
ME~ rATAlOOSAND NATIVE lAN6UA6E SUPPORT

GlennQJle
QJnsultant

fairfax, Virginia U~

Summary

One of the least-used features of the HP3000 is the Message catalog f~jlity and the
more-recent Native l81'lgU8gB Support. The message catalog is intended to be used in applications
where there is 8 non-triviel number of (error) messages to the user. The classic application of
this Is MPE.

The other intended area of use is where the same application program is used by different
people who understand different 1~. In this C8S8. only the messages need to be changed ­
modifying and recompiling the application is not necessary.

The message fa:tltty is 88F/tf to use. has minimal overhfBJ. and may save substantial data sttEk
area. This paper highlights 8 C8S8 history where use of this f~nlty was virtually required, and
then details the relatively painless Wtf(in which it was implemented. Afterwards. 8 comparison is
given between the original Mess8ge catalog fSJility of MPE and the similar feature within Native
language SUpport.

429

430

'n\nx1uc\lon

The Message catalog ff£i1ity provides 8 means of programmatically axessing messages
contained within a specially-formatted file by using standard MPE file system intrinsics.
Parameter substitution Is allowed, and tneSS8J8S mav be routed directly to the Ust device. retrieved
for use by the 8PPlication program, or both. This facility is provided by Hewlett-P8Ckard as part
of the Fundamental Operating System (FOS), and thus is 8Vailable under all versions of MPE on al1
HP3000 computer systems at no extra cost.

The case: (Port 1 - The Problem)

At the time (late 1983). I was empJayed by a major MoYlng 8< Storage oompeny as 8
ProgrammerIAn81yst, working on.a team developing an on-line Dispatch System. It was designed so
that when a truck driver called his lOO8Uon in to a dispatcher. the dispatcher could see where the
truck was 9ling, update Its current location, and pass along err(messages to the driver. The
Dispatch System also kept a history of each shipment that could be brought up at any time, along
with any mmments remrded by 8flOther dispatcher during handling of the shipment.

The Dispatch System used VIEW and IMAaE extensively, and was written in 00801. II running
on a series 64 under the Q-MIT release of MPE IV. It was 8 menu driven system with d{namic
subprograms. Most or these subprograms used VIEW screens as well. Some of these subprograms
could call other subprograms. The "longest path" was about 4 levels deep, not counting the main
menu. Most of the subPJ'OT81Ils in this path had many messages to retain - the average WEE about
40 messages of 80 characters each. These were kept in WORKING-STORAGE along with the other
data requirements of the subprogram. Each time 8 subprogram was caned, its WORKING-STORAGE
SECTION - that is, the data area of the program - was atied to the data st~. The end result was
that when this "longest pa~h" was used, it resulted in a STACK OVERFLOW and the program aborted.

This was not~ news. The target date for implementation was approaching rapidly. Not
only dld·we·need a soluUon. but we needed one that could be Implemented fairly quickly, that would
not compromise the design set forth by the 8n8lysts, and that would work.

TheC8se: (Part 2 - ASolution)

The stage was set. I knew of the existence of message catalogs by virtue of reading the System
Intrinsics Manual. However. I had never used this facUity, nor had I ever seen an application that
did. None of the other programmers knew anything ebout message catalogs either.

I happen to like the €b:umentatioo provided for the HP3000. Sometimes it is difficult to find
the desired information. Sometimes the information, once found, is neither entirely accurate nor
complete. (Fortunately, on the occasion when It Is Incorrect, 1t usually says "This cannot be mne"
when in fact it can. instead of the other Wff/ around.)

In this atSe. the documentation seemed quite clear. and it eppeered that a solution was at h8nd.
first, I set up 8 small test program to verify that I understood both the concepts and the mech8nics
of Message catalogs.

