BUSINESS BASIC PHASE 1II,
THE NEXT STEP TO A FRIENDLY COMMERCIAL PROGRAMMING LANGUAGE

Dr.Ulrich E. Fauser

WEIGANG MCS

Stéberlstr. 68

D-8000 Minchen 21, W-GERMANY

Summary

Whereas the already powerful phase I released with T-Delta 2
and presented at the Washington conference was primarily aimed
towards former BASIC/3000 users, the new phase II to be released
mid-86 adds even more advanced statements so that a real flexible
and rich language for commercial programming will be available.

This and the nevertheless comparable performance makes HPBB a
real competitor to the other prevailing commercial languages COBOL
and PASCAL.

This paper will give an overview of the new features from an
OEM's view who has been also a beta-testsite from the beginning of
the HPBB project.

Phase II will include features like:
softkey integration for userfriendly programflow control
cursor and screen 1/0
a full fledged report writer facility in a 4th generation style
database search and sort with multiple threads
other database extensions

a new forms handling package working in character mode allowing
fieldwise program interaction

All this and the existing conversion tools make HPBB not only a
language with a high programmer productivity but also the perfect
migration tool for BASIC/260 users as it 1is approx. 80 - 90%
compatible to the 260 language after which of course HPBB was
modeled.

Another feature making HPBB attractive is HP's commitment in
making it available not only with the high end spectrum series but
also including the 1low end 260 1in 1its range of commercial
computers through the JOIN/3000 program.

In this way an OEM will have a reasonable portable language
throughout the range of the HP computer family.

233



234

Introduction

This paper will be presented in two different parts. The first
will deal with the purely technical matters trying to give you an
overview of the newly added statements and power to the phase II
of HPBB like this lanquage is officially named.

The second will bring you some of the experiences and problems
that we as a major 250/260 OEM have met first as a beta testsite
and then in converting our different manufacturing and commercial
application packages to the 3000 environment, a still continuing
effort.

Some History

The HP3000 Business Basic project was originally started in 1981
but it took a lot of pressure from some HP260 OEMs like us to
really make it going finally in 83.

HPBB had several goals, first as the 250/260 OEMs and users
slowly grew beyond the capabilities of their machine the demand
for a growth path into a new hardware family was obvious but there
was no suitable replacement with a similar friendliness and
productivity within HPs range of commercial computers. Second
BASIC/3000 users were not really pleased with their language so
something had to be done to make it attractive again. And third
many people were looking for an easy and friendly commercial
language providing not only simple access to most of the necessary
subsystems like IMAGE, VPLUS etc. but also increasing programmer's
productivity by doing a lot of the housekeeping routines usally
left to him, therefore leaving more time for better solutions.

Although most of HPBBs features were inherited from BASIC/260
one of the languages with the highest rating in user satisfaction
most .of BASIC/3000s features are incorporated too.

It was decided to release HPBB in two phases, phase 1 was
primarily aimed towards former BASIC/3000 users or OEMs who wanted
to start rewriting their applications with the still restricted
language subset. This phase was released last year with T-Delta 2.
Phase II which is scheduled to be released in mid 86 now provides
a real upgrade path for former 260 users, especially after phase
II was enhanced by a product made in HP Boblingen, called
JOINFORM, giving the same screen handling facilities like on the
260. Thus the compatibility to BASIC/260 by not having to use
VPLUS was drastically improved.

A_short review of phase I

For those of you who haven't been in Washington and haven't read
the proceedings here is a quick summary of the features of phase I.

Interpreter and compiler available
Full debugging and trace capability

Builtin editor with immediate syntax check and many edit functions
and program development environment

Extensive ON LINE HELP



Always actice calculator and immediate command mode
All standard control structures
GOTO, GOSUB, CALL, ON GOTO, ON GOSUB, function calls
FOR-NEXT, IF-THEN-ELSE, WHILE-ENDWHILE, REPEAT-UNTIL,
SELECT-CASE, LOOP-EXIT IF-ENDLOOP
Real subprograms and functions with parameters and local variables
Named and unnamed COMMON
Various OPTIONs to control interpreter and compiler

Variable and label names up to 63 characters

Seven datatypes INTEGER, REAL, DECIMAL (each SHORT and FULL precision)
and Strings

Dynamic checks for ON ERROR, ON DBERROR, ON HALT, ON END
Statements for accessing all IMAGE intrinsics with easy handling
Rich output formatting features

Access to MPE commands (:SYSTEM) and control of son processes
( :SYSTEMRUN)

Interface to routines written in SPL and PASCAL

More than necessary functions for stringhandling, numeric,
mathematical, matrix, conversion, bithandling, logical, files

All possibilities to access the file system
also special BDATA type file including type information with
data
KSAM only via intrinsics

and many more features of a modern language.

