
A DATA DICTIONARY ARCHITECTURE FOR THE YEAR 2001

Leon Leong

Hewlett Packard

Information Networks Division

Cupertino, California USA

Summary

Data dictionaries will be a critical service in managing
a company's information network. Data dictionaries are being
applied in many areas: fourth generation languages, report
writers, query tools, network directories and transparent network
access products. Thus choosing a data dictionary with an
appropiate feature set can be the key to a well managed information
network. This paper gives an overview of several features that
have been included in Hewlett Packard's new dictionary product,
System Dictionary, how they function, and what the features can
be used for.

Introduction

A data dictionary is a central repository of information
about the data and resources that a company has on its computer
systems and network. Dictionaries are used to store, manage and
organize this information. The information about the data and
resources that a company creates and uses is called "metadata";
metadata means data about data. Metadata can include information
about the name, size, structure, use, ownership, location and
other attributes of a company's data and resources.

Typical objects that are documented in a company's information
environment include:

- data base schemas,
- file and record layouts,
- data element descriptions and their use,
- computer nodes and device configurations,
- network topology,
- users an their security information.

A dictionary does not contain the actual object; just a
description of the object. For example, a company may have a
field in a file called "PART-NUMBER". A data dictionary would
contain information such as,

- size (10 bytes),
- data type (ascii characters),
- display length (10 characters),
- owner (manufacturing),

whereas the file would contain the' actual part numbers, for
example 3225490001.

367



• oJ

368

Subsystems which have objects being described in a data
dictionary may have their own method for descr~bing its structure
and usage. For example, a data base has a schema, a network has
a directory. These other methods, however, are very specialized
for the particular subsystem; for example, it is not possible
to describe the network topology in a data base schema, or vice
versa. A data dictionary provides users a common format for
describing metadata, such that it can be shared, and not redefined
for every subsystem.

At first impression, one would guess that the users of a data
dictionary would be individuals such as data base administrators,
system analysts and programmers. However, there are many different
types of products which can also be called "users" of a data
dictionary:

- Fourth Generation Languages

A fourth generation language (4GL) can use a data dictionary
to resolve data definitions at compile/load time. A 4GL
programmer only needs to know the name of the files, data
bases or data elements that they want to use; the 4GL then
retrieves from the dictionary the data type and structure
information when the program is compiled. Inconsistencies

·between programs are reduced because there is a single
source of definitions - the data dictionary.

- Ad Hoc Query Tools and Report Writers

An ad hoc query tool/report writer will use a data dictionary
to display to a user possible data to report on. For example,
the query tool will, based on a user id, determine from the
data dictionary what that user is allowed to access. The
query tool will then retrieve from the dictionary the files,
data bases and data elements and display them to the user.
The user will then choose what to report on. The query
tool then uses the metadata in the dictionary to determine
the optimal access path.

- Application Customization

Many applications tend to be very specific to an organization's
operation. However, if an application were to utilize the
metadata in the dictionary, then the dictionary can become a
customization tool for the application. For example, if all
headers and screen field names were stored in a data dictionary
then a subsidary of a company in a different country could
change the application to their native language, just by
changing the metadata in the dictionary.

- Networks and Transparent Access

A dict10nary can be used to describe the location of nodes,
and the topology of a company's computer network. In addition,
a node's device config.uration could also be included.' This
has potential uses for network configuration and management.
By combining the network information with data structure
information, applications can implement transparent network
access for their end users .



The uses of a data dictionary are many, and is only limited
by the imagination of the people using it. But what of the features
needed of a data dictionary, to make it usable for all these
applications? Loading a dictionary can be an expensive operation;
a dictionary should be evaluated for its feature set before being
used as a central part of an information network. This paper
describes some specific dictionary features which have been put
into Hewlett Packard's new data dictionary product, System Dictionary
and some the uses and benefits of those features.

