MESSAGE CATALOGS AND NATIVE LANGUAGE SUPPORT

Glenn Cole
Consultant
Fairfax, Yirginia USA

Summary

One of the least-used features of the HP3000 is the Message Catalog fecility and the
more-recent Native Language Support. The message catalog is intended o be used in applications
where there is 8 non-trivial number of (error) messages to the user. The classic application of
this is MPE.

The other intended area of use is where the seme application progrem is used by different
people who understend different lenguages. In this case, only the messages need to be changed —
modifying end recompiling the application is not necessary.

The message fecility is easy to use, has minimal overhead, and mey save substantis) data stack
area. This paper highlights a case histery where use of this facility was virtually required, and
then details the relatively painless way in which it was implemented. Afterwards, 8 comperison is
given between the original Message Catalog fecility of MPE &nd the similer feature within Native
Language Support.

429

430

In ion

The Message Catalog facility provides 8 means of programmatically accessing messages
contained within a specially-formetted file by using stendsrd MPE file system intrinsics.
Parameter substitution is allowed, and messages may be reuted directly to the list device, retrieved
for use by the epplication progrem, or both. This facility is provided by Hewlett-Packard as part
of the Fundamental Operating System (FOS), and thus is available under all versions of MPE on all
HP3000 cemputer systems at no extra cost.

The Part | - The Problem

At the time (late 1983), | was employed by & major Moving & Sterage compeny es &
Programmer/Analyst, working on a team developing an on-line Dispalch System. It was designed so
thet when a truck driver called his location in to a dispatcher, the dispatcher could see where the
truck was going, update its current location, end pess along eny messages to the driver. The
Dispatch System also kept a history of each shipment thal could be brought up at any time, along
with any comments recorded by enother dispatcher during handling of the shipment.

The Dispatch System used YIEW and IMAGE extensively, and was written in COBOL 11 running
on & Series 64 under the Q-MIT relesse of MPE IY. It was a menu driven system with dynamic
subpregrams. Most of these subpregrems used VIEW screens as well. Some of these subprograms
could call other subprogrems. The “longest path” was about 4 levels deep, not counting the main
menu. Most of the subprograms in this path had meny messages to retain — the average was about
40 messages of 80 characters each. These were kept in WORKING-STORAGE along with the other
data requirements of the subprogrem. Eech time a subprogram was called, its WORKING-STORAGE
SECTION — that is, the data area of the progrem — was added to the data steck. The end result was
that when this “longest path" wes used, it resulted in 8 STACK OVERFLOW and the program aborted.

This was not good news. The terget date for implementation was approaching repidly. Not
only did we need a solution, but we needed one that could be implemented fairly quickly, that would
not compromise the design set forth by the analysts, and that would work.

The Case: (Part 2 - A Solution)

The stage was set. | knew of the existence of message catalogs by virtue of reading the System
Intrinsics Manual. However, | had never used this facility, nor had | ever seen an application that
did. None of the other progremmers knew anything about messoge catalogs either.

I happen to like the documentation provided for the HP3000. Sometimes it is difficult to find
the desired information. Sometimes the information, once found, is neither entirely accurate nor
complete. (Fortunately, on the accasion when it is incorrect, it usually says “This cannot be done®
when in fect it can, instead of the other wey around.)

In this case, the documentation seemed quite clear, and it appeered that & solution was at hand.
First, | set up a small test program to verify that | understood both the concepts and the mechanics

of Message Catalogs.

The concepts are rather simple and straightforwerd. A message catalog (Figure 1) is created
initially as a stendard MPE flat file, and consists of from 1 to 62 “sets,” each containing up to
32767 messages. Sets are indicated by "$SET n” beginning in column 1, where “n" is the set
number (1 - 62). The sets should be in ascending sequence by set number, but the numbers need

$SET 1 *xx GYSTEN MESSAGES ***

$ ~The above comment begine HERE (2nd epace)
$This comment line is INUALID {no space after "$")
1 LDEV #! [N USE BY FILE SYSTEN

.05 1S "!" ON LDEY ®! (Y/N)?

$ MNote: (1) Numbers need not be CONSECUTIVE

$ (2) Leading zeros are allowed

$ (3) Comments may be inserted between msgs
9 ANOTHER MESSAGE (NOCIERROR)

$SET 3 *** Non-Consecut ive Set Number

10 This message is &

cont inued.

$ The above prints "This message iscontinued." (Uhy?)