Now, what is new in phase II ?

Softkeys and typing aid keys

HPBB supports the 8 softkeys provided with most HP terminals in
two ways: as typing aid keys and programatic keys. Typing aid keys
are used for often needed charactersequences especially by
programmers. GET KEY and SAVE key are used to save and store
these. Definition and changes are made via standard terminal
features.

More important are programatic keys or more often just called
softkeys. These are used to allow the user control the flow of
control for his program. In a program a softkey is defined wusing
the ON KEY statement with a number (1 to 8), a priority, a
keylabel and a softkeyaction which can be thought of as an
interrupt routine. Only on the 3000 softkey actions are no 1longer
real interrupts like on the 260 where an action could be invoked
at the end of every statement or within INPUT statements and they

235



236

always returned to the point of invocation, except with GOTO.

On the 3000 there are no real softkey interrupts, they are
handled like special character sequences and only work when the
program is in an input state. When the user presses a softkey
during an input the statement is terminated and the corresponding
softkey action is executed. Unlike on the 260 the flow of control
here goes to the next statement after the input (not with GOTO)
and it is left to the programmer what to do. To do this HPBB
provides a builtin function RESPONSE which tells you how an input
was terminated (softkey, HALT, timeout, data etc). This is not as
it used to be on the 260 but it works and the additional handling
around the input statements is automatically inserted by the
conversion program.

The following statements are available: (examples)

ON KEY 7 CALL Selection;LABEL="SELECT DATA"
action can be CALL, GOSUB or GOTO

OFF KEY or OFF KEY 6 deactivates all or specified keys
ENABLE, DISABLE allow or disallow keyinterrupts to occur
PRESS KEY n makes HPBB think a softkey was pressed by user
CURKEY function returns the number of the last key pressed
Waiting for softkey, no data input allowed
LOOP
ACCEPT
END LOOP
Waiting for data or softkey, exit also when HALT is pressed
LOOP
INPUT Var

EXIT IF RESPONSE>0
END LOOP

Cursor and screen I/0

The CURSOR statement allows you to place the cursor anywhere on
the screen and define any of the available video enhancements

E.g. CURSOR (12,5) positions the cursor in row 12, column 5

CURSOR (15,1),("BI",-3) positions the cursor to 15,1 and
displays a blinking, inverse field 3 spaces long

The builtin functions CPOS and RPOS return the current column
or row position of the cursor.

The ENTER and LENTER statements work just like INPUT and LINPUT
except that the input is taken from the screen. LINPUT reads a
whole line including commas whereas for ENTER commas mean data
item separators.



HPFORMS (VPLUS) interface

For interfacing the most common VPLUS intrinsics HPBB provides
statements releaving the programmer from all the usual hassles of
providing the right parameters or defining his common area. For
special problems however VPLUS intrinsics still have to be called
directly.

Statements:
OPEN FORM with HOME/OVERLAY/APPEND/FREEZE options
CLOSE FORM with REMAIN option

READ FORM <variablelist> with TIMEOUT and SKIP option
including imbedded FOR loops

CLEAR FORM with DEFAULT option

WRITE FORM <expr.list> with CURSOR option
including imbedded FOR loops

JOINFORM Forms/260 interface

To provide a higher compatibility for 260 users and also as an
alternative to VPLUS HP Boblingen (BGD) decided to 1launch an
additional project called JOINFORM for HP260 FORMS conversion and
emulation in HP Business Basic. This team has implemented a set of
library subroutines performing the same functions as FORMS/260.
Calling these routines is 1integrated into HPBB 1i.e. several
statements (like on the 260) check if a 260 form is active and
they then behave differently.

All 260 forms can be converted into JOINFORM formfiles which
are different from VPLUS files (filecode BFORM). There will also
be a new friendly FORMS editor for defining, modifying and
printing these forms.

JOINFORM does not work in blockmode, but in formatmode.

The forms handling statements are the same as for VPLUS, they
decide from the filecode which subsystem to call.

OPEN FORM
CLOSE FORM and CLOSE FORM REMAIN

CLEAR FORM

JOINFORM allows forms to have an inputfieldorder and an

outputfieldorder independent from each other for the two
fieldtypes provided. Fields can be arranged in any order on the
screen.There is no more extra tabfieldorder like on the 260. This

is now equal to the inputfieldorder like it was done mostly on the

237



238

260 anyhow. Internally still three pointers are maintained, an
input- output- and cursorfieldpointer.