Entity Relationship Model

System Dictionary is based on the Entity-Relationship model.
The Entity-Relationship model is composed of entities, relationships
and attributes. Entities are objects in a company's information
network. Every entity will belong to an entity type. An entity
type is a template which describes the attributes associated with
an entity. Relationships describe logical associations between
entites. Attributes are pieces of information about either entities
or relationships. Similarly, every relationship belongs to a
relationship type; a relationship type is a template which describes
the attributes associated with a relationship.

,---------------
I ,-------------
I i I
I I - "*timWb<40s- I
I I I
I I I
I I Entity 1)pe A_Ills Entity 1)pe Altribullls I
I L RelationstiPT~ 1

I I
I r---1·----,

RelationshiP Type Attributes II ---J

L _

As an example, suppose a company has an Inventory Image database.
The database is composed of three datasets: manual masters Parts
and Suppliers, and a detail Stock. In the Entity-Relationship model,
Image-Database and Image-Dataset will be entity types. Inventory
is an entity of the entity type Image-Database. Parts, Suppliers
and Stock are entites of the entity type Image-Dataset. The
relationship type Image-Database Contains Image-Dataset, has three
relationships in this example: Inventory contains Parts,· Inventory
contains Suppliers, and Inventory contains Stock. An attribute for
the entity type Ima'le-Dataset would be Image-Dataset-Type; for the
entities Parts and Suppliers, the attribute would have a value of
"manual", and for the entity Stock, the attribute value would be
"detail".

369



Image-Database-'JYpe: Turbo

Contains Contam Contains

System Dictionary allows more than one relationship type to be
established between entity types. For example, a code module may
process another code module, or a code module may contain another
code module. In order to allow for more than one relationship
between entity types, System Dictionary includes, as part of the
definition of a relationship type, an additional descriptor known
as a relationship class. In the Image example, only one relationship
type exists between the entity types Image-Database and Image-Dataset:
Image-Database Contains Image-Dataset. Two relationship types exist.
between Modules: Module COntains Module, and Module Processes Module.
The relationship classes are: Contains, and Processes.

Contains

370

Processes

Example of multiple relationship types
be tween entity types

Most relationship types will involve only two entity types.
However there are cases in data modeling where, for integrity and
consistency purposes, three or more entity types are needed in a
single relationship type. System Dictionary allows a user to have
up to six entity types in a relationship type.



A Three-Way Relationship Type

Extensibility

System Dictionary comes with a predefined set of entity types,
relationship types and attributes; this predefined set is also
known as the "core set". Thre core set of System Dictionary is
extensive enough to cover the basic subsystems on the HP 3000. The'
core set includes structures which cover:

- MPE file system,
- KSAM files,
- Image/3000 data base management system,
- Network node locations,
- Code modules,
- MPE accounting structure,
- Cobol data structures.

The core set provides a stadard structure for most customers
to work within. However, every customer's information model will
be a superset of the core set; in addition, probably no two
customer's information model will be exactly the same. Consequently,
as customers adapt System Dictionary for greater use in their
information network, they will want to extend 'the dictionary with
their own entity types, relationship types and attributes to match
their data model. In"order to support this, System Dictionary allows
a customer to create new entity types, relationship types and
attributes. In addition, System Dictionary will allow relationship
types to be established between existing core set entity types and
customer entity types, and for customer defined attributes to be
added to core set entity types and relationship types.

As another part of the extensibility feature, System Dictionary
allows customers to specify default values for attributes, and also
allows the specification of edit values for attributes. This
capability provieds a form of integrity checking on attribute values
entered. For example, the core set attribute Image-Dataset-Type
will have the edit values "Manual", "Automatic" and "Detail" as
its edit values. If any other value is entered for this attribute,
an error will be returned. Customers can modify the edit values
on core set attributes if they desire.

371



System Dictionary cannot anticipate every future use of the
product today, let alone the uses by the year 2001. Extensibility
allows the customer to grow their dictionary to meet their needs
today and in the future, as they make more and more of their
applications dictionary based.