Figure 1 - Sample Message Catalog

not be consecutive. (For example, 8 message catalog with enly 3 sets — numbered 2, 7, end 1S — is
perfectly valid.) The remainder of the line following the space after the set number mey be used 8s
a free-form comment (e.g., “$SET 1 *** System Messages”). Other comments may be included by
entering 8 “dollar-sign space” ($) beginning in column 1, with the remainder of the line
(columns 3 thru 72) used for the comment.

Each message in the file is uniquely identified by its set number (described ebove) end by its
message number (1 - 32767). Thus, message number 100 in set 1 may be completely unrelated
to message number 100 in set 2. Messages are entered under the eppropriste $SET heading with
the message number beginning in column 1, followed by 8 single space, followed by the text of the
message. Note that the message numbers within a set must be in ascending sequence, though they
need not be consecutive. (Please review Figure 1.)

There are three (3) special-purpose characters thet may be included in the message text.
These include the continuation cheracters “ampersand” (&) and “percent” (), end the psrameter
substitution character “exclamation mark” (!). When a continuation charecter is entered as the
last non-blank character on a line, it indicates that the next line is to be included as part of the
current message. It is important to note that all blenks immediately preceding the continuation
character are IGNORED. Thus, there is some latitude as to where the continustion characier may be
placed. More importantly, this meens that the following line probebly should begin with e space.

Now, recall that the application program may elect to have the message routed directly to the
user's terminal. This is where the two continustion cheracters differ. If the “percent™ symbol
(®) is used, then a carriage return and line feed are printed before continuing with the next line.
The “empersend” (&), however, indicates that the continuation line should be printed WITHOUT
first printing 8 carriage return and line feed. In this case, the continuation line will be printed
adjacent to the current line. These symbols correspond roughly to the SPACE (£40) and 8320
carriage control cheracters.

Each message may contain up to five (S) exclemation merks (!) for parameter substitution.

431

432

Eech passed parameter is inserted in the message where the corresponding exclemation merk
occurs, with the first paremeter replecing the first exclemation mark, the second peremeter
replacing the second exclamation mark, and so on, until all parsmeters are included. (Please
review Figure 1 again. See — a picture reslly IS worth a thousend words!)

The mechenics of using a message catalog are almost as simple as understanding the concepts
given above. Before an application can use 8 message catslog, it (the catalog) must first be
prepared for use (Figure 2). Remember, the messages &re entered with EDITOR (for example) and
kept 8s one would keep FORTRAN or SPL source code, that is, as a8 numbered file with 80-byte
fixed- length records.

4

:EDITOR |

<<Banner line displayed here>>

/ADD
1 $SET 1 *%* System Messages *** .
2 1 Sgstem "39 81 This CRERTES
3 /7 Ithe initial

message file.

/KEEP MSGF ILE
JEXIT
END OF PROGRAM |

tFILE INPUT=MSGF ILE . .
‘RUN NAKECAT.PUB.SYS This CONUERTS the file

** URLID MESSAGE CaTALgp | O 7 Torn understandable
END OF PROGRAN . ge systen.

\SAUE CATALOG This SRUES the converted

:PURGE MSGF ILE catalog as a permanent

. file, which may still be
:RENHHE CRTALOG, MSGF ILE used by EDITOR,

Figure 2 - Preparing the Message Catalog for Use

The next step in preparing this catalog for use involves running the system utility program
MAKECAT to install a "directory" on the file as a single user label. This utility reads the data from
formal file designator INPUT and buflds a temporary file called CATALOG. Any existing temporary
file nemed CATALOG is rensmed to CATnn, where “nn" is the first available number. (Note that the
first file is renamed to CAT1, ot CATO1, and soon.) A short (perhaps cryptic) error messsge is
displayed for each line believed to be in error. If this heppens, then the CATALOG file is noi built.

Return to the EDITOR, text the file, fix the error, and try again.

Once validated, the message “** VALID MESSAGE CATAL0G" is displayed and the CATALOG file
is built. At this point, you may :SAVE CATALOG and then :RENAME CATALOG,myfile. (Of course, if 8
file nemed CATALOG already exists, you mey have to use the :RENAME CATALOG myfile, TEMP
command and then :SAVE myfile.) Once this has been accomplished, the message catalog is ready for
use. (Please review Figure 2.) Note that you can still modify the message catalog by returning to
the EDITOR, texting the file, meking the desired changes, keeping the file either under the same
name or under some other name, and running MAKECAT again.

in order for the epplication progrem to eccess the message catalog, the file must first be
opened. This is done with the stendard FOPEN intrinsic. The importent things here ere the
FOPTIONS and AGPTIONS parameters. FOPTIONS (file options) should include Old, Permanent, and
ASCIH (®85). AOPTIONS (access options) should include Multi-Record end Nobuf (£420).

