INDEX SEQUENTIAL ACCESS TO IMAGE DATA BASES

Wolfgang Matt
Industrieanlagen-Betriebsgesellschaft mbH,
Einsteinstrasse 20, D-8012 Ottobrunn, West CGermany

Summar_g

IMAGE, though being a very successful data base system, has essential
drawbacks: it does not allow access by generic keys and sorted chains
show bad performance. Using KSAM in addition to IMAGE solves some
problems, but means additional programming and extensive use of system
resources. It is also not possible to log and recover IMAGE and KSAM
consistently, unless you rewrite the logging software. This paper
presents a software designed to enhance IMAGE for indexsequential access
i.e. generic keys and sorted chains. The software uses only IMAGE and

is itself IMAGE compatible (same database, intrinsics and calling
sequences) . It does not use privilegded mode.

The user can define indexseguential access paths for any item of master
and detail data sets. These access paths are treated like IMAGE chains,
but unlike IMAGE chains they can be defined and deleted without unloading
the database. Many user applications (e.g. TRANSACT programs) can take
advantage of generic keys and sorted chains without program changes,

but programmers can take full -advantage of the features by calling DBFIND
and DBGET with mode parameters not used by IMAGE.

The paper compares the neéw access method with traditional access methods
with regards to features, usability and performance.

Performance of Typical Database Accesses

We consider a typical data base consisting of a CUSTOMER master and an
ORDER detail. Both are connected by the search item CUSTMR, the customer
number. For the ORDER detail there exists a second search item, the
article number ARTNR (connected to an automatic master).

We now consider some typical inquiries to this data base to see how
IMAGE performs.

1. Retrieve name and address of a customer with a given CUSTNR.
IMAGE does a hashed access which is very efficient.

2. Retrieve the address of a customer with a given name.
A serial read has to be done which is very inefficient.

197

3. Retrieve all orders for a given customer number ordered by article
number.
If we have a sorted chain, retrieval is efficient, but adding and
deleting is not. If no sorted chain is defined, an online sort must
be programmed which is not efficient.

4. Petrieve all orders for given customer and article number.
A chained read must be done which may be inefficient if many entries
are discarded.

5. Retrieve all customers which buy a given article.
A chained read on the second path is very efficient.

6. Retrieve all customers which buy a given group of articles identified
by the first two characters of the article number. A serial read has
to be done which is very inefficient.

It can be seen from these examples that IMAGE performs well when the
access is made using exactly one of the fields defined as IMAGE keys.
Performance is bad when we need an access by a none key field of a
master, by a combination of keys, or by a partial key. Since these
questions exist, we have to look for an alternative method of accessing
data in an IMAGE data base. This method should be able to retrieve long
keys (i.e. the combination of several IMAGE fields) the same way as
partial keys (e.g. the first character of a customer's name). This
method should also provide the possibility of sorted retrieval without
the overhead of sorted chains.

The B-Tree Method

The method which allows partial key access and retrieval in ascending
order is called index sequential access. One starts with a given index
and reads from there in a logically sequential order. HP has implemented
this access method in KSAM but not in IMAGE.

The method used by KSAM ‘and tools of other manufacturers is based on
the B-tree principle invented by R. Baier. Keys and data are stored in
a special way which minimises disc read and allows fast access to any
key. In order to make this method efficient, only pointers to the data
are usually stored within the B-tree. This method is ideally applicaple
to data stored in IMAGE data bases, since we only have to add a B-tree
for the keys. A B-tree consists of blocks containing key values, the
associated data pointers and pointers to other blocks.

To illustrate the B-tree method we use very small dimensions: a key length
of one character and assume -that 4 keys fit into one block. We initially
want to store the letters A E I M Q U. After storing the first four
letters the first block is full

198

To add Q the block must be "splitted":

The new root block contains besides the key I the pointers to the two

leave blocks. After adding the key U into the second leave block we want
to add the remaining letters of the alphabet. We can add the keys B and C

into the first leave block by shifting E but to add D we have to split

again:

Using the B-tree we now demonstrate the retrieval of a key e.g. key E.
First the root block is read. It does not contain key E, but since E
is located in the alphabet between C and I (the two keys in the root
block), the pointer is followed and the second leave block retrieved.
In this block the key E is found and also the associated data pointer
(not shown in the figures above) .

