
VARIATIONS ON A TUNE - ANOTHER LOOK AT THE NEVER-ENDING

STRUGGLE TOWARDS OPTIMAL PERFORMANCE

Steven M. Cooper

Allegro Consultants, Inc.

Redwood City, CA, USA

Research sponsored by

ADAGER, Antigua GUATEMALA

Introduction

Back in the Dark Ages (seven or eight years ago), we had

no choice but to grope in the dark in terms of tuning our

computers and databases for maximum performance; monitoring

tools did not exist and the general guidelines that have be

come common knowledge had not yet been discovered and pub

lished. Relief began to come shortly thereafter, though, as

articles on performance and tuning, many now considered

classics, were written, providing us with a set of guide

lines to follow.

Once the articles were written and the information dis

seminated, nobody seemed to give it much thought, considering

the topic adequately covered. However, a lot has happened in

the past three or four years in the HP3000 world and perhaps

we ought to take another look at some of these issues. Com

paring a Series III with one half megabyte of memory to a

largish Series 68 running MPE V, the newer machine has a CPU

that is five times faster, has up to 16 times more memory,

and is capable of five or six times the effective disc I/Os

per second (assuming caching). Most systems will also sup

port four times the number of users. Given that we now have

a much larger and differently shaped beast to deal with,

some of the assumptions of those original articles must have

changed, and therefore, so must the guidelines.

415



416

Unfortunately, we must all suffer through a period of

semi-darkness again as we experiment with caching and its

parameters, and learn by trial and error what is good or bad

for these new machines. In an effort to encourage the re

opening of these topics, this article presents some observa

tions and results of experiments done to date. I do not have

all of .the answers, and can't even explain all of the results

that I've gotten, but perhaps combined with your own experi

mentation, we can continue to evolve these gUidelines to keep

pace with the maturing world of the HP3000.

CACHECONTROL

Caching is a wonderful thing if you've got the extra

memory and are I/O-bound. The designers of caching left us

with two dials and a switch to play with, so it is our duty as

system managers and system tuners to turn and flick and see

what happens. The "dials" are the RANDOM and SEQUENTIAL

options of the CACHECONTROL command. They control how much

is actually read from disc into a cache domain when we issue

a read from a cached disc. (This is a simplification. We

will discuss some of the complications later.) The RANDOM

value tells how many sectors should be read when we do an

FREADDIR call. (In COBOL, this happens for files with

ACCESS IS RANDOM clauses.) The SEQUENTIAL value corresponds

to FREAD calls. (In COBOL, ACCESS IS SEQUENTIAL.) Both

parameters can be set to values between 1 and 96 sectors,

indicating cache domains between 256 bytes and 2~,576 bytes.

By default, the system initializes RANDOM to 16 and

SEQUENTIAL to 96.



It is important to note that no matter what type of

DBGET or DBanything we do, IMAGE always issues FREADDIRs and

FWRITEDIRs. (This is also true for KSAM files.) So for the

typical IMAGE-based system, the vast majority of IIOs will be

affected by the RANDOM value and not at all by the SEQUENTIAL

value.

The MPE folks at HP chose the default RANDOM value of 16

because the HP1933 and HP1935 disc drives have a buffer size

of 16 sectors. But you will need an HP1933/5 on the same

GIC as another in-use device before you will ever use this

buffer. In actuality, this buffer doesn't seem to have much

affect unless you have two or more HP1933/5s on a GIC, these

discs have firmware revision levels of 5.1 or greater, you

have a version of MPE that supports rotational position sen

sing (most releases after and including MPE VIE), and you

RPS is enabled on all of those drives. If you meet all of

these requirements, a RANDOM value of 16 is probably the

right value for your system.

However, if you don't meet all of these requirements,

chances are that your system will perform better with a

higher value for RANDOM. The bigger the value, the more

will be read each time, and, assuming there is locality to

your reads, the less you will have to actually go to disc.

Furthermore, if we leave the value at 16, the number of

domains tends to get very large, often over 2500. This

causes extra work for the cache manager, since every time

someone does a read, the manager must first see if the

record is already in one of the 2500 domains. This suggests

that the RANDOM value be increased, perhaps to 32, 64, or

even 96.

417



418

But life is never that simple. Another thing to consid

er is the setting of BLOCKONWRITE. Let's assume that

BLOCKONWRITE, the "switch" next to the two "dials", is set

to NO. In this mode, when we issue an FWRITE or an

FWRITEDIR, control returns to our program when the cache

domain is updated, not when the actual disc I/O completes.

The cache manager does, however, request an I/O at that time

to flush that cache domain to disc. If we attempt to write

to that same cache domain again before the I/O to disc

actually completes, we will then get blocked and control

will not return to our program until the following occur:

the first I/O completes, our process gets launched again,

and the cache domain is updated with our write request. (It

is for this reason that some people say that we want to mini

mize the WRITE HIT statistic. This is only partially true;

we want to minimize write hits to domains that are being

written out at that moment. Write hits to "clean" domains

are a good thing. Unfortunately, the cache statistics do

not separate the good hits from the bad.)

