
DATE HANDLING BEYOND THE YEAR "99"

by

Kevin Cooper

Hewlett-Packard Company
Pleasanton, California, U.S.A.

Summary

Most computer software that handles dates uses only two
digits to represent the year. With the twenty-first century
rapidly approachin~, we must begin to think about how we will
manage dates beyond the year "99". This paper focuses on three
issues related to the handling and formatting of dates. What are
the best ways to convert software that was written with the
two-digi t year limi tation? What techniques should be used to
design and code new programs that will avoid these pitfalls
before the year 2000 arrives? And how can future productivity
tools make all of this invisible to both software developers and
users?

Introduction

Imagine these scenarios:

January, 2000 - You arrive at the office on Monday morning,
January 3, ready to begin the new year. One of your users
calls with a problem, and you promise to have it investigated
immediac,ely. When several more callers have similar problems
within the next hour, you begin to wonder if someone has tampered
with your computer system. Before noon you realize that you have
a serious problem on your hands involving all your programs which
handle dates.

June, 1995 - Your company has a business forecasting program
which projects out five years. It worked just fine the last time
you ran it, which was in December, 1994. But now in 1995 strange
things seem to be happenin~ with the program. Figures for the
fifth year are showing up in the first column, and all the other
year~are shifted out one column. What could be causing this?

March, 1986 - I go to the bank to start a long-range savings
program for my son's college education. I invest in a long-term
note scheduled to mature in 2002, the year he will start college.

443



444

The computer printout, from the financial institution thanks me
for my business, tells me I will receive annual statements of
interest earned, and concludes by promising to send me a reminder
notice upon maturity - in March, 1902. Something makes me think
I should have takerl my money elsewhere.

The impending arr ivaI of the year 2000 will force everyone
associated wi th the data processing profession to take a good,
hard look at the way computers handle dates. Most software that
depends on dace-related information today uses a six-digit date
with a two-digit year, based on the assumption that the most
significant digits of the year will always be "19". The dawning
of the twenty-first century will change that sooner than many
might think, and the programming staff will not be able to use
the excuse that they were not given enough notice! Sort routines
will place dates in the year "00" (2000) before dates in the year
"99" (1999). And what about the potential confusion when the
date 03/02/01 appears on a report? Is this March 2, 2001?
February 3, 2001? February 1, 2003?

Before we look further at these problems, let's look back at
a little bit of computer history.

Backgro~nd

How did computers start using six-digi t dates in the first
place? The normal way people write dates is with six digits
separated by slashes. Two people who communicate using the date
03/03/86 both understand tois to mean March 3, 1986. (Note that
this example avoids the confusion caused because Americans write
dates with the month first while Europeans place the day first;
we will discuss that later.) When the computer was first being
used for data processing, data storage space was at a premium, so
the early programmers had no reason to waste two extra bytes of
storage space on every date just so they could cover the arrival
of 2000. I think they were quite justified in making that
choice.

That leaves us in the late twentieth century to solve the
problems associated with the six-digit date, or more
specifically, the two-digit year. As shown by the earlier
examples, this will impact the computer world long before we
ac~ually reach the year 2000. It has already affected some
organizations, such as financial insti tutions, who must handle
notes and loans due to mature 15 or more years from now. The
rest of us will become more aware of its consequences as the time
draws nearer.

My first introduction to this whole problem came when I was a
novice COBOL programmer working for Hewlett-Packard fresh out of
college. I needed to program a six-digit date-editing routine to
check whether February 29 was a valid date in a given year, which



is really a test for leap years. I am not recommending the
technique I chose, but I wrote the code to find leap years after
1977 like this:

IF YEAR = 80 OR 84 OR 88 OR 92 OR 96

Then I stopped and pondered. What will happen when YEAR
becomes "OO"? I was appalled as I cons'idered the impact that the
turn of the century would have on the application I was writing.
Sorts, edi ts, and countless lines of code which compared two
dates would cease to function properly. This first encounter
with the problems we will face when the year 2000 arrives made me
realize that one of two things must happen before then:

1) I must try to find ways to solve this problem and get
the word out so we don't face a computer crisis come
January 1, 2000; or

2) I must get out of the data processing field altogether
and seek a new career.

This paper represents my attempt at the first alternative.
Hopefully, this means we can all avoid the second option.