The CURSOR statement was enhanced to position the cursor to
these fields by adding the builtinfunctions IFLD, OFLD and CFLD

Thus CURSOR IFLD(5) sets input and cursorpointer to field #5
CURSOR OFLD(4) sets the outputpointer
CURSOR CFLD(3) sets the cursorfieldpointer
An additional builtin TFLD returns the fieldnumber of the last
input field where return was pressed, this is the same as TFNUM on

the 260.

All I/0 interaction between program and form 1is done with

normal I/O statements which internally behave differently when a

form is active by calling the appropriate subroutines.

DISP and PRINT output to the actual outputfield thereby increasing
the internal pointer.

INPUT and ACCEPT <variablelist> read from the current cursorfield
for the benefit of the user it is only read what is really on
the screen, so insert,delete and cursorkeys can be used, as the
inputbuffer is simply discarded

ENTER <variablelist> reads starting from the current inputfield
from the screen

Unlike VPLUS additional “normal" I/O can take place outside the
form boundaries using LDISP and LINPUT/LENTER. The user doesn't
have to distinguish between enter and return, all input is ended
with return. This may cause some confusion if he uses his
application together with VPLUS oriented utilities or other
programs.

Database extensions

Using a socalled PACKFMT or an IN DATA SET statement allows DBGET,
DBPUT and DBUPDATE to implicitly do packing and unpacking of the
IMAGE buffer into/from program variables without extra PACK/UNPACK
statements or program buffers.

Example:

Label: PACKFMT Partno$,Customer ,Quantity

or

Label: IN DATASET “ORDERS" USE Partno$,Customer,quantity

DBGET Dbase$ USING Label ;DATASET="ORDERS" will then immediately
read databasevalues into program variables

The PREDICATE statement allows simple specifications of
predicate for DBLOCK modes 5 and 6 without having to deal with
wordcounts, entrylength and all that internal stuff.



PREDICATE P$ FROM "ORDERS" WITH Customer=1254;Quantity>100

Database SEARCH and SORT

Besides the report writer this 1is certainly the most powerful
construct in HPBB. It allows programmers to select and sort IMAGE
databases in an almost relational way, not only on single datasets
but over multiple sets. HPBB supports the concept of workfile
containing only pointers to selected/sorted records that 1is the
database itself is not changed at all. This is available nowhere
else on the 3000.

The DBASE IS Dbase$ statement only defines which database is
actually to be searched and sorted

WORKFILE IS #1 defines the previously opened file #1 to be a
special type for handling IMAGE pointers. Files with the WORKFILE
option are treated specially and have some restrictions.

We have already presented the IN DATASET statement which is
essential here too.

The THREAD IS statement defines which datasets are involved in
a SEARCH or SORT. Up to 10 sets can be specified, no two
consecutive sets of the same kind (master,detail) can be
connected. If a master is linked to a detail with more than one
path the PATH option allows to select which one to use. There |is
an additional contruct called a synthetical link when there is no
real path from a detail to a master in the thread. (LINK Variable
option)

The SEARCH statement searches all involved datasets according
to the thread and evaluates its conditional expression. There are
certain programming techniques keeping the number of records in
the first dataset of the thread small because this is the only one
to be read sequentially thus greatly influencing the performance.
The result is stored as tuples of pointers in the workfile, one
pointer for each dataset.

The SORT statement allows sorting of the pointers according to
the related data in ascending or descending order with up to ten
sortkeys. If a SEARCH preceded the SORT only the already selected
records are sorted and vice versa.

Example (see also appendix)

Dsetl: IN DATASET "ORDERS" USE Partno$,Customer

Dset2: IN DATASET "PARTMASTER" USE Partno$

Dset3: IN DATASET "PARTS" USE Partno$,SKIP 46 ,Storagelocs$

ASSIGN "FILEA" to #1
WORKFILE IS #1

Threadl: THREAD IS Dsetl,Dset2,Dset3
SEARCH USING Threadl;Customer=1254 AND Storageloc$="STORE_B"

This selects all records for customer 1254 whose parts are stored

239



in STORE_B.
SORT USING Threadl;Storageloc$,Partno$
Now sort them according to storagelocation and partnumber

Now a LOOP would read the workfile, access the database with DBGET
in mode 4 and process the records in whatever way.

Syntax and semantic is somewhat different from what the 260

had, there it was much more flexible, but due to be compilable
some restrictions had to be made.