Anyway, this seems to suggest that in order to minimize

write hits to "dirty" cache domains, the RANDOM value should

be set low, so only a smaller chunk of the file is "dirty"

at any time. This directly conflicts with the advice of the

first suggestion. "What now?", you ask? Well, this time we

are in luck. The SHOWCACHE command tells us how effective

caching is being and the CACHECONTROL command lets us tweak

these parameters while the system is up and running. What we

can do is STOPCACHE and STARTCACHE to zero out all of the

statistics, issue our CACHECONTROL commands to adjust

RANDOM, SEQUENTIAL, and BLOCKONWRITE, wait an hour or so, and

then issue a SHOWCACHE command to see how we did. Try to

find values that maximize "percent of user I/Os eliminated"

and after that, minimize the "data overhead".



Let's focus on the BLOCKONWRITE parameter a bit more.

If it is OFF, the system allegedly will run faster since our

application programs will not have to wait for the disc out

puts to complete. But we pay a price: unless we have asked

for the file system to use the Serial Write Queue for the

file, we will not know in which order our outputs will be

flushed to disc. If the system should fail before all of

the "dirty" cache domains have been flushed, we would have a

higher likelihood of database corruption than we would have

had with caching off or BLOCKONWRITE ON, assuming that we

are not using the Serial Write Queue. How do you ask the

file system to use the Serial Write Queue? For norma~

files, issue a call to FSETMODE. But for databases, there

is no direct way to do this. IMAGE will issue the FSETMODE

if and only if you are using Intrinsic Level Recovery (ILR)

or Transaction Logging. If you use neither and have

BLOCKONWRITE OFF, be aware of this new vulnerability.

It might be interesting to note some results we obtained

on a machine with five megabytes. We ran ADAGER's DETPACK

program in a stand-alone environment over and over, varying

these parameters each time. This program runs through

several IMAGE datasets and updates just about every record

it looks at. Although this is a very different environment

to one with 80 on-line users, it is similar to many shops'

nighttime runs, with single-threaded report and update

programs running. We found that the higher the value for

RANDOM, the shorter the run times. And, much to our

surprise, we had shorter run times with BLOCKONWRITE set to

YES! This was probably due to the frequency of writing to

"dirty" cache domains as described above. Hence, our best

times were obtained with RANDOM = 96 and BLOCKONWRITE = ON.

These were about 10% faster than with RANDOM = 8 and

BLOCKONWRITE = OFF.

419



420

Extents

When we build a normal file, we can specify how many

separate areas of disc we would like the file to be broken up

into. We can also ask for these areas to be initially

allocated or allocated the first time that a record in that

area is referenced. IMAGE still uses its original algorithm

for determining the number of extents that datasets should

use. The algorithm always asks for the largest number of

extents, 32, for medium size datasets or larger, and all

extents are always initially allocated. This was fine in

the old days; the larger the number of extents, the smaller

each extent will need to be, and the easier it will be to

find areas of disc that are the proper size.

But since the advent of caching, the number of extents

can have a more important impact. (Now come the complica

tions promised above.) When we do a random read to disc,

the caching manager will read into a cache domain a chunk of

the file as large as the larger of the RANDOM value and the

number of words we requested, but not past the end of the

extent. Hence, if a file has 32 extents in it, there are 31

brick walls built into the file, around which caching must

work. We can improve the caching efficiency of nonIMAGE

files, therefore, by lowering the number of extents in a

file, to as low as one if enough contiguous free disc space

is available. Larger numbers of extents are only justified

when the file will grow over time and we want to minimize

wasted disc space, or when disc is fragmented so that we

cannot obtain large enough extents. (As an extra bonus, on

tape drives newer than the HP1910, the fewer the number of

extents that a file has, the quicker that file will STORE.)



For IMAGE datasets there is not much we can do until the

algorithm used by IMAGE to build datasets is changed. One

option, though, is to use ADAGER to create the ,datasets.

Whenever an ADAGER function needs to create a new dataset, it

uses an algorithm that will attempt to lower the number of

extents in the dataset, without producing extents that are

too large.

BLOCKMAX and BUFFSPECS

These are two tuning parameters that IMAGE allows us to

set that are often ignored. Here again, it was safe to

ignore them in the past, since the defaults were good values

for the smaller system. But if we leave things alone now,

we may not be happy with the results. For example, if you

have a report program that runs stand-alone for three hours

every night, IMAGE will be polite and use only 8,000 bytes

of memory by default, even though megabytes are sitting

unused. Caching minimizes this effect, since it will use

all the extra memory it can find, but we would still be

better off instructing IMAGE to be more aggressive in its

use of memory resources.