The concepts are rather simpIe and straightforward. Amessage catalog (Figure 1) is created
initially as a standBrd MPE flat file, and consists of from 1 to 62 "sets," ef£h containing up to
32767 messages. sets are Indicated by "$SET nn beginning In column I, where "n" Is the set
number (1 - 62). The sets should be in ascending sequence by set number. but the numbers need

$SET 1 *** SYSTEM MESSAGES ***
$ AThe above comment begins HERE {2nd space}
$This comment I ine is INUALID (no space after "$")
1 LDEU #, IN USE BY FILE SYSTEM

·05 IS "I" ON LDEU I! (YIN)?
$ Note: (1) Numbers need not be CONSECUTIUE
$ (2) Leading zeros are al lowed
$ (3) Comments may be inserted between msgs
9 ANOTHER MESSAGE (NOCIERROR)
$SET 3 *** Non-Consecutive Set Number
10 This message is &
continued.
$ The above prints "This message iscontinued. 1l (Why?)

Figure 1 - Sample Message Catalog

not be consecutive. (For example. 8 messtJJ8 cata10tJ with only 3 sets - numbered 2. 7. and 15 - Is
perfectly valid) The remainder of the line following the SJHE8 8fter the set number may be used 8S
a free-form mmment (e.g., "SSET 1*** System MessIIJBS"). other mmments may be included by
entering 8 "ebner-sign SJHE8" ($) beginning in column I, with the remainder of the Jine
(columns 3 thru 72) used for the comment.

Eldl message in the file is uniquely identifi8t by its set number (described 8boYe) and by its
message number (1 - 32767). Thus, message number 100 tn set 1 may be mmpletely unrelated
to message number 100 in set 2. MessIIJBS are entered under the appropriate $SET heading with
the messtJJ8 number beginning In column 1. followed by 8 single spa. followed by the text of the
message. Note that the message numbers within 8 set must be in ascending sequence, though they
need not be consecutive. (P lease review Figure 1.)

There are three (3) specIal-purpose charlEt81'S that may be Included in the messtJJ8 text.
These include the continuation characters "ampersand" (&) and "percent" (I), and the parameter
substitution ch8r~ter "exclamation mark" (D. Wh9n 8 continuation ch8rEder is entered as the
last non-blank chars:ter on 8 line, it indic8tes that the next line is to be included as part of the
current message. It is important to note that al1 blanks immediately prealting the continuation
char~ter are IGNORED. Thus. there Is some latitude as to where the continuation ch8rtEter may be
p18Ced. More importantly, this meens that the following line probably should begin with 8SJHE8.

Now, recall that the application proyam may elect to have the messtJJ8 routed directly to the
user's terminal. This Is where the two continuation ch8rs:ters differ. If the "peramt" symbol
(I) is used, then a carriage return and line feed are printed before continuing with the next line.
The u8fftP8l~ld" (&), however, indicates that the amUnuatton line should be printed WITHOUT
first printing 8 carriage return and line fem. In this asse, the continuation line will be printed
Elljscent to the current line. Thasa symbols correspond roughly to the SPACE (140) and 1320
carr1age oontrol ch8rEEters.

Eldl message may contain up to five (5) excl8m8tion marks (I) for parameter substitution.

431

Each passed p&r8m8\er is inserted in the message where the corresponding exclamation mart
cx:cur-s. with the first paremeter rephEing the first exclamation mark. the seam parameter
replm:ing the second exclamation merk. and so on. until 811 parameters are included. (Please
review Ftgure 1again. see - 8 picture really IS worth 8 thousand wordsl)

The mechanics of using 8 message catalog are almost as simple as Understanding the amcepts
given above. Before an application can use 8 message catalog•. it (the catalog) must first be
prepared for use (figure 2). Remember. the messages are entered with EDITOR (for example) and
kept as one would keep FORTRAN or SPl source code, that is, as 8 numbered file with 80-byte
fiXed-length raD'ds.

$SET 1 *** System Messages ***
1 System Msg 11 This CREATES
II Ithe initial

message f i Ie.

:EDITOR
«Banner I ine displayed here»
IADD

1
2
3

I

/KEEP MSGFILE
/EXIT
END OF PROGRAM I

This SAUES the converted
catalog as a permanent
fi Ie, which may sti I I be
used by EDITOR.