The REPORT WRITER

This 1is probably the most powerful tool available to the
programmer allowing him to easily define and produce reports. The
definition of a report is done in a 4th generation style by
telling the system how it should look like instead of programming
every little single step. The report writer system takes care of
all routine work like pageformat and numbering, headers, trailers,
totals and averages. It also lets you define when 1logical breaks
are to occur and what happens then.

The actual production of the report is controlled by simple
output statements, the DETAIL LINE construct.

Therefore the report writer system has 3 distinct parts
The report definition part
Statements controlling the activation of the report

Functions giving various informations

The report writer definition

The REPORT HEADER defines

page format PAGE LENGTH
margins LEFT MARGIN
which GRAND TOTALS are to be taken GRAND TOTALS
under which conditions a break occurs BREAK n IF <cond>

BREAK n WHEN var CHANGES
with up to 9 break levels
and also the appearance of a one time report header

The REPORT TRAILER defines a one time report ending trailer

The PAGE HEADER/TRAILER defines what is to be done when a new page
starts or a pagebreak occurs

The HEADER/TRAILER level statements define what has to be done
when a break for a certain level occurs, which 1local TOTALS are
kept, under which conditions a line is printed at all, thereby
protecting sensitive information.

A REPORT EXIT section defines what 1is to be done in case of

240



abnormal termination via a STOP REPORT command.

For an example see the appendix

REPORT WRITER executable statements

A report definition alone does nothing, it has to be activated
before it can be used by a BEGIN REPORT Rptlabel statement No
printing is done yet only internal initialization.

All actual printing is done triggered by the DETAIL LINE
statement. It checks whether the report has started at all, which
break occurs, printing appropriate headers and trailers, keeping
local and grand totals and so on, all with one statement.

For rare cases when this is not enough special flow control can
be activated be triggering some events like TRIGGER PAGE BREAK or
TRIGGER BREAK level activating the corresponding sections in the
report description.

END REPORT is the normal termination of a report, all remaining
events are triggered, the report trailer is printed followed by a
final page trailer. The report definition is deactivated.

STOP REPORT indicates an abnormal termination. No more normal
processing is done, only the report exit section is activated if
present usually giving some hints to the cause of the termination.

Report writer functions
They return various information about internal conditions and can
be used to control the report even finer if necessary and to

access numeric results.

AVG (level,i) average for the i-th expression of the TOTAL
statement in level (0 being the GRAND TOTALS)

LASTBREAK level of last break condition

NUMBREAK (level) how often has a break for this level occured
NUMDETAIL (level) how many lines have been printed in level

OLDCV and OLDCV$ return the value of the last controlvariable for
the BREAK WHEN statement, so even if you have read already a
record which triggered the break the old value is still available
NUMLINE how many lines already on current page

PAGENUM current page number

RWINFO some more seldom used information

TOTAL (level,i) giving the i-th total for level

Missing features

For those of you familiar with BASIC/260 here is a 1list of
features not available in HPBB. Programs using these statements

241



242

have to be rewritten.

AVAIL

BUFFER#

CATLINE

CATFILE
CHECKREAD ON/OFF
DET without parameter
DIRECT

DIRECT NOUPDATE
DOOR LOCK/UNLOCK
DUPTEST

EDIT

EDIT KEY

HOLE

INDIRECT

LINK

LIST KEY

LOAD / STORE BIN
ON / OFF DELAY
PRINT LABEL

READ LABEL
REQUEST

RELEASE

RES

SD s/ sI

SET DATE TO

SET TIME TO
SYSID$

All TASK Statements
All PERFORM Statements
All TIO Statements

All MEDIA Statements

In IMAGE

IN DATA SET DIM ALL
IN DATA SET USE ALL
IN DATA SET IN COM
IN DATA SET FREE
DBCLOSE MODE 4
DBINFO Mode 4xx
DBCREATE

DBERASE

DBMAINT

DBPASS

DBPURGE

DBRESTORE

DBSTORE

READ / WRITE DBPASSWORD
XCOPY

replace through IN DATA SET USE <list>

There are no QUERY controlnumbers and no corresponding DBINFO



Performance hints

Like in phase I there is also an interpreter and compiler in phase
II but unlike phase I all the new statements of phase 1II are
compilable without exception.

The purpose of the interpreter is mainly for programmers use
only or at most for one shot programs as its speed is too slow for
everyday production programs. So its advantage is primarily for
program development, testing and symbolic debugging in its fullest
sense, because in the interpreter all source information is still
available. You can not only look at or modify variables but also
add, delete or modify the source program.

For enduser applications the compiled code 1is the only
reasonable way to go, maybe with some programs needing noncom-
pilable statements still interpreted. Remember you can call
compiled programs from the interpreter but not viceversa.

