
SOFTWARE DEVELOPMENT IN TRANSITION:

USING TRANSACT / 3000

by Norm Wright

Summary The paper presents a comparative study of
programmer productivity on several recent development
efforts on the HP3000. The development projects are good
sUbjects for comparison, since the software effort was of a
similar size and scope, and each used a dedicated staff
with approximately equal capabilities. They also involved
the same customer and demanded that the end product be
comparable from the point of view of the user. Two of the
projects involved Cobol, Image, and VPlus; the third used
Rapid/3000, including Transact, almost exclusively.
statistics are presented which delineate the modest
productivity savings which were achieved. Additional
improvements which were achieved in user presentation are
mentioned, along with a brief discussion of the expected
impact of Transact on program maintenance. Additional
discussion will focus on the the experiences of the
development staff in adapting to Transact/3000. Changes in
concepts, procedures, and strategies of Cobol programmers
using the new dictionary-based development methodologies
are discussed.

297



298

For the past three years, our organization has been
involved in a number of medium to large-scale software
development efforts, all on Hewlett Packard 3000 equipment.
Among three recent projects, two involved the conventional
HP3000 development triad: Cobol, Image, VPlus. A third
major project launched boldly into the fourth generation,
utilizing HP.'s most recent software development tools:
Dictionary/JOOO and Transact, with its built-in access
bridge to VPlus and Image. The discussion which follows is
based upon perceptions which evolved from this succession
of projects.

For most users of HP3000 equipment, there are several
initial deterrents to undertaking major software
development effort in Rapid/3000. One deterrent may be the
high performance overheads which are reportedly experienced
in production software using Transact. Almost all users
who have gotten beyond casual or experimental use of
Transact sooner or later will experience this problem
this is true at least with the present generation of HP
equipment. Fortunately for those users, the well-known
problem has an equally well-know solution. The solution
comes in the form of a well-known Transact optimizing
compiler which has become a standard remedy for users who
are experiencing performance headaches.

A second major deterrent may be the high cost of the
Rapid/3000 package. For many small organizations,
especially those in competitive markets, the cost of
development software itself may seem prohibitive. Only if
the user organization is large and spends a considerable
amount on in-house software development is the cost of
Dictionary/3000 likely to be justifiable. If the
differential can reasonably be expected to be absorbed by
the reduced development or maintenance costs of new
systems, the software becomes cost justifiable.

Unfortunately, the sUbject of developmental time and
cost savings has seldom been reasonably addressed. Vendor
claims for the economies which can be expected from the
implementation of fourth generation methodologies tend to
be moderately to wildly exaggerated. Claims ranging from
100 to 1000 per cent leave the prospective user of fourth
generation languages feeling like the incredible shrinking



man. Above all, such vendor claims seem rarely based upon
realistic and reasonable assessments of practical user
situations. The discussion which follows is an attempt to
realistically measure the impact of Transact on a real life
software development process.

Table 1 presents the historical experience of our
organization in software development with three recent
projects. The columns Cl and C2 both represent
Cobol-Image-VPlus software development, while the column Tl
represents the development effort.which utilized Transact
almost exclusively. The three projects offer a variety of
built-in advantages for comparison. All were carried out
with a similar staff makeup, comprising a range of
programming skills and experience levels. Unique to the
working environment, all three development efforts were
carried on with "captive" staff the personnel were
dedicated completely to the project at hand and had no
other professional duties which were outside the area. All
three projects were designed and implemented for the same
Client, hence all three attempted to hit a level of
sophistication, user expectation, and documentation that
was approximately the same.

The development time figures are expressed in man
months, which have been adjusted for overtime and holidays
to reflect a work week of approximately 40 hours. The
figures shown represent the total development, beginning
with the systems analysis and database design. The time
overheads involved in loading the data dictionary are
included for the Transact code, as well as the time for
building VPlus fo~s in both Cobol and Transact. Program
design, coding,. and debugging times are included, as well
as the time necessary to integrate and test the system
prior to implementation. The man-month figures also
include the time involved in producing reasonably complete
user, program maintenance, and operations documentation for
each system. They do not include the initial project
definition and functional specification phases.

Measures of programmer productivity which have been
applied in the past frequently relied upon the total number
of lines of code produced. Accordingly, the table presents
the total number of lines of code comprising each system,
broken down for comparison of interactive versus batch
programs. Seperate categories show the size of associated
copy libraries, include modUles, and other supporting code.

299



System system System
C1 C2 T1

1. Interactive
Programs 34 37 64

2. # Lines Code,
Interactive 26,720 37,714 60,529

3. Average Prog Size 786 lines 1019 lines 946 lines
Interactive

4. Batch Programs 58 35 56

5 # Lines Code,
Batch 40,047 28,022 29,046/48 *

6. Average Prog Size
Batch 690 lines 801 lines 605 lines

7. Total Programs 92 72 120

8. # Lines Misc Code:
Copylib/Include/etc. 4,224 4,388 3,758

9. Total Lines 70,991 70,124 93,333/112 *
10. Average Prog

Size 772 lines 974 lines 833 lines

11. Total Man Months 74 52.5 60

12. Man Months per
Program Module .80 .73 .50

* Eight batch COBOL reporting programs in system T1
averaged 904 lines each.

- TABLE 1 -

SOFTWARE DEVELOPMENT STATISTICS

FROM THREE SYSTEMS DEVELOPMENT PROJECTS

300



No adjustment is made for the Transact system to attempt to
capture the size and coding involved in the data dictionary
itself. The figures for the Transact system also do not
include a significant (and growing) number of Report and
Inform auxilliary programs.

