
INFORMATION SYSTEMS PROTOTYPING

Orland Larson
Hewlett-Packard Company, Cupertino ,California, USA

Summary

One of the most imaginative and successful
user interfaces and generally improving
effectiveness of application development
INFORMATION SYSTEMS PROTOTYPING.

techniques for clarifying
the productivity and

is a methodology called

With waiting time for new applications running into several years and
those applications failing to meet the users needs, managers as well as
users have been searching for more efficient and effective approaches
to systems development.

Prototyping, as an application
methodology, has evolved into
professional and the user.

system
a real

design
option

and development
for both the MIS

This paper reports on the growing body of knowledge about prototyping.
It begins by reviewing the changing role of data processing, the
challenges facing the MIS organization, and the traditional approach to
application development. It then defines prototyping followed by the
step-by-step prototype development process. The advantages and
disadvantages, as well as the cost and efficiency of prototyping, will
be discussed followed by the essential resources neccessary to
effectively prototype applications. In conclusion, to illustrate the
benefits of prototyping, the speaker will present success stories of
systems developed using the prototyping approach.

INTRODUCTION

The Changing Role of Data Processing

The data processing department has changed dramatically since the
1960s, when application development as well as production jobs were
usually run in a batch environment with long turnaround times and out­
of-date results.

The 19108 were a period of tremendous improvement for the data
processing environment. One of the key developments of that period was
the development and use of Data Base Management Systems (DBMS). This
provided the basis for on-line, interactive applications. In addition,
computers and operating systems provided programmers the capability of
developing application programs on-line, while sitting at a terminal
and interactively developing, compiling, and testing these
applications. The end user was also provided with easy-to-use, on-line
inquiry facilities to allow them to access and report on data residing
in their data bases. This took some of the load off the programmers
and allowed them to concentrate on more complex problems.

351

352

During the 1980s, the data base administrator and MIS manager will see
increased importance and use of centralized data dictionaries or
"centralized repositories of information about the corporate data
resources. Simpler and more powerful report writers will be used by
the end user and business professional. The programmer will see the
trend towards the use of high-level, transaction processing languages,
also known as fourth generation languages, to reduce the amount of code
required to develop applications. Finally, the tools have been
developed to effective~y do application prototyping, which will provide
benefits to the end user as well as the application programmer and
analyst.

Throughout the 70s and 80s, information has become more accurate,
reliable, and available, and the end user or business professional is
becoming more actively involved in the application development process.

Challenges Facing MIS

One of the MIS manager's major problems is the shortage of EDP
specialists. A recent Computerworld article predicted that by 1990
there will be 1/3 of a programmer available for each computer delivered
in this country. Software costs are also increasing because people
costs are going up and because of the shortage of skilled EDP
specialists. The typical MIS manager is experiencing an average of two
to five years of application backlog. This doesn't include the
II invisible backlog," the needed applications which aren't even
requested because of the current known backlog. In addition, another
problem facing MIS management is the limited centralized control of
information resources.

The programmer/analyst is frustrated by the changeability of users'
application requirements (typically, the only thing constant in a user
environment is change). A significant amount of programmers' time is
spent changing and maintaining users' applications (as much as 60 to 80
percent of their time). Much of the code the programmer generates
includes the same type of routines such as error checking, formatting

-reports, reading files, checking error conditions, data validation,
etc. This can become very monotonous or counterproductive for the
programmer.

The end user or business professional is frustrated by the limited
access to information needed to effectively do his/her day-to-day job.
This is especially true for those users who know their company has
spen~ a great deal' of money on computer resources and haven't
experienced the benefits. The users' business environment is changing
dynamically and they feel MIS should keep up with these changes. MIS,
on the other hand, is having a difficult time keeping up ,with these
requests for application maintenance because of the backlog of
applications and the shortage ot EDP specialists. Once the user has

. IIsigned off ll on an application, he is expected to live with it for
a while. He is frustrated when he requests what he thinks is a "simple
change" and MIS takes weeks or months to make that change.