Naming

Naming is an important part of the System Dictionary architecture.
The most basic function of System Dictionary is as a name server.
Users supply a name to the data dictionary system, and the dictionary
system returns a set of attribute values for that name. Every entity
in System Dictionary has a primary name; that is the name that
it was created with.

System Dictionary supports "synonym" names for entities.
Customers will often have situations where they have multiple
names for an entity, and they would like to search the dictionary
based on anyone of the names. When a user gives a synonym name
for an entity, the attribute values returned are the same as if
the entity's primary name were used. For example, a customer may
have a data element named "Ship-Date" in one application; in another
application, the data element may be known as "Bill-Date". Since
the name Bill-Date refers to the same data element, it should be
created as a synonym for the data element Ship-Date. In System
Dictionary, a user can create synonyms for any entity that they
own; when the original entity is deleted, all the synonyms are
also deleted.

Byte-Length: 6. Bement-Type: Char ••

System Dictionary also provides for "alias" names for entities.
Alias names ~re different than synonyms, in that aliases are not
used as keys into the dictionary. Aliases are attributes of an
entity. Aliases are most useful when an entity's primary name is
changed, due to naming conflicts. In the case of a naming conflict,
an entity may be renamed, with the original name being assigned
as an alias to the entity.

System Dictionary provides another naming feature: internal
and external names. Customers will often have operations which
span many countries. Each country will have its own language and
terms that they use. A local data administrator may customize an
application by mod~fying the names tn the dictionary. However
this can lead to problems when the originator of the application
wants to make some modifications or develop utility programs which
operate from the dictionary. System Dictionary provides two open
modes to solve this problem: internal and external name mode.

372



When a user creates a dictionary object, such as an entity, both
an external and internal name can be supplied. If no internal name
is supplied, then it defaults to the external name. External names
can be modified to conform to the native language of the user;
internal names can never be modified. Retrieval from the dictionary
will be via 'the name open 'mode. Thus application developers which
develop softwarebased on names in the dictionary can always use
internal names, while the end users can use the external names.

Domains

Domains are separate name spaces in the data dictionary. Domains
are useful. for partitioning the dictionary by application system.
Customers will often have many different application systems already
in existence before purchasing a dictionary, or will have several
application systems in development concurrently. Domains aid in
migrating multiple applicatlons to System Dictionary. These
application systems will usually have conflicting names and definitions
For example, an inventory application may have a data element
"P-NUMBER"~ which is used to represent the object Part-Number.
A human resources application may also have a data element "P-NUMBER",
which in its context is used to represent the object "Personnel-Number".
A third application, such as an Accounts Payable system may have
a data element "Part-No"; Part-No refers to the same data element
in the Inventory application known as "P-NUMBER".

These three application systems may already coexist when a
dictionary is purchased to manage the overall information environment.
Attempts to load the data definitions for the three application
systems in the same domain lead to a variety of name conflicts.
This would force the resolution of the name conflicts before the
dictionary could be utilized, and it would also require changes
on two the application systems. Domains are a useful feature to
solve this problem. An INVENTORY ,domain could be created for the
Inventory application, a HUMAN-RESOURCES domain for the human
resources application, and an ACCOUNTS-PAYABLE domain for the •
accounting application. Since each domain is a separate name space,
no conflicts would occur.

In order to promote the sharinq of data definitions, however,
a "common" domain needs to exist in the data dictionary. Users
are allowed to link entities and relationships in the common domain.
This linking allows the attribute definitions to be shared, yet it
also allows each application system to keep its own name for entities.
Local and cornmon domain entities and relationships can be linked
over time, and application system names adjusted over time as the
application systems evolve. When an application system is moved
to another node in the network, its definitions are separated out
nicely by domain.