This CONUERTS the fi Ie
to a form understandable
by the message system.

l

:SAUE CATALOG
:PURGE MSGFllE
:RENAME CATALOG,MSGFILE

:FILE INPUT=MSGFILE
:RUN MAKECAT.PUB.SYS I

** UALID MESSAGE CATALOG II
END OF PROGRAM I

}
Figure 2 - Preparing the Message Catalog for Use

The next step in preparing this catalog for use involves running the system utility program
MAKErAT to install 8 "directory" on the fUe as 8 single user label. This utility red the data from
formal fne designator INPUT and builds a temporary ftle called rATALOO. AJr.t existing temporary
file nemElt rATAlOO is renamElt to rATnn, where "nn" is the first 8Yailable number. (Note .that the
first file is renamed to rAT 1, not rATO 1, and so on.) Ashort (perhaps cryptic) error message is
displayed for 8IEh line believed to be in error. If this happens. then the CATAlOO fne is not bunt.

432

Return to the EDITOR, text the fi Ie, fix the error , and try again.
Once v81id8ted, the message ..** VAliD MESSt\GE CATALOO" is displayed and the rATALOO file

is built. At this point, yoU may :~VE rATALOO and then :RENAME rATALOO,myfiJe. (Of murse, if a
file named rATAlOO alrestt exists, you may have to use the :RENAME rATALOO,myfile,TEMP
command and then :St\VE myrne.) Once this has been accomplished, the message cat81~ Is restt for
use. (Pleese review Figure 2.) Note that you can sun mooify the message catalog by returning to
the EDITOR, texting the file, making the desired changes, keeping the file either under the same
ll8I1le or under some other name, 8Ild running MAKErATagain.

In order for the eppllC8tkm progrem to sx:ess the message C8t8log, the file must first be
opened. This is mne with the standBrd fOPEN intrinsic. The important things here are the
FOPTIONS and AOPTIONS parameters. FOPTIONS (file options) should Include Old, Permanent, and
ASCII (15). AOPTIONS (sx:ess options) should Include Multi-Record and Nobuf (1420).

The intrinsic GENME&<W3E is the key to the whole operation. A (b.rlef) description of this
intrinsic is given in Figure 3. Recall that the target application that I was mncerned with used
VIEW screens. This meant that the message could not be sent directly to the terminal; the
application had to use abuffer and then show the message using the appropriate VIEW calls.

The smal1 test progrmn that I ussi to verify I understood 811 of this worked fine. The
questions now were: How can this be integrated into the Dispatch System? Should eE£h subprogram
cal1 eENME~ expUc1tly? W111 the savings In dete stD area be sufficient to allow the program
to run without the STACK OVERFLOW?

If the subprograms called GENME&<W3E explicitly, then they would have to know the file
number (returned by FOPEN) of the message catalog. This means that the routine performing the
FOPEN would have to pass the file number to the other subprograms, which meant modifying the
J)8rameter list both in the calling routine and in the caned routine. (The other a1ternetive - eIdl
subprOY8l11 FOPENing the message catalog when begiooing. 8I1d FClOSEing it when leaving - could
not be considered seriously because of the tremembJs overhetrJ the FOPENs and FQ.OSEs would
cause.) This seemed to have too much chance of programmer error.

There was still another alternative, one that appealed to me from the start, end which seemed
to involve the least program mooification. Ral1 that when a DYNAMIC subprogram is called, it
gets an "original" copy of its WORKING-STORAGE section. That is, the variables in
WORKING-STORAGE are re- initialized to the values defined when the subprogram was compiled.
However. for esubproFam that is NOT declared as DYNAMIC, the variables 1n WORKING-STORAGE
are NOT re- initialized. For example, let us imagine 8 non-DYNAMIC subproJr8m with 8 variable
named COUNT described initially with a value of zero (0). let us also imagine that during the
course of this subprogram, COUNT Is Incremented by one (1). Now, for the first executton of this
subPraT8In. COUNT will be zero (0) upon entry, and one (1) upon exit. However. the second time
through. since COUNT is not re-initia1ized to zero, COUNT will be one (I, the previous value) upon
entry and two (2) upon exit.