Traditional Approach to Application Development

There are some myths concerning traditional application development:

- Users know exactly what they want
- Users can effectively communicate their needs to MIS
- Users needs never change.

The traditional approach to application development has serious
limitations when applied to on-line, interactive information systems
that are in a state of constant change and growth. Communications
among the user, analyst, programmer, and manager tend to be imprecise,
a detailed analysis prolongs the process to the annoyance of the user,
and specifications are either ambiguous or too voluminous to read. To
compound this problem, the user is often requested to "freeze" his
requirements, and subsequent attempts at change are resisted.

I

Let's review the traditional approach to application development.

WEEKS/
MONTHS

MONTHS/
YEARS

MONTHS

MONTHS

TRY
APPLICATION

TRADITIONAL APPROACH
TO APPLICATION DEVELOPMENT

USER ANALYST/PROGRAMMER

IREQUEST FOR I) DESIGN
APPLICATION~ SPECifiCATIONS

REVIEW OF
SPECIFICATIONS ~----";;'-I

rr3 HEWLETT"""'--------------------- ~a PACKARD

- The user first requests an application and then an analyst or
programmer is assigned to the application.

- The analyst or programmer takes the oftentimes sketchy user's
specifications and designs more complete specifications.

- The user then reviews the analyst's interpretations of his
specifications and probably makes additional changes.

- The analyst redesigns his specifications to adapt to these
changes. (By this time, several days, weeks or months have gone
by.)

353

- The user finally approves
analysts and programmers
document the application.

the specifications, and a
are assigned to develop,

team of
test and

- The user finally tries the application. Months or years may
have gone by before the user gets his first look at the actual
working application.

- The user, of course, will most likely want additional changes or
enhancements made to the application. This is called adjusting
the application to the "real world".

- Depending on the extent of these changes, additional maintenance
specifications may have to be Written and these program changes
coded, tested and documented.

- The total application development process may take
years, and the maintenance of these applications
forever.

months or
may go on

354

In summary, the traditional approach to application development results
in long development times, excessive time spent on maintenance, a
multi-year backlog of applications, limited control and access to
information, and applications that lack functionality and flexibility
and are very difficult to change. The question is: "Can we afford to
continue using this approach to application development?"

Prototype Defined

According to Webster's Dictionary, the term prototype has three
possible meanings:

1) It is an original or model on which something is patterned:
an archetype.

2) A thing that exhibits the essential features of a later type.
3) A standard or typical example.

J. David Naumann and A. Milton Jenkins in a paper on softwa~e

prototyping (see reference 7) believe that all three descriptions apply
to systems development. Systems are developed as patterns or
archetypes and are modified or enhanced for later distribution to
multiple users. "A thing that exhibits the essential features of a
later type" is the most appropriate definition because such prototypes
are a first attempt at a design which generally is then extended and
enhanced.

Roles in the Prototyping Process

There are two roles to be filled in prototyping the user/designer
and the systems/builder. These roles are very different from the
traditional user and analyst/programmer roles under the traditional
approach. The terms "user/designer" and "systems/builder" emphasize
these differences and denote the functions of each participant under
the prototyping methodology. Remember it is the user who is the
designer of the application system and the systems professional who is
the builder.

The user/designer initiates the process when he/she conceives of a
problem or opportunity that may be solved or exploited by the use of an
information system. The user/designer typically must be competent in
his/her functional area (many times he/she is a manager) and usually
has an overall perspective of the problem and can choose among
alternative solutions. However, he/she requires assistance from the
MIS organization.

The systems/builder is assigned by the MIS organization to work with
the user/designer and is competent in the use of the available
prototyping tools and knowledgeable about the organizations data
resources.

Prototyping Process

The process of application prototyping is a quick and relatively
inexpensive process of developing and testing an application system.
It involves the user/designer and the systems/builder working closely
to develop the application. It is a live, working system; it is not
just an idea on paper. It performs actual work; it does not just
simulate that work. It can be used to test assumptions about
users' requirements, system design, or perhaps even the logic of a
program.