373



Unldng definition, between domains

Version Control

Application systems are "living" systems. Application systems
change, as a normal part of user feedback, growth, changing business
environments and perhaps governmental regulation. A data dictionary
should support the application system life cycle by having a version
control feature. Version control as the name implies, allows entities
and relationships to have multiple versions of values for attributes.
For example, in version A, the element "Zip-Code" may have a length
of five digits, while in version B of an application, the element
may have a length of nine digits.

System Dictionary supports the concepts of version control.
Every domain may have more than one version of entity and relationship
definitions. Each version in a domain has a status: test, production,
or archival. Within a domain, there may be as many test or archival
versions as a user may want, but only one version may have its status
set to production. Definitions in test versions may be modified,
while a version which is set to a production or archival status
becomes "read-only'~.

Version A.OO.01
Attribute.

Version A.OO.02
Attribute.

374

Version A.OO.03
Attributes

When a user wishes to access definitions in System Dictionary,
the'user must first open System Dictionary. The System Dictionary
open operation requires the specification of a version in a domain,



to· retrieve the defintions from. The version can be specified by
one of two methods: one method would be to specify the name of the
version; the other method is to specify a version status. System
Dictionary will look for the version which was last set to the
specified status to retrieve definitions. A dictionary without
version control requires all applications to upgrade to a given
version at the same time. System Dictionary's version control
feature allows each application to upgrade to the version at a
time which best suits the user.

Dictionary Security

System Di~tionary's security system is based on the ownership
and capability. A user of the System Dictionary is known as a
"scope". Every entity and relationship decides what level of
access, also known as sensitivity, that other scopes may have.
There are three sensitivity levels: public read, which allows any
other scope read access; public modify, which allows any other
scope read and modify access; and private, which does not allow
any other scope access. In the case of private sensitivity, System
Dictionary allows the owner of an entity or relationship to
explicitly assign on a scope by scope basis, read or modify access.

Domains have two sensitivity levels: public modify and private.
In the case of public modify, any scope has access to the domain;
in the case of private sensitivity, only the owner scope may access
the contents of the domain.

Every scope is assigned a set of capabilities. These include:

- Customization, which allows a scope the ability to create,
modify and delete entity types, relationship types, attributes
and relationship classes,

- Domain, which allows the creation and deletion of domains,

- Version Control, which allows the creation and neletion of
versions,

- Security, which allows the ability to create and delete
scopes,

- Create, which allows the ability to create,~mbd±~y~anddelete
relationships-and entities,

- Read, which allows the ability to read entity and relationships.

System Dictionary has one "superscope", known as the di<±:tionary
administrator (DA) scope. The dictionary administrator scope has
full control over System Dictionary; this scope can perform any
type of access on any domain, version, entity type, relationship type,
attribute, relationship class, entity or relationship regardless of
who the owner is.

Programmatic Access

An important feature of System Dictionary is that the product
provides a standard, stable, and supported set of library routines,
known as System Dictionary intrinsics. System Dictionary intrinsics
provide independent software vendors and programmers the capability

375



of accessing the dictionary contents without having to know how
System Dictionary's internal structures are organized. By using
the intrinsics, ISV's are protected from chang~s in the internal
structures which may occur as data management technology improves,
and System Dictionary takes advantage of those improvements.

System Dictionary
User Interface

Appication
Development Tools

Applcations
Systems

376

Intrinsics provide a method for integrating applications with the
dictionary and thus provide a more active environment, whereby
changes in the dictionary can be reflected immediately in the
applications. Active dictionary environments will be commonplace
as customers evolve their information networks to the year 2001;
intrinsics are a method for implementing it.

Summary

This paper has touched upon several of the features incorporated
in Hewlett Packard's new dictionary product, System Dictionary, and
what benefits the customer derives from the features: flexibility,
migration, and growth to an active dictionary environment.

Biography

Leon Leong has been with Hewlett Packard for past seven years. He
is the R&D project manager for the System Dictionary project.






	SD - System Development
	A Data Dictionary Architecture for the Year 2001