My idea. then. was to have a single subprogram that would m both the FOPEN and the
GENMEss-\6E caUs. The subprogr811l would define the file number initially with 8 value of zero
(0). This value would be checked and the subprogram execute the FOPEN only when the file number
was zero, i.e., on the very first call. Asuccessful FOPEN would change the file number to a
non-zero value, so subsequent calls would not execute the fOPEN. (Note, howeVer, that this
approEdl meant that the message catalog would be cJos8j implicitly by the file system when the
application terminattlt. instead of being closed explicitly by the application.)

433

I IV IV IV
nlsg1en:= GENMESSAGE (fjlenum} setnum}msgnum ,

BA IV
buff} buffsize l

LV LV . LV

434

parrnask} parrrlll'ul Dorrn5 1

. ·IV I O-V
rnsgdest I errnurn).:

buff A byte arrey to which the rnessage is returned
buffslze: Length .. in b~tesl of "buff"; passed TO intrinsic

parmaslc 16-b1 t Logl cal mask descrlbi ng parlns 1 thru 5
61 t (0: 1) = 1. Ignore rest of word &. parms 1 thru 5

=O. Rest of word l in 3-blt groups} defines
parrri types for perms 1 thru 5

Bits (1 :3) =(Pornl 1 type) .
o- byte address of strl ng

(string terminated by ASCII "null")
1 - integer
2 - word address of "double" identifier
3 - ignore th1s parm

Blts (4:3) =(Parm 2 type; same values 8S Parln 1)
Blts (7:3) =(Parm 3 type; same values as Parm 1)
(etc.)

rrlsgdest: destlnation of 6ssembledl,message;
O=$STDLIST; >2=File nurnber of destin~t ion f11e

Figure 3 - The GENMESSAGE Intrinsic

The other subprograms did not need the fun flexibility available with GENMESSAGE, so Ufing
8 few limitations to keep things simple would not be critical. For example, no routine in the
Dispatch System needed to substitute more than three (3) parameters in 8 messtlje, end these
values were never more than eight (8) bytes long. Thus, it~edfeasible to code the datalIs of the

message retrieval into a single subprogram. As an died benefit, this meant that the technique could
be mooified at some point in the future without having to modify the other subprograms. The
remainder of this paper refers to this user-written message retrieval subprogram as aETMSG.
(Appendix Ashows the FORTRAN source code for OETMSG. The actual implementation was written
in COBOL, but fORTRAN I 1s more fl)m~ E1ther language win suffice.)

Replacing the hard-axEd messages in the subprtJJr8ms with calls to BETMS6 was not very
difflcult. fortunately, 1t was not very Ume-oonsuming either. Since the immediate worry was the
"longest path" within the Dispatch System, these subprograms were modified first. After all, if
this "solutionII did not work, then it was not asolUtlon at all, and the effort experd!d thus far was
merely educational at best

The subprograms had to know. what set Number and Message Numbers to use, since these were
the main Input parameters for 6ETM56. These were assIgned somewhat arbitrarIly, baSed on the
number of messages used by 8 given subprogr8l1l. (I think 811 four subprograms were assigned set
Number 1, and the Message Numbers assigned were 1-100, 101-200, etc. This gave plenty of
room for future growth.) .

The subprograms had been axEd with the messages grouped together in WORKING-STORAGE.
When Btl subprogr8l1l was text into the editor·, this range of lines W8S kept In 8 separate fne.
(This 8UXiliary file was modified later so that it muld be included 8S par-t of the message file. This
meant that the actual messages did not have to be re-entered.) In the subprogram, the variable
names assigned to the messages remained the same. However, each description was changed from
PIC X(~O) to PIC S9(~) COMP f and 8 VALUE equal to the Message Number was assigned. The
Message Numbers were assigned in sequence, with the first message getting the lowest Message
Number assigned to the subprogram. (Please see figure .. for 8 "before" and "after" look 8t this
area.) Fields were also died to hold the set Number, the generic Message Number, the retrieved
Message, and three (3) 8-byte parameters for substitution (whether needed or not).