Prototyping is an iterative process. It begil!s with a simple prototype
that performs only a few of the basic functions of a system. It is a
trial and error process - build a version of the prototype, use it,
evaluate it, then revise it or start over on a new version, and so on.
Each version performs more of the desired functions and in an
increasingly efficient manner. It may, in fact, become the actual
production system. It is a technique that minimizes the dangers of a
long formal analysis and increases the likelihood of a successful
implementation.

Prototyping Methodology/Model

The prototyping methodology in general, is based on the following
proposition: "People can tell you what they don't like about an
existing application easier than they can tell you what they think they
would like in a future application. 1I

Prototyping an information system can be viewed as a four -step
procedure.

355

356

PROTOTYPING APPROACH
TO APPIJCATION DEVELOPMENT

USER/DBSlGNER SYSTBMS/BUJLDER

WORK CLOSELY TOGETHER

PRCMDE HEW VERSION

rz3 HEWLETT
-----~~------------ ~ PACKARD

Step 1. User/designe identifies the basic information requirements:

- Write a brief, keleton-like statement that captures the essential
features Of~tinformation requirements.

- User/designer d systems/builder work closely together.
Concentrate users' most basic and essential requirements.

- Define data requirements, report formats, screens, and menus.
- Need not involve lengthy written specifications.
- For larger systems, a design team may need to spend a few weeks

preparing a first-effort requirements document.

Step 2. Systems/builder develops the initial prototype:

- Systems/builder takes the notes developed in the user discussions
and quickly builds the menus and dialogs.

- A data dictionary would be useful at this time.
- Design and/or define data base and load subset of data.
- Make use of defaults and standard report formats.
- Write required application modules using a fourth generation language.
- Prototype performs only the most important, identified functions.

Step 3. Users implement and use the prototype to refine requirements:

- Systems/builder demonstrates prototype to small group of users.
- Users gain hands-on experience with application.
- Users are encouraged to make notes of changes they would like made.
- Users discuss and prioritize desired changes.

Step 4. Systems/builder revises and enhances the prototype:

- Systems/builder modifies the prototype to correct undesirable or
missing features.

- May require modification or redesign of data base, changes to
existing programs and/or additional program modules.

- Deliver back to users quickly.

NOTE: Steps 3 and 4 are repeated until the system achieves the
requirements of this small group of users. Then either
introduce it to a larger group of users for additional
requirements or if enough users are satisfied, demo it to
management to gain approval for the production system.

When to Use Prototyping

1. To clarify user requirements:

- Written specs are often incomplete, confusing, and take a static
view ·of requirements.

- It is difficult for an end user to visualize the eventual system,
or to describe his/her current requirements.

- It is easier to evaluate a prototype than written specifications.
- Prototyping allows, even encourages, users to change their minds.
- It shortens the development cycle and eliminates most design errors.
- It results in less enhancement maintenance and can be used to test

the effects of future changes and enhancements.

2. To verify the feasibility of design:

- The performance of the application can be determined more easily.
- The prototype can be used to verify results of a production system.
- The prototype can be created on a minicomputer and then that software

prototype may become the specifications for that application which
may be developed on a larger mainframe computer.

3. To create a final system:

Part (or all) of the final version of the prototype may b~come

the production version.
- It is easier to make enhancements, and some parts may be recoded

in another language to improve efficiency or functionality.

When Not to Use Prototyping

1. When an application requires a standard solution that already exists
and is available at a reasonable cost from a software supplier.