Some speed ratios HP260 vs HP3000/37
HPBB interpreter 2-5 times slower than BASIC/260
HPBB compiler 5-10 times faster than interpreter

-> on the /37 a compiled program is on the average 2 times
faster than the interpreted program on the 260

That shows clearly that the /37 is no upgrade path for users who
have outgrown their HP260

Comparison to other languages

So far only measurements with phase I have been made as phase II
features are not available in most other 1languages and they
indicate a slightly slower performance compared to PASCAL/COBOL,
we talk about 10 to 20% for CPU bound programs. For I/0 or IMAGE
bound programs there is of course not much difference since most
of their time is spent in the system intrinsics anyhow.

With the coming phase II extensions performance should favor
HPBB because of the really powerful statements especially if you
take into account a faster development cycle and better and more
flexible programs.

Please note that all tests are preliminary as especially phase
IT is not yet performance tuned.

For ways of improving performance even more by switching off
some off the features like dynamic error checking etc in the
compiler see the appropriate sections in the HPBB manual.

Experiences with the conversion process

Those of you familiar with BASIC/260 can probably tell by now that
converting existing 260 application packages still requires some
manual work but also that there are no real big obstacles. Just
how much effort do prospective OEMs still have to put in before
their programs are running in HPBB and in an HP3000 environment.

243



244

Let me give you some of the results we have got in converting
our first packages.

Before any conversion can be done some very timeconsuming
preparations have to be made first, I mean preparing all your
files and databases for transfer and the filetransfer itself.
There are two ways two do it, a slow and cheap one using a RS232
connection or a faster, expensive one using INPs. We had only the
slow connection available at 9600 Baud (HP recommends only 4800,
but we didn't have any problems) and with the preparations on the
260 side and the filetransfer you can easily spend some 3-4 days
or more, mostly depending on the size of your database which has
to be unloaded, transfered and loaded set by set. Conversion of
databases is straightforward as the 260 uses almost the same IMAGE
subsystem.

The good thing is most preparation and transfer procedures can
be automated using PERFORM on the 260 or batchfiles for the
transfer, so this can easily run overnight. An example is shown in
the appendix, without further comment.

The cheap transfer tool is TRNSFR a 260 utility provided with
HPBB, the expensive one is DSN/DS and INP hardware on both sides.

The conversion itself is done by a supplied utility BBCT250
which takes care of all the syntax changes and some but not all of
the semantic changes. After this is done the converted program is
loaded into HPBB with the GET command and now its your time to do
the remaining manual adaptation.

The worst problem we encountered was a program too big for HPBB
to accept in one piece. As the 260 has a single 64 KB address
space for one user it is possible to write programs up to 60 KB as
a single subroutine or main program. Unfortunately this 1is not
acceptable by HPBB, it can only accept so called subunits (main,
subroutine or function) up to approx. 20-25 KB or about 400-500
lines of code but of course many of these subunits i.e. the whole
program can get much larger but there is that damned restriction
on the subunit size.

Well no problem, we said, we just segment the big ones into
some smaller subroutines and a control program. Easier said than
done, I have to admit because some of them just turned out to be
ugly, unstructured monster programs which were much simpler to
rewrite than to segment and convert. But we were lucky, these
programs were less than 10% of all, nevertheless this subunitsize
restriction can be a serious bottleneck for a successful
conversion effort. '

The small enough programs (90% or more) were relatively easy to
convert the conversion program BBCT250 doing most of the work.
However some minor manual changes still had to be made. (The
following list is not complete)

Create a unique subprogram name, on the 260 all our application
subprograms were called Pgm because they were all selectively
loaded just before the CALL by the menu.

Change all references to the database statusarray to doubleword
references, the 260 only had 16 bit pointers and capacities

Make file and formnames acceptable to the 3000, the 260 allowed
upper and lowercase and also special characters

Change DBGET, DBPUT and DBUPDATE and insert the USING clause, the
260 did the variable assignment dynamically, here it is static



When using direct wordpointers for accessing files, check them
because due to other storage requirements they may have changed

The biggest manual changes however requiring some knowledge about
the programflow are adapting the IN DATASET, THREAD, SEARCH and
SORT statements as their logic is somewhat different.

And some minor stuff, some of them could be done using the HPBB
editor functions and by redirecting HPBB's inputfile to a
commandfile.

All in all it took us about one hour per program for the
conversion. I think an acceptable result as it offers a whole new
dataprocessing environment keeping OEMs software investments and
almost the same functionality in the applications. Thus a user
having to move to a bigger machine due to size limitations of the
260 can immediately continue to work in a familiar way without a
timeconsuming learning process.

