
DEVICE INDEPENDENT GRAPHICS SOFTWARE FOR THE HP3000

Peter Neuhaus
Hewlett Packard Company
Cupertino, California, USA

Summary

Occasionally, the req.uirements for displaying data graphically go beyond
the capabil ities of existing software packages. Consequently, it becomes
necessary to begin the unpleasant task of developing custom code. Since this
typically involves a significant investment of resources, it is important that
the software be written so as to maximize its longevity and maintainability.
To achieve these goals, it is necessary to understand the basic principles of
graphic device independence and the concept of the Virtual Device Interface.

This paper will discuss these topics along wi'th a discussion of how
available graphics software tools can be used to assist in the development of
device independent graphics software for the HP3000.

Background

In the early 1910s, the computer graphics industry real ized that it
needed to standardize some of the methods used in developing graphics
software. The resulting conventions made it possible to create graphics in
one environment (computer) and transport them to another with a minimum of
recoding.

To date, only a few standards have been established, but others are under
investigation. The Graphics Kernal System (GKS) has been adopted by the
International Standards Organization and is being used extensively throughout
Europe while the Siggragh CORE system, proposed in 1919, has not gained much
acceptance. The debate continues, but GKS seems to be pulling ahead.

Regardless of whether or not one chooses to follow a strict standard,
considerable improvements can be made in the writing of graphics software by
following a few simple guidelines.

'Frequently, companies plan to use only the specific graphics output
devices that they already own, for example a HP1550 plotter or perhaps a
non-HP graphics terminal. To support these devices, the specific commands
required by the devices would be scattered throughout the application program
(see figure 1). The result would be very efficient but would necessitate
excessive modifications if new or additional output devices were acquired at a
later date.

The First Step

Device independence is nothing new to the professional programmer.
Common functions such as cursor control are often modularized into separate
subroutines (device drivers) that can be easily modified or replaced to
accommodate new output devices that require different commands for their
proper operation. When it was necessary to drive more than one output device,
a duplicate set of subroutines is written for each device (see figure 2).

In addition, if more than one device might be used simultaneously, it is
necessary for subroutines with identical functions to have different names,

267

268

such as LINEl, for drawing a line on device 1, or LINE2 for device 2. At this
level, device independence was still not achieved since the LINEI and LINE2
calls must be embedded in the application program.

Step Two

By inserting another level between the application program and the device
drivers, the interface between the application program and the outside world
is standardized. If this new level, perhaps a commercially available GKS
package or CGL/3000 from the contributed 1ibrary, contains a function that
allows the application program to select which output device should be used,
it is possible to remove the references to LINE1 and LINE2 and substitute a
call to the new LINE function in the GKS/CGL package (see figure 3).

At this point, true device independence has been achieved since new
devices can be supported without modifying the application program as long as
someone writes a device driver for the new device. However, creating these
new drivers can consume enormous amounts of programming effort because each
device is unique in that it requires specific nonstandard "escape sequences"
to perform a given task.

VOl - The Last Step

The graphics industry is attempting to standardize the hardware
instructions required by graphic output devices through a concept called the
Vi rtua1 Devi ce Interface (now often ca 11 ed the Computer Graphi cs Interface).
A VOl driver accepts all the command that a generic device might receive but
only implements or emulates those that its device can perform.

If all graphic devices understood the same commands, the need for device
drivers would be eliminated (see figure 4). Essentially, the device drivers
would be implemented within the device1s firmware. However, until the VOl
concept becomes commonplace, it is necessary to employ the basic concepts of
device independence when writing graphics applications. Several alternatives
are possible.

Ways to be Independent

The most straightforward solution would be to obtain a graphics software
1ibrary either from the computer manufacturer or from an independent third
party. Such packages include a number of device drivers for the most popular
graphic devices. The disadvantage to this solution becomes evident if it is
necessary to change host computers at a later date.

Even swi tchi ng between computer 1i nes offered by the same manufacturer
can cause significant problems. Therefore, when shopping for this type of
software product, it is important to investigate the possibility of moving the
product between systems. Packages written in standard languages such as
Fortran or Pascal help simplify portability. But even standard languages
often do not port well.

The abi 1i ty to move to another CPU may sound 1ike somethi ng tha t wou 1d
not be done too often, but as desktop computers become as powerful as typical
multi-user systems, many applications will be moved to smaller workstations.
It1s much like the user who feels he needs only 50 megabytes of disc storage,
orders 100MB even though he IIknows ll it will never be needed, then runs out of
disc space six months later. Applications and technologies change

continuously. Investing the extra resources to implement a flexible solution
often pays high dividends at a future date.

Sharing Graphics Data

Frequently, graphic databases created on one system need to be processed
on another. To address this need, a standard format for exchanging databases,
called the Initial Graphics Exchange Specification (IGES), has been
established and is currently supported by a number of graphics packages. A
similar newer standard, the Virtual Device Metafile (VDM), performs much the
same functions.

Within HP, a standard called the Graphics Peripheral Interface Standard
(GPIS) has been developed and is currently used by some HP150 graphics
pro~grams. Since it is similar .:to VDM, it can be easily modified 'to conform to
the final version of VDM.

By simply using the IGES or VDM device driver, an application can store
the resulting image or object description onto a transportable media such as
magnetic tape, which can then be read by another IGES/VDM compatible system.
Applications written in a device independent manner are able to utilize this
useful feature.

Summary

The trade-offs involved in the decision to standardize the development of
computer graphics software deals mainly with short term versus long term
benefits. Projects, that seem to be "one shot" programs may not appear to
necessitate the features of device independence. But often, the programs are
modified and used again, possibly for another "one shot" application. In
general, establishing standards or guidelines in a programming environment
leads to increases in productivity. The slight performance degradation
created by the overhead of a graphics subroutine library can be offset by the
ever decreasing costs of computer hardware.

Once standards have been implemented, applications can be developed
faster" si nce it becomes unnecessary to rei nvent the wheel for each new
project. In addition, program maintenance is simplified since each programmer
understands the basic strategies used by hi s fellow graphics programmers.
Overall, the need to be device independent will become increasingly important
as the number and capabilities of systems and graphic devices expand.

Biography

Peter Neuhaus is a computer graphics special ist in the Information Systems
and Networks Group, Marketing Communications Graphics Department. He is
involved in exploring the use of computers by graphics artists to increase
their productivity. During a leave from Hewlett-Packard, he taught computer
graphics to engineers and artists at California State University, Long Beach.

269

~
......
o

Application
<esc>*pb100,200

System 1/0
Interface

PA100,200

System 1/0
Interface

Figure 1 - Device dependent commands scattered within application program

Appl ication
CALL INIT1

INln MOVE1 UNE1

System I/O
Interface

CALL INIT2

INIT2 MOVE2 UNE2

System I/O
Interface

Figure 2 - One set of subroutines for each device

Applicatio'n
GKSorCGL _

. PROTOCOL

Graphics Package

DEVICE
DRIVERS

INln MOVE1 UNE1

System I/O
Interface

INIT2 MOVE2 UNE2

System 1/0
Interface

Figure 3 - Graphics package with its device drivers

Appl ication

Graphics Package

System I/O
Interface

System I/O
Interface

VDI
PROTOCOL

Figure 4 -. Devices with internal VDI drivers

	AL - Advanced Languages and Development Tools
	Device Independent Graphics Software for the HP3000