2. When you don't have a good understanding of the tools available
to prototype.

3. When the organization's data and software resources are not well
organized and managed.

4. When MIS management is unwilling to develop a staff of professional
systems/builders.

5. When the user/designer is unwilling to invest his/her time in the
development of the application system.

357

very productive
So it behooves
powerful tool

358

Potential Problems

One of the initial problems typically encountered is the acceptance of
the prototyping methodology by the systems people. This is due to the
fact that people naturally tend to resist change. It may also
encourage the glossing over of the systems analysis portion of a
project. It is not always clear how a large complex system can be
divided and then integrated. Initially, it could be difficult to plan
the resources required to prototype (people, hardware and software).
It may be difficult to keep the systems staff and users abreast of each
version of the system. Programmers may tend to become bored after the
nth iteration of the prototype. Testing may not be as thorough as
desired. It might be difficult to keep documentation on the
application up to date because it is so easy to change.

Even with these concerns, prototyping provides a
working relationship for the users and the builders.
all data processing m~agement to learn to use this
creatively and to manage it effectively.

THE ADVANTAGES OF PROTOTYPING GREATLY OUTWEIGH THE PROBLEMS!

Advantages of Prototyping

One of the main advantages of application prototyping is that this
methodology provides a capability to quickly respond to a wide variety
of user requests. It provides a live, functioning system for user
experimentation and accommodates changes in a dynamic user environment.
One interesting aspect of this approach is that users are allowed and
even encouraged to change their minds about an application's interfaces
and reports, which is a very rare occurrence during the traditional
approach. Maintenance is viewed right from the beginning as a
continuation of the design process. Finally, prototyping provides an
effective use of scarce systems/builders. One or a limited number of
systems/builders will be required for each prototyping project; and
while users are testing one prototype, the systems/builder can be
working on another.

Cost and Efficiency

It has been found that there is an order of magnitude decrease in both
development cost and time with the prototyping methodology.

It is often difficult to estimate the cost of prototyping an
application system because the total costs of development, including
maintenance, are usually lumped together. The cost of implementing the
initial system is much lower than the traditional approach (typically
less than 25%).

However, software prototyping could be expensive in the following ways:

It requires the use of advanced hardware and software.
It requires the time of high-level users and experienced systems
staff.
It requires training of the systems staff in the use of prototyping
and the associated tools.
Application run-time efficiency may be compromised.

The main thing to remember is that the main focus of prototyping is not
so much efficiency but effectiveness.

PROTOTYPING VS TRADITIONAL
APPROACH

Prototype
Approach

$
Cumulative
Investment

--- Analysis/Designr----······~;~ditional
_.- Development /,,, Approach

----. Test/Implementation rl\
_ Production/Mo..;n't."Q,"':~ L........~sor first sees system

,....-."f'"
/./.

/'

I'
I

/
/

,/ ~.'
I,

//~I/./
,,/ . user begins working with prototype

,," ,."
~':.--

Time
~HEWLETT

-------~ PACKARD

Essential Resources

The following are the essential resources to effectively do application
prototyping:

1. Interactive Systems

Hardware and Operating System When doing application
prototyping, both the builder and the system must respond
rapidly to the user's needs. Batch systems do not permit
interaction and revision at a human pace. Hardware and
associated operating systems tailored to on-line interactive
development are ideal for software prototyping.

2. Data Management Systems

A Data Base Management System provides the tools for defining,
creating, retrieving, manipulating, and controlling the
information resources. Prototyping without a DBMS is
inconceivable!

359

360

3. Data Dictionary

A Data Dictionary provides standardization of data and file
locations and definitions, a cross reference of application
programs, and a built-in documentation capability. These ar~

essential to managing the corporate resources and extremely
useful when prototyping.

4. Generalized Input and Output Software

Easy to use data entry, data editing, and screen formatting
software are extremely helpful in the application prototyping
process to allow the programmer to sit down at a terminal with
a user and interactively create the user's screens or menus.

Powerful, easy-to-use report writer and query languages provide
a quick and effective way of retrieving and reporting on data
in the system. A report writer that uses default formats from
very brief specifications is most useful in the initial
prototype.

A powerful graphics capability can be extremely useful for the
display of data in a more meaningful graphical format.

5. Very High Level (Fourth Generation) Languages

Traditional application development languages such as COBOL may
not be well suited for software prototyping because of the
amount of code that has to be written before the user sees any
results.