The PROCEDURE DIVISION was then searched for all moves to the VIEW winOOw area. Each of
these MOVE statements was repUaced by two (2) other statements: A MOVE of the desired Message
Number to 8 holding area, and 8 PERFORM of the utility routine (as yet unwritten) that would
retrieve the desired message. (The set Number did not have to be moved, sire it remained constant
throughout the subprogram.) Note that if parameter substitution was requirBd for the desired
message, the necess8I Yvalue(s) would also have to be moved prior to the PERFORM.

The utility routine PERFORMed was quite simple, but I felt it was worthy of its own
psregreph. It oonsisted only of a rAll to eETMse. followed by 8 MOVE of the returned message to
the VIEW winOOw area. Note that if an error oocurred in eETM58 (e.g., 8 missing Set
Number/Message Number'combination), this was indicated by the returned message.

The dat8 8re8 saved was tremenOOus, and the "longest path" worked, so this was intEed a
solution. Perhaps just as significant is the f~t th8t it took just two (2) days to research and
implement it. There was very little new axling involved, end the technique was relatively simple
and straight- forward.

435

01 PROGRAM-MESSA6E-AREAS.
05 PM-NO-SUCH-ENTRY PIC X(10) UALUE

"** No such entry; please try again.
05 PM-DUPLICATE-TRAIL~R 'PIC X(10) UALUE

"** That Trai ler already exists!

"'larking-Storage before GETMSG

01 PROGRAM-MESSAGE-AREAS.
05 Pt1-NO-SUCH-EHTRY PIC 59(4) COMP UALUE '101 .
05 PM-DUPLICATE-TRAILER PIC 59(4) COMP UALUE 102.

01 GETMSu-PARns.
05 GP-SET-NUMBER
05 GP-M5G-NUMBER
05 GP-PARM-l
05 GP-PARI1-2
05 GP-PARr1-3
05 GP-MESSAGE

PIC 59(1) COMP,
PIC 59(1) COf1P,
PIC X(08),
PIC X(08) I

PIC X(08) I

PIC X(60)i

436

~"(IrJ(lng-Storageafter GETMSG

Figure 4 - Working-Storage before and after GETMSG.

Another Alternative: Native l8J'lQlHlJB SUPPOrt

In the time since GETMSG was implemented, Hewlett-Paard has intrOOlJcBj Native langualJ!
Support (NlS). As with the standard MPE message catakJJ flEiHty. this is included as part of the
FundBmental Operating System; however. I believe you must be running under some version of
MPE V. Native langll8J8 SUpport is en excellent idea, and it embOOies far more than an improved
version of message catalOJS (now called the "application message facility" under NlS). However.
only the application message facility is discussed below; most of NlS gJeS beyond the scope of this
paper. (The manual is very readable; I strongly encourage you to read through it.)

A chart comparing MPE message C8l81cgs with NLS is shown in Figure 5. Note that the two
are very mlnpatible. In fl£t, the 6ETMSG routine described earlier can be re-written to use NlS
without modifying 8RV other subprogram I

t1PE NLS

Limits:
Set #'s: 1 - 62 1 - 32766
11essage #'s: 1 - 32767 1 - 32767

User Labels: 0

Data NO YES (see text)
Cornpressl0n?

Physical
Characteri st i cs:

REC=40, 16,F,BINARV; REC= 128,1 ,F ,BINARV;
COOE=O CODE=MGCAT

Forrnat t i ng
.Prograrn:

Intrinsi cs
Used:

Order of
P8rarneter
Subst itut ion:

r"lAKECAT .PUEi.5VS

FOPEN} FClOSE}
GENMESSAGE

Deterrni ned by
, c811 i ng sequence.

GENCAT.PUB.S¥S

CATOPEN} CATClOSE,
CATREAD

11ay be forced by
rnessage. If not}
then deterrni ned by
call i ng sequence.