By the way, one of the interesting sidelights about the year
2000 is determining whether or not it is a leap year. The
general rule is that years divisible by four are leap years;
based on this rule, 2000 should qualify. However, this rule has
an exception. If a year is divisible by 100, then it is not a
leap year. That seems to indicate that February, 2000, will only
have 28 days, right? Well, no; there is another exception to the
first exception. Years divisible by 400 are leap years. I had
never heard of this 400-year rule until I saw it coded in someone
else's dat,e-editing routine, so I checked my almanac and found
that the year 2000 truly is a leap year, with February 29 falling
on a Tuesday. This means that leap year tests which ignore the
exceptions and just check if the year is divisible by four will
work until 2100 arrives. That is long beyond the expected life
span of any computer program in existence today.

Conversion Methods

The first issue for discussion is the conversion of software
that was designed with the limitation of a two-digit year. This
problem may seem like it is a long way off, but we cannot avoid
the issue for many more years. We have already seen that
programs which project out to future years will have problems
well before the twenty-first century arrives. Even if we assume
that the majority of date handling programs will only have errors
when we actually reach the year 2000, we are left with less than
14 years to completely eradicate the problem.

445



446

So what software should we be concerned about converting? To
answer this quest,ion, we must try to. figure out what software
will still be around in the year 2000. One possible gauge of
that is to look back 14 years and see what software from 1972 is
sr,ill around today. Two obvious examples in the HP 3000 arena
are the MPE operating system and the IMAGE date base management
system. Whi.le most of their code has been rewritten over this
time span, much of the original designs remain, such as the
six-digit da~e used at system startup by MPE. There is no way to
know whether these designs will still be around in the year 2000,
but, we can see from these examples that some of the software
bein~ developed today will in all likelihood survive the 14 years
left until we reach the year 2000. Unless these new programs are
designed and coded using some of the techniques to be discussed
la~er, they will be the ones which require converting as the next
century approaches.

Given the high probability that some software will need to be
converted, when should all the necessary changes take place? Do
we need to start ct?nverting ·our entire collection of eXisting
software right away? No, I don't think so. Based on a typical
life span of five to ten years, most of the computer programs in
eXistence today should be obsolete by 2000 (although that is not
the same thing as being completely out of use!). The time to
evaluate this type of conversion will be a year or two before
each software system begins to malfunction. For most software
that means the late 1990' s, which certainly gives us plenty of
time to prepare!

Even so, I predict that the upcoming arrival of a new
millennium will catch many of those in the data processing
profession by surprise. Conversion will be a big issue because
organizations will not realize the magnitude of the effort ahead
of them. I would like to present three possible conversion
methods to help you estimate the effort that will be required
when the time comes.

1) Full Upgrade. This technique requires converting data and
programs to use a four-digit year. This is the mostcITrect
approach because it is a complete conversion that involves no
gimmicks. But it may require a massive effort to find every
occurrence of a date field, change it, recompile every program
which references it, and test it all thoroughly. The source code
for every program must be available, and the current compilers of
the day must be able to successfully recompile that code. The
amount of time for testing should not be underestimated, even
though this seems like such a straightforward approach. Because
of the extra data space required, the possibilities for stack
overflows and inefficient blocking factors (or whatever errors
future computer architectures give us) are endless. Reports may
no~ be able to accommodate two extra columns of data, so
conversion routines will probably need to be written to print the



date with a two-digit year.
they see "DO" as the year
computersl

People will have no trouble when
after "99" that only confuses

2) Logic Upgrade. This technique leaves data as it is but
implements some addi tional logic to handle dates properly. For
example, it may be reasonable to assume that years above "50"
belong to the 1900's while the rest belong to the 2000's. This
method makes sense for programs which frequently use dates wi th
two-digit years but do few comparisons (such as determining which
year is greater). In these cases, the cost of a full upgrade as
described above may be too high to justify. These new date
comparisons could be implemented as common routines which could
be called by many different programs. While this is less costly
than a fUll upgrade, we must still be able to locate and
recompile the source code. The effort to test should be less
than that required for a full upgrade because fewer changes are
being made, but again this should never be underestimated.

