities are rather a myth
than a miracle!

471

472

...._ .._n__ ._ . _ __._. _ ..n _ ~ _ .. _.__.._.•.._._. .__.._._n._._ _ _· _. ._. _._.. . n

How to Compute Master Data Set Capacities

Program MASCAP needs the interval limits as input for each run. Sometimes however the
number and the limits of each interval are not known in advance. To help in such
situations the program MASANAL has been developped. It takes a specified master data set
as input and then reports all relatively dense intervals found. The output can then be used
by the program MASCAP to compute optimal capacities.

Conclusions

To obtain best master data set capacities in specific situations the following rules are
proposed:

If the search item is of binary type and all values are contained in one relatively dense
interval between a (smallest value) and b (largest value) then use a capacity of c := (b - a +
1). The resulting hashing will be perfect (no synonyms) independent of the load factor.

If the search item is of binary type and all values are contained in several relatively dense
intervals then use the program MASCAP to compute perfect hashing capacities. If the
interval limits and their number are not known then the program MASANAL should be
used first to extract these figures from actual search item values stored in the master set.

In both cases the performance of existing data bases can be substantially improved without
any changes in existing application programs.

If the numeric search item values are distributed more or less randomly then use a prime as
master data set capacity and define the search item as binary type. In fact, the theory on
pseudo random number generators explains that prime numbers are important in algorithms
of "modulo type" to obtain good random distributions. Is this the origin of the prime
number myth in IMAGE?

In all other cases define a search item as ASCII type and use any suitable number as master
data set capacity, provided that it is not a power of 2 and that the load factor does not
exceed 70 to 80%.

	OP - Operation Management
	How to Compute Master Data Set Capacities