Figure 5 - MPE Message Catalog vs'. NLS

There are a few things worth noting that are not mentioned in the chart. First, the only data
compression used by NlS is based on the blank spa between the last non-blank ch8nd.er of 8fdl
line and the logical en6-of-reoord (Remember, the Editor's line number is tdually in the last
eight (8) bytes of each record The logical end-of-record mentioned above refers to the position
just before thls.) 'Thus. the worst pIa for the conUnuation chara::ter (in terms of data
compression) is in the l8St position of the record The amount of disc spa consumed by this file
compared to that of 8 standard MPE m8SS8JB catalog appears to be directly proportional to the
average m8SS8JB length. Thus, 8 file whose aver. m8SS8JB takes up one-h8lf of the record
consumes about one-half of the disc spa of the equivalent MPE message catalog. (As an example,
the system m8SS8JB catalog takes up about 401 less spa when formatted for NLS.)

Regarding physical disc 1/0's: 8 brief stud(of the file Close records in the system log file
shows that while the number of RECORDS prfX2SSed remains the same whether or not NlS is used,
the number of BLOCKS prfX2SSed is reduced anywhere from three (3) to over ten (10) times. That
is, NlS ~ay require less than one-tenth of the disc 1/0's of an equivalent MPE m8SS8JB catalog.

437

438

Note also that the blocks are smaller under NLS - 128 x 1= 128 words for NlS versus 40 x 16 =
640 words for MPE.

ConcJusim

In conclusion, I would like to encourage you to look into message catalogs. They are easy to
use, 8fJS(to customize, and In some cases, they may prove critical to the sua:ess of 811 application. I
would also like to encourage you to look into Native Language SUpport. The reference manual is
very reed8b1e. Among other things not mentioned in this paper, it explains how 8 sinole application
can easily reference different message catalogs geared toward different languages. Hewlett-Packard
has put considerable time, thought, and effort into this, and has made these tools 8Yailable to us at
no extra cost.

81Waohy

Glenn <DIe h8s 8 B.S. in M8themaUcs from James Mtllison University, H8rrisonburg, VA. He
has been using the HP 3000 since 1978, end is now an HP 3000 consultant in northern Virginia
(USA).

Appendix A. FORTRAN source for GETMSG.

SUBROUTINE eETMSG (ISET ,INSG, CPARM I, CPARM2, CPARM3, CMSG)
c

CHARACTER*08 CPARM 1, CPARM2, CPARM3
CHARACTER*80 CMSG

c

c

c

INTEGER IMS6lEN
CHARACTER*28 crATNAME
CHARACTER* 10 CPARML (3)
LOGICAL LPARM 1, LPARM2, LPARM3
EQUIVAlENCE (LPAAM 1, CPARMl (1»
EQUIVALENCE (LPARM2, CPARMl (2»
EQUIVAlENCE (LPARM3, CPARMl (3»

DATA IFILEIOI, IMAXLEN 1801, crATNAME I"CATFILE.PU8.PROD "I

SYSTEM INTRINSIC FOPEN, GENMESSe\GE
c
C ---
C Open message catalog jf not open aIr.,.
C

IF (IFILE .NE. 0) 00 TO 10
IFILE =FOPEN (CCATNAME, ISL, 1420L)
IF (.CC'> 5, 9, 5

5 CMSG =N** Message catalog not open. Gall M.I.S. N

001099
9 CONTINUE
10 CONTINUE
C
C ---
C Inlt parms (ASCII NUL (10) at end of eEdl string).
C

CPARML (1) = CPARM 1
CPARML (2) =CPARM2
CPARML (3) = CPARM3
00201=1,3

CPARMl (I) [9:2] =II II
CPARML (I) [INDEX(CPARML(I),II ") :1] = IOC

20 CONTINUE
C
C ---
C ActU81 message retrieval; 10 indicates 811 perms are STRINGS
C

IMSOlEN = aENMESSI\GE (IFILE, ISET, IMS6, CMS6, IMAXlEN,
+ 10, LPARM1, LPARM2, lPARM3""IERROR)

c
IF (IERROR .EQ. 0) 60 TO 99

c

439

440

CMSG = u•• Message retrieval failed. ca11 MJ.S. If

c
c ---
C Wrapup
C
99 RETURN

EXIT

	OP - Operation Management
	Message Catalogs and Native Language Support