The intrinsic GENMESSAGE is the key to the whole operation. A (brief) description of this
intrinsic is given in Figure 3. Recall that the terget application that | was concerned with used
VIEW screens. This meant that the message could not be sent directly to the terminal; the
application had to use 8 buffer and then show the message using the appropriste YIEW calls.

The small test program that | used to verify | understood all of this worked fine. The
questions now were: How can this be integrated into the Dispatch System? Should each subprogram
call GENMESSAGE explicitly? Will the savings in data stack &rea be sufficient to allow the program
to run without the STACK OVERFLOW?

If the subprogrems called GENMESSAGE explicitly, then they would have to know the file
number (returned by FOPEN) of the message catalog. This means that the routine performing the
FOPEN would have to pass the file number to the other subprograms, which mesnt modifying the
perameter list both in the calling routine end in the called routine. (The other alternative — each
subprogram FOPENing the message catalog when beginning, and FCLOSEing it when leaving — could
not be considered seriously because of the tremendous overhead the FOPENs and FCLOSEs would
cause.) This seemed to have too much chance of progremmer error.

There was still enother alternative, one that appealed to me from the start, end which seemed
to involve the least program modification. Recall that when 8 DYNAMIC subprogram is called, it
gets an “originel” copy of its WORKING-STORAGE section. That is, the vsrisbles in
WORK ING-STORAGE are re-initislized to the values defined when the subprogram was compiled.
However, for a subprogram that is NOT declered as DYNAMIC, the veriables in WORKING-STORAGE
are NOT re-initialized. For exsmple, let us imagine 8 non-DYNAMIC subprogram with a varisble
nemed COUNT described initially with a value of zero (0). Let us also imagine that during the
course of this subprogram, COUNT is incremented by cne (1). Now, for the first execution of this
subprogram, COUNT will be zero (0) upon entry, and one (1) upon exit. However, the second time
through, since COUNT is not re-initialized to zero, COUNT will be one (1, the previcus value) upon
entry and two (2) upon exit.

My idea, then, was to have a single subprogrem that would do both the FOPEN and the
GENMESSAGE calls. The subprogram would define the file number initially with a value of zero
(0). This value would be checked and the subprogram execute the FOPEN only when the file number
was zero, i.e., on the very first call. A successful FOPEN would change the file number to a
non-zero value, so subsequent calls would not execute the FOPEN. (Note, however, that this
approach meant that the message catalog would be closed implicitly by the file system when the
application terminated, instead of being closed explicitly by the spplicatien.)

433

434

1 Y AY v
meglen := GENMESSAGE (filenum, setnum, msgnum,

BA v
buff, buffsize,
LY LY . LY
partnask, parm1,.., parinS,
N A I o-v

msqdest, errnum);

buff : Abyte array to which the message is returned
buffsize: Length, in bytes, of "buff"; passed TO intrinsic

parmask: 16-bit L'ogical mask describing parms 1 thru S
Bit (0:1) = 1. Ignore rest of word & parms 1 thru 5
= 0. Rest of word, in 3-bitl groups, defines
parm types for parms 1 thru S
Bits (1:3) = (Parm 1 type)
0 - byte address of string
(string terminated by ASCII “null")
| - integer
2 - word address of "double” identifier
4 3 - ignore this parm
Bits (4:3) = (Parm 2 type; some values as Farm 1)
. Bits (7:3) = (Parm 3 type; same values as Parm 1)
(etc.)

msqdest . destination of assembled-message;
0=$STDLIST; >2=File number of destination file

Figure 3 - The GENMESSAGE Intrinsic

The other subprograms did not need the full flexibility availeble with GENMESSAGE , so adding
a few limitations to keep things simple would not be critical. For example, no routine in the
Dispatch System needed to substitute more then three (3) perameters in a message, and these
values were never more then eight (8) bytes long. Thus, it seemed feasible to code the details of the

message retrieval into a single subprogram. As an added benefit, this meant that the technique could
be modified at some point in the future without having to modify the other subprograms. The
remainder of this paper refers to this user-written message retrieval subprogram as GETMSG.
(Appendix A shows the FORTRAN sgurce code for GETMSG. The actual implementation was written
in COBOL, but FORTRAN is more compact. Either language will suffice.)