Interfacing B-Trees with IMAGE

When we started to design an index sequential access method for IMAGE
data bases, we decided not to use one of the following approaches:

1. We did not want to use KSAM. The reason was that standard recovery
methods did not allow to keep KSAM and IMAGE files consistent in

case of a system failure. Another disadvantage of XKGAM is the exten-

sive use of system resources.

2. We did not want to change the IMAGE source code. This was done to
be independent of HP enhancing IMAGE (e.g. TURBO IMAGE).

199

3. We did not want to use privileged mode. Access to IMAGE is done but

solely using the documented IMAGE intrinsics. This makes the software
independent of internal IMAGE changes and adds to system security.

For the interface software we defined the following requirements:

1.

200

Indices must be covered by logging

The B-tree must be stored in a data set within the data base to which
it refers. Neither an MPE file nor a seperate data base can provide

a consistency between data and keys in case of a system failure. A
separate program to reconstruct the B-tree from the data may run for
hours, while roll-back recovery can be done within a few minutes
using TURBO IMAGE. One extra data set (stand aléne detail) is suffi-
cient to store the B-trees of all fields (or combinations of fields)
for which index sequential access is defined. The data set also
includes the definitions themselves. This leads to a logical struc-
ture like this:

global definitions in record 1

| |

definitions for dset 1 definitions for dset 2

| | |

root key 1 root key 2 root key 3

Indices must be updated automatically

It would be tedious and prone to error if a programmer had to code

a normal DBPUT and then an intrinsic call to update the B-tree, code
a DBBEGIN and DBEND around it and also include the index data set in
the lock descriptor. We need a "super DBPUT" which does this all
autpmatically. The same is true for DBDELETE and also for DBUPDATE,
since we allow the new keys to be updated. Since DBDELETE does not
have an argument buffer, the "super DBDELETE" must find out which
keys have to be deleted according to the latest DBGET.

The calling sequence must be identical

Though the "super DBPUT" does everything necessary, you do not want

to change all programs replacing the call to DBPUT by a new call with
additional parameters and pass new parameters from routine to routine.
No - the "super DBPUT" must be called DBPUT and it must have identical
parameters. Only this garantees existing programs to run without
modification, recompilation or patching. The only restriction is that
the new intrinsics must reside in an account SL, since they call the
HP intrinsics in SL.PUB.SYS.

4. The logic of retrieval must be unchanged

Though partial key access is an addition to the standard IMAGE
retrieval methods, it should be done by the same logic. You want

do a DBFIND with the partial key as argument, and a series of DBGET's
(mode 5) should retrieve all entries belonging to this partial key.
An end-of-chain indicator (condition word 15) should also be returned.
But somehow you have to tell the software, how long the partial key
is. This is the only information not provided in the standard IMAGE
calling sequence. We provide two methods:

- new values for the mode parameter allow to code-the length of the
partial key and also allow to specify wether the search should
start at the lowest or the highest key which matches the partial
key. In the latter case a backward read (mode 6) may be performed.

- software which cannot use anything but mode 1 for DBFIND (existing
programs, RPG, 4GLs) can terminate the argument by a @ . All
characters up to the @ are treated as partial key. This is
especially convenient when an automatic master is replaced by
index sequential access. You do not need to change any of your
programs.

This method also works for 4GLs like TRANSACT. But some 4GLs do
not trust IMAGE. They compare the result of DBGET with the argument
of DBFIND, which is of course not identical for partial key access.

Biography

Wolfgang Matt holds a PhD in physics. Since 1977 he works with IABG,

a company with 1700 employees near Munich. He is head of a group of
scientists, consulting HP 3000 users and developping individual software
for them. He is the author of SI-IMAGE, a product for index sequential
access to IMAGE data bases.

201

	DB - Data Base Management Systems
	Index Sequential Access to IMAGE Data Bases