Schedule

for the current phases

Phase I released in mid 85

Phase II and Joinform beta test in February 86

release mid 86

Preview into the future

Further development within HPBB (no HP commitment yet)

After the release of phase II in mid 86 there might be ongoing
efforts to enhance further the useability, power and friendliness
of HPBB.

Several topics have been discussed including:
File sort statements, thus getting rid of intrinsic calls
data structures, at least simple ones
printing into and reading from strings, like PL/1 GET/PUT STRING
support of fully qualified filenames for distributed systems
full screen editor with immediate syntax check within HPBB

and some more

All these points are still subject to discussion and no
commitment has been made by HP so far.

245



246 °

Porting HPBB to SPECTRUM
This project started in Nov 85

According to Dave Elliot (HPBB manager phase I) about 10% of
the existing code has to be changed to adapt HPBB to the new
hardware but for performance reasons approximately 20% will be
modified. HPs plan is to release HPBB on SPECTRUM at the same time
as on the 3000, mid 86.

Concerning database access it is planned to provide a
softwarelayer between HPBBs DB statements and the new database so
that a programmer can continue using his well known IMAGE DB
statements without changes.

In doing this he will of course not be able to exploit the full
range of the features of the new database, therefore additional DB
statements have to be integrated too.

Right now no direct interface is in discussion between HPBB and
the SQL like DB language, this can be done at first using e.g. a
PASCAL subprogram.

This is probably of not such a big concern to HPBB users
because already todays THREAD, SEARCh and SORT commands provide
relational like access to IMAGE.

Increasing compatibility downwards to the 260

As the 260 despite 1its 1limitations 1is still going strong
especially in Europe some tentative projects are discussed
(JOIN/260) enhancing the BASIC/260 language with constructs from
HPBB and maybe even make some changes to already existing
statements with the goal of being more compatible with the grownup
members of the family. :

With all these activities going on you can clearly see that
Business Basic has a strong support within HP. HPBB is planned to
be the commercial Basic for all future systems, from the 260
across the 3000 up to SPECTRUM.

Acknowledgements

I am very grateful to HP Bdéblingen and Cupertino for enabling me
to stay with the research team directly in Cupertino for over 3
months. Also to my company for letting me go for such a long time
to ensure the usefullness of the product for 260 OEMs.

My thanks also go to the HPBB team for the good cooperation
despite my being sometimes a very uncomfortable demanding customer
but I think it turned out to benefit both sides, HP  and HPBB user.



Authors biography

Dr.Ulrich Fauser
has been with WEIGANG MCS since 1981.

He is R&D manager and system software specialist therefore
responsible for the selection of future hard- and software for use
within his company.

He also deals with the europewide system software and technical
support for all used computersystems, right now exclusively HP
products.

He studied computer science at the university of Stuttgart with
emphasis on compiler construction and microprogramming. While he
was teaching computer science there afterwards his interest
shifted to distributed relational database systems of which a
prototype was implemented by his research team. This has been also
the subject of his doctoral thesis in 1980.

Before he started with his present company he spent a year at
the University of California in Santa Cruz researching within
Prof. F.Deremers Translator Writing Systems project.

His primary interest today are operating systems, databases and
programming languages.

Privately his favorite pastimes are sailing, skiing and scuba
diving.

References

HPBB Reference Manual , 32115-90001

HPBB Quick Reference Guide , 32115-90002

HPBB Programmers Guide , 32115-90003

BASIC/3000 to HPBB Conversion Guide , 32115-90004
BASIC/250 to HPBB Conversion Guide , 32115-90005
Phase II External Reference Specification
JOINFORM External Reference Specification

no manuals for phase I] are available yet

247



Perform “PERFO1:M" ! COMMAND file

Files, beginning with FBH (FIBU) and of type

PROG, DATA or FORM , are read per CATLINE from

tape and copied to :M, PROG files are saved as
ASCII-Files

In a parallel process an EDITOR file is created,

later to be used as a batchfile for the TRNSFR program
The program WART1 only waits for the parallel task to

W OODNOUMPWN -

1 be in INPUT state
S b kok ok ok ke k k ok ok ok ok ok dk ok ok ok ok ok ok 3k ok ok 3k 3k ok 3k ok 3k ok 3k 3k 3k 3k ok %k 3k K 3k 3k ok Sk K K K %k K K K Xk