The BLOCKMAX parameter is specified in the Schema. This

specifies the largest size that we will accept for the block

size for this database. Remember, IMAGE will decide what the

blocking factor for each dataset will be. Then, the largest

block size among all of the datasets will become the size of

all of the buffers whenever the database is accessed. The

default value is 512 words. We can increase this number up

to 2048 words.

421



422

Look closely at the blocking factor for each dataset at

the bottom of the DBSCHEMA listing. Sometimes IMAGE has a

choice of a blocking factor that saves a bit of disc space,

but does not pack as many entries into each block as will

fit. IMAGE will let us override this choice. We can

specify our own blocking factor for a dataset by putting the

desired number in parentheses between the capacity and the

semicolon in the schema. E.g.

Capacity: 40000 (20);

would request a capacity of 40,000 entries and 20 entries per

block.

The BUFFSPECS for a database can be interrogated by

using the SHOW command in DBUTIL. The number of buffers is

dependent upon the number of times the database is opened.

The default BUFFSPECS are:

BUFFSPECS 8(1/2),9(3/4),10(5/6) ••• 17(19/120)

which means that with one or two users in the database, 8

buffers will be allocated, three or four users will get 9

buffers, and so on until 19 or more users open the database,

at which time 17 buffers will get allocated. To go back to

our example, that stand-alone report program would run with

eight buffers, since when it runs, it runs alone.

If you have many databases on your system, then all of

this may be all right. But if you have one or two central

databases, you might be better off giving more memory to

these database to work with. In other words, change the

BLOCKMAX and the BUFFSPECS. If you have ADAGER, the best

way to change the ~LOCKMAX is with the REBLOCK function.



This program will help you select a proper value, giving you

a little lesson on the complexities of blocking factors

along the way, and then will reblock your database. Choose

a large value for a central database. It is bad enough that

all users and all datasets must share the same set of

buffers. The least we can do is make these buffers as large

and as plentiful as is reasonable.

Now that we've adjusted the size of each buffer, we need

to decide how many buffers we want to allocate. A good rule

seems to be that the number of buffers should not be depen

dent upon the number of users. The number should be set to

nine plus the largest number of paths going to anyone

detail dataset. If a detail dataset has five paths from

master datasets, for example, set the BUFFSPECS as follows:

BUFFSPECS 14(1/120)

To do this, use the SET command of DBUTIL when no one has the

database opened.

Cabling

Larger machines with two or three IMBs (InterModule Bus)

and four or more GICs (General Interface Channel) can be

cabled in many different ways. How things are cabled can

have a greater impact on performance than just about any

other factor. Do not assume that HP cabled you up optimal

ly! Your discs should be spread over all of the IMBs and

GICs that they can. If the system is accessing two files,

performance will be best if the files reside on discs hooked

to two different IMBs, next best if they are on two differ-

4~



424

ent Gres on the same rMB, next if they are on two different

master drives on the same GIC, next if they are on a slave

drive and its corresponding master drive, and worst if they

are on the same disc.

Review your own IMB/GIC/disc drive configuration and fix

things if they are not optimal. Then, with a tool such as

FILERPT in the Contributed Library, identify the ten or so

most used files. (We have contributed an updated version of

FILERPT to the Contributed Library that will support both MPE

IV and MPE V log formats.) Spread these files out among the

discs according to the rules of the previous paragraph. We

have found that disc file placement can have a major impact

on performance, as long as we are concerned with the place

ment of the correct files.

Data Distribution

As databases get larger and larger, the way in which the

entries are loaded in the database becomes ever more impor

tant in terms of performance. But since these large data

bases take so long to reload, many sites cannot afford the

time it takes to reorganize their databases. This can have

a dramatic affect on performance though. For example, a

detail dataset with a blocking factor of ten has had so many

puts and deletes over time, that its free entry chain points

allover the place. When ten line items are placed on the

same chain into this detail, they end up in ten different

blocks. If this detail were packed along this path, all ten

entries could reside in the same block. Instead of ten lIDs

to read the chain, it will then just take one! A major

improvement.



Programs such as DBLOADNG in the Contributed Library or

HowMessy from Robelle Consulting will tell how badly your

datasets need repacking. Then if called for, we can either

take the time to reload them or use ADAGER's DETPACK and

MASTPACK.

Conclusion

Just when we think we understand the rules and get our

systems tuned accordingly, something comes along that changes

the rules. Ignoring the changes can waste time and money.

Tuning is a never-ending process that usually pays for itself

over and over again. Give some thought to these guidelines,

take a look at your system, and experiment. And when you

discover something, share it!

Biography

Steve Cooper is a member of the Adager Research and

Development Laboratory. He has had nine years of experience

on the HP3000. He holds a BA degree in Computer Science from

the University of California, San Diego and an MBA degree

from the University of California, Los Angeles.

425


	SM - System Management
	Variations on a Tune—Another Look at the Never-Ending Struggle towards Optimal Performance