Replacing the hard-coded messages in the subprograms with calls to GETMSG wss not very
difficult. Fortunately, it was not very time-consuming either. Since the immediate worry was the
“longest path™ within the Dispatch System, these subprogrems were modified first. After all, if
this “solution” did not work, then it was not a solution at all, and the effort expended thus fer was
merely educational at best.

The subprograms had to know. what Set Number and Message Number's to use, since these were
the main input parameters for GETMSG. These were assigned somewhat arbitrarily, based on the
number of messages used by 8 given subprogram. (I think all four subprograms were assigned Set
Number 1, and the Message Numbers sssigned were 1-100, 101-200, etc. This gave plenty of
room fer future growth.) ‘

The subprograms had been coded with the messages grouped together in WORKING-STORAGE.
When each subprogram was text into the editor, this range of lines was kept in 8 separate file.
(This auxiliary file was modified later so that it could be included as part of the message file. This
meant that the actusl messages did not have to be re-entered.) In the subprogrem, the variable
names assigned to the messages remained the same. However, each description was changed from
PIC X(40) to PIC S9(4) COMP, and a VALUE equal to the Message Number was assigned. The
Message Numbers were assigned in sequence, with the first message getting the lowest Message
Number assigned to the subprogrem. (Please see Figure 4 for 8 “before” and “after” look at this
erea.) Fields were also added to hold the Set Number, the generic Message Number, the retrieved
Message, and three (3) 8-byte perameters for substitution (whether needed or not).

The PROCEDURE DIVISION was then searched for all moves to the YIEW window area. Eech of
these MOVE statements was replaced by two (2) other statements: A MOVE of the desired Message
Number to & holding ares, end a8 PERFORM of the utility routine (as yet unwritten) that would
retrieve the desired message. (The Set Number did not have to be moved, since it remained constant
throughout the subprogram.) Note that if paremeter substitution was required for the desired
message, the necessary value(s) would also have to be moved prior to the PERFORM.

The utility routine PERFORMed was quite simple, but | felt it was worthy of its own
paragraph. 1t consisted only of & CALL to GETMSG, followed by & MOVYE of the returned message to
the VIEW window area. Note that if an error occurred in GETMSG (eg., a missing Set
Number /Message Number combination), this was indicated by the returned message.

The data area saved was tremendous, and the “longest path” warked, so this was indeed 8
solution. Perhaps just as significant is the fact that it tock just twe (2) days to research end

implement it. There was very little new coding involved, and the technigue was relatively simple
and straight-forward.

435

436

01 PROGRAN-MESSAGE-ARERS.

05 PH-NO-SUCH-ENTRY PIC K(40) VALUE
“*¥* No such entry; please try again. "
05 PH-DUPLICATE-TRAILER “PIC K(40) VALUE

“¥¥ That Trailer already exists!

Warking-Storage before GETMSG

PROGRAN-MESSAGE-ARREAS . .
05 PH-NO-SUCH-ENTRY FIC $9(4) COMP UALUE 101.
05 PH-DUPLICARTE-TRAILER PIC S9(4) COMP UALUE 102.

01 GETMSG-PARMNS.

05 GP-SET-NUMEER PIC S9(4) COMP.
05 GP-MSG-NUMBER PIC 59(4) CoP.
05 GP-PARN-1 PIC K(08).
05 GP-PARN-2 PIC K(08).
05 GP-PARN-3 PIC ¥(08).
05 GP-NMESSAGE PIC X(G0).

Warking-Storage after GETMSG

Figure 4 - WUrking—Storage before and after GETMSG.

In the time since GETMSG was implemented, Hewlett-Packard has introduced Native Language
Support (NLS). As with the stsndard MPE message catalog facility, this is included as part of the
Fundamental Operating System; however, | believe you must be running under some version of
MPE V. Native Language Support is en excellent idea, and it embodies far more then an improved
version of message catalogs (now called the “application message fecility” under NLS). However,
only the epplication message facility is discussed below; most of NLS goes beyond the scope of this
paper. (The manual is very readable; | strongly encourage you to read through it.)

A chart compering MPE message catalogs with NLS is shown in Figure 5. Note that the two
are very compatible. In fact, the GETMSG routine described earlier can be re-written to use NLS
without modifying any other subprogram!