10 REQUEST#7
11 SEND CONTROL HALT#7
12 SEND COMMAND#7,“RUN “&CHRS$(34)&"EDITOR:M"&CHRS$ (34)
13 RUN"WART1:M"
14 SEND INPUT#7,"S LENGTH=160"
15 RUN"WART1:M"
16 SEND INPUT#7,"A"
17 RUN"WART1:M"
18 :DIM PARMI(8)
19 :SET PARM(1) TO 0
20 : LOOP
21 :SET PARM(1) TO PARM(1)+1
22 CATLINE PARM(1) ON ":K" ,AS$
23 ¢EXIT IF AS$[1,3)="EOD"
24 :IF A$[1,2]="FB" THEN
25 :IF A$[14;4)="PROG" OR A$[14;4)="DATA" OR A$[14;4]1="FORM" THEN
26 :SET PARM(5) TO NUM(AS$[{4;11)
27 :SET PARM(6) TO NUM(AS$[5;1])
28 :SET PARM(7) TO NUM(AS$[6;11])
29 :IF A$[14;4]1="PROG" THEN
30 LOAD A$([(1,6]&":K"
31 B$="FBP"&CHRS$ (PARM(5) ) &CHR$ (PARM(6) ) &CHRS (PARM(7))&":M"
32 SAVE BS$
33 SEND INPUT#7,"“DATA_FILE_TRANSFER "&B$&" TO FBH"&B$([4,6]
34 RUN"“WART1:M" -
35 :ELSE
36 :IF A$[14;4])="DATA" THEN
37 B$="FBD"&CHR$ (PARM(5) ) &CHR$ (PARM(6) ) &CHRS$ (PARM(7))&" : M"
38 :END IF
39 ¢IF As$(14;4]1="FORM" THEN
40 B$="FBF"&CHRS$ (PARM(5) ) &CHR$ (PARM(6) ) &CHRS (PARM(7))&" : M"
41 :END IF
42 SEND INPUT#7,"ARCHIVE_TRANSFER "&B$&" TO FBH"&B$([4,6]
43 C$="FBH"&B$[4,61&":K"
44 COPY C$ TO B$
45 RUN"WART1:M"
46 :END IF )
47 :END IF
48 :END IF
49 :END LOOP
50 SEND INPUT#7,"//"
51 RUN"WART1:M"
52 SEND INPUT#7,"K"&CHRS[3&)&“TRATES:M"&CHR$(34)&",UNN"
53 RUN"WART1:M"
54 SEND INPUT#7,"E"
55 :END IF
56 :END

248



VCONDU D WN -

:! SAMPLE OUTPUT OF PERFORM COMMAND FILE

DATA_FILE_TRANSFER FBP044:
DATA_FILE_TRANSFER FBP045:
DATA_FILE_TRANSFER FBP046:
DATA_FILE_TRANSFER FBP047:
DATA_FILE_TRANSFER FBPO048:
DATA_FILE_TRANSFER FBP049:
DATA_FILE_TRANSFER FBPOS51:
DATA_FILE_TRANSFER FBPO052:
DATA_FILE_TRANSFER FBPO0S54:
DATA_FILE_TRANSFER FBPO065:
DATA_FILE_TRANSFER FBPO057:
DATA_FILE_TRANSFER FBPOSS:
DATA_FILE_TRANSFER FBPO053:
DATA_FILE_TRANSFER FBPO0S56:
DATA_FILE_TRANSFER FBPO058:
DATA_FILE_TRANSFER FBPO059:

ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER
ARCHIVE_TRANSFER

FBF301:
FBF302:
FBF303:
FBF304:
FBF305:
FBF306:
FBF307:
FBF308:
FBF309:
FBF310:
FBF311:
FBF312:
FBF313:
FBF314:
FBF315:
FBF316:
FBF317:
FBF318:
FBF319:
FBF320:
FBF321:
FBF322:

TIIIITIIZIIZIIIIZIIIIZIXX

TO FBHO044
TO FBHO045
TO FBHO046
TO FBHO047
TO FBHO48
TO FBHO049
TO FBHOS1
TO FBHO052
FBHOS4
TO FBHO65
TO FBHOS57
TO FBHOS55
TO FBHO53
TO FBHO56
TO FBHOS58
TO FBHO59
TO FBH301
TO FBH302
TO FBH303
TO FBH304
TO FBH305
TO FBH306
TO FBH307
TO FBH308
TO FBH309
TO FBH310
TO FBH311
TO FBH312
TO FBH313
TO FBH314
TO FBH315
TO FBH316
TO FBH317
TO FBH318
TO FBH319
TO FBH320
TO FBH321
TO FBH322