Very powerful fourth generation languages that interface
directly to a data dictionary for their data definitions are
ideal. One statement in this high level language could
realistically replace 20-50 COBOL statements. This reduces the
amount of code a programmer has to write and maintain and
speeds up the development process.

6. Documentation Aids

Tools to aid in the maintenance of programs written in a 4GL.

Tools to aid in maintaining user documentation on-line.

7. Libraries of Reuseable Code

A library of reusable code to reduce the amount of redundant
code a programmer has to write is an important prototyping
resource.

This code could represent commonly used routines made available
to programmers.

Hewlett-Packard's Tools for Prototyping

Hewlett-Packard is one of the few vendors that supplies the majority of the
tools needed to effectively do software prototyping.

* Interactive Systems

- HP 3000 Family of Computers
- MPE Operating System

* Data Management Systems

- IMAGE/3000
- KSAM/3000
- MPE files
- HP Silhouette/3000
- HP Access Central, HP Access

* Data Dictionary

- Dictionary/3000

* Generalized Input/Output Software

- VPLUS/3000
- QUERY/3000
- REPORT/3000
- INFORM/3000
- HPEASYCHART
- DSG/3000

* Very High Level Languages

- TRANSACT/3000

* Documentation Aids

- EDITOR/3000
- HPSLATE
- HPWORD
- TOP/3000

361

Additional Prototyping Tools Available from HP Third-Party Vendors

* Data Management Systems and As~ociated Utilities

- ADAGER Adager
- CARESS, INTACT, SILHOUETTE/30DD Carolian Systems International, Inc
- DBACE Snodgrass Consulting
- DBAUDIT, SUPRTOOL Robelle Consulting Ltd.
- DB GENERAL Bradrnark Computer Systems
- DBMGR, IMSAM, OMNIDEX, CAPCHG Dynamic Information Systems, Corp.
- DBTUNE (Europe Only) HI-COMP
- HSC-COPYDB Hawaiian Software Company
- IMAGINE Technalysis Corporation
- MINISIS Systemhouse Ltd.
- MIRAGE (HP 150) Datasoft International
- PC/IMAGE (HP 150) Advanced Data Services
- RELATE/3000 CRI, INC.
- SPEEDEX, SPEEDBASE (HP 150) Infocentre

* Generalized Input/Output Software

- DATADEX/3000
- EASYREPORTER
- ENVY, HELPER
- INDEX PLUS
- MONITOR, MISTRAL (HP 150)
- PAL DATA REPORTER
- PRESENTATION GRAPHICS
- PRW/3000
- QUIZ, THE EXPERT, GRAPHICS
- RELATIONAL QUERY/3000
- SCREEN/3000
- WHAT-IF
- THE WRITE STUFF

Dynamic Information Systems, Corp.
Infocentre
System Works, Inc.
Spectrum Solutions
Datasoft International
Gentry
ARENS
Infotek Systems
COGNOS
Upland Software
RMS Business Systems
CIBAR, Inc.
PROTOS Software Company

* Fourth Generation Languages and. Utilities

- ARTESSA/3000 (Europe only) RAET Software Products
- CBAS/3000 Comprehensive Systems, Inc.
- FASTRAN (TRANSACT Compiler) Performance Software Group
- FLEXIBLE Sages American Group
- INSIGHT II Computing Capabilities Corp.
- LL'SPIRIT Singapore Computer Systems, PTE. LTD.
- PAL FAMILY GENTRY
- POWERHOUSE (QUICK) COGNOS
- PROGSPEC/3000 (COBOL Gen.) Productive Systems
- PROTOS (COBOL Generator) PROTOS Software Company
- Q-PLUS Los Altos Software
- RELATE/3000 APPLICATION BUILDER CRI
- SPEEDWARE, MICROSPEEDWARE Infocentre
- THE SYNERGIST Gateway Systems Corp.