3) Data Upgrade. If source code does not exist or cannot be
recompiled successfully, the only option besides a total rewrite
is to attempt a data conversion of some kind. This can get
tricky, but it just may work. If dates are stored in character
format (rather than packed or integer), the ASCII collating
sequence contains several special characters which have an
internal value less than the value of the character "a" (zero).
At the time when year "00" is about to be introduced to the
system, all the two-digit years beginning with "9" can be updated
to start with a special character such as blank or asterisk (*).
This will force dates wi th year "00" to sort after dates wi th
year" 9" or "*9". Users will see years of " 9" or "*9" on their
screens and reports whenever they access the old data, but people
can be educated in advance about the change. This will work best
in instances when the older dates will be aged off the data base
soon after the conversion. There is some risk here that the
strange-looking dates will fail a logic edit or cause other
problems, but this technique can be viewed as an acceptable
work-around when the only other choice may be to scrap the
programs entirely. A similar approach would use characters like
"AO" to represent the year 2000, since they will sort after "99";
but such dates would be harder to work with and would remain in
our data for a longer time. As wi th the other methods, any
changes must be thoroughly tested in each environment before they
can be considered succ~ssful.

New Design Techniques

As we have already stated, the best way to avoid the problems
associated with conversion is to design and code new programs
today in a way that eliminates the basic problem. It is not too
early to begin using this strategy. Most of the software-that
will cross over into the twenty-first century has not yet been

447



448

created. Unless we adop~ some new design techniques, we will be
building time bombs into all of this new software, set to blow up
at some time around the turn of the century. If everyone in the
computer world begins to adopt these techniques over the next few
years, there will be no need to worry about the conversion
methods already discussed.

The first technique is so obvious that it hardly seems to be
worth mentioning, but it is the key to solving the whole problem.
We must begin to use four-digit years! The cost is two bytes per
date, a small price to pay for extra storage when compared to the
cost of converting software. Sometimes these two bytes can fit
in~o wasted space at the end of a block of records, requiring no
additional storage. Even when that does not work, it will take a
half million dates to use up an additional megabyte of disc
space, with a thousand dates fitting into the same space as a
25-line editor text file. Most importantly, the amount of effort
required to begin coding in this manner is very small.

The second technique involves adopting formats that will
represent dates unambiguously. This brings us back to one of the
more subtle problems associated with date handling even today,
which comes up occasionally at an international conference such
as this one. Computers aside,. those of us from the United States
are used to writing our dates in the format Month/Day/Year. In
many other parts of the world, a different order is used:
Day/Month/Year. This can lead to confusion about the meaning of
a numeric date on correspondence. Introduce computers and the
many organizations that use them across international boundaries,
and we are certain to have confusion when a date such as 03/02/86
appears on a report. Is this March 2 or February 3? There are
132 days each year when this problem occurs (12 months times the
first 12 days of every month, less one day per month when both
month and day are iden~ical, such as 03/03). Each of these dates
has two possible interpretations, but at least there is no
confusion about the year since there is no month or day numbered
86. In fact, at no time since the invention of the computer has
it been possible to confuse the current year with any month or
day.

Now let's introduce the twenty-first century, which actually
begins with 2001. This is about the only area where a two-digit
representation for the year 2000 will not give us grief, since
year "00" (2000) does not conflict with any month or day. But
the year 2001 will cause a whole new round of confusion if it is
displayed with only two digits. Sometimes computers use not only
the two formats discussed above (Month/Day/Year and
Day/Month/Year) but also Year/Month/Day, the order in which dates
are often stored internally for sorting purposes. So how do we
interpret 03/02/01? As March 2, 2001 (Month/Day/Year)? February
3, 2001 (Day/Month/Year)? Or February 1, 2003 (Year/Month/Day)?
The number of ways to confuse dates increases significantly



during the first 12 years of the new century, since the values
"01" through "12" can now represent the month, day or year.
There are 1716 dates where this confusion can occur during these
twelve years (12 months times the first 12 days of each month
times 12 years, less one day per year when all three are
identical, such as 01/01/01). Each of these dates now has up to
three possible interpretations.

This problem should be taken care of now by choosing
unambiguous formats for displaying dates. First of all, the year
should be displayed using all four digits, such as "2001". This
can be phased in gradually between now and the turn of the
century, since the two-digit year does not confuse us yet. Then
we must find a way to distinguish the month from the day. One
method would be to use ordinal numbers, such as 1st, 2nd, 3rd,
to represent the day of month. These representations often
differ across languages, so this does not solve the international
problem. Since people rarely use them in correspondence, they
might be awkward to computer users, and they could still possibly
be interpreted as months. Another approach is to use alphabetic
representations for the months, such as Jan, Feb, Mar. These are
more familiar to people, and they cannot be confused with the
year or the day. The problem of language differences still
exists, but these abbreviations could be translated into the
local language for displaying. A common set of routines, similar
in concep~ to HP 3000 Native Language Support, could be
implemented to take care of this localization.