T IZIIIIIIIIIZIZIIX
-3
(@]

249



250

simple HPBB example program demontrating database extensions
and report writer

not every detail shown

(line numbers have been ommitted)

YES I know it can be done in a different and easier way

- i i -

SUB Orderreport
COM Dbas$,Limit ! lets assume database opened excusive in MENU

! Variable definitions only partially

DIM Partnos$(16],Storageloc$(6]
INTEGER Customer ,Orderno
DECIMAL Quantity

Dsetl: IN DATASET "ORDERS" USE Partno$,Customer,Orderno,Quantity,
Salesarea,Orderdate$

Dset2: IN DATASET “PARTSMASTER" USE Partno$

Dset3: IN DATASET "PARTS" USE Partno$,Partdesc$,SKIP 46,Storagelocs

Prt=FNSelectprinter ! ask user which printer to use
SYSTEM "FILE LP;DEV="+VALS$(Prt)
DBASE IS Dbass$
ASSIGN #1 TO “WORK"
Input: !
OFF KEY
CALL Clearscreen
CALL Ask_user("Report for which salesarea",Area$)
CALL Ask_user("for which month",Months$)
WORKFILE IS #1
POSITION #1;RESET
Threadl: THREAD IS Dsetl,Dset2,Dset3
SEARCH USING Threadl;Salesarea=VAL(Area$) AND VAL(Orderdate$[3;2])
=VAL(Month$)
IF NUMREC(#1)=0 THEN
CALL Msg("No orders for this salesarea and month")
ON KEY 8 GOTO Final;LABEL="EXIT"
ON KEY 2 GOTO Input;LABEL="NEW INPUT"
LOOP
ACCEPT
END LOOP
END IF
IF NUMREC(#1)>1 THEN SORT USING Thread1l;Customer,Partno$
ON HALT GOTO Exit
SEND OUTPUT TO "“xLP"
BEGIN REPORT Rpt1l
FOR I=1 TO NUMREC(#1)
READ #1;Orderptr ,Dummy,Partptr
DBGET Dbas$ USING Dsetl;DATASET="ORDERS",MODE=4,KEY=Orderptr
DBGET Dbas$ USING Dset3;DATASET=“PARTS“,MODE=4,KEY=Partptr
DETAIL LINE 1 USING Dt1;Orderno,Quantity
NEXT 1
END REPORT
Exit: STOP REPORT
Final: SEND OUTPUT TO DISPLAY
SYSTEM "RESET LP"
SUBEXIT ! return to menu



! Report layout for monthly order printout

Rptl: REPORT HEADER WITH 3 LINES
GRAND TOTALS ON Quantity*Price
PAGE LENGTH 72,2,2
LEFT MARGIN 10
BREAK 1 WHEN Customer CHANGES
BREAK 2 WHEN Partno$ CHANGES
PRINT USING Hd1;Title$,Areas$
PAGE HEADER WITH 2 LINES
PRINT USING Phl;DATE$(1),TIMES
PAGE TRAILER WITH 0 LINES ! can also be omitted
HEADER 1 WITH 2 LINES
TOTALS ON Quantity*Price
GOSUB Readcustomername
PRINT USING Hd1l;"Orders for "+Custname$
HEADER 2 WITH 2 LINES
TOTALS ON Quantity,Quantity*Price
PRINT USING Hd2;"Orders for "+Partno$,Partdesc$,Storagelocs$
TRAILER 2 WITH 2 LINES
PRINT USING Tr2;“Quantity for this part “,TOTAL(2,1)
PRINT USING Tr2_1;"Ordervalue ",TOTAL(2,2)
TRAILER 1 WITH 2 LINES
PRINT USING Trl;"Ordervalue for this customer ",TOTAL(1,1)
REPORT TRAILER WITH 3 LINES ]
PRINT USING Rtri;"Total ordervalue for salesarea",TOTAL(0,1)
IF TOTAL(0,1)<Limit THEN PRINT "Orderlimit not reached"
REPORT EXIT WITH 3 LINES
PRINT USING Rel;"TERMINATION DUE TO USERREQUEST"
END REPORT DESCRIPTION

t Ooutput format specifications would be here

SUBEND

' Other subroutines like Ask_user, FNSelectprinter etc would follow

PARTSMASTER

PARTS / ORDERS
THIZEA;\

Partno$ Partno$

Partdesc$ Custamer

. Orderno
Quantity

. Salesarea

Storageloc$ Orderdate$

251



	AL - Advanced Languages and Development Tools
	Business BASIC Phase II, the Next Step to a Friendly Commerical Programming Language