* Documentation Aids

362

- DOCUMENTOR (Part of SPEEDWARE)
- LARC
- QEDIT
- ROBOT/3000
- S/COMPARE
- SPEEDDOC, SPEEDEDIT
- TESS/AIDE

Infocentre
LARC Computing
Robelle Consulting Ltd.
Productive Software Systems, Inc.
Aldon Computer Group
Bradford Business Systems, Inc.
Computer Consultants and Serve Center

The preceding lists of HP third-party software are not 100% complete.
The majority of the listed software was derived from ads placed in
SuperGroup Association Magazine, Interact Magazine and The Chronicle.
Please consult the Hewlett-Packard Business Systems Software Solutions
catalog (Part' 30000-90251) for additional information.

Summary

Protot.yping is
applications.

truly a II state -0f -the-art II way of developing

Software prototyping promotes an interactive dialogue between
the users and the programmer, which results in a system being
developed ~ quickly, and results in an interactive
development approach which is friendlier for the end user.

The prototype provides a live working system for the users to
experiment with instead of looking at lengthy specifications.

The users are provided with an early visualization of the
system which allows them to immediately use it.

The users are allowed and~ encouraged to change their minds
about user interfaces and reports.

Maintenance is viewed right from the beginning as a continuous
process and because the prototype is usually written in a very
high-level language, changes are faster to locate and easier to
make.

Software prototyping results in:

* Users who are much more satisfied and involved in the
development process.

* Systems that meet the user's requirements and are much more
effective and useful.

* Improved productivity for all those involved in software
prototyping: the user/designers and the systems/builders.

Biography

Orland Larson
is currently Information Resource Management Specialist for Hewlett­
Packard. As the data base and application development specialist for
the Information Systems Tactical Marketing Center he develops and
presents seminars worldwide on data base management. information
systems prototyping and productivity tools for information resource
management. He is a regular speaker at Hewlett-Packard's Productivity
Shows and Users Group meetings and also participates in various
National Data Base and 4th Generation Language Symposiums. Previously
he was the Product Manager for IMAGE/3000, Hewlett-Packard's award
winning data base management system.

Before joining HP he worked as a Senior Analyst in the MIS Department
of a large California-based insurance company and prior to that as a
Programmer/Analyst for various software companies. Mr. Larson has
been with Hewlett-Packard since 1972.

363

364

'Bibliography

'Boar, Bernard H., _A........_l_i_c_a_t_io_n_P_r_o_t_o_t....L4"'--.....IiIIt-__--....II~ ~....._---

For The 80's, John Wiley & Sons,

'Canning, Richard G., "Developing Systems By Prototyping," EDP Analyzer (19:9)
Canning Publications, Inc., September 1981.

·;Jenkins, A. Milton, "prototyping: A Methodology For The Des ign and Development
of Application Systems," Division of Research, School of Business, Indiana
University Discussion Paper #227, April 1983, (41 pages) .

.Jenkins, A. Milton and Lauer, W. Thomas, "An Annotated Bibliography on Proto­
typing," Division of Research, School of Business, Indiana University Dis­
cussion Paper #228, April 1983, (25 pages).

Larson, Orland J.,"Software Prototyping - Today's Approach to Application
Systems Design and Development," Proceedings 1984 International Meeting
HP 3000 lUG, Anaheim, California, February 26 - March 2.

'Martin, James, Application Development Without Programmers, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1982.

',Naumann, Justus D. and Jenkins, A. Milton, "prototyping: The New Paradigm
for Systems Development," MIS Quarterly, Vol. 6, No.3, September 1982.

,Naumann, Justus D., and Galletta, Dennis F., "Annotated Bibliography of Proto­
typing for Information Systems Development," Management Information
Systems Research Center Working Paper (MISRC-WP-82-12), September 1982.

'Podolsky, Joseph L., "Horace Builds a Cycle," Datamation, November 1977,
pp.162-186.

Wetherbe, James C., "Systems Development: Heuristic or Prototyping," Computer­
world, Vol. 16, No.7, April 26, 1982.

	SD - System Development
	Information Systems Prototyping