The resulting dates have a format like "MAR 02, 2001" or
"02/MAR/2001", which are both much clearer than 03/02/01. The
important point is not what format we choose, but that every user
understands 'exactly which date we are representing.

The third technique that will greatly aid our system design
is the use of a productiv i ty tool called the data dictionary.
While dictionaries do not represent a new concept, many software
applications are still being developed wi thout them. A data
dictionary maintains information about all our data elements,
includin~ which programs and data sets refer to each element. If
we must expand a six-digit date by two digits to accommodate the
year, the dictionary simplifies the conversion process by
locating all the places where changes must be made. I predict
that its value as a productivity tool will continue to be
demonstrated by increasing popularity over the next few years.

Future Productivity Tools

The data processin~ world needs a whole new way to look at
date-related information. Currently, dates are usually treated
like any other piece of data containing six numeric Characters,
but in reality they have several unique properties:

449



1) Dates are rarely printed in the same format as they are
stored. Slashes are often added, requir ing program logic or an
edit mask for every date field.

2) Dates must pe stored in Year/Month/Day order for ease of
use in sorting and comparisons. Since this is not how most users
prefer to view their data, edi ting logic of some kind must be
coded to rearrange the order.

3) There can be ambiguity about what a date field represents,
depending on the order in which it is presented. As we have
already seen, this ambigui ty will be even greater in the next
century when two-digit years such as "01" can be confused with
the numbers representing months or days.

I propose that all future programmer productivity tools
incorporate a special data type for dates. This data type will
be handled within a data dictionary just like integer o~

character data is today. Every other tool that accesses dates,
such as screen handlers, programming languages, code generators,
and report writers, will be based on the data dictionary. Since
all these tools will understand the meaning of the type called
"date", they will all handle dates in exactly the same way.

The key here is that the internal storage technique can be
completely isolated from the way users see dates. There will
only be one way dates are stored internally, and every tool which
accesses dates will understand that storage method. The
technique must allow for the turn of the century and beyond,
implying the ability to handle four-digit years, and for easy
comparison between dates, implying an .ascending order. One
example of such a technique would use 32 bits as follows:

High-order 16 bits:
Next 8 bits:
Low-order 8 bits:

Year
Month
Day

o to 9999
1 to 12
1 to 31

450

Another example would start counting at some set date in
history and add one for every day. We could also use eight ASCII
bytes. While techniques like these are not new, the problem up
until now has been that programmers needed to know the internal
representation. This will 'no longer be true wi th our. proposed
productivity tools! No one accessing a date field will need to
understand the internal storage method; the outer layer of tools
will manage that for us. Some languages today automatically
convert numeric data to a readable format for displaying; dates
need to be treated the same way.

For this to work, all access to these date fields must be
handled by the tools associated wi th the data dictionary. One
objection to this technique has been that generic tools (such as
QUERY/3000) do not understand the special meaning associated with



these fields. In the future, generic tools must know what type
of data they are accessing, beyond just character or integer. To
accomplish this, all tools will need to use data dictionaries for
their description of data elements.

The end result of providing these tools is that programmers
will not need to worry about handling dates at all. Once a data
element has been defined with a type of "date", the computer will
take over with a set of common routines that understand both the
internal storage technique and the defaul t display formats for
dates. The software developer or end user only needs to refer to
the data element, and the computer will handle:

Sorting and comparisons
Editing (for valid dates)
Range checking (such as dates between March 1, 1986

and March 31, 1986)
Displaying in the proper format

This represents another step toward making computers friendlier
to everyone who uses them.

Conclusion

Al though we still have plenty of time to implement all of
this by the year 2000, the years will go by faster than we
realize. We must start thinking along these lines now. Those
who develop productivity tools should begin to plan how their
software will handle the arrival of the twenty-first century.
And those who create software using these tools should begin to
ask about plans for the future. It is not yet too late by any
means, but as the British poet Andrew Marvell once said,

"At my back I always hear
Time's winged chariot hurrying near."

The time will creep up on us sooner than we think. So let's be
ready, because on Monday morning, January 3, 2000, no one in data
processing will be able to say that they were not given enough
notice to solve these problems!

Biography

Kevin Cooper is currently a Software Engineer (SE) with
Hewlett-Packard Company, Neely Sales Region, supporting HP3000
installations in the San Francisco Bay Area. Prior to this he
worked for eight years as a programmer/analyst and project leader
in Hewlett-Packard' s internal Information Systems organization.
He holds a bachelor's degree in Computer Science from the
University of California, Berkeley.

451




	OP - Operation Management
	Date Handling Beyond the Year "99"