In comparing Transact with Cobol, one would
intuitively feel that a measure involving the total
absolute number of lines of code would be inadequate.
After all, one of the most well-publicized features of
fourth generation languages is their syntactic brevity, and
the ability to condense complex programming structures into
a short sequence of statements. But this reputation for
brevity is not borne out by the absolute number of lines of
code produced in these three projects. Instead, Table 1
shows as much variability between the two Cobol systems in
terms of the number of lines of code per program, as it
does between the Cobol and Transact systems. Of course,
had the statistics extended to the level of capturing the
number of words or characters produced, then it is very
possible that the fourth generation's good reputation could
have been restored in this respect.

But even though the figures do not show a consistent
differential between Transact and Cobol in the number of
lines of code produced, it seems wise not to base any
measure of productivity upon such a measure. A better
measure of productivity would make some attempt to quantify
the program complexity. In particular, it would seem
relevant to try to measure the functionality of the
programs produced -- the overall "work" or "complexity" of
the resulting system. Ideally one would like to know how
much time would be saved in writing exactly identical
systems -- one using each development methodology.

Fortunately, in the case at hand, there is no need to
attempt to develop a new programmer or productivity
measurement. There ~s a much easier way, offered by the
fact that all three systems were produced at a similar
level of design sophistication. While the three systems
are not identical -- in fact they are quite different
applications -- they do represent perhaps the closest it is
possible to come to this condition in a real world setting.

Since all three systems are similar from the
standpoint of both design and user presentation, we can
take the program itself as a functional unit of
measurement. This is to say that, roughly speaking, given
the three systems presented here, a single program from any
system behaves in the same way and performs the same
functional "work". Of course some programs will be more

301



302

complex, accessing a large number of datasets and
performing many functions. But overall in the three
systems shown here the total. "functionality" of the system
is roughly proportional to the number of programs in the
system. Such a measure would, of course, be inappropriate
for systems which were designed to different standards of
either functionality or modularity. But the three systems
under consideration offer somewhat of an ideal case in this
regard.

Using the program itself as a measure of
functionality, the productivity measure which is listed
last in the attached table can be derived, the figure "Man
Months per Program". This measure can be used to give a
close approximation of the overall time savings,
experienced in these projects, of Transact over Cobol. As
the table shows, programmers on the Cobol projects required
between .7 and .8 man months to produce each functional
program module. The time for a similar module using
Transact was .5 man months. This would suggest that
productivity improvements in the range of 28% to 38% were
experienced.

The reader will note that the variability between the
two Cobol projects (Cl and C2) is one third as high as
between Cobol and Transact. In fact, the project Cl
involved high startup costs in terms of a team of
programmers getting oriented toward a new client and a new
environment. The time savings which were experienced in C2
are more the result of a team pursuing established methods,
and capitalizing on working tools (program shells, drivers,
database routines, copy libraries, etc.) established during
the first project. To a certain extent, some of these
established methods were also useful in Tl -- the Transact
project -- in that they did at least provide an existing
standard which had only to be adapted to the new
programming methodology. Although the startup overheads of
learning and adapting to Transact were considerable,
especially in the first few months of the project (Tl), the
project was also facilitated in many phases by being the
third in an established series. Overall, it is at least
convenient to assume that the overhead of learning Transact
in Tl was counterbalanced by the beneficial effects of the
pre-existing models in Cobol.



An additional factor is not satisfactorily reflected
in the stat~stical presentation in the table. The use of
Transact 1n Tl facilitated a number of significant
improvements, particularly in the area of user friendliness
and ease of use. As two examples, the increased use of
sorted record presentations and the increased capabilities
of browse-type record accesses in Tl could be cited. Both
types of presentation are vastly easier in Transact than in
Cobol. The programmatic ease of such capabilities in
Transact meant that many functions in the Tl system
utilized the features, where the nearest Cobol equivalent
did not. Overall this did lead to a significant improvment
in user presentation for the Tl system users over that
provided by the two Cobol systems. Our installation does
not appear to be unique in this experience. The increased
sophistication of Transact code from the user point of view
has been mentioned by a number of other users of Transact.

Another very interesting topic which we will not
attempt to cover here is the matter of improvements in
program maintenance to be expected from Rapid/3000. To
some extent, program maintenance is a continuation of the
same processes which were going on in development.
Programs are being enhanced and extended, screens are
being changed and rearranged, and the database must also
occasionally be revised and restructured. This would
suggest that as a minimum, we could expect the same
economies as during the development process.

Our own preliminary experiences with maintenance of a
Rapid/3000 system would suggest that this is true. In
addition, it would be wrong not to add that the
capabilities of Report and Inform have also proven to be
tremendous advantages. The defacto and specialised
reporting capabilities are especially useful in reducing
the backlog of maintenance activities. This allows the
maintenance staff to be in a better position to react to
the more complex and far-reaching requirements of users.
This is the reverse of the maintenance predicament at most
installations, where the steady background of minor changes
and request overwhelms the staff resources long before more
complex changes can even be considered.

Well, the productivity gains which were experienced
during the development phase of our project were modest,
especially in view of the elaborate claims which have been
made for some fourth generation languages. Perhaps it is
important at this point not to forget that productivity
gains in excess of 25% in almost any industry are bound to

303



3M

have important, far reaching impacts. Above all, it is
probably wrong to expect the entire process of computer
analysis and software design to vanish into nothing at this
particular stage of its development. Whether it is the
fourth generation or natural language interfaces, important
problems still remain in the formulation of complex,
real-world problems into computer algorithms and processes.

Norm Wright - has worked on a variety of software systems
for HP3000 computers since 1975. He has spoken at previous
Interex conferences in Baltimore, Orlando, and Copenhagen.
He is currently associated with INFORMICA, an independent
software firm, doing business in the Kingdom of Saudi
Arabia.






	AL - Advanced Languages and Development Tools
	Software Development in Transition: Using Transact/3000