MPE NLS
Limits:
Set #'g: 1-62 1 - 32766
Message *'s: | 1 - 32767 1 - 32767
User Labels: | 1 0
Dats MO YES (see text)
Compression?
Physical | REC=40,16 F BINARY; | REC=126,1,F BINARY;
Characteristics: CODE=0 CODE=MGCAT
Formatting MAKECAT PUE.SYS GENCAT.FUB.SYS
.Prograrm:
Intrinsics FOPEN, FCLOSE, CATOPEN, CATCLOSE,
Used: GENMESSAGE CATREAD
Order of Determined by May be forced by
Farameter | calling sequence. message. 11 not,
Substitution: then determined by
- calling sequence.

Figure 5 - MPE Message Catalog vs. NLS

There are a few things worth noting that are not mentioned in the chart. First, the only date
compressicn used by NLS is based on the blank space between the last non-blank character of each
line and the logical end-of-record. (Remember, the Editor's line number is actuslly in the last
eight (8) bytes of each record. The logical end-of-record mentioned above refers to the position
just befere this.) Thus, the werst place for the continustion cheracter (in terms of data
compression) is in the last position of the record. The amount of disc space consumed by this file
compared to that of a standard MPE message catalog appears to be directly proporticnsl to the
average message length. Thus, a file whose average message tskes up one-hslf of the record
consumes about one-half of the disc space of the equivalent MPE message catalog. (As an example,
the system message catalog tekes up about 40% less space when formatted for NLS.)

Regarding physical disc 1/0's: a brief study of the File Close records in the system log file
shows that while the number of RECORDS processed remains the same whether or not NLS is used,
the number of BLOCKS processed is reduced anywhere from three (3) to over ten (10) times. That
is, NLS may require less than one-tenth of the disc 1/0's of &n equivalent MPE message catalog.

437

438

Note also that the blocks are smaller under NLS — 128 x 1 = 128 words for NLS versus 40 x 16 =
640 words for MPE.

Conclusion

In conclusion, | would like to encourage you to lock into message catalogs. They are easy to
use, easy to customize, and in some cases, they may prove critical to the success of an spplication. |
would also like to encourage you to lock into Native Language Support. The reference manual is
very readable. Among other things not mentioned in this paper, it explains how & single application
can easily reference different message catalogs geared toward different languages. Hewlett-Packard
has put considerable time, thought, and effort into this, and has mede these tools availsble to us at
no extra cost.

Biography

Glenn Cole has a B.S. in Mathematics from Jemes Madison University, Harrisonburg, VA. He
hes been using the HP 3000 since 1978, and is now an HP 3000 consultant in northern Virginia
(USA).

Appendix A.__FORTRAN source for GETMSG.

(]

OOOO

OO0 —-0 an

OOOON

SUBROUTINE GETMSG (ISET, IMSG, CPARM 1, CPARM2, CPARM3, CMSG)

CHARACTER*08 CPARM1, CPARMZ, CPARM3
CHARACTER*80 CMSG

INTEGER IMSGLEN

CHARACTER*28 CCATNAME

CHARACTER*10 CPARML (3)

LOGICAL LPARM1, LPARM2, LPARM3
EQUIVALENCE (LPARM1, CPARML (1))
EQUIVALENCE (LPARM2, CPARML (2))
EQUIVALENCE (LPARM3, CPARML (3))

DATA IFILE/0/, IMAXLEN /80/, CCATNAME /“CATFILE.PUB.PROD “/
SYSTEM INTRINSIC FOPEN, GENMESSAGE

Open message catalog if not open already.

IF (IFILE .NE.0) GO TO 10
IFILE = FOPEN (CCATNAME, ®5L, 8420L)
IF(.CC) S,9,5
CMSG = "%* Message catalog not open. Call M.1.S."
6017099
CONTINUE
CONTINUE

Init parms (ASCII NUL (80) at end of each string).

CPARML (1) = CPARM1

CPARML (2) = CPARM2

CPARML (3) = CPARM3

D020 1=1,3
CPARML (1) [9:2] =" *
CPARML (1) [INDEX(CPARML(I),” “):1] = B0C
CONTINUE

Actual message retrieval; 80 indicates all parms are STRINGS

IMSGLEN = GENMESSAGE (IFILE, ISET, IMSG, CMSB, IMAXLEN,
+ 80, LPARM1, LPARM2, LPARM3,,, IERROR)

IF (1ERROR .EQ. 0) GO T0 99

439

440

VWOOQO

CMSB = “** Message retrieval failed. Call M.1.S.”

RETURN
EXIT

	OP - Operation Management
	Message Catalogs and Native Language Support

